Sample records for mems spatial light

  1. Design and fabrication of reflective spatial light modulator for high-dynamic-range wavefront control

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Bierden, Paul; Cornelissen, Steven; Bifano, Thomas; Kim, Jin-Hong

    2004-10-01

    This paper describes design and fabrication of a microelectromechanical metal spatial light modulator (SLM) integrated with complementary metal-oxide semiconductor (CMOS) electronics, for high-dynamic-range wavefront control. The metal SLM consists of a large array of piston-motion MEMS mirror segments (pixels) which can deflect up to 0.78 µm each. Both 32x32 and 150x150 arrays of the actuators (1024 and 22500 elements respectively) were fabricated onto the CMOS driver electronics and individual pixels were addressed. A new process has been developed to reduce the topography during the metal MEMS processing to fabricate mirror pixels with improved optical quality.

  2. Color image generation for screen-scanning holographic display.

    PubMed

    Takaki, Yasuhiro; Matsumoto, Yuji; Nakajima, Tatsumi

    2015-10-19

    Horizontally scanning holography using a microelectromechanical system spatial light modulator (MEMS-SLM) can provide reconstructed images with an enlarged screen size and an increased viewing zone angle. Herein, we propose techniques to enable color image generation for a screen-scanning display system employing a single MEMS-SLM. Higher-order diffraction components generated by the MEMS-SLM for R, G, and B laser lights were coupled by providing proper illumination angles on the MEMS-SLM for each color. An error diffusion technique to binarize the hologram patterns was developed, in which the error diffusion directions were determined for each color. Color reconstructed images with a screen size of 6.2 in. and a viewing zone angle of 10.2° were generated at a frame rate of 30 Hz.

  3. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit

    DOE PAGES

    Pooser, Raphael C.; Lawrie, Benjamin J.

    2015-04-23

    The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics belowmore » this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.« less

  4. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pooser, Raphael C.; Lawrie, Benjamin J.

    The displacement of micro-electro-mechanical-systems (MEMs) cantilevers is used to measure a variety of phe- nomena in devices ranging from force microscopes for single spin detection[1] to biochemical sensors[2] to un- cooled thermal imaging systems[3]. The displacement readout is often performed optically with segmented de- tectors or interference measurements. Until recently, var- ious noise sources have limited the minimum detectable displacement in MEMs systems, but it is now possible to minimize all other sources[4] so that the noise level of the coherent light eld, called the shot noise limit (SNL), becomes the dominant source. Light sources dis- playing quantum-enhanced statistics belowmore » this limit are available[5, 6], with applications in gravitational wave astronomy[7] and bioimaging[8], but direct displacement measurements of MEMS cantilevers below the SNL have been impossible until now. Here, we demonstrate the rst direct measurement of a MEMs cantilever displace- ment with sub-SNL sensitivity, thus enabling ultratrace sensing, imaging, and microscopy applications. By com- bining multi-spatial-mode quantum light sources with a simple dierential measurement, we show that sub-SNL MEMs displacement sensitivity is highly accessible com- pared to previous eorts that measured the displacement of macroscopic mirrors with very distinct spatial struc- tures crafted with multiple optical parametric ampliers and locking loops[9]. We apply this technique to a com- mercially available microcantilever in order to detect dis- placements 60% below the SNL at frequencies where the microcantilever is shot-noise-limited. These results sup- port a new class of quantum MEMS sensor whose ulti- mate signal to noise ratio is determined by the correla- tions possible in quantum optics systems.« less

  5. Diffraction-Based Optical Switching with MEMS

    DOE PAGES

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin; ...

    2017-04-19

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  6. Diffraction-Based Optical Switching with MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanche, Pierre-Alexandre; LaComb, Lloyd; Wang, Youmin

    In this article, we are presenting an overview of MEMS-based (Micro-Electro-Mechanical System) optical switch technology starting from the reflective two-dimensional (2D) and three-dimensional (3D) MEMS implementations. To further increase the speed of the MEMS from these devices, the mirror size needs to be reduced. Small mirror size prevents efficient reflection but favors a diffraction-based approach. Two implementations have been demonstrated, one using the Texas Instruments DLP (Digital Light Processing), and the other an LCoS-based (Liquid Crystal on Silicon) SLM (Spatial Light Modulator). These switches demonstrated the benefit of diffraction, by independently achieving high speed, efficiency, and high number of ports.more » We also demonstrated for the first time that PSK (Phase Shift Keying) modulation format can be used with diffraction-based devices. To be truly effective in diffraction mode, the MEMS pixels should modulate the phase of the incident light. We are presenting our past and current efforts to manufacture a new type of MEMS where the pixels are moving in the vertical direction. The original structure is a 32 x 32 phase modulator array with high contrast grating pixels, and we are introducing a new sub-wavelength linear array capable of a 310 kHz modulation rate« less

  7. High-power visible laser effect on a Boston Micromachines' MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Norton, Andrew; Gavel, Donald; Dillon, Daren; Cornelissen, Steven

    2010-07-01

    Continuous-facesheet and segmented Boston Micromachines Corporations' (BMC) Micro-Electrical Mechanical Systems (MEMS) Deformable Mirrors (DM) have been tested for their response to high-power visible-wavelength laser light. The deformable mirrors, coated with either protected silver or bare aluminum, were subjected to a maximum of 2 Watt laser-light at a wavelength of 532 nanometers. The laser light was incident on a ~ 3.5×3.5 cm area for time periods from minutes to 7 continuous hours. Spot heating from the laser-light is measured to induce a local bulge in the surface of each DM. For the aluminum-coated continuous facesheet DM, the induced spot heating changes the surface figure by 16 nm rms. The silver-coated continuous-facesheet and segmented (spatial light modulator) DMs experience a 6 and 8 nm surface rms change in surface quality with the laser at 2 Watts. For spatial frequencies less than the actuator spacing (300 mm), the laser induced surface bulge is shown to be removable, as the DMs continued to be fully functional during and after their exposure. Over the full 10 mm aperture one could expect the same results with a 15 Watt laser guide star (LGS). These results are very promising for use of the MEMS DM to pre-correct the outgoing laser light in the Laboratory for Adaptive Optics' (LAO) laser uplink application.

  8. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability.

    PubMed

    Morrison, Jessica; Imboden, Matthias; Little, Thomas D C; Bishop, D J

    2015-04-06

    MEMS micromirrors have proven to be very important optical devices with applications ranging from steerable mirrors for switches and cross-connects to spatial light modulators for correcting optical distortions. Usually beam steering and focusing are done with different MEMS devices and tilt angles in excess of 10 degrees are seldom obtained. Here we describe a single MEMS device that combines tip/tilt, piston mode and varifocal capability into a single, low cost device with very large tilt angles. Our device consists of a 400 micron diameter mirror driven with thermal bimorphs. We have demonstrated deflection angles of ± 40 degrees along both axes, a tunable focal length which varies between -0.48 mm to + 20.5 mm and a piston mode range of 300 microns - four separately controllable degrees of freedom in a single device. Potential applications range from smart lighting to optical switches and devices for telecom systems.

  9. MEMS-based tunable gratings and their applications

    NASA Astrophysics Data System (ADS)

    Yu, Yiting; Yuan, Weizheng; Qiao, Dayong

    2015-03-01

    The marriage of optics and MEMS has resulted in a new category of optical devices and systems that have unprecedented advantages compared with their traditional counterparts. As an important spatial light modulating technology, diffractive optical MEMS obtains a wide variety of successful commercial applications, e.g. projection displays, optical communication and spectral analysis, due to its features of highly compact, low-cost, IC-compatible, excellent performance, and providing possibilities for developing totally new, yet smart devices and systems. Three most successful MEMS diffraction gratings (GLVs, Polychromator and DMDs) are briefly introduced and their potential applications are analyzed. Then, three different MEMS tunable gratings developed by our group, named as micro programmable blazed gratings (μPBGs) and micro pitch-tunable gratings (μPTGs) working in either digital or analog mode, are demonstrated. The strategies to largely enhance the maximum blazed angle and grating period are described. Some preliminary application explorations based on the developed grating devices are also shown. For our ongoing research focus, we will further improve the device performance to meet the engineering application requirements.

  10. AOSLO: from benchtop to clinic

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin

    2006-08-01

    We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.

  11. Table screen 360-degree holographic display using circular viewing-zone scanning.

    PubMed

    Inoue, Tatsuaki; Takaki, Yasuhiro

    2015-03-09

    A table screen 360-degree holographic display is proposed, with an increased screen size, having an expanded viewing zone over all horizontal directions around the table screen. It consists of a microelectromechanical systems spatial light modulator (MEMS SLM), a magnifying imaging system, and a rotating screen. The MEMS SLM generates hologram patterns at a high frame rate, the magnifying imaging system increases the screen of the MEMS SLM, and the reduced viewing zones are scanned circularly by the rotating screen. The viewing zones are localized to practically realize wavefront reconstruction. An experimental system has been constructed. The generation of 360-degree three-dimensional (3D) images was achieved by scanning 800 reduced and localized viewing zones circularly. The table screen had a diameter of 100 mm, and the frame rate of 3D image generation was 28.4 Hz.

  12. Localization Accuracy of Distributed Inverse Solutions for Electric and Magnetic Source Imaging of Interictal Epileptic Discharges in Patients with Focal Epilepsy.

    PubMed

    Heers, Marcel; Chowdhury, Rasheda A; Hedrich, Tanguy; Dubeau, François; Hall, Jeffery A; Lina, Jean-Marc; Grova, Christophe; Kobayashi, Eliane

    2016-01-01

    Distributed inverse solutions aim to realistically reconstruct the origin of interictal epileptic discharges (IEDs) from noninvasively recorded electroencephalography (EEG) and magnetoencephalography (MEG) signals. Our aim was to compare the performance of different distributed inverse solutions in localizing IEDs: coherent maximum entropy on the mean (cMEM), hierarchical Bayesian implementations of independent identically distributed sources (IID, minimum norm prior) and spatially coherent sources (COH, spatial smoothness prior). Source maxima (i.e., the vertex with the maximum source amplitude) of IEDs in 14 EEG and 19 MEG studies from 15 patients with focal epilepsy were analyzed. We visually compared their concordance with intracranial EEG (iEEG) based on 17 cortical regions of interest and their spatial dispersion around source maxima. Magnetic source imaging (MSI) maxima from cMEM were most often confirmed by iEEG (cMEM: 14/19, COH: 9/19, IID: 8/19 studies). COH electric source imaging (ESI) maxima co-localized best with iEEG (cMEM: 8/14, COH: 11/14, IID: 10/14 studies). In addition, cMEM was less spatially spread than COH and IID for ESI and MSI (p < 0.001 Bonferroni-corrected post hoc t test). Highest positive predictive values for cortical regions with IEDs in iEEG could be obtained with cMEM for MSI and with COH for ESI. Additional realistic EEG/MEG simulations confirmed our findings. Accurate spatially extended sources, as found in cMEM (ESI and MSI) and COH (ESI) are desirable for source imaging of IEDs because this might influence surgical decision. Our simulations suggest that COH and IID overestimate the spatial extent of the generators compared to cMEM.

  13. A multi-conjugate adaptive optics testbed using two MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2011-03-01

    Adaptive optics (AO) systems are well demonstrated in the literature with both laboratory and real-world systems being developed. Some of these systems have employed MEMS deformable mirrors as their active corrective element. More recent work in AO for astronomical applications has focused on providing correction in more than one conjugate plane. Additionally, horizontal path AO systems are exploring correction in multiple conjugate planes. This provides challenges for a laboratory system as the aberrations need to be generated and corrected in more than one plane in the optical system. Our work with compact AO systems employing MEMS technology in addition to liquid crystal spatial light modulator (SLM) driven aberration generators has been scaled up to a two conjugate plane testbed. Using two SLM based aberration generators and two separate wavefront sensors, the system can apply correction with two MEMS deformable mirrors. The challenges in such a system are to properly match non-identical components and weight the correction algorithm for correcting in two planes. This paper demonstrates preliminary results and analysis with this system with wavefront data and residual error measurements.

  14. Resonant Magnetic Field Sensors Based On MEMS Technology.

    PubMed

    Herrera-May, Agustín L; Aguilera-Cortés, Luz A; García-Ramírez, Pedro J; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration.

  15. Resonant Magnetic Field Sensors Based On MEMS Technology

    PubMed Central

    Herrera-May, Agustín L.; Aguilera-Cortés, Luz A.; García-Ramírez, Pedro J.; Manjarrez, Elías

    2009-01-01

    Microelectromechanical systems (MEMS) technology allows the integration of magnetic field sensors with electronic components, which presents important advantages such as small size, light weight, minimum power consumption, low cost, better sensitivity and high resolution. We present a discussion and review of resonant magnetic field sensors based on MEMS technology. In practice, these sensors exploit the Lorentz force in order to detect external magnetic fields through the displacement of resonant structures, which are measured with optical, capacitive, and piezoresistive sensing techniques. From these, the optical sensing presents immunity to electromagnetic interference (EMI) and reduces the read-out electronic complexity. Moreover, piezoresistive sensing requires an easy fabrication process as well as a standard packaging. A description of the operation mechanisms, advantages and drawbacks of each sensor is considered. MEMS magnetic field sensors are a potential alternative for numerous applications, including the automotive industry, military, medical, telecommunications, oceanographic, spatial, and environment science. In addition, future markets will need the development of several sensors on a single chip for measuring different parameters such as the magnetic field, pressure, temperature and acceleration. PMID:22408480

  16. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  17. Holographic memory using beam steering

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Hanan, Jay C. (Inventor); Reyes, George F. (Inventor); Zhou, Hanying (Inventor)

    2006-01-01

    A method, apparatus, and system provide the ability for storing holograms at high speed. A single laser diode emits a collimated laser beam to both write to and read from a photorefractice crystal. One or more liquid crystal beam steering spatial light modulators (BSSLMs) or Micro-Electro-Mechanical Systems (MEMS) mirrors steer a reference beam, split from the collimated laser beam, at high speed to the photorefractive crystal.

  18. Viewing-zone scanning holographic display using a MEMS spatial light modulator.

    PubMed

    Takaki, Yasuhiro; Fujii, Keisuke

    2014-10-06

    Horizontally scanning holography using a spatial light modulator based on microelectromechanical system, which we previously proposed for enlarging both the screen size and the viewing zone, utilized a screen scanning system with elementary holograms being scanned horizontally on the screen. In this study, to enlarge the screen size and the viewing zone, we propose a viewing-zone scanning system with enlarged hologram screen and horizontally scanned reduced viewing zone. The reduced viewing zone is localized using converging light emitted from the screen, and the entire screen can be viewed from the localized viewing zone. An experimental system was constructed, and we demonstrated the generation of reconstructed images with a screen size of 2.0 in, a viewing zone width of 437 mm at a distance of 600 mm from the screen, and a frame rate of 60 Hz.

  19. Advanced adaptive optics technology development

    NASA Astrophysics Data System (ADS)

    Olivier, Scot S.

    2002-02-01

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  20. Using two MEMS deformable mirrors in an adaptive optics test bed for multiconjugate correction

    NASA Astrophysics Data System (ADS)

    Andrews, Jonathan R.; Martinez, Ty; Teare, Scott W.; Restaino, Sergio R.; Wilcox, Christopher C.; Santiago, Freddie; Payne, Don M.

    2010-02-01

    Adaptive optics systems have advanced considerably over the past decade and have become common tools for optical engineers. The most recent advances in adaptive optics technology have lead to significant reductions in the cost of most of the key components. Most significantly, the cost of deformable elements and wavefront sensor components have dropped to the point where multiple deformable mirrors and Shack- Hartmann array based wavefront sensor cameras can be included in a single system. Matched with the appropriate hardware and software, formidable systems can be operating in nearly any sized research laboratory. The significant advancement of MEMS deformable mirrors has made them very popular for use as the active corrective element in multi-conjugate adaptive optics systems so that, in particular for astronomical applications, this allows correction in more than one plane. The NRL compact AO system and atmospheric simulation systems has now been expanded to support Multi Conjugate Adaptive Optics (MCAO), taking advantage of using the liquid crystal spatial light modulator (SLM) driven aberration generators in two conjugate planes that are well separated spatially. Thus, by using two SLM based aberration generators and two separate wavefront sensors, the system can measure and apply wavefront correction with two MEMS deformable mirrors. This paper describes the multi-conjugate adaptive optics system and the testing and calibration of the system and demonstrates preliminary results with this system.

  1. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  2. Dynamic metasurface lens based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Roy, Tapashree; Zhang, Shuyan; Jung, Il Woong; Troccoli, Mariano; Capasso, Federico; Lopez, Daniel

    2018-02-01

    In the recent years, metasurfaces, being flat and lightweight, have been designed to replace bulky optical components with various functions. We demonstrate a monolithic Micro-Electro-Mechanical System (MEMS) integrated with a metasurface-based flat lens that focuses light in the mid-infrared spectrum. A two-dimensional scanning MEMS platform controls the angle of the lens along two orthogonal axes by ±9°, thus enabling dynamic beam steering. The device could be used to compensate for off-axis incident light and thus correct for aberrations such as coma. We show that for low angular displacements, the integrated lens-on-MEMS system does not affect the mechanical performance of the MEMS actuators and preserves the focused beam profile as well as the measured full width at half maximum. We envision a new class of flat optical devices with active control provided by the combination of metasurfaces and MEMS for a wide range of applications, such as miniaturized MEMS-based microscope systems, LIDAR scanners, and projection systems.

  3. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics.

    PubMed

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-30

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-microm-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r(0) =10-15 cm. The MEMS when solitary suffered saturation approximately 4% of the time. Simulating a woofer DM with approximately 5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  4. Application of SPM interferometry in MEMS vibration measurement

    NASA Astrophysics Data System (ADS)

    Tang, Chaowei; He, Guotian; Xu, Changbiao; Zhao, Lijuan; Hu, Jun

    2007-12-01

    The resonant frequency measurement of cantilever has an important position in MEMS(Micro Electro Mechanical Systems) research. Meanwhile the SPM interferometry is a high-precision optical measurement technique, which can be used in physical quantity measurement of vibration, displacement, surface profile. Hence, in this paper we propose to apply SPM(SPM) interferometry in measuring the vibration of MEMS cantilever and in the experiment the vibration of MEMS cantilever was driven by light source. Then this kind of vibration was measured in nm precision. Finally the relational characteristics of MEMS cantilever vibration under optical excitation can be gotten and the measurement principle is analyzed. This method eliminates the influence on the measuring precision caused by external interference and light intensity change through feedback control loop. Experiment results prove that this measurement method has a good effect.

  5. Portable, stand-off spectral imaging camera for detection of effluents and residues

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; St. Peter, Benjamin; Grot, Jonathan; Kogan, Michael; Fox, Marsha; Vujkovic-Cvijin, Pajo; Penny, Ryan; Cline, Jason

    2015-06-01

    A new, compact and portable spectral imaging camera, employing a MEMs-based encoded imaging approach, has been built and demonstrated for detection of hazardous contaminants including gaseous effluents and solid-liquid residues on surfaces. The camera is called the Thermal infrared Reconfigurable Analysis Camera for Effluents and Residues (TRACER). TRACER operates in the long wave infrared and has the potential to detect a wide variety of materials with characteristic spectral signatures in that region. The 30 lb. camera is tripod mounted and battery powered. A touch screen control panel provides a simple user interface for most operations. The MEMS spatial light modulator is a Texas Instruments Digital Microarray Array with custom electronics and firmware control. Simultaneous 1D-spatial and 1Dspectral dimensions are collected, with the second spatial dimension obtained by scanning the internal spectrometer slit. The sensor can be configured to collect data in several modes including full hyperspectral imagery using Hadamard multiplexing, panchromatic thermal imagery, and chemical-specific contrast imagery, switched with simple user commands. Matched filters and other analog filters can be generated internally on-the-fly and applied in hardware, substantially reducing detection time and improving SNR over HSI software processing, while reducing storage requirements. Results of preliminary instrument evaluation and measurements of flame exhaust are presented.

  6. MEG-EEG Information Fusion and Electromagnetic Source Imaging: From Theory to Clinical Application in Epilepsy.

    PubMed

    Chowdhury, Rasheda Arman; Zerouali, Younes; Hedrich, Tanguy; Heers, Marcel; Kobayashi, Eliane; Lina, Jean-Marc; Grova, Christophe

    2015-11-01

    The purpose of this study is to develop and quantitatively assess whether fusion of EEG and MEG (MEEG) data within the maximum entropy on the mean (MEM) framework increases the spatial accuracy of source localization, by yielding better recovery of the spatial extent and propagation pathway of the underlying generators of inter-ictal epileptic discharges (IEDs). The key element in this study is the integration of the complementary information from EEG and MEG data within the MEM framework. MEEG was compared with EEG and MEG when localizing single transient IEDs. The fusion approach was evaluated using realistic simulation models involving one or two spatially extended sources mimicking propagation patterns of IEDs. We also assessed the impact of the number of EEG electrodes required for an efficient EEG-MEG fusion. MEM was compared with minimum norm estimate, dynamic statistical parametric mapping, and standardized low-resolution electromagnetic tomography. The fusion approach was finally assessed on real epileptic data recorded from two patients showing IEDs simultaneously in EEG and MEG. Overall the localization of MEEG data using MEM provided better recovery of the source spatial extent, more sensitivity to the source depth and more accurate detection of the onset and propagation of IEDs than EEG or MEG alone. MEM was more accurate than the other methods. MEEG proved more robust than EEG and MEG for single IED localization in low signal-to-noise ratio conditions. We also showed that only few EEG electrodes are required to bring additional relevant information to MEG during MEM fusion.

  7. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.

    PubMed

    Baranec, Christoph; Dekany, Richard

    2008-10-01

    We introduce a Shack-Hartmann wavefront sensor for adaptive optics that enables dynamic control of the spatial sampling of an incoming wavefront using a segmented mirror microelectrical mechanical systems (MEMS) device. Unlike a conventional lenslet array, subapertures are defined by either segments or groups of segments of a mirror array, with the ability to change spatial pupil sampling arbitrarily by redefining the segment grouping. Control over the spatial sampling of the wavefront allows for the minimization of wavefront reconstruction error for different intensities of guide source and different atmospheric conditions, which in turn maximizes an adaptive optics system's delivered Strehl ratio. Requirements for the MEMS devices needed in this Shack-Hartmann wavefront sensor are also presented.

