Sample records for mems phased array

  1. Phase Calibration of Microphones by Measurement in the Free-field

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.

    2006-01-01

    Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.

  2. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  3. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  4. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.

  5. Experiments in ultrasonic flaw detection using a MEMS transducer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.

  6. A Ku band 5 bit MEMS phase shifter for active electronically steerable phased array applications

    NASA Astrophysics Data System (ADS)

    Sharma, Anesh K.; Gautam, Ashu K.; Farinelli, Paola; Dutta, Asudeb; Singh, S. G.

    2015-03-01

    The design, fabrication and measurement of a 5 bit Ku band MEMS phase shifter in different configurations, i.e. a coplanar waveguide and microstrip, are presented in this work. The development architecture is based on the hybrid approach of switched and loaded line topologies. All the switches are monolithically manufactured on a 200 µm high resistivity silicon substrate using 4 inch diameter wafers. The first three bits (180°, 90° and 45°) are realized using switched microstrip lines and series ohmic MEMS switches whereas the fourth and fifth bits (22.5° and 11.25°) consist of microstrip line sections loaded by shunt ohmic MEMS devices. Individual bits are fabricated and evaluated for performance and the monolithic device is a 5 bit Ku band (16-18 GHz) phase shifter with very low average insertion loss of the order of 3.3 dB and a return loss better than 15 dB over the 32 states with a chip area of 44 mm2. A total phase shift of 348.75° with phase accuracy within 3° is achieved over all of the states. The performance of individual bits has been optimized in order to achieve an integrated performance so that they can be implemented into active electronically steerable antennas for phased array applications.

  7. Demonstration of a linear optical true-time delay device by use of a microelectromechanical mirror array.

    PubMed

    Rader, Amber; Anderson, Betty Lise

    2003-03-10

    We present the design and proof-of-concept demonstration of an optical device capable of producing true-time delay(s) (TTD)(s) for phased array antennas. This TTD device uses a free-space approach consisting of a single microelectromechanical systems (MEMS) mirror array in a multiple reflection spherical mirror configuration based on the White cell. Divergence is avoided by periodic refocusing by the mirrors. By using the MEMS mirror to switch between paths of different lengths, time delays are generated. Six different delays in 1-ns increments were demonstrated by using the Texas Instruments Digital Micromirror Device as the switching element. Losses of 1.6 to 5.2 dB per bounce and crosstalk of -27 dB were also measured, both resulting primarily from diffraction from holes in each pixel and the inter-pixel gaps of the MEMS.

  8. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    DOEpatents

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  9. MEMS ultrasonic transducer for monitoring of steel structures

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2002-06-01

    Ultrasonic methods can be used to monitor crack propagation, weld failure, or section loss at critical locations in steel structures. However, ultrasonic inspection requires a skilled technician, and most commonly the signal obtained at any inspection is not preserved for later use. A preferred technology would use a MEMS device permanently installed at a critical location, polled remotely, and capable of on-chip signal processing using a signal history. We review questions related to wave geometry, signal levels, flaw localization, and electromechanical design issues for microscale transducers, and then describe the design, characterization, and initial testing of a MEMS transducer to function as a detector array. The device is approximately 1-cm square and was fabricated by the MUMPS process. The chip has 23 sensor elements to function in a phased array geometry, each element containing 180 hexagonal polysilicon diaphragms with a typical leg length of 49 microns and an unloaded natural frequency near 3.5 MHz. We first report characterization studies including capacitance-voltage measurements and admittance measurements, and then report initial experiments using a conventional piezoelectric transducer for excitation, with successful detection of signals in an on-axis transmission experiment and successful source localization from phased array performance in an off-axis transmission experiment.

  10. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  11. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  12. Electrical latching of microelectromechanical devices

    DOEpatents

    Garcia, Ernest J.; Sleefe, Gerard E.

    2004-11-02

    Methods are disclosed for row and column addressing of an array of microelectromechanical (MEM) devices. The methods of the present invention are applicable to MEM micromirrors or memory elements and allow the MEM array to be programmed and maintained latched in a programmed state with a voltage that is generally lower than the voltage required for electrostatically switching the MEM devices.

  13. On-Orbit, Immuno-Based, Label-Free White Blood Cell Counting System with Microelectromechanical Sensor Technology (OILWBCS-MEMS)

    NASA Technical Reports Server (NTRS)

    Edmonds, Jessica

    2015-01-01

    Aurora Flight Sciences, in partnership with Draper Laboratory, has developed a miniaturized system to count white blood cells in microgravity environments. The system uses MEMS technology to simultaneously count total white blood cells, the five white blood cell differential subgroups, and various lymphocyte subtypes. The OILWBCS-MEMS detection technology works by immobilizing an array of white blood cell-specific antibodies on small, gold-coated membranes. When blood flows across the membranes, specific cells' surface protein antigens bind to their corresponding antibodies. This binding can be measured and correlated to cell counts. In Phase I, the partners demonstrated surface chemistry sensitivity and specificity for total white blood cells and two lymphocyte subtypes. In Phase II, a functional prototype demonstrated end-to-end operation. This rugged, miniaturized device requires minimal blood sample preparation and will be useful for both space flight and terrestrial applications.

  14. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  15. Wavefront Correction for Large, Flexible Antenna Reflector

    NASA Technical Reports Server (NTRS)

    Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng

    2010-01-01

    A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.

  16. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; hide

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  17. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  18. Micromechanical Disk Array for Enhanced Frequency Stability Against Bias Voltage Fluctuations

    DTIC Science & Technology

    2014-11-20

    already made inroads into the low-end timing market , and research devices have been reported to satisfy GSM phase noise requirements while only...resonators have already made inroads into the low-end timing market , and research devices have been reported to satisfy GSM phase noise requirements...Notably oscillators referenced to very high Q capacitive-gap transduced MEMS resonators have already made inroads into the low-end timing market , and

  19. The conical conformal MEMS quasi-end-fire array antenna

    NASA Astrophysics Data System (ADS)

    Cong, Lin; Xu, Lixin; Li, Jianhua; Wang, Ting; Han, Qi

    2017-03-01

    The microelectromechanical system (MEMS) quasi-end-fire array antenna based on a liquid crystal polymer (LCP) substrate is designed and fabricated in this paper. The maximum radiation direction of the antenna tends to the cone axis forming an angle less than 90∘, which satisfies the proximity detection system applied at the forward target detection. Furthermore, the proposed antenna is fed at the ended side in order to save internal space. Moreover, the proposed antenna takes small covering area of the proximity detection system. The proposed antenna is fabricated by using the flexible MEMS process, and the measurement results agree well with the simulation results. This is the first time that a conical conformal array antenna is fabricated by the flexible MEMS process to realize the quasi-end-fire radiation. A pair of conformal MEMS array antennas resonates at 14.2 GHz with its mainlobes tending to the cone axis forming a 30∘ angle and a 31∘ angle separately, and the gains achieved are 1.82 dB in two directions, respectively. The proposed antenna meets the performance requirements for the proximity detection system which has vast application prospects.

  20. Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems

    NASA Technical Reports Server (NTRS)

    Bernhard, Jennifer T.; Michielssen, Eric

    2005-01-01

    High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.

  1. Nanoionics-Based Switches for Radio-Frequency Applications

    NASA Technical Reports Server (NTRS)

    Nessel, James; Lee, Richard

    2010-01-01

    Nanoionics-based devices have shown promise as alternatives to microelectromechanical systems (MEMS) and semiconductor diode devices for switching radio-frequency (RF) signals in diverse systems. Examples of systems that utilize RF switches include phase shifters for electronically steerable phased-array antennas, multiplexers, cellular telephones and other radio transceivers, and other portable electronic devices. Semiconductor diode switches can operate at low potentials (about 1 to 3 V) and high speeds (switching times of the order of nanoseconds) but are characterized by significant insertion loss, high DC power consumption, low isolation, and generation of third-order harmonics and intermodulation distortion (IMD). MEMS-based switches feature low insertion loss (of the order of 0.2 dB), low DC power consumption (picowatts), high isolation (>30 dB), and low IMD, but contain moving parts, are not highly reliable, and must be operated at high actuation potentials (20 to 60 V) generated and applied by use of complex circuitry. In addition, fabrication of MEMS is complex, involving many processing steps. Nanoionics-based switches offer the superior RF performance and low power consumption of MEMS switches, without need for the high potentials and complex circuitry necessary for operation of MEMS switches. At the same time, nanoionics-based switches offer the high switching speed of semiconductor devices. Also, like semiconductor devices, nanoionics-based switches can be fabricated relatively inexpensively by use of conventional integrated-circuit fabrication techniques. More over, nanoionics-based switches have simple planar structures that can easily be integrated into RF power-distribution circuits.

  2. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  3. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  4. Array Phase Shifters: Theory and Technology

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  5. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture.

    PubMed

    Pearce, Thomas M; Wilson, J Adam; Oakes, S George; Chiu, Shing-Yan; Williams, Justin C

    2005-01-01

    A device for cell culture is presented that combines MEMS technology and liquid-phase photolithography to create a microfluidic chip that influences and records electrical cellular activity. A photopolymer channel network is formed on top of a multichannel microelectrode array. Preliminary results indicated successful local thermal control within microfluidic channels and control of lamina position over the electrode array. To demonstrate the biological application of such a device, adult dissociated dorsal root ganglion neurons with a subpopulation of thermally-sensitive cells are attached onto the electrode array. Using laminar flow, dynamic control of local temperature of the neural cells was achieved while maintaining a constant chemical culture medium. Recording the expected altered cellular activity confirms the success of the integrated device.

  6. Radio Frequency (RF) Micro-Electromechanical Systems (MEMS) Switches for Space Communications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Ponchak, George E.; Scardelletti, Maximillian C.; Varaljay, Nicholas C.

    2000-01-01

    Micro-electromechanical systems (MEMS) is an emerging technology for radio frequency (RF) systems because it has the potential to dramatically decrease loss and improve efficiency. In this paper, we address the design and fabrication of novel MEMS switches being developed at NASA Glenn Research Center. Two types of switches are being developed: a microstrip series single pole single throw (SPST) switch and a coplanar waveguide (CPW) series SPST and single pole double throw (SPDT) switches. These are being fabricated as an integral part of 50 Ohm microstrip and CPW RF integrated circuits using microfabrication techniques. The construction of the switch relies on a cantilever beam that is partially supported by a dielectric post. The cantilever beam is electro-magnetically actuated. To decrease stiction, a Si3N4 thin film is deposited over the contact area. Thus, when the switch is closed, the ON-state insertion loss is governed by the parallel plate capacitance formed by the two contacts. The isolation in the OFF-state is governed by the parasitic capacitance when the cantilever is in the up position. RF MEMS switches have been demonstrated with 80% lower insertion loss than conventional solid state devices (GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and Silicon PIN diodes) based switches. For example, a conventional GaAs five-bit phase shifter which is required for beam steering in a phased array antenna has approximately 7 dB of insertion loss at 26.5 GHz where as a comparable MEMS based phase shifter is expected to have only 2 dB of insertion loss. This translates into 56% lower power dissipation and therefore decreases the thermal load on the spacecraft and also reduces the power amplifier requirements. These benefits will enable NASA to build the next generation of deep space science crafts and micro/nano satellites.

  7. Vertical integration of array-type miniature interferometers at wafer level by using multistack anodic bonding

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Shan; Wiemer, Maik; Froemel, Joerg; Enderlein, Tom; Gessner, Thomas; Lullin, Justine; Bargiel, Sylwester; Passilly, Nicolas; Albero, Jorge; Gorecki, Christophe

    2016-04-01

    In this work, vertical integration of miniaturized array-type Mirau interferometers at wafer level by using multi-stack anodic bonding is presented. Mirau interferometer is suitable for MEMS metrology and for medical imaging according to its vertical-, lateral- resolutions and working distances. Miniaturized Mirau interferometer can be a promising candidate as a key component of an optical coherence tomography (OCT) system. The miniaturized array-type interferometer consists of a microlens doublet, a Si-based MEMS Z scanner, a spacer for focus-adjustment and a beam splitter. Therefore, bonding technologies which are suitable for heterogeneous substrates are of high interest and necessary for the integration of MEMS/MOEMS devices. Multi-stack anodic bonding, which meets the optical and mechanical requirements of the MOEMS device, is adopted to integrate the array-type interferometers. First, the spacer and the beam splitter are bonded, followed by bonding of the MEMS Z scanner. In the meanwhile, two microlenses, which are composed of Si and glass wafers, are anodically bonded to form a microlens doublet. Then, the microlens doublet is aligned and bonded with the scanner/spacer/beam splitter stack. The bonded array-type interferometer is a 7- wafer stack and the thickness is approximately 5mm. To separate such a thick wafer stack with various substrates, 2-step laser cutting is used to dice the bonded stack into Mirau chips. To simplify fabrication process of each component, electrical connections are created at the last step by mounting a Mirau chip onto a flip chip PCB instead of through wafer vias. Stability of Au/Ti films on the MEMS Z scanner after anodic bonding, laser cutting and flip chip bonding are discussed as well.

  8. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  9. Applications of ANSYS/Multiphysics at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Loughlin, Jim

    2007-01-01

    This viewgraph presentation reviews some of the uses that the ANSYS/Multiphysics system is used for at the NASA Goddard Space Flight Center. Some of the uses of the ANSYS system is used for is MEMS Structural Analysis of Micro-mirror Array for the James Web Space Telescope (JWST), Micro-shutter Array for JWST, MEMS FP Tunable Filter, AstroE2 Micro-calorimeter. Various views of these projects are shown in this presentation.

  10. Space Fed Subarray Synthesis Using Displaced Feed Location

    NASA Astrophysics Data System (ADS)

    Mailloux, Robert J.

    2002-01-01

    Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.

  11. Obscura telescope with a MEMS micromirror array for space observation of transient luminous phenomena or fast-moving objects.

    PubMed

    Park, J H; Garipov, G K; Jeon, J A; Khrenov, B A; Kim, J E; Kim, M; Kim, Y K; Lee, C-H; Lee, J; Na, G W; Nam, S; Park, I H; Park, Y-S

    2008-12-08

    We introduce a novel telescope consisting of a pinhole-like camera with rotatable MEMS micromirrors substituting for pinholes. The design is ideal for observations of transient luminous phenomena or fast-moving objects, such as upper atmospheric lightning and bright gamma ray bursts. The advantage of the MEMS "obscura telescope" over conventional cameras is that it is capable both of searching for events over a wide field of view, and fast zooming to allow detailed investigation of the structure of events. It is also able to track the triggering object to investigate its space-time development, and to center the interesting portion of the image on the photodetector array. We present the proposed system and the test results for the MEMS obscura telescope which has a field of view of 11.3 degrees, sixteen times zoom-in and tracking within 1 ms. (c) 2008 Optical Society of America

  12. Design, modeling and simulation of MEMS-based silicon Microneedles

    NASA Astrophysics Data System (ADS)

    Amin, F.; Ahmed, S.

    2013-06-01

    The advancement in semiconductor process engineering and nano-scale fabrication technology has made it convenient to transport specific biological fluid into or out of human skin with minimum discomfort. Fluid transdermal delivery systems such as Microneedle arrays are one such emerging and exciting Micro-Electro Mechanical System (MEMS) application which could lead to a total painless fluid delivery into skin with controllability and desirable yield. In this study, we aimed to revisit the problem with modeling, design and simulations carried out for MEMS based silicon hollow out of plane microneedle arrays for biomedical applications particularly for transdermal drug delivery. An approximate 200 μm length of microneedle with 40 μm diameter of lumen has been successfully shown formed by isotropic and anisotropic etching techniques using MEMS Pro design tool. These microneedles are arranged in size of 2 × 4 matrix array with center to center spacing of 750 μm. Furthermore, comparisons for fluid flow characteristics through these microneedle channels have been modeled with and without the contribution of the gravitational forces using mathematical models derived from Bernoulli Equation. Physical Process simulations have also been performed on TCAD SILVACO to optimize the design of these microneedles aligned with the standard Si-Fabrication lines.

  13. MEMS phase former kit for high-resolution wavefront control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Elgner, Andreas; Schenk, Harald

    2005-08-01

    The MEMS Phase Former Kit developed by the Fraunhofer IPMS is a complete Spatial Light Modulator system based on a piston-type Micro Mirror Array (MMA) for the use in high-resolution, high-speed optical phase control. It has been designed for an easy system integration into an user-specific environment to offer a platform for first practical investigations to open up new applications in Adaptive Optics. The key component is a fine segmented 240 x 200 array of 40 μm piston-type mirror elements capable of 400 nm analog deflection for a 2pi phase modulation in the visible. Each mirror can be addressed and deflected independently by means of an integrated CMOS backplane address circuitry at an 8bit height resolution. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a closed-loop operation with real-time data from an external source. An IEEE1394a FireWire interface is used for high-speed data communication with an electronic driving board performing the actual MMA programming and control allowing for an overall frame rate of up to 500 Hz. Successful proof-of-concept demonstrations already have been given for eye aberration correction in ophthalmology, for error compensation of leightweight primary mirrors of future space telescopes and for ultra-short laser pulse shaping. Besides a presentation of the basic device concept and system architecture the paper will give an overview of the obtained results from these applications.

  14. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  15. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  16. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  17. The Electrophysiological MEMS Device with Micro Channel Array for Cellular Network Analysis

    NASA Astrophysics Data System (ADS)

    Tonomura, Wataru; Kurashima, Toshiaki; Takayama, Yuzo; Moriguchi, Hiroyuki; Jimbo, Yasuhiko; Konishi, Satoshi

    This paper describes a new type of MCA (Micro Channel Array) for simultaneous multipoint measurement of cellular network. Presented MCA employing the measurement principles of the patch-clamp technique is designed for advanced neural network analysis which has been studied by co-authors using 64ch MEA (Micro Electrode Arrays) system. First of all, sucking and clamping of cells through channels of developed MCA is expected to improve electrophysiological signal detections. Electrophysiological sensing electrodes integrated around individual channels of MCA by using MEMS (Micro Electro Mechanical System) technologies are electrically isolated for simultaneous multipoint measurement. In this study, we tested the developed MCA using the non-cultured rat's cerebral cortical slice and the hippocampal neurons. We could measure the spontaneous action potential of the slice simultaneously at multiple points and culture the neurons on developed MCA. Herein, we describe the experimental results together with the design and fabrication of the electrophysiological MEMS device with MCA for cellular network analysis.

  18. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    NASA Astrophysics Data System (ADS)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  19. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  20. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  1. Film-Evaporation MEMS Tunable Array for Picosat Propulsion and Thermal Control

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina; Cardiff, Eric; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Film-Evaporation MEMS Tunable Array (FEMTA) concept for propulsion and thermal control of picosats exploits microscale surface tension effect in conjunction with temperature- dependent vapor pressure to realize compact, tunable and low-power thermal valving system. The FEMTA is intended to be a self-contained propulsion unit requiring only a low-voltage DC power source to operate. The microfabricated thermal valving and very-high-integration level enables fast high-capacity cooling and high-resolution, low-power micropropulsion for picosats that is superior to existing smallsat micropropulsion and thermal management alternatives.

  2. Enhanced Quality Factor Label-free Biosensing with Micro-Cantilevers Integrated into Microfluidic Systems.

    PubMed

    Kartanas, Tadas; Ostanin, Victor; Challa, Pavan Kumar; Daly, Ronan; Charmet, Jerome; Knowles, Tuomas P J

    2017-11-21

    Microelectromechanical systems (MEMS) have enabled the development of a new generation of sensor platforms. Acoustic sensor operation in liquid, the native environment of biomolecules, causes, however, significant degradation of sensing performance due to viscous drag and relies on the availability of capture molecules to bind analytes of interest to the sensor surface. Here, we describe a strategy to interface MEMS sensors with microfluidic platforms through an aerosol spray. Our sensing platform comprises a microfluidic spray nozzle and a microcantilever array operated in dynamic mode within a closed loop oscillator. A solution containing the analyte is sprayed uniformly through picoliter droplets onto the microcantilever surface; the micrometer-scale drops evaporate rapidly and leave the solutes behind, adding to the mass of the cantilever. This sensing scheme results in a 50-fold increase in the quality factor compared to operation in liquid, yet allows the analytes to be introduced into the sensing system from a solution phase. It achieves a 370 femtogram limit of detection, and we demonstrate quantitative label-free analysis of inorganic salts and model proteins. These results demonstrate that the standard resolution limits of cantilever sensing in dynamic mode can be overcome with the integration of spray microfluidics with MEMS.

  3. Arrays of Miniature Microphones for Aeroacoustic Testing

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Sealey, Bradley S.; Bartram, Scott M.; Zuckewar, Allan J.; Comeaux, Toby; Adams, James K.

    2007-01-01

    A phased-array system comprised of custom-made and commercially available microelectromechanical system (MEMS) silicon microphones and custom ancillary hardware has been developed for use in aeroacoustic testing in hard-walled and acoustically treated wind tunnels. Recent advances in the areas of multi-channel signal processing and beam forming have driven the construction of phased arrays containing ever-greater numbers of microphones. Traditional obstacles to this trend have been posed by (1) the high costs of conventional condenser microphones, associated cabling, and support electronics and (2) the difficulty of mounting conventional microphones in the precise locations required for high-density arrays. The present development overcomes these obstacles. One of the hallmarks of the new system is a series of fabricated platforms on which multiple microphones can be mounted. These mounting platforms, consisting of flexible polyimide circuit-board material (see left side of figure), include all the necessary microphone power and signal interconnects. A single bus line connects all microphones to a common power supply, while the signal lines terminate in one or more data buses on the sides of the circuit board. To minimize cross talk between array channels, ground lines are interposed as shields between all the data bus signal lines. The MEMS microphones are electrically connected to the boards via solder pads that are built into the printed wiring. These flexible circuit boards share many characteristics with their traditional rigid counterparts, but can be manufactured much thinner, as small as 0.1 millimeter, and much lighter with boards weighing as much as 75 percent less than traditional rigid ones. For a typical hard-walled wind-tunnel installation, the flexible printed-circuit board is bonded to the tunnel wall and covered with a face sheet that contains precise cutouts for the microphones. Once the face sheet is mounted, a smooth surface is established over the entire array due to the flush mounting of all microphones (see right side of figure). The face sheet is made from a continuous glass-woven-fabric base impregnated with an epoxy resin binder. This material offers a combination of high mechanical strength and low dielectric loss, making it suitable for withstanding the harsh test section environment present in many wind tunnels, while at the same time protecting the underlying polyimide board. Customized signal-conditioning hardware consisting of line drivers and antialiasing filters are coupled with the array. The line drivers are constructed using low-supply-current, high-gain-bandwidth operational amplifiers designed to transmit the microphone signals several dozen feet from the array to external acquisition hardware. The anti-alias filters consist of individual Chebyshev low-pass filters (one for each microphone channel) housed on small printed-circuit boards mounted on one or more motherboards. The mother/daughter board design results in a modular system, which is easy to debug and service and which enables the filter characteristics to be changed by swapping daughter boards with ones containing different filter parameters. The filter outputs are passed to commercially- available acquisition hardware to digitize and store the conditioned microphone signals. Wind-tunnel testing of the new MEMS microphone polyimide mounting system shows that the array performance is comparable to that of traditional arrays, but with significantly less cost of construction.

  4. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  5. Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images

    PubMed Central

    Izquierdo, Alberto; Suárez, Luis; Suárez, David

    2017-01-01

    Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485

  6. Vertically Integrated MEMS SOI Composite Porous Silicon-Crystalline Silicon Cantilever-Array Sensors: Concept for Continuous Sensing of Explosives and Warfare Agents

    NASA Astrophysics Data System (ADS)

    Stolyarova, Sara; Shemesh, Ariel; Aharon, Oren; Cohen, Omer; Gal, Lior; Eichen, Yoav; Nemirovsky, Yael

    This study focuses on arrays of cantilevers made of crystalline silicon (c-Si), using SOI wafers as the starting material and using bulk micromachining. The arrays are subsequently transformed into composite porous silicon-crystalline silicon cantilevers, using a unique vapor phase process tailored for providing a thin surface layer of porous silicon on one side only. This results in asymmetric cantilever arrays, with one side providing nano-structured porous large surface, which can be further coated with polymers, thus providing additional sensing capabilities and enhanced sensing. The c-Si cantilevers are vertically integrated with a bottom silicon die with electrodes allowing electrostatic actuation. Flip Chip bonding is used for the vertical integration. The readout is provided by a sensitive Capacitance to Digital Converter. The fabrication, processing and characterization results are reported. The reported study is aimed towards achieving miniature cantilever chips with integrated readout for sensing explosives and chemical warfare agents in the field.

  7. Ultrasonic Waves in Water Visualized With Schlieren Imaging

    NASA Technical Reports Server (NTRS)

    Juergens, Jeffrey R.

    2000-01-01

    The Acoustic Liquid Manipulation project at the NASA Glenn Research Center at Lewis Field is working with high-intensity ultrasound waves to produce acoustic radiation pressure and acoustic streaming. These effects can be used to propel liquid flows to manipulate floating objects and liquid surfaces. Interest in acoustic liquid manipulation has been shown in acoustically enhanced circuit board electroplating, microelectromechanical systems (MEMS), and microgravity space experiments. The current areas of work on this project include phased-array ultrasonic beam steering, acoustic intensity measurements, and schlieren imaging of the ultrasonic waves.

  8. MEMS based hair flow-sensors as model systems for acoustic perception studies

    NASA Astrophysics Data System (ADS)

    Krijnen, Gijs J. M.; Dijkstra, Marcel; van Baar, John J.; Shankar, Siripurapu S.; Kuipers, Winfred J.; de Boer, Rik J. H.; Altpeter, Dominique; Lammerink, Theo S. J.; Wiegerink, Remco

    2006-02-01

    Arrays of MEMS fabricated flow sensors inspired by the acoustic flow-sensitive hairs found on the cerci of crickets have been designed, fabricated and characterized. The hairs consist of up to 1 mm long SU-8 structures mounted on suspended membranes with normal translational and rotational degrees of freedom. Electrodes on the membrane and on the substrate form variable capacitors, allowing for capacitive read-out. Capacitance versus voltage, frequency dependence and directional sensitivity measurements have been successfully carried out on fabricated sensor arrays, showing the viability of the concept. The sensors form a model system allowing for investigations on sensory acoustics by their arrayed nature, their adaptivity via electrostatic interaction (frequency tuning and parametric amplification) and their susceptibility to noise (stochastic resonance).

  9. Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability.

    PubMed

    Li, Ming-Huang; Chen, Wen-Chien; Li, Sheng-Shian

    2012-03-01

    Integrated CMOS-MEMS free-free beam resonator arrays operated in a standard two-port electrical configuration with low motional impedance and high power handling capability, centered at 10.5 MHz, have been demonstrated using the combination of pull-in gap reduction mechanism and mechanically coupled array design. The mechanical links (i.e., coupling elements) using short stubs connect each constituent resonator of an array to its adjacent ones at the high-velocity vibrating locations to accentuate the desired mode and reject all other spurious modes. A single second-mode free-free beam resonator with quality factor Q > 2200 and motional impedance R(m) < 150 kΩ has been used to achieve mechanically coupled resonator arrays in this work. In array design, a 9-resonator array has been experimentally characterized to have performance improvement of approximately 10× on motional impedance and power handling as compared with that of a single resonator. In addition, the two-port electrical configuration is much preferred over a one-port configuration because of its low-feedthrough and high design flexibility for future oscillator and filter implementation.

  10. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  11. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, James G.

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, andmore » also has applications for thermal management within satellites.« less

  12. Arrays of Carbon Nanotubes as RF Filters in Waveguides

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel; Hunt, Brian; Hoenk, Michael; Noca, Flavio; Xu, Jimmy

    2003-01-01

    Brushlike arrays of carbon nanotubes embedded in microstrip waveguides provide highly efficient (high-Q) mechanical resonators that will enable ultraminiature radio-frequency (RF) integrated circuits. In its basic form, this invention is an RF filter based on a carbon nanotube array embedded in a microstrip (or coplanar) waveguide, as shown in Figure 1. In addition, arrays of these nanotube-based RF filters can be used as an RF filter bank. Applications of this new nanotube array device include a variety of communications and signal-processing technologies. High-Q resonators are essential for stable, low-noise communications, and radar applications. Mechanical oscillators can exhibit orders of magnitude higher Qs than electronic resonant circuits, which are limited by resistive losses. This has motivated the development of a variety of mechanical resonators, including bulk acoustic wave (BAW) resonators, surface acoustic wave (SAW) resonators, and Si and SiC micromachined resonators (known as microelectromechanical systems or MEMS). There is also a strong push to extend the resonant frequencies of these oscillators into the GHz regime of state-of-the-art electronics. Unfortunately, the BAW and SAW devices tend to be large and are not easily integrated into electronic circuits. MEMS structures have been integrated into circuits, but efforts to extend MEMS resonant frequencies into the GHz regime have been difficult because of scaling problems with the capacitively-coupled drive and readout. In contrast, the proposed devices would be much smaller and hence could be more readily incorporated into advanced RF (more specifically, microwave) integrated circuits.

  13. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  14. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  15. Low Voltage MEMS Digital Loudspeaker Array Based on Thin-film PZT Actuators

    NASA Astrophysics Data System (ADS)

    Fanget, S.; Casset, F.; Dejaeger, R.; Maire, F.; Desloges, B.; Deutzer, J.; Morisson, R.; Bohard, Y.; Laroche, B.; Escato, J.; Leclere, Q.

    This paper reports on the development of a Digital Loudspeaker Array (DLA) solution based on Pb(Zr0.52,Ti0.48)O3 (PZT) thin-film actuated membranes. These membranes called speaklets are arranged in a matrix and operate in a binary manner by emitting short pulses of sound pressure. Using the principle of additivity of pressures in the air, it is possible to reconstruct audible sounds. For the first time, electromechanical and acoustic characterizations are reported on a 256-MEMS-membranes DLA. Sounds audible as far as several meters from the loudspeaker have been generated using low voltage (8 V).

  16. RF MEMS and Their Applications in NASA's Space Communication Systems

    NASA Technical Reports Server (NTRS)

    Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung

    2001-01-01

    Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.

  17. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  18. CNES reliability approach for the qualification of MEMS for space

    NASA Astrophysics Data System (ADS)

    Pressecq, Francis; Lafontan, Xavier; Perez, Guy; Fortea, Jean-Pierre

    2001-10-01

    This paper describes the reliability approach performs at CNES to evaluate MEMS for space application. After an introduction and a detailed state of the art on the space requirements and on the use of MEMS for space, different approaches for taking into account MEMS in the qualification phases are presented. CNES proposes improvement to theses approaches in term of failure mechanisms identification. Our approach is based on a design and test phase deeply linked with a technology study. This workflow is illustrated with an example: the case of a variable capacitance processed with MUMPS process is presented.

  19. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  20. MEMS analog light processing: an enabling technology for adaptive optical phase control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Knobbe, Jens; Komenda, Ondrej

    2006-01-01

    Various applications in modern optics are demanding for Spatial Light Modulators (SLM) with a true analog light processing capability, e.g. the generation of arbitrary analog phase patterns for an adaptive optical phase control. For that purpose the Fraunhofer IPMS has developed a high-resolution MEMS Micro Mirror Array (MMA) with an integrated active-matrix CMOS address circuitry. The device provides 240 x 200 piston-type mirror elements with 40 μm pixel size, where each of them can be addressed and deflected independently at an 8bit height resolution with a vertical analog deflection range of up to 400 nm suitable for a 2pi phase modulation in the visible. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a direct data feed-through within a closed-loop environment. High-speed data communication is established by an IEEE1394a FireWire interface together with an electronic driving board performing the actual MMA programming and control at a maximum frame rate of up to 500 Hz. Successful application demonstrations have been given in eye aberration correction, coupling efficiency optimization into a monomode fiber, ultra-short laser pulse modulation and diffractive beam shaping. Besides a presentation of the basic device concept the paper will give an overview of the obtained results from these applications.

  1. Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments

    NASA Astrophysics Data System (ADS)

    Holt, Christopher Michael Bjustrom

    This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of the released platform was shown to be better than the performance seen in the anchored sensors while both platforms were significantly better than a simply fabricated wrapped wire sensor. The anchored platform was also used to demonstrate a traditional capacitance based fluid dielectric sensor which was found to work similarly to conventional commercial capacitance probes while being significantly smaller in size.

  2. A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response

    NASA Technical Reports Server (NTRS)

    Ferguson, Michael I.; MacDonald, Eric; Foor, David

    2005-01-01

    We report on the development of a hardware platform for integrated tuning and closed-loop operation of MEMS gyroscopes. The platform was developed and tested for the second generation JPL/Boeing Post-Resonator MEMS gyroscope. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). A software interface allows the user to configure, calibrate, and tune the bias voltages on the micro-gyro. The interface easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  3. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique

    PubMed Central

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz. PMID:22454581

  4. Manufacture of Micromirror Arrays Using a CMOS-MEMS Technique.

    PubMed

    Kao, Pin-Hsu; Dai, Ching-Liang; Hsu, Cheng-Chih; Wu, Chyan-Chyi

    2009-01-01

    In this study we used the commercial 0.35 μm CMOS (complementary metal oxide semiconductor) process and simple maskless post-processing to fabricate an array of micromirrors exhibiting high natural frequency. The micromirrors were manufactured from aluminum; the sacrificial layer was silicon dioxide. Because we fabricated the micromirror arrays using the standard CMOS process, they have the potential to be integrated with circuitry on a chip. For post-processing we used an etchant to remove the sacrificial layer and thereby suspend the micromirrors. The micromirror array contained a circular membrane and four fixed beams set symmetrically around and below the circular mirror; these four fan-shaped electrodes controlled the tilting of the micromirror. A MEMS (microelectromechanical system) motion analysis system and a confocal 3D-surface topography were used to characterize the properties and configuration of the micromirror array. Each micromirror could be rotated in four independent directions. Experimentally, we found that the micromirror had a tilting angle of about 2.55° when applying a driving voltage of 40 V. The natural frequency of the micromirrors was 59.1 kHz.

  5. Acoustical Direction Finding with Time-Modulated Arrays

    PubMed Central

    Clark, Ben; Flint, James A.

    2016-01-01

    Time-Modulated Linear Arrays (TMLAs) offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS) sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ±1∘ within an angular range of approximately ±50∘. In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA) estimation within ±2.5∘ of the target signal is readily achieved inside a ±45∘ range using a single switched input stage and a simple hardware setup. PMID:27973432

  6. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  7. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  8. Simulation of MEMS for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.

  9. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  10. Converting MEMS technology into profits

    NASA Astrophysics Data System (ADS)

    Bryzek, Janusz

    1998-08-01

    This paper discusses issues related to transitioning a company from the advanced technology development phase (with a particular focus on MEMS) to a profitable business, with emphasis on start-up companies. It includes several case studies from (primarily) NovaSensor MEMS development history. These case studies illustrate strategic problems with which advanced MEMS technology developers have to be concerned. Conclusions from these case studies could be used as checkpoints for future MEMS developers to increase probability of profitable operations. The objective for this paper is to share the author's experience from multiple MEMS start-ups to accelerate development of the MEMS market by focusing state- of-the-art technologists on marketing issues.