  8. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2003-04-08

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  9. Microelectromechanical apparatus for elevating and tilting a platform

    DOEpatents

    Miller, Samuel Lee; McWhorter, Paul Jackson; Rodgers, Murray Steven; Sniegowski, Jeffry J.; Barnes, Stephen M.

    2004-07-06

    A microelectromechanical (MEM) apparatus is disclosed which has a platform that can be elevated above a substrate and tilted at an arbitrary angle using a plurality of flexible members which support the platform and control its movement. Each flexible member is further controlled by one or more MEM actuators which act to bend the flexible member. The MEM actuators can be electrostatic comb actuators or vertical zip actuators, or a combination thereof. The MEM apparatus can include a mirror coating to form a programmable mirror for redirecting or switching one or more light beams for use in a projection display. The MEM apparatus with-the mirror coating also has applications for switching light beams between optical fibers for use in a local area fiber optic network, or for use in fiber optic telecommunications or data communications systems.

  10. Wavelength specific excitation of gold nanoparticle thin-films

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas M.; James, Kurtis T.; Beharic, Jasmin; Moiseeva, Evgeniya V.; Keynton, Robert S.; O'Toole, Martin G.; Harnett, Cindy K.

    2014-01-01

    Advances in microelectromechanical systems (MEMS) continue to empower researchers with the ability to sense and actuate at the micro scale. Thermally driven MEMS components are often used for their rapid response and ability to apply relatively high forces. However, thermally driven MEMS often have high power consumption and require physical wiring to the device. This work demonstrates a basis for designing light-powered MEMS with a wavelength specific response. This is accomplished by patterning surface regions with a thin film containing gold nanoparticles that are tuned to have an absorption peak at a particular wavelength. The heating behavior of these patterned surfaces is selected by the wavelength of laser directed at the sample. This method also eliminates the need for wires to power a device. The results demonstrate that gold nanoparticle films are effective wavelength-selective absorbers. This "hybrid" of infrared absorbent gold nanoparticles and MEMS fabrication technology has potential applications in light-actuated switches and other mechanical structures that must bend at specific regions. Deposition methods and surface chemistry will be integrated with three-dimensional MEMS structures in the next phase of this work. The long-term goal of this project is a system of light-powered microactuators for exploring cellular responses to mechanical stimuli, increasing our fundamental understanding of tissue response to everyday mechanical stresses at the molecular level.

  11. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  12. Apparatus and method for sensing motion in a microelectro-mechanical system

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    1999-01-01

    An apparatus and method are disclosed for optically sensing motion in a microelectromechanical system (also termed a MEMS device) formed by surface micromachining or LIGA. The apparatus operates by reflecting or scattering a light beam off a corrugated surface (e.g. gear teeth or a reference feature) of a moveable member (e.g. a gear, rack or linkage) within the MEMS device and detecting the reflected or scattered light. The apparatus can be used to characterize a MEMS device, measuring one or more performance characteristic such as spring and damping coefficients, torque and friction, or uniformity of motion of the moveable member. The apparatus can also be used to determine the direction and extent of motion of the moveable member; or to determine a particular mechanical state that a MEMS device is in. Finally, the apparatus and method can be used for providing feedback to the MEMS device to improve performance and reliability.

  13. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  14. DMD: a digital light processing application to projection displays

    NASA Astrophysics Data System (ADS)

    Feather, Gary A.

    1989-01-01

    Summary Revolutionary technologies achieve rapid product and subsequent business diffusion only when the in- ventors focus on technology application, maturation, and proliferation. A revolutionary technology is emerg- ing with micro-electromechanical systems (MEMS). MEMS are being developed by leveraging mature semi- conductor processing coupled with mechanical systems into complete, integrated, useful systems. The digital micromirror device (DMD), a Texas Instruments invented MEMS, has focused on its application to projec- tion displays. The DMD has demonstrated its application as a digital light processor, processing and produc- ing compelling computer and video projection displays. This tutorial discusses requirements in the projection display market and the potential solutions offered by this digital light processing system. The seminar in- cludes an evaluation of the market, system needs, design, fabrication, application, and performance results of a system using digital light processing solutions.

  15. Modular packaging concept for MEMS and MOEMS

    NASA Astrophysics Data System (ADS)

    Stenchly, Vanessa; Reinert, Wolfgang; Quenzer, Hans-Joachim

    2017-11-01

    Wherever technical systems detect objects in their environment or interact with people, optical devices may play an important role. Light can be relatively easily produced and spatially and temporally modulated. Laser can project sharp images over long distances or cut materials in short distances. Depending on the wavelength an invisible scanning in near infrared for gesture recognition is possible as well as a projection of brilliant colour images. For several years, the Fraunhofer ISIT develops Opto-Packaging processes based on the viscous reshaping of glass wafers: First, hermetically sealed laser micro-mirror scanners WLP with inclined windows deflect in the central light reflex of the window out of the image area. Second, housing with lateral light exit permits hermetic sealing of edge-emitting lasers for highest reliability and durability. Such systems are currently experiencing an extremely high interest of the industry in all segments, from consumer to automotive through to materials processing. Our modular Opto-Packaging platform enables fast product developments. Housing for opto mechanical MEMS devices are equipped with inclined windows to minimize distortion, stray light and reflection losses. The hot viscous glass forming technology is also applied to functionalized substrate wafers which possess areas with high heat dissipation in addition to thermally insulating areas. Electrical contacts may be realized with metal filled vias or TGV (Through Glass Vias). The modular system reduces the development times for new, miniaturized optical systems so that manufacturers can focus on the essentials in their development, namely their product functionalities.

  16. Concept for the fast modulation of light in amplitude and phase using analog tilt-mirror arrays

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Heber, Jörg; Janschek, Klaus

    2017-02-01

    The full complex, spatial modulation of light at high frame rates is essential for a variety of applications. In particular, emerging techniques applied to scattering media, such as Digital Optical Phase Conjugation and Wavefront Shaping, request challenging performance parameters. They refer to imaging tasks inside biological media, whose characteristics concerning the transmission and reflection of scattered light may change over time within milliseconds. Thus, these methods call for frame rates in the kilohertz range. Existing solutions typically over frame rate capabilities below 100 Hz, since they rely on liquid crystal spatial light modulators (SLMs). We propose a diffractive MEMS optical system for this application range. It relies on an analog, tilt-type micro mirror array (MMA) based on an established SLM technology, where the standard application is grayscale amplitude control. The new MMA system design allows the phase manipulation at high-speed as well. The article studies properties of the appropriate optical setup by simulating the propagation of the light. Relevant test patterns and sensitivity parameters of the system will be analyzed. Our results illustrate the main opportunities of the concept with particular focus on the tilt mirror technology. They indicate a promising path to realize the complex light modulation at frame rates above 1 kHz and resolutions well beyond 10,000 complex pixels.

  17. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; hide

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  18. Nondestructive surface profiling of hidden MEMS using an infrared low-coherence interferometric microscope

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Osten, Wolfgang

    2018-03-01

    There are a wide range of applications for micro-electro-mechanical systems (MEMS). The automotive and consumer market is the strongest driver for the growing MEMS industry. A 100 % test of MEMS is particularly necessary since these are often used for safety-related purposes such as the ESP (Electronic Stability Program) system. The production of MEMS is a fully automated process that generates 90 % of the costs during the packaging and dicing steps. Nowadays, an electrical test is carried out on each individual MEMS component before these steps. However, after encapsulation, MEMS are opaque to visible light and other defects cannot be detected. Therefore, we apply an infrared low-coherence interferometer for the topography measurement of those hidden structures. A lock-in algorithm-based method is shown to calculate the object height and to reduce ghost steps due to the 2π -unambiguity. Finally, measurements of different MEMS-based sensors are presented.

  19. Real-time computational photon-counting LiDAR

    NASA Astrophysics Data System (ADS)

    Edgar, Matthew; Johnson, Steven; Phillips, David; Padgett, Miles

    2018-03-01

    The availability of compact, low-cost, and high-speed MEMS-based spatial light modulators has generated widespread interest in alternative sampling strategies for imaging systems utilizing single-pixel detectors. The development of compressed sensing schemes for real-time computational imaging may have promising commercial applications for high-performance detectors, where the availability of focal plane arrays is expensive or otherwise limited. We discuss the research and development of a prototype light detection and ranging (LiDAR) system via direct time of flight, which utilizes a single high-sensitivity photon-counting detector and fast-timing electronics to recover millimeter accuracy three-dimensional images in real time. The development of low-cost real time computational LiDAR systems could have importance for applications in security, defense, and autonomous vehicles.

  20. Differentially-driven MEMS spatial light modulator

    DOEpatents

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.

  1. A new linear structured light module based on the MEMS micromirror

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Shen, Wenjiang; Yu, Huijun

    2017-10-01

    A new linear structured light module based on the Micro-Electro-Mechanical System (MEMS) two-dimensional scanning micromirror was designed and created. This module consists of a laser diode, a convex lens, and the MEMS micromirror. The laser diode generates the light and the convex lens control the laser beam to converge on a single point with large depth of focus. The fast scan in horizontal direction of the micromirror will turn the laser spot into a homogenous laser line. Meanwhile, the slow scan in vertical direction of the micromirror will move the laser line in the vertical direction. The width of the line generated by this module is 300μm and the length is 120mm and the moving distance is 100mm at 30cm away from the module. It will promote the development of industrial detection.

  2. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  3. Development of scanning holographic display using MEMS SLM

    NASA Astrophysics Data System (ADS)

    Takaki, Yasuhiro

    2016-10-01

    Holography is an ideal three-dimensional (3D) display technique, because it produces 3D images that naturally satisfy human 3D perception including physiological and psychological factors. However, its electronic implementation is quite challenging because ultra-high resolution is required for display devices to provide sufficient screen size and viewing zone. We have developed holographic display techniques to enlarge the screen size and the viewing zone by use of microelectromechanical systems spatial light modulators (MEMS-SLMs). Because MEMS-SLMs can generate hologram patterns at a high frame rate, the time-multiplexing technique is utilized to virtually increase the resolution. Three kinds of scanning systems have been combined with MEMS-SLMs; the screen scanning system, the viewing-zone scanning system, and the 360-degree scanning system. The screen scanning system reduces the hologram size to enlarge the viewing zone and the reduced hologram patterns are scanned on the screen to increase the screen size: the color display system with a screen size of 6.2 in. and a viewing zone angle of 11° was demonstrated. The viewing-zone scanning system increases the screen size and the reduced viewing zone is scanned to enlarge the viewing zone: a screen size of 2.0 in. and a viewing zone angle of 40° were achieved. The two-channel system increased the screen size to 7.4 in. The 360-degree scanning increases the screen size and the reduced viewing zone is scanned circularly: the display system having a flat screen with a diameter of 100 mm was demonstrated, which generates 3D images viewed from any direction around the flat screen.

  4. MEMS analog light processing: an enabling technology for adaptive optical phase control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Knobbe, Jens; Komenda, Ondrej

    2006-01-01

    Various applications in modern optics are demanding for Spatial Light Modulators (SLM) with a true analog light processing capability, e.g. the generation of arbitrary analog phase patterns for an adaptive optical phase control. For that purpose the Fraunhofer IPMS has developed a high-resolution MEMS Micro Mirror Array (MMA) with an integrated active-matrix CMOS address circuitry. The device provides 240 x 200 piston-type mirror elements with 40 μm pixel size, where each of them can be addressed and deflected independently at an 8bit height resolution with a vertical analog deflection range of up to 400 nm suitable for a 2pi phase modulation in the visible. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a direct data feed-through within a closed-loop environment. High-speed data communication is established by an IEEE1394a FireWire interface together with an electronic driving board performing the actual MMA programming and control at a maximum frame rate of up to 500 Hz. Successful application demonstrations have been given in eye aberration correction, coupling efficiency optimization into a monomode fiber, ultra-short laser pulse modulation and diffractive beam shaping. Besides a presentation of the basic device concept the paper will give an overview of the obtained results from these applications.

  5. Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model

    USGS Publications Warehouse

    Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.

    2016-01-01

    Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.

  6. Micromechanical slit positioning system as a transmissive spatial light modulator

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer

    2001-11-01

    Micro-slits have been prepared with a slit-width and a slit- length of 2 ... 1000 micrometers . Linear and two-dimensional arrays up to 10 x 110 slits have been developed and completed with a piezo-actuator for shifting. This system is a so-called mechanical slit positioning system. The light is switched by simple one- or two-dimensional displacement of coded slit masks in a one- or two-layer architecture. The slit positioning system belongs to the transmissive class of MEMS-based spatial light modulators (SLM). It has fundamental advantages for optical contrast and also can be used in the full spectral region. Therefore transmissive versions of SLM should be a future solution. Instrument architectures based on the slit positioning system can increase the resolution by subpixel generation, the throughput by HADAMARD transform mode, or select objects for multi-object-spectroscopy. The linear slit positioning system was space qualified within an advanced micro- spectrometer. A NIR multi-object-spectrometer for the Next Generation Space Telescope (NGST) is based on a field selector for selecting objects. The field selector is a SLM, which could be implemented by a slit positioning system.

  7. New dynamic silicon photonic components enabled by MEMS technology

    NASA Astrophysics Data System (ADS)

    Errando-Herranz, Carlos; Edinger, Pierre; Colangelo, Marco; Björk, Joel; Ahmed, Samy; Stemme, Göran; Niklaus, Frank; Gylfason, Kristinn B.

    2018-02-01

    Silicon photonics is the study and application of integrated optical systems which use silicon as an optical medium, usually by confining light in optical waveguides etched into the surface of silicon-on-insulator (SOI) wafers. The term microelectromechanical systems (MEMS) refers to the technology of mechanics on the microscale actuated by electrostatic actuators. Due to the low power requirements of electrostatic actuation, MEMS components are very power efficient, making them well suited for dense integration and mobile operation. MEMS components are conventionally also implemented in silicon, and MEMS sensors such as accelerometers, gyros, and microphones are now standard in every smartphone. By combining these two successful technologies, new active photonic components with extremely low power consumption can be made. We discuss our recent experimental work on tunable filters, tunable fiber-to-chip couplers, and dynamic waveguide dispersion tuning, enabled by the marriage of silicon MEMS and silicon photonics.

  8. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors

    PubMed Central

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors. PMID:27924853

  9. Piezoelectric polymer gated OFET: Cutting-edge electro-mechanical transducer for organic MEMS-based sensors.

    PubMed

    Thuau, Damien; Abbas, Mamatimin; Wantz, Guillaume; Hirsch, Lionel; Dufour, Isabelle; Ayela, Cédric

    2016-12-07

    The growth of micro electro-mechanical system (MEMS) based sensors on the electronic market is forecast to be invigorated soon by the development of a new branch of MEMS-based sensors made of organic materials. Organic MEMS have the potential to revolutionize sensor products due to their light weight, low-cost and mechanical flexibility. However, their sensitivity and stability in comparison to inorganic MEMS-based sensors have been the major concerns. In the present work, an organic MEMS sensor with a cutting-edge electro-mechanical transducer based on an active organic field effect transistor (OFET) has been demonstrated. Using poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) piezoelectric polymer as active gate dielectric in the transistor mounted on a polymeric micro-cantilever, unique electro-mechanical properties were observed. Such an advanced scheme enables highly efficient integrated electro-mechanical transduction for physical and chemical sensing applications. Record relative sensitivity over 600 in the low strain regime (<0.3%) was demonstrated, which represents a key-step for the development of highly sensitive all organic MEMS-based sensors.

  10. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    PubMed

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  11. ViLLaGEs: opto-mechanical design of an on-sky visible-light MEMS-based AO system

    NASA Astrophysics Data System (ADS)

    Grigsby, Bryant; Lockwood, Chris; Baumann, Brian; Gavel, Don; Johnson, Jess; Ammons, S. Mark; Dillon, Daren; Morzinski, Katie; Reinig, Marc; Palmer, Dave; Severson, Scott; Gates, Elinor

    2008-07-01

    Visible Light Laser Guidestar Experiments (ViLLaGEs) is a new Micro-Electro Mechanical Systems (MEMS) based visible-wavelength adaptive optics (AO) testbed on the Nickel 1-meter telescope at Lick Observatory. Closed loop Natural Guide Star (NGS) experiments were successfully carried out during engineering during the fall of 2007. This is a major evolutionary step, signaling the movement of AO technologies into visible light with a MEMS mirror. With on-sky Strehls in I-band of greater than 20% during second light tests, the science possibilities have become evident. Described here is the advanced engineering used in the design and construction of the ViLLaGEs system, comparing it to the LickAO infrared system, and a discussion of Nickel dome infrastructural improvements necessary for this system. A significant portion of the engineering discussion revolves around the sizable effort that went towards eliminating flexure. Then, we detail upgrades to ViLLaGEs to make it a facility class instrument. These upgrades will focus on Nyquist sampling the diffraction limited point spread function during open loop operations, motorization and automation for technician level alignments, adding dithering capabilities and changes for near infrared science.

  12. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    PubMed

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  13. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application

    PubMed Central

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-01-01

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively. PMID:28273880

  14. Characterization of shape and deformation of MEMS by quantitative optoelectronic metrology techniques

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2002-06-01

    Recent technological trends based on miniaturization of mechanical, electro-mechanical, and photonic devices to the microscopic scale, have led to the development of microelectromechanical systems (MEMS). Effective development of MEMS components requires the synergism of advanced design, analysis, and fabrication methodologies, and also of quantitative metrology techniques for characterizing their performance, reliability, and integrity during the electronic packaging cycle. In this paper, we describe opto-electronic techniques for measuring, with sub-micrometer accuracy, shape and changes in states of deformation of MEMS strictures. With the described opto-electronic techniques, it is possible to characterize MEMS components using the display and data modes. In the display mode, interferometric information related to shape and deformation is displayed at video frame rates, providing the capability for adjusting and setting experimental conditions. In the data mode, interferometric information related to shape and deformation is recorded as high-spatial and high-digital resolution images, which are further processed to provide quantitative 3D information. Furthermore, the quantitative 3D data are exported to computer-aided design (CAD) environments and utilized for analysis and optimization of MEMS devices. Capabilities of opto- electronic techniques are illustrated with representative applications demonstrating their applicability to provide indispensable quantitative information for the effective development and optimization of MEMS devices.

  15. Surface micromachined MEMS deformable mirror based on hexagonal parallel-plate electrostatic actuator

    NASA Astrophysics Data System (ADS)

    Ma, Wenying; Ma, Changwei; Wang, Weimin

    2018-03-01

    Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.

  16. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  17. Development of a compact optical MEMS scanner with integrated VCSEL light source and diffractive optics

    NASA Astrophysics Data System (ADS)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial E.; Sweatt, William C.; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randolph E.

    1999-09-01

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOE's) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold- coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 50 micrometer X 1000 micrometer shuttle is extremely low, with a maximum deflection of only 0.18 micrometer over an 800 micrometer span for an unmetallized case and a deflection of 0.56 micrometer for the metallized case. A conservative estimate for the scan range is approximately plus or minus 4 degrees, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  18. New optoelectronic methodology for nondestructive evaluation of MEMS at the wafer level

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Ferguson, Curtis F.; Melson, Michael J.

    2004-02-01

    One of the approaches to fabrication of MEMS involves surface micromachining to define dies on single crystal silicon wafers, dicing of the wafers to separate the dies, and electronic packaging of the individual dies. Dicing and packaging of MEMS accounts for a large fraction of the fabrication costs, therefore, nondestructive evaluation at the wafer level, before dicing, can have significant implications on improving production yield and costs. In this paper, advances in development of optoelectronic holography (OEH) techniques for nondestructive, noninvasive, full-field of view evaluation of MEMS at the wafer level are described. With OEH techniques, quantitative measurements of shape and deformation of MEMS, as related to their performance and integrity, are obtained with sub-micrometer spatial resolution and nanometer measuring accuracy. To inspect an entire wafer with OEH methodologies, measurements of overlapping regions of interest (ROI) on a wafer are recorded and adjacent ROIs are stitched together through efficient 3D correlation analysis algorithms. Capabilities of the OEH techniques are illustrated with representative applications, including determination of optimal inspection conditions to minimize inspection time while achieving sufficient levels of accuracy and resolution.

  19. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes.

    PubMed

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-07-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran's eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances.

  20. Environmental factors prevail over dispersal constraints in determining the distribution and assembly of Trichoptera species in mountain lakes

    PubMed Central

    de Mendoza, Guillermo; Ventura, Marc; Catalan, Jordi

    2015-01-01

    Aiming to elucidate whether large-scale dispersal factors or environmental species sorting prevail in determining patterns of Trichoptera species composition in mountain lakes, we analyzed the distribution and assembly of the most common Trichoptera (Plectrocnemia laetabilis, Polycentropus flavomaculatus, Drusus rectus, Annitella pyrenaea, and Mystacides azurea) in the mountain lakes of the Pyrenees (Spain, France, Andorra) based on a survey of 82 lakes covering the geographical and environmental extremes of the lake district. Spatial autocorrelation in species composition was determined using Moran’s eigenvector maps (MEM). Redundancy analysis (RDA) was applied to explore the influence of MEM variables and in-lake, and catchment environmental variables on Trichoptera assemblages. Variance partitioning analysis (partial RDA) revealed the fraction of species composition variation that could be attributed uniquely to either environmental variability or MEM variables. Finally, the distribution of individual species was analyzed in relation to specific environmental factors using binomial generalized linear models (GLM). Trichoptera assemblages showed spatial structure. However, the most relevant environmental variables in the RDA (i.e., temperature and woody vegetation in-lake catchments) were also related with spatial variables (i.e., altitude and longitude). Partial RDA revealed that the fraction of variation in species composition that was uniquely explained by environmental variability was larger than that uniquely explained by MEM variables. GLM results showed that the distribution of species with longitudinal bias is related to specific environmental factors with geographical trend. The environmental dependence found agrees with the particular traits of each species. We conclude that Trichoptera species distribution and composition in the lakes of the Pyrenees are governed predominantly by local environmental factors, rather than by dispersal constraints. For boreal lakes, with similar environmental conditions, a strong role of dispersal capacity has been suggested. Further investigation should address the role of spatial scaling, namely absolute geographical distances constraining dispersal and steepness of environmental gradients at short distances. PMID:26257867

  1. A numerical experiment on light pollution from distant sources

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2011-08-01

    To predict the light pollution of the night-time sky realistically over any location or measuring point on the ground presents quite a difficult calculation task. Light pollution of the local atmosphere is caused by stray light, light loss or reflection of artificially illuminated ground objects or surfaces such as streets, advertisement boards or building interiors. Thus it depends on the size, shape, spatial distribution, radiative pattern and spectral characteristics of many neighbouring light sources. The actual state of the atmospheric environment and the orography of the surrounding terrain are also relevant. All of these factors together influence the spectral sky radiance/luminance in a complex manner. Knowledge of the directional behaviour of light pollution is especially important for the correct interpretation of astronomical observations. From a mathematical point of view, the light noise or veil luminance of a specific sky element is given by a superposition of scattered light beams. Theoretical models that simulate light pollution typically take into account all ground-based light sources, thus imposing great requirements on CPU and MEM. As shown in this paper, a contribution of distant sources to the light pollution might be essential under specific conditions of low turbidity and/or Garstang-like radiative patterns. To evaluate the convergence of the theoretical model, numerical experiments are made for different light sources, spectral bands and atmospheric conditions. It is shown that in the worst case the integration limit is approximately 100 km, but it can be significantly shortened for light sources with cosine-like radiative patterns.