  11. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  12. Development of micro-electromechanical system (MEMS) cochlear biomodel

    NASA Astrophysics Data System (ADS)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    2015-05-01

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. In this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.

  13. Development of micro-electromechanical system (MEMS) cochlear biomodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngelayang, Thailis Bounya Anak; Latif, Rhonira

    Human cochlear is undeniably one of the most amazing organs in human body. The functional mechanism is very unique in terms of its ability to convert the sound waves in the form of mechanical vibrations into the electrical nerve impulses. It is known that the normal human auditory system can perceive the audible frequency range between 20 Hz to 20 kHz. Scientists have conducted several researches trying to build the artificial basilar membrane in the human cochlea (cochlear biomodel). Micro-electromechanical system (MEMS) is one of the potential inventions that have the ability to mimic the active behavior of the basilar membrane. Inmore » this paper, an array of MEMS bridge beams that are mechanically sensitive to the perceived audible frequency has been proposed. An array of bridge bridge beams with 0.5 µm thickness and length varying from 200 µm to 2000 µm have been designed operate within the audible frequency range. In the bridge beams design, aluminium (Al), copper (Cu), tantalum (Ta) and platinum (Pt) have considered as the material for the bridge beam structure. From the finite element (FE) and lumped element (LE) models of the MEMS bridge beams, platinum has been found to be the best material for the cochlear biomodel design, closely mimicking the basilar membrane.« less

  14. Miniaturized ceramic platform for metal oxide gas sensors array

    NASA Astrophysics Data System (ADS)

    Samotaev, N. N.

    2016-10-01

    In work is developing an ultra-fast, low cost and technology flexible process for production array of ceramic MEMS microhotplates for using in semiconductor gas sensors orientated to small series applications, where is sufficient to produce 10-100 samples with a different layout of heaters and membrane per day.

  15. Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking

    DTIC Science & Technology

    2010-12-01

    Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction

  16. Micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  17. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  18. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-03-05

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.

  19. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  20. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  1. Citizen earthquake alert using near real time PGA estimation from a local array combining a variety of accelerometric instruments

    NASA Astrophysics Data System (ADS)

    Melis, Nikolaos S.; Konstantinou, Konstantinos; Kalogeras, Ioannis; Sokos, Efthimios; Tselentis, G.-Akis

    2017-04-01

    It is of a great importance to assess rapidly the intensity of a felt event in a highly populated environment. Rapid and reliable information plays a key role to decision making responses, by performing correctly the first steps after a felt ground shaking. Thus, it is important to accurately respond to urgent societal demand using reliable information. A strong motion array is under deployment and trial operation in the area of Patras, Greece. It combines: (a) standard accelerometric stations operated by the National Observatory of Athens, Institute of Geodynamics (NOA), (b) QCN-type USB MEMS acceleration sensors deployed in schools and (c) P-alert MEMS acceleration devices deployed in public sector buildings as well as in private dwellings. The array intends to cover the whole city of Patras and the populated suburbs. All instruments are operating in near real time and they are linked to a combined Earthworm - SeisComP3 server at NOA, Athens. Rapid intensity estimation can be also performed by the P-alert accelerometers locally, but the performance of a near real time intensity estimation system is under operation at NOA. The procedure is based on observing the maximum PGA value at each instrument and empirically estimate the corresponding intensity. The values are also fed to a SeisComP3 based ShakeMap procedure that is served at NOA and uses the scwfparam module of SeisComP3. Earthquake activity has been recorded so far from the western Corinth Gulf, the Ionian Islands and Achaia-Elia area, western Peloponnesus. The first phase involves correlation tests of collocated instruments and assessment of their performance to low intensity as well as to strongly felt events in the Patras city area. Steps of expanding the array are also under consideration, in order to cover the wider area of northwestern Peloponnesus and Ionian islands.

  2. Design and simulation of MEMS microvalves for silicon photonic biosensor chip

    NASA Astrophysics Data System (ADS)

    Amemiya, Yoshiteru; Nakashima, Yuuto; Maeda, Jun; Yokoyama, Shin

    2018-04-01

    For the early and easy diagnosis of diseases, we have proposed a silicon photonic biosensor chip with two kinds of MEMS microvalves for a multiple-item detection system. The driving voltage of the vertical type with the circular-plate capacitor structure and that of the lateral type with the comb-shaped electrode are investigated. From mechanical calculations, the driving voltage of the vertical type is estimated to be 30 V and that of the lateral type to be 15 V. The propagation loss at the intersecting waveguides of arrayed ring-resonator biosensors is also estimated. In the case of optimized intersecting waveguides, more than 67% transmittance of TE-mode light is simulated for the series connection of 20 intersecting waveguides. It is confirmed that it is possible to fabricate an 8 × 12 arrayed biosensor chip in an area of 1 × 1.5 mm2 taking the device size of the microvalves into consideration. We have, for the first time, designed a whole system, including sensors and a fluid channel with MEMS microvalves.

  3. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.

  4. MEMS reliability: The challenge and the promise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, W.M.; Tanner, D.M.; Miller, S.L.

    1998-05-01

    MicroElectroMechanical Systems (MEMS) that think, sense, act and communicate will open up a broad new array of cost effective solutions only if they prove to be sufficiently reliable. A valid reliability assessment of MEMS has three prerequisites: (1) statistical significance; (2) a technique for accelerating fundamental failure mechanisms, and (3) valid physical models to allow prediction of failures during actual use. These already exist for the microelectronics portion of such integrated systems. The challenge lies in the less well understood micromachine portions and its synergistic effects with microelectronics. This paper presents a methodology addressing these prerequisites and a description ofmore » the underlying physics of reliability for micromachines.« less

  5. Using Temperature-Dependent Phenomena at Oxide Surfaces for Species Recognition in Chemical Sensing.

    NASA Astrophysics Data System (ADS)

    Semancik, Steve; Meier, Douglas; Evju, Jon; Benkstein, Kurt; Boger, Zvi; Montgomery, Chip

    2006-03-01

    Nanostructured films of SnO2 and TiO2 have been deposited on elements in MEMS arrays to fabricate solid state conductometric gas microsensors. The multilevel platforms within an array, called microhotplates, are individually addressable for localized temperature control and measurement of sensing film electrical conductance. Temperature variations of the microhotplates are employed in thermally-activated CVD oxide film growth, and for rapid temperature-programmed operation of the microsensors. Analytical information on environmental gas phase composition is produced temporally as purposeful thermal fluctuations provide energetic and kinetic control of surface reaction and adsorption/desorption phenomena. Resulting modulations of oxide adsorbate populations cause changing charge transfer behavior and measurable conductance responses. Rich data streams from different sensing films in the arrays have been analyzed by Artificial Neural Networks (ANN) to successfully recognize low concentration species in mixed gases. We illustrate capabilities of the approach and technology in the homeland security area, where dangerous chemicals (TICs, CWSs and CWAs) have been detected at 10-100 ppb levels in interference-spiked air backgrounds.

  6. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00350k

  7. MEMS fabrication and frequency sweep for suspending beam and plate electrode in electrostatic capacitor

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxiong; Song, Weixing

    2018-01-01

    We report a MEMS fabrication and frequency sweep for a high-order mode suspending beam and plate layer in electrostatic micro-gap semiconductor capacitor. This suspended beam and plate was designed with silicon oxide (SiO2) film which was fabricated using bulk silicon micromachining technology on both side of a silicon substrate. The designed semiconductor capacitors were driven by a bias direct current (DC) and a sweep frequency alternative current (AC) in a room temperature for an electrical response test. Finite element calculating software was used to evaluate the deformation mode around its high-order response frequency. Compared a single capacitor with a high-order response frequency (0.42 MHz) and a 1 × 2 array parallel capacitor, we found that the 1 × 2 array parallel capacitor had a broader high-order response range. And it concluded that a DC bias voltage can be used to modulate a high-order response frequency for both a single and 1 × 2 array parallel capacitors.

  8. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  9. Glassy carbon MEMS for novel origami-styled 3D integrated intracortical and epicortical neural probes

    NASA Astrophysics Data System (ADS)

    Goshi, Noah; Castagnola, Elisa; Vomero, Maria; Gueli, Calogero; Cea, Claudia; Zucchini, Elena; Bjanes, David; Maggiolini, Emma; Moritz, Chet; Kassegne, Sam; Ricci, Davide; Fadiga, Luciano

    2018-06-01

    We report on a novel technology for microfabricating 3D origami-styled micro electro-mechanical systems (MEMS) structures with glassy carbon (GC) features and a supporting polymer substrate. GC MEMS devices that open to form 3D microstructures are microfabricated from GC patterns that are made through pyrolysis of polymer precursors on high-temperature resisting substrates like silicon or quartz and then transferring the patterned devices to a flexible substrate like polyimide followed by deposition of an insulation layer. The devices on flexible substrate are then folded into 3D form in an origami-fashion. These 3D MEMS devices have tunable mechanical properties that are achieved by selectively varying the thickness of the polymeric substrate and insulation layers at any desired location. This technology opens new possibilities by enabling microfabrication of a variety of 3D GC MEMS structures suited to applications ranging from biochemical sensing to implantable microelectrode arrays. As a demonstration of the technology, a neural signal recording microelectrode array platform that integrates both surface (cortical) and depth (intracortical) GC microelectrodes onto a single flexible thin-film device is introduced. When the device is unfurled, a pre-shaped shank of polyimide automatically comes off the substrate and forms the penetrating part of the device in a 3D fashion. With the advantage of being highly reproducible and batch-fabricated, the device introduced here allows for simultaneous recording of electrophysiological signals from both the brain surface (electrocorticography—ECoG) and depth (single neuron). Our device, therefore, has the potential to elucidate the roles of underlying neurons on the different components of µECoG signals. For in vivo validation of the design capabilities, the recording sites are coated with a poly(3,4-ethylenedioxythiophene)—polystyrene sulfonate—carbon nanotube composite, to improve the electrical conductivity of the electrodes and consequently the quality of the recorded signals. Results show that both µECoG and intracortical arrays were able to acquire neural signals with high-sensitivity that increased with depth, thereby verifying the device functionality.

  10. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  11. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE PAGES

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.; ...

    2016-11-19

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  12. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  13. A thickness-mode piezoelectric micromachined ultrasound transducer annular array using a PMN–PZT single crystal

    NASA Astrophysics Data System (ADS)

    Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo

    2018-07-01

    Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1  ×  1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.

  14. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: a technology review and scale-down study

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Ilias, Samir; Asselin, Daniel; Boucher, Marc-André; Duchesne, François; Jacob, Michel; Larouche, Carl; Vachon, Carl; Niall, Keith K.; Jerominek, Hubert

    2011-02-01

    A MEMS based technology for projection display is reviewed. This technology relies on mechanically flexible and reflective microbridges made of aluminum alloy. A linear array of such micromirrors is combined with illumination and Schlieren optics to produce a pixels line. Each microbridge in the array is individually controlled using electrostatic actuation to adjust the pixels intensities. Results of the simulation, fabrication and characterization of these microdevices are presented. Activation voltages below 250 V with response times below 10 μs were obtained for 25 μm × 25 μm micromirrors. With appropriate actuation voltage waveforms, response times of 5 μs and less are achievable. A damage threshold of the mirrors above 8 kW/cm2 has been evaluated. Development of the technology has produced projector engines demonstrating this light modulation principle. The most recent of these engines is DVI compatible and displays VGA video streams at 60 Hz. Recently applications have emerged that impose more stringent requirements on the dimensions of the MEMS array and associated optical system. This triggered a scale down study to evaluate the minimum micromirror size achievable, the impact of this reduced size on the damage threshold and the achievable minimum size of the associated optical system. Preliminary results of this scale down study are reported. FRAM with active surface as small as 5 μm × 5 μm have been investigated. Simulations have shown that such micromirrors could be activated with 107 V to achieve f-number of 1.25. The damage threshold has been estimated for various FRAM sizes. Finally, design of a conceptual miniaturized projector based on 1000×1 array of 5 μm × 5 μm micromirrors is presented. The volume of this projector concept is about 12 cm3.

  15. Novel MEMS-based thermometer with low power consumption for health-monitoring network application

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ikehara, T.; Lu, J.; Kobayashi, T.; Ichiki, M.; Itoh, T.; Maeda, R.

    2007-12-01

    We proposed one novel MEMS-based thermometer with low power-consumption for animal/human health-monitoring network application. The novel MEMS-based thermometer was consisted of triple-beam bimorph arrays so that it could work in a continuous temperature range. Neither continuous electric supply nor A/D converter interface is required by the novel thermometer owing to the well-known deflection of bimaterials cantilever upon temperature changes. The triple-beam structure also facilitated the novel thermometer with excellent fabrication feasibility by conventional microfabrication technology. The parameters of the triple-beam bimorph arrays were determined by finite element analysis with ANSYS program. Low stress Au and Mo metal films were used as top and bottom layer, respectively. The deflection of the triple-beam bimorphs were measured on a home-made heating stage by a confocal scanning laser microscopy. The novel bimorphs had temperature responses similar to traditional single-beam bimorphs. Initial bend of the prepared triple-beam bimorphs were dominantly determined by their side beams. The sensitivity of the novel thermometer was as high as 0.1°C. Experimental results showed that the novel thermometer is attractive for network sensing applications where the power capacity is limited.

  16. Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kambali, Prashant N.; Swain, Gyanadutta; Pandey, Ashok Kumar, E-mail: ashok@iith.ac.in

    2015-08-10

    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict themore » variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V.« less

  17. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology.

    PubMed

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.

  18. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  19. Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft

    PubMed Central

    Chang, Honglong; Jiao, Wenlong; Fu, Qianyan; Xie, Jianbing; Yuan, Weizheng

    2010-01-01

    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10−6 N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm × 1.1 cm × 0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5 × 10−8 N·m. The element with four MCMGs could generate a torque of 5 × 10−8 N·m. The torque output could reach a magnitude of 10−6 N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4 × 4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm × 10 cm × 10 cm, a 10 degrees attitude change could be achieved in 26.96 s. PMID:22319346

  20. Design and simulation of a MEMS control moment gyroscope for the sub-kilogram spacecraft.

    PubMed

    Chang, Honglong; Jiao, Wenlong; Fu, Qianyan; Xie, Jianbing; Yuan, Weizheng

    2010-01-01

    A novel design of a microelectromechanical systems (MEMS) control moment gyroscope (MCMG) was proposed in this paper in order to generate a torque output with a magnitude of 10(-6) N·m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm×1.1 cm×0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5×10(-8) N·m. The element with four MCMGs could generate a torque of 5×10(-8) N·m. The torque output could reach a magnitude of 10(-6) N·m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4×4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm×10 cm×10 cm, a 10 degrees attitude change could be achieved in 26.96 s.

  1. Fast autonomous holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Andersen, G.

    2010-07-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method capable of autonomous (computer-free) closed-loop control of a MEMS deformable mirror. A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the "modes". On reconstruction, an input beam will be diffracted into pairs of focal spots - the ratio of particular pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using a fast, sensitive photo-detector array such as a multi-pixel photon counters. This information is then used to directly control each actuator in the MEMS DM without the need for any computer in the loop. We present initial results of a 32-actuator prototype device. We further demonstrate that being an all-optical, parallel processing scheme, the speed is independent of the number of actuators. In fact, the limitations on speed are ultimately determined by the maximum driving speed of the DM actuators themselves. Finally, being modal in nature, the system is largely insensitive to both obscuration and scintillation. This should make it ideal for laser beam transmission or imaging under highly turbulent conditions.

  2. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  3. A 0.2 V Micro-Electromechanical Switch Enabled by a Phase Transition.

    PubMed

    Dong, Kaichen; Choe, Hwan Sung; Wang, Xi; Liu, Huili; Saha, Bivas; Ko, Changhyun; Deng, Yang; Tom, Kyle B; Lou, Shuai; Wang, Letian; Grigoropoulos, Costas P; You, Zheng; Yao, Jie; Wu, Junqiao

    2018-04-01

    Micro-electromechanical (MEM) switches, with advantages such as quasi-zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal-oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳10 6 safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO 2 ) slightly above room temperature. The phase-transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Emerging leadership of surface micromachined MEMS for wavelength switching in telecommunications systems

    NASA Astrophysics Data System (ADS)

    Staple, Bevan D.; Muller, Lilac; Miller, David C.

    2003-01-01

    We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (

  5. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  6. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  7. Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.

    2002-01-01

    Ohio State University developed a new spectrally filtered light-scattering apparatus based on a diode laser injected-locked titanium: sapphire laser and rubidium vapor filter at 780.2 nm. When the device was combined with a stimulated Brillouin scattering phase conjugate mirror, the realizable peak attenuation of elastic scattering interferences exceeded 105. The potential of the system was demonstrated by performing Thomson scattering measurements. Under USAF-NASA funding, West Virginia University developed a Doppler global velocimetry system using inexpensive 8-bit charged coupled device cameras and digitizers and a CW argon ion laser. It has demonstrated a precision of +/- 2.5 m/sec in a swirling jet flow. Low-noise silicon-micromachined microphones developed and incorporated in a novel two-tier, hybrid packaging scheme at the University of Florida used printed circuit board technology to realize a MEMS-based directional acoustic array. The array demonstrated excellent performance relative to conventional sensor technologies and provides scaling technologies that can reduce cost and increase speed and mobility.

  8. Methods for fabricating a micro heat barrier

    DOEpatents

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-01-06

    Methods for fabricating a highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  9. Optical design of MEMS-based infrared multi-object spectrograph concept for the Gemini South Telescope

    NASA Astrophysics Data System (ADS)

    Chen, Shaojie; Sivanandam, Suresh; Moon, Dae-Sik

    2016-08-01

    We discuss the optical design of an infrared multi-object spectrograph (MOS) concept that is designed to take advantage of the multi-conjugate adaptive optics (MCAO) corrected field at the Gemini South telescope. This design employs a unique, cryogenic MEMS-based focal plane mask to select target objects for spectroscopy by utilizing the Micro-Shutter Array (MSA) technology originally developed for the Near Infrared Spectrometer (NIRSpec) of the James Webb Space Telescope (JWST). The optical design is based on all spherical refractive optics, which serves both imaging and spectroscopic modes across the wavelength range of 0.9-2.5 μm. The optical system consists of a reimaging system, MSA, collimator, volume phase holographic (VPH) grisms, and spectrograph camera optics. The VPH grisms, which are VPH gratings sandwiched between two prisms, provide high dispersing efficiencies, and a set of several VPH grisms provide the broad spectral coverage at high throughputs. The imaging mode is implemented by removing the MSA and the dispersing unit out of the beam. We optimize both the imaging and spectrographic modes simultaneously, while paying special attention to the performance of the pupil imaging at the cold stop. Our current design provides a 1' ♢ 1' and a 0.5' ♢ 1' field of views for imaging and spectroscopic modes, respectively, on a 2048 × 2048 pixel HAWAII-2RG detector array. The spectrograph's slit width and spectral resolving power are 0.18'' and 3,000, respectively, and spectra of up to 100 objects can be obtained simultaneously. We present the overall results of simulated performance using optical model we designed.

  10. Release Resistant Electrical Interconnections For Mems Devices

    DOEpatents

    Peterson, Kenneth A.; Garrett, Stephen E.; Reber, Cathleen A.

    2005-02-22

    A release resistant electrical interconnection comprising a gold-based electrical conductor compression bonded directly to a highly-doped polysilicon bonding pad in a MEMS, IMEMS, or MOEMS device, without using any intermediate layers of aluminum, titanium, solder, or conductive adhesive disposed in-between the conductor and polysilicon pad. After the initial compression bond has been formed, subsequent heat treatment of the joint above 363 C creates a liquid eutectic phase at the bondline comprising gold plus approximately 3 wt % silicon, which, upon re-solidification, significantly improves the bond strength by reforming and enhancing the initial bond. This type of electrical interconnection is resistant to chemical attack from acids used for releasing MEMS elements (HF, HCL), thereby enabling the use of a "package-first, release-second" sequence for fabricating MEMS devices. Likewise, the bond strength of an Au--Ge compression bond may be increased by forming a transient liquid eutectic phase comprising Au-12 wt % Ge.

  11. Poly-SiGe MEMS actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Lin, Blake C.; King, Tsu-Jae; Muller, Richard S.

    2006-01-01

    Many adaptive optics (AO) applications require mirror arrays with hundreds to thousands of segments, necessitating a CMOS-compatible MEMS process to integrate the mirrors with their driving electronics. This paper proposes a MEMS actuator that is fabricated using low-temperature polycrystalline silicon-germanium (poly-SiGe) surface-micromaching technology (total thermal budget is 6 hours at or below 425°C). The MEMS actuator consists of three flexures and a hexagonal platform, on which a micromirror is to be assembled. The flexures are made of single-layer poly-SiGe with stress gradient across thickness of the film, making them bend out-of-plane after sacrificial-layer release to create a large nominal gap. The platform, on the other hand, has an additional stress-balancing SiGe layer deposited on top, making the dual-layer stack stay flat after release. Using this process, we have successfully fabricated the MEMS actuator which is lifted 14.6 μm out-of-plane by 290-μm-long flexures. The 2-μm-thick hexagonal mirror-platform exhibits a strain gradient of -5.5×10 -5 μm -1 (equivalent to 18 mm radius-of-curvature), which would be further reduced once the micromirror is assembled.

  12. Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    PubMed Central

    Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara

    2009-01-01

    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304

  13. Impact of excitation waveform on the frequency stability of electrostatically-actuated micro-electromechanical oscillators

    NASA Astrophysics Data System (ADS)

    Juillard, J.; Brenes, A.

    2018-05-01

    In this paper, the frequency stability of high-Q electrostatically-actuated MEMS oscillators with cubic restoring forces, and its relation with the amplitude, the phase and the shape of the excitation waveform, is studied. The influence on close-to-the carrier frequency noise of additive processes (such as thermomechanical noise) or parametric processes (bias voltage fluctuations, feedback phase fluctuations, feedback level fluctuations) is taken into account. It is shown that the optimal operating conditions of electrostatically-actuated MEMS oscillators are highly waveform-dependent, a factor that is largely overlooked in the existing literature. This simulation-based study covers the cases of harmonic and pulsed excitation of a parallel-plate capacitive MEMS resonator.

  14. CMOS chip planarization by chemical mechanical polishing for a vertically stacked metal MEMS integration

    NASA Astrophysics Data System (ADS)

    Lee, Hocheol; Miller, Michele H.; Bifano, Thomas G.

    2004-01-01

    In this paper we present the planarization process of a CMOS chip for the integration of a microelectromechanical systems (MEMS) metal mirror array. The CMOS chip, which comes from a commercial foundry, has a bumpy passivation layer due to an underlying aluminum interconnect pattern (1.8 µm high), which is used for addressing individual micromirror array elements. To overcome the tendency for tilt error in the CMOS chip planarization, the approach is to sputter a thick layer of silicon nitride at low temperature and to surround the CMOS chip with dummy silicon pieces that define a polishing plane. The dummy pieces are first lapped down to the height of the CMOS chip, and then all pieces are polished. This process produced a chip surface with a root-mean-square flatness error of less than 100 nm, including tilt and curvature errors.

  15. MMOD Protection and Degradation Effects for Thermal Control Systems

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric

    2014-01-01

    Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.

  16. Single and pair-wise manipulation of atoms in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore; Wang, Yang; Weiss, David

    2013-05-01

    We describe the hardware used in a quantum computing experiment using individual Cs atoms in a 5 μm -spaced 3D optical lattice as qubits. Far-off-resonance addressing beams can be steered to any site in the array using MEMS mirrors within 10 μs , allowing the translation of individual atoms between lattice sites, for example to remove vacancies in the atom array, and the manipulation of single atoms for single qubit gates in < 100 μs . Two-qubit gates on adjacent atoms can be performed via the Rydberg blockade mechanism using a second MEMS system and high-NA imaging objective. The lasers for the Rydberg excitation are built using a new extended cavity diode laser design utilizing an interference filter as the frequency selecting element following Baillard, et al. (Opt. Comm. 266: 609 (2009)), but using commercially available components. We gratefully acknowledge funding from ARO and DARPA.

  17. C-MEMS for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Song, Yin; Agrawal, Richa; Wang, Chunlei

    2015-05-01

    Developing highly sensitive, selective, and reproducible miniaturized bio-sensing platforms require reliable biointerface which should be compatible with microfabrication techniques. In this study, we have fabricated pyrolyzed carbon arrays with high surface area as a bio-sensing electrode, and developed the surface functionalization methods to increase biomolecules immobilization efficiency and further understand electrochemical phenomena at biointerfaces. The carbon microelectrode arrays with high aspect ratio have been fabricated by carbon microelectromechanical systems (C-MEMS) and nanomaterials such as graphene have been integrated to further increase surface area. To achieve the efficient covalent immobilization of biomolecules, various oxidation and reduction functionalization methods have been investigated. The oxidation treatment in this study includes vacuum ultraviolet, electrochemical activation, UV/Ozone and oxygen RIE. The reduction treatment includes direct amination and diazonium grafting. The developed bio-sensing platform was then applied for several applications, such as: DNA sensor; H2O2 sensor; aptamer sensor and HIV sensor.

  18. Design of a MEMS-Based Oscillator Using 180nm CMOS Technology

    PubMed Central

    Roy, Sukanta; Ramiah, Harikrishnan; Reza, Ahmed Wasif; Lim, Chee Cheow; Ferrer, Eloi Marigo

    2016-01-01

    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator’s high motion losses due to the possibility of their ‘system-on-chip’ integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design’s applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications. PMID:27391136

  19. Low-Loss, High-Isolation Microwave Microelectromechanical Systems (MEMS) Switches Being Developed

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.

    2002-01-01

    Switches, electrical components that either permit or prevent the flow of electricity, are the most important and widely used electrical devices in integrated circuits. In microwave systems, switches are required for switching between the transmitter and receiver; in communication systems, they are needed for phase shifters in phased-array antennas, for radar and communication systems, and for the new class of digital or software definable radios. Ideally, switches would be lossless devices that did not depend on the electrical signal's frequency or power, and they would not consume electrical power to change from OFF to ON or to maintain one of these two states. Reality is quite different, especially at microwave frequencies. Typical switches in microwave integrated circuits are pin diodes or gallium arsenide (GaAs) field-effect transistors that are nonlinear, with characteristics that depend on the power of the signal. In addition, they are frequency-dependent, lossy, and require electrical power to maintain a certain state. A new type of component has been developed that overcomes most of these technical difficulties. Microelectromechanical (MEMS) switches rely on mechanical movement as a response to an applied electrical force to either transmit or reflect electrical signal power. The NASA Glenn Research Center has been actively developing MEMS for microwave applications for over the last 5 years. Complete fabrication procedures have been developed so that the moving parts of the switch can be released with near 100-percent yield. Moreover, the switches fabricated at Glenn have demonstrated state-of-the-art performance. A typical MEMS switch is shown. The switch extends over the signal and ground lines of a finite ground coplanar waveguide, a commonly used microwave transmission line. In the state shown, the switch is in the UP state and all the microwave power traveling along the transmission line proceeds unimpeded. When a potential difference is applied between the cantilever and the transmission line, the cantilever is pulled downward until it connects the signal line to the ground planes, creating a short circuit. In this state, all the microwave power is reflected. The graph shows the measured performance of the switch, which has less than 0.1 dB of insertion loss and greater than 30dB of isolation. These switches consume negligible electrical power and are extremely linear. Additional research is required to address reliability and to increase the switching speed.

  20. Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays

    DTIC Science & Technology

    2012-05-05

    following categories: PaperReceived Ping Kao, Srinivas Tadigadapa. Micromachined quartz resonator based infrared detector array, Sensors and...0. doi: 10.1088/0957-0233/20/12/124007 2012/05/08 19:47:37 6 S Tadigadapa, K Mateti. Piezoelectric MEMS sensors : state-of-the-art and perspectives...Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0

  1. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  2. Field evaluations of "ShapeAccelArray" in-place MEMS inclinometer strings for subsurface deformation monitoring.

    DOT National Transportation Integrated Search

    2012-03-01

    Continuous monitoring of subsurface ground movements is accomplished with in-place instruments utilizing automated data acquisition methods. These typically include TDR (Time Domain Reflectometry) or assemblies of several servo-accelerometer-based, e...

  3. A front-end wafer-level microsystem packaging technique with micro-cap array

    NASA Astrophysics Data System (ADS)

    Chiang, Yuh-Min

    2002-09-01

    The back-end packaging process is the remaining challenge for the micromachining industry to commercialize microsystem technology (MST) devices at low cost. This dissertation presents a novel wafer level protection technique as a final step of the front-end fabrication process for MSTs. It facilitates improved manufacturing throughput and automation in package assembly, wafer level testing of devices, and enhanced device performance. The method involves the use of a wafer-sized micro-cap array, which consists of an assortment of small caps micro-molded onto a material with adjustable shapes and sizes to serve as protective structures against the hostile environments during packaging. The micro-cap array is first constructed by a micromachining process with micro-molding technique, then sealed to the device wafer at wafer level. Epoxy-based wafer-level micro cap array has been successfully fabricated and showed good compatibility with conventional back-end packaging processes. An adhesive transfer technique was demonstrated to seal the micro cap array with a MEMS device wafer. No damage or gross leak was observed while wafer dicing or later during a gross leak test. Applications of the micro cap array are demonstrated on MEMS, microactuators fabricated using CRONOS MUMPS process. Depending on the application needs, the micro-molded cap can be designed and modified to facilitate additional component functions, such as optical, electrical, mechanical, and chemical functions, which are not easily achieved in the device by traditional means. Successful fabrication of a micro cap array comprised with microlenses can provide active functions as well as passive protection. An optical tweezer array could be one possibility for applications of a micro cap with microlenses. The micro cap itself could serve as micro well for DNA or bacteria amplification as well.

  4. Deformation analysis of MEMS structures by modified digital moiré methods

    NASA Astrophysics Data System (ADS)

    Liu, Zhanwei; Lou, Xinhao; Gao, Jianxin

    2010-11-01

    Quantitative deformation analysis of micro-fabricated electromechanical systems is of importance for the design and functional control of microsystems. In this paper, two modified digital moiré processing methods, Gaussian blurring algorithm combined with digital phase shifting and geometrical phase analysis (GPA) technique based on digital moiré method, are developed to quantitatively analyse the deformation behaviour of micro-electro-mechanical system (MEMS) structures. Measuring principles and experimental procedures of the two methods are described in detail. A digital moiré fringe pattern is generated by superimposing a specimen grating etched directly on a microstructure surface with a digital reference grating (DRG). Most of the grating noise is removed from the digital moiré fringes, which enables the phase distribution of the moiré fringes to be obtained directly. Strain measurement result of a MEMS structure demonstrates the feasibility of the two methods.

  5. Diffusion Bonding of Silicon Carbide for MEMS-LDI Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Shpargel, Tarah P.; Kiser, J. Douglas

    2007-01-01

    A robust joining approach is critically needed for a Micro-Electro-Mechanical Systems-Lean Direct Injector (MEMS-LDI) application which requires leak free joints with high temperature mechanical capability. Diffusion bonding is well suited for the MEMS-LDI application. Diffusion bonds were fabricated using titanium interlayers between silicon carbide substrates during hot pressing. The interlayers consisted of either alloyed titanium foil or physically vapor deposited (PVD) titanium coatings. Microscopy shows that well adhered, crack free diffusion bonds are formed under optimal conditions. Under less than optimal conditions, microcracks are present in the bond layer due to the formation of intermetallic phases. Electron microprobe analysis was used to identify the reaction formed phases in the diffusion bond. Various compatibility issues among the phases in the interlayer and substrate are discussed. Also, the effects of temperature, pressure, time, silicon carbide substrate type, and type of titanium interlayer and thickness on the microstructure and composition of joints are discussed.

  6. MEMS-based system and image processing strategy for epiretinal prosthesis.

    PubMed

    Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong

    2015-01-01

    Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.

  7. Compact multichannel MEMS based spectrometer for FBG sensing

    NASA Astrophysics Data System (ADS)

    Ganziy, D.; Rose, B.; Bang, O.

    2017-04-01

    We propose a novel type of compact multichannel MEMS based spectrometer, where we replace the linear detector with a Digital Micromirror Device (DMD). The DMD is typically cheaper and has better pixel sampling than an InGaAs detector used in the 1550 nm range, which leads to cost reduction and better performance. Moreover, the DMD is a 2D array, which means that multichannel systems can be implemented without any additional optical components in the spectrometer. This makes the proposed interrogator highly cost-effective. The digital nature of the DMD also provides opportunities for advanced programmable spectroscopy.

  8. Tensile-stressed microelectromechanical apparatus and micromirrors formed therefrom

    DOEpatents

    Fleming, James G [Albuquerque, NM

    2006-05-16

    A microelectromechanical (MEM) apparatus is disclosed which includes one or more tensile-stressed actuators that are coupled through flexures to a stage on a substrate. The tensile-stressed actuators, which can be formed from tensile-stressed tungsten or silicon nitride, initially raise the stage above the substrate without any applied electrical voltage, and can then be used to control the height or tilt angle of the stage. An electrostatic actuator can also be used in combination with each tensile-stressed actuator. The MEM apparatus has applications for forming piston micromirrors or tiltable micromirrors and independently addressable arrays of such devices.

  9. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first and the second mode frequency, strongly approximating the desirable rigid plate limit. The effect is modeled analytically and is verified experimentally by measurement of the resonance frequencies in the new transducers. Another improvement arises from the use of a pin grid array ceramic package, in which the MEMS chip is acoustically coupled to the structure with only two interfaces, through a ceramic medium that is negligible in thickness when compared to wavelengths of interest. Like other acoustic emission sensors, those on the 2006 MEMS chip are sensitive only to displacements normal to the surface on which the device is mounted. To overcome that long-standing limitation, a new MEMS sensor sensitive to in-plane motion has been designed, featuring a different spring-mass mechanism and creating the signal by the change in capacitance between stationary and moving fingers. Predicted damping is much lower for the case of the in-plane sensor, and squeeze-film damping is used selectively to isolate the desired in-plane mechanical response from any unwanted out-of-plane response. The new spring-mass mechanism satisfies the design rules for the PolyMUMPS fabrication (foundry) process. A 3-D MEMS sensor system is presently being fabricated, collocating two in-plane sensors and one out-of-plane sensor at the mm scale, which is very short compared to the acoustic wavelength of interest for stress waves created by acoustic emission events.

  10. Transimpedance Amplifier for MEMS SAW Oscillator in 1.4GHz

    NASA Astrophysics Data System (ADS)

    Kamarudin, N.; Karim, J.; Hussin, H.

    2018-03-01

    This work is to design a transimpedance amplifier for MEMS SAW resonator to achieve low power consumption at desired frequency. A transimpedance amplifier is designed and characterized for MEMS SAW resonator in 0.18μm CMOS process. The transimpedance amplifier achieves gain is 31 dBΩ at 176°. The power consume by oscillator is 0.6mW at VDD 1.8V while phase noise at -133.97dBc/Hz at 10kHz.

  11. Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.

    2016-12-01

    Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.

  12. Evolution from MEMS-based Linear Drives to Bio-based Nano Drives

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    The successful extension of semiconductor technology to fabricate mechanical parts of the sizes from 10 to 100 micrometers opened wide ranges of possibilities for micromechanical devices and systems. The fabrication technique is called micromachining. Micromachining processes are based on silicon integrated circuits (IC) technology and used to build three-dimensional structures and movable parts by the combination of lithography, etching, film deposition, and wafer bonding. Microactuators are the key devices allowing MEMS to perform physical functions. Some of them are driven by electric, magnetic, and fluidic forces. Some others utilize actuator materials including piezoelectric (PZT, ZnO, quartz) and magnetostrictive materials (TbFe), shape memory alloy (TiNi) and bio molecular motors. This paper deals with the development of MEMS based microactuators, especially linear drives, following my own research experience. They include an electrostatic actuator, a superconductive levitated actuator, arrayed actuators, and a bio-motor-driven actuator.

  13. Holographic Adaptive Laser Optics System

    NASA Astrophysics Data System (ADS)

    Andersen, G.; Ghebremichael, F.

    2011-09-01

    We have created a new adaptive optics system using a holographic modal wavefront sensing method with the autonomous (computer-free) closed-loop control of a MEMS deformable mirror (DM). A multiplexed hologram is recorded using the maximum and minimum actuator positions on the deformable mirror as the “modes”. On reconstruction, an input beam is diffracted into pairs of focal spots and the ratio of the intensities of certain pairs determines the absolute wavefront phase at a particular actuator location. The wavefront measurement is made using fast, sensitive silicon photomultiplier arrays with the parallel outputs directly controlling individual actuators in the MEMS DM. In this talk, we will present the results from an all-optical, ultra-compact system that runs in closed-loop without the need for a computer. The speed is limited only by the response time of any given DM actuator and not the number of actuators. In our case, our 32-actuator prototype device already operates at 10 kHz and our next generation system is being designed for > 100 kHz. As a modal system, it is largely insensitive to scintillation and obscuration and is thus ideal for extreme adaptive optics applications. We will present information on how HALOS can be used for image correction and beam propagation as well as several other novel applications.

  14. Design of a Class of Antennas Utilizing MEMS, EBG and Septum Polarizers including Near-field Coupling Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Ilkyu

    Recent developments in mobile communications have led to an increased appearance of short-range communications and high data-rate signal transmission. New technologies provides the need for an accurate near-field coupling analysis and novel antenna designs. An ability to effectively estimate the coupling within the near-field region is required to realize short-range communications. Currently, two common techniques that are applicable to the near-field coupling problem are 1) integral form of coupling formula and 2) generalized Friis formula. These formulas are investigated with an emphasis on straightforward calculation and accuracy for various distances between the two antennas. The coupling formulas are computed for a variety of antennas, and several antenna configurations are evaluated through full-wave simulation and indoor measurement in order to validate these techniques. In addition, this research aims to design multi-functional and high performance antennas based on MEMS (Microelectromechanical Systems) switches, EBG (Electromagnetic Bandgap) structures, and septum polarizers. A MEMS switch is incorporated into a slot loaded patch antenna to attain frequency reconfigurability. The resonant frequency of the patch antenna can be shifted using the MEM switch, which is actuated by the integrated bias networks. Furthermore, a high gain base-station antenna utilizing beam-tilting is designed to maximize gain for tilted beam applications. To realize this base-station antenna, an array of four dipole-EBG elements is constructed to implement a fixed down-tilt main beam with application in base station arrays. An improvement of the operating range with the EBG-dipole array is evaluated using a simple linkbudget analysis. The septum polarizer has been widely used in circularly polarized antenna systems due to its simple and compact design and high quality of circularity. In this research, the sigmoid function is used to smoothen the edge in the septum design, which makes it suitable for HPM systems. The PSO (Particle Swarm Optimization) technique is applied to the septum design to achieve a high performance antenna design. The electric field intensity above the septum is evaluated through the simulation and its properties are compared to simple half-plane scattering phenomena.

  15. Heat convection in a micro impinging jet system

    NASA Astrophysics Data System (ADS)

    Mai, John Dzung Hoang

    2000-10-01

    This thesis covers the development of an efficient micro impinging jet heat exchanger, using MEMS technology, to provide localized cooling for present and next generation microelectronic computer chips. Before designing an efficient localized heat exchanger, it is necessary to investigate fluid dynamics and heat transfer in the micro scale. MEMS technology has been used in this project because it is the only tool currently available that can provide a large array of batch-fabricated, micro-scale nozzles for localized cooling. Our investigation of potential MEMS heat exchanger designs begins with experiments that measure the pressure drops and temperature changes in a micro scale tubing system that will be necessary to carry fluid to the impingement point. Our basic MEMS model is a freestanding micro channel with integrated temperature microsensors. The temperature distribution along the channel in a vacuum is measured. The measured flow rates are compared with an analytical model developed for capillary flow that accounts for 2-D, slip and compressibility effects. The work is focused on obtaining correlations in the form of the Nussult number, the Reynolds number and a H/d geometric factor. A set of single MEMS nozzles have been designed to test heat transfer effectiveness as a function of nozzle diameter, ranging from 1.0 mm to 250 um. In addition, nozzle and slot array MEMS devices have been fabricated. In order to obtain quantitative measurements from these micron scale devices, a series of target temperature sensor chips were custom made and characterized for these experiments. The heat transfer characteristics of various MEMS nozzle configurations operating at various steady inlet pressures, at different heights above the heated substrate, have been characterized. These steady results showed that the average heat transfer coefficient, averaged over a 1 cm2 test area, was usually less than 0.035 W/cm 2K for any situation. However, the local heat transfer coefficient, as measured by a single 4mum x 4mum temperature sensor, was as high as 0.5 W/cm2K. Using a mechanical valve and piezo actuator to perturb the flow at frequencies from 10 Hz to 1 kHz, we identify that enhanced heat transfer can occur in an unsteady forced jet. The functional dependence of the enhanced heat transfer on the mean jet speed, perturbation level and perturbing frequency has been established. The expected trend that increased heat transfer at higher values of St number was noticed. In addition the effect of a confined and free jet geometry on an unsteady flow was observed.

  16. Finite Ground Coplanar Waveguide Shunt MEMS Switches for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Simons, Rainee N.; Scardelletti, Maximillian; Varaljay, Nicholas C.

    2000-01-01

    Switches with low insertion loss and high isolation are required for switched line phase shifters and the transmit/receive switch at the front end of communication systems. A Finite Ground Coplanar (FGC) waveguide capacitive, shunt MEMS switch has been implemented on high resistivity Si. The switch has demonstrated an insertion loss of less than 0.3 dB and a return loss greater than 15 dB from 10 to 20, GHz. The switch design, fabrication, and characteristics are presented.

  17. Design and simulation of multi-color infrared CMOS metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Cheng, Zhengxi; Chen, Yongping; Ma, Bin

    2016-05-01

    Metamaterial electromagnetic wave absorbers, which usually can be fabricated in a low weight thin film structure, have a near unity absorptivity in a special waveband, and therefore have been widely applied from microwave to optical waveband. To increase absorptance of CMOS MEMS devices in 2-5 μmm waveband, multi-color infrared metamaterial absorbers are designed with CSMC 0.5 μmm 2P3M and 0.18 μmm 1P6M CMOS technology in this work. Metal-insulator-metal (MIM) three-layer MMAs and Insulator-metal-insulator-metal (MIMI) four-layer MMAs are formed by CMOS metal interconnect layers and inter metal dielectrics layer. To broaden absorption waveband in 2-5μmm range, MMAs with a combination of different sizes cross bars are designed. The top metal layer is a periodic aluminum square array or cross bar array with width ranging from submicron to several microns. The absorption peak position and intensity of MMAs can be tuned by adjusting the top aluminum micro structure array. Post-CMOS process is adopted to fabricate MMAs. The infrared absorption spectra of MMAs are verified with finite element method simulation, and the effects of top metal structure sizes, patterns, and films thickness are also simulated and intensively discussed. The simulation results show that CMOS MEMS MMAs enhance infrared absorption in 2-20 μmm. The MIM broad MMA has an average absorptance of 0.22 in 2-5 μmm waveband, and 0.76 in 8-14 μm waveband. The CMOS metamaterial absorbers can be inherently integrated in many kinds of MEMS devices fabricated with CMOS technology, such as uncooled bolometers, infrared thermal emitters.

  18. Ku to V-band 4-bit MEMS phase shifter bank using high isolation SP4T switches and DMTL structures

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.; Poddar, Ajay K.; Rohde, Ulrich L.

    2017-10-01

    This work presents a micro-electro-mechanical system (MEMS) based on a wide-band 4-bit phase shifter using two back-to-back single-pole-four-throw (SP4T) switches and four different distributed MEMS transmission line (DMTL) structures that are implemented on 635 µm alumina substrate using surface micromachining process. An SP4T switch is designed with a series-shunt configuration and it demonstrates an average return loss of  >17 dB, an insertion loss of  <1.97 dB and maximum isolation of  >28 dB up to 60 GHz. A maximum area of the SP4T switch is ~0.76 mm2. Single-pole-single-throw and SP4T switches are capable of handling 1 W of radio frequency (RF) power up to  >100 million cycles at 25° C; they can even sustained up to  >70 million cycles with 1 W at 85 °C. The proposed wide-band phase shifter works at 17 GHz (Ku-band), 25 GHz (K-band), 35 GHz (Ka-band) and 60 GHz (V-band) frequencies. Finally,a 4-bit phase shifter demonstrates an average insertion loss of  <6 dB, return loss of  >10 dB and maximum phase error of ~3.8° at 60 GHz frequency over 500 MHz bandwidth. Total area of the fabricated device is ~11 mm2. In addition, the proposed device works well up to  >107 cycles with 1 W of RF power. To the best of the author’s knowledge, this is the best reported wide-band MEMS 4-bit phase shifter in the literature that works with a constant resolution.

  19. MEMS based ion beams for fusion

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Schaffer, Z. A.; Lal, A.

    2016-10-01

    Micro-Electro-Mechanical Systems (MEMS) fabrication provides an exciting opportunity to shrink existing accelerator concepts to smaller sizes and to reduce cost by orders of magnitude. We revisit the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and show how, with current technologies, the concept can be downsized from gap distances of several cm to distances in the sub-mm regime. The basic concept implements acceleration gaps using radio frequency (RF) fields and electrostatic quadrupoles (ESQ) on silicon wafers. First results from proof-of-concept experiments using printed circuit boards to realize the MEQALAC structures are presented. We show results from accelerating structures that were used in an array of nine (3x3) parallel beamlets with He ions at 15 keV. We will also present results from an ESQ focusing lattice using the same beamlet layout showing beam transport and matching. We also will discuss our progress in fabricating MEMS devices in silicon wafers for both the RF and ESQ structures and integration of necessary RF-circuits on-chip. The concept can be scaled up to thousands of beamlets providing high power beams at low cost and can be used to form and compress a plasma for the development of magnetized target fusion approaches. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC0205CH11231 (LBNL).

  20. NASA Tech Briefs, July 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Airport Remote Tower Sensor Systems; Implantable Wireless MEMS Sensors for Medical Uses; Embedded Sensors for Measuring Surface Regression; Coordinating an Autonomous Earth-Observing Sensorweb; Range-Measuring Video Sensors; Stability Enhancement of Polymeric Sensing Films Using Fillers; Sensors for Using Times of Flight to Measure Flow Velocities; Receiver Would Control Phasing of a Phased-Array Antenna; Modern Design of Resonant Edge-Slot Array Antennas; Carbon-Nanotube Schottky Diodes; Simplified Optics and Controls for Laser Communications; Coherent Detection of High-Rate Optical PPM Signals; Multichannel Phase and Power Detector; Using Satellite Data in Weather Forecasting: I; Using Dissimilarity Metrics to Identify Interesting Designs; X-Windows PVT Widget Class; Shuttle Data Center File-Processing Tool in Java; Statistical Evaluation of Utilization of the ISS; Nanotube Dispersions Made With Charged Surfactant; Aerogels for Thermal Insulation of Thermoelectric Devices; Low-Density, Creep-Resistant Single-Crystal Superalloys; Excitations for Rapidly Estimating Flight-Control Parameters; Estimation of Stability and Control Derivatives of an F-15; Tool for Coupling a Torque Wrench to a Round Cable Connector; Ultrasonically Actuated Tools for Abrading Rock Surfaces; Active Struts With Variable Spring Stiffness and Damping; Multiaxis, Lightweight, Computer-Controlled Exercise System; Dehydrating and Sterilizing Wastes Using Supercritical CO2; Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium; Ice-Borehole Probe; Alpha-Voltaic Sources Using Diamond as Conversion Medium; White-Light Whispering-Gallery-Mode Optical Resonators; Controlling Attitude of a Solar-Sail Spacecraft Using Vanes; and Wire-Mesh-Based Sorber for Removing Contaminants from Air.

  1. Parylene-based active micro space radiator with thermal contact switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% hasmore » been achieved.« less

  2. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network.

    PubMed

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature.

  3. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Giardino, R

    2005-03-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behaviour of Ni-free austenitic stainless steel for orthopaedic applications. Experiments were carried out using four different test solutions: (i) phosphate-buffered saline (PBS), (ii) minimum essential medium (MEM), (iii) MEM + 10% fetal calf serum (FCS), (iv) MEM + 10% fetal calf serum + L929 fibroblast cell line (Cell). Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (Resistance, Constant Phase Element). The (R(1), CPE(1)) branch was assigned to the inner compact passive film and the (R(2), CPE(2)) branch to the external porous film. The resistance of the inner film R(1), here directly related to the material's uniform corrosion resistance, raised with the immersion time and increased in the following order: PBS

  4. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  5. Microelectromechanical pump utilizing porous silicon

    DOEpatents

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  6. pMUT+ASIC integrated platform for wide range ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Tillak, J.; Saeed, N.; Khazaaleh, S.; Viegas, J.; Yoo, J.

    2017-03-01

    We propose an integrated platform of Aluminum Nitrate (AlN) based Piezoelectric Micromachined Ultrasonic Transducer (pMUT) phased array with Application Specific Integrated Circuit (ASIC) for medical imaging and industrial diagnosis. The ASIC provides wide driving range for frequencies between 100 kHz and 5 MHz and channelscalable, programmable application adaptive transmitting beamformer. The system supports operation in various media, including gasses, liquids and biological tissue. The scan resolution for 5 MHz operation is 68 μm in air. The beamformer covers a test volume from -30° to +30° with a step of 3° and scan depth of 10 cm. The ASIC system features low noise receiver electronics, power saving transmission circuitry, and high-voltage drive of large capacitance transducer (up to 500 pF). Integrated pMUT phased array consists of 4 channels of single-membrane ultrasonic transducer of 400 nm deflection and 20 pF feed-thru capacitance, which produce 15 Pa pressure at 500 μm distance from the surface of the transducers. The active area of the ASIC is (700×1490) μm2, which includes channel scalable TX, 8-channale low noise RX, digital back end with autonomous beamformer and power management unit. The system is battery powered with 3.3V-5V standard supply, representing a truly portable solution for ultrasonic applications. Given the CMOS-compatible fabrication process for the AlN pMUTs, dense, miniaturized arrays are possible. Furthermore the smooth surface of dielectric AlN renders optical quality MEMS surfaces for integration in miniaturized photonic + ultrasound microsystems.

  7. An absorptive single-pole four-throw switch using multiple-contact MEMS switches and its application to a monolithic millimeter-wave beam-forming network

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyo; Kim, Jong-Man; Kim, Yong-Kweon; Kwon, Youngwoo

    2009-01-01

    In this paper, a new absorptive single-pole four-throw (SP4T) switch based on multiple-contact switching is proposed and integrated with a Butler matrix to demonstrate a monolithic beam-forming network at millimeter waves (mm waves). In order to simplify the switching driving circuit and reduce the number of unit switches in an absorptive SP4T switch, the individual switches were replaced with long-span multiple-contact switches using stress-free single-crystalline-silicon MEMS technology. This approach improves the mechanical stability as well as the manufacturing yield, thereby allowing successful integration into a monolithic beam former. The fabricated absorptive SP4T MEMS switch shows insertion loss less than 1.3 dB, return losses better than 11 dB at 30 GHz and wideband isolation performance higher than 39 dB from 20 to 40 GHz. The absorptive SP4T MEMS switch is integrated with a 4 × 4 Butler matrix on a single chip to implement a monolithic beam-forming network, directing beam into four distinct angles. Array factors from the measured data show that the proposed absorptive SPnT MEMS switch can be effectively used for high-performance mm-wave beam-switching systems. This work corresponds to the first demonstration of a monolithic beam-forming network using switched beams.

  8. Research and Development of Non-Spectroscopic MEMS-Based Sensor Arrays for Targeted Gas Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loui, A; McCall, S K

    2011-10-24

    The ability to monitor the integrity of gas volumes is of interest to the stockpile surveillance community. Specifically, the leak detection of noble gases, at relevant concentration ranges and distinguished from other chemical species that may be simultaneously present, is particularly challenging. Aside from the laboratory-based method of gas chromatography-mass spectrometry (GC-MS), where samples may be collected by solid-phase microextraction (SPME) or cryofocusing, the other major approaches for gas-phase detection employ lasers typically operating in the mid-infrared wavelength region. While mass spectrometry can readily detect noble gases - the helium leak detector is an obvious example - laser-based methods suchmore » as infrared (IR) or Raman spectroscopy are completely insensitive to them as their monatomic nature precludes a non-zero dipole moment or changes in polarizability upon excitation. Therefore, noble gases can only be detected by one of two methods: (1) atomic emission spectroscopies which require the generation of plasmas through laser-induced breakdown, electrical arcing, or similar means; (2) non-spectroscopic methods which measure one or more physical properties (e.g., mass, thermal conductivity, density). In this report, we present our progress during Fiscal Year 2011 (FY11) in the research and development of a non-spectroscopic method for noble gas detection. During Fiscal Year 2010 (FY10), we demonstrated via proof-of-concept experiments that the combination of thermal conductivity detection (TCD) and coating-free damped resonance detection (CFDRD) using micro-electromechanical systems (MEMS) could provide selective sensing of these inert species. Since the MEMS-based TCD technology was directly adapted from a brassboard prototype commissioned by a previous chemical sensing project, FY11 efforts focused on advancing the state of the newer CFDRD method. This work, guided by observations previously reported in the open literature, has not only resulted in a substantially measureable increase in selectivity but has also revealed a potential method for mitigating or eliminating thermal drift that does not require a secondary reference sensor. The design of an apparatus to test this drift compensation scheme will be described. We will conclude this report with a discussion of planned efforts in Fiscal Year 2012 (FY12).« less

  9. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.

  10. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE PAGES

    Persaud, A.; Seidl, P. A.; Ji, Q.; ...

    2017-10-26

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  11. Staging of RF-accelerating Units in a MEMS-based Ion Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persaud, A.; Seidl, P. A.; Ji, Q.

    Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less

  12. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  13. Micromachined modulator arrays for use in free-space optical communication systems

    NASA Astrophysics Data System (ADS)

    Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.

    2004-12-01

    A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.

  14. Improving the Performance of MEMS GYROS via Redundant Measurements: Theory and Experiments

    DTIC Science & Technology

    2014-12-01

    gyroscope arrays, improve performance inertial measurement unit ( IMU ), Sparkfun razor IMU , gyroscope, magnetometer, accelerometer, redundant IMU , angular...30 Figure 15 Sparkfun 9DOF razor IMU , after [21...43 Figure 27 Sparkfun razor IMU (bottom) connected to the FT232R breakout board (top) and then to a

  15. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for applications in high temperature environments and can be used for high-temperature MEMS applications. With SiC, diodes and more complex electronics have been shown to operate to about 600 C, while the mechanical properties of SiC are maintained to much higher temperatures. Even when MEMS devices show benefits in the laboratory, there are many packaging challenges for any aeronautics application. Incorporating MEMS into these applications requires new approaches to packaging that goes beyond traditional integrated circuit (IC) packaging technologies. MEMS must interact mechanically, as well as electrically with their environment, making most traditional chip packaging and mounting techniques inadequate. Wind tunnels operate over wide temperature ranges in an environment that is far from being a 'clean-room.' In flight, aircraft are exposed to natural elements (e.g. rain, sun, ice, insects and dirt) and operational interferences(e.g. cleaning and deicing fluids, and maintenance crews). In propulsion systems applications, MEMS devices will have to operate in environments containing gases with very high temperatures, abrasive particles and combustion products. Hence deployment and packaging that maintains the integrity of the MEMS system is crucial. This paper presents an overview of MEMS fabrication and materials, descriptions of available sensors with more details on those being developed in our laboratories, and a discussion of sensor deployment options for wind tunnel and flight applications.

  16. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  17. Applications of Non-linearities in RF MEMS Switches and Resonators

    NASA Astrophysics Data System (ADS)

    Vummidi Murali, Krishna Prasad

    The 21st century is emerging into an era of wireless ubiquity. To support this trend, the RF (Radio Frequency) front end must be capable of processing a range of wireless signals (cellular phone, data connectivity, broadcast TV, GPS positioning, etc.) spanning a total bandwidth of nearly 6 GHz. This warrants the need for multi-band/multi-mode radio architectures. For such architectures to satisfy the constraints on size, battery life, functionality and cost, the radio front-end must be made reconfigurable. RF-MEMS (RF Micro-Electro-Mechanical Systems) are seen as an enabling technology for such reconfigurable radios. RF-MEMS mainly include micromechanical switches (used in phase shifters, switched capacitor banks, impedance tuners etc.) and micromechanical resonators (used in tunable filters, oscillators, reference clocks etc.). MEMS technology also has the potential to be directly integrated into CMOS (Complementary metal-oxide semiconductor) ICs (Integrated Circuits) leading to further potential reductions of cost and size. However, RF-MEMS face challenges that must be addressed before they can gain widespread commercial acceptance. Relatively low switching speed, power handling, and high-voltage drive are some of the key issues in MEMS switches. Phase noise influenced by non-linearities, need for temperature compensation (especially Si based resonators), large start-up times, and aging are the key issues in Si MEMS Resonators. In this work potential solutions are proposed to address some of these key issues, specifically the reduction of high voltage drives in switches and the reduction of phase noise in MEMS resonators for timing applications. MEMS devices that are electrostatically actuated exhibit significant non-linearities. The origins of the non-linearities are both electrical (electrostatic actuation) and mechanical (dimensions and material properties). The influence of spring non-linearities (cubic and quadratic) on the performance of switches and resonators are studied. Gold electroplated fixed-fixed beams were fabricated to test the phenomenon of dynamic (or resonant) pull-in in shunt switches. The dynamic pull-in phenomenon was also tested on commercially fabricated lateral switches. It is shown that the resonant pull-in technique reduces the overall voltage required to actuate the switch. There is an additional reduction of total actuation voltage possible via applying an AC actuation signal at the correct non-linear resonant frequency. The demonstrated best case savings from operating at the non-linear resonance is 50% (for the lateral switch) and 60% (for the vertical switch) as compared to 25% and 40% respectively using a fixed frequency approach. However, the timing response for resonant pull-in has been experimentally shown to be slower than the static actuation. To reduce the switching time, a shifted-frequency method is proposed where the excitation frequency is shifted up or down by a discrete amount deltaO after a brief hold time. It was theoretically shown that the shifted-frequency method enables a minimum realizable switching time comparable to the static switching time for a given set of actuation frequencies. The influence of VDC on the effective non-linearities of a fixed-fixed beam is also studied. Based on the dimensions of the resonator and the type of resonance there is a certain VDC,Lin where the response is near linear (S ≈ 0). In the near-linear domain, the dynamic pull-in is the only upper bound to the amplitude of vibrations, and hence the amplitude of output current, thereby maximizing the power handling capacity of the resonator. Apart from maximizing the output current, it is essential to reduce the amplitude and phase variations of the displacement response which are due to noise mixing into frequency of interest, and are eventually manifested as output phase noise due to capacitive current nonlinearity. Two major aliasing schemes were analyzed and it was shown that the capacitive force non-linearity is the major source of mixing that causes the up-conversion of 1/f frequency into signal sidebands. The resonator's periodic response (displacement) is defined by a set of two first-order nonlinear ordinary differential equations that describe the modulation of amplitude and phase of the response. Frequency response curves of amplitude and frequency are determined from these modulation equations. The zero slope point on the amplitude resonance curve is the peak of the resonance curve where the phase (gammadc) of the response is +/-pi/2. For a strongly non-linear system, the resonance curves are skewed based on the amount of total non-linearity S. For systems that are strongly non-linear, the best region to operate the resonator is the fixed point that correspond to infinite slope (gammadc = +/-2pi/3) in the frequency response of the system. The best case phase noise response was analytically developed for such a fixed point. Theoretically at this fixed point, phase noise will have contributions only from 1/ fnoise and not from 1/f2 and 1/ f3. The resonators phase can be set by controlling the rest of the phase in the loop such that the total phase around the loop is zero or 2pi. In addition, this work has also developed an analytical model for a lateral MEMS switch fabricated in a commercial foundry that has the potential to be processed as MEMS on CMOS. This model accounts for trapezoidal cross sections of the electrodes and springs and also models electrostatic fringing as a function of the moving gap. The analytical model matches closely with the Finite Element (FEA) model.

  18. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.

    PubMed

    Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng

    2017-10-13

    MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.

  19. Additional information for “TREMOR: A Wireless, MEMS Accelerograph for Dense Arrays” (Evans et al., 2003)

    USGS Publications Warehouse

    Evans, John R.; Hamstra, Robert H.; Spudich, Paul; Kundig, Christoph; Camina, Patrick; Rogers, John A.

    2003-01-01

    The length of Evans et al. (2003) necessitated transfer of several less germane sections to this alternate forum to meet that venue’s needs. These sections include a description of the development of Figure 1, the plot of spatial variability so critical to the argument for dense arrays of strong-motion instruments; the description of the rapid, integer, computational method for PGV used in the TREMOR instrument (the Oakland instrument, the commercial prototype, and the commercial instrument); siting methods and strategies used for Class B TREMOR instruments and those that can be used for Class C instruments to preserve the cost advantages of such systems; and some general discussion of MEMS accelerometers, including a comparative Table with representative examples of Class A, B and C MEMS devices. (“MEMS” means “Micro-ElectroMechanical” Systems—“micromachined” sensors, generally of silicon. Classes A, B, and C are defined in Table 1.)

  20. Demonstration of Vibrational Braille Code Display Using Large Displacement Micro-Electro-Mechanical Systems Actuators

    NASA Astrophysics Data System (ADS)

    Watanabe, Junpei; Ishikawa, Hiroaki; Arouette, Xavier; Matsumoto, Yasuaki; Miki, Norihisa

    2012-06-01

    In this paper, we present a vibrational Braille code display with large-displacement micro-electro-mechanical systems (MEMS) actuator arrays. Tactile receptors are more sensitive to vibrational stimuli than to static ones. Therefore, when each cell of the Braille code vibrates at optimal frequencies, subjects can recognize the codes more efficiently. We fabricated a vibrational Braille code display that used actuators consisting of piezoelectric actuators and a hydraulic displacement amplification mechanism (HDAM) as cells. The HDAM that encapsulated incompressible liquids in microchambers with two flexible polymer membranes could amplify the displacement of the MEMS actuator. We investigated the voltage required for subjects to recognize Braille codes when each cell, i.e., the large-displacement MEMS actuator, vibrated at various frequencies. Lower voltages were required at vibration frequencies higher than 50 Hz than at vibration frequencies lower than 50 Hz, which verified that the proposed vibrational Braille code display is efficient by successfully exploiting the characteristics of human tactile receptors.

  1. Two-dimensional (2D) displacement measurement of moving objects using a new MEMS binocular vision system

    NASA Astrophysics Data System (ADS)

    Di, Si; Lin, Hui; Du, Ruxu

    2011-05-01

    Displacement measurement of moving objects is one of the most important issues in the field of computer vision. This paper introduces a new binocular vision system (BVS) based on micro-electro-mechanical system (MEMS) technology. The eyes of the system are two microlenses fabricated on a substrate by MEMS technology. The imaging results of two microlenses are collected by one complementary metal-oxide-semiconductor (CMOS) array. An algorithm is developed for computing the displacement. Experimental results show that as long as the object is moving in two-dimensional (2D) space, the system can effectively estimate the 2D displacement without camera calibration. It is also shown that the average error of the displacement measurement is about 3.5% at different object distances ranging from 10 cm to 35 cm. Because of its low cost, small size and simple setting, this new method is particularly suitable for 2D displacement measurement applications such as vision-based electronics assembly and biomedical cell culture.

  2. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.

    PubMed

    Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S

    2015-08-01

    This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high probability, there are more important effects contributing to variations of MEm that are not explained or are independent from these functions. Furthermore, autocorrelations exist between indicator traits and predicted MEm. Nevertheless, this integrative approach, combining information from dairy cattle nutrition with dairy cattle genetics, generated novel traits which are difficult to record on a large scale. The simulated data basis for MEm was used to determine the size of a cow calibration group for genomic selection. A calibration group including 2,581 cows with MEm phenotypes was competitive with conventional breeding strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. MEMS Louvers for Thermal Control

    NASA Technical Reports Server (NTRS)

    Champion, J. L.; Osiander, R.; Darrin, M. A. Garrison; Swanson, T. D.

    1998-01-01

    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at NASA's Goddard Space Flight Center.

  4. Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery

    NASA Astrophysics Data System (ADS)

    Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.

    2014-08-01

    A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.

  5. Microelectronic Precision Optical Element Fabrication

    DTIC Science & Technology

    2009-01-01

    spectra for a 0-25V reverse bias and the device tilted at -35° to the optical axis. Also shown is the diode reverse bias I-V curve . 1530 1540...optical modulator using an MEMS deformable micromirror array," Journal of Lightwave Technology, vol. 24(1), pp. 516-525, January 2006. [4] D. H. Parker, M

  6. A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Lin, Yiyu; Liu, Siqi; Zheng, Xudong; Jin, Zhonghe

    2017-02-01

    This paper reports a novel oscillation control algorithm for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation (MEAM) technique, which enhances the robustness against the frequency variation of the driving mode, compared to the conventional EAM (CEAM) scheme. In this approach, the carrier voltage exerted on the proof mass is frequency-modulated by the drive resonant frequency. Accordingly, the pick-up signal from the interface circuit involves a constant-frequency component that contains the amplitude and phase information of the vibration displacement. In other words, this informational detection signal is independent of the mechanical resonant frequency, which varies due to different batches, imprecise micro-fabrication and changing environmental temperature. In this paper, the automatic gain control loop together with the phase-locked loop are simultaneously analyzed using the averaging method and Routh-Hurwitz criterion, deriving the stability condition and the parameter optimization rules of the transient response. Then, a simulation model based on the real system is set up to evaluate the control algorithm. Further, the proposed MEAM method is tested using a field-programmable-gate-array based digital platform on a capacitive vibratory gyroscope. By optimizing the control parameters, the transient response of the drive amplitude reveals a settling time of 45.2 ms without overshoot, according well with the theoretical prediction and simulation results. The first measurement results show that the amplitude variance of the drive displacement is 12 ppm in an hour while the phase standard deviation is as low as 0.0004°. The mode-split gyroscope operating under atmospheric pressure demonstrates an outstanding performance. By virtue of the proposed MEAM method, the bias instability and angle random walk are measured to be 0.9° h-1 (improved by 2.4 times compared to the CEAM method) and 0.068° (√h)-1 (improved by 1.4 times), respectively.

  7. A miniaturized neuroprosthesis suitable for implantation into the brain

    NASA Technical Reports Server (NTRS)

    Mojarradi, Mohammad; Binkley, David; Blalock, Benjamin; Andersen, Richard; Ulshoefer, Norbert; Johnson, Travis; Del Castillo, Linda

    2003-01-01

    This paper presents current research on a miniaturized neuroprosthesis suitable for implantation into the brain. The prosthesis is a heterogeneous integration of a 100-element microelectromechanical system (MEMS) electrode array, front-end complementary metal-oxide-semiconductor (CMOS) integrated circuit for neural signal preamplification, filtering, multiplexing and analog-to-digital conversion, and a second CMOS integrated circuit for wireless transmission of neural data and conditioning of wireless power. The prosthesis is intended for applications where neural signals are processed and decoded to permit the control of artificial or paralyzed limbs. This research, if successful, will allow implantation of the electronics into the brain, or subcutaneously on the skull, and eliminate all external signal and power wiring. The neuroprosthetic system design has strict size and power constraints with each of the front-end preamplifier channels fitting within the 400 x 400-microm pitch of the 100-element MEMS electrode array and power dissipation resulting in less than a 1 degree C temperature rise for the surrounding brain tissue. We describe the measured performance of initial micropower low-noise CMOS preamplifiers for the neuroprosthetic.

  8. Design and Evaluation of a Scalable and Reconfigurable Multi-Platform System for Acoustic Imaging

    PubMed Central

    Izquierdo, Alberto; Villacorta, Juan José; del Val Puente, Lara; Suárez, Luis

    2016-01-01

    This paper proposes a scalable and multi-platform framework for signal acquisition and processing, which allows for the generation of acoustic images using planar arrays of MEMS (Micro-Electro-Mechanical Systems) microphones with low development and deployment costs. Acoustic characterization of MEMS sensors was performed, and the beam pattern of a module, based on an 8 × 8 planar array and of several clusters of modules, was obtained. A flexible framework, formed by an FPGA, an embedded processor, a computer desktop, and a graphic processing unit, was defined. The processing times of the algorithms used to obtain the acoustic images, including signal processing and wideband beamforming via FFT, were evaluated in each subsystem of the framework. Based on this analysis, three frameworks are proposed, defined by the specific subsystems used and the algorithms shared. Finally, a set of acoustic images obtained from sound reflected from a person are presented as a case study in the field of biometric identification. These results reveal the feasibility of the proposed system. PMID:27727174

  9. Invited: Advances Toward Practical Detection of Trace Chemical Hazards with Solid State Microarray Devices

    NASA Astrophysics Data System (ADS)

    Raman, Barani; Meier, Douglas; Shenoy, Rupa; Benkstein, Kurt; Semancik, Steve

    2011-09-01

    We describe progress on an array-based microsensor approach employed for detecting trace levels of toxic industrial chemicals (TICs) in air-based backgrounds with varied levels of humidity, and with occasional introduction of aggressive interferents. Our MEMS microhotplate arrays are populated with multiple chemiresistive sensing materials, and all elements are programmed to go through extensive temperature cycling over repetitive cycles with lengths of approximately 20 s. Under such operation, analytically-rich data streams are produced containing the required information for target recognition.

  10. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  11. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  12. Additively manufactured MEMS multiplexed coaxial electrospray sources for high-throughput, uniform generation of core-shell microparticles.