  2. Focusing light through strongly scattering media by controlling binary amplitude optimization using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Zhipeng; Zhang, Bin; Feng, Qi; Chen, Zhaoyang; Lin, Chengyou; Ding, Yingchun

    2017-06-01

    Focusing light through strongly scattering media plays an important role in biomedical imaging and therapy. Here, we experimentally demonstrate light focusing through ZnO sample by controlling binary amplitude optimization using genetic algorithm. In the experiment, we use a Micro Electro-Mechanical System (MEMS)-based digital micromirror device (DMD) which is in amplitude-only modulation mode. The DMD consists of 1920×1080 square mirrors that can be independently controlled to reflect light to a desired position. We control only 160 thousand mirrors which are divided into 400 segments to modulate light focusing through the scattering media using advanced genetic algorithm. Light intensity at the target position is enhanced up to 50+/-5 times the average speckle intensity. The diameters of focusing spot can be changed ranging from 7 μm to 70 μm at arbitrary positions and multiple foci are obtained simultaneously. The spatial arrangement of multiple foci can be flexibly controlled. The advantage of DMDs lies in their switching speed up to 30 kHz, which has the potential to generate a focus in an ultra-short period of time. Our work provides a reference for the study of high speed wavefront shaping that is required in vivo tissues imaging.

  3. Adaptive optics for high-contrast imaging of faint substellar companions

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.

    Direct imaging of faint objects around bright stars is challenging because the primary star's diffracted light can overwhelm low-mass companions. Nevertheless, advances in adaptive optics (AO) and high-contrast imaging have revealed the first pictures of extrasolar planets. In this dissertation I employ today's high-contrast AO techniques to image brown dwarfs around stars in the nearby Hyades cluster. Furthermore, I prepare for the next generation of high-contrast AO instrumentation, by qualifying MEMS deformable mirrors for wavefront control in the Gemini Planet Imager. In Part I, I present discovery of 3 new brown dwarfs and 36 low-mass stellar companions to 85 stars in the Hyades, imaged with AO at Keck and Lick Observatories. The "locally-optimized combination of images" (LOCI) image-diversity technique filters out the primary star to reveal faint companions. This survey is complete to the hydrogen-burning limit at separations beyond 20 AU. In the complete sample, multiplicity increases as primary star mass decreases. Additionally, the brown dwarfs are at wide >150 AU separations. Finding this preference for low binding-energy systems is an unexpected result, as the Hyades is 625 Myr old and dynamically relaxed. Future work will continue to explore this trend to understand the dynamical and star formation history of the Hyades. The brown dwarfs are near interesting transition regimes for low-mass objects; therefore, characterizing their atmospheres with spectrophotometry will serve as an important benchmark for our understanding of these cool objects. In Part II, I demonstrate micro-electro-mechanical systems (MEMS) deformable mirrors for high-order wavefront control in the Gemini Planet Imager (GPI). MEMS micromirrors have thousands of degrees of freedom and represent a significant cost efficiency over conventional glass deformable mirrors, making them ideal for high-contrast AO. In Chapter 7, I present experimental evidence that MEMS actuators function well and are stable and repeatable at the sub-nm level over the course of an hour. In Chapter 8, I prove MEMS ability to correct high-order Kolmogorov turbulence and maintain the high-contrast "dark hole" in the GPI woofer-tweeter architecture. Finally, in Chapter 9, I analyze MEMS performance on sky with Villages, a telescope testbed for MEMS technology, visible-light AO, and open-loop control. The MEMS remains repeatably flat and controllable over ˜4 years and ˜800 hours of operation. Open loop control of the hysteresis-free MEMS produces a diffraction-limited core in I-band, while internal static errors dominate the on-sky error budget. This work establishes MEMS deformable mirrors as excellent wavefront correctors for high-order AO. The MEMS in GPI will produce a deeper, broader dark hole, allowing for detection and characterization of directly-imaged planets in a fainter, wider search space.

  4. Projection displays and MEMS: timely convergence for a bright future

    NASA Astrophysics Data System (ADS)

    Hornbeck, Larry J.

    1995-09-01

    Projection displays and microelectromechanical systems (MEMS) have evolved independently, occasionally crossing paths as early as the 1950s. But the commercially viable use of MEMS for projection displays has been illusive until the recent invention of Texas Instruments Digital Light Processing TM (DLP) technology. DLP technology is based on the Digital Micromirror DeviceTM (DMD) microchip, a MEMS technology that is a semiconductor digital light switch that precisely controls a light source for projection display and hardcopy applications. DLP technology provides a unique business opportunity because of the timely convergence of market needs and technology advances. The world is rapidly moving to an all- digital communications and entertainment infrastructure. In the near future, most of the technologies necessary for this infrastrucutre will be available at the right performance and price levels. This will make commercially viable an all-digital chain (capture, compression, transmission, reception decompression, hearing, and viewing). Unfortunately, the digital images received today must be translated into analog signals for viewing on today's televisions. Digital video is the final link in the all-digital infrastructure and DLP technoogy provides that link. DLP technology is an enabler for digital, high-resolution, color projection displays that have high contrast, are bright, seamless, and have the accuracy of color and grayscale that can be achieved only by digital control. This paper contains an introduction to DMD and DLP technology, including the historical context from which to view their developemnt. The architecture, projection operation, and fabrication are presented. Finally, the paper includes an update about current DMD business opportunities in projection displays and hardcopy.

  5. High-speed wavelength switching of tunable MEMS vertical cavity surface emitting laser by ringing suppression

    NASA Astrophysics Data System (ADS)

    Inoue, Shunya; Nishimura, Shun; Nakahama, Masanori; Matsutani, Akihiro; Sakaguchi, Takahiro; Koyama, Fumio

    2018-04-01

    For use in wavelength division multiplexing (WDM) with high-speed wavelength routing functions, the fast wavelength switching of tunable lasers is a key function. A tunable MEMS vertical cavity surface emitting laser (VCSEL) is a good candidate as a light source for this purpose. The cantilever in MEMS VCSELs has a high mechanical resonance frequency thanks to its small size, but the switching time is limited by the ringing of the cantilever structure. In this paper, we analyzed the mechanical behavior of a cantilever MEMS mirror and demonstrated ringing-free operation with an engineered voltage signal. The applied voltage waveform was optimized in a two-step format and we experimentally obtained ringing free wavelength switching. We measured the transient response of the wavelength by inserting a tunable filter, exhibiting the settling time of less than 2.5 µs, which corresponds to a half period of the cantilever resonance frequency.

  6. MEMS tunable grating micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Lockhart, R.; Niedermann, P.; Overstolz, T.; Hoogerwerf, A.; Mayor, J.-M.; Pierer, J.; Bosshard, C.; Ischer, R.; Voirin, G.; Stanley, R. P.

    2017-11-01

    The interest in MEMS based Micro-Spectrometers is increasing due to their potential in terms of flexibility as well as cost, low mass, small volume and power savings. This interest, especially in the Near-Infrared and Mid- Infrared, ranges from planetary exploration missions to astronomy, e.g. the search for extra solar planets, as well as to many other terrestrial fields of application such as, industrial quality and surface control, chemical analysis of soil and water, detection of chemical pollutants, exhausted gas analysis, food quality control, process control in pharmaceuticals, to name a few. A compact MEMS-based Spectrometer for Near- Infrared and Mid-InfraRed operation have been conceived, designed and demonstrated. The design based on tunable MEMS blazed grating, developed in the past at CSEM [1], achieves state of the art results in terms of spectral resolution, operational wavelength range, light throughput, overall dimensions, and power consumption.

  7. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  8. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysiliconmore » gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.« less

  9. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  10. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  11. Mathematical Model for Collision-Coalescence Among Inclusions in the Bloom Continuous Caster with M-EMS

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Jiang, Jimin; Yang, Bin; Zhao, Yan; Zhang, Hongwei; Wang, Weixian; Dong, Guiwen

    2018-04-01

    Mathematical simulation is an effective tool to analyze the fluid flow and the inclusion behavior in the bloom continuous caster with mold electromagnetic stirring (M-EMS). The mathematical model is applied to the modeling of magnetic field, flow field, and inclusion field. Due to the introduction of Archimedes force, the collision mechanism and inclusion's slipping velocity should be modified in the inclusion mass and population conservation model. Numerically predicted magnetic field, flow field, and the inclusion spatial distribution conform to the experimental results in the existing literature. Lorentz force plays an important role in the fluid flow, and Archimedes force plays an important role in the inclusion distribution in the continuous caster. Due to Brownian collision, Stokes collision, Archimedes collision, and turbulent collision, the coalescence among inclusions occurs in the bloom continuous caster with M-EMS. Among the four types of collisions, turbulent collision occurs most frequently, followed by Archimedes collision and Stokes collision. The frequency of Brownian collision is several orders of magnitudes smaller and is therefore negligible. The inclusion volume concentration, number density, and characteristic radius exhibit a U-shape in the continuous caster without M-EMS. However, with M-EMS, they exhibit an inverted U-shape.

  12. OML: optical maskless lithography for economic design prototyping and small-volume production

    NASA Astrophysics Data System (ADS)

    Sandstrom, Tor; Bleeker, Arno; Hintersteiner, Jason; Troost, Kars; Freyer, Jorge; van der Mast, Karel

    2004-05-01

    The business case for Maskless Lithography is more compelling than ever before, due to more critical processes, rising mask costs and shorter product cycles. The economics of Maskless Lithography gives a crossover volume from Maskless to mask-based lithography at surprisingly many wafers per mask for surprisingly few wafers per hour throughput. Also, small-volume production will in many cases be more economical with Maskless Lithography, even when compared to "shuttle" schemes, reticles with multiple layers, etc. The full benefit of Maskless Lithography is only achievable by duplicating processes that are compatible with volume production processes on conventional scanners. This can be accomplished by the integration of pattern generators based on spatial light modulator technology with state-of-the-art optical scanner systems. This paper reports on the system design of an Optical Maskless Scanner in development by ASML and Micronic: small-field optics with high demagnification, variable NA and illumination schemes, spatial light modulators with millions of MEMS mirrors on CMOS drivers, a data path with a sustained data flow of more than 250 GPixels per second, stitching of sub-fields to scanner fields, and rasterization and writing strategies for throughput and good image fidelity. Predicted lithographic performance based on image simulations is also shown.

  13. Adaptive optics in multiphoton microscopy: comparison of two, three and four photon fluorescence

    PubMed Central

    Sinefeld, David; Paudel, Hari P.; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2015-01-01

    We demonstrate adaptive optics system based on nonlinear feedback from 3- and 4-photon fluorescence. The system is based on femtosecond pulses created by soliton self-frequency shift of a 1550-nm fiber-based femtosecond laser together with micro-electro-mechanical system (MEMS) phase spatial light modulator (SLM). We perturb the 1020-segment SLM using an orthogonal Walsh sequence basis set with a modified version of three-point phase shifting interferometry. We show the improvement after aberrations correction in 3-photon signal from fluorescent beads. In addition, we compare the improvement obtained in the same adaptive optical system for 2-, 3- and 4-photon fluorescence using dye pool. We show that signal improvement resulting from aberration correction grows exponentially as a function of the order of nonlinearity. PMID:26698772

  14. Wavefront sensor-driven variable-geometry pupil for ground-based aperture synthesis imaging

    NASA Astrophysics Data System (ADS)

    Tyler, David W.

    2000-07-01

    I describe a variable-geometry pupil (VGP) to increase image resolution for ground-based near-IR and optical imaging. In this scheme, a curvature-type wavefront sensor provides an estimate of the wavefront curvature to the controller of a high-resolution spatial light modulator (SLM) or micro- electromechanical (MEM) mirror, positioned at an image of the telescope pupil. This optical element, the VGP, passes or reflects the incident beam only where the wavefront phase is sufficiently smooth, viz., where the curvature is sufficiently low. Using a computer simulation, I show the VGP can sharpen and smooth the long-exposure PSF and increase the OTF SNR for tilt-only and low-order AO systems, allowing higher resolution and more stable deconvolution with dimmer AO guidestars.

  15. Ultra-compact MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Hassan, Khaled; Anwar, Momen; Alharon, Mohamed H.; Medhat, Mostafa; Adib, George A.; Dumont, Rich; Saadany, Bassam; Khalil, Diaa

    2017-05-01

    Portable and handheld spectrometers are being developed and commercialized in the late few years leveraging the rapidly-progressing technology and triggering new markets in the field of on-site spectroscopic analysis. Although handheld devices were commercialized for the near-infrared spectroscopy (NIRS), their size and cost stand as an obstacle against the deployment of the spectrometer as spectral sensing components needed for the smart phone industry and the IoT applications. In this work we report a chip-sized microelectromechanical system (MEMS)-based FTIR spectrometer. The core optical engine of the solution is built using a passive-alignment integration technique for a selfaligned MEMS chip; self-aligned microoptics and a single detector in a tiny package sized about 1 cm3. The MEMS chip is a monolithic, high-throughput scanning Michelson interferometer fabricated using deep reactive ion etching technology of silicon-on-insulator substrate. The micro-optical part is used for conditioning the input/output light to/from the MEMS and for further light direction to the detector. Thanks to the all-reflective design of the conditioning microoptics, the performance is free of chromatic aberration. Complemented by the excellent transmission properties of the silicon in the infrared region, the integrated solution allows very wide spectral range of operation. The reported sensor's spectral resolution is about 33 cm-1 and working in the range of 1270 nm to 2700 nm; upper limited by the extended InGaAs detector. The presented solution provides a low cost, low power, tiny size, wide wavelength range NIR spectral sensor that can be manufactured with extremely high volumes. All these features promise the compatibility of this technology with the forthcoming demand of smart portable and IoT devices.

  16. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  17. Fabrication of Scalable Indoor Light Energy Harvester and Study for Agricultural IoT Applications

    NASA Astrophysics Data System (ADS)

    Watanabe, M.; Nakamura, A.; Kunii, A.; Kusano, K.; Futagawa, M.

    2015-12-01

    A scalable indoor light energy harvester was fabricated by microelectromechanical system (MEMS) and printing hybrid technology and evaluated for agricultural IoT applications under different environmental input power density conditions, such as outdoor farming under the sun, greenhouse farming under scattered lighting, and a plant factory under LEDs. We fabricated and evaluated a dye- sensitized-type solar cell (DSC) as a low cost and “scalable” optical harvester device. We developed a transparent conductive oxide (TCO)-less process with a honeycomb metal mesh substrate fabricated by MEMS technology. In terms of the electrical and optical properties, we achieved scalable harvester output power by cell area sizing. Second, we evaluated the dependence of the input power scalable characteristics on the input light intensity, spectrum distribution, and light inlet direction angle, because harvested environmental input power is unstable. The TiO2 fabrication relied on nanoimprint technology, which was designed for optical optimization and fabrication, and we confirmed that the harvesters are robust to a variety of environments. Finally, we studied optical energy harvesting applications for agricultural IoT systems. These scalable indoor light harvesters could be used in many applications and situations in smart agriculture.

  18. Self-Alignment MEMS IMU Method Based on the Rotation Modulation Technique on a Swing Base

    PubMed Central

    Chen, Zhiyong; Yang, Haotian; Wang, Chengbin; Lin, Zhihui; Guo, Meifeng

    2018-01-01

    The micro-electro-mechanical-system (MEMS) inertial measurement unit (IMU) has been widely used in the field of inertial navigation due to its small size, low cost, and light weight, but aligning MEMS IMUs remains a challenge for researchers. MEMS IMUs have been conventionally aligned on a static base, requiring other sensors, such as magnetometers or satellites, to provide auxiliary information, which limits its application range to some extent. Therefore, improving the alignment accuracy of MEMS IMU as much as possible under swing conditions is of considerable value. This paper proposes an alignment method based on the rotation modulation technique (RMT), which is completely self-aligned, unlike the existing alignment techniques. The effect of the inertial sensor errors is mitigated by rotating the IMU. Then, inertial frame-based alignment using the rotation modulation technique (RMT-IFBA) achieved coarse alignment on the swing base. The strong tracking filter (STF) further improved the alignment accuracy. The performance of the proposed method was validated with a physical experiment, and the results of the alignment showed that the standard deviations of pitch, roll, and heading angle were 0.0140°, 0.0097°, and 0.91°, respectively, which verified the practicality and efficacy of the proposed method for the self-alignment of the MEMS IMU on a swing base. PMID:29649150

  19. Vision sensor and dual MEMS gyroscope integrated system for attitude determination on moving base

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoting; Sun, Changku; Wang, Peng; Huang, Lu

    2018-01-01

    To determine the relative attitude between the objects on a moving base and the base reference system by a MEMS (Micro-Electro-Mechanical Systems) gyroscope, the motion information of the base is redundant, which must be removed from the gyroscope. Our strategy is to add an auxiliary gyroscope attached to the reference system. The master gyroscope is to sense the total motion, and the auxiliary gyroscope is to sense the motion of the moving base. By a generalized difference method, relative attitude in a non-inertial frame can be determined by dual gyroscopes. With the vision sensor suppressing accumulative drift of the MEMS gyroscope, the vision and dual MEMS gyroscope integration system is formed. Coordinate system definitions and spatial transform are executed in order to fuse inertial and visual data from different coordinate systems together. And a nonlinear filter algorithm, Cubature Kalman filter, is used to fuse slow visual data and fast inertial data together. A practical experimental setup is built up and used to validate feasibility and effectiveness of our proposed attitude determination system in the non-inertial frame on the moving base.

  20. In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe

    NASA Astrophysics Data System (ADS)

    Tran, Peter H.; Mukai, David S.; Brenner, Matthew; Chen, Zhongping

    2004-06-01

    A novel endoscopic optical coherence tomography probe was designed and constructed with a 1.9-mm microelectromechanical system (MEMS) motor. The new MEMS endoscopic probe design eliminates the need to couple the rotational energy from the proximal to the distal end of the probe. Furthermore, the endoscopic probe's sheath and fiber have the advantages of having a much smaller diameter and being more flexible than traditional endoscopes since no reinforcement is needed to couple the rotational torque. At the distal end, a prism mounted on a micromotor deflects the light rays to create a transverse circular-scanning pathway. Because our MEMS scanner does not require the coupling of a rotational single-mode fiber, a high scanning speed is possible while eliminating unstable optical signals caused by nonuniform coupling.

  1. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  2. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  3. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  4. Noise, fluctuation, and HADAMARD-transform spectrometry

    NASA Astrophysics Data System (ADS)

    Nitzsche, Guenter; Riesenberg, Rainer

    2003-05-01

    The HADAMARD principle is known in optics as a multiplex technique. It describes the mode with the most advantageous increase of the signal-to-noise ratio (SNR) in terms of scanning (Fellget advantage). The maximum increase of SNR, we call it gain, is (n+1)/(2On), where n is the number of multiplexing. It is valid in the case of pure detector noise. The multiplex encoding Hadamard pattern in case of n = 7 is 1110100, whereby 1 stands for a switched on channel performed by a field selector. The signals of all (switched on) channels are detected by a single detector. n measurement steps with a cyclic change of the pattern is necessary to perform the Hadamard transformation and to get the result of each individual channel. In case of n = 7 the theoretical gain is 1.51. For all possible multiplex pattern (1100000, 1110000 and so on) the gain is theoretically investigated. A multiplexing advantage (gain > 1) is reached only by the Hadamard pattern, the inverse Hadamard pattern and for (0111111)-pattern (gain=1.08). Most of the multiplex pattern are disadvantageous. The reason for maximum gain of the HADAMARD transformation is analysed theoretically. Signal fluctuations during the measurement caused by fluctuations of the illumination or by the object under test, reduce the multiplex gain, too. So the limits for realizing a gain are estimated theoretically. Essential is the transformation procedure and its influence on the error propagation. The results could be verified by experiments with array spectrometeres. Requirements are derived by numerical simulation concerning the stability of the signals to be multiplexed. It is simulated the needed stability of the signals with increasing order of multiplexing. So the increase of the multiplex gain is limited by signal fluctuations. A realized 96 channel spectral reader is presented as a modern application of an optical multiplexing arrangement. ! M. Harvid, N. J. A. Sloane, Hadamard Transform Optics, Academic Press, 1979 ! R.A. De Verse, R.M. Hammaker, W. G. Fately, J.A.Graham, J.D.Tate, "Spectrometry and imaging using a digital micromirror array" American Laboratory, Vol. 30, 21, pp. 112-120, 1998 ! R. Riesenberg, A. Wuttig, B. Harnisch, "Optical MEMS Technology for Multiplexing in High-End Micro-Scpectrometers", Proc. SPIE 4928, 6-14, 2002 ! A. Wuttig, R. Riesenberg, "Hyperspectral imager with a facile MEMS", Proc. SPIE 4881A, 2002, to be published ! R. Riesenberg, G. Nitzsche, W. Voigt, 'HADAMARD Encoding and other optical Multiplexing', VDI-Berichte 1694, pp. 345-350, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Subpixel Analysis of Double Array Grating Spectrometer", Proc. SPIE 4480, pp. 334-344, 2002 ! A. Wuttig, R. Riesenberg, G. Nitzsche, "Integral Field and Multi Object Spectrometry with MEMS", Proc. SPIE 4480, pp. 367-376, 2002 ! R. Riesenberg, G. Nitzsche, A. Wuttig, B. Harnisch, "Micro Spectrometer and MEMS for Space" in "Smaller Satellites: Bigger Business?", edited by M. Rycroft, N. Crosby, Kluwer Academic Publisher, pp. 403-406, 2002 ! R. Riesenberg, A. Wuttig, "Optical sensors with MEMS, slit masks and micromechanical devices", Proc. SPIE 4561, pp. 315-322, 2001 ! R. Riesenberg, "MicroMechanical Slit Positioning System as a transmissive spatial Light Modulator", Proc. SPIE 4457, pp.197-203, 2001 ! R. Riesenberg, J. Lonschinski, "HADAMARD-Minispectrometer made by a Micro Device", Proc. "3rd Round Table on Micro/NanoTechnologies for Space", ESTEC, Noordwijk, The Netherlands, pp. 291 - 297, 2000 ! R. Riesenberg, U. Dillner, "HADAMARD Imaging Spectrometers", Proc. SPIE 3753, pp. 203-213, 1999 ! R. Riesenberg, Th. Seifert, "Design of spatial Light Modulator Microdevices - Micro Slit Arrays", Proc. SPIE 3680, Part One, pp. 406-414, 1999 ! R. Riesenberg, W. Voigt, J. Schoneich, "Compact Spectrometers made by Micro System Technology", Sensor 97, Proc. Vol. 2, pp. 145-150,1997

  5. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation.