    PubMed

    Olvera-Trejo, D; Velásquez-García, L F

    2016-10-18

    This study reports the first MEMS multiplexed coaxial electrospray sources in the literature. Coaxial electrospraying is a microencapsulation technology based on electrohydrodynamic jetting of two immiscible liquids, which allows precise control with low size variation of the geometry of the core-shell particles it generates, which is of great importance in numerous biomedical and engineering applications, e.g., drug delivery and self-healing composites. By implementing monolithic planar arrays of miniaturized coaxial electrospray emitters that work uniformly in parallel, the throughput of the compound microdroplet source is greatly increased, making the microencapsulation technology compatible with low-cost commercial applications. Miniaturized core-shell particle generators with up to 25 coaxial electrospray emitters (25 emitters cm -2 ) were fabricated via stereolithography, which is an additive manufacturing process that can create complex microfluidic devices at a small fraction of the cost per device and fabrication time associated with silicon-based counterparts. The characterization of devices with the same emitter structure but different array sizes demonstrates uniform array operation. Moreover, the data demonstrate that the per-emitter current is approximately proportional to the square root of the flow rate of the driving liquid, and it is independent of the flow rate of the driven liquid, as predicted by the theory. The core/shell diameters and the size distribution of the generated compound microparticles can be modulated by controlling the flow rates fed to the emitters.

  13. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit

    PubMed Central

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-01-01

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW·mm−3·g−2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads. PMID:24556670

  14. A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit.

    PubMed

    Yu, Hua; Zhou, Jielin; Deng, Licheng; Wen, Zhiyu

    2014-02-19

    This paper presents a micro-electro-mechanical system (MEMS) piezoelectric power generator array for vibration energy harvesting. A complete design flow of the vibration-based energy harvester using the finite element method (FEM) is proposed. The modal analysis is selected to calculate the resonant frequency of the harvester, and harmonic analysis is performed to investigate the influence of the geometric parameters on the output voltage. Based on simulation results, a MEMS Pb(Zr,Ti)O3 (PZT) cantilever array with an integrated large Si proof mass is designed and fabricated to improve output voltage and power. Test results show that the fabricated generator, with five cantilever beams (with unit dimensions of about 3 × 2.4 × 0.05 mm3) and an individual integrated Si mass dimension of about 8 × 12.4 × 0.5 mm3, produces a output power of 66.75 μW, or a power density of 5.19 μW∙mm-3∙g-2 with an optimal resistive load of 220 kΩ from 5 m/s2 vibration acceleration at its resonant frequency of 234.5 Hz. In view of high internal impedance characteristic of the PZT generator, an efficient autonomous power conditioning circuit, with the function of impedance matching, energy storage and voltage regulation, is then presented, finding that the efficiency of the energy storage is greatly improved and up to 64.95%. The proposed self-supplied energy generator with power conditioning circuit could provide a very promising complete power supply solution for wireless sensor node loads.

  15. Electrothermal actuators fabricated in four-level planarized surface-miromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, A.; Barron, C.C.

    1997-11-01

    This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It ismore » found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.« less

  16. Sensing magnetic flux density of artificial neurons with a MEMS device.

    PubMed

    Tapia, Jesus A; Herrera-May, Agustin L; García-Ramírez, Pedro J; Martinez-Castillo, Jaime; Figueras, Eduard; Flores, Amira; Manjarrez, Elías

    2011-04-01

    We describe a simple procedure to characterize a magnetic field sensor based on microelectromechanical systems (MEMS) technology, which exploits the Lorentz force principle. This sensor is designed to detect, in future applications, the spiking activity of neurons or muscle cells. This procedure is based on the well-known capability that a magnetic MEMS device can be used to sense a small magnetic flux density. In this work, an electronic neuron (FitzHugh-Nagumo) is used to generate controlled spike-like magnetic fields. We show that the magnetic flux density generated by the hardware of this neuron can be detected with a new MEMS magnetic field sensor. This microdevice has a compact resonant structure (700 × 600 × 5 μm) integrated by an array of silicon beams and p-type piezoresistive sensing elements, which need an easy fabrication process. The proposed microsensor has a resolution of 80 nT, a sensitivity of 1.2 V.T(-1), a resonant frequency of 13.87 kHz, low power consumption (2.05 mW), quality factor of 93 at atmospheric pressure, and requires a simple signal processing circuit. The importance of our study is twofold. First, because the artificial neuron can generate well-controlled magnetic flux density, we suggest it could be used to analyze the resolution and performance of different magnetic field sensors intended for neurobiological applications. Second, the introduced MEMS magnetic field sensor may be used as a prototype to develop new high-resolution biomedical microdevices to sense magnetic fields from cardiac tissue, nerves, spinal cord, or the brain.

  17. Measurement of the Earth tides with a MEMS gravimeter.

    PubMed

    Middlemiss, R P; Samarelli, A; Paul, D J; Hough, J; Rowan, S; Hammond, G D

    2016-03-31

    The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz(1/2)): free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides: the elastic deformation of the Earth's crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz(1/2) only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers--found in most smart phones--can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

  18. On the reliability of Quake-Catcher Network earthquake detections

    USGS Publications Warehouse

    Yildirim, Battalgazi; Cochran, Elizabeth S.; Chung, Angela I.; Christensen, Carl M.; Lawrence, Jesse F.

    2015-01-01

    Over the past two decades, there have been several initiatives to create volunteer‐based seismic networks. The Personal Seismic Network, proposed around 1990, used a short‐period seismograph to record earthquake waveforms using existing phone lines (Cranswick and Banfill, 1990; Cranswicket al., 1993). NetQuakes (Luetgert et al., 2010) deploys triaxial Micro‐Electromechanical Systems (MEMS) sensors in private homes, businesses, and public buildings where there is an Internet connection. Other seismic networks using a dense array of low‐cost MEMS sensors are the Community Seismic Network (Clayton et al., 2012; Kohler et al., 2013) and the Home Seismometer Network (Horiuchi et al., 2009). One main advantage of combining low‐cost MEMS sensors and existing Internet connection in public and private buildings over the traditional networks is the reduction in installation and maintenance costs (Koide et al., 2006). In doing so, it is possible to create a dense seismic network for a fraction of the cost of traditional seismic networks (D’Alessandro and D’Anna, 2013; D’Alessandro, 2014; D’Alessandro et al., 2014).

  19. MEMS Reaction Control and Maneuvering for Picosat Beyond LEO

    NASA Technical Reports Server (NTRS)

    Alexeenko, Alina

    2016-01-01

    The MEMS Reaction Control and Maneuvering for Picosat Beyond LEO project will further develop a multi-functional small satellite technology for low-power attitude control, or orientation, of picosatellites beyond low Earth orbit (LEO). The Film-Evaporation MEMS Tunable Array (FEMTA) concept initially developed in 2013, is a thermal valving system which utilizes capillary forces in a microchannel to offset internal pressures in a bulk fluid. The local vapor pressure is increased by resistive film heating until it exceeds meniscus strength in a nozzle which induces vacuum boiling and provides a stagnation pressure equal to vapor pressure at that point which is used for propulsion. Interplanetary CubeSats can utilize FEMTA for high slew rate attitude corrections in addition to desaturating reaction wheels. The FEMTA in cooling mode can be used for thermal control during high-power communication events, which are likely to accompany the attitude correction. Current small satellite propulsion options are limited to orbit correction whereas picosatellites are lacking attitude control thrusters. The available attitude control systems are either quickly saturated reaction wheels or movable high drag surfaces with long response times.

  20. Fabrication of Quench Condensed Thin Films Using an Integrated MEMS Fab on a Chip

    NASA Astrophysics Data System (ADS)

    Lally, Richard; Reeves, Jeremy; Stark, Thomas; Barrett, Lawrence; Bishop, David

    Atomic calligraphy is a microelectromechanical systems (MEMS)-based dynamic stencil nanolithography technique. Integrating MEMS devices into a bonded stacked array of three die provides a unique platform for conducting quench condensed thin film mesoscopic experiments. The atomic calligraphy Fab on a Chip process incorporates metal film sources, electrostatic comb driven stencil plate, mass sensor, temperature sensor, and target surface into one multi-die assembly. Three separate die are created using the PolyMUMPs process and are flip-chip bonded together. A die containing joule heated sources must be prepared with metal for evaporation prior to assembly. A backside etch of the middle/central die exposes the moveable stencil plate allowing the flux to pass through the stencil from the source die to the target die. The chip assembly is mounted in a cryogenic system at ultra-high vacuum for depositing extremely thin films down to single layers of atoms across targeted electrodes. Experiments such as the effect of thin film alloys or added impurities on their superconductivity can be measured in situ with this process.

  1. Reliability Modeling of Microelectromechanical Systems Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Perera. J. Sebastian

    2000-01-01

    Microelectromechanical systems (MEMS) are a broad and rapidly expanding field that is currently receiving a great deal of attention because of the potential to significantly improve the ability to sense, analyze, and control a variety of processes, such as heating and ventilation systems, automobiles, medicine, aeronautical flight, military surveillance, weather forecasting, and space exploration. MEMS are very small and are a blend of electrical and mechanical components, with electrical and mechanical systems on one chip. This research establishes reliability estimation and prediction for MEMS devices at the conceptual design phase using neural networks. At the conceptual design phase, before devices are built and tested, traditional methods of quantifying reliability are inadequate because the device is not in existence and cannot be tested to establish the reliability distributions. A novel approach using neural networks is created to predict the overall reliability of a MEMS device based on its components and each component's attributes. The methodology begins with collecting attribute data (fabrication process, physical specifications, operating environment, property characteristics, packaging, etc.) and reliability data for many types of microengines. The data are partitioned into training data (the majority) and validation data (the remainder). A neural network is applied to the training data (both attribute and reliability); the attributes become the system inputs and reliability data (cycles to failure), the system output. After the neural network is trained with sufficient data. the validation data are used to verify the neural networks provided accurate reliability estimates. Now, the reliability of a new proposed MEMS device can be estimated by using the appropriate trained neural networks developed in this work.

  2. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  3. Analysis, Implementation and Considerations for Liquid Crystals as a Reconfigurable Antennas Solution (LiCRAS) for Space

    NASA Astrophysics Data System (ADS)

    Doyle, Derek

    The space industry has predominantly relied on high gain reflector dish antenna apertures for performing communications, but is constantly investing in phase array antenna concepts to provide increased signal flexibility at reduced system costs in terms of finances and system resources. The problem with traditional phased arrays remains the significantly greater program cost and complexity added to the satellite by integrating arrays of antenna elements with dedicated amplifier and phase shifters to perform adaptive beam forming. Liquid Crystal Reflectarrays (LiCRas) offer some of the electrical beam forming capability of a phased array system with the component and design complexity in lines with a traditional reflector antenna aperture but without the risks associated with mechanical steering systems. The final solution is believed to be a hybrid approach that performs in between the boundaries set by the two current disparate approaches. Practical reflectarrays have been developed since the 90's as a means to control reflection of incident radiation off a flat structure that is electrically curved based on radiating elements and their reflection characteristics with tailored element phase delay. In the last decade several methods have been proposed to enable tunable reflectarrays where the electrical shape of the reflector can be steered by controlling the resonating properties of the elements on the reflector using a DC bias. These approaches range from complex fast switching MEMS and ferroelectric devices, to more robust but slower chemical changes. The aim of this work is to investigate the feasibility of a molecular transition approach in the form of liquid crystals which change permittivity based on the electrical field they are subjected to. In this work, particular attention will be paid to the impact of space environment on liquid crystal reflectarray materials and reflector architectures. Of particular interest are the effects on performance induced by the temperature extremes of space and the electromagnetic particle environment. These two items tend to drive much of the research and development for various space technologies and based on these physical influences, assertions can be made toward the space worthiness of such a material approach and can layout future R&D; needs to make certain LC RF devices feasible for space use. Moreover, in this work the performance metrics of such a technology will be addressed along with methods of construction from a space perspective where specific design considerations must be made based on the extreme environment that a typical space asset must endure.

  4. MEMS Gate Structures for Electric Propulsion Applications

    DTIC Science & Technology

    2006-07-12

    distance between gates of dual gate system V = grid voltage Dsheath = sheath thickness Va = anode voltage E = electric field Vemitter = emitter voltage Es...minutes. A hot pressed boron nitride target (4N) in the hexagonal phase (h- BN) was sputtered in a RF magnetron sputtering gun. To promote the nucleation...and nanoFETs. This paper concludes with a discussion on using MEMS gates for dual -grid electron field emission applications. II. Gate Design I I

  5. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  6. ZnO on nickel RF micromechanical resonators for monolithic wireless communication applications

    NASA Astrophysics Data System (ADS)

    Wei, Mian; Avila, Adrian; Rivera, Ivan; Baghelani, Masoud; Wang, Jing

    2017-05-01

    On-chip integrability of high-Q RF passives alongside CMOS transistors is crucial for the implementation of monolithic radio transceivers. One of the most significant bottlenecks in back-end-of-line (BEoL) integration of MEMS devices on CMOS processed wafers is their relatively low thermal budget, which is less than that required for typical MEMS material deposition processes. This paper investigates electroplated nickel as a structural material for piezoelectrically-transduced resonators to demonstrate ZnO-on-nickel resonators with a CMOS-compatible low temperature process for the first time. Aside from the obvious manufacturing cost benefit, electroplated nickel is a reasonable substitute for polycrystalline or single crystal silicon and thin-film microcrystalline diamond device layers, while realizing decent acoustic velocity and moderate Q. Electroplated nickel has been already adopted by MEMSCAP, a multi-user MEMS process foundry, in its MetalMUMPs process. Furthermore, it is observed that a localized annealing process through Joule heating can be exploited to significantly improve the effective mechanical quality factor for the ZnO-on-nickel resonators, which is still lower than the reported AlN resonators. This work demonstrates ZnO-on-nickel piezoelectrically-actuated MEMS resonators and resonator arrays by using an IC compatible low temperature process. There is room for performance improvement by lowering the acoustic energy losses in the ZnO and nickel layers.

  7. Tightly Coupled Inertial Navigation System/Global Positioning System (TCMIG)

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jackson, Kurt (Technical Monitor)

    2002-01-01

    Many NASA applications planned for execution later this decade are seeking high performance, miniaturized, low power Inertial Management Units (IMU). Much research has gone into Micro-Electro-Mechanical System (MEMS) over the past decade as a solution to these needs. While MEMS devices have proven to provide high accuracy acceleration measurements, they have not yet proven to have the accuracy required by many NASA missions in rotational measurements. Therefore, a new solution has been formulated integrating the best of all IMU technologies to address these mid-term needs in the form of a Tightly Coupled Micro Inertial Navigation System (INS)/Global Positioning System (GPS) (TCMIG). The TCMIG consists of an INS and a GPS tightly coupled by a Kalman filter executing on an embedded Field Programmable Gate Array (FPGA) processor. The INS consists of a highly integrated Interferometric Fiber Optic Gyroscope (IFOG) and a MEMS accelerometer. The IFOG utilizes a tightly wound fiber coil to reduce volume and the high level of integration and advanced optical components to reduce power. The MEMS accelerometer utilizes a newly developed deep etch process to increase the proof mass and yield a highly accurate accelerometer. The GPS receiver consists of a low power miniaturized version of the Blackjack receiver. Such an IMU configuration is ideal to meet the mid-term needs of the NASA Science Enterprises and the new launch vehicles being developed for the Space Launch Initiative (SLI).

  8. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  9. Direct measurements of the pressure distribution along the contact area during droplet impact

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-11-01

    We report direct measurements of the pressure distribution on the contact area during the impact of a droplet on a micropillar array. The measurements were realized using an array of MEMS-based force sensors fabricated underneath the micropillars. We show that immediately after the droplet hits the surface, the pressure becomes maximum at the center of the contact area and this maximum pressure value is more than 10 times larger than the dynamic pressure. This result emphasizes the effect of water-hammer-type pressure during the early stage of the impact. Furthermore, our measurement results demonstrate that the critical pressure associated with Cassie-Wenzel transition agrees well with the maximum capillary pressure of the micropillar array.

  10. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high concentration of phosphorous, resulting in even slightly positive TCF for some of the devices. This is also expected to improve the phase noise characteristics of oscillators implemented utilizing such frequency references by eliminating the sharp dependence to electronic noise in the resonator bias current. Finally it is well known that non-uniformities in fabrication of MEMS resonators lead to variations in their frequency. I have proposed both active (non-permanent) and permanent frequency modification to compensate for variations in frequency of the MEMS resonators.

  11. Microfabricated Ion Beam Drivers for Magnetized Target Fusion

    NASA Astrophysics Data System (ADS)

    Persaud, Arun; Seidl, Peter; Ji, Qing; Ardanuc, Serhan; Miller, Joseph; Lal, Amit; Schenkel, Thomas

    2015-11-01

    Efficient, low-cost drivers are important for Magnetized Target Fusion (MTF). Ion beams offer a high degree of control to deliver the required mega joules of driver energy for MTF and they can be matched to several types of magnetized fuel targets, including compact toroids and solid targets. We describe an ion beam driver approach based on the MEQALAC concept (Multiple Electrostatic Quadrupole Array Linear Accelerator) with many beamlets in an array of micro-fabricated channels. The channels consist of a lattice of electrostatic quadrupoles (ESQ) for focusing and of radio-frequency (RF) electrodes for ion acceleration. Simulations with particle-in-cell and beam envelope codes predict >10x higher current densities compared to state-of-the-art ion accelerators. This increase results from dividing the total ion beam current up into many beamlets to control space charge forces. Focusing elements can be biased taking advantage of high breakdown electric fields in sub-mm structures formed using MEMS techniques (Micro-Electro-Mechanical Systems). We will present results on ion beam transport and acceleration in MEMS based beamlets. Acknowledgments: This work is supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  12. MEMS Micropropulsion Activities at JPL

    NASA Technical Reports Server (NTRS)

    Mueller, Juergen; Chakraborty, Indrani; Vargo, Stephen; Bame, David; Marrese, Colleen; Tang, William C.

    1999-01-01

    A status of MEMS-based micropropulsion activities conducted at JPL will be given. These activities include work conducted on the so called Vaporizing Liquid Micro-Thruster (VLM) which recently underwent proof-of-concept testing, demonstrating the ability to vaporize water propellant at 2 W and 2 V. Micro-ion engine technologies, such m field emitter arrays and micro-grids are being studied. Focus in the field emitter area is on arrays able to survive in thruster plumes and micro-ion engine plasmas to serve as neutralizers aW engine cathodes. Integrated, batch-fabricated Ion repeller grid structures are being studied as well as different emitter tip materials are being investigated to meet these goals. A micro-isolation valve is being studied to isolate microspacecraft feed system during long interplanetary cruises, avoiding leakage and prolonging lifetime and reliability of such systems. This concept relies on the melting of a thin silicon barrier. Burst pressure values as high as 2,900 psig were obtained for these valves and power requirements to melt barriers ranging between 10 - 50 microns in thickness, as determined through thermal finite element calculations, varied between 10 - 30 W to be applied over a duration of merely 0.5 ms.

  13. MEMS for Tunable Photonic Metamaterial Applications

    NASA Astrophysics Data System (ADS)

    Stark, Thomas

    Photonic metamaterials are materials whose optical properties are derived from artificially-structured sub-wavelength unit cells, rather than from the bulk properties of the constituent materials. Examples of metamaterials include plasmonic materials, negative index materials, and electromagnetic cloaks. While advances in simulation tools and nanofabrication methods have allowed this field to grow over the past several decades, many challenges still exist. This thesis addresses two of these challenges: fabrication of photonic metamaterials with tunable responses and high-throughput nanofabrication methods for these materials. The design, fabrication, and optical characterization of a microelectromechanical systems (MEMS) tunable plasmonic spectrometer are presented. An array of holes in a gold film, with plasmon resonance in the mid-infrared, is suspended above a gold reflector, forming a Fabry-Perot interferometer of tunable length. The spectra exhibit the convolution of extraordinary optical transmission through the holes and Fabry-Perot resonances. Using MEMS, the interferometer length is modulated from 1.7 mum to 21.67 mum , thereby tuning the free spectral range from about 2900 wavenumbers to 230.7 wavenumbers and shifting the reflection minima and maxima across the infrared. Due to its broad spectral tunability in the fingerprint region of the mid-infrared, this device shows promise as a tunable biological sensing device. To address the issue of high-throughput, high-resolution fabrication of optical metamaterials, atomic calligraphy, a MEMS-based dynamic stencil lithography technique for resist-free fabrication of photonic metamaterials on unconventional substrates, has been developed. The MEMS consists of a moveable stencil, which can be actuated with nanometer precision using electrostatic comb drive actuators. A fabrication method and flip chip method have been developed, enabling evaporation of metals through the device handle for fabrication on an external substrate. While the MEMS can be used to fabricate over areas of approximately 100 square mum2, a piezoelectric step-and repeat system enables fabrication over cm length scales. Thus, this technique leverages the precision inherent to MEMS actuation, while enhancing nanofabrication thoughput. Fabricating metamaterials on new substrates will enable novel and tunable metamaterials. For example, by fabricating unit cells on a periodic auxetic mechanical scaffold, the optical properties can be tuned by straining the mechanical scaffold.

  14. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.

  15. Minimal-Drift Heading Measurement using a MEMS Gyro for Indoor Mobile Robots.

    PubMed

    Hong, Sung Kyung; Park, Sungsu

    2008-11-17

    To meet the challenges of making low-cost MEMS yaw rate gyros for the precise self-localization of indoor mobile robots, this paper examines a practical and effective method of minimizing drift on the heading angle that relies solely on integration of rate signals from a gyro. The main idea of the proposed approach is consists of two parts; 1) self-identification of calibration coefficients that affects long-term performance, and 2) threshold filter to reject the broadband noise component that affects short-term performance. Experimental results with the proposed phased method applied to Epson XV3500 gyro demonstrate that it effectively yields minimal drift heading angle measurements getting over major error sources in the MEMS gyro output.

  16. High-speed wavefront control using MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Bifano, T. G.; Stewart, J. B.

    2005-08-01

    Over the past decade, a number of electrostatically-actuated MEMS deformable mirror devices have been used for adaptive control in beam-forming and imaging applications. One architecture that has been widely used is the silicon device developed by Boston University, consisting of a continuous or segmented mirror supported by post attachments to an array of parallel plate electrostatic actuators. MEMS deformable mirrors and segmented mirrors with up to 1024 of these actuators have been used in open loop and closed loop control systems to control wavefront errors. Frame rates as high as 11kHz have been demonstrated. Mechanically, the actuators used in this device exhibit a first-mode resonant frequency that is in the range of many tens of kilohertz up to a few hundred kilohertz. Viscous air damping has been found to limit operation at such high frequencies in air at standard pressure. Some applications in high-speed tracking and beam-forming could benefit from increased speed. In this paper, several approaches to achieving critically-damped performance with such MEMS DMs are detailed, and theoretical and experimental results are presented. One approach is to seal the MEMS DM in a full or partial vacuum environment, thereby affecting air damping. After vacuum sealing the device's predicted resonant behavior at tens of kilohertz was observed. In vacuum, the actuator's intrinsic material damping is quite small, resulting in considerable oscillation in step response. To alleviate this problem, a two-step actuation algorithm was employed. Precise control of a single actuator frequencies up to 100kHz without overshoot was demonstrated using this approach. Another approach to increasing actuation speed was to design actuators that reduce air damping effects. This is also demonstrated in the paper.

  17. The Development and Validation of Novel, Simple High-Performance Liquid Chromatographic Method with Refractive Index Detector for Quantification of Memantine Hydrochloride in Dissolution Samples.

    PubMed

    Sawant, Tukaram B; Wakchaure, Vikas S; Rakibe, Udyakumar K; Musmade, Prashant B; Chaudhari, Bhata R; Mane, Dhananjay V

    2017-07-01

    The present study was aimed to develop an analytical method for quantification of memantine (MEM) hydrochloride in dissolution samples using high-performance liquid chromatography with refractive index (RI) detector. The chromatographic separation was achieved on C18 (250 × 4.5 mm, 5 μm) column using isocratic mobile phase comprises of buffer (pH 5.2):methanol (40:60 v/v) pumped at a flow rate of 1.0 mL/min. The column effluents were monitored using RI detector. The retention time of MEM was found to be ~6.5 ± 0.3 min. The developed chromatographic method was validated and found to be linear over the concentration range of 5.0-45.0 μg/mL for MEM. Mean recovery of MEM was found to be 99.2 ± 0.5% (w/w). The method was found to be simple, fast, precise and accurate, which can be utilized for the quantification of MEM in dissolution samples. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Investigation of salt formation between memantine and pamoic acid: Its exploitation in nanocrystalline form as long acting injection.

    PubMed

    Mittapelly, Naresh; Rachumallu, Ramakrishna; Pandey, Gitu; Sharma, Shweta; Arya, Abhishek; Bhatta, Rabi Shankar; Mishra, Prabhat Ranjan

    2016-04-01

    In the present work, we prepared memantine-pamoic acid (MEM-PAM) salt by counter ion exchange in the aqueous phase to reduce the water solubility of MEM hydrochloride (native form) to make it suitable for long acting injection. The ratio of MEM to PAM in salt formation was optimized to maximize the loading efficiency and complexation efficiency. The 2:1 molar ratio of MEM to PAM salt form displayed nearly 95% complexation efficiency and 50% drug loading. The solubility was decreased by a ∼1250 folds. Thermo Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction Analysis (PXRD) studies revealed the formation of new solid phase. Additionally, Nuclear Magnetic Resonance (NMR) spectroscopy confirmed the anhydrous nature of the salt form. Through Fourier transformation infrared spectroscopy (FT-IR) we identified the molecular interactions. Further, the microcrystals of the salt were transformed into nanocrystals (NCs) using high pressure homogenization. The particle size distribution and atomic force microscopy confirmed the monodispersed and spherical shape of the NCs. The in vitro dissolution studies were performed under sink condition in phosphate buffer saline pH 6.8. The results of MTT assay in murine fibroblast 3T3 cell line show that the NCs were less cytotoxic and more tolerable than plain MEM HCl. The in vivo performance of NCs administered as i.m. injection at three different doses in female Sprague-Dawley rats showed that the plasma levels lasted till the 24th day of the study. The pharmacokinetic parameters AUC0-∞ and Cmax increased linearly with increasing dose. Therefore, the results suggest that injectable NCs could represent a therapeutic alternative for the treatment of AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. MEMS compatible illumination and imaging micro-optical systems

    NASA Astrophysics Data System (ADS)

    Bräuer, A.; Dannberg, P.; Duparré, J.; Höfer, B.; Schreiber, P.; Scholles, M.

    2007-01-01

    The development of new MOEMS demands for cooperation between researchers in micromechanics, optoelectronics and microoptics at a very early state. Additionally, microoptical technologies being compatible with structured silicon have to be developed. The microoptical technologies used for two silicon based microsystems are described in the paper. First, a very small scanning laser projector with a volume of less than 2 cm 3, which operates with a directly modulated lasers collimated with a microlens, is shown. The laser radiation illuminates a 2D-MEMS scanning mirror. The optical design is optimized for high resolution (VGA). Thermomechanical stability is realized by design and using a structured ceramics motherboard. Secondly, an ultrathin CMOS-camera having an insect inspired imaging system has been realized. It is the first experimental realization of an artificial compound eye. Micro-optical design principles and technology is used. The overall thickness of the imaging system is only 320 μm, the diagonal field of view is 21°, and the f-number is 2.6. The monolithic device consists of an UV-replicated microlens array upon a thin silica substrate with a pinhole array in a metal layer on the back side. The pitch of the pinholes differs from that of the lens array to provide individual viewing angle for each channel. The imaging chip is directly glued to a CMOS sensor with adapted pitch. The whole camera is less than 1mm thick. New packaging methods for these systems are under development.

  20. High Contrast Programmable Field Masks for JWST NIRSpec

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander S.

    2008-01-01

    Microshutter arrays are one of the novel technologies developed for the James Webb Space Telescope (JWST). It will allow Near Infrared Spectrometer (NIRSpec) to acquire spectra of hundreds of objects simultaneously therefore increasing its efficiency tremendously. We have developed these programmable arrays that are based on Micro-Electro Mechanical Structures (MEMS) technology. The arrays are 2D addressable masks that can operate in cryogenic environment of JWST. Since the primary JWST science requires acquisition of spectra of extremely faint objects, it is important to provide very high contrast of the open to closed shutters. This high contrast is necessary to eliminate any possible contamination and confusion in the acquired spectra by unwanted objects. We have developed and built a test system for the microshutter array functional and optical characterization. This system is capable of measuring the contrast of the microshutter array both in visible and infrared light of the NIRSpec wavelength range while the arrays are in their working cryogenic environment. We have measured contrast ratio of several microshutter arrays and demonstrated that they satisfy and in many cases far exceed the NIRSpec contrast requirement value of 2000.

  1. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  2. MEMS-Based Solid Propellant Rocket Array Thruster

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  3. Demonstrating Optical Aberration Correction With a Mems Micro-Mirror Device

    DTIC Science & Technology

    1996-12-01

    intensity distributions for a corrected and uncorrected MEMS reflection. The curves have been nor- malized to the peak value of the corrected wave front...demonstration: A = 632.8 mn, f = 7 mm, and L = 203 ym. For the solid curve , s = 0, while the dashed curve shows s = 7r/L, so that the change in phase...specified for Figure 8 (see page 29), so that the figures are directly comparable. The solid curve shows an intensity distribution for 01 = 0 (no

  4. Development of Hybrid Sensor Arrays for Sensor Arrays for Simultaneous Measurement of Pressure and Shear Stress Distribution

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document reports on the progress in developing hybrid sensors for the simultaneous measurement of pressure and shear stress. The key feature for the success of the proposed hybrid sensor array is the ability to deposit Cu-Ni alloy with proper composition (55 - 45) on a silicon wafer to form a strain gage. This alloy strain gage replaces the normally used Si strain gages in MEMS, which are highly nonlinear and temperature dependent. The copper nickel, with proper composition (55 - 45), was successfully deposited on a silicon wafer with a few trials during this period of the project. Pictures of the Cu-Ni alloy strain gage and the x-ray spectra indicating the composition are shown. The planned tests are also reviewed.

  5. Design, fabrication and characterization of MEMS deformable mirrors for ocular adaptive optics

    NASA Astrophysics Data System (ADS)

    Park, Hyunkyu

    This dissertation describes the design and modeling of MEMS-based bimorph deformable mirrors for adaptive optics as well as the characterization of fabricated devices. The objective of this research is to create a compact and low-cost deformable mirror that can be used as a phase corrector particularly for vision science applications. A fundamental theory of adaptive optics is reviewed, paying attention to the phase corrector which is a key component of the adaptive optics system. Several types of phase corrector are presented and the minimization of their size and cost using micro electromechanical systems (MEMS) technology is also discussed. Since this research is targeted towards the ophthalmic applications of adaptive optics, aberrations of the human eye are illustrated and the benefits of corrections by adaptive optics are explained. A couple of actuator types of the phase corrector that can be used in vision science are introduced and discussed their suitability for the purpose. The requirements to be an ideal deformable mirror for ocular adaptive optics are presented. The characteristics of bimorph deformable mirrors originally developed for laser communications are investigated in an effort to understand their suitability for ophthalmological adaptive optics applications. A Phase shifting interferometer setup is developed for optical characterization and fundamental theory of interferogram analysis is described along with wavefront reconstruction. The theoretical analysis of the bimorph deformable mirror begins with developing an analytical model of the laminated structure. The finite element models are also developed using COMSOL Multiphysics. Using the FEM results, the performance of deformable mirrors under various structure dimensions and operating conditions is analyzed for optimization. A basic theory of piezoelectricity is explained, followed by introduction of applications to MEMS devices. The material properties of single crystal PMN-PT adopted in this research are described and characterized. The fabrication process of the optimized deformable mirror is presented and advanced techniques used in the process are described in detail. The fabricated deformable mirrors are characterized and the comparison with FEM is described. Finally, the dissertation ends up with suggestions for further developments and tests for the mirror.

  6. From nature to MEMS: towards the detection-limit of crickets' hair sensors

    NASA Astrophysics Data System (ADS)

    Dagamseh, A. M. K.

    2013-05-01

    Crickets use highly sensitive mechanoreceptor hairs to detect approaching spiders. The high sensitivity of these hairs enables perceiving tiny air-movements which are only just distinguishable from noise. This forms our source of inspiration to design sensitive arrays made of artificial hair sensors for flow pattern observation i.e. Flow camera. The realization of such high-sensitive hair sensor requires designs with low thermo-mechanical noise to match the detection-limit of crickets' hairs. Here we investigate the damping factor in our artificial hair-sensor using different models as it is the source of the thermo-mechanical noise in MEMS structures. The results show that the damping factor estimated in air is in the range of 10-12 N.m/rad.s-1 which translates into a 52 μm/s threshold flow velocity.

  7. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    PubMed

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  8. A MEMS AlN transducer array with flexible interconnections for use as a cochlear implant

    NASA Astrophysics Data System (ADS)

    Knisely, Katherine; Zhao, Chuming; Grosh, Karl

    2015-12-01

    A completely implantable artificial organ of Corti (CIAO) was fabricated using batch MEMS processing techniques. A silicon backbone supports five piezoelectric cantilevers, each of which is designed to have an in vivo resonance corresponding to its tonotopic location in the guinea pig ST (20-40 kHz). An attachable polymer ribbon cable extends 4cm from the probe to an electrode bay, where electrical connections to each cantilever are accessed. The actuation responses of the fabricated devices were measured using laser vibrometry confirming the fluid-loaded resonance conforming to the straight section of the first turn of the guinea pig cochlea. First generation devices have been fabricated and the actuated resonances were measured to range from 80.3-134.2kHz in air and 24.3-41.0 kHz in water.

  9. Dual Q-switched laser outputs from a single lasing medium using an intracavity MEMS micromirror array.

    PubMed

    Bauer, Ralf; Lubeigt, Walter; Uttamchandani, Deepak

    2012-09-01

    An intracavity array of individually controlled microelectromechanical system scanning micromirrors was used to actively Q-switch a single side-pumped Nd:YAG gain medium. Two equal power independent laser outputs were simultaneously obtained by separate actuation of two adjacent micromirrors with a combined average output power of 125 mW. Pulse durations of 28 ns FWHM at 8.7 kHz repetition frequency and 34 ns FWHM at 7.9 kHz repetition frequency were observed for the two output beams with beam quality factors M2 of 1.2 and 1.1 and peak powers of 253 W and 232 W, respectively.

  10. A learnable parallel processing architecture towards unity of memory and computing

    NASA Astrophysics Data System (ADS)

    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.

    2015-08-01

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  11. Investigation of Structures of Microwave Microelectromechanical-System Switches by Taguchi Method

    NASA Astrophysics Data System (ADS)

    Lai, Yeong-Lin; Lin, Chien-Hung

    2007-10-01

    The optimal design of microwave microelectromechanical-system (MEMS) switches by the Taguchi method is presented. The structures of the switches are analyzed and optimized in terms of the effective stiffness constant, the maximum von Mises stress, and the natural frequency in order to improve the reliability and the performance of the MEMS switches. There are four factors, each of which has three levels in the Taguchi method for the MEMS switches. An L9(34) orthogonal array is used for the matrix experiments. The characteristics of the experiments are studied by the finite-element method and the analytical method. The responses of the signal-to-noise (S/N) ratios of the characteristics of the switches are investigated. The statistical analysis of variance (ANOVA) is used to interpret the experimental results and decide the significant factors. The final optimum setting, A1B3C1D2, predicts that the effective stiffness constant is 1.06 N/m, the maximum von Mises stress is 76.9 MPa, and the natural frequency is 29.331 kHz. The corresponding switching time is 34 μs, and the pull-down voltage is 9.8 V.

  12. Meissner-levitated micro-systems

    NASA Astrophysics Data System (ADS)

    Coombs, T. A.; Samad, I.; Hong, Z.; Eves, D.; Rastogi, A.

    2006-06-01

    Advanced silicon processing techniques developed for the Very Large Scale Integration (VLSI) industry have been exploited in recent years to enable the production of micro-fabricated moving mechanical systems known as Micro Electro Mechanical Systems (MEMS). These devices offer advantages in terms of cost, scalability and robustness over their preceding equivalents. Cambridge University have worked for many years on the investigation of high temperature superconductors (HTS) in flywheel energy storage applications. This experience is now being used to research into superconducting Micro-Bearings for MEMS, whereby circular permanent magnet arrays are levitated and spun above a superconductor to produce bearings suitable for motors and other micron scale devices. The novelty in the device lies in the fact that the rotor is levitated into position by Meissner flux exclusion, whilst stability is provided by flux pinned within the body of the superconductor. This work includes: the investigation of the properties of various magnetic materials, their fabrication processes and their suitability for MEMS; finite element analysis to analyse the interaction between the magnetic materials and YBCO to determine the stiffness and height of levitation. Finally a micro-motor with the above principles is currently being fabricated within the group.

  13. Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zaitsev, Yuri; Velásquez-García, Luis Fernando; Teller, Seth J.; Livermore, Carol

    2014-12-01

    The design, fabrication, and characterization of a new type of tactile display for people with blindness or low vision is reported. Each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads. When the tactile elements are formed into a 2D array, information can be conveyed to the user by varying the pattern of vibrations in space and time. Analytical models and finite element analysis were used to design individual tactile elements, which were implemented with PZT actuators and both SU-8 and 3D-printed scissor amplifiers. The measured displacements of these 3 mm × 10 mm, MEMS-enabled tactile elements exceed 10 µm, in agreement with models, with measured forces exceeding 45 mN. The performance of the MEMS-enabled tactile elements is compared with the performance of larger, fully-macroscale tactile elements to demonstrate the scale dependence of the devices. The creation of a 28-element prototype is also reported, and the qualitative user experience with the individual tactile elements and displays is described.

  14. A learnable parallel processing architecture towards unity of memory and computing.

    PubMed

    Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J

    2015-08-14

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  15. EDITORIAL: Selected papers from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010) Selected papers from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010)

    NASA Astrophysics Data System (ADS)

    Reynaerts, Dominiek; Vullers, Ruud

    2011-10-01

    This special section of Journal of Micromechanics and Microengineering features papers selected from the 10th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010). The workshop was organized in Leuven, Belgium from 30 November to 3 December 2010 by Katholieke Universiteit Leuven and the imec/Holst Centre. This was a special PowerMEMS Workshop, for several reasons. First of all, we celebrated the 10th anniversary of the workshop: the first PowerMEMS meeting was organized in Sendai, Japan in 2000. None of the organizers or participants of this first meeting could have predicted the impact of the workshop over the next decade. The second reason was that, for the first time, the conference organization spanned two countries: Belgium and the Netherlands. Thanks to the advances in information technology, teams from Katholieke Universiteit Leuven (Belgium) and the imec/Holst Centre in Eindhoven (the Netherlands) have been able to work together seamlessly as one team. The objective of the PowerMEMS Workshop is to stimulate innovation in micro and nanotechnology for power generation and energy conversion applications. Its scope ranges from integrated microelectromechanical systems (MEMS) for power generation, dissipation, harvesting, and management, to novel nanostructures and materials for energy-related applications. True to the objective of the PowerMEMSWorkshop, the 2010 technical program covered a broad range of energy related research, ranging from the nanometer to the millimeter scale, discussed in 5 invited and 52 oral presentations, and 112 posters. This special section includes 14 papers covering vibration energy harvesters, thermal applications and micro power systems. Finally, we wish to express sincere appreciation to the members of the International Steering Committee, the Technical Program Committee and last but not least the Local Organizing Committee. This special issue was edited in collaboration with the staff of IOP Publishing. PowerMEMS 2010 contents Harvesting energy from airflow with a michromachined piezoelectric harvester inside a Helmholtz resonator S P Matova, R Elfrink, R J M Vullers and R van Schaijk Analysis and characterization of triangular electrode structures for electrostatic energy harvestingDaniel Hoffmann, Bernd Folkmer and Yiannos Manoli A smart and self-sufficient frequency tunable vibration energy harvesterC Eichhorn, R Tchagsim, N Wilhelm and P Woias Power output enhancement of a vibration-driven electret generator for wireless sensor applicationsTatsuakira Masaki, Kenji Sakurai, Toru Yokoyama, Masayo Ikuta, Hiroshi Sameshima, Masashi Doi, Tomonori Seki and Masatoshi Oba Harvesting traffic-induced vibrations for structural health monitoring of bridgesT V Galchev, J McCullagh, R L Peterson and K Najafi Dispenser-printed planar thick-film thermoelectric energy generatorsA Chen, D Madan, P K Wright and J W Evans Silicon nanowire arrays as thermoelectric material for a power microgeneratorD Dávila, A Tarancón, M Fernández-Regúlez, C Calaza, M Salleras, A San Paulo and L Fonseca A micro thermal switch with a stiffness-enhanced thermal isolation structureTakashiro Tsukamoto, Masayoshi Esashi and Shuji Tanaka A dielectric liquid contact thermal switch with electrowetting actuationA R McLanahan, C D Richards and R F Richards A self-regulating valve for single-phase liquid cooling of microelectronicsRadu Donose, Michaël De Volder, Jan Peirs and Dominiek Reynaerts A MEMS-enabled 3D zinc-air microbattery with improved discharge characteristics based on a multilayer metallic substructureA Armutlulu, Y Fang, S H Kim, C H Ji, S A Bidstrup Allen and M G Allen Design, fabrication and testing of an air-breathing micro direct methanol fuel cell with compound anode flow fieldLuwen Wang, Yufeng Zhang, Youran Zhao, Zijiang An, Zhiping Zhou and Xiaowei Liu A shadow-mask evaporated pyroMEMS igniterD A de Koninck, D Briand and N F de Rooij Aerodynamic journal bearing with a flexible, damped support operating at 7.2 million DNTobias Waumans, Jan Peirs, Farid Al-Bender and Dominiek Reynaerts Thermoelectric energy harvester on the heated human machineVladimir Leonov

  16. Liquid Metal Droplet and Micro Corrugated Diaphragm RF-MEMS for reconfigurable RF filters

    NASA Astrophysics Data System (ADS)

    Irshad, Wasim

    Widely Tunable RF Filters that are small, cost-effective and offer ultra low power consumption are extremely desirable. Indeed, such filters would allow drastic simplification of RF front-ends in countless applications from cell phones to satellites in space by replacing switched-array of static acoustic filters and YIG filters respectively. Switched array of acoustic filters are de facto means of channel selection in mobile applications such as cell phones. SAW and BAW filters satisfy most criteria needed by mobile applications such as low cost, size and power consumption. However, the trade-off is a significant loss of 3-4 dB in modern cell phone RF front-end. This leads to need for power-hungry amplifiers and short battery life. It is a necessary trade-off since there are no better alternatives. These devices are in mm scale and consume mW. YIG filters dominate applications where size or power is not a constraint but demand excellent RF performance like low loss and high tuning ratio. These devices are measured in inches and require several watts to operate. Clearly, a tunable RF filter technology that would combine the cost, size and power consumption benefits of acoustic filters with excellent RF performance of YIG filters would be extremely desirable and imminently useful. The objective of this dissertation is to develop such a technology based upon RF-MEMS Evanescent-mode cavity filter. Two highly novel RF-MEMS devices have been developed over the course of this PhD to address the unique MEMS needs of this technology. The first part of the dissertation is dedicated to introducing the fundamental concepts of tunable cavity resonators and filters. This includes the physics behind it, key performance metrics and what they depend on and requirements of the MEMS tuners. Initial gap control and MEMS attachment method are identified as potential hurdles towards achieving very high RF performance. Simple and elegant solutions to both these issues are discussed in detail and have proved pivotal to this work. The second part of the dissertation focuses on the Liquid Metal Droplet RF-MEMS. A novel tunable RF MEMS resonator that is based upon electrostatic control over the morphology of a liquid metal droplet (LMD) is conceived. We demonstrate an LMD evanescent-mode cavity resonator that simultaneously achieves wide analog tuning from 12 to 18 GHz with a measured quality factor of 1400-1840. A droplet of 250-mum diameter is utilized and the applied bias is limited to 100 V. This device operates on a principle called Electro-Wetting On Dielectric (EWOD). The liquid metal employed is a non-toxic eutectic alloy of Gallium, Indium and Tin known as Galinstan. This device also exploits interfacial surface energy and viscous body forces that dominate at nanoliter scale. We then apply our Liquid Metal Droplet (LMD) RF-MEMS architecture to demonstrate a continuously tunable electrostatic Ku-Band Filter. A 2-pole bandpass filter with measured insertion loss of less than 0.4dB and 3dB FBW of 3.4% is achieved using a Galinstan droplet of 250mum diameter and bias limited to 100V. We demonstrate that the LMD is insensitive to gravity by performing inversion and tilt experiments. In addition, we study its thermal tolerance by subjecting the LMD up to 150° C. The third part of the dissertation is dedicated to the Micro-Corrugated Diaphragm (MCD) RF-MEMS. We present an evanescent-mode cavity bandpass filter with state-of-the-art RF performance metrics like 4:1 tuning ratio from 5 to 20 GHz with less than 2dB insertion loss and 2-6% 3dB bandwidth. Micro-Corrugated Diaphragm (MCD) is a novel electrostatic MEMS design specifically engineered to provide large-scale analog deflections necessary for such continuous and wide tunable filtering with very high quality factor. We demonstrate a 1.25mm radius and 2mum thick Gold MCD which provides 30mum total deflection with nearly 60% analog range. We also present a detailed and systematic MCD design methodology for relevant applications. To further demonstrate MCD versatility, we implement a bandstop MCD filter that cascades nine separate resonators to achieve a 6-24 GHz continuous tuning. The disseration concludes with a Galinstan Magnetohydrodynamic (MHD) micropump and summary of my doctoral work. Although presented at the very end of this dissertation, the MHD micropump was indeed the very starting point for all my doctoral research efforts. The invaluable lessons learned here paved the way for development of both LMD and MCD RF-MEMS.

  17. Performance improvements of MOEMS-based diffractive arrays: address isolation and optical switching

    NASA Astrophysics Data System (ADS)

    Panaman, Ganesh; Madison, Seth; Sano, Michael; Castracane, James

    2005-01-01

    Micro-Opto-Electro-Mechanical Systems (MOEMS) have found a variety of applications in fields such as telecommunications, spectroscopy and display technology. MOEMS-based optical switching is currently under investigation for the increased flexibility that such devices provide for reconfiguration of the I/O network for inter-chip communication applications. This potential not only adds an additional degree of freedom for adjustment of transmitter/receiver links but also allows for fine alignment of individual channels in the network link. Further, this use of diffractive arrays for specific applications combines beam steering/adjustment capabilities with the inherent wavelength dependence of the diffractive approach for channel separation and de-multiplexing. Research and development has been concentrated on the progression from single MOEMS components to parallel arrays integrated with optical source arrays for a successful feasibility demonstration. Successful development of such an approach will have a major impact of the next generation communication protocols. This paper will focus on the current status of the MOEMS research program for Free Space Optical inter-chip communication at the College of NanoScale Science and Engineering, University at Albany-SUNY (CNSE). New versions of diffractive arrays stemming from the basic MEMS Compound Grating (MCG; patent #5,999,319) have been produced through various fabrication methods including the MUMPs process1. Most MEMS components relying on electrostatic actuation tend to require high actuation voltages (>20V) compared to the typical 5V levels prevalent in conventional integrated circuits. The specific goal is to yield improved performance while minimizing the power consumption of the components. Structural modifications through the variation in the ruling/electrode spacing distance and array wiring layout through individually addressable gratings have been studied to understand effects on the actuation voltage and cross talk, respectively. A detailed overview of the optical and mechanical properties will be included. Modeling results along with the mechanical and optical testing results have been detailed and compared with previously obtained results. Future work focuses on alternate material sets for a reduction in operational voltage, improvements in optical efficiency and technology demonstrators for verification of massively parallel I/O performance.

  18. Maximum Entropy Method applied to Real-time Time-Dependent Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Zempo, Yasunari; Toogoshi, Mitsuki; Kano, Satoru S.

    Maximum Entropy Method (MEM) is widely used for the analysis of a time-series data such as an earthquake, which has fairly long-periodicity but short observable data. We have examined MEM to apply to the optical analysis of the time-series data from the real-time TDDFT. In the analysis, usually Fourier Transform (FT) is used, and we have to pay our attention to the lower energy part such as the band gap, which requires the long time evolution. The computational cost naturally becomes quite expensive. Since MEM is based on the autocorrelation of the signal, in which the periodicity can be described as the difference of time-lags, its value in the lower energy naturally gets small compared to that in the higher energy. To improve the difficulty, our MEM has the two features: the raw data is repeated it many times and concatenated, which provides the lower energy resolution in high resolution; together with the repeated data, an appropriate phase for the target frequency is introduced to reduce the side effect of the artificial periodicity. We have compared our improved MEM and FT spectrum using small-to-medium size molecules. We can see the clear spectrum of MEM, compared to that of FT. Our new technique provides higher resolution in fewer steps, compared to that of FT. This work was partially supported by JSPS Grants-in-Aid for Scientific Research (C) Grant number 16K05047, Sumitomo Chemical, Co. Ltd., and Simulatio Corp.

  19. The iMoD display: considerations and challenges in fabricating MOEMS on large area glass substrates

    NASA Astrophysics Data System (ADS)

    Chui, Clarence; Floyd, Philip D.; Heald, David; Arbuckle, Brian; Lewis, Alan; Kothari, Manish; Cummings, Bill; Palmateer, Lauren; Bos, Jan; Chang, Daniel; Chiang, Jedi; Wang, Li-Ming; Pao, Edmon; Su, Fritz; Huang, Vincent; Lin, Wen-Jian; Tang, Wen-Chung; Yeh, Jia-Jiun; Chan, Chen-Chun; Shu, Fang-Ann; Ju, Yuh-Diing

    2007-01-01

    QUALCOMM has developed and transferred to manufacturing iMoD displays, a MEMS-based reflective display technology. The iMoD array architecture allows for development at wafer scale, yet easily scales up to enable fabrication on flat-panel display (FPD) lines. In this paper, we will describe the device operation, process flow and fabrication, technology transfer issues, and display performance.

  20. Uncooled infrared imaging using bimaterial microcantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan

    2006-01-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparablemore » to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.« less

  1. TREMOR: A wireless MEMS accelerograph for dense arrays

    USGS Publications Warehouse

    Evans, J.R.; Hamstra, R.H.; Kundig, C.; Camina, P.; Rogers, J.A.

    2005-01-01

    The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ??2 g, or 102 dB between ??4 g. It is linear to ???1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (???1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ???3 km - one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ???75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper. ?? 2005, Earthquake Engineering Research Institute.

  2. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate orientation that could improve the MEMS device performance. Potential application of these devices is as battery operated disposable drug delivery systems. This work will also investigate the fabrication of a flexural plate wave based microfluidic device using the PZT thin film of appropriate orientation that would enhance the device performance. (Abstract shortened by UMI.)

  3. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  4. Microstrip Antenna Arrays on Multilayer LCP Substrates

    NASA Technical Reports Server (NTRS)

    Thompson, Dane; Bairavasubramanian, Ramanan; Wang, Guoan; Kingsley, Nickolas D.; Papapolymerou, Ioannis; Tenteris, Emmanouil M.; DeJean, Gerald; Li, RonglLin

    2007-01-01

    A research and development effort now underway is directed toward satisfying requirements for a new type of relatively inexpensive, lightweight, microwave antenna array and associated circuitry packaged in a thin, flexible sheet that can readily be mounted on a curved or flat rigid or semi-rigid surface. A representative package of this type consists of microwave antenna circuitry embedded in and/or on a multilayer liquid- crystal polymer (LCP) substrate. The circuitry typically includes an array of printed metal microstrip patch antenna elements and their feedlines on one or more of the LCP layer(s). The circuitry can also include such components as electrostatically actuated microelectromechanical systems (MEMS) switches for connecting and disconnecting antenna elements and feedlines. In addition, the circuitry can include switchable phase shifters described below. LCPs were chosen over other flexible substrate materials because they have properties that are especially attractive for high-performance microwave applications. These properties include low permittivity, low loss tangent, low water-absorption coefficient, and low cost. By means of heat treatments, their coefficients of thermal expansion can be tailored to make them more amenable to integration into packages that include other materials. The nature of the flexibility of LCPs is such that large LCP sheets containing antenna arrays can be rolled up, then later easily unrolled and deployed. Figure 1 depicts a prototype three- LCP-layer package containing two four-element, dual-polarization microstrip-patch arrays: one for a frequency of 14 GHz, the other for a frequency of 35 GHz. The 35-GHz patches are embedded on top surface of the middle [15-mil (approx.0.13-mm)-thick] LCP layer; the 14- GHz patches are placed on the top surface of the upper [9-mil (approx. 0.23-mm)-thick] LCP layer. The particular choice of LCP layer thicknesses was made on the basis of extensive analysis of the effects of the thicknesses on cross-polarization levels, bandwidth, and efficiency at each frequency.

  5. MEMS-based Optic Fiber Fabry-Perot Sensor for Underwater Acoustic Measurement with A Wavelength-switched System

    NASA Astrophysics Data System (ADS)

    Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.

    2017-12-01

    In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.

  6. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  7. A Novel Silicone-Magnetite Composite Material Used in the Fabrication of Biomimetic Cilia

    NASA Astrophysics Data System (ADS)

    Carstens, B. L.; Evans, B. A.; Shields, A. R.; Su, J.; Washburn, S.; Falvo, M. R.; Superfine, R.

    2008-10-01

    We have developed a novel polymer-magnetite composite that we use to fabricate arrays of magnetically actuable biomimetic cilia. Biomimetic cilia are flexible nanorods 750 nm in diameter and 25 microns tall. They generate fluid flows similar to those produced by biological cilia. Polymer-magnetic nanoparticle materials such as ours are becoming increasingly useful in biomedical applications and microelectromechanical systems (MEMS). Comprised of magnetite (Fe3O4), the nanoparticles have a diameter of 5-7 nm and are complexed with a silicone copolymer and crosslinked into a flexible, magnetic solid. Amine groups make up 6-7 percent of the silicone copolymer, providing a simple means of functionalization. We present a detailed mechanical and magnetic analysis of our bulk crosslinked material. The high-aspect ratio biomimetic cilia we create with this magnetite-copolymer complex may have applications in microfluidic mixing, biofouling, and MEMS.

  8. Ultra-thin alumina and silicon nitride MEMS fabricated membranes for the electron multiplication

    NASA Astrophysics Data System (ADS)

    Prodanović, V.; Chan, H. W.; Graaf, H. V. D.; Sarro, P. M.

    2018-04-01

    In this paper we demonstrate the fabrication of large arrays of ultrathin freestanding membranes (tynodes) for application in a timed photon counter (TiPC), a novel photomultiplier for single electron detection. Low pressure chemical vapour deposited silicon nitride (Si x N y ) and atomic layer deposited alumina (Al2O3) with thicknesses down to only 5 nm are employed for the membrane fabrication. Detailed characterization of structural, mechanical and chemical properties of the utilized films is carried out for different process conditions and thicknesses. Furthermore, the performance of the tynodes is investigated in terms of secondary electron emission, a fundamental attribute that determines their applicability in TiPC. Studied features and presented fabrication methods may be of interest for other MEMS application of alumina and silicon nitride as well, in particular where strong ultra-thin membranes are required.

  9. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  10. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    NASA Astrophysics Data System (ADS)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  11. NASA Tech Briefs, January 2007

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Topics covered include: Flexible Skins Containing Integrated Sensors and Circuitry; Artificial Hair Cells for Sensing Flows; Video Guidance Sensor and Time-of-Flight Rangefinder; Optical Beam-Shear Sensors; Multiple-Agent Air/Ground Autonomous Exploration Systems; A 640 512-Pixel Portable Long-Wavelength Infrared Camera; An Array of Optical Receivers for Deep-Space Communications; Microstrip Antenna Arrays on Multilayer LCP Substrates; Applications for Subvocal Speech; Multiloop Rapid-Rise/Rapid Fall High-Voltage Power Supply; The PICWidget; Fusing Symbolic and Numerical Diagnostic Computations; Probabilistic Reasoning for Robustness in Automated Planning; Short-Term Forecasting of Radiation Belt and Ring Current; JMS Proxy and C/C++ Client SDK; XML Flight/Ground Data Dictionary Management; Cross-Compiler for Modeling Space-Flight Systems; Composite Elastic Skins for Shape-Changing Structures; Glass/Ceramic Composites for Sealing Solid Oxide Fuel Cells; Aligning Optical Fibers by Means of Actuated MEMS Wedges; Manufacturing Large Membrane Mirrors at Low Cost; Double-Vacuum-Bag Process for Making Resin- Matrix Composites; Surface Bacterial-Spore Assay Using Tb3+/DPA Luminescence; Simplified Microarray Technique for Identifying mRNA in Rare Samples; High-Resolution, Wide-Field-of-View Scanning Telescope; Multispectral Imager With Improved Filter Wheel and Optics; Integral Radiator and Storage Tank; Compensation for Phase Anisotropy of a Metal Reflector; Optical Characterization of Molecular Contaminant Films; Integrated Hardware and Software for No-Loss Computing; Decision-Tree Formulation With Order-1 Lateral Execution; GIS Methodology for Planning Planetary-Rover Operations; Optimal Calibration of the Spitzer Space Telescope; Automated Detection of Events of Scientific Interest; Representation-Independent Iteration of Sparse Data Arrays; Mission Operations of the Mars Exploration Rovers; and More About Software for No-Loss Computing.

  12. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  13. MEMS Microshutter Array System for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; hide

    2008-01-01

    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range between 35K and 300K. Through intensive numerical simulations and experimental studies, an optically opaque and electrically conductive metal-nitride thin film was selected as a coating material deposited on the shutters with the best thermal-expansion match to silicon nitride - the shutter blade thin film material. A shutter image shown in Figure 6 was taken at room temperature, presenting shutters slightly bowing down as expected. Shutters become flat when the temperature decreases to 35K. The MSAs are then bonded to silicon substrates that are fabricated out of 6" single-silicon wafers in the thickness of 2mm. The bonding is conducted using a novel single-sided indium flip-chip bonding technology. Indium bumps fabricated on a substrate are shown in Figure 7. There are 180,000 indium bumps for bonding a flight format MSA array to its substrate. Besides a MSA, each substrate houses five customer-designed ASIC (Application Specific Integrated Circuit) multiplexer/address chips for 2-dimensional addressing, twenty capacitors, two temperature sensors, numbers of resistors and all necessary interconnects, as shown in Figure 8. Complete MSA quadrant assemblies have been successfully manufactured and fully functionally tested. The assemblies have passed a series of critical reviews required by JWST in satisfying all the design specifications. The qualification tests cover programmable 2-D addressing, life tests, optical contrast tests, and environmental tests including radiation, vibration, and acoustic tests. A 2-D addressing pattern with 'ESA' letters programmed in a MSA is shown in Figure 9. The MSAs passed 1 million cycle life tests and achieved high optical contrast over 10,000. MSA teams are now making progress in final fabrication, testing and assembly (Figure 10). The delivery of flight-format MSA system is scheduled at the end of 2008 for being integrated to the focal plane of the NIRSpec detectors.

  14. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  15. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.

  16. A novel dual gating approach using joint inertial sensors: implications for cardiac PET imaging

    NASA Astrophysics Data System (ADS)

    Jafari Tadi, Mojtaba; Teuho, Jarmo; Lehtonen, Eero; Saraste, Antti; Pänkäälä, Mikko; Koivisto, Tero; Teräs, Mika

    2017-10-01

    Positron emission tomography (PET) is a non-invasive imaging technique which may be considered as the state of art for the examination of cardiac inflammation due to atherosclerosis. A fundamental limitation of PET is that cardiac and respiratory motions reduce the quality of the achieved images. Current approaches for motion compensation involve gating the PET data based on the timing of quiescent periods of cardiac and respiratory cycles. In this study, we present a novel gating method called microelectromechanical (MEMS) dual gating which relies on joint non-electrical sensors, i.e. tri-axial accelerometer and gyroscope. This approach can be used for optimized selection of quiescent phases of cardiac and respiratory cycles. Cardiomechanical activity according to echocardiography observations was investigated to confirm whether this dual sensor solution can provide accurate trigger timings for cardiac gating. Additionally, longitudinal chest motions originating from breathing were measured by accelerometric- and gyroscopic-derived respiratory (ADR and GDR) tracking. The ADR and GDR signals were evaluated against Varian real-time position management (RPM) signals in terms of amplitude and phase. Accordingly, high linear correlation and agreement were achieved between the reference electrocardiography, RPM, and measured MEMS signals. We also performed a Ge-68 phantom study to evaluate possible metal artifacts caused by the integrated read-out electronics including mechanical sensors and semiconductors. The reconstructed phantom images did not reveal any image artifacts. Thus, it was concluded that MEMS-driven dual gating can be used in PET studies without an effect on the quantitative or visual accuracy of the PET images. Finally, the applicability of MEMS dual gating for cardiac PET imaging was investigated with two atherosclerosis patients. Dual gated PET images were successfully reconstructed using only MEMS signals and both qualitative and quantitative assessments revealed encouraging results that warrant further investigation of this method.

  17. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection

    NASA Astrophysics Data System (ADS)

    Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.

    2010-04-01

    In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

  18. MEMS device for mass market gas and chemical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air in the house. Internet grocery delivery services could check for spoiled foods in their clients' refrigerators. City emissions regulators could monitor the various emissions sources throughout the area from their desk to predict how many pollution vouchers they will need to trade in the next week. We describe a new component architecture for mass-market sensors based on silicon microelectromechanical systems (MEMS) technology. MEMS are micrometer-scale devices that can be fabricated as discrete devices or large arrays, using the technology of integrated circuit manufacturing. These new photonic bandgap and MEMS fabricataion technologies will simplify the component technology to provide high-quality gas and chemical sensors at consumer prices.

  19. Noise, fluctuation, and HADAMARD-transform spectrometry

    NASA Astrophysics Data System (ADS)

    Nitzsche, Guenter; Riesenberg, Rainer

    2003-05-01

    The HADAMARD principle is known in optics as a multiplex technique. It describes the mode with the most advantageous increase of the signal-to-noise ratio (SNR) in terms of scanning (Fellget advantage). The maximum increase of SNR, we call it gain, is (n+1)/(2On), where n is the number of multiplexing. It is valid in the case of pure detector noise. The multiplex encoding Hadamard pattern in case of n = 7 is 1110100, whereby 1 stands for a switched on channel performed by a field selector. The signals of all (switched on) channels are detected by a single detector. n measurement steps with a cyclic change of the pattern is necessary to perform the Hadamard transformation and to get the result of each individual channel. In case of n = 7 the theoretical gain is 1.51. For all possible multiplex pattern (1100000, 1110000 and so on) the gain is theoretically investigated. A multiplexing advantage (gain > 1) is reached only by the Hadamard pattern, the inverse Hadamard pattern and for (0111111)-pattern (gain=1.08). Most of the multiplex pattern are disadvantageous. The reason for maximum gain of the HADAMARD transformation is analysed theoretically. Signal fluctuations during the measurement caused by fluctuations of the illumination or by the object under test, reduce the multiplex gain, too. So the limits for realizing a gain are estimated theoretically. Essential is the transformation procedure and its influence on the error propagation. The results could be verified by experiments with array spectrometeres. Requirements are derived by numerical simulation concerning the stability of the signals to be multiplexed. It is simulated the needed stability of the signals with increasing order of multiplexing. So the increase of the multiplex gain is limited by signal fluctuations. A realized 96 channel spectral reader is presented as a modern application of an optical multiplexing arrangement. ! M. Harvid, N. J. A. Sloane, Hadamard Transform Optics, Academic Press, 1979 ! R.A. De Verse, R.M. Hammaker, W. G. Fately, J.A.Graham, J.D.Tate, "Spectrometry and imaging using a digital micromirror array" American Laboratory, Vol. 30, 21, pp. 112-120, 1998 ! R. Riesenberg, A. Wuttig, B. Harnisch, "Optical MEMS Technology for Multiplexing in High-End Micro-Scpectrometers", Proc. SPIE 4928, 6-14, 2002 ! A. Wuttig, R. Riesenberg, "Hyperspectral imager with a facile MEMS", Proc. SPIE 4881A, 2002, to be published ! R. Riesenberg, G. Nitzsche, W. Voigt, 'HADAMARD Encoding and other optical Multiplexing', VDI-Berichte 1694, pp. 345-350, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Subpixel Analysis of Double Array Grating Spectrometer", Proc. SPIE 4480, pp. 334-344, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Integral Field and Multi Object Spectrometry with MEMS", Proc. SPIE 4480, pp. 367-376, 2002 ! R. Riesenberg, G. Nitzsche, A. Wuttig, B. Harnisch, "Micro Spectrometer and MEMS for Space" in "Smaller Satellites: Bigger Business?", edited by M. Rycroft, N. Crosby, Kluwer Academic Publisher, pp. 403-406, 2002 ! R. Riesenberg, A. Wuttig, "Optical sensors with MEMS, slit masks and micromechanical devices", Proc. SPIE 4561, pp. 315-322, 2001 ! R. Riesenberg, "MicroMechanical Slit Positioning System as a transmissive spatial Light Modulator", Proc. SPIE 4457, pp.197-203, 2001 ! R. Riesenberg, J. Lonschinski, "HADAMARD-Minispectrometer made by a Micro Device", Proc. "3rd Round Table on Micro/NanoTechnologies for Space", ESTEC, Noordwijk, The Netherlands, pp. 291 - 297, 2000 ! R. Riesenberg, U. Dillner, "HADAMARD Imaging Spectrometers", Proc. SPIE 3753, pp. 203-213, 1999 ! R. Riesenberg, Th. Seifert, "Design of spatial Light Modulator Microdevices - Micro Slit Arrays", Proc. SPIE 3680, Part One, pp. 406-414, 1999 ! R. Riesenberg, W. Voigt, J. Schoneich, "Compact Spectrometers made by Micro System Technology", Sensor 97, Proc. Vol. 2, pp. 145-150,1997

  20. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

  1. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  2. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  3. Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration

    2016-09-01

    Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.

  4. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  5. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  6. Radiation Test Results for a MEMS Microshutter Operating at 60 K

    NASA Technical Reports Server (NTRS)

    Rapchun, David A.; Buchner, Stephen; Moseley, Harvey; Meyer, Stephen E.; Ray, Knute; Tuttle, Jim; Quinn, Ed; Buchanan, Ernie; Bloom, Dave; Hait, Tom; hide

    2007-01-01

    The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si).

  7. MEMS-tunable dielectric metasurface lens.

    PubMed

    Arbabi, Ehsan; Arbabi, Amir; Kamali, Seyedeh Mahsa; Horie, Yu; Faraji-Dana, MohammadSadegh; Faraon, Andrei

    2018-02-23

    Varifocal lenses, conventionally implemented by changing the axial distance between multiple optical elements, have a wide range of applications in imaging and optical beam scanning. The use of conventional bulky refractive elements makes these varifocal lenses large, slow, and limits their tunability. Metasurfaces, a new category of lithographically defined diffractive devices, enable thin and lightweight optical elements with precisely engineered phase profiles. Here we demonstrate tunable metasurface doublets, based on microelectromechanical systems (MEMS), with more than 60 diopters (about 4%) change in the optical power upon a 1-μm movement of one metasurface, and a scanning frequency that can potentially reach a few kHz. They can also be integrated with a third metasurface to make compact microscopes (~1 mm thick) with a large corrected field of view (~500 μm or 40 degrees) and fast axial scanning for 3D imaging. This paves the way towards MEMS-integrated metasurfaces as a platform for tunable and reconfigurable optics.

  8. Investigation of improved designs for rotational micromirrors using multiuser MEMS processes

    NASA Astrophysics Data System (ADS)

    Lin, Julianna E.; Michael, Feras S. J.; Kirk, Andrew G.

    2001-04-01

    In recent years, the design of rotational micromirrors for use in optical cross connects has received much attention. Although several companies have already produced and marketed a number of torsional mirror devices, more work is still needed to determine how these mirrors can be integrated into optical systems to form compact optical switches. However, recently several commercial MEMS foundry services have become available. Thus, due to the low cost of these prototyping services, new devices can be fabricated in short amounts of time and the designs adapted to meet the needs of different applications. The purpose of this work is to investigate the fabrication of new micromirror designs using the Multi-User MEMS Processes (MUMPs) foundry service available from Cronos Integrated Microsystems, located in North Carolina, USA). Several sets of mirror designs were submitted for fabrication and the resulting structures characterized using a phase-shifting Mirau interferometer. The results of these devices are presented.

  9. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  10. Single Crystal DMs for Space-Based Observatories

    NASA Astrophysics Data System (ADS)

    Bierden, Paul

    We propose to demonstrate the feasibility of a new manufacturing process for large aperture, high-actuator count microelectromechanical deformable mirrors (MEMS-DMs). These DMs are designed to fill a critical technology gap in NASA s plan for high- contrast space-based exoplanet observatories. We will manufacture a prototype DM with a continuous mirror facesheet, having an active aperture of 50mm diameter, supported by 2040 electrostatic actuators (50 across the diameter of the active aperture), spaced at a pitch of 1mm. The DM will be manufactured using silicon microfabrication tools. The strategic motivation for the proposed project is to advance MEMS DMs as an enabling technology in NASA s rapidly emerging program for extrasolar planet exploration. That goal is supported by an Astro2010 white paper on Technologies for Direct Optical Imaging of Exoplanets, which concluded that DMs are a critical component for all proposed internal coronagraph instrument concepts. That white paper pointed to great strides made by DM developers in the past decade, and acknowledged the components made by Boston Micromachines Corporation to be the most notable MEMS-based technology option. The principal manufacturing innovation in this project will be assembly of the DM through fusion bonding of three separate single crystal silicon wafers comprising the device s substrate, actuator array, and facesheet. The most significant challenge of this project will be to develop processes that allow reliable fusion bonds between multiple compliant silicon layers while yielding an optically flat surface and a robust electromechanical system. The compliance of the DM, which is required for its electromechanical function, will make it challenging to achieve the intimate, planar contact that is generally needed for success in fusion bonding. The manufacturing approach will use photolithography and reactive ion etching to pattern structural layers. Three wafer-scale devices will be patterned and etched independently: one for the substrate and fixed electrode layer, one for the actuator layer, and one for the mirror layer. Subsequently, each of these wafers will be bonded through a thermal fusion process to the others. In an innovative new processing technique, we will employ sacrificial oxide pillars to add temporary support to the otherwise compliant device structures. These pillars will be dissolved after assembly. The result will be a stress-free, single crystal silicon device with broadly expanded design space for geometric parameters such as actuator pitch, mirror diameter, array size, and actuator gap. Consequently, this approach will allow us to make devices with characteristics that are needed for some important NASA applications in space-based coronography, especially where larger array sizes, greater actuator pitch, and better optical surface quality are needed. The significance of this work is that it will provide a technology platform that meets or exceeds the superb optical performance that has been demonstrated in conventional pizezoelectrically actuated DMs, while retaining the advantages in cost, repeatability, and thermal insensitivity that have been demonstrated in the newer generation of MEMS electrostatically actuated DMs. The shift to bonded single-crystal structures will eliminate the single biggest drawback in previously reported NASA-fielded MEMS DM technology: device susceptibility to stress-induced scalloping and print through artifacts resulting from polycrystalline thin film surface micromachining. With single crystal structures bonded at atomic scales, uncorrected surface topography can be controlled to subnanometer levels, enabling the advancement of NASA s next-generation space-based coronagraphs.