    PubMed

    Angrisano, Antonio; Petovello, Mark; Pugliano, Giovanni

    2012-01-01

    The integration of Global Navigation Satellite Systems (GNSS) with Inertial Navigation Systems (INS) has been very actively researched for many years due to the complementary nature of the two systems. In particular, during the last few years the integration with micro-electromechanical system (MEMS) inertial measurement units (IMUs) has been investigated. In fact, recent advances in MEMS technology have made possible the development of a new generation of low cost inertial sensors characterized by small size and light weight, which represents an attractive option for mass-market applications such as vehicular and pedestrian navigation. However, whereas there has been much interest in the integration of GPS with a MEMS-based INS, few research studies have been conducted on expanding this application to the revitalized GLONASS system. This paper looks at the benefits of adding GLONASS to existing GPS/INS(MEMS) systems using loose and tight integration strategies. The relative benefits of various constraints are also assessed. Results show that when satellite visibility is poor (approximately 50% solution availability) the benefits of GLONASS are only seen with tight integration algorithms. For more benign environments, a loosely coupled GPS/GLONASS/INS system offers performance comparable to that of a tightly coupled GPS/INS system, but with reduced complexity and development time.

  6. Finite element based contact analysis of radio frequency MEMs switch membrane surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen

    2017-10-01

    Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.

  7. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  8. MMI-based MOEMS FT spectrometer for visible and IR spectral ranges

    NASA Astrophysics Data System (ADS)

    Al-Demerdash, Bassem M.; Medhat, Mostafa; Sabry, Yasser M.; Saadany, Bassam; Khalil, Diaa

    2014-03-01

    MEMS spectrometers have very strong potential in future healthcare and environmental monitoring applications, where Michelson interferometers are the core optical engine. Recently, MEMS Michelson interferometers based on using silicon interface as a beam splitter (BS) has been proposed [7, 8]. This allows having a monolithically-integrated on-chip FTIR spectrometer. However silicon BS exhibits high absorption loss in the visible range and high material dispersion in the near infrared (NIR) range. For this reason, we propose in this work a novel MOEMS interferometer allowing operation over wider spectral range covering both the infrared (IR) and the visible ranges. The proposed architecture is based on spatial splitting and combining of optical beams using the imaging properties of Multi-Mode Interference MMI waveguide. The proposed structure includes an optical splitter for spatial splitting an input beam into two beams and a combiner for spatial combining the two interferometer beams. A MEMS moveable mirror is provided to produce an optical path difference between the two beams. The new interferometer is fabricated using DRIE technology on an SOI wafer. The movable mirror is metalized and attached to a comb-drive actuator fabricated in the same lithography step in a self-aligned manner on chip. The novel interferometer is tested as a Fourier transform spectrometer. Red laser, IR laser and absorption spectra of different materials are measured with a resolution of 2.5 nm at 635-nm wavelength. The structure is a very compact one that allows its integration and fabrication on a large scale with very low cost.

  9. HIGH-RESOLUTION LINEAR POLARIMETRIC IMAGING FOR THE EVENT HORIZON TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previousmore » work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.« less

  10. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Chael, Andrew A.; Johnson, Michael D.; Narayan, Ramesh; Doeleman, Sheperd S.; Wardle, John F. C.; Bouman, Katherine L.

    2016-09-01

    Images of the linear polarizations of synchrotron radiation around active galactic nuclei (AGNs) highlight their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest-resolution polarimetric images of AGNs are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore some extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that only uses bispectrum measurements that are immune to atmospheric phase corruption, with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7 and 3 mm wavelength quasar observations from the VLBA and simulated 1.3 mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm, when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.

  11. Ultra-compact imaging plate scanner module using a MEMS mirror and specially designed MPPC

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yuichi; Sasaki, Kensuke; Takasaka, Masaomi; Fujimoto, Masatoshi; Yamamoto, Koei

    2017-02-01

    Computed radiography (CR), which is one of the most useful methods for dental imaging and nondestructive testing, uses a phosphor imaging plate (IP) because it is flexible, reusable, and inexpensive. Conventional IP scanners utilize a galvanometer or a polygon mirror as a scanning device and a photomultiplier as an optical sensor. Microelectromechanical systems (MEMS) technology currently provides silicon-based devices and has the potential to replace such discrete devices and sensors. Using these devices, we constructed an ultra-compact IP scanner. Our extremely compact plate scanner utilizes a module that is composed of a one-dimensional MEMS mirror and a long multi-pixel photon counter (MPPC) that is combined with a specially designed wavelength filter and a rod lens. The MEMS mirror, which is a non-resonant electromagnetic type, is 2.6 mm in diameter with a recommended optical scanning angle up to +/-15°. The CR's wide dynamic range is maintained using a newly developed MPPC. The MPPC is a sort of silicon photomultiplier and is a high-sensitivity photon-counting device. To achieve such a wide dynamic range, we developed a long MPPC that has over 10,000 pixels. For size reduction and high optical efficiency, we set the MPPC close to an IP across the rod lens. To prevent the MPPC from detecting excitation light, which is much more intense than photo-stimulated light, we produced a sharp-cut wavelength filter that has a wide angle (+/-60°) of tolerance. We evaluated our constructed scanner module through gray chart and resolution chart images.

  12. Silicon micromachined broad band light source

    NASA Technical Reports Server (NTRS)

    George, Thomas (Inventor); Jones, Eric (Inventor); Tuma, Margaret L. (Inventor); Eastwood, Michael (Inventor); Hansler, Richard (Inventor)

    2004-01-01

    A micro electromechanical system (MEMS) broad band incandescent light source includes three layers: a top transmission window layer; a middle filament mount layer; and a bottom reflector layer. A tungsten filament with a spiral geometry is positioned over a hole in the middle layer. A portion of the broad band light from the heated filament is reflective off the bottom layer. Light from the filament and the reflected light of the filament are transmitted through the transmission window. The light source may operate at temperatures of 2500 K or above. The light source may be incorporated into an on board calibrator (OBC) for a spectrometer.

  13. Scalable screen-size enlargement by multi-channel viewing-zone scanning holography.

    PubMed

    Takaki, Yasuhiro; Nakaoka, Mitsuki

    2016-08-08

    Viewing-zone scanning holographic displays can enlarge both the screen size and the viewing zone. However, limitations exist in the screen size enlargement process even if the viewing zone is effectively enlarged. This study proposes a multi-channel viewing-zone scanning holographic display comprising multiple projection systems and a planar scanner to enable the scalable enlargement of the screen size. Each projection system produces an enlarged image of the screen of a MEMS spatial light modulator. The multiple enlarged images produced by the multiple projection systems are seamlessly tiled on the planar scanner. This screen size enlargement process reduces the viewing zones of the projection systems, which are horizontally scanned by the planar scanner comprising a rotating off-axis lens and a vertical diffuser to enlarge the viewing zone. A screen size of 7.4 in. and a viewing-zone angle of 43.0° are demonstrated.

  14. MEMS- and LC-adaptive optics at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Restaino, S. R.; Wilcox, C. C.; Martinez, T.; Andrews, J. R.; Santiago, F.; Payne, D. M.

    2012-06-01

    Adaptive Optics (AO) is an ensemble of techniques that aims at the remedial of the deleterious effects that the Earth's turbulent atmosphere induces on both imagery and signal gathering in real time. It has been over four decades since the first AO system was developed and tested. During this time important technological advances have changed profoundly the way that we think and develop AO systems. The use of Micro-Electro-Mechanical-Systems (MEMS) devices and Liquid Crystal Devices (LCD) has revolutionized these technologies making possible to go from very expensive, very large and power consuming systems to very compact and inexpensive systems. These changes have rendered AO systems useful and applicable in other fields ranging from medical imaging to industry. In this paper we will review the research efforts at the Naval research Laboratory (NRL) to develop AO systems based on both MEMs and LCD in order to produce more compact and light weight AO systems.

  15. Demodulation of an optical fiber MEMS pressure sensor based on single bandpass microwave photonic filter.

    PubMed

    Wang, Yiping; Ni, Xiaoqi; Wang, Ming; Cui, Yifeng; Shi, Qingyun

    2017-01-23

    In this paper, a demodulation method for optic fiber micro-electromechanical systems (MEMS) extrinsic Fabry-Perot interferometer (EFPI) pressure sensor exploiting microwave photonics filter technique is firstly proposed and experimentally demonstrated. A single bandpass microwave photonic filter (MPF) which mainly consists of a spectrum-sliced light source, a pressurized optical fiber MEMS EFPI, a phase modulator (PM) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the pressure is studied. By detecting the resonance frequency shifts of the MPF, the pressure can be determined. The theoretical and experimental results show that the proposed EFPI pressure demodulation method has a higher resolution and higher speed than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 86 MHz/MPa in the range of 0-4Mpa. Moreover, the sensitivity can be easily adjusted.

  16. X-ray pushing of a mechanical microswing.

    PubMed

    Siria, A; Rodrigues, M S; Dhez, O; Schwartz, W; Torricelli, G; Ledenmat, S; Rochat, N; Auvert, G; Bikondoa, O; Metzger, T H; Wermeille, D; Felici, R; Comin, F; Chevrier, J

    2008-11-05

    We report here for the first time the combination of x-ray synchrotron light and a micro-electro-mechanical system (MEMS). We show how it is possible to modulate in real time a MEMS mass distribution to induce a nanometric and tunable mechanical oscillation. The quantitative experimental demonstration we present here uses periodic thermal dilatation of a Ge microcrystal attached to a Si microlever, induced by controlled absorption of an intensity modulated x-ray microbeam. The mechanism proposed can be envisaged either for the detection of small heat flux or for the actuation of a mechanical system.

  17. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, A.J.; Montague, S.; Sniegowski, J.J.; Smith, J.H.; McWhorter, P.J.

    1998-07-21

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface. 15 figs.

  18. Method for photolithographic definition of recessed features on a semiconductor wafer utilizing auto-focusing alignment

    DOEpatents

    Farino, Anthony J.; Montague, Stephen; Sniegowski, Jeffry J.; Smith, James H.; McWhorter, Paul J.

    1998-01-01

    A method is disclosed for photolithographically defining device features up to the resolution limit of an auto-focusing projection stepper when the device features are to be formed in a wafer cavity at a depth exceeding the depth of focus of the stepper. The method uses a focusing cavity located in a die field at the position of a focusing light beam from the auto-focusing projection stepper, with the focusing cavity being of the same depth as one or more adjacent cavities wherein a semiconductor device is to be formed. The focusing cavity provides a bottom surface for referencing the focusing light beam and focusing the stepper at a predetermined depth below the surface of the wafer, whereat the device features are to be defined. As material layers are deposited in each device cavity to build up a semiconductor structure such as a microelectromechanical system (MEMS) device, the same material layers are deposited in the focusing cavity, raising the bottom surface and re-focusing the stepper for accurately defining additional device features in each succeeding material layer. The method is especially applicable for forming MEMS devices within a cavity or trench and integrating the MEMS devices with electronic circuitry fabricated on the wafer surface.

  19. Enhancing Optical Forces in InP-Based Waveguides.

    PubMed

    Aryaee Panah, Mohammad Esmail; Semenova, Elizaveta S; Lavrinenko, Andrei V

    2017-06-08

    Cantilever sensors are among the most important microelectromechanical systems (MEMS), which are usually actuated by electrostatic forces or piezoelectric elements. Although well-developed microfabrication technology has made silicon the prevailing material for MEMS, unique properties of other materials are overlooked in this context. Here we investigate optically induced forces exerted upon a semi-insulating InP waveguide suspended above a highly doped InP:Si substrate, in three different regimes: the epsilon-near-zero (ENZ), with excitation of surface plasmon polaritons (SPPs) and phonons excitation. An order of magnitude amplification of the force is observed when light is coupled to SPPs, and three orders of magnitude amplification is achieved in the phonon excitation regime. In the ENZ regime, the force is found to be repulsive and higher than that in a waveguide suspended above a dielectric substrate. Low losses in InP:Si result in a big propagation length. The induced deflection can be detected by measuring the phase change of the light when passing through the waveguide, which enables all-optical functioning, and paves the way towards integration and miniaturization of micro-cantilevers. In addition, tunability of the ENZ and the SPP excitation wavelength ranges, via adjusting the carrier concentration, provides an extra degree of freedom for designing MEMS devices.

  20. Fast wavefront optimization for focusing through biological tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Blochet, Baptiste; Bourdieu, Laurent; Gigan, Sylvain

    2017-02-01

    The propagation of light in biological tissues is rapidly dominated by multiple scattering: ballistic light is exponentially attenuated, which limits the penetration depth of conventional microscopy techniques. For coherent light, the recombination of the different scattered paths creates a complex interference: speckle. Recently, different wavefront shaping techniques have been developed to coherently manipulate the speckle. It opens the possibility to focus light through complex media and ultimately to image in them, provided however that the medium can be considered as stationary. We have studied the possibility to focus in and through time-varying biological tissues. Their intrinsic temporal dynamics creates a fast decorrelation of the speckle pattern. Therefore, focusing through biological tissues requires fast wavefront shaping devices, sensors and algorithms. We have investigated the use of a MEMS-based spatial light modulator (SLM) and a fast photodetector, combined with FPGA electronics to implement a closed-loop optimization. Our optimization process is just limited by the temporal dynamics of the SLM (200µs) and the computation time (45µs), thus corresponding to a rate of 4 kHz. To our knowledge, it's the fastest closed loop optimization using phase modulators. We have studied the focusing through colloidal solutions of TiO2 particles in glycerol, allowing tunable temporal stability, and scattering properties similar to biological tissues. We have shown that our set-up fulfills the required characteristics (speed, enhancement) to focus through biological tissues. We are currently investigating the focusing through acute rat brain slices and the memory effect in dynamic scattering media.

  1. Simulation of MEMS for the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.

  2. Disposable cartridge biosensor platform for portable diagnostics

    NASA Astrophysics Data System (ADS)

    Yaras, Yusuf S.; Cakmak, Onur; Gunduz, Ali B.; Saglam, Gokhan; Olcer, Selim; Mostafazadeh, Aref; Baris, Ibrahim; Civitci, Fehmi; Yaralioglu, Goksen G.; Urey, Hakan

    2017-03-01

    We developed two types of cantilever-based biosensors for portable diagnostics applications. One sensor is based on MEMS cantilever chip mounted in a microfluidic channel and the other sensor is based on a movable optical fiber placed across a microfluidic channel. Both types of sensors were aimed at direct mechanical measurement of coagulation time in a disposable cartridge using plasma or whole blood samples. There are several similarities and also some important differences between the MEMS based and the optical fiber based solutions. The aim of this paper is to provide a comparison between the two solutions and the results. For both types of sensors, actuation of the cantilever or the moving fiber is achieved using an electro coil and the readout is optical. Since both the actuation and sensing are remote, no electrical connections are required for the cartridge. Therefore it is possible to build low cost disposable cartridges. The reader unit for the cartridge contains light sources, photodetectors, the electro coil, a heater, analog electronics, and a microprocessor. The reader unit has different optical interfaces for the cartridges that have MEMS cantilevers and moving fibers. MEMS based platform has better sensitivity but optomechanical alignment is a challenge and measurements with whole blood were not possible due to high scattering of light by the red blood cells. Fiber sensor based platform has relaxed optomechanical tolerances, ease of manufacturing, and it allows measurements in whole blood. Both sensors were tested using control plasma samples for activated-Partial-Thromboplastin-Time (aPTT) measurements. Control plasma test results matched with the manufacturer's datasheet. Optical fiber based system was tested for aPTT tests with human whole blood samples and the proposed platform provided repeatable test results making the system method of choice for portable diagnostics.

  3. Additional information for “TREMOR: A Wireless, MEMS Accelerograph for Dense Arrays” (Evans et al., 2003)

    USGS Publications Warehouse

    Evans, John R.; Hamstra, Robert H.; Spudich, Paul; Kundig, Christoph; Camina, Patrick; Rogers, John A.

    2003-01-01

    The length of Evans et al. (2003) necessitated transfer of several less germane sections to this alternate forum to meet that venue’s needs. These sections include a description of the development of Figure 1, the plot of spatial variability so critical to the argument for dense arrays of strong-motion instruments; the description of the rapid, integer, computational method for PGV used in the TREMOR instrument (the Oakland instrument, the commercial prototype, and the commercial instrument); siting methods and strategies used for Class B TREMOR instruments and those that can be used for Class C instruments to preserve the cost advantages of such systems; and some general discussion of MEMS accelerometers, including a comparative Table with representative examples of Class A, B and C MEMS devices. (“MEMS” means “Micro-ElectroMechanical” Systems—“micromachined” sensors, generally of silicon. Classes A, B, and C are defined in Table 1.)

  4. Cryo Power and Heat Transfer

    DTIC Science & Technology

    2004-09-01

    of DMD ...........................................................................................47 Figure 3.15: Lens used for intensity...51 Figure 3.18: Imaging system for DMD ...temperatures, converts to a ceramic material Digital Micromirror Device ( DMD ) – A MEMS device that consists of tiny mirror used for light modulation

  5. Nonclassical MHC-E (Mamu-E) expression in the rhesus monkey placenta

    PubMed Central

    Dambaeva, Svetlana V.; Bondarenko, Gennadiy I.; Grendell, Richard L.; Kravitz, Rachel H.; Durning, Maureen; Golos, Thaddeus G.

    2009-01-01

    The aim of this study was to characterize the expression of the rhesus HLA-E ortholog Mamu-E, particularly at the maternal-fetal interface. Mamu-E expression was confirmed by locus-specific RT-PCR in the placenta as well as in peripheral blood mononuclear cells (PBMC) and other organs. We evaluated the utility of antibodies recognizing HLA-E (MEM-E/06 against native HLA-E, MEM-E/02 against denatured HLA-E) to detect Mamu-E by flow cytometry/immunofluorescence, Western blot, and immunohistochemistry (IHC). Western blot analysis of cells and selected transfectants confirmed the recognition of Mamu-E but not Mamu-AG by antibodies MEM-E/06 and HC10 but not MEM-E/02. Immunohistochemical staining of frozen sections of rhesus placenta with the MEM-E/06 antibody demonstrated expression in most populations of rhesus monkey trophoblast cells, including villous cytotrophoblasts (strong positive staining), apical membrane of syncytiotrophoblasts (light to moderate staining) and extravillous cytotrophoblasts (moderate to strong staining, especially endovascular trophoblasts in early pregnancy). Expression was not trophoblast cell-specific, especially at term, when endothelial cells in both the chorionic plate and placental villi showed strong staining for Mamu-E. Staining of rhesus extravillous trophoblast cells suggested the co-expression of Mamu-E and Mamu-AG (the rhesus HLA-G homolog) on these cells. MEM-E/06 was shown also to react with differentiating rhesus placental syncytiotrophoblasts in primary culture, detecting intracellular and weak surface expression of Mamu-E. We conclude that the gestation-dependent co-expression of Mamu-E with Mamu-AG in villous and extravillous trophoblast cells suggests important and perhaps complementary but distinct roles of these two nonclassical MHC class I loci in pregnancy at the maternal-fetal interface. In addition, the MEM-E/06 antibody will be useful for the detection of Mamu-E at the maternal-fetal interface in the rhesus monkey. PMID:17996936

  6. Large Area MEMS Based Ultrasound Device for Cancer Detection.

    PubMed

    Wodnicki, Robert; Thomenius, Kai; Hooi, Fong Ming; Sinha, Sumedha P; Carson, Paul L; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-21

    We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to production PZT probes, however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  7. Method using photo-induced and thermal bending of MEMS sensors

    DOEpatents

    Datskos, Panagiotis G.

    2001-01-01

    A method for measuring chemical analytes and physical forces by measuring changes in the deflection of a microelectromechanical cantilever structure while it is being irradiated by a light having an energy above the band gap of the structure.

  8. Conformal and embedded IDT microsensors for health monitoring of structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    2000-06-01

    MEMS are currently being applied to the structural health monitoring of critical aircraft components and composites. The approach integrates acoustic emission, strain gauges, MEMS accelerometers and vibration monitoring aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensor and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State wireless communication systems suitable for condition monitoring of aircraft structures in-flight. The main application areas of this investigation include continuos monitoring of a) structural integrity of aging aircraft, b) fatigue cracking, c) corrosion, d) deflection and strain of aircraft structures, wings, and rotorblades, e) impact damage, f) delamination and g) location and propagation of cracks. In this paper we give an overview of wireless programmable microsensors and MEMS and their associated driving electronics for such applications.

  9. Invariant Laws of Thermodynamics and Validity of Hasenöhrl Mass-Energy Equivalence Formula m = (4/3) E/c2 at Photonic, Electrodynamic, and Cosmic Scales

    NASA Astrophysics Data System (ADS)

    Sohrab, Siavash

    2017-01-01

    According to a scale-invariant statistical theory of fields electromagnetic photon mass is given as mem , k =√{ hk /c3 } . Since electromagnetic energy of photon is identified as amu =√{ hkc } , all baryonic matter is composed of light (photons) Eem = Nmem , kc2 =Mem , kc2 [ Joule ] or equivalently Mem , kc2 / 8338 [ kcal ] = Namu =Ma [ kg ] where 8338 is De Pretto number. Besides particle electromagnetic energy one requires potential energy associated with Poincaré stress for particle stability leading to rest enthalpy \\hcirco =\\ucirco +po \\vcirc =\\ucirco +\\ucirco / 3 = (4 / 3)mem , kc2 in accordance with Hasenöhrl. The 4/3 problem of electrodynamics (T. H. Boyer, Phys. Rev. Lett. 25, 1982) is also related to Poincaré stress thus the potential energy po \\vcirc =\\ucirco / 3 . Hence, the factor 4/3 is identified as Poisson polytropic index b =cp /cv and total particle rest mass will be composed of electromagnetic and gravitational parts mo =mem +mgr = (3 / 4) Eo /c2 + (1 / 4) Eo /c2 . At cosmological scale, respectively 3/4 and 1/4 of the total mass of closed universe will be electromagnetic (dark energy) and gravitational (dark matter) in nature as was emphasized by Pauli (Theory of Relativity, Dover, 1958). Also, Poincaré-Lorentz dynamic versus Einstein kinematic theory of relativity will be discussed.

  10. Fast tunable blazed MEMS grating for external cavity lasers

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2017-11-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  11. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    PubMed

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  12. MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

    PubMed Central

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered. PMID:23418485

  13. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Micro-Opto-Electro-Mechnical-System ( MOEMS ) sensor platform that is capable of integrating multiplexed Fabry-Perot (FP) interferometer based sensors. A...on a single MOEMS chip is shown in Figure 8. Light from a low coherence light source with a coherence length Lc is first sent to the reference...towards developing a low coherence interferometer based MOEMS detection system. An optical Micro-Electro-Mechanical-System (MEMS) sensor platform was

  14. Release of MEMS devices with hard-baked polyimide sacrificial layer

    NASA Astrophysics Data System (ADS)

    Boroumand Azad, Javaneh; Rezadad, Imen; Nath, Janardan; Smith, Evan; Peale, Robert E.

    2013-03-01

    Removal of polyimides used as sacrificial layer in fabricating MEMS devices can be challenging after hardbaking, which may easily result by the end of multiple-step processing. We consider the specific commercial co-developable polyimide ProLift 100 (Brewer Science). Excessive heat hardens this material, so that during wet release in TMAH based solvents, intact sheets break free from the substrate, move around in the solution, and break delicate structures. On the other hand, dry reactive-ion etching of hard-baked ProLift is so slow, that MEMS structures are damaged from undesirably-prolonged physical bombardment by plasma ions. We found that blanket exposure to ultraviolet light allows rapid dry etch of the ProLift surrounding the desired structures without damaging them. Subsequent removal of ProLift from under the devices can then be safely performed using wet or dry etch. We demonstrate the approach on PECVD-grown silicon-oxide cantilevers of 100 micron × 100 micron area supported 2 microns above the substrate by ~100-micron-long 8-micron-wide oxide arms.

  15. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  16. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  17. Novel ultra-lightweight and high-resolution MEMS x-ray optics

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Ezoe, Yuichiro; Takagi, Utako; Mita, Makoto; Riveros, Raul; Yamaguchi, Hitomi; Kato, Fumiki; Sugiyama, Susumu; Fujiwara, Kouzou; Morishita, Kohei; Nakajima, Kazuo; Fujihira, Shinya; Kanamori, Yoshiaki; Yamasaki, Noriko Y.; Mitsuda, Kazuhisa; Maeda, Ryutaro

    2009-05-01

    We have been developing ultra light-weight X-ray optics using MEMS (Micro Electro Mechanical Systems) technologies.We utilized crystal planes after anisotropic wet etching of silicon (110) wafers as X-ray mirrors and succeeded in X-ray reflection and imaging. Since we can etch tiny pores in thin wafers, this type of optics can be the lightest X-ray telescope. However, because the crystal planes are alinged in certain directions, we must approximate ideal optical surfaces with flat planes, which limits angular resolution of the optics on the order of arcmin. In order to overcome this issue, we propose novel X-ray optics based on a combination of five recently developed MEMS technologies, namely silicon dry etching, X-ray LIGA, silicon hydrogen anneal, magnetic fluid assisted polishing and hot plastic deformation of silicon. In this paper, we describe this new method and report on our development of X-ray mirrors fabricated by these technologies and X-ray reflection experiments of two types of MEMS X-ray mirrors made of silicon and nickel. For the first time, X-ray reflections on these mirrors were detected in the angular response measurements. Compared to model calculations, surface roughness of the silicon and nickel mirrors were estimated to be 5 nm and 3 nm, respectively.

  18. Rotational MEMS mirror with latching arm for silicon photonics

    NASA Astrophysics Data System (ADS)

    Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.

    2015-02-01

    We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.

  19. Nanoscale deformation and fracture mechanics of polycrystalline silicon and diamond-like carbon for MEMS by the AFM/DIC method

    NASA Astrophysics Data System (ADS)

    Cho, Sung Woo

    A method for nanoscale experimental mechanics was developed to address problems in deformation and fracture of micron-scale components in Microelectromechanical Systems (MEMS). Specifically, the effective and local, elastic and fracture behavior of polycrystalline silicon (polysilicon) and tetrahedral amorphous diamond-like carbon (ta-C) were studied using freestanding thin films subject to uniaxial tension. In this method, direct measurements of local deformations were derived from Atomic Force Microscopy (AFM) images in specimen areas varying between 1x2 mum2 and 15x15 mum2 using Digital Image Correlation (DIC) to extract displacements and strains with spatial resolution of 1-2 nm. The effective elastic modulus and Poisson's ratio of polysilicon and ta-C from the Sandia National Laboratories (SUMMiT) were 155 +/- 6 GPa and 0.22 +/- 0.02, and 759 +/- 22 GPa and 0.17 +/- 0.03, respectively. Similarly, the elastic modulus and Poisson's ratio of polysilicon fabricated at MCNC via the Multi-User MEMS Processes (MUMPs) with <110> texture were 164 +/- 7 GPa and 0.22 +/- 0.02, respectively. A second problem studied using the AFM/DIC method was the fracture of polysilicon in the presence of atomically sharp cracks. The effective (macroscopic) Mode-I critical stress intensity factor for polysilicon from different MUMPs runs was 1.00 +/- 0.1 MPa√m, where 0.1 MPa√m was the standard deviation, attributed to local cleavage anisotropy and grain boundary toughening. The variation in the effective critical stress intensity factor and the subcritical crack growth of polysilicon that was spatially recorded and quantified for the first time were the result of the spatial variation of the 4 local stress intensity factor at the crack tip that controlled crack initiation and thus, the overall fracture process. The AFM/DIC method was also applied to determine the minimum size of a polysilicon domain whose effective mechanical behavior could be described by the isotropic elastic constants. The isotropic material constants are applicable to MEMS components comprised of at least 15x15 grains, which correspond to a specimen area of 10x10-mum2 for SUMMiT and of 5x5-mum2 for MUMPs polysilicon, respectively.

  20. Special Technology Area Review on Micro-Opto-Electro-Mechanical-Systems (MOEMS)

    DTIC Science & Technology

    1997-12-01

    Optical Interference in Night Vision Systems "* DMD Assisted Intelligent Manufacturing of ................................................... SRI...CONCEPT ......................................... p. 8 FIGURE 3(a): DMD LIGHT SWITCHES...p. 9 FIGURE 3(b): SEM PHOTOMICROGRAPHS OF DMD CHIPS ........................................ p. 9 FIGURE 4: MULTI-USER MEMS PROJECTS (MUMPS

  1. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  2. Optical detection system for MEMS-type pressure sensor

    NASA Astrophysics Data System (ADS)

    Sareło, K.; Górecka-Drzazga, A.; Dziuban, J. A.

    2015-07-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm3) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment.

  3. Design of Small MEMS Microphone Array Systems for Direction Finding of Outdoors Moving Vehicles

    PubMed Central

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-01-01

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise. PMID:24603636

  4. Design of small MEMS microphone array systems for direction finding of outdoors moving vehicles.

    PubMed

    Zhang, Xin; Huang, Jingchang; Song, Enliang; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing

    2014-03-05

    In this paper, a MEMS microphone array system scheme is proposed which implements real-time direction of arrival (DOA) estimation for moving vehicles. Wind noise is the primary source of unwanted noise on microphones outdoors. A multiple signal classification (MUSIC) algorithm is used in this paper for direction finding associated with spatial coherence to discriminate between the wind noise and the acoustic signals of a vehicle. The method is implemented in a SHARC DSP processor and the real-time estimated DOA is uploaded through Bluetooth or a UART module. Experimental results in different places show the validity of the system and the deviation is no bigger than 6° in the presence of wind noise.

  5. Large area MEMS based ultrasound device for cancer detection

    NASA Astrophysics Data System (ADS)

    Wodnicki, Robert; Thomenius, Kai; Ming Hooi, Fong; Sinha, Sumedha P.; Carson, Paul L.; Lin, Der-Song; Zhuang, Xuefeng; Khuri-Yakub, Pierre; Woychik, Charles

    2011-08-01

    We present image results obtained using a prototype ultrasound array that demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micromachined Ultrasound Transducers (cMUTs) that have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 μm and the operating frequency is nominally 9 MHz. The spatial resolution of the new probe is comparable to those of production PZT probes; however the sensitivity is reduced by conditions that should be correctable. Simulated opposed-view image registration and Speed of Sound volume reconstruction results for ultrasound in the mammographic geometry are also presented.

  6. TREMOR: A wireless MEMS accelerograph for dense arrays

    USGS Publications Warehouse

    Evans, J.R.; Hamstra, R.H.; Kundig, C.; Camina, P.; Rogers, J.A.

    2005-01-01

    The ability of a strong-motion network to resolve wavefields can be described on three axes: frequency, amplitude, and space. While the need for spatial resolution is apparent, for practical reasons that axis is often neglected. TREMOR is a MEMS-based accelerograph using wireless Internet to minimize lifecycle cost. TREMOR instruments can economically augment traditional ones, residing between them to improve spatial resolution. The TREMOR instrument described here has dynamic range of 96 dB between ??2 g, or 102 dB between ??4 g. It is linear to ???1% of full scale (FS), with a response function effectively shaped electronically. We developed an economical, very low noise, accurate (???1%FS) temperature compensation method. Displacement is easily recovered to 10-cm accuracy at full bandwidth, and better with care. We deployed prototype instruments in Oakland, California, beginning in 1998, with 13 now at mean spacing of ???3 km - one of the most densely instrumented urban centers in the United States. This array is among the quickest in returning (PGA, PGV, Sa) vectors to ShakeMap, ???75 to 100 s. Some 13 events have been recorded. A ShakeMap and an example of spatial variability are shown. Extensive tests of the prototypes for a commercial instrument are described here and in a companion paper. ?? 2005, Earthquake Engineering Research Institute.

  7. Three-dimensional microelectromechanical tilting platform operated by gear-driven racks

    DOEpatents

    Klody, Kelly A.; Habbit, Jr., Robert D.

    2005-11-01

    A microelectromechanical (MEM) tiltable-platform apparatus is disclosed which utilizes a light-reflective platform (i.e. a micromirror) which is supported above a substrate by flexures which can be bent upwards to tilt the platform in any direction over an angle of generally .+-.10 degrees using a gear-driven rack attached to each flexure. Each rack is driven by a rotary microengine (i.e. a micromotor); and an optional thermal actuator can be used in combination with each microengine for initially an initial uplifting of the platform away from the substrate. The MEM apparatus has applications for optical switching (e.g. between a pair of optical fibers) or for optical beam scanning.

  8. Modeling of biaxial gimbal-less MEMS scanning mirrors

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Gu-Stoppel, Shanshan; Senger, Frank; Mallas, Christian; Hofmann, Ulrich; Meurer, Thomas; Benecke, Wolfgang

    2016-03-01

    One- and two-dimensional MEMS scanning mirrors for resonant or quasi-stationary beam deflection are primarily known as tiny micromirror devices with aperture sizes up to a few Millimeters and usually address low power applications in high volume markets, e.g. laser beam scanning pico-projectors or gesture recognition systems. In contrast, recently reported vacuum packaged MEMS scanners feature mirror diameters up to 20 mm and integrated high-reflectivity dielectric coatings. These mirrors enable MEMS based scanning for applications that require large apertures due to optical constraints like 3D sensing or microscopy as well as for high power laser applications like laser phosphor displays, automotive lighting and displays, 3D printing and general laser material processing. This work presents modelling, control design and experimental characterization of gimbal-less MEMS mirrors with large aperture size. As an example a resonant biaxial Quadpod scanner with 7 mm mirror diameter and four integrated PZT (lead zirconate titanate) actuators is analyzed. The finite element method (FEM) model developed and computed in COMSOL Multiphysics is used for calculating the eigenmodes of the mirror as well as for extracting a high order (n < 10000) state space representation of the mirror dynamics with actuation voltages as system inputs and scanner displacement as system output. By applying model order reduction techniques using MATLABR a compact state space system approximation of order n = 6 is computed. Based on this reduced order model feedforward control inputs for different, properly chosen scanner displacement trajectories are derived and tested using the original FEM model as well as the micromirror.

  9. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  10. Toward a biophotonic MEMS cell sensor

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Koev, Stephan T.; Schleunitz, Arne; Yi, Hyunmin; Hodzic, Vildana; Bentley, William E.; Payne, Gregory F.; Rubloff, Gary W.; Ghodssi, Reza

    2005-06-01

    We present a new platform for the optical analysis of biomolecules based upon the polysaccharide chitosan. The versatile, stable, and compatible nature of chitosan makes it an ideal material for integrating biological materials in microfabricated systems. Chitosan"s pH-responsive solubility allows electrochemical deposition, while its chemical reactivity enables facile coupling of proteins, oligonucleotides, and other biomolecules by covalent bonds. This work demonstrates the spatially selective assembly of a fluorescent molecule on chitosan and its applicability to microscale optical transducers. We define multimode waveguides and fluidic channels on a Pyrex wafer using a single layer of SU-8. Our implementation of sidewall patterning of transparent electrodes (indium tin oxide) on SU-8 structures is demonstrated and can be highly beneficial to fluorescent signal transduction. In this optical configuration, normally incident excitation light illuminates a chitosan surface on the vertical face of a collector waveguide intersected by a microfluidic channel. We demonstrate the collection of the optical signal in the integrated waveguide and analyze the signal by coupling the waveguide to a grating spectrometer.

  11. MEMS 3-DoF gyroscope design, modeling and simulation through equivalent circuit lumped parameter model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mian, Muhammad Umer, E-mail: umermian@gmail.com; Khir, M. H. Md.; Tang, T. B.

    Pre-fabrication, behavioural and performance analysis with computer aided design (CAD) tools is a common and fabrication cost effective practice. In light of this we present a simulation methodology for a dual-mass oscillator based 3 Degree of Freedom (3-DoF) MEMS gyroscope. 3-DoF Gyroscope is modeled through lumped parameter models using equivalent circuit elements. These equivalent circuits consist of elementary components which are counterpart of their respective mechanical components, used to design and fabricate 3-DoF MEMS gyroscope. Complete designing of equivalent circuit model, mathematical modeling and simulation are being presented in this paper. Behaviors of the equivalent lumped models derived for themore » proposed device design are simulated in MEMSPRO T-SPICE software. Simulations are carried out with the design specifications following design rules of the MetalMUMPS fabrication process. Drive mass resonant frequencies simulated by this technique are 1.59 kHz and 2.05 kHz respectively, which are close to the resonant frequencies found by the analytical formulation of the gyroscope. The lumped equivalent circuit modeling technique proved to be a time efficient modeling technique for the analysis of complex MEMS devices like 3-DoF gyroscopes. The technique proves to be an alternative approach to the complex and time consuming couple field analysis Finite Element Analysis (FEA) previously used.« less

  12. Long-Wavelength Beam Steerer Based on a Micro-Electromechanical Mirror

    PubMed Central

    Kos, Anthony B; Gerecht, Eyal

    2013-01-01

    Commercially available mirrors for scanning long-wavelength beams are too large for high-speed imaging. There is a need for a smaller, more agile pointing apparatus to provide images in seconds, not minutes or hours. A fast long-wavelength beam steerer uses a commercial micro-electro-mechanical system (MEMS) mirror controlled by a high-performance digital signal processor (DSP). The DSP allows high-speed raster scanning of the incident radiation, which is focused to a small waist onto the 9mm2, gold-coated, MEMS mirror surface, while simultaneously acquiring an undistorted, high spatial-resolution image of an object. The beam steerer hardware, software and performance are described. The system can also serve as a miniaturized, high-performance long-wavelength beam chopper for lock-in detection. PMID:26401426

  13. Design and simulation of MEMS microvalves for silicon photonic biosensor chip

    NASA Astrophysics Data System (ADS)

    Amemiya, Yoshiteru; Nakashima, Yuuto; Maeda, Jun; Yokoyama, Shin

    2018-04-01

    For the early and easy diagnosis of diseases, we have proposed a silicon photonic biosensor chip with two kinds of MEMS microvalves for a multiple-item detection system. The driving voltage of the vertical type with the circular-plate capacitor structure and that of the lateral type with the comb-shaped electrode are investigated. From mechanical calculations, the driving voltage of the vertical type is estimated to be 30 V and that of the lateral type to be 15 V. The propagation loss at the intersecting waveguides of arrayed ring-resonator biosensors is also estimated. In the case of optimized intersecting waveguides, more than 67% transmittance of TE-mode light is simulated for the series connection of 20 intersecting waveguides. It is confirmed that it is possible to fabricate an 8 × 12 arrayed biosensor chip in an area of 1 × 1.5 mm2 taking the device size of the microvalves into consideration. We have, for the first time, designed a whole system, including sensors and a fluid channel with MEMS microvalves.

  14. Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources

    NASA Astrophysics Data System (ADS)

    Lal, Amit

    2013-12-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.

  15. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

    PubMed Central

    Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Shin, Young-Jae

    2008-01-01

    Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for micro parts in MEMS applications. In the MR polishing process, the magnetic force plays a dominant role. This method uses MR fluids which contains micro abrasives as a polishing media. The objective of the present research is to shed light onto the material removal mechanism under various slurry conditions for polishing and to investigate surface characteristics, including shape analysis and surface roughness measurement, of spots obtained from the MR polishing process using alumina abrasives. A series of basic experiments were first performed to determine the optimum polishing conditions for BK7 glass using prepared slurries by changing the process parameters, such as wheel rotating speed and electric current. Using the obtained results, groove polishing was then performed and the results are investigated. Outstanding surface roughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present results highlight the possibility of applying this polishing method to ultra-precision micro parts production, especially in MEMS applications. PMID:27879705

  16. Transforming Mesoscopic (Bio)materials with Holographic Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Grier, David

    2004-03-01

    An optical tweezer uses the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometers to tens of micrometers. Since their introduction in 1986, optical tweezers have become a mainstay of research in biology, physical chemistry, and soft condensed matter physics. This talk highlights recent advances made possible by new classes of optical traps created with computer-designed holograms, a technique we call holographic optical trapping. Holographic optical tweezers can trap hundreds of mesoscopic objects simultaneously and move them independently in three dimensions. Arrays of optical traps can be used to continuously sort heterogeneous samples into selected fractions, a process we call optical fractionation. The same holograms can transform optical traps into optical scalpels and scissors that photochemically transform mesoscopic samples with exquisite spatial resolution. They also can impose arbitrary phase profiles onto the trapping beams, thereby creating optical vortices and related optical machines capable of actuating MEMS devices and driving mesoscale pumps and mixers. These new applications for laser light promise to take optical tweezers out of the laboratory and into real-world applications including manufacturing, diagnostics, and even consumer products. The unprecedented access to the mesoscopic world provided by holographic optical tweezers also offers revolutionary new opportunities for fundamental and applied research.

  17. Mid infrared MEMS FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    Erfan, Mazen; Sabry, Yasser M.; Mortada, Bassem; Sharaf, Khaled; Khalil, Diaa

    2016-03-01

    In this work we report, for the first time to the best of our knowledge, a bulk-micromachined wideband MEMS-based spectrometer covering both the NIR and the MIR ranges and working from 1200 nm to 4800 nm. The core engine of the spectrometer is a scanning Michelson interferometer micro-fabricated using deep reactive ion etching (DRIE) technology. The spectrum is obtained using the Fourier Transform techniques that allows covering a very wide spectral range limited by the detector responsivity. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator. Zirconium fluoride (ZrF4) multimode optical fibers are used to connect light between the white light source and the interferometer input, as well as the interferometer output to a PbSe photoconductive detector. The recorded signal-to-noise ratio is 25 dB at the wavelength of 3350 nm. The spectrometer is successfully used in measuring the absorption spectra of methylene chloride, quartz glass and polystyrene film. The presented solution provides a low cost method for producing miniaturized spectrometers in the near-/mid-infrared.

  18. Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank

    2017-05-01

    In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.

  19. MEMS phase former kit for high-resolution wavefront control

    NASA Astrophysics Data System (ADS)

    Gehner, Andreas; Wildenhain, Michael; Neumann, Hannes; Elgner, Andreas; Schenk, Harald

    2005-08-01

    The MEMS Phase Former Kit developed by the Fraunhofer IPMS is a complete Spatial Light Modulator system based on a piston-type Micro Mirror Array (MMA) for the use in high-resolution, high-speed optical phase control. It has been designed for an easy system integration into an user-specific environment to offer a platform for first practical investigations to open up new applications in Adaptive Optics. The key component is a fine segmented 240 x 200 array of 40 μm piston-type mirror elements capable of 400 nm analog deflection for a 2pi phase modulation in the visible. Each mirror can be addressed and deflected independently by means of an integrated CMOS backplane address circuitry at an 8bit height resolution. Full user programmability and control is provided by a newly developed comfortable driver software for Windows XP based PCs supporting both a Graphical User Interface (GUI) for stand-alone operation with pre-defined data patterns as well as an open ActiveX programming interface for a closed-loop operation with real-time data from an external source. An IEEE1394a FireWire interface is used for high-speed data communication with an electronic driving board performing the actual MMA programming and control allowing for an overall frame rate of up to 500 Hz. Successful proof-of-concept demonstrations already have been given for eye aberration correction in ophthalmology, for error compensation of leightweight primary mirrors of future space telescopes and for ultra-short laser pulse shaping. Besides a presentation of the basic device concept and system architecture the paper will give an overview of the obtained results from these applications.