  11. Design, fabrication, and evaluation of on-chip micro-supercapacitors

    NASA Astrophysics Data System (ADS)

    Beidaghi, Majid

    Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.

  12. Multisensor Arrays for Greater Reliability and Accuracy

    NASA Technical Reports Server (NTRS)

    Immer, Christopher; Eckhoff, Anthony; Lane, John; Perotti, Jose; Randazzo, John; Blalock, Norman; Ree, Jeff

    2004-01-01

    Arrays of multiple, nominally identical sensors with sensor-output-processing electronic hardware and software are being developed in order to obtain accuracy, reliability, and lifetime greater than those of single sensors. The conceptual basis of this development lies in the statistical behavior of multiple sensors and a multisensor-array (MSA) algorithm that exploits that behavior. In addition, advances in microelectromechanical systems (MEMS) and integrated circuits are exploited. A typical sensor unit according to this concept includes multiple MEMS sensors and sensor-readout circuitry fabricated together on a single chip and packaged compactly with a microprocessor that performs several functions, including execution of the MSA algorithm. In the MSA algorithm, the readings from all the sensors in an array at a given instant of time are compared and the reliability of each sensor is quantified. This comparison of readings and quantification of reliabilities involves the calculation of the ratio between every sensor reading and every other sensor reading, plus calculation of the sum of all such ratios. Then one output reading for the given instant of time is computed as a weighted average of the readings of all the sensors. In this computation, the weight for each sensor is the aforementioned value used to quantify its reliability. In an optional variant of the MSA algorithm that can be implemented easily, a running sum of the reliability value for each sensor at previous time steps as well as at the present time step is used as the weight of the sensor in calculating the weighted average at the present time step. In this variant, the weight of a sensor that continually fails gradually decreases, so that eventually, its influence over the output reading becomes minimal: In effect, the sensor system "learns" which sensors to trust and which not to trust. The MSA algorithm incorporates a criterion for deciding whether there remain enough sensor readings that approximate each other sufficiently closely to constitute a majority for the purpose of quantifying reliability. This criterion is, simply, that if there do not exist at least three sensors having weights greater than a prescribed minimum acceptable value, then the array as a whole is deemed to have failed.

  13. Building the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2012-01-01

    The James Webb Space Telescope is the scientific successor to the Hubble and Spitzer Space Telescopes. It will be a large (6.6m) cold (50K) telescope launched into orbit around the second Earth-Sun Lagrange point. It is a partnership of NASA with the European and Canadian Space Agencies. JWST will make progress In almost every area of astronomy, from the first galaxies to form in the early universe to exoplanets and Solar System objects. Webb will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Near-Infrared Imager and Slitless Spectrograph will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. The observatory Is confirmed for launch in 2018; the design is complete and it is in its construction phase. Innovations that make JWST possible include large-area low-noise infrared detectors, cryogenic ASICs, a MEMS micro-shutter array providing multi-object spectroscopy, a non-redundant mask for interferometric coronagraphy and diffraction-limited segmented beryllium mirrors with active wavefront sensing and control. Recent progress includes the completion of the mirrors, the delivery of the first flight instruments and the start of the integration and test phase.

  14. Evaluation of the optical switching characteristics of erbium-doped fibres for the development of a fibre Bragg grating sensor interrogator

    NASA Astrophysics Data System (ADS)

    Rigas, Evangelos; Correia, R.; Stathopoulos, N. A.; Savaidis, S. P.; James, S. W.; Bhattacharyya, D.; Kirby, P. B.; Tatam, R. P.

    2014-05-01

    A polling topology that employs optical switching based on the properties of erbium-doped fibres (EDFs) is used to interrogate an array of FBGs. The properties of the EDF are investigated in its pumped and un-pumped states and the EDFs' switching properties are evaluated by comparing them with a high performance electronically controlled MEM optical switch. Potential advantages of the proposed technique are discussed.

  15. Near-infrared Compressive Line Sensing Imaging System using Individually Addressable Laser Diode Array

    DTIC Science & Technology

    2015-05-11

    Micromirror Device (DMD) is a microelectromechanical (MEMS) device. A DMD consists of millions of electrostatically actuated micro- mirrors (or pixels...digital micromirror device) were analyzed. We discussed the effort of developing such a prototype by Proc. of SPIE Vol. 9484 94840I-11 Downloaded...to Digital Micromirror Device (DMD) Technology”, (n.d.) Retrieved May 1, 2011, from http://www.ti.com/lit/an/dlpa008a/dlpa008a.pdf. [16

  16. Contact material optimization and contact physics in metal-contact microelectromechanical systems (MEMS) switches

    NASA Astrophysics Data System (ADS)

    Yang, Zhenyin

    Metal-contact MEMS switches hold great promise for implementing agile radio frequency (RF) systems because of their small size, low fabrication cost, low power consumption, wide operational band, excellent isolation and exceptionally low signal insertion loss. Gold is often utilized as a contact material for metal-contact MEMS switches due to its excellent electrical conductivity and corrosion resistance. However contact wear and stiction are the two major failure modes for these switches due to its material softness and high surface adhesion energy. To strengthen the contact material, pure gold was alloyed with other metal elements. We designed and constructed a new micro-contacting test facility that closely mimic the typical MEMS operation and utilized this facility to efficiently evaluate optimized contact materials. Au-Ni binary alloy system as the candidate contact material for MEMS switches was systematically investigated. A correlation between contact material properties (etc. microstructure, micro-hardness, electrical resistivity, topology, surface structures and composition) and micro-contacting performance was established. It was demonstrated nano-scale graded two-phase Au-Ni film could possibly yield an improved device performance. Gold micro-contact degradation mechanisms were also systematically investigated by running the MEMS switching tests under a wide range of test conditions. According to our quantitative failure analysis, field evaporation could be the dominant failure mode for highfield (> critical threshold field) hot switching; transient thermal-assisted wear could be the dominant failure mode for low-field hot switching; on the other hand, pure mechanical wear and steady current heating (1 mA) caused much less contact degradation in cold switching tests. Results from low-force (50 muN/micro-contact), low current (0.1 mA) tests on real MEMS switches indicated that continuous adsorbed films from ambient air could degrade the switch contact resistance. Our work also contributes to the field of general nano-science and technology by resolving the transfer directionality of field evaporation of gold in atomic force microscope (AFM)/scanning tunneling microscope (STM).

  17. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

  18. The Microcode for the Control Processor of the ARO (Array Oriented Processor) Array Processor.

    DTIC Science & Technology

    1983-08-01

    oiNi .TADDR=DBASE+MODE" 4CONT ŕWAfT’ FOR MEM, MORE", MOV) ,DRO BSX "S IGN EXT, MORE" SADD D FLDSEI,(6,3),IMN TADT)R=5+ 1 JMP I NDE-’XEI) "JU> IP ’ T1...JDTV1: YIP DIVI; TDIV2: Y,’ IP DIV2; JASHII: JMP ASHI; 4 JASH2: JMP AS112; JXOR1: YIP XDRI; JXOR2: YIP XOR2; JSOB: JMP SOB; JBPL: JMP BPL; JBMI: YIP BMI;0...JBHI: JMP BHill JBLOS: J! IP BLOS; JBVC: YIP BVC; JBWS: JMP BVS; JBCC: JMP BCC; JBCS: YIP BCS; JEMT: YIP EMT; JTRAP: YIP TRAPQ; JCLR6: YIP CLR6; JCOII

  19. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Microfabricated bulk wave acoustic bandgap device

    DOEpatents

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  1. Development of Ultra-Low Power Metal Oxide Sensors and Arrays for Embedded Applications

    NASA Astrophysics Data System (ADS)

    Lutz, Brent; Wind, Rikard; Kostelecky, Clayton; Routkevitch, Dmitri; Deininger, Debra

    2011-09-01

    Metal oxide semiconductor sensors are widely used as individual sensors and in arrays, and a variety of designs for low power microhotplates have been demonstrated.1 Synkera Technologies has developed an embeddable chemical microsensor platform, based on a unique ceramic MEMS technology, for practical implementation in cell phones and other mobile electronic devices. Key features of this microsensor platform are (1) small size, (2) ultra-low power consumption, (3) high chemical sensitivity, (4) accurate response to a wide-range of threats, and (5) low cost. The sensor platform is enabled by a combination of advances in ceramic micromachining, and precision deposition of sensing films inside the high aspect ratio pores of anodic aluminum oxide (AAO).

  2. Flip-chip fabrication of integrated micromirror arrays using a novel latching off-chip hinge mechanism

    NASA Astrophysics Data System (ADS)

    Michalicek, M. Adrian; Bright, Victor M.

    2001-10-01

    This paper presents the design, fabrication, modeling, and testing of various arrays of cantilever micromirror devices integrated atop CMOS control electronics. The upper layers of the arrays are prefabricated in the MUMPs process and then flip-chip transferred to CMOS receiving modules using a novel latching off-chip hinge mechanism. This mechanism allows the micromirror arrays to be released, rotated off the edge of the host module and then bonded to the receiving module using a standard probe station. The hinge mechanism supports the arrays by tethers that are severed to free the arrays once bonded. The resulting devices are inherently planarized since the bottom of the first releasable MUMPs layer becomes the surface of the integrated mirror. The working devices are formed by mirror surfaces bonded to address electrodes fabricated above static memory cells on the CMOS module. These arrays demonstrate highly desirable features such as compatible address potentials, less than 2 nm of RMS roughness, approximately 1 micrometers of lateral position accuracy and the unique ability to metallize reflective surfaces without masking. Ultimately, the off-chip hinge mechanism enables very low-cost, simple, reliable, repeatable and accurate assembly of advanced MEMS and integrated microsystems without specialized equipment or complex procedures.

  3. From Vision to Reality: 50 Years of Phased Array Development

    DTIC Science & Technology

    2016-09-30

    This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to

  4. Amorphous Diamond for MEMS

    NASA Astrophysics Data System (ADS)

    Sullivan, J. P.

    2002-03-01

    Pure carbon films can exhibit surprising complexity in structure and properties. Amorphous diamond (tetrahedrally-coordinated amorphous carbon) is an amorphous quasi-two phase mixture of four-fold and three-fold coordinated carbon which is produced by pulsed excimer laser deposition, an energetic deposition process that leads to film growth by sub-surface carbon implantation and the creation of local metastability in carbon bonding. Modest annealing, < 900K, produces significant irreversible strain relaxation which is thermally activated with activation energies ranging from < 1 eV to > 2 eV. During annealing the material remains amorphous, but there is a detectable increase in medium-range order as measured by fluctuation microscopy. The strain relaxation permits the residual strain in the films to be reduced to < 0.00001, which is a critical requirement for the fabrication of microelectromechanical systems (MEMS). Amorphous diamond MEMS have been fabricated in order to evaluate the mechanical properties of this material under tension and flexure, and this has enabled the determination of elastic modulus (800 GPa), tensile strength (8 GPa), and fracture toughness (8 MPa m^1/2). In addition, amorphous diamond MEMS structures have been fabricated to measure internal dissipation and surface adhesion. The high hardness and strength and hydrophobic nature of the surface makes this material particularly suitable for the fabrication of high wear resistance and low stiction MEMS. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Co., for the U.S. Dept. of Energy under contract DE-AC04-94AL85000.

  5. NASA Tech Briefs, July 2012

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics covered include: Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System; Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure; Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments; Determining Performance Acceptability of Electrochemical Oxygen Sensors; Versatile Controller for Infrared Lamp and Heater Arrays; High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection; Ultra-Low-Power MEMS Selective Gas Sensors; Compact Receiver Front Ends for Submillimeter-Wave Applications; Dynamically Reconfigurable Systolic Array Accelerator; Blocking Losses With a Photon Counter; Motion-Capture-Enabled Software for Gestural Control of 3D Mod; Orbit Software Suite; CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW); Trajectory Software With Upper Atmosphere Model; ALSSAT Version 6.0; Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms; Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors; Polyimide Aerogel Thin Films; Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites; Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass; Robust Tensioned Kevlar Suspension Design; Focal Plane Alignment Utilizing Optical CMM; Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass; Virtual Ultrasound Guidance for Inexperienced Operators; Beat-to-Beat Blood Pressure Monitor; Non-Contact Conductivity Measurement for Automated Sample Processing Systems; An MSK Radar Waveform; Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures; Method to Remove Particulate Matter from Dusty Gases at Low Pressures; Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile; Measurement Via Optical Near-Nulling and Subaperture Stitching; 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System; Airborne Hyperspectral Imaging System; Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix; and Asymmetric Supercapacitor for Long-Duration Power Storage.

  6. Demonstration of the AGI Universal Samplers (F.K.A. the GORE Modules) for Passive Sampling of Groundwater

    DTIC Science & Technology

    2014-03-27

    Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an

  7. Demonstration of the AGI Universal Samplers (F.K.A. the GORE (registered trademark) Modules) for Passive Sampling of Groundwater

    DTIC Science & Technology

    2014-03-01

    Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an

  8. Progress towards ultracold gases in arbitrary 2D potentials

    NASA Astrophysics Data System (ADS)

    Corcovilos, Theodore

    2016-05-01

    We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.

  9. Efficient designs for powering microscale devices with nanoscale biomolecular motors.

    PubMed

    Lin, Chih-Ting; Kao, Ming-Tse; Kurabayashi, Katsuo; Meyhöfer, Edgar

    2006-02-01

    Current MEMS and microfluidic designs require external power sources and actuators, which principally limit such technology. To overcome these limitations, we have developed a number of microfluidic systems into which we can seamlessly integrate a biomolecular motor, kinesin, that transports microtubules by extracting chemical energy from its aqueous working environment. Here we establish that our microfabricated structures, the self-assembly of the bio-derived transducer, and guided, unidirectional transport of microtubules are ideally suited to create engineered arrays for efficiently powering nano- and microscale devices.

  10. Joint Bearing and Range Estimation of Multiple Objects from Time-Frequency Analysis.

    PubMed

    Liu, Jeng-Cheng; Cheng, Yuang-Tung; Hung, Hsien-Sen

    2018-01-19

    Direction-of-arrival (DOA) and range estimation is an important issue of sonar signal processing. In this paper, a novel approach using Hilbert-Huang transform (HHT) is proposed for joint bearing and range estimation of multiple targets based on a uniform linear array (ULA) of hydrophones. The structure of this ULA based on micro-electro-mechanical systems (MEMS) technology, and thus has attractive features of small size, high sensitivity and low cost, and is suitable for Autonomous Underwater Vehicle (AUV) operations. This proposed target localization method has the following advantages: only a single snapshot of data is needed and real-time processing is feasible. The proposed algorithm transforms a very complicated nonlinear estimation problem to a simple nearly linear one via time-frequency distribution (TFD) theory and is verified with HHT. Theoretical discussions of resolution issue are also provided to facilitate the design of a MEMS sensor with high sensitivity. Simulation results are shown to verify the effectiveness of the proposed method.

  11. MEMS CLOSED CHAMBER HEAT ENGINE AND ELECTRIC GENERATOR

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A. (Inventor)

    2005-01-01

    A heat engine, preferably combined with an electric generator, and advantageously implemented using micro-electromechanical system (MEMS) technologies as an array of one or more individual heat engine/generators. The heat engine is based on a closed chamber containing a motive medium, preferably a gas; means for alternately enabling and disabling transfer of thermal energy from a heat source to the motive medium; and at least one movable side of the chamber that moves in response to thermally-induced expansion and contraction of the motive medium, thereby converting thermal energy to oscillating movement. The electrical generator is combined with the heat engine to utilize movement of the movable side to convert mechanical work to electrical energy, preferably using electrostatic interaction in a generator capacitor. Preferably at least one heat transfer side of the chamber is placed alternately into and out of contact with the heat source by a motion capacitor, thereby alternately enabling and disabling conductive transfer of heat to the motive medium.

  12. Micro-masonry for 3D additive micromanufacturing.

    PubMed

    Keum, Hohyun; Kim, Seok

    2014-08-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called 'inks') from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices.

  13. Issues associated with Galilean invariance on a moving solid boundary in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Geneva, Nicholas; Guo, Zhaoli; Wang, Lian-Ping

    2017-01-01

    In lattice Boltzmann simulations involving moving solid boundaries, the momentum exchange between the solid and fluid phases was recently found to be not fully consistent with the principle of local Galilean invariance (GI) when the bounce-back schemes (BBS) and the momentum exchange method (MEM) are used. In the past, this inconsistency was resolved by introducing modified MEM schemes so that the overall moving-boundary algorithm could be more consistent with GI. However, in this paper we argue that the true origin of this violation of Galilean invariance (VGI) in the presence of a moving solid-fluid interface is due to the BBS itself, as the VGI error not only exists in the hydrodynamic force acting on the solid phase, but also in the boundary force exerted on the fluid phase, according to Newton's Third Law. The latter, however, has so far gone unnoticed in previously proposed modified MEM schemes. Based on this argument, we conclude that the previous modifications to the momentum exchange method are incomplete solutions to the VGI error in the lattice Boltzmann method (LBM). An implicit remedy to the VGI error in the LBM and its limitation is then revealed. To address the VGI error for a case when this implicit remedy does not exist, a bounce-back scheme based on coordinate transformation is proposed. Numerical tests in both laminar and turbulent flows show that the proposed scheme can effectively eliminate the errors associated with the usual bounce-back implementations on a no-slip solid boundary, and it can maintain an accurate momentum exchange calculation with minimal computational overhead.

  14. Frequency stabilization in nonlinear MEMS and NEMS oscillators

    DOEpatents

    Lopez, Omar Daniel; Antonio, Dario

    2014-09-16

    An illustrative system includes an amplifier operably connected to a phase shifter. The amplifier is configured to amplify a voltage from an oscillator. The phase shifter is operably connected to a driving amplitude control, wherein the phase shifter is configured to phase shift the amplified voltage and is configured to set an amplitude of the phase shifted voltage. The oscillator is operably connected to the driving amplitude control. The phase shifted voltage drives the oscillator. The oscillator is at an internal resonance condition, based at least on the amplitude of the phase shifted voltage, that stabilizes frequency oscillations in the oscillator.

  15. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  16. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  17. An optical biosensor using MEMS-based V-grooves

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Ma, Xiaodong; Zou, Xiaotian; Wu, Nan; Wang, Xingwei

    2011-05-01

    An optical fiber biosensor featuring miniaturization, electromagnetic interference (EMI)-immunity, and flexibility is presented. The sensor was fabricated by aligning two gold-deposited optical single-mode fiber facets inside V-grooves on a silicon chip to form a Fabry-Perot (FP) cavity. The mirrors on the fiber facets were made of deposited gold (Au) films, which provided a high finesse to produce a highly sensitivity. Microelectromechanical systems (MEMS) fabrication techniques were used to precisely control the profile and angle of the V-grooves on the silicon. The biotin-terminated thiol molecule was firstly immobilized on the gold surface. Subsequently, the molecules of Neutravidin were specifically bound to the biotin-terminated self-assembled monolayers (SAMs). The induced changes of cavity length and refractive index (RI) upon the gold surface lead to an optical path difference (OPD) of the FP cavity, which was detected by demodulating the transmission spectrum phase shift. By taking advantage of MEMS techniques, multiple biosensors can be integrated into one small silicon chip for detecting various biomolecule targets simultaneously.

  18. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  19. Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM

    2006-12-12

    A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.

  20. NOVEL CERAMIC MEMBRANE BIOREACTOR FOR LOW-FLOW SYSTEMS - PHASE I

    EPA Science Inventory

    Improved low-flow (50,000 gallons per day) sanitary wastewater treatment systems are needed. CeraMem Corporation's proposed approach includes a membrane bioreactor (MBR) using fully proven biological processes for biological oxygen demand oxidation and (optionally) fo...

  1. [Study on a wireless energy transmission system for the noninvasive examination micro system inside alimentary tracts].

    PubMed

    He, Xiu; Yan, Guo-Zheng; Wang, Fu-Min

    2008-01-01

    A wireless energy transmission system for the MEMS system inside alimentary tracts is reported here in the paper. It consists of an automatic frequency tracking circuit of phase lock loop and phase shift PWM control circuit. Experimental results show that the energy transmission system is capable of automatic frequency-tracking and transmission power-adjusting and has stable received energy.

  2. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  3. Localized synthesis, assembly and integration of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Englander, Ongi

    Localized synthesis, assembly and integration of one-dimensional silicon nanowires with MEMS structures is demonstrated and characterized in terms of local synthesis processes, electric-field assisted self-assembly, and a proof-of-concept nanoelectromechanical system (HEMS) demonstration. Emphasis is placed on the ease of integration, process control strategies, characterization techniques and the pursuit of integrated devices. A top-down followed by a bottom-up integration approach is utilized. Simple MEMS heater structures are utilized as the microscale platforms for the localized, bottom-up synthesis of one-dimensional nanostructures. Localized heating confines the high temperature region permitting only localized nanostructure synthesis and allowing the surroundings to remain at room temperature thus enabling CMOS compatible post-processing. The vapor-liquid-solid (VLS) process in the presence of a catalytic nanoparticle, a vapor phase reactant, and a specific temperature environment is successfully employed locally. Experimentally, a 5nm thick gold-palladium layer is used as the catalyst while silane is the vapor phase reactant. The current-voltage behavior of the MEMS structures can be correlated to the approximate temperature range required for the VLS reaction to take place. Silicon nanowires averaging 45nm in diameter and up to 29mum in length synthesized at growth rates of up to 1.5mum/min result. By placing two MEMS structures in close proximity, 4--10mum apart, localized silicon nanowire growth can be used to link together MEMS structures to yield a two-terminal, self-assembled micro-to-nano system. Here, one MEMS structure is designated as the hot growth structure while a nearby structure is designated as the cold secondary structure, whose role is to provide a natural stopping point for the VLS reaction. The application of a localized electric-field, 5 to 13V/mum in strength, during the synthesis process, has been shown to improve nanowire organization, alignment, and assembly. The integrated nanoelectrormechanical system was found to be mechanically resilient as it proved to successfully withstand a wide variety of post-processing steps, including manipulations and examinations under scanning and transmission electron microscopes and aqueous processing, although a super critical drying step is necessary to preserve the integrated system during the drying process. Electrical characterization of the system proved challenging due to low carrier concentration and possible transport issues at the nano-micro interface. Nonetheless, in a proof-of-concept demonstration, the system was functionalized and tested for a hydrogen sensing application.

  4. In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.

    PubMed

    Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko

    2015-03-23

    The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.

  5. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    PubMed

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  6. A Study of Phased Array Antennas for NASA's Deep Space Network

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.

    2001-01-01

    In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.

  7. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    NASA Astrophysics Data System (ADS)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  8. Microwave photonic filters using low-cost sources featuring tunability, reconfigurability and negative coefficients.

    PubMed

    Capmany, José; Mora, José; Ortega, Beatriz; Pastor, Daniel

    2005-03-07

    We propose and experimentally demonstrate two configurations of photonic filters for the processing of microwave signals featuring tunability, reconfigurability and negative coefficients based on the use of low cost optical sources. The first option is a low power configuration based on spectral slicing of a broadband source. The second is a high power configuration based on fixed lasers. Tunability, reconfigurability and negative coefficients are achieved by means of a MEMS cross-connect, a variable optical attenuator array and simple 2x2 switches respectively.

  9. FEM and Multiphysics Applications at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Loughlin, James

    2004-01-01

    FEM software available to the Mechanical Systems Analysis and Simulation Branch at Goddard Space Flight Center (GSFC) include: 1) MSC/Nastran; 2) Abaqus; 3) Ansys/Multiphysics; 4) COSMOS/M; 5) 'Home-grown' programs; 6) Pre/post processors such as Patran and FEMAP. This viewgraph presentation provides additional information on MSC/Nastran and Ansys/Multiphysics, and includes screen shots of analyzed equipment, including the Wilkinson Microwave Anistropy Probe, a micro-mirror, a MEMS tunable filter, and a micro-shutter array. The presentation also includes information on the verification of results.

  10. A MEMS Based Hybrid Preconcentrator/Chemiresistor Chemical Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HUGHES,ROBERT C.; PATEL,SANJAY V.; MANGINELL,RONALD P.

    2000-06-12

    A hybrid of a microfabricated planar preconcentrator and a four element chemiresistor array chip has been fabricated and the performance as a chemical sensor system has been demonstrated. The close proximity of the chemiresistor sensor to the preconcentrator absorbent layer allows for fast transfer of the preconcentrated molecules during the heating and resorption step. The hybrid can be used in a conventional flow sampling system for detection of low concentrations of analyte molecules or in a pumpless/valveless mode with a grooved lid to confine the desorption plume from the preconcentrator during heating.

  11. Design of a multi-axis implantable MEMS sensor for intraosseous bone stress monitoring

    NASA Astrophysics Data System (ADS)

    Alfaro, Fernando; Weiss, Lee; Campbell, Phil; Miller, Mark; Fedder, Gary K.

    2009-08-01

    The capability to assess the biomechanical properties of living bone is important for basic research as well as the clinical management of skeletal trauma and disease. Even though radiodensitometric imaging is commonly used to infer bone quality, bone strength does not necessarily correlate well with these non-invasive measurements. This paper reports on the design, fabrication and initial testing of an implantable ultra-miniature multi-axis sensor for directly measuring bone stresses at a micro-scale. The device, which is fabricated with CMOS-MEMS processes, is intended to be permanently implanted within open fractures, or embedded in bone grafts, or placed on implants at the interfaces between bone and prosthetics. The stress sensor comprises an array of piezoresistive pixels to detect a stress tensor at the interfacial area between the MEMS chip and bone, with a resolution to 100 Pa, in 1 s averaging. The sensor system design and manufacture is also compatible with the integration of wireless RF telemetry, for power and data retrieval, all within a 3 mm × 3 mm × 0.3 mm footprint. The piezoresistive elements are integrated within a textured surface to enhance sensor integration with bone. Finite element analysis led to a sensor design for normal and shear stress detection. A wired sensor was fabricated in the Jazz 0.35 µm BiCMOS process and then embedded in mock bone material to characterize its response to tensile and bending loads up to 250 kPa.

  12. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  13. In vivo optical modulation of neural signals using monolithically integrated two-dimensional neural probe arrays

    PubMed Central

    Son, Yoojin; Jenny Lee, Hyunjoo; Kim, Jeongyeon; Shin, Hyogeun; Choi, Nakwon; Justin Lee, C.; Yoon, Eui-Sung; Yoon, Euisik; Wise, Kensall D.; Geun Kim, Tae; Cho, Il-Joo

    2015-01-01

    Integration of stimulation modalities (e.g. electrical, optical, and chemical) on a large array of neural probes can enable an investigation of important underlying mechanisms of brain disorders that is not possible through neural recordings alone. Furthermore, it is important to achieve this integration of multiple functionalities in a compact structure to utilize a large number of the mouse models. Here we present a successful optical modulation of in vivo neural signals of a transgenic mouse through our compact 2D MEMS neural array (optrodes). Using a novel fabrication method that embeds a lower cladding layer in a silicon substrate, we achieved a thin silicon 2D optrode array that is capable of delivering light to multiple sites using SU-8 as a waveguide core. Without additional modification to the microelectrodes, the measured impedance of the multiple microelectrodes was below 1 MΩ at 1 kHz. In addition, with a low background noise level (±25 μV), neural spikes from different individual neurons were recorded on each microelectrode. Lastly, we successfully used our optrodes to modulate the neural activity of a transgenic mouse through optical stimulation. These results demonstrate the functionality of the 2D optrode array and its potential as a next-generation tool for optogenetic applications. PMID:26494437

  14. A 32 x 32 capacitive micromachined ultrasonic transducer array manufactured in standard CMOS.

    PubMed

    Lemmerhirt, David F; Cheng, Xiaoyang; White, Robert; Rich, Collin A; Zhang, Man; Fowlkes, J Brian; Kripfgans, Oliver D

    2012-07-01

    As ultrasound imagers become increasingly portable and lower cost, breakthroughs in transducer technology will be needed to provide high-resolution, real-time 3-D imaging while maintaining the affordability needed for portable systems. This paper presents a 32 x 32 ultrasound array prototype, manufactured using a CMUT-in-CMOS approach whereby ultrasonic transducer elements and readout circuits are integrated on a single chip using a standard integrated circuit manufacturing process in a commercial CMOS foundry. Only blanket wet-etch and sealing steps are added to complete the MEMS devices after the CMOS process. This process typically yields better than 99% working elements per array, with less than ±1.5 dB variation in receive sensitivity among the 1024 individually addressable elements. The CMUT pulseecho frequency response is typically centered at 2.1 MHz with a -6 dB fractional bandwidth of 60%, and elements are arranged on a 250 μm hexagonal grid (less than half-wavelength pitch). Multiplexers and CMOS buffers within the array are used to make on-chip routing manageable, reduce the number of physical output leads, and drive the transducer cable. The array has been interfaced to a commercial imager as well as a set of custom transmit and receive electronics, and volumetric images of nylon fishing line targets have been produced.

  15. Digital Beamforming Scatterometer

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul

    2009-01-01

    This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics

  16. A Multi-Phase Based Fluid-Structure-Microfluidic interaction sensor for Aerodynamic Shear Stress

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher; Dutta, Diganta; Bashirzadeh, Yashar; Ahmed, Kareem; Qian, Shizhi

    2014-11-01

    A novel innovative microfluidic shear stress sensor is developed for measuring shear stress through multi-phase fluid-structure-microfluidic interaction. The device is composed of a microfluidic cavity filled with an electrolyte liquid. Inside the cavity, two electrodes make electrochemical velocimetry measurements of the induced convection. The cavity is sealed with a flexible superhydrophobic membrane. The membrane will dynamically stretch and flex as a result of direct shear cross-flow interaction with the seal structure, forming instability wave modes and inducing fluid motion within the microfluidic cavity. The shear stress on the membrane is measured by sensing the induced convection generated by membrane deflections. The advantages of the sensor over current MEMS based shear stress sensor technology are: a simplified design with no moving parts, optimum relationship between size and sensitivity, no gaps such as those created by micromachining sensors in MEMS processes. We present the findings of a feasibility study of the proposed sensor including wind-tunnel tests, microPIV measurements, electrochemical velocimetry, and simulation data results. The study investigates the sensor in the supersonic and subsonic flow regimes. Supported by a NASA SBIR phase 1 contract.

  17. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  18. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  19. Gyroscope-reduced inertial navigation system for flight vehicle motion estimation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Xiao, Lu

    2017-01-01

    In this paper, a novel configuration of strategically distributed accelerometer sensors with the aid of one gyro to infer a flight vehicle's angular motion is presented. The MEMS accelerometer and gyro sensors are integrated to form a gyroscope-reduced inertial measurement unit (GR-IMU). The motivation for gyro aided accelerometers array is to have direct measurements of angular rates, which is an improvement to the traditional gyroscope-free inertial system that employs only direct measurements of specific force. Some technical issues regarding error calibration in accelerometers and gyro in GR-IMU are put forward. The GR-IMU based inertial navigation system can be used to find a complete attitude solution for flight vehicle motion estimation. Results of numerical simulation are given to illustrate the effectiveness of the proposed configuration. The gyroscope-reduced inertial navigation system based on distributed accelerometer sensors can be developed into a cost effective solution for a fast reaction, MEMS based motion capture system. Future work will include the aid from external navigation references (e.g. GPS) to improve long time mission performance.

  20. Micro-masonry for 3D Additive Micromanufacturing

    PubMed Central

    Keum, Hohyun; Kim, Seok

    2014-01-01

    Transfer printing is a method to transfer solid micro/nanoscale materials (herein called ‘inks’) from a substrate where they are generated to a different substrate by utilizing elastomeric stamps. Transfer printing enables the integration of heterogeneous materials to fabricate unexampled structures or functional systems that are found in recent advanced devices such as flexible and stretchable solar cells and LED arrays. While transfer printing exhibits unique features in material assembly capability, the use of adhesive layers or the surface modification such as deposition of self-assembled monolayer (SAM) on substrates for enhancing printing processes hinders its wide adaptation in microassembly of microelectromechanical system (MEMS) structures and devices. To overcome this shortcoming, we developed an advanced mode of transfer printing which deterministically assembles individual microscale objects solely through controlling surface contact area without any surface alteration. The absence of an adhesive layer or other modification and the subsequent material bonding processes ensure not only mechanical bonding, but also thermal and electrical connection between assembled materials, which further opens various applications in adaptation in building unusual MEMS devices. PMID:25146178

  1. Integrated control strategy for autonomous decentralized conveyance systems based on distributed MEMS arrays

    NASA Astrophysics Data System (ADS)

    Zhou, Lingfei; Chapuis, Yves-Andre; Blonde, Jean-Philippe; Bervillier, Herve; Fukuta, Yamato; Fujita, Hiroyuki

    2004-07-01

    In this paper, the authors proposed to study a model and a control strategy of a two-dimensional conveyance system based on the principles of the Autonomous Decentralized Microsystems (ADM). The microconveyance system is based on distributed cooperative MEMS actuators which can produce a force field onto the surface of the device to grip and move a micro-object. The modeling approach proposed here is based on a simple model of a microconveyance system which is represented by a 5 x 5 matrix of cells. Each cell is consisted of a microactuator, a microsensor, and a microprocessor to provide actuation, autonomy and decentralized intelligence to the cell. Thus, each cell is able to identify a micro-object crossing on it and to decide by oneself the appropriate control strategy to convey the micro-object to its destination target. The control strategy could be established through five simple decision rules that the cell itself has to respect at each calculate cycle time. Simulation and FPGA implementation results are given in the end of the paper in order to validate model and control approach of the microconveyance system.

  2. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  3. Characterization of a piezoelectric MEMS actuator surface toward motion-enabled reconfigurable RF circuits

    NASA Astrophysics Data System (ADS)

    Tellers, M. C.; Pulskamp, J. S.; Bedair, S. S.; Rudy, R. Q.; Kierzewski, I. M.; Polcawich, R. G.; Bergbreiter, S. E.