  20. Visualizing Epithelial Expression in Vertical and Horizontal Planes With Dual Axes Confocal Endomicroscope Using Compact Distal Scanner.

    PubMed

    Li, Gaoming; Li, Haijun; Duan, Xiyu; Zhou, Quan; Zhou, Juan; Oldham, Kenn R; Wang, Thomas D

    2017-07-01

    The epithelium is a thin layer of tissue that lines hollow organs, such as colon. Visualizing in vertical cross sections with sub-cellular resolution is essential to understanding early disease mechanisms that progress naturally in the plane perpendicular to the tissue surface. The dual axes confocal architecture collects optical sections in tissue by directing light at an angle incident to the surface using separate illumination and collection beams to reduce effects of scattering, enhance dynamic range, and increase imaging depth. This configuration allows for images to be collected in the vertical as well as horizontal planes. We designed a fast, compact monolithic scanner based on the principle of parametric resonance. The mirrors were fabricated using microelectromechanical systems (MEMS) technology and were coated with aluminum to maximize near-infrared reflectivity. We achieved large axial displacements [Formula: see text] and wide lateral deflections >20°. The MEMS chip has a 3.2×2.9 mm 2 form factor that allows for efficient packaging in the distal end of an endomicroscope. Imaging can be performed in either the vertical or horizontal planes with [Formula: see text] depth or 1 ×1 mm 2 area, respectively, at 5 frames/s. We systemically administered a Cy5.5-labeled peptide that is specific for EGFR, and collected near-infrared fluorescence images ex vivo from pre-malignant mouse colonic epithelium to reveal the spatial distribution of this molecular target. Here, we demonstrate a novel scanning mechanism in a dual axes confocal endomicroscope that collects optical sections of near-infrared fluorescence in either vertical or horizontal planes to visualize molecular expression in the epithelium.

  1. Design of an intelligent flight instrumentation unit using embedded RTOS

    NASA Astrophysics Data System (ADS)

    Estrada-Marmolejo, R.; García-Torales, G.; Torres-Ortega, H. H.; Flores, J. L.

    2011-09-01

    Micro Unmanned Aerial Vehicles (MUAV) must calculate its spatial position to control the flight dynamics, which is done by Inertial Measurement Units (IMUs). MEMS Inertial sensors have made possible to reduce the size and power consumption of such units. Commonly the flight instrumentation operates independently of the main processor. This work presents an instrumentation block design, which reduces size and power consumption of the complete system of a MUAV. This is done by coupling the inertial sensors to the main processor without considering any intermediate level of processing aside. Using Real Time Operating Systems (RTOS) reduces the number of intermediate components, increasing MUAV reliability. One advantage is the possibility to control several different sensors with a single communication bus. This feature of the MEMS sensors makes a smaller and less complex MUAV design possible.

  2. Microelectromechanical inertial sensor

    DOEpatents

    Okandan, Murat [Edgewood, NM; Nielson, Gregory N [Albuquerque, NM

    2012-06-26

    A microelectromechanical (MEM) inertial sensor is disclosed which can be used to sense a linear acceleration, or a Coriolis acceleration due to an angular rotation rate, or both. The MEM inertial sensor has a proof mass which is supported on a bridge extending across an opening through a substrate, with the proof mass being balanced on the bridge by a pivot, or suspended from the bridge by the pivot. The proof mass can be oscillated in a tangential direction in the plane of the substrate, with any out-of-plane movement of the proof mass in response to a sensed acceleration being optically detected using transmission gratings located about an outer edge of the proof mass to generate a diffracted light pattern which changes with the out-of-plane movement of the proof mass.

  3. Transmission-enabled fiber Fabry-Perot cavity based on a deeply etched slotted micromirror.

    PubMed

    Othman, Muhammad A; Sabry, Yasser M; Sadek, Mohamed; Nassar, Ismail M; Khalil, Diaa A

    2018-06-01

    In this work, we report the analysis, fabrication, and characterization of an optical cavity built using a Bragg-coated fiber (BCF) mirror and a metal-coated microelectromechanical systems (MEMS) slotted micromirror, where the latter allows transmission output from the cavity. Theoretical modeling, using Fourier optics analysis for the cavity response based on tracing the propagation of light back and forth between the mirrors, is presented. Detailed simulation analysis is carried out for the spectral response of the cavity under different design conditions. MEMS chips of the slotted micromirror are fabricated using deep reactive ion etching of a silicon-on-insulator substrate with different device-etching depths of 150 μm and 80 μm with aluminum and gold metal coating, respectively. The cavity is characterized as an optical filter using a BCF with reflectivity that is larger than 95% in a 300 nm range across the E-band and the L-band. Versatile filter characteristics were obtained for different values of the MEMS micromirror slit width and cavity length. A free spectral range (FSR) of about 33 nm and a quality factor of about 196 were obtained for a 5.5 μm width aluminum slit, while an FSR of about 148 nm and a quality factor of about 148 were obtained for a 1.5 μm width gold slit. The presented structure opens the door for wide spectral response transmission-type MEMS filters.

  4. Novel wafer stepper with violet LED light source

    NASA Astrophysics Data System (ADS)

    Ting, Yung-Chiang; Shy, Shyi-Long

    2014-03-01

    Novel wafer stepper by using contact or proximity printing will be developed, using violet LED light source to replace Hg Arc. lamp or laser. Mirror, filter and condenser lens for Hg Arc. Lamp or laser and reduction lens for projection printing can be discarded. Reliability and manufacturing cost of wafer stepper can be improved. Exposure result by using IP3600 resist and wafer stepper with violet LED light source (wave-length 360nm to 410 nm) will be obtained. This novel wafer stepper can be used for 3DIC, MEMS and bio-chip lithography application by using thin and thick resist with sub-micron to 100 micron thickness.

  5. Flexible MEMS: A novel technology to fabricate flexible sensors and electronics

    NASA Astrophysics Data System (ADS)

    Tu, Hongen

    This dissertation presents the design and fabrication techniques used to fabricate flexible MEMS (Micro Electro Mechanical Systems) devices. MEMS devices and CMOS(Complementary Metal-Oxide-Semiconductor) circuits are traditionally fabricated on rigid substrates with inorganic semiconductor materials such as Silicon. However, it is highly desirable that functional elements like sensors, actuators or micro fluidic components to be fabricated on flexible substrates for a wide variety of applications. Due to the fact that flexible substrate is temperature sensitive, typically only low temperature materials, such as polymers, metals, and organic semiconductor materials, can be directly fabricated on flexible substrates. A novel technology based on XeF2(xenon difluoride) isotropic silicon etching and parylene conformal coating, which is able to monolithically incorporate high temperature materials and fluidic channels, was developed at Wayne State University. The technology was first implemented in the development of out-of-plane parylene microneedle arrays that can be individually addressed by integrated flexible micro-channels. These devices enable the delivery of chemicals with controlled temporal and spatial patterns and allow us to study neurotransmitter-based retinal prosthesis. The technology was further explored by adopting the conventional SOI-CMOS processes. High performance and high density CMOS circuits can be first fabricated on SOI wafers, and then be integrated into flexible substrates. Flexible p-channel MOSFETs (Metal-Oxide-Semiconductor Field-Effect-Transistors) were successfully integrated and tested. Integration of pressure sensors and flow sensors based on single crystal silicon has also been demonstrated. A novel smart yarn technology that enables the invisible integration of sensors and electronics into fabrics has been developed. The most significant advantage of this technology is its post-MEMS and post-CMOS compatibility. Various high-performance MEMS devices and electronics can be integrated into flexible substrates. The potential of our technology is enormous. Many wearable and implantable devices can be developed based on this technology.

  6. Low-dose memantine-induced working memory improvement in the allothetic place avoidance alternation task (APAAT) in young adult male rats

    PubMed Central

    Wesierska, Malgorzata J.; Duda, Weronika; Dockery, Colleen A.

    2013-01-01

    N-methyl-D-aspartate receptors (NMDAR) are involved in neuronal plasticity. To assess their role simultaneously in spatial working memory and non-cognitive learning, we used NMDAR antagonists and the Allothetic Place Avoidance Alternation Task (APAAT). In this test rats should avoid entering a place where shocks were presented on a rotating arena which requires cognitive coordination for the segregation of stimuli. The experiment took place 30 min after intraperitoneal injection of memantine (5, 10, 20 mg/kg b.w.: MemL, MemM, MemH, respectively) and (+)MK-801 (0.1, 0.2, 0.3 mg/kg b.w.: MK-801L, MK-801M, MK-801H, respectively). Rats from the control group were intact or injected with saline (0.2 ml/kg). Over three consecutive days the rats underwent habituation, two avoidance training intervals with shocks, and a retrieval test. The shock sector was alternated daily. The after-effects of the agents were tested on Day 21. Rats treated with low dose memantine presented a longer maximum time avoided and fewer entrances than the MemH, MK-801M, MK-801H and Control rats. The shocks per entrances ratio, used as an index of cognitive skill learning, showed skill improvement after D1, except for rats treated by high doses of the agents. The activity levels, indicated by the distance walked, were higher for the groups treated with high doses of the agents. On D21 the MK801H rats performed the memory task better than the MemH rats, whereas the rats' activity depended on condition, not on the group factor. These results suggest that in naïve rats mild NMDAR blockade by low-dose memantine improves working memory related to a highly challenging task. PMID:24385956

  7. Characterization techniques to predict mechanical behaviour of green ceramic bodies fabricated by ceramic microstereolithography

    NASA Astrophysics Data System (ADS)

    Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna

    2018-02-01

    Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL

  8. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  9. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  10. Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking

    DTIC Science & Technology

    2010-12-01

    Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction

  11. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  12. [A micro-silicon multi-slit spectrophotometer based on MEMS technology].

    PubMed

    Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen

    2009-06-01

    A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.

  13. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry.

    PubMed

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-02-25

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time.

  14. Testing of Piezo-Actuated Glass Micro-Membranes by Optical Low-Coherence Reflectometry

    PubMed Central

    Merlo, Sabina; Poma, Paolo; Crisà, Eleonora; Faralli, Dino; Soldo, Marco

    2017-01-01

    In this work, we have applied optical low-coherence reflectometry (OLCR), implemented with infra-red light propagating in fiberoptic paths, to perform static and dynamic analyses on piezo-actuated glass micro-membranes. The actuator was fabricated by means of thin-film piezoelectric MEMS technology and was employed for modifying the micro-membrane curvature, in view of its application in micro-optic devices, such as variable focus micro-lenses. We are here showing that OLCR incorporating a near-infrared superluminescent light emitting diode as the read-out source is suitable for measuring various parameters such as the micro-membrane optical path-length, the membrane displacement as a function of the applied voltage (yielding the piezo-actuator hysteresis) as well as the resonance curve of the fundamental vibration mode. The use of an optical source with short coherence-time allows performing interferometric measurements without spurious resonance effects due to multiple parallel interfaces of highly planar slabs, furthermore selecting the plane/layer to be monitored. We demonstrate that the same compact and flexible setup can be successfully employed to perform spot optical measurements for static and dynamic characterization of piezo-MEMS in real time. PMID:28245603

  15. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for both wavefront sensing and correction. In this scheme, the DM is used to introduce known aberrations (speckles in the focal plane), which interfere with existing speckles. By monitoring the interference between the pre-existing speckles and the speckles added deliberately by the DM, it is possible to reconstruct the complex amplitude (amplitude and phase) of the focal plane speckles. Thus, the DM is used for wavefront sensing, in a scheme akin to phase diversity. For SCExAO and other HCI systems using phase diversity, the wavefront compensation is a mix of closed-loop and open-loop control of the DM. The successful implementation of MEMS DMs open-loop control relies on a thorough modelling of the DM response to the control system commands. The work presented in this thesis, motivated by the need to provide accurate DM control for the wavefront control system of SCExAO, was centred around the development of MEMS DM models. This dissertation reports the characterization of MEMS DMs and the development of two efficient modelling approaches. The open-loop performance of both approaches has been investigated. The model providing the best result has been implemented within the SCExAO wavefront control software. Within SCExAO, the model was used to command the DM to create focal plane speckles. The work is now focused on using the model within a full speckle nulling process and on increasing the execution speed to make the model suitable for on-sky operation.

  16. Characterization of contour shapes achievable with a MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Zhou, Yaopeng; Bifano, Thomas

    2006-01-01

    An important consideration in the design of an adaptive optics controller is the range of physical shapes required by the DM to compensate the existing aberrations. Conversely, if the range of surface shapes achievable with a DM is known, its suitability for a particular AO application can be determined. In this paper, we characterize one MEMS DM that was recently developed for vision science applications. The device has 140 actuators supporting a continuous face sheet deformable mirror having 4mm square aperture. The total range of actuation is about 4μm, achieved using electrostatic actuation in an architecture that has been described previously. We incorporated the MEMS mirror into an adaptive optics (AO) testbed to measure its capacity to transform an initially planar wavefront into a wavefront having one of thirty-six orthogonal shapes corresponding to the first seven orders of Zernike polynomials. The testbed included a superluminescent diode source emitting light with a wavelength 630nm, a MEMS DM, and a Shack Hartmann wavefront sensor (SHWS). The DM was positioned in a plane conjugate to the SHWS lenslets, using a pair of relay lenses. Wavefront slope measurements provided by the SHWS were used in an integral controller to regulate DM shape. The control software used the difference between the the wavefront measured by the SHWS and the desired (reference) wavefront as feedback for the DM. The DM is able to produce all 36 terms with a wavefront height root mean square (RMS) from 1.35μm for the lower order Zernike shapes to 0.2μm for the 7th order.

  17. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    PubMed

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  18. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena

    PubMed Central

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.

    2015-01-01

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435

  19. A capacitive CMOS-MEMS sensor designed by multi-physics simulation for integrated CMOS-MEMS technology

    NASA Astrophysics Data System (ADS)

    Konishi, Toshifumi; Yamane, Daisuke; Matsushima, Takaaki; Masu, Kazuya; Machida, Katsuyuki; Toshiyoshi, Hiroshi

    2014-01-01

    This paper reports the design and evaluation results of a capacitive CMOS-MEMS sensor that consists of the proposed sensor circuit and a capacitive MEMS device implemented on the circuit. To design a capacitive CMOS-MEMS sensor, a multi-physics simulation of the electromechanical behavior of both the MEMS structure and the sensing LSI was carried out simultaneously. In order to verify the validity of the design, we applied the capacitive CMOS-MEMS sensor to a MEMS accelerometer implemented by the post-CMOS process onto a 0.35-µm CMOS circuit. The experimental results of the CMOS-MEMS accelerometer exhibited good agreement with the simulation results within the input acceleration range between 0.5 and 6 G (1 G = 9.8 m/s2), corresponding to the output voltages between 908.6 and 915.4 mV, respectively. Therefore, we have confirmed that our capacitive CMOS-MEMS sensor and the multi-physics simulation will be beneficial method to realize integrated CMOS-MEMS technology.

  20. A New Calibration Method Using Low Cost MEM IMUs to Verify the Performance of UAV-Borne MMS Payloads

    PubMed Central

    Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun

    2015-01-01

    Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems’ (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m. PMID:25808764

  1. New calibration method using low cost MEM IMUs to verify the performance of UAV-borne MMS payloads.

    PubMed

    Chiang, Kai-Wei; Tsai, Meng-Lun; Naser, El-Sheimy; Habib, Ayman; Chu, Chien-Hsun

    2015-03-19

    Spatial information plays a critical role in remote sensing and mapping applications such as environment surveying and disaster monitoring. An Unmanned Aerial Vehicle (UAV)-borne mobile mapping system (MMS) can accomplish rapid spatial information acquisition under limited sky conditions with better mobility and flexibility than other means. This study proposes a long endurance Direct Geo-referencing (DG)-based fixed-wing UAV photogrammetric platform and two DG modules that each use different commercial Micro-Electro Mechanical Systems' (MEMS) tactical grade Inertial Measurement Units (IMUs). Furthermore, this study develops a novel kinematic calibration method which includes lever arms, boresight angles and camera shutter delay to improve positioning accuracy. The new calibration method is then compared with the traditional calibration approach. The results show that the accuracy of the DG can be significantly improved by flying at a lower altitude using the new higher specification hardware. The new proposed method improves the accuracy of DG by about 20%. The preliminary results show that two-dimensional (2D) horizontal DG positioning accuracy is around 5.8 m at a flight height of 300 m using the newly designed tactical grade integrated Positioning and Orientation System (POS). The positioning accuracy in three-dimensions (3D) is less than 8 m.

  2. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  3. Application of ASTER and Landsat 8 imagery data and mathematical evaluation method in detecting iron minerals contamination in the Chadormalu iron mine area, central Iran

    NASA Astrophysics Data System (ADS)

    Moghtaderi, Arsia; Moore, Farid; Ranjbar, Hojjatollah

    2017-01-01

    Satellite images are widely used to map geological and environmental features at different map scales. The ability of visible to near-infrared (VNIR) scanner systems to map gossans, rich in iron and associated with weathered sulfide occurrences, as well as to characterize regoliths, is perhaps one of the most important current applications of this technology. Initial results of this study show that advanced space-borne thermal emission and reflection (ASTER), VNIR, and short-wave infrared radiometer scanner systems can be used successfully to map iron ores. By applying internal average relative reflectance, false color composite, minimum noise fraction transform, and mathematical evaluation method (MEM) techniques, iron contaminations were successfully detected in the Chadormalu iron mine area of central Iran. An attempt was also made to discriminate between the geogenic and anthropogenic iron contaminations in the vicinity of the Chadormalu iron deposit. This research compares ASTER and Landsat 8 data images and the MEM with the band ratio method in a full scope view scale and demonstrates ASTER image data capability in detecting iron contaminations in the Chadormalu area. This indicates that ASTER bands 3, 2, and 1 have a higher spatial (15 m) resolution compared with sensors used in previous works. In addition, the capability of the MEM in detecting Fe-contaminants, unlike the color judgments of the band ratio method, can discriminate between iron pollution in an alluvial plain and the Fe-contents of the host and country rocks in the study area. This study proved that Landsat 8 data illustrate exaggeration both in the MEM and band ratio final results (outputs) and cannot display iron contamination in detail.

  4. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M [Albuquerque, NM; Allen, James J [Albuquerque, NM

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  5. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  6. Recent progress in MEMS technology development for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Burgett, Sherrie J.

    2001-08-01

    The recent progress of ongoing efforts at the Army Aviation and Missile Command (AMCOM) to develop microelectromechanical systems (MEMS) technology for military applications is discussed in this paper. The current maturity level of low cost, low power, micro devices in industry, which range from simple temperature and pressure sensors to accelerometers in airbags, provides a viable foundation for the development of rugged MEMS devices for dual-use applications. Early MEMS technology development efforts at AMCOM emphasized inertial MEMS sensors. An Army Science and Technology Objective (STO) project was initiated to develop low cost inertial components with moderate angular rate sensor resolution for measuring pitch and yaw of missile attitude and rotational roll rate. Leveraging the Defense Advanced Research Projects Agency and other Government agencies has resulted in the development of breadboard inertial MEMS devices with improved robustness. During the past two years, MEMS research at AMCOM has been expanded to include environmental MEMS sensors for missile health monitoring, RF-MEMS, optical MEMS devices for beam steering, and micro-optic 'benches' for opto-electronics miniaturization. Additionally, MEMS packaging and integration issues have come into focus and are being addressed. Selected ongoing research efforts in these areas are presented, and some horizon MEMS sensors requirements for Army and law enforcement are presented for consideration.

  7. Packaging of MEMS/MOEMS and nanodevices: reliability, testing, and characterization aspects

    NASA Astrophysics Data System (ADS)

    Tekin, Tolga; Ngo, Ha-Duong; Wittler, Olaf; Bouhlal, Bouchaib; Lang, Klaus-Dieter

    2011-02-01

    The last decade witnessed an explosive growth in research and development efforts devoted to MEMS devices and packaging. The successfully developed MEMS devices are, for example inkjet, pressure sensors, silicon microphones, accelerometers, gyroscopes, MOEMS, micro fuel cells and emerging MEMS. For the next decade, MEMS/MOEMS and nanodevice based products will penetrate into IT, telecommunications, automotive, defense, life sciences, medical and implantable applications. Forecasts say the MEMS market to be $14 billion by 2012. The packaging cost of MEMS/MOEMS products in general is about 70 percent. Unlike today's electronics IC packaging, their packaging are custom-built and difficult due to the moving structural elements. In order for the moving elements of a MEMS device to move effectively in a well-controlled atmosphere, hermetic sealing of the MEMS device in a cap is necessary. For some MEMS devices, such as resonators and gyroscopes, vacuum packaging is required. Usually, the cap is processed at the wafer level, and thus MEMS packaging is truly a wafer level packaging. In terms of MEMS/MOEMS and nanodevice packaging, there are still many critical issues need to be addressed due to the increasing integration density supported by 3D heterogeneous integration of multi-physic components/layers consisting of photonics, electronics, rf, plasmonics, and wireless. The infrastructure of MEMS/MOEMS and nanodevices and their packaging is not well established yet. Generic packaging platform technologies are not available. Some of critical issues have been studied intensively in the last years. In this paper we will discuss about processes, reliability, testing and characterization of MEMS/MOEMS and nanodevice packaging.

  8. A 2-dimensional optical architecture for solving Hamiltonian path problem based on micro ring resonators

    NASA Astrophysics Data System (ADS)

    Shakeri, Nadim; Jalili, Saeed; Ahmadi, Vahid; Rasoulzadeh Zali, Aref; Goliaei, Sama

    2015-01-01

    The problem of finding the Hamiltonian path in a graph, or deciding whether a graph has a Hamiltonian path or not, is an NP-complete problem. No exact solution has been found yet, to solve this problem using polynomial amount of time and space. In this paper, we propose a two dimensional (2-D) optical architecture based on optical electronic devices such as micro ring resonators, optical circulators and MEMS based mirror (MEMS-M) to solve the Hamiltonian Path Problem, for undirected graphs in linear time. It uses a heuristic algorithm and employs n+1 different wavelengths of a light ray, to check whether a Hamiltonian path exists or not on a graph with n vertices. Then if a Hamiltonian path exists, it reports the path. The device complexity of the proposed architecture is O(n2).

  9. Using evaporation to control capillary instabilities in micro-systems.

    PubMed

    Ledesma-Aguilar, Rodrigo; Laghezza, Gianluca; Yeomans, Julia M; Vella, Dominic

    2017-12-06

    The instabilities of fluid interfaces represent both a limitation and an opportunity for the fabrication of small-scale devices. Just as non-uniform capillary pressures can destroy micro-electrical mechanical systems (MEMS), so they can guide the assembly of novel solid and fluid structures. In many such applications the interface appears during an evaporation process and is therefore only present temporarily. It is commonly assumed that this evaporation simply guides the interface through a sequence of equilibrium configurations, and that the rate of evaporation only sets the timescale of this sequence. Here, we use Lattice-Boltzmann simulations and a theoretical analysis to show that, in fact, the rate of evaporation can be a factor in determining the onset and form of dynamical capillary instabilities. Our results shed light on the role of evaporation in previous experiments, and open the possibility of exploiting diffusive mass transfer to directly control capillary flows in MEMS applications.

  10. Dynamically reconfigurable optical packet switch (DROPS)

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Heng; Chou, Hsu-Feng; Bowers, John E.; Toudeh-Fallah, Farzam; Gyurek, Russ

    2006-12-01

    A novel Dynamically Reconfigurable Optical Packet Switch (DROPS) that combines both spectral and spatial switching capabilities is proposed and experimentally demonstrated for the first time. Compared with an Arrayed Waveguide Grating Router (AWGR), the added spatial switching capability provided by the microelectromechanical systems (MEMS) enables dynamically reconfigurable routing that is not possible with an AWGR alone. This methodology has several advantages over an AWGR including scalability, additional degrees of freedom in routing a packet from an ingress port to an egress port and more flexibility in path or line card recovery. The experimental demonstration implemented with 10-Gb/s packets shows that the added spatial switching does not degrade the bit-error-rate performance, indicating the promising potential of DROPS as a versatile and ultra-high capacity switch for optical packet-switched networks.

  11. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can potentially address.

  12. Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning

    NASA Astrophysics Data System (ADS)

    Towhata, I.; Uchimura, T.; Seko, I.; Wang, L.

    2015-09-01

    The present paper addresses the newly developed early warning technology that can help mitigate the slope failure disasters during heavy rains. Many studies have been carried out in the recent times on early warning that is based on rainfall records. Although those rainfall criteria of slope failure tells the probability of disaster on a regional scale, it is difficult for them to judge the risk of particular slopes. This is because the rainfall intensity is spatially too variable to forecast and the early warning based on rainfall alone cannot take into account the effects of local geology, hydrology and topography that vary spatially as well. In this regard, the authors developed an alternative technology in which the slope displacement/deformation is monitored and early warning is issued when a new criterion is satisfied. The new MEMS-based sensor monitors the tilting angle of an instrument that is embedded at a very shallow depth and the record of the tilting angle corresponds to the lateral displacement at the slope surface. Thus, the rate of tilting angle that exceeds a new criterion value implies an imminent slope failure. This technology has been validated against several events of slope failures as well as against a field rainfall test. Those validations have made it possible to determine the criterion value of the rate of tilting angle to be 0.1 degree/hour. The advantage of the MEMS tilting sensor lies in its low cost. Hence, it is possible to install many low-cost sensors over a suspected slope in which the precise range of what is going to fall down during the next rainfall is unknown. In addition to the past validations, this paper also introduces a recent application to a failed slope in the Izu Oshima Island where a heavy rainfall-induced slope failure occurred in October, 2013.

  13. Intracranial EEG potentials estimated from MEG sources: A new approach to correlate MEG and iEEG data in epilepsy.

    PubMed

    Grova, Christophe; Aiguabella, Maria; Zelmann, Rina; Lina, Jean-Marc; Hall, Jeffery A; Kobayashi, Eliane

    2016-05-01

    Detection of epileptic spikes in MagnetoEncephaloGraphy (MEG) requires synchronized neuronal activity over a minimum of 4cm2. We previously validated the Maximum Entropy on the Mean (MEM) as a source localization able to recover the spatial extent of the epileptic spike generators. The purpose of this study was to evaluate quantitatively, using intracranial EEG (iEEG), the spatial extent recovered from MEG sources by estimating iEEG potentials generated by these MEG sources. We evaluated five patients with focal epilepsy who had a pre-operative MEG acquisition and iEEG with MRI-compatible electrodes. Individual MEG epileptic spikes were localized along the cortical surface segmented from a pre-operative MRI, which was co-registered with the MRI obtained with iEEG electrodes in place for identification of iEEG contacts. An iEEG forward model estimated the influence of every dipolar source of the cortical surface on each iEEG contact. This iEEG forward model was applied to MEG sources to estimate iEEG potentials that would have been generated by these sources. MEG-estimated iEEG potentials were compared with measured iEEG potentials using four source localization methods: two variants of MEM and two standard methods equivalent to minimum norm and LORETA estimates. Our results demonstrated an excellent MEG/iEEG correspondence in the presumed focus for four out of five patients. In one patient, the deep generator identified in iEEG could not be localized in MEG. MEG-estimated iEEG potentials is a promising method to evaluate which MEG sources could be retrieved and validated with iEEG data, providing accurate results especially when applied to MEM localizations. Hum Brain Mapp 37:1661-1683, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter.

    PubMed

    Mehta, Dharmini C; Short, Jennifer L; Nicolazzo, Joseph A

    2013-12-02

    Memantine (MEM) is prescribed in mono and combination therapies for treating the symptoms of moderate to severe Alzheimer's disease (AD). Despite MEM being widely prescribed with other AD and non-AD medicines, very little is known about its mechanism of transport across the blood-brain barrier (BBB), and whether the nature of this transport lends MEM to a potential for drug-drug interactions at the BBB. Therefore, the purpose of this study was to characterize the mechanisms facilitating MEM brain uptake in Swiss Outbred mice using an in situ transcardiac perfusion technique, and identify the putative transporter involved in MEM disposition into the brain. Following transcardiac perfusion of MEM with increasing concentrations, the brain uptake of MEM was observed to be saturable. Furthermore, MEM brain uptake was reduced (up to 55%) by various cationic transporter inhibitors (amantadine, quinine, tetraethylammonium, choline and carnitine) and was dependent on extracellular pH, while being independent of membrane depolarization and the presence of Na(+) in the perfusate. In addition, MEM brain uptake was observed to be sensitive to changes in intracellular pH, hence, likely to be driven by H(+)/MEM antiport mechanisms. Taken together, these findings implicate the involvement of an organic cation transporter regulated by proton antiport mechanisms in the transport of MEM across the mouse BBB, possibly the organic cation/carnitine transporter, OCTN1. These studies also clearly demonstrate the brain uptake of MEM is significantly reduced by other cationic compounds, highlighting the need to consider the possibility of drug interactions with MEM at the BBB, potentially leading to reduced brain uptake and, therefore, altered efficacy of MEM when used in patients on multidrug regimens.

  15. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J.H.; Ellis, J.R.; Montague, S.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less

  16. Simulation, prediction, and genetic analyses of daily methane emissions in dairy cattle.

    PubMed

    Yin, T; Pinent, T; Brügemann, K; Simianer, H; König, S

    2015-08-01

    This study presents an approach combining phenotypes from novel traits, deterministic equations from cattle nutrition, and stochastic simulation techniques from animal breeding to generate test-day methane emissions (MEm) of dairy cows. Data included test-day production traits (milk yield, fat percentage, protein percentage, milk urea nitrogen), conformation traits (wither height, hip width, body condition score), female fertility traits (days open, calving interval, stillbirth), and health traits (clinical mastitis) from 961 first lactation Brown Swiss cows kept on 41 low-input farms in Switzerland. Test-day MEm were predicted based on the traits from the current data set and 2 deterministic prediction equations, resulting in the traits labeled MEm1 and MEm2. Stochastic simulations were used to assign individual concentrate intake in dependency of farm-type specifications (requirement when calculating MEm2). Genetic parameters for MEm1 and MEm2 were estimated using random regression models. Predicted MEm had moderate heritabilities over lactation and ranged from 0.15 to 0.37, with highest heritabilities around DIM 100. Genetic correlations between MEm1 and MEm2 ranged between 0.91 and 0.94. Antagonistic genetic correlations in the range from 0.70 to 0.92 were found for the associations between MEm2 and milk yield. Genetic correlations between MEm with days open and with calving interval increased from 0.10 at the beginning to 0.90 at the end of lactation. Genetic relationships between MEm2 and stillbirth were negative (0 to -0.24) from the beginning to the peak phase of lactation. Positive genetic relationships in the range from 0.02 to 0.49 were found between MEm2 with clinical mastitis. Interpretation of genetic (co)variance components should also consider the limitations when using data generated by prediction equations. Prediction functions only describe that part of MEm which is dependent on the factors and effects included in the function. With high probability, there are more important effects contributing to variations of MEm that are not explained or are independent from these functions. Furthermore, autocorrelations exist between indicator traits and predicted MEm. Nevertheless, this integrative approach, combining information from dairy cattle nutrition with dairy cattle genetics, generated novel traits which are difficult to record on a large scale. The simulated data basis for MEm was used to determine the size of a cow calibration group for genomic selection. A calibration group including 2,581 cows with MEm phenotypes was competitive with conventional breeding strategies. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Radiation Test Results for a MEMS Microshutter Operating at 60 K

    NASA Technical Reports Server (NTRS)

    Rapchun, David A.; Buchner, Stephen; Moseley, Harvey; Meyer, Stephen E.; Ray, Knute; Tuttle, Jim; Quinn, Ed; Buchanan, Ernie; Bloom, Dave; Hait, Tom; hide

    2007-01-01

    The James Webb Space Telescope (JWST), the successor to the Hubble Space Telescope, is due to be launched in 2013 with the goal of searching the very distant Universe for stars that formed shortly after the Big Bang. Because this occurred so far back in time, the available light is strongly red-shifted, requiring the use of detectors sensitive to the infrared portion of the electromagnetic spectrum. HgCdTe infrared focal plane arrays, cooled to below 30 K to minimize noise, will be used to detect the faint signals. One of the instruments on JWST is the Near Infrared Spectrometer (NIRSPEC) designed to measure the infrared spectra of up to 100 separate galaxies simultaneously. A key component in NIRSPEC is a Micro-Electromechanical System (MEMS), a two-dimensional micro-shutter array (MSA) developed by NASA/GSFC. The MSA is inserted in front of the detector to allow only the light from the galaxies of interest to reach the detector and to block the light from all other sources. The MSA will have to operate at 30 K to minimize the amount of thermal radiation emitted by the optical components from reaching the detector array. It will also have to operate in the space radiation environment that is dominated by the MSA will be exposed to a large total ionizing dose of approximately 200 krad(Si). Following exposure to ionizing radiation, a variety of MEMS have exhibited performance degradation. MEMS contain moving parts that are either controlled or sensed by changes in electric fields. Radiation degradation can be expected for those devices where there is an electric field applied across an insulating layer that is part of the sensing or controlling structure. Ionizing radiation will liberate charge (electrons and holes) in the insulating layers, some of which may be trapped within the insulating layer. Trapped charge will partially cancel the externally applied electric field and lead to changes in the operation of the MEMS. This appears to be a general principle for MEMS. Knowledge of the above principle has raised the concern at NASA that the MSA might also exhibit degraded performance because, i) each shutter flap is a multilayer structure consisting of metallic and insulating layers and ii) the movement of the shutter flaps is partially controlled by the application of an electric field between the shutter flap and the substrate (vertical support grid). The whole mission would be compromised if radiation exposure were to prevent the shutters from opening and closing properly. energetic ionizing particles. Because it is located A unique feature of the MSA is that, as outside the spacecraft and has very little shielding, previously mentioned, it will have to operate at temperatures near 30 K. To date, there are no published reports on how very low temperatures (- 30K) affect the response of MEMS devices to total ionizing dose. Experiments on SiO2 structures at low temperatures (80 K) indicate that the electrons generated by the ionizing radiation are mobile and will move rapidly under the application of an external electric field. Holes, on the other hand, that would normally move in the opposite direction through the SiO2 via a "thermal hopping" process, are effectively immobile at low electric fields as they are trapped close to their generation sites. However, for sufficiently large electric fields (greater than 3 MV/cm) holes are able to move through the SiO2. The larger the field, the more rapidly the holes move. The separation of the electrons and holes leads to a reduced electric field within the insulating layer. To overcome this reduction in electric field, a greater external voltage will have to be applied that alters the normal operation of the device. This report presents the results of radiation testing of the MSA at 60 K. The temperature was higher than the targeted temperature because of a faulty electrical interconnect on the test board. Specifically, our goal was to determine whether the MSA would function propey after a TID of 200 krad(Si).

  18. Optical MEMS for Earth observation

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Viard, Thierry; Noell, Wilfried; Zamkotsian, Frédéric; Freire, Marco; Guldimann, Benedikt; Kraft, Stefan

    2017-11-01

    Due to the relatively large number of optical Earth Observation missions at ESA, this area is interesting for new space technology developments. In addition to their compactness, scalability and specific task customization, optical MEMS could generate new functions not available with current technologies and are thus candidates for the design of future space instruments. Most mature components for space applications are the digital mirror arrays, the micro-deformable mirrors, the programmable micro diffraction gratings and tiltable micromirrors. A first selection of market-pull and techno-push concepts is done. In addition, some concepts are coming from outside Earth Observation. Finally two concepts are more deeply analyzed. The first concept is a programmable slit for straylight control for space spectro-imagers. This instrument is a push-broom spectroimager for which some images cannot be exploited because of bright sources in the field-of-view. The proposed concept consists in replacing the current entrance spectrometer slit by an active row of micro-mirrors. The MEMS will permit to dynamically remove the bright sources and then to obtain a field-of-view with an optically enhanced signal-to-noise ratio. The second concept is a push-broom imager for which the acquired spectrum can be tuned by optical MEMS. This system is composed of two diffractive elements and a digital mirror array. The first diffractive element spreads the spectrum. A micromirror array is set at the location of the spectral focal plane. By putting the micro-mirrors ON or OFF, we can select parts of field-of-view or spectrum. The second diffractive element then recombines the light on a push-broom detector. Dichroics filters, strip filter, band-pass filter could be replaced by a unique instrument.

  19. Converting MEMS technology into profits

    NASA Astrophysics Data System (ADS)

    Bryzek, Janusz

    1998-08-01

    This paper discusses issues related to transitioning a company from the advanced technology development phase (with a particular focus on MEMS) to a profitable business, with emphasis on start-up companies. It includes several case studies from (primarily) NovaSensor MEMS development history. These case studies illustrate strategic problems with which advanced MEMS technology developers have to be concerned. Conclusions from these case studies could be used as checkpoints for future MEMS developers to increase probability of profitable operations. The objective for this paper is to share the author's experience from multiple MEMS start-ups to accelerate development of the MEMS market by focusing state- of-the-art technologists on marketing issues.

  20. Application of RF-MEMS-Based Split Ring Resonators (SRRs) to the Implementation of Reconfigurable Stopband Filters: A Review

    PubMed Central

    Martín, Ferran; Bonache, Jordi

    2014-01-01

    In this review paper, several strategies for the implementation of reconfigurable split ring resonators (SRRs) based on RF-MEMS switches are presented. Essentially three types of RF-MEMS combined with split rings are considered: (i) bridge-type RF-MEMS on top of complementary split ring resonators CSRRs; (ii) cantilever-type RF-MEMS on top of SRRs; and (iii) cantilever-type RF-MEMS integrated with SRRs (or RF-MEMS SRRs). Advantages and limitations of these different configurations from the point of view of their potential applications for reconfigurable stopband filter design are discussed, and several prototype devices are presented. PMID:25474378

  1. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    NASA Astrophysics Data System (ADS)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  2. High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zhiran; Yang, Bin; Li, Guimiao; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-07-01

    This letter presents a high performance bimorph piezoelectric MEMS harvester with bulk PZT thick films on both sides of a flexible thin beryllium-bronze substrate via bonding and thinning technologies. The upper and lower PZT layers are thinned down to about 53 μm and 76 μm, respectively, and a commercial beryllium bronze with the thickness of about 50 μm is used as the substrate. The effective volume of this device is 30.6 mm3. The harvester with a tungsten proof mass generated the close-circuit peak-to-peak voltage of 53.1 V, the output power of 0.979 mW, and the power density of 31.99 mW/cm3 with the matching load resistance of 360 kΩ at the applied acceleration amplitude of 3.5 g and the applied frequency of 77.2 Hz. Meanwhile, in order to evaluate the stability, the device was measured continuously under applied acceleration amplitudes of 1.0 g and 3.5 g for one hour and demonstrated a good stability. Then, the harvester was utilized to light up LEDs and about twenty-one serial LEDs were lighted up at resonance under an applied acceleration amplitude of 3.0 g.

  3. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  4. Microelectromechanical Systems and Nephrology: The Next Frontier in Renal Replacement Technology

    PubMed Central

    Kim, Steven; Roy, Shuvo

    2013-01-01

    Microelectromechanical systems (MEMS) is playing a prominent role in the development of many new and innovative biomedical devices, but remains a relatively underutilized technology in nephrology. The future landscape of clinical medicine and research will only see further expansion of MEMS based technologies in device designs and applications. The enthusiasm stems from the ability to create small-scale device features with high precision in a cost effective manner. MEMS also offers the possibility to integrate multiple components into a single device. The adoption of MEMS has the potential to revolutionize how nephrologists manage kidney disease by improving the delivery of renal replacement therapies and enhancing the monitoring of physiologic parameters. To introduce nephrologists to MEMS, this review will first define relevant terms and describe the basic processes used to fabricate MEMS devices. Next, a survey of MEMS devices being developed for various biomedical applications will be illustrated with current examples. Finally, MEMS technology specific to nephrology will be highlighted and future applications will be examined. The adoption of MEMS offers novel avenues to improve the care of kidney disease patients and assist nephrologists in clinical practice. This review will serve as an introduction for nephrologists to the exciting world of MEMS. PMID:24206604

  5. Correlation of Radiation Dosage With Mechanical Properties of Thin Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.

    2003-01-01

    The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor deposited diamond and polysilicon film using crosssectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since 1 MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (I) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.

  6. A Three-Dimensional Transonic, Potential Flow Computer Program, Its Conversion to IBM Fortran and Utilization

    DTIC Science & Technology

    1983-12-01

    MAIN OEG=NFGVB1.3266P //COPY PEOC EILE=, MEM = // EXEC PGM=IEBGENEB //SISPRINT DD SYSOUT=A //SYSIN DC DÖMMY //SYS0T1 DD...COE*,FILE=1, MEM =FL027 // EXEC COPY,FILE=2,HEM=A411IN // EXEC COEY,FILE=3, MEM =VWIN // EXEC COPY,FILE = 4, MEM =A411A01...EXEC C0EY,FILE=5,MEä=INTERE // EXEC COPY,FILE=6, MEM =A411PS // EXEC COEY,FILE=7, MEM =A411P1 // EXEC COPY,FILE

  7. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  8. Carbon material based microelectromechanical system (MEMS): Fabrication and devices

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    This PhD dissertation presents the exploration and development of two carbon materials, carbon nanotubes (CNTs) and carbon fiber (CF), as either key functional components or unconventional substrates for a variety of MEMS applications. Their performance in three different types of MEMS devices, namely, strain/stress sensors, vibration-powered generators and fiber solar cells, were evaluated and the working mechanisms of these two non-traditional materials in these systems were discussed. The work may potentially enable the development of new types of carbon-MEMS devices. Carbon nanotubes were selected from the carbon family due to several advantageous characteristics that this nanomaterial offers. They carry extremely high mechanical strength (Ey=1TPa), superior electrical properties (current density of 4x109 A/cm2), exceptional piezoresistivity (G=2900), and unique spatial format (high aspect ratio hollow nanocylinder), among other properties. If properly utilized, all these merits can give rise to a variety of new types of carbon nanotube based micro- and nanoelectronics that can greatly fulfill the need for the next generation of faster, smaller and better devices. However, before these functions can be fully realized, one substantial issue to cope with is how to implement CNTs into these systems in an effective and controllable fashion. Challenges associated with CNTs integration include very poor dispersibility in solvents, lack of melting/sublimation point, and unfavorable rheology with regard to mixing and processing highly viscous, CNT-loaded polymer solutions. These issues hinder the practical progress of CNTs both in a lab scale and in the industrial level. To this end, a MEMS-assisted electrophoretic deposition technique was developed, aiming to achieve controlled integration of CNT into both conventional and flexible microsystems at room temperature with a relatively high throughput. MEMS technology has demonstrated strong capability in developing silicon and metal based microsystems. In this thesis, this mature technique was exploited to generate a variety of microelectrode structures to facilitate the micropatterning and manipulation of the CNTs. Selective deposition of electrically charged CNTs onto desired locations was realized in an EPD process through patterning of electric field lines created by the microelectrodes fabricated through MEMS techniques. A variety of 2-D and 3-D micropatterns of CNTs with waferscale areas have been successfully achieved in both rigid and elastic systems. The thickness and morphology of the generated CNT patterns was found to be readily controllable through the parameters of the fabrication process. Studies also showed that for this technique, high surface hydrophobicity of the non-conductive regions in microstructures was critical to accomplish well-defined selective micropatterning of CNTs. Upon clearing the hurdles of the CNT manipulation, a patterned PDMS/CNT nanocomposite was fabricated through the aforementioned approach and was incorporated, investigated and validated in elastic force/strain microsensors. The gauge factor of the sensor exhibited a strong dependence on both the initial resistance of the device and the applied strain. Detailed analysis of the data suggests that the piezoresistive effect of this specially constructed bi-layer composite could be due to three mechanisms, and the sensing mechanism may vary when physical properties of the CNT network embedded in the polymer matrix alter. The feasibility of the PDSM/CNT composite being utilized as an elastic electret was further explored. The nanocomposite composed of these two non-traditional electret materials exhibited electret characteristics with reasonable charge storage stability when charged using a corona discharge. The power generation capacity of the corona-charged composite has been characterized and successfully demonstrated in both a ball drop experiment and cyclic mechanical load experiments. Lastly, in an effort to develop carbon-material-based substrates for MEMS applications, a carbon fiber-based poly-Si solar cell was designed, fabricated and investigated. This fiber-type photovoltaics (PV) takes advantage of the excellent thermal stability, electrical conductivity and spatial format of the CF, which allows CF to serve as both the building block and the electrode in the PV configuration. The photovoltaic effects of the fiber PV were demonstrated with an open-circuit voltage of 0.14 V, a short-circuit current density of 1.7 mA/cm2, and output power density of 0.059mW/cm2 . The issues of this system were discussed as well.