    2018-03-01

    As an alternative to highly constrained hard-wired reconfigurable RF circuits, a motion-enabled reconfigurable circuit (MERC) offers freedom from transmission line losses and homogeneous materials selection. The creation of a successful MERC requires a precise mechanical mechanism for relocating components. In this work, a piezoelectric MEMS actuator array is modeled and experimentally characterized to assess its viability as a solution to the MERC concept. Actuation and design parameters are evaluated, and the repeatability of high quality on-axis motion at greater than 1 mm s-1 is demonstrated with little positional error. Finally, an initial proof-of-concept circuit reconfiguration has been demonstrated using off-the-shelf RF filter components. Although initial feasibility tests show filter performance degradation with an additional insertion loss of 0.3 dB per contact, out-of-band rejection degradation as high as 10 dB, and ripple performance reduction from 0.25 dB to 1.5 dB, MERC is proven here as an alternative to traditional approaches used in reconfigurable RF circuit applications.

  4. Fabrication of a symmetric micro supercapacitor based on tubular ruthenium oxide on silicon 3D microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Yin, Yajiang; Li, Xiangyu; You, Zheng

    2014-04-01

    A micro-supercapacitor with a three-dimensional configuration has been fabricated using an ICP etching technique. Hydrous ruthenium oxide with a tubular morphology is successfully synthesized using a cathodic deposition technique with a Si micro prominence as a template. The desired tubular RuO2·xH2O architecture facilitates electrolyte penetration and proton exchange/diffusion. A single MEMS electrode is studied using cyclic voltammetry, and a specific capacitance of 99.3 mF cm-2 and 70 F g-1 is presented at 5 mV s-1 in neutral Na2SO4 solution. The accelerated cycle life is tested at 80 mV s-1, and satisfactory cyclability is observed. When placed on a chip, the symmetric cell exhibits good supercapacitor properties, and a specific capacitance as high as 23 mF cm-2 is achieved at 10 mA cm-2. Therefore, 3D MEMS microelectrode arrays with electrochemically deposited ruthenium oxide films are promising candidates for on-chip electrochemical micro-capacitor applications.

  5. Elastic Distribution of Microshutters, Measurements Obtainable on James Web Space Telescope

    NASA Technical Reports Server (NTRS)

    Kletetschka, Gunther; King, Todd; Mikula, Vilem

    2008-01-01

    Spectrographic astronomy measurements in the near-infrared region will be done by functional two-dimensional microshutter arrays that are being fabricated at the NASA Goddard Space Flight Center for the James Webb Space Telescope (JWST). These micro-shutter arrays will represent the first mission-critical MEMS devices to be flown in space. JWST will use microshutter arrays to select focal plane object. 2-D programmable aperture masks of more than 200,000 elements select such space object. The use of silicon wafer material promises high efficiency and high contrast. Microshutter operation temperature is around 35K. Microshutter arrays are fabricated as close-packed silicon nitride membranes with a unit cell size of 105 x 204 micrometers. A layer of magnetic material is deposited onto each shutter. Individual shutters are equipped with a torsion flexure. Reactive ion etching (RIE) releases the shutters so they can open up to 90 degrees using the torsion flexure. Shutter rotation is initiated into a silicon support structure via an external magnetic field. Two electrically independent aluminum electrodes are deposited, one onto each shutter and another onto the support structure side-wall, permitting electrostatic latching and 2-D addressing to hold specific shutters open via external electronics.

  6. Laser ablation for membrane processing of AlGaN/GaN- and micro structured ferroelectric thin film MEMS and SiC pressure sensors for extreme conditions

    NASA Astrophysics Data System (ADS)

    Zehetner, J.; Vanko, G.; Dzuba, J.; Ryger, I.; Lalinsky, T.; Benkler, Manuel; Lucki, Michal

    2015-05-01

    AlGaN/GaN based high electron mobility transistors (HEMTs), Schottky diodes and/or resistors have been presented as sensing devices for mechanical or chemical sensors operating in extreme conditions. In addition we investigate ferroelectric thin films for integration into micro-electro-mechanical-systems (MEMS). Creation of appropriate diaphragms and/or cantilevers out of SiC is necessary for further improvement of sensing properties of such MEMS sensors. For example sensitivity of the AlGaN/GaN based MEMS pressure sensor can be modified by membrane thickness. We demonstrated that a 4H-SiC 80μm thick diaphragms can be fabricated much faster with laser ablation than by electrochemical, photochemical or reactive ion etching (RIE). We were able to verify the feasibility of this process by fabrication of micromechanical membrane structures also in bulk 3C-SiC, borosilicate glass, sapphire and Al2O3 ceramic substrates by femtosecond laser (520nm) ablation. On a 350μm thick 4H-SiC substrate we produced an array of 275μm deep and 1000μm to 3000μm of diameter blind holes without damaging the 2μm AlN layer at the back side. In addition we investigated ferroelectric thin films as they can be deposited and micro-patterned by a direct UV-lithography method after the ablation process for a specific membrane design. The risk to harm or damage the function of thin films was eliminated by that means. Some defects in the ablated membranes are also affected by the polarisation of the laser light. Ripple structures oriented perpendicular to the laser polarisation promote creation of pin holes which would perforate a thin membrane. We developed an ablation technique strongly inhibiting formation of ripples and pin poles.

  7. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  8. Advanced carbon manufacturing for energy and biological applications

    NASA Astrophysics Data System (ADS)

    Turon Teixidor, Genis

    The science of miniaturization has experienced revolutionary advances during the last decades, witnessing the development of the Integrated Circuit and the emergence of MEMS and Nanotechnology. Particularly, MEMS technology has pioneered the use of non-traditional materials in microfabrication by including polymers, ceramics and composites to the well known list of metals and semiconductors. One of the latest additions to this set of materials is carbon, which represents a very important inclusion given its significance in electrochemical energy conversion systems and in applications where it is used as sensor probe material. For these applications, carbon is optimal in several counts: It has a wide electrochemical stability window, good electrical and thermal conductivity, high corrosion resistance and mechanical stability, and is available in high purity at a low cost. Furthermore carbon is biocompatible. This thesis presents several microfabricated devices that take advantage of these properties. The thesis has two clearly differentiated parts. In the first one, applications of micromachined carbon in the field of energy conversion and energy storage are presented. These applications include lithium ion micro batteries and the development of new carbon electrodes with fractal geometries. In the second part, the focus shifts to biological applications. First, the study of the interaction of living cells with micromachined carbon is presented, followed by the description of a sensor based on interdigitated nano-electrode arrays, and finally the development of the new instrumentation needed to address arrays of carbon electrodes, a multiplexed potentiostat. The underlying theme that connects all these seemingly different topics is the use of carbon microfabrication techniques in electrochemical systems.

  9. Active acoustical impedance using distributed electrodynamical transducers.

    PubMed

    Collet, M; David, P; Berthillier, M

    2009-02-01

    New miniaturization and integration capabilities available from emerging microelectromechanical system (MEMS) technology will allow silicon-based artificial skins involving thousands of elementary actuators to be developed in the near future. SMART structures combining large arrays of elementary motion pixels coated with macroscopic components are thus being studied so that fundamental properties such as shape, stiffness, and even reflectivity of light and sound could be dynamically adjusted. This paper investigates the acoustic impedance capabilities of a set of distributed transducers connected with a suitable controlling strategy. Research in this domain aims at designing integrated active interfaces with a desired acoustical impedance for reaching an appropriate global acoustical behavior. This generic problem is intrinsically connected with the control of multiphysical systems based on partial differential equations (PDEs) and with the notion of multiscaled physics when a dense array of electromechanical systems (or MEMS) is considered. By using specific techniques based on PDE control theory, a simple boundary control equation capable of annihilating the wave reflections has been built. The obtained strategy is also discretized as a low order time-space operator for experimental implementation by using a dense network of interlaced microphones and loudspeakers. The resulting quasicollocated architecture guarantees robustness and stability margins. This paper aims at showing how a well controlled semidistributed active skin can substantially modify the sound transmissibility or reflectivity of the corresponding homogeneous passive interface. In Sec. IV, numerical and experimental results demonstrate the capabilities of such a method for controlling sound propagation in ducts. Finally, in Sec. V, an energy-based comparison with a classical open-loop strategy underlines the system's efficiency.

  10. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    NASA Astrophysics Data System (ADS)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  11. Anisotropy and Microstructure of Rare Earth Permanent Magnet Materials.

    DTIC Science & Technology

    1986-01-01

    8217 "eK SiKA b PHASE 8 !_/ _ _. _ _ __,_ _ -., f PHASE C I Nd -rich 1,3 k _ Fig.3: Energy dispersive X-ray spectra corresponding to the phases found...close to 7 according to the phase Nd2FeI 4 B. Remarkable is the high SiKA -intensity in some of the X-ray spectra of this phase. The high coercivity...MEM: A FS= 50 02 04 06 08 10 02 04 06 08 10i LWJ LL 1 LL II AS N F AS N F LI D E LI D E CURSOR (KEV)=05.520 EDAX CURSOR (KEV)=05.520 EDAX ALKA SIKA

  12. Phased Antenna Array for Global Navigation Satellite System Signals

    NASA Technical Reports Server (NTRS)

    Turbiner, Dmitry (Inventor)

    2015-01-01

    Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.

  13. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  14. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  15. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  16. Delamination Detection Using Guided Wave Phased Arrays

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara

    2016-01-01

    This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.

  17. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  18. Recent Progress in Silicon-Based MEMS Field Emission Thrusters

    NASA Astrophysics Data System (ADS)

    Lenard, Roger X.; Kravitz, Stanley H.; Tajmar, Martin

    2005-02-01

    The Indium Field Emission Thruster (In-FET) is a highly characterized and space-proven device based on space-qualified liquid metal ion sources. There is also extensive experience with liquid metal ion sources for high-brightness semiconductor fabrications and inspection Like gridded ion engines, In-FETs efficiently accelerate ions through a series of high voltage electrodes. Instead of a plasma discharge to generate ions, which generates a mixture of singly and doubly charged ions as well as neutrals, indium metal is melted (157°C) and fed to the tip of a capillary tube where very high local electric fields perform more-efficient field emission ionization, providing nearly 100% singly charged species. In-FETs do not have the associated losses or lifetime concerns of a magnetically confined discharge and hollow cathode in ion thrusters. For In-FETs, propellant efficiencies ˜100% stipulate single-emitter currents ⩽10μA, perhaps as low as 5μA of current. This low emitter current results in ⩽0.5 W/emitter. Consequently, if the In-FET is to be used for future Human and Robotic missions under President Bush's Exploration plan, a mechanism to generate very high power levels is necessary. Efficient high-power operation requires many emitter/extractor pairs. Conventional fabrication techniques allow 1-10 emitters in a single module, with pain-staking precision required. Properly designed and fabricated In-FETs possess electric-to-jet efficiency >90% and a specific mass <0.25 kg/kWe. MEMS techniques allow reliable batch processing with ˜160,000 emitters in a 10×10-cm array. Developing a 1.5kW 10×10-cm module is a necessary stepping-stone for >500 kWe systems where groups of 9 or 16 modules, with a single PPU/feed system, form the building blocks for even higher-power exploration systems. In 2003, SNL and ARCS produced a MEMS-based In-FET 5×5 emitter module with individually addressable emitter/extractor pairs on a 15×15mm wafer. The first MEMS thruster prototype has already been tested to demonstrate the proof-of-concept in laboratory-scale testing. In this paper we discuss progress that has been achieved in the past year on fabricating silicon-based MEMS In-FETs.

  19. Monolithic optical phased-array transceiver in a standard SOI CMOS process.

    PubMed

    Abediasl, Hooman; Hashemi, Hossein

    2015-03-09

    Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.

  20. Phased-array-fed antenna configuration study. Volume 1: Technology assessment

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.

    1983-01-01

    The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.

  1. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  2. Young Investigator Program: Tribology of Nanostructured Silicon Carbide for MEMS and NEMS Applications in Extreme Environments

    DTIC Science & Technology

    2011-02-01

    was calculated as the difference between the lowest point of the rigid indenter and the initial position of the sample’s free surface. The total...SiC A high pressure structural phase transformation (HPPT) was previously reported for silicon, gallium arsenide, and silicon nitride and indirect...molecular dynamics (MD) simulations with thermodynamic analysis to settle this debate whether silicon carbide (SiC) can undergo a high pressure phase

  3. FPGA Control System for the Automated Test of Microshutters

    NASA Technical Reports Server (NTRS)

    Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey

    2008-01-01

    The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light with arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.

  4. FPGA Control System for the Automated Test of MicroShutters

    NASA Technical Reports Server (NTRS)

    Lyness, Eric; Rapchun, David A.; Moseley, S. Harvey

    2008-01-01

    The James Webb Space Telescope, scheduled to replace the Hubble in 2013, must simultaneously observe hundreds of faint galaxies. This requirement has led to the development of a programmable transmission mask which can be adapted to admit light from an arbitrary pattern of galaxies into its spectrograph. This programmable mask will contain a large array of micro-electromechanical (MEMs) devices called MicroShutters. These microscopic shutters physically open and close like the shutter on a camera, except each shutter is microscopic in size and an array 365 by 171 is used to select the objects under spectroscopic observation at a given time, and to block the unwanted background light from other areas. NASA developed and is currently refining the exceptionally difficult process of manufacturing these shutters. This paper describes how the authors used LabVIEW FPGA and a reconfigurable I/O board to control the shutters in a test chamber and how the flexibility of the system allows us to continue to modify the control algorithms as NASA optimizes the performance of the MicroShutter arrays.

  5. A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques

    NASA Astrophysics Data System (ADS)

    Zou, Zhi-Qing; Chen, Xiang; Jin, Qing-Hui; Yang, Meng-Su; Zhao, Jian-Long

    2005-08-01

    This paper describes a novel miniaturized multi-chamber array capable of high throughput polymerase chain reaction (PCR). The structure of the proposed device is verified by using finite element analysis (FEA) to optimize the thermal performance, and then implemented on a glass-silicon substrate using a standard MEMS process and post-processing. Thermal analysis simulation and verification of each reactor cell is equipped with integrated Pt temperature sensors and heaters at the bottom of the reaction chamber for real-time accurate temperature sensing and control. The micro-chambers are thermally separated from each other, and can be controlled independently. The multi-chip array was packaged on a printed circuit board (PCB) substrate using a conductive polymer flip-chip bonding technique, which enables effective heat dissipation and suppresses thermal crosstalk between the chambers. The designed system has successfully demonstrated a temperature fluctuation of ±0.5 °C during thermal multiplexing of up to 2 × 2 chambers, a full speed of 30 min for 30 cycle PCR, as well as the capability of controlling each chamber digitally and independently.

  6. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  7. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Christenson, Todd R [Albuquerque, NM

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  8. Fracture Tests of Etched Components Using a Focused Ion Beam Machine

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan, L.; Fettig, Rainer K.; Moseley, S. Harvey; Kutyrev, Alexander S.; Orloff, Jon; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Many optical MEMS device designs involve large arrays of thin (0.5 to 1 micron components subjected to high stresses due to cyclic loading. These devices are fabricated from a variety of materials, and the properties strongly depend on size and processing. Our objective is to develop standard and convenient test methods that can be used to measure the properties of large numbers of witness samples, for every device we build. In this work we explore a variety of fracture test configurations for 0.5 micron thick silicon nitride membranes machined using the Reactive Ion Etching (RIE) process. Testing was completed using an FEI 620 dual focused ion beam milling machine. Static loads were applied using a probe. and dynamic loads were applied through a piezo-electric stack mounted at the base of the probe. Results from the tests are presented and compared, and application for predicting fracture probability of large arrays of devices are considered.

  9. MEMS based Doppler velocity measurement system

    NASA Astrophysics Data System (ADS)

    Shin, Minchul

    The design, fabrication, modeling and characterization of a capacitive micromachined ultrasonic transducer (cMUT) based in-air Doppler velocity measurement system using a 1 cm2 planar array are described. Continuous wave operation in a narrowband was chosen in order to maximize range, as it allows for better rejection of broadband noise. The sensor array has a 160-185 kHz resonant frequency to achieve a 10 degree beamwidth. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, characterization of the cMUT sensor with a variety of testing procedures is provided. Laser Doppler vibrometry (LDV), beampattern, reflection, and velocity testing characterize the performance of the sensors. The sensor is capable of measuring the velocity of a moving specular reflector with a resolution of 5 cm/s, an update rate of 0.016 second, and a range of 1.5 m.

  10. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  11. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  12. Memory Flexibility training (MemFlex) to reduce depressive symptomatology in individuals with major depressive disorder: study protocol for a randomised controlled trial.

    PubMed

    Hitchcock, Caitlin; Hammond, Emily; Rees, Catrin; Panesar, Inderpal; Watson, Peter; Werner-Seidler, Aliza; Dalgleish, Tim

    2015-11-03

    Major depressive disorder (MDD) is associated with chronic biases in the allocation of attention and recollection of personal memories. Impaired flexibility in attention and autobiographical memory retrieval is seen to both maintain current symptoms and predict future depression. Development of innovative interventions to reduce maladaptive cognitive patterns and improve cognitive flexibility in the domain of memory may therefore advance current treatment approaches for depression. Memory specificity training and cognitive bias modification techniques have both shown some promise in improving cognitive flexibility. Here we outline plans for a trial of an innovative memory flexibility training programme, MemFlex, which advances current training techniques with the aim of improving flexibility of autobiographical memory retrieval. This trial seeks to estimate the efficacy of MemFlex, provide data on feasibility, and begin to explore mechanisms of change. We plan a single-blind, randomised, controlled, patient-level trial in which 50 individuals with MDD will complete either psychoeducation (n = 25) or MemFlex (n = 25). After completing pre-treatment measures and an orientation session, participants complete eight workbook-based sessions at home. Participants will then be assessed at post-treatment and at 3 month follow-up. The co-primary outcomes are depressive symptoms and diagnostic status at 3 month follow-up. The secondary outcomes are memory flexibility at post-treatment and number of depression free days at 3 month follow-up. Other process outcomes and mediators of any treatment effects will also be explored. This trial will establish the efficacy of MemFlex in improving memory flexibility, and reducing depressive symptoms. Any effects on process measures related to relapse may also indicate whether MemFlex may be helpful in reducing vulnerability to future depressive episodes. The low-intensity and workbook-based format of the programme may improve access to psychological therapies, and, if encouraging, the results of this study will provide a platform for later-phase trials. NCT02371291 (ClinicalTrials.gov), registered 9 February 2015.

  13. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    NASA Astrophysics Data System (ADS)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard CMOS IC. This device is expected to operate in hundreds of Mhz frequency range; quality factor surpasses 10000 and series motional impedance low enough that could be matching into conventional system without enormous effort. This MEMS resonator can be used in the design of many blocks in wireless and RF (Radio Frequency) systems such as low phase noise oscillator, band pass filter, power amplifier and in many sensing application.

  14. Setting new standards in MEMS

    NASA Astrophysics Data System (ADS)

    Rimskog, Magnus; O'Loughlin, Brian J.

    2007-02-01

    Silex Microsystems handles a wide range of customized MEMS components. This speech will be describing Silex's MEMS foundry work model for providing customized solutions based on MEMS in a cost effective and well controlled manner. Factors for success are the capabilities to reformulate a customer product concept to manufacturing processes in the wafer fab, using standard process modules and production equipment. A well-controlled system increases the likelihood of a first batch success and enables fast ramp-up into volume production. The following success factors can be listed: strong enduring relationships with the customers; highly qualified well-experienced specialists working close with the customer; process solutions and building blocks ready to use out of a library; addressing manufacturing issues in the early design phase; in-house know how to meet demands for volume manufacturing; access to a wafer fab with high capacity, good organization, high availability of equipment, and short lead times; process development done in the manufacturing environment using production equipment for easy ramp-up to volume production. The article covers a method of working to address these factors: to have a long and enduring relationships with customers utilizing MEMS expertise and working close with customers, to translate their product ideas to MEMS components; to have stable process solutions for features such as Low ohmic vias, Spiked electrodes, Cantilevers, Silicon optical mirrors, Micro needles, etc, which can be used and modified for the customer needs; to use a structured development and design methodology in order to handle hundreds of process modules, and setting up standard run sheets. It is also very important to do real time process development in the manufacturing line. It minimizes the lead-time for the ramp-up of production; to have access to a state of the art Wafer Fab which is well organized, controlled and flexible, with high capacity and short lead-time for prototypes. It is crucial to have intimate control of processes, equipment, organization, production flow control and WIP. This has been addressed by using a fully computerized control and reporting system.

  15. MEMS Terahertz Focal Plane Array With Optical Readout

    DTIC Science & Technology

    2016-06-01

    heat sink via a thermal insulator (pure SiO2 ) and two bi-material legs formed by Al and SiO2 as shown in Figure 12. 13 Figure 12. THz...The primary doublet lens is made of two different pieces of glass (E- BAF11 and N-SF11) which are cemented together. The respective indices of...BAF11 glass 1.6725 n2 (N-SF11) Index of refraction of N-SF11 glass 1.7975 t1 (E-BAF11) Thickness of E-BAF11 glass 20 mm t2 (N-SF11) Thickness of N

  16. Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian

    2012-01-01

    A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.

  17. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M [Albuquerque, NM; Allen, James J [Albuquerque, NM

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  18. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  19. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  20. On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, R.; Acorn, J.; Zawadzki, M.

    2000-01-01

    It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.

  1. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  2. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can potentially address.

  3. Phased array antenna matching: Simulation and optimization of a planar phased array of circular waveguide elements

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.

    1972-01-01

    A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.

  4. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  5. Compact MEMS external cavity tunable laser with ultra-narrow linewidth for coherent detection.

    PubMed

    Zhang, Di; Zhao, Jianyi; Yang, Qi; Liu, Wen; Fu, Yanfeng; Li, Chao; Luo, Ming; Hu, Shenglei; Hu, Qianggao; Wang, Lei

    2012-08-27

    A compact and ultra-narrow linewidth tunable laser with an external cavity based on a simple single-axis-MEMS mirror is presented in this paper. We discuss the simulation of this tunable laser using a two-step hybrid analysis method to obtain an optimal design of the device. A wide wavelength tuning range about 40 nm in C-band with a narrow linewidth of less than 50 kHz and wavelength accuracy of ± 1 GHz over the entire tuning range can be achieved experimentally. We also conduct several experiments under different conditions to test the tunable laser. This device shows an excellent performance in both single-carrier polarization-multiplexed quadrature phase-shift keying (PM-QPSK) and multi-carrier orthogonal frequency division multiplexing (OFDM) coherent systems.

  6. S-band antenna phased array communications system

    NASA Technical Reports Server (NTRS)

    Delzer, D. R.; Chapman, J. E.; Griffin, R. A.

    1975-01-01

    The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.

  7. Ultrasonic phased array controller for hyperthermia applications.

    PubMed

    Benkeser, P J; Pao, T L; Yoon, Y J

    1991-01-01

    Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.

  8. Integrated optical phased arrays for quasi-Bessel-beam generation.

    PubMed

    Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R

    2017-09-01

    Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14  mm Bessel length and ∼30  μm power full width at half maximum.

  9. Application of Nondestructive Testing Techniques to Materials Testing.

    DTIC Science & Technology

    1984-01-01

    describes enjoy the same luxury. Real-time interpolation of the data set the dynamic-range limitations of real-time digital imaging sys - terns due to...delta encoded, ELEMENT %’. ~ ._________ litlcrcrtnen t) hr t is currtent value. I n DAI SY . thle accumulator is% a sitmple up-co uriter, and the binary...roughly 36 A. Phase Qrittization antd Phase Qiuan:ti, ’o / rr, r kilolbytes of focus mem-ory. 2 Such an architecture requtres For :i sy -,𔃾 @tl V.it)1 M)0

  10. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter.

    PubMed

    Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A

    2013-12-02

    Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.

  11. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  12. CMUT Fabrication Based On A Thick Buried Oxide Layer.

    PubMed

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O; Khuri-Yakub, Butrus T

    2010-10-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

  13. CMUT Fabrication Based On A Thick Buried Oxide Layer

    PubMed Central

    Kupnik, Mario; Vaithilingam, Srikant; Torashima, Kazutoshi; Wygant, Ira O.; Khuri-Yakub, Butrus T.

    2010-01-01

    We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required – in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate. PMID:22685377

  14. Design and fabrication of two-dimensional semiconducting bolometer arrays for HAWC and SHARC-II

    NASA Astrophysics Data System (ADS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. D.; Harper, D. A.; Jhabvala, Murzy D.; Moseley, S. H.; Rennick, Timothy; Shirron, Peter J.; Smith, W. W.; Staguhn, Johannes G.

    2003-02-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 × 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 × 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  15. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

    PubMed Central

    Martín, Ferran; Bonache, Jordi

    2014-01-01

    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378

  16. Reconfigurable Wave Velocity Transmission Lines for Phased Arrays

    NASA Technical Reports Server (NTRS)

    Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix

    2013-01-01

    Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.

  17. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  18. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    NASA Astrophysics Data System (ADS)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  19. [Development of a portable mid-infrared rapid analyzer for oil concentration in water based on MEMS linear sensor array].

    PubMed

    Gao, Zhi-fan; Zeng, Li-bo; Shi, Lei; Li, Kai; Yang, Yuan-zhou; Wu, Qiong-shui

    2014-06-01

    Aiming at the existing problems such as weak environmental adaptability, low analytic efficiency and poor measuring repeatability in the traditional spectral oil analyzers, the present paper designed a portable mid-infrared rapid analyzer for oil concentration in water. To reduce the volume of the instrument, the non-symmetrical folding M-type Czerny-Turner optical structure was adopted in the core optical path. With a periodically rotating chopper, controlled by digital PID algorithm, applied for infrared light modulation, the modulating accuracy reached ±0.5%. Different from traditional grating-scanning spectrophotometers, this instrument used a fixed grating for light dispersion and avoided rotating error in the course of the measuring procedures. A new-type MEMS infrared linear sensor array was applied for modulated spectral signals detection, which improved the measuring efficiency remarkably. Optical simulation and experimental results indicate that the spectral range is 2 800 - 3 200 cm(-1), the spectral resolution is 6 cm(-1) (@3 130 cm(-1)), and the signal to noise ratio is up to 5 200 : 1. The acquisition time is 13 milliseconds per spectrogram, and the standard deviation of absorbance is less than 3 x 10(-3). These performances meet the standards of oil concentration measurements perfectly. Compared with traditional infrared spectral analyzers for oil concentration, the instrument demonstrated in this paper has many advantages such as smaller size, more efficiency, higher precision, and stronger vibration & moisture isolation. In addition, the proposed instrument is especially suitable for the environmental monitoring departments to implement real-time measurements in the field for oil concentration in water, hence it has broad prospects of application in the field of water quality monitoring.

  20. Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach

    DTIC Science & Technology

    2012-10-10

    IrwIn D. OlIn Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Sotera Defense Solutions, Inc...2012 Formal Report Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Irwin D. Olin* Naval...Manuscript approved June 30, 2012. 1 FLAT-TOP SECTOR BEAMS USING ONLY ARRAY ELEMENT PHASE WEIGHTING: A METAHEURISTIC

  1. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  2. A CMOS-MEMS clamped–clamped beam displacement amplifier for resonant switch applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ren; Lu, Shih-Chuan; Tsai, Chun-Pu; Li, Wei-Chang

    2018-06-01

    This paper presents a micromechanical clamped–clamped beam (CC-beam) displacement amplifier based on a CMOS-MEMS fabrication process platform. In particular, a 2.0 MHz resonant displacement amplifier composed of two identical CC-beams coupled by a mechanical beam at locations where the two beams have mismatched velocities exhibits a larger displacement, up to 9.96×, on one beam than that of the other. The displacement amplification prevents unwanted input impacting—the structure switches only to the output but not the input—required by resonant switch-based mechanical circuits (Kim et al 2009 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems; Lin et al 2009 15th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’09) Li et al 2013 17th Int. Conf. on Solid-State Sensors, Actuators, & Microsystems (TRANSDUCERS’13)). Compared to a single CC-beam displacement amplifier, theory predicts that the displacement amplifying CC-beam array yields a larger overall output displacement for displacement gain beyond 1.13 thanks to the preserved input driving force. A complete analytical model predicts the resultant stiffness and displacement gain of the coupled CC-beam displacement amplifier that match well with finite element analysis (FEA) prediction and measured results.

  3. Planar SiC MEMS flame ionization sensor for in-engine monitoring

    NASA Astrophysics Data System (ADS)

    Rolfe, D. A.; Wodin-Schwartz, S.; Alonso, R.; Pisano, A. P.

    2013-12-01

    A novel planar silicon carbide (SiC) MEMS flame ionization sensor was developed, fabricated and tested to measure the presence of a flame from the surface of an engine or other cooled surface while withstanding the high temperature and soot of a combustion environment. Silicon carbide, a ceramic semiconductor, was chosen as the sensor material because it has low surface energy and excellent mechanical and electrical properties at high temperatures. The sensor measures the conductivity of scattered charge carriers in the flame's quenching layer. This allows for flame detection, even when the sensor is situated several millimetres from the flame region. The sensor has been shown to detect the ionization of premixed methane and butane flames in a wide temperature range starting from room temperature. The sensors can measure both the flame chemi-ionization and the deposition of water vapour on the sensor surface. The width and speed of a premixed methane laminar flame front were measured with a series of two sensors fabricated on a single die. This research points to the feasibility of using either single sensors or arrays in internal combustion engine cylinders to optimize engine performance, or for using sensors to monitor flame stability in gas turbine applications.

  4. Fabrication and characterization of three-dimensional carbon electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Teixidor, Genis Turon; Zaouk, Rabih B.; Park, Benjamin Y.; Madou, Marc J.

    This paper presents fabrication and testing results of three-dimensional carbon anodes for lithium-ion batteries, which are fabricated through the pyrolysis of lithographically patterned epoxy resins. This technique, known as Carbon-MEMS, provides great flexibility and an unprecedented dimensional control in shaping carbon microstructures. Variations in the pattern density and in the pyrolysis conditions result in anodes with different specific and gravimetric capacities, with a three to six times increase in specific capacity with respect to the current thin-film battery technology. Newly designed cross-shaped Carbon-MEMS arrays have a much higher mechanical robustness (as given by their moment of inertia) than the traditionally used cylindrical posts, but the gravimetric analysis suggests that new designs with thinner features are required for better carbon utilization. Pyrolysis at higher temperatures and slower ramping up schedules reduces the irreversible capacity of the carbon electrodes. We also analyze the addition of Meso-Carbon Micro-Beads (MCMB) particles on the reversible and irreversible capacities of new three-dimensional, hybrid electrodes. This combination results in a slight increase in reversible capacity and a big increase in the irreversible capacity of the carbon electrodes, mostly due to the non-complete attachment of the MCMB particles.

  5. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    PubMed

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  6. First experimental demonstration of self-synchronous phase locking of an optical array

    NASA Astrophysics Data System (ADS)

    Shay, T. M.; Benham, Vincent; Baker, J. T.; Ward, Benjamin; Sanchez, Anthony D.; Culpepper, Mark A.; Pilkington, D.; Spring, Justin; Nelson, Douglas J.; Lu, Chunte A.

    2006-12-01

    A novel, highly accurate, all electronic technique for phase locking arrays of optical fibers is demonstrated. We report the first demonstration of the only electronic phase locking technique that doesn’t require a reference beam. The measured phase error is λ/20. Excellent phase locking has been demonstrated for fiber amplifier arrays.

  7. Urban MEMS based seismic network for post-earthquakes rapid disaster assessment

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; Luzio, Dario; D'Anna, Giuseppe

    2014-05-01

    Life losses following disastrous earthquake depends mainly by the building vulnerability, intensity of shaking and timeliness of rescue operations. In recent decades, the increase in population and industrial density has significantly increased the exposure to earthquakes of urban areas. The potential impact of a strong earthquake on a town center can be reduced by timely and correct actions of the emergency management centers. A real time urban seismic network can drastically reduce casualties immediately following a strong earthquake, by timely providing information about the distribution of the ground shaking level. Emergency management centers, with functions in the immediate post-earthquake period, could be use this information to allocate and prioritize resources to minimize loss of human life. However, due to the high charges of the seismological instrumentation, the realization of an urban seismic network, which may allow reducing the rate of fatalities, has not been achieved. Recent technological developments in MEMS (Micro Electro-Mechanical Systems) technology could allow today the realization of a high-density urban seismic network for post-earthquakes rapid disaster assessment, suitable for the earthquake effects mitigation. In the 1990s, MEMS accelerometers revolutionized the automotive-airbag system industry and are today widely used in laptops, games controllers and mobile phones. Due to their great commercial successes, the research into and development of MEMS accelerometers are actively pursued around the world. Nowadays, the sensitivity and dynamics of these sensors are such to allow accurate recording of earthquakes with moderate to strong magnitude. Due to their low cost and small size, the MEMS accelerometers may be employed for the realization of high-density seismic networks. The MEMS accelerometers could be installed inside sensitive places (high vulnerability and exposure), such as schools, hospitals, public buildings and places of worship. The waveforms recorded could be promptly used to determine ground-shaking parameters, like peak ground acceleration/velocity/displacement, Arias and Housner intensity, that could be all used to create, few seconds after a strong earthquakes, shaking maps at urban scale. These shaking maps could allow to quickly identify areas of the town center that have had the greatest earthquake resentment. When a strong seismic event occur, the beginning of the ground motion observed at the site could be used to predict the ensuing ground motion at the same site and so to realize a short term earthquake early warning system. The data acquired after a moderate magnitude earthquake, would provide valuable information for the detail seismic microzonation of the area based on direct earthquake shaking observations rather than from a model-based or indirect methods. In this work, we evaluate the feasibility and effectiveness of such seismic network taking in to account both technological, scientific and economic issues. For this purpose, we have simulated the creation of a MEMS based urban seismic network in a medium size city. For the selected town, taking into account the instrumental specifics, the array geometry and the environmental noise, we investigated the ability of the planned network to detect and measure earthquakes of different magnitude generated from realistic near seismogentic sources.

  8. Next-Generation Microshutter Arrays for Large-Format Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Kutyrev, Alexander; Brown, Ari; Li, Mary

    2012-01-01

    A next-generation microshutter array, LArge Microshutter Array (LAMA), was developed as a multi-object field selector. LAMA consists of small-scaled microshutter arrays that can be combined to form large-scale microshutter array mosaics. Microshutter actuation is accomplished via electrostatic attraction between the shutter and a counter electrode, and 2D addressing can be accomplished by applying an electrostatic potential between a row of shutters and a column, orthogonal to the row, of counter electrodes. Microelectromechanical system (MEMS) technology is used to fabricate the microshutter arrays. The main feature of the microshutter device is to use a set of standard surface micromachining processes for device fabrication. Electrostatic actuation is used to eliminate the need for macromechanical magnet actuating components. A simplified electrostatic actuation with no macro components (e.g. moving magnets) required for actuation and latching of the shutters will make the microshutter arrays robust and less prone to mechanical failure. Smaller-size individual arrays will help to increase the yield and thus reduce the cost and improve robustness of the fabrication process. Reducing the size of the individual shutter array to about one square inch and building the large-scale mosaics by tiling these smaller-size arrays would further help to reduce the cost of the device due to the higher yield of smaller devices. The LAMA development is based on prior experience acquired while developing microshutter arrays for the James Webb Space Telescope (JWST), but it will have different features. The LAMA modular design permits large-format mosaicking to cover a field of view at least 50 times larger than JWST MSA. The LAMA electrostatic, instead of magnetic, actuation enables operation cycles at least 100 times faster and a mass significantly smaller compared to JWST MSA. Also, standard surface micromachining technology will simplify the fabrication process, increasing yield and reducing cost.

  9. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  10. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  11. A broadband phased-array system for direct phosphorus and sodium metabolic MRI on a clinical scanner.

    PubMed

    Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A

    2000-02-01

    Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.

  12. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  13. Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology

    PubMed Central

    Kim, Steven; Roy, Shuvo

    2013-01-01

    Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604

  14. A Three-Dimensional Transonic, Potential Flow Computer Program, Its Conversion to IBM Fortran and Utilization

    DTIC Science & Technology

    1983-12-01

    MAIN OEG=NFGVB1.3266P //COPY PEOC EILE=, MEM = // EXEC PGM=IEBGENEB //SISPRINT DD SYSOUT=A //SYSIN DC DÖMMY //SYS0T1 DD...COE*,FILE=1, MEM =FL027 // EXEC COPY,FILE=2,HEM=A411IN // EXEC COEY,FILE=3, MEM =VWIN // EXEC COPY,FILE = 4, MEM =A411A01...EXEC C0EY,FILE=5,MEä=INTERE // EXEC COPY,FILE=6, MEM =A411PS // EXEC COEY,FILE=7, MEM =A411P1 // EXEC COPY,FILE

  15. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  16. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).

  17. Wirelessly Networked Digital Phased Array: Analysis and Development of a Phase Synchronization Concept

    DTIC Science & Technology

    2007-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and

  18. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  19. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  20. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  1. Phased Array Antenna Testbed Development at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey

    2003-01-01

    Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.

  2. MEMS reagent and sample handling procedure: Feasibility of viral antibody detection by passive immune agglutination

    NASA Technical Reports Server (NTRS)

    Bailey, G. D.; Tenoso, H. J.

    1975-01-01

    An attempt was made to develop a test requiring no preadsorption steps for the assessment of antibodies to rubella and mumps viruses using the passive immune agglutination (PIA) method. Both rubella and mumps antigens and antibodies were prepared. Direct PIA tests, using rubella antigen-coated beads, and indirect PIA tests, using rubella antibody-coated beads, were investigated. Attempts, using either method, were unsuccessful. Serum interference along with nonspecific agglutination of beads by the rubella antigen resulted in no specific response under the test conditions investigated. A new, highly sensitive approach, the enzyme immunoassay (EIA) test system, is recommended to overcome the nonspecificity. This system is a logical outgrowth of some of the solid phase work done on MEMS and represents the next generation tests system that can be directly applied to early disease detection and monitoring.

  3. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  4. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  5. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2004-12-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  6. A Phase Correction Technique Based on Spatial Movements of Antennas in Real-Time (S.M.A.R.T.) for Designing Self-Adapting Conformal Array Antennas

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    This research presents a real-time adaptive phase correction technique for flexible phased array antennas on conformal surfaces of variable shapes. Previously reported pattern correctional methods for flexible phased array antennas require prior knowledge on the possible non-planar shapes in which the array may adapt for conformal applications. For the first time, this initial requirement of shape curvature knowledge is no longer needed and the instantaneous information on the relative location of array elements is used here for developing a geometrical model based on a set of Bezier curves. Specifically, by using an array of inclinometer sensors and an adaptive phase-correctional algorithm, it has been shown that the proposed geometrical model can successfully predict different conformal orientations of a 1-by-4 antenna array in real-time without the requirement of knowing the shape-changing characteristics of the surface the array is attached upon. Moreover, the phase correction technique is validated by determining the field patterns and broadside gain of the 1-by-4 antenna array on four different conformal surfaces with multiple points of curvatures. Throughout this work, measurements are shown to agree with the analytical solutions and full-wave simulations.

  7. Real-time positioning technology in horizontal directional drilling based on magnetic gradient tensor measurement

    NASA Astrophysics Data System (ADS)

    Deng, Guoqing; Yao, Aiguo

    2017-04-01

    Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.

  8. A Phased Array Coil for Human Cardiac Imaging

    PubMed Central

    Constantinides, Chris D.; Westgate, Charles R.; O'Dell, Walter G.; Zerhouni, Elias A.; McVeigh, Elliot R.

    2007-01-01

    A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1–2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time. PMID:7674903

  9. Microwave scanning beam approach and landing system phased array antenna volume I

    DOT National Transportation Integrated Search

    1973-02-01

    The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....

  10. Microwave scanning beam approach and landing system phased array antenna : volume II

    DOT National Transportation Integrated Search

    1973-02-01

    The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....

  11. Feasibility and acceptability of a phase II randomized pharmacologic intervention for methamphetamine dependence in high-risk men who have sex with men

    PubMed Central

    Das, Moupali; Santos, Deirdre; Matheson, Tim; Santos, Glenn-Milo; Chu, Priscilla; Vittinghoff, Eric; Shoptaw, Steve; Colfax, Grant N.

    2010-01-01

    Objective To determine whether actively using, methamphetamine (meth)-dependent men who have sex with men (MSM) could be enrolled and retained in a pharmacologic intervention trial, and the degree to which participants would adhere to study procedures, including medication adherence. Study design Phase II randomized, double-blind trial of bupropion vs. placebo. Methods Thirty meth-dependent, sexually active MSM were randomized to receive daily bupropion XL 300 mg or placebo for 12 weeks. Participants received weekly substance use counseling, provided weekly urine specimens, and completed monthly audio-computer assisted self-interview (ACASI) behavioral risk assessments. Adherence was measured by medication event monitoring systems (MEMS) caps (the number of distinct MEMS cap openings divided by the number of expected doses) and self-report. Results Ninety percent completed the trial: 89% of monthly ACASIs were completed, 81% of study visits were attended, and 81% of urine samples were collected. Adherence by MEMS cap was 60% and by self-report was 81% and did not differ significantly by treatment assignment. The median number of positive urine samples was 5.5 out of a possible 11 (50%). Participants in both arms reported similar declines in the median number of sex partners (P = 0.52). No serious adverse events occurred and there were no significant differences in adverse events by treatment assignment (P = 0.11). Conclusions It is feasible to enroll and retain actively using, meth-dependent MSM in a pharmacologic intervention. Bupropion was well tolerated. Study participation and retention rates were high, however, study drug medication adherence was only moderate. Findings support a larger trial with improved adherence support to evaluate the efficacy of bupropion and other pharmacologic interventions for meth dependence in this population. PMID:20397286

  12. Spectrally resolved modal characteristics of leaky-wave-coupled quantum cascade phase-locked laser arrays

    NASA Astrophysics Data System (ADS)

    Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert

    2018-01-01

    The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.

  13. Comparison of pelvic phased-array versus endorectal coil magnetic resonance imaging at 3 Tesla for local staging of prostate cancer.

    PubMed

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang

    2012-05-01

    Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.

  14. Phase-locked laser array having a non-uniform spacing between lasing regions

    NASA Technical Reports Server (NTRS)

    Ackley, Donald E. (Inventor)

    1986-01-01

    A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.

  15. Phase and Frequency Control of Laser Arrays for Pulse Synthesis

    DTIC Science & Technology

    2015-01-02

    with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22

  16. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    PubMed Central

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  17. Shear Stress Sensing using Elastomer Micropillar Arrays

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Lin, Yi; Jackson, Allen M.; Cissoto, Alexxandra; Sheplak, Mark; Connell, John W.

    2013-01-01

    The measurement of shear stress developed as a fluid moves around a solid body is difficult to measure. Stresses at the fluid-solid interface are very small and the nature of the fluid flow is easily disturbed by introducing sensor components to the interface. To address these challenges, an array of direct and indirect techniques have been investigated with various advantages and challenges. Hot wire sensors and other indirect sensors all protrude significantly into the fluid flow. Microelectromechanical systems (MEMS) devices, although facilitating very accurate measurements, are not durable, are prone to contamination, and are difficult to implement into existing model geometries. One promising approach is the use of engineered surfaces that interact with fluid flow in a detectable manner. To this end, standard lithographic techniques have been utilized to generate elastomeric micropillar arrays of various lengths and diameters. Micropillars of controlled length and width were generated in polydimethylsiloxane (PDMS) elastomer using a soft-lithography technique. The 3D mold for micropillar replication was fabricated using laser ablative micromachining and contact lithography. Micropillar dimensions and mechanical properties were characterized and compared to shear sensing requirements. The results of this characterization as well as shear stress detection techniques will be discussed.

  18. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    PubMed

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-07-12

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  19. Micro electro-mechanical system piezoelectric cantilever array for a broadband vibration energy harvester.

    PubMed

    Chun, Inwoo; Lee, Hyun-Woo; Kwon, Kwang-Ho

    2014-12-01

    Limited energy sources of ubiquitous sensor networks (USNs) such as fuel cells and batteries have grave drawbacks such as the need for replacements and re-charging owing to their short durability and environmental pollution. Energy harvesting which is converting environmental mechanical vibration into electrical energy has been researched with some piezoelectric materials and various cantilever designs to increase the efficiency of energy-harvesting devices. In this study, we focused on an energy-harvesting cantilever with a broadband vibration frequency. We fabricated a lead zirconate titanate (PZT) cantilever array with various Si proof masses on small beams (5.5 mm x 0.5 mm x 0.5 mm). We obtained broadband resonant frequencies ranging between 127 Hz and 136 Hz using a micro electro-mechanical system (MEMS) process. In order to obtain broadband resonant characteristics, the cantilever array was comprised of six cantilevers with different resonant frequencies. We obtained an output power of about 2.461 μW at an acceleration of 0.23 g and a resistance of 4 kΩ. The measured bandwidth of the resonant frequency was approximately 9 Hz (127-136 Hz), which is about six times wider than the bandwidth of a single cantilever.

  20. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  1. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  2. Coupled-mode analysis of gain and wavelength oscillation characteristics of diode laser phased arrays

    NASA Technical Reports Server (NTRS)

    Butler, J. K.; Ettenberg, M.; Ackley, D. E.

    1985-01-01

    The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.

  3. Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Grier, David

    2004-03-01

    An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.

  4. Structure Analyses of Highly Symmetric Superstructures Formed by Rodlike Mesogen

    NASA Astrophysics Data System (ADS)

    Saito, Kazuya; Kutsumizu, Shoichi

    Process of structure determination of liquid-crystalline superstructures formed in a mesogenic series, bis(n-alkoxybenzoyl)hydrazine[BABH(n) ; n, the number of carbon atoms in the alkoxy group], is described. The chain-length (n) dependence of relative diffraction intensities from the Ia3d phase resolves the phase problem, leading to the structural description that the molecular centers are on the rods forming two interpenetrating jungle gyms. Theoretical consideration on the stability of superstructures and systematic MEM analysis reveal the coexistence of two aggregation modes (rods forming an extending jungle gym and closed sheets forming spherical shells) for the Im3m phase.

  5. Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays

    DOT National Transportation Integrated Search

    1981-06-01

    Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...

  6. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  7. Simulation and experiment for the inspection of stainless steel bolts in servicing using an ultrasonic phased array

    NASA Astrophysics Data System (ADS)

    Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun

    2015-10-01

    The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.

  8. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  9. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  10. Optical inspection of hidden MEMS structures

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  11. MEMS PolyMUMPS-Based Miniature Microphone for Directional Sound Sensing

    DTIC Science & Technology

    2007-09-01

    of the translating mode Phir=-atan((2*wr*er*w)/(wr^2-w^2));% Phase constant rocking Phit =-atan((2*wt*et*w)/(wt^2-w^2));% Phase constant translating...2.5e-6)+1 Yl(count)=8e6*(At*sin(w.*t(count)+ Phit ) + Ar*cos(w.*t(count)+Phir)); %left membrane displacement as a function of time in micrometers...Xl(count)=-(((.5)^2-Yl(count).^2).^.5); Yr(count)=8e6*(At*sin(w.*t(count)+ Phit ) - Ar*cos(w.*t(count)+Phir)); %right membrane displacement

  12. Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance.

    PubMed

    Fang, Xiang; Dong, Linxi; Zhao, Wen-Sheng; Yan, Haixia; Teh, Kwok Siong; Wang, Gaofeng

    2018-05-29

    This paper discusses the vibration-induced error in non-ideal MEMS tuning fork gyroscopes (TFGs). Ideal TFGs which are thought to be immune to vibrations do not exist, and imbalance between two gyros of TFGs is an inevitable phenomenon. Three types of fabrication imperfections (i.e., stiffness imbalance, mass imbalance, and damping imbalance) are studied, considering different imbalance radios. We focus on the coupling types of two gyros of TFGs in both drive and sense directions, and the vibration sensitivities of four TFG designs with imbalance are simulated and compared. It is found that non-ideal TFGs with two gyros coupled both in drive and sense directions (type CC TFGs) are the most insensitive to vibrations with frequencies close to the TFG operating frequencies. However, sense-axis vibrations with in-phase resonant frequencies of a coupled gyros system result in severe error outputs to TFGs with two gyros coupled in the sense direction, which is mainly attributed to the sense capacitance nonlinearity. With increasing stiffness coupled ratio of the coupled gyros system, the sensitivity to vibrations with operating frequencies is cut down, yet sensitivity to vibrations with in-phase frequencies is amplified.

  13. Target tracking and pointing for arrays of phase-locked lasers

    NASA Astrophysics Data System (ADS)

    Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis

    2016-09-01

    Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.

  14. MEMS Integrated Submount Alignment for Optoelectronics

    NASA Astrophysics Data System (ADS)

    Shakespeare, W. Jeffrey; Pearson, Raymond A.; Grenestedt, Joachim L.; Hutapea, Parsaoran; Gupta, Vikas

    2005-02-01

    One of the most expensive and time-consuming production processes for single-mode fiber-optic components is the alignment of the photonic chip or waveguide to the fiber. The alignment equipment is capital intensive and usually requires trained technicians to achieve desired results. Current technology requires active alignment since tolerances are only ~0.2 μ m or less for a typical laser diode. This is accomplished using piezoelectric actuated stages and active optical feedback. Joining technologies such as soldering, epoxy bonding, or laser welding may contribute significant postbond shift, and final coupling efficiencies are often less than 80%. This paper presents a method of adaptive optical alignment to freeze in place directly on an optical submount using a microelectromechanical system (MEMS) shape memory alloy (SMA) actuation technology. Postbond shift is eliminated since the phase change is the alignment actuation. This technology is not limited to optical alignment but can be applied to a variety of MEMS actuations, including nano-actuation and nano-alignment for biomedical applications. Experimental proof-of-concept results are discussed, and a simple analytical model is proposed to predict the stress strain behavior of the optical submount. Optical coupling efficiencies and alignment times are compared with traditional processes. The feasibility of this technique in high-volume production is discussed.

  15. Controlling initial biodegradation of magnesium by a biocompatible strontium phosphate conversion coating.

    PubMed

    Chen, X B; Nisbet, D R; Li, R W; Smith, P N; Abbott, T B; Easton, M A; Zhang, D-H; Birbilis, N

    2014-03-01

    A simple strontium phosphate (SrP) conversion coating process was developed to protect magnesium (Mg) from the initial degradation post-implantation. The coating morphology, deposition rate and resultant phases are all dependent on the processing temperature, which determines the protective ability for Mg in minimum essential medium (MEM). Coatings produced at 80 °C are primarily made up of strontium apatite (SrAp) with a granular surface, a high degree of crystallinity and the highest protective ability, which arises from retarding anodic dissolution of Mg in MEM. Following 14 days' immersion in MEM, the SrAp coating maintained its integrity with only a small fraction of the surface corroded. The post-degradation effect of uncoated Mg and Mg coated at 40 and 80 °C on the proliferation and differentiation of human mesenchymal stem cells was also studied, revealing that the SrP coatings are biocompatible and permit proliferation to a level similar to that of pure Mg. The present study suggests that the SrP conversion coating is a promising option for controlling the early rapid degradation rate, and hence hydrogen gas evolution, of Mg implants without adverse effects on surrounding cells and tissues. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Enhancing Optical Forces in InP-Based Waveguides.

    PubMed

    Aryaee Panah, Mohammad Esmail; Semenova, Elizaveta S; Lavrinenko, Andrei V

    2017-06-08

    Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.

  17. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  18. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  19. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  20. Ka-Band Multibeam Aperture Phased Array Being Developed

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Kacpura, Thomas J.

    2004-01-01

    Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.

  1. Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.

    DTIC Science & Technology

    1983-11-01

    Dereverberation Simulations ... ............ .. 96 Ŗ 4. ARRAY OPTIMIZATION ......... ...................... . 115 * 4.1 Phased Array Fundamentals... 115 4.2 Phased Array Diffraction Suboptimization ......... ... 121 , .i Page s 4.3 Diffraction Pattern Simulations of Phased Arrays...by differentiating (2.13.14) with respect to z and • -- equating equal powers of z , giving n-i c n bn + I/n kckbn-k (2.13.15)nk= This is very

  2. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    DTIC Science & Technology

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased- array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...Jul 15 4. TITLE AND SUBTITLE Ultrabroadband Phased- Array Receivers Based on Optical Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...receiver that enables us to capture and convert signals across an array using photonic modulators, routing these signals to a central location using

  3. Fabrication of Pop-up Detector Arrays on Si Wafers

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way, preparing us for the next step of the experiment, the thermal test.

  4. A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)

    DTIC Science & Technology

    2017-10-01

    TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY

  5. A phased array bread board for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Zahn, R. W.; Schmidt, E.

    The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.

  6. Development of components for an S-band phased array antenna subsystem

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.

  7. Comparison of Pelvic Phased-Array versus Endorectal Coil Magnetic Resonance Imaging at 3 Tesla for Local Staging of Prostate Cancer

    PubMed Central

    Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun

    2012-01-01

    Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999

  8. Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2000-01-01

    Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern is displayed as well.

  9. MEMS testing and applications in automotive and aerospace industries

    NASA Astrophysics Data System (ADS)

    Ma, Zhichun; Chen, Xuyuan

    2009-05-01

    MEMS technology combines micromachining and integrated circuit fabrication technologies to produce highly reliable MEMS transducers. This paper presents an overview of MEMS transducers applications, particularly in automotive and aerospace industries, which includes inertia sensors for safety, navigation, and guidance control, thermal anemometer for temperature and heat-flux sensors in engine applications, MEMS atomizers for fuel injection, and micromachined actuators for flow control applications. Design examples for the devices in above mentioned applications are also presented and test results are given.

  10. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  11. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.; hide

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.

  12. Design and Fabrication of Two-Dimensional Semiconducting Bolometer Arrays for the High Resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC-II)

    NASA Technical Reports Server (NTRS)

    Voellmer, George M.; Allen, Christine A.; Amato, Michael J.; Babu, Sachidananda R.; Bartels, Arlin E.; Benford, Dominic J.; Derro, Rebecca J.; Dowell, C. Darren; Harper, D. Al; Jhabvala, Murzy D.

    2002-01-01

    The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC II) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC 'Pop-up' Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the Caltech Submillimeter Observatory (CSO) are presented.

  13. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  14. First light from a kilometer-baseline Scintillation Auroral GPS Array.

    PubMed

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-05-28

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

  15. First light from a kilometer-baseline Scintillation Auroral GPS Array

    PubMed Central

    Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G

    2015-01-01

    We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318

  16. Construction and Initial Validation of the Multiracial Experiences Measure (MEM)

    PubMed Central

    Yoo, Hyung Chol; Jackson, Kelly; Guevarra, Rudy P.; Miller, Matthew J.; Harrington, Blair

    2015-01-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across two studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one’s social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. PMID:26460977

  17. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  18. Construction and initial validation of the Multiracial Experiences Measure (MEM).

    PubMed

    Yoo, Hyung Chol; Jackson, Kelly F; Guevarra, Rudy P; Miller, Matthew J; Harrington, Blair

    2016-03-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across 2 studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one's social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. (c) 2016 APA, all rights reserved).

  19. Concept of an interlaced phased array for beam switching

    NASA Astrophysics Data System (ADS)

    Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.

    1990-04-01

    A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.

  20. The Development of the Differential MEMS Vector Hydrophone

    PubMed Central

    Zhang, Guojun; Liu, Mengran; Shen, Nixin; Wang, Xubo; Zhang, Wendong

    2017-01-01

    To solve the problem that MEMS vector hydrophones are greatly interfered with by the vibration of the platform and flow noise in applications, this paper describes a differential MEMS vector hydrophone that could simultaneously receive acoustic signals and reject acceleration signals. Theoretical and simulation analyses have been carried out. Lastly, a prototype of the differential MEMS vector hydrophone has been created and tested using a standing wave tube and a vibration platform. The results of the test show that this hydrophone has a high sensitivity, Mv = −185 dB (@ 500 Hz, 0 dB reference 1 V/μPa), which is almost the same as the previous MEMS vector hydrophones, and has a low acceleration sensitivity, Mv = −58 dB (0 dB reference 1 V/g), which has decreased by 17 dB compared with the previous MEMS vector hydrophone. The differential MEMS vector hydrophone basically meets the requirements of acoustic vector detection when it is rigidly fixed to a working platform, which lays the foundation for engineering applications of MEMS vector hydrophones. PMID:28594384

  1. Interrogation of miniature extrinsic Fabry-Pérot sensor using path matched differential interferometer and phase generated carrier scheme

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Xie, Jiehui; Hu, Zhengliang; Xiong, Shuidong; Luo, Hong; Hu, Yongming

    2014-05-01

    Study of fiber optic extrinsic Fabry-Pérot sensors utilizing state-of-the-art MEMS technology mostly focus on sensor fabrication for various applications, while the signal interrogation is still insatiable to current application. In this paper, we propose a white light path matched differential interferometer dynamic sensing system utilizing phase generated carrier demodulation scheme. A step motor with a movable mirror and a fiber-wound piezoelectric transducer string are used to act path matching and phase modulation respectively. Experimental results show that the sensing signal could be correctly recovered with low distortion and the phase noise spectrum level is less than -100 dB re. rad/√Hz above 2.5 kHz.

  2. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  3. MEMS for pico- to micro-satellites

    NASA Astrophysics Data System (ADS)

    Shea, H. R.

    2009-02-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton telecommunication satellites. While MEMS are playing a growing role on Earth in safety-critical applications, in the harsh and remote environment of space, reliability is still the crucial issue, and the absence of an accepted qualification methodology is holding back MEMS from wider use. An overview is given of the range of MEMS applications in space. An effective way to prove that MEMS can operate reliably in space is to use them in space: we illustrate how Cubesats (1 kg, 1 liter, cubic satellites in a standardized format to reduce launch costs) can serve as low-cost vectors for MEMS technology demonstration in space. The Cubesat SwissCube developed in Switzerland is used as one example of a rapid way to fly new microtechnologies, and also as an example of a spacecraft whose performance is only possible thanks to MEMS.

  4. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  5. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  6. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    NASA Technical Reports Server (NTRS)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x < 500 mW) applications. Although the electrical characteristics of RF MEMS switches far surpass any existing technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  7. Sensing mode coupling analysis for dual-mass MEMS gyroscope and bandwidth expansion within wide-temperature range

    NASA Astrophysics Data System (ADS)

    Cao, Huiliang; Li, Hongsheng; Shao, Xingling; Liu, Zhiyu; Kou, Zhiwei; Shan, Yanhu; Shi, Yunbo; Shen, Chong; Liu, Jun

    2018-01-01

    This paper presents the bandwidth expanding method with wide-temperature range for sense mode coupling dual-mass MEMS gyro. The real sensing mode of the gyroscope is analyzed to be the superposition of in-phase and anti-phase sensing modes. The mechanical sensitivity and bandwidth of the gyroscope structure are conflicted with each other and both governed by the frequency difference between sensing and drive modes (min {Δω1, Δω2}). The sensing mode force rebalancing combs stimulation method (FRCSM) is presented to simulate the Coriolis force, and based on this method, the gyro's dynamic characteristics are tested. The sensing closed- loop controller is achieved by operational amplifier based on phase lead method, which enable the magnitude margin and phase margin of the system to reach 7.21 dB and 34.6° respectively, and the closed-loop system also expands gyro bandwidth from 13 Hz (sensing open-loop) to 102 Hz (sensing closed-loop). What's more, the turntable test results show that the sensing closed-loop works stably in wide-temperature range (from -40 °C to 60 °C) and the bandwidth values are 107 Hz @-40 °C and 97 Hz @60 °C. The results indicate that the higher temperature causes lower bandwidth, and verify the simulation results are 103 Hz @-40 °C and 98.2 Hz @60 °C. The new bottleneck of the closed loop bandwidth is the valley generated by conjugate zeros, which is formed by superposition of sensing modes.

  8. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

  9. Designing of a small wearable conformal phased array antenna for wireless communications

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.

  10. Brazilian Decimetric Array (BDA) project - Phase II

    NASA Astrophysics Data System (ADS)

    Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.

    2010-02-01

    The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.

  11. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intracavitary ultrasound phased arrays for thermal therapies

    NASA Astrophysics Data System (ADS)

    Hutchinson, Erin

    Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  13. Selected papers from the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012) (Atlanta, GA, USA, 2-5 December 2012)

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Lang, Jeffrey

    2013-11-01

    Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces required for their operation and interconnection. Clearly, the marriage of MEMS technologies and energy conversion is a vital application space; and we are pleased to bring you some of the latest results from that space in this special section. Approximately 130 papers were presented at the Power MEMS 2012 conference. From these, the 20 papers you have before you were selected based on paper quality and topical balance. As you can see, papers representing many of the important areas of power MEMS are included: energy harvesters using multiple transduction schemes; MEMS-based fabrication of compact passive elements (inductors, supercapacitors, transformers); MEMS-enabled power diagnostics; MEMS-based batteries; and low power circuitry adapted to interfacing MEMS-based harvesters to overall systems. All of the papers you will read in this special section comprise substantial expansion from the proceedings articles and were reviewed through JMM's normal reviewing process. Both Professor Lang and I hope that you will share our enthusiasm for the field of power MEMS and that you will find this special section of JMM exciting, interesting and useful.  Sincerely,  Mark G Allen

  14. Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.

    2016-11-01

    Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.

  15. An Agile Beam Transmit Array Using Coupled Oscillator Phase Control

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme

    1993-01-01

    A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.

  16. The 18 mm[superscript 2] Laboratory: Teaching MEMS Development with the SUMMiT Foundry Process

    ERIC Educational Resources Information Center

    Dallas, T.; Berg, J. M.; Gale, R. O.

    2012-01-01

    This paper describes the goals, pedagogical system, and educational outcomes of a three-semester curriculum in microelectromechanical systems (MEMS). The sequence takes engineering students with no formal MEMS training and gives them the skills to participate in cutting-edge MEMS research and development. The evolution of the curriculum from…

  17. Electrostatic MEMS devices with high reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  18. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  19. Surface chemistry and tribology of MEMS.

    PubMed

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  20. JPRS Report. East Europe: Reference Aid, Abbreviations and Acronyms Used in the Bulgarian Press

    DTIC Science & Technology

    1990-10-25

    MHcneKUHfl 3a atprcaBeH TeXHHMeCKH KOHTpOJl ME MHTepHaUHOHaJIHH eflHHHUH MEMM M3BeCTHH Ha ETHOrpa<I>CKHfl HHCTHTyT c My3efi MEM ...HapofleH mezhdunar. international MEM MaillHHHO-eJieKTpOTeXHHHeCKH HHCTHTyT ME I Machine-Electrical Engineering Institute MEM MOCKOBCKH... MEM MHHHCTepCTBO Ha eJieKTpH$HKaUHHTa H MejiHopauHHTe MEM Ministry of Electrification and Land Reclamation (obs) 165 Menpo-Bajinpo

  1. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  2. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  3. A novel MEMS inertial switch with a reinforcing rib structure and electrostatic power assist to prolong the contact time

    NASA Astrophysics Data System (ADS)

    Li, Jian; Wang, Yan; Yang, Zhuoqing; Ding, Guifu; Zhao, Xiaolin; Wang, Hong

    2018-03-01

    The MEMS inertial switch is widely used in various industries owing to its advantage of small size, high integration, low power consumption and low costs, especially in the timing of Internet of things, such as toys, handheld devices, accessories and vibration testing. This paper provided a novel inertial switch with a reinforcing rib structure and electrostatic power assist. The designed inertial switch can reduce the complexity of the post-processing circuit and broaden its application prospect. The continuous electrostatic force can extend the contact time of the designed inertia switch before the leakage of electricity ends. The moving electrode with a reinforcing rib structure can effectively restrain the bending of the lower surface of moving electrode caused by residual stress. The array-type fixed electrode can ensure stable contact between the electrodes when the device is sensitive to external shocks. The dynamic displacement-time curve can be simulated by the COMSOL finite element simulation software. The laminated plating process is used to produce the designed inertial switch and the drop hammer acceleration monitoring system is used to test the fabricated device. The results indicate that, compared with the traditional design, the bouncing phenomenon can be prevented and extend the contact time to 336μs.

  4. Development of microarray device for functional evaluation of PC12D cell axonal extension ability

    NASA Astrophysics Data System (ADS)

    Nakamachi, Eiji; Yanagimoto, Junpei; Murakami, Shinya; Morita, Yusuke

    2014-04-01

    In this study, we developed a microarray bio-MEMS device that could trap PC12D (rat pheochromocytoma cells) cells to examine the intercellular interaction effect on the cell activation and the axonal extension ability. This is needed to assign particular patterns of PC12D cells to establish a cell functional evaluation technique. This experimental observation-based technique can be used for design of the cell sheet and scaffold for peripheral and central nerve regeneration. We have fabricated a micropillar-array bio-MEMS device, whose diameter was approximately 10 μm, by using thick photoresist SU-8 on the glass slide substrate. A maximum trapped PC12D cell ratio, 48.5%, was achieved. Through experimental observation of patterned PC12D "bi-cells" activation, we obtained the following results. Most of the PC12D "bi-cells" which had distances between 40 and 100 μm were connected after 24 h with a high probability. On the other hand, "bi-cells" which had distances between 110 and 200 μm were not connected. In addition, we measured axonal extension velocities in cases where the intercellular distance was between 40 and 100 μm. A maximum axonal extension velocity, 86.4 μm/h, was obtained at the intercellular distance of 40 μm.

  5. Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array

    NASA Astrophysics Data System (ADS)

    O'Neill, William J.

    This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.

  6. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  7. MEMS-based, RF-driven, compact accelerators

    NASA Astrophysics Data System (ADS)

    Persaud, A.; Seidl, P. A.; Ji, Q.; Breinyn, I.; Waldron, W. L.; Schenkel, T.; Vinayakumar, K. B.; Ni, D.; Lal, A.

    2017-10-01

    Shrinking existing accelerators in size can reduce their cost by orders of magnitude. Furthermore, by using radio frequency (RF) technology and accelerating ions in several stages, the applied voltages can be kept low paving the way to new ion beam applications. We make use of the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and have previously shown the implementation of its basic components using printed circuit boards, thereby reducing the size of earlier MEQALACs by an order of magnitude. We now demonstrate the combined integration of these components to form a basic accelerator structure, including an initial beam-matching section. In this presentation, we will discuss the results from the integrated multi-beam ion accelerator and also ion acceleration using RF voltages generated on-board. Furthermore, we will show results from Micro-Electro-Mechanical Systems (MEMS) fabricated focusing wafers, which can shrink the dimension of the system to the sub-mm regime and lead to cheaper fabrication. Based on these proof-of-concept results we outline a scaling path to high beam power for applications in plasma heating in magnetized target fusion and in neutral beam injectors for future Tokamaks. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC02-05CH11231.

  8. Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.

    PubMed

    Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T

    2013-05-10

    We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.

  9. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  10. A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays

    PubMed Central

    Hughes, Alec; Hynynen, Kullervo

    2016-01-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323

  11. A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.

    PubMed

    Hughes, Alec; Hynynen, Kullervo

    2016-12-01

    Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.

  12. Large Phased Array Radar Using Networked Small Parabolic Reflectors

    NASA Technical Reports Server (NTRS)

    Amoozegar, Farid

    2006-01-01

    Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.

  13. Optimized micromirror arrays for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M. Adrian

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive optics. {copyright} {ital 1999 American Institute of Physics.}« less

  14. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical bio-sensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  15. Plasma Enhanced Growth of Carbon Nanotubes For Ultrasensitive Biosensors

    NASA Technical Reports Server (NTRS)

    Cassell, Alan M.; Li, J.; Ye, Q.; Koehne, J.; Chen, H.; Meyyappan, M.

    2004-01-01

    The multitude of considerations facing nanostructure growth and integration lends itself to combinatorial optimization approaches. Rapid optimization becomes even more important with wafer-scale growth and integration processes. Here we discuss methodology for developing plasma enhanced CVD growth techniques for achieving individual, vertically aligned carbon nanostructures that show excellent properties as ultrasensitive electrodes for nucleic acid detection. We utilize high throughput strategies for optimizing the upstream and downstream processing and integration of carbon nanotube electrodes as functional elements in various device types. An overview of ultrasensitive carbon nanotube based sensor arrays for electrochemical biosensing applications and the high throughput methodology utilized to combine novel electrode technology with conventional MEMS processing will be presented.

  16. The Potential of Phased Arrays for Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Pogorzelski, Ronald J.

    2000-01-01

    Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable many of the planetary missions discussed in this paper and significantly broaden the telecommunications capabilities available to the mission designers of the future.

  17. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  18. High Rate User Ka-Band Phased Array Antenna Test Results

    NASA Technical Reports Server (NTRS)

    Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)

    2001-01-01

    The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.

  19. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  20. Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions

    NASA Astrophysics Data System (ADS)

    Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob

    2012-01-01

    For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.

  1. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  2. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  3. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.

    PiMEMS Inc. (Santa Barbara, CA) in collaboration with ORNL investigated the use of Titanium Bonded Graphite Foam Composites (TBGC) for thermal mitigation in Micro Electronic Mechanical Systems (MEMS) applications. Also considered were potentially new additive manufacturing routes to producing novel high surface area micro features and diverse shaped heat transfer components for numerous lightweight MEMs applications.

  4. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  5. Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.

    2013-01-01

    The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.

  6. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  7. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  8. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  9. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage

    PubMed Central

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-01-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications. PMID:26347583

  10. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  11. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  12. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  13. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  14. Ku-Band Traveling Wave Slot Array Using Simple Scanning Control

    NASA Technical Reports Server (NTRS)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.

    2015-01-01

    This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.

  15. Large improvement of the electrical impedance of imaging and high-intensity focused ultrasound (HIFU) phased arrays using multilayer piezoelectric ceramics coupled in lateral mode.

    PubMed

    Song, Junho; Lucht, Benjamin; Hynynen, Kullervo

    2012-07-01

    With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.

  16. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  17. Phase-locked laser array through global antenna mutual coupling

    DOE PAGES

    Kao, Tsung -Yu; Reno, John L.; Hu, Qing

    2016-01-01

    Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less

  18. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  19. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control variousmore » aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.« less

  20. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

Top