  9. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2005-01-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  10. Standard semiconductor packaging for high-reliability low-cost MEMS applications

    NASA Astrophysics Data System (ADS)

    Harney, Kieran P.

    2004-12-01

    Microelectronic packaging technology has evolved over the years in response to the needs of IC technology. The fundamental purpose of the package is to provide protection for the silicon chip and to provide electrical connection to the circuit board. Major change has been witnessed in packaging and today wafer level packaging technology has further revolutionized the industry. MEMS (Micro Electro Mechanical Systems) technology has created new challenges for packaging that do not exist in standard ICs. However, the fundamental objective of MEMS packaging is the same as traditional ICs, the low cost and reliable presentation of the MEMS chip to the next level interconnect. Inertial MEMS is one of the best examples of the successful commercialization of MEMS technology. The adoption of MEMS accelerometers for automotive airbag applications has created a high volume market that demands the highest reliability at low cost. The suppliers to these markets have responded by exploiting standard semiconductor packaging infrastructures. However, there are special packaging needs for MEMS that cannot be ignored. New applications for inertial MEMS devices are emerging in the consumer space that adds the imperative of small size to the need for reliability and low cost. These trends are not unique to MEMS accelerometers. For any MEMS technology to be successful the packaging must provide the basic reliability and interconnection functions, adding the least possible cost to the product. This paper will discuss the evolution of MEMS packaging in the accelerometer industry and identify the main issues that needed to be addressed to enable the successful commercialization of the technology in the automotive and consumer markets.

  11. Cost-effective method of manufacturing a 3D MEMS optical switch

    NASA Astrophysics Data System (ADS)

    Carr, Emily; Zhang, Ping; Keebaugh, Doug; Chau, Kelvin

    2009-02-01

    growth of data and video transport networks. All-optical switching eliminates the need for optical-electrical conversion offering the ability to switch optical signals transparently: independent of data rates, formats and wavelength. It also provides network operators much needed automation capabilities to create, monitor and protect optical light paths. To further accelerate the market penetration, it is necessary to identify a path to reduce the manufacturing cost significantly as well as enhance the overall system performance, uniformity and reliability. Currently, most MEMS optical switches are assembled through die level flip-chip bonding with either epoxies or solder bumps. This is due to the alignment accuracy requirements of the switch assembly, defect matching of individual die, and cost of the individual components. In this paper, a wafer level assembly approach is reported based on silicon fusion bonding which aims to reduce the packaging time, defect count and cost through volume production. This approach is successfully demonstrated by the integration of two 6-inch wafers: a mirror array wafer and a "snap-guard" wafer, which provides a mechanical structure on top of the micromirror to prevent electrostatic snap-down. The direct silicon-to-silicon bond eliminates the CTEmismatch and stress issues caused by non-silicon bonding agents. Results from a completed integrated switch assembly will be presented, which demonstrates the reliability and uniformity of some key parameters of this MEMS optical switch.

  12. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  13. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  14. A MEMS scanner with lateral and axial scanning capability for dual axes confocal endomicroscopic in-vivo imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Haijun; Li, Gaoming; Duan, Xiyu; Wang, Thomas D.

    2017-02-01

    Aimed to build a dual-axes confocal endomicroscope with an outer diameter of 5.5mm for in-vivo imaging applications, an electrostatic MEMS scanner has been developed to enable two dimensional (2D) light scanning in either horizontal plane or vertical cross-sectional plane. The device has a compact structure design to match the dual axes confocal architecture in the probe without blocking the collimated light beams of excitation and collection, and a cutting-free silicon-on-insulator(SOI) micromachining process is used for the fabrication. A novel lever-based gimbal-like mechanism is employed to enable three degrees of freedom motions for lateral and axial light scanning, and its geometry is optimized for achieving large deflection with high scanning speed. Based on parametric excitation, the device can work in resonant modes. Testing result shows that, up to +/-27° optical deflection angle for inner axis torsion motion with a frequency of 4.9kHz, up to +/-28.5° optical deflection angle for outer axis torsion motion with a frequency of 0.65kHz and 360μm stroke for out-of-plane translation motion with a frequency of 0.53kHz are achieved with <60V driving voltage. Based on these results, 2D imaging with frame rate of 5 10Hz and large field of view (1000μm x 1000μm in horizontal plane and 1000μm x 400μm in vertical plane) can be enabled by this scanner.

  15. EDITORIAL: Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) Special issue for papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji

    2009-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from The 8th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2008) with the 2nd Symposium on Micro Environmental Machine Systems (μMEMS 2008). The workshop was held in Sendai, Japan on 9-12 November 2008 by Tohoku University. This is the second time that the PowerMEMS workshop has been held in Sendai, following the first workshop in 2000. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of Power MEMS was born in the late 1990's from a MEMS-based gas turbine project at Massachusetts Institute of Technology. After that, the research and development of Power MEMS have been promoted by the strong need for compact power sources with high energy and/or power density. Since its inception, Power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. Previously, the main topics of the PowerMEMS workshop were miniaturized gas turbines and micro fuel cells, but recently, energy harvesting has been the hottest topic. In 2008, energy harvesting had a 41% share in the 118 accepted regular papers. This special issue includes 19 papers on various topics. Finally, I would like to express my sincere appreciation to the members of the International Steering Committee, the Technical Program Committee, the Local Organizing Committee and financial supporters. This special issue was edited in collaboration with the staff of IOP Publishing.

  16. Optical inspection of hidden MEMS structures

    NASA Astrophysics Data System (ADS)

    Krauter, Johann; Gronle, Marc; Osten, Wolfgang

    2017-06-01

    Micro-electro-mechanical system's (MEMS) applications have greatly expanded over the recent years, and the MEMS industry has grown almost exponentially. One of the strongest drivers are the automotive and consumer markets. A 100% test is necessary especially in the production of automotive MEMS sensors since they are subject to safety relevant functions. This inspection should be carried out before dicing and packaging since more than 90% of the production costs are incurred during these steps. An electrical test is currently being carried out with each MEMS component. In the case of a malfunction, the defect can not be located on the wafer because the MEMS are no longer optically accessible due to the encapsulation. This paper presents a low coherence interferometer for the topography measurement of MEMS structures located within the wafer stack. Here, a high axial and lateral resolution is necessary to identify defects such as stuck or bent MEMS fingers. First, the boundary conditions for an optical inspection system will be discussed. The setup is then shown with some exemplary measurements.

  17. Light addressable potentiometric sensor with an array of sensing regions

    NASA Astrophysics Data System (ADS)

    Liang, Weiguo; Han, JingHong; Zhang, Hong; Chen, Deyong

    2001-09-01

    This paper describes the mechanism of light addressable poteniometric sensors (LAPS) from the viewpoints of Semiconductor Physics, and introduces the fabrication of a multi-parameter LAPS chip. The MEMS technology is applied to produce a matrix of sensing regions on the wafer. By doing that, the cross talk among these regions is reduced, and the precision of the LAPS is increased. An IR-LED matrix is used as the light source, and the flow-injection method is used to input samples. The sensor system is compact and highly integrated. The measure and control system is composed of a personal computer, a lock-in amplifier, a potentiostat, a singlechip system, and an addressing circuit. Some experiments have been done with this device. The results show that this device is very promising for practical use.

  18. Evaluation of MEMS-Based Wireless Accelerometer Sensors in Detecting Gear Tooth Faults in Helicopter Transmissions

    NASA Technical Reports Server (NTRS)

    Lewicki, David George; Lambert, Nicholas A.; Wagoner, Robert S.

    2015-01-01

    The diagnostics capability of micro-electro-mechanical systems (MEMS) based rotating accelerometer sensors in detecting gear tooth crack failures in helicopter main-rotor transmissions was evaluated. MEMS sensors were installed on a pre-notched OH-58C spiral-bevel pinion gear. Endurance tests were performed and the gear was run to tooth fracture failure. Results from the MEMS sensor were compared to conventional accelerometers mounted on the transmission housing. Most of the four stationary accelerometers mounted on the gear box housing and most of the CI's used gave indications of failure at the end of the test. The MEMS system performed well and lasted the entire test. All MEMS accelerometers gave an indication of failure at the end of the test. The MEMS systems performed as well, if not better, than the stationary accelerometers mounted on the gear box housing with regards to gear tooth fault detection. For both the MEMS sensors and stationary sensors, the fault detection time was not much sooner than the actual tooth fracture time. The MEMS sensor spectrum data showed large first order shaft frequency sidebands due to the measurement rotating frame of reference. The method of constructing a pseudo tach signal from periodic characteristics of the vibration data was successful in deriving a TSA signal without an actual tach and proved as an effective way to improve fault detection for the MEMS.

  19. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  20. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator.

    PubMed

    Liu, Jun; Wang, Jian

    2015-07-06

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations.

  1. MEMS testing and applications in automotive and aerospace industries

    NASA Astrophysics Data System (ADS)

    Ma, Zhichun; Chen, Xuyuan

    2009-05-01

    MEMS technology combines micromachining and integrated circuit fabrication technologies to produce highly reliable MEMS transducers. This paper presents an overview of MEMS transducers applications, particularly in automotive and aerospace industries, which includes inertia sensors for safety, navigation, and guidance control, thermal anemometer for temperature and heat-flux sensors in engine applications, MEMS atomizers for fuel injection, and micromachined actuators for flow control applications. Design examples for the devices in above mentioned applications are also presented and test results are given.

  2. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, Stephen; Smith, James H.; Sniegowski, Jeffry J.; McWhorter, Paul J.

    1998-01-01

    A method for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry.

  3. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data

    PubMed Central

    Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu

    2015-01-01

    Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453

  4. Construction and Initial Validation of the Multiracial Experiences Measure (MEM)

    PubMed Central

    Yoo, Hyung Chol; Jackson, Kelly; Guevarra, Rudy P.; Miller, Matthew J.; Harrington, Blair

    2015-01-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across two studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one’s social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. PMID:26460977

  5. Monolithic integration of a MOSFET with a MEMS device

    DOEpatents

    Bennett, Reid; Draper, Bruce

    2003-01-01

    An integrated microelectromechanical system comprises at least one MOSFET interconnected to at least one MEMS device on a common substrate. A method for integrating the MOSFET with the MEMS device comprises fabricating the MOSFET and MEMS device monolithically on the common substrate. Conveniently, the gate insulator, gate electrode, and electrical contacts for the gate, source, and drain can be formed simultaneously with the MEMS device structure, thereby eliminating many process steps and materials. In particular, the gate electrode and electrical contacts of the MOSFET and the structural layers of the MEMS device can be doped polysilicon. Dopant diffusion from the electrical contacts is used to form the source and drain regions of the MOSFET. The thermal diffusion step for forming the source and drain of the MOSFET can comprise one or more of the thermal anneal steps to relieve stress in the structural layers of the MEMS device.

  6. Construction and initial validation of the Multiracial Experiences Measure (MEM).

    PubMed

    Yoo, Hyung Chol; Jackson, Kelly F; Guevarra, Rudy P; Miller, Matthew J; Harrington, Blair

    2016-03-01

    This article describes the development and validation of the Multiracial Experiences Measure (MEM): a new measure that assesses uniquely racialized risks and resiliencies experienced by individuals of mixed racial heritage. Across 2 studies, there was evidence for the validation of the 25-item MEM with 5 subscales including Shifting Expressions, Perceived Racial Ambiguity, Creating Third Space, Multicultural Engagement, and Multiracial Discrimination. The 5-subscale structure of the MEM was supported by a combination of exploratory and confirmatory factor analyses. Evidence of criterion-related validity was partially supported with MEM subscales correlating with measures of racial diversity in one's social network, color-blind racial attitude, psychological distress, and identity conflict. Evidence of discriminant validity was supported with MEM subscales not correlating with impression management. Implications for future research and suggestions for utilization of the MEM in clinical practice with multiracial adults are discussed. (c) 2016 APA, all rights reserved).

  7. The Development of the Differential MEMS Vector Hydrophone

    PubMed Central

    Zhang, Guojun; Liu, Mengran; Shen, Nixin; Wang, Xubo; Zhang, Wendong

    2017-01-01

    To solve the problem that MEMS vector hydrophones are greatly interfered with by the vibration of the platform and flow noise in applications, this paper describes a differential MEMS vector hydrophone that could simultaneously receive acoustic signals and reject acceleration signals. Theoretical and simulation analyses have been carried out. Lastly, a prototype of the differential MEMS vector hydrophone has been created and tested using a standing wave tube and a vibration platform. The results of the test show that this hydrophone has a high sensitivity, Mv = −185 dB (@ 500 Hz, 0 dB reference 1 V/μPa), which is almost the same as the previous MEMS vector hydrophones, and has a low acceleration sensitivity, Mv = −58 dB (0 dB reference 1 V/g), which has decreased by 17 dB compared with the previous MEMS vector hydrophone. The differential MEMS vector hydrophone basically meets the requirements of acoustic vector detection when it is rigidly fixed to a working platform, which lays the foundation for engineering applications of MEMS vector hydrophones. PMID:28594384

  8. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  9. MEMS for pico- to micro-satellites

    NASA Astrophysics Data System (ADS)

    Shea, H. R.

    2009-02-01

    MEMS sensors, actuators, and sub-systems can enable an important reduction in the size and mass of spacecrafts, first by replacing larger and heavier components, then by replacing entire subsystems, and finally by enabling the microfabrication of highly integrated picosats. Very small satellites (1 to 100 kg) stand to benefit the most from MEMS technologies. These small satellites are typically used for science or technology demonstration missions, with higher risk tolerance than multi-ton telecommunication satellites. While MEMS are playing a growing role on Earth in safety-critical applications, in the harsh and remote environment of space, reliability is still the crucial issue, and the absence of an accepted qualification methodology is holding back MEMS from wider use. An overview is given of the range of MEMS applications in space. An effective way to prove that MEMS can operate reliably in space is to use them in space: we illustrate how Cubesats (1 kg, 1 liter, cubic satellites in a standardized format to reduce launch costs) can serve as low-cost vectors for MEMS technology demonstration in space. The Cubesat SwissCube developed in Switzerland is used as one example of a rapid way to fly new microtechnologies, and also as an example of a spacecraft whose performance is only possible thanks to MEMS.

  10. Effects Of Environmental And Operational Stresses On RF MEMS Switch Technologies For Space Applications

    NASA Technical Reports Server (NTRS)

    Jah, Muzar; Simon, Eric; Sharma, Ashok

    2003-01-01

    Micro Electro Mechanical Systems (MEMS) have been heralded for their ability to provide tremendous advantages in electronic systems through increased electrical performance, reduced power consumption, and higher levels of device integration with a reduction of board real estate. RF MEMS switch technology offers advantages such as low insertion loss (0.1- 0.5 dB), wide bandwidth (1 GHz-100 GHz), and compatibility with many different process technologies (quartz, high resistivity Si, GaAs) which can replace the use of traditional electronic switches, such as GaAs FETS and PIN Diodes, in microwave systems for low signal power (x < 500 mW) applications. Although the electrical characteristics of RF MEMS switches far surpass any existing technologies, the unknown reliability, due to the lack of information concerning failure modes and mechanisms inherent to MEMS devices, create an obstacle to insertion of MEMS technology into high reliability applications. All MEMS devices are sensitive to moisture and contaminants, issues easily resolved by hermetic or near-hermetic packaging. Two well-known failure modes of RF MEMS switches are charging in the dielectric layer of capacitive membrane switches and contact interface stiction of metal-metal switches. Determining the integrity of MEMS devices when subjected to the shock, vibration, temperature extremes, and radiation of the space environment is necessary to facilitate integration into space systems. This paper will explore the effects of different environmental stresses, operational life cycling, temperature, mechanical shock, and vibration on the first commercially available RF MEMS switches to identify relevant failure modes and mechanisms inherent to these device and packaging schemes for space applications. This paper will also describe RF MEMS Switch technology under development at NASA GSFC.

  11. Vision for Micro Technology Space Missions. Chapter 2

    NASA Technical Reports Server (NTRS)

    Dennehy, Neil

    2005-01-01

    It is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and it is exciting to contemplate the various space mission applications that Micro Electro Mechanical Systems (MEMS) technology could enable in the next 10-20 years. The primary objective of this chapter is to both stimulate ideas for MEMS technology infusion on future NASA space missions and to spur adoption of the MEMS technology in the minds of mission designers. This chapter is also intended to inform non-space oriented MEMS technologists, researchers and decision makers about the rich potential application set that future NASA Science and Exploration missions will provide. The motivation for this chapter is therefore to lead the reader down a path to identify and consider potential long-term, perhaps disruptive or revolutionary, impacts that MEMS technology may have for future civilian space applications. A general discussion of the potential for MEMS in space applications is followed by a brief showcasing of a few selected examples of recent MEMS technology developments for future space missions. Using these recent developments as a point of departure, a vision is then presented of several areas where MEMS technology might eventually be exploited in future Science and Exploration mission applications. Lastly, as a stimulus for future research and development, this chapter summarizes a set of barriers to progress, design challenges and key issues that must be overcome in order for the community to move on, from the current nascent phase of developing and infusing MEMS technology into space missions, in order to achieve its full future potential.

  12. Demonstration of polarization-insensitive spatial light modulation using a single polarization-sensitive spatial light modulator

    PubMed Central

    Liu, Jun; Wang, Jian

    2015-01-01

    We present a simple configuration incorporating a single polarization-sensitive phase-only liquid crystal spatial light modulator (LC-SLM) to facilitate polarization-insensitive spatial light modulation. The polarization-insensitive configuration is formed by a polarization beam splitter (PBS), a polarization-sensitive phase-only LC-SLM, a half-wave plate (HWP), and a mirror in a loop structure. We experimentally demonstrate polarization-insensitive spatial light modulations for incident linearly polarized beams with different polarization states and polarization-multiplexed beams. Polarization-insensitive spatial light modulations generating orbital angular momentum (OAM) beams are demonstrated in the experiment. The designed polarization-insensitive configuration may find promising applications in spatial light modulations accommodating diverse incident polarizations. PMID:26146032

  13. Selected papers from the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2012) (Atlanta, GA, USA, 2-5 December 2012)

    NASA Astrophysics Data System (ADS)

    Allen, Mark G.; Lang, Jeffrey

    2013-11-01

    Welcome to this special section of the Journal of Micromechanics and Microengineering (JMM). This section, co-edited by myself and by Professor Jeffrey Lang of the Massachusetts Institute of Technology, contains expanded versions of selected papers presented at the Power MEMS meeting held in Atlanta, GA, USA, in December of 2012. Professor Lang and I had the privilege of co-chairing Power MEMS 2012, the 12th International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications. The scope of the PowerMEMS series of workshops ranges from basic principles, to materials and fabrication, to devices and systems, to applications. The many applications of power MEMS (microelectromehcanical systems) range from MEMS-enabled energy harvesting, storage, conversion and conditioning, to integrated systems that manage these processes. Why is the power MEMS field growing in importance? Smaller-scale power and power supplies (microwatts to tens of watts) are gaining in prominence due to many factors, including the ubiquity of low power portable electronic equipment and the proliferation of wireless sensor nodes that require extraction of energy from their embedding environment in order to function. MEMS manufacturing methods can be utilized to improve the performance of traditional power supply elements, such as allowing batteries to charge faster or shrinking the physical size of passive elements in small-scale power supplies. MEMS technologies can be used to fabricate energy harvesters that extract energy from an embedding environment to power wireless sensor nodes, in-body medical implants and other devices, in which the harvesters are on the small scales that are appropriately matched to the overall size of these microsystems. MEMS can enable the manufacturing of energy storage elements from nontraditional materials by bringing appropriate structure and surface morphology to these materials as well as fabricating the electrical interfaces required for their operation and interconnection. Clearly, the marriage of MEMS technologies and energy conversion is a vital application space; and we are pleased to bring you some of the latest results from that space in this special section. Approximately 130 papers were presented at the Power MEMS 2012 conference. From these, the 20 papers you have before you were selected based on paper quality and topical balance. As you can see, papers representing many of the important areas of power MEMS are included: energy harvesters using multiple transduction schemes; MEMS-based fabrication of compact passive elements (inductors, supercapacitors, transformers); MEMS-enabled power diagnostics; MEMS-based batteries; and low power circuitry adapted to interfacing MEMS-based harvesters to overall systems. All of the papers you will read in this special section comprise substantial expansion from the proceedings articles and were reviewed through JMM's normal reviewing process. Both Professor Lang and I hope that you will share our enthusiasm for the field of power MEMS and that you will find this special section of JMM exciting, interesting and useful.  Sincerely,  Mark G Allen

  14. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks

    NASA Astrophysics Data System (ADS)

    Gul, M. Shahzeb Khan; Gunturk, Bahadir K.

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  15. Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks.

    PubMed

    Gul, M Shahzeb Khan; Gunturk, Bahadir K

    2018-05-01

    Light field imaging extends the traditional photography by capturing both spatial and angular distribution of light, which enables new capabilities, including post-capture refocusing, post-capture aperture control, and depth estimation from a single shot. Micro-lens array (MLA) based light field cameras offer a cost-effective approach to capture light field. A major drawback of MLA based light field cameras is low spatial resolution, which is due to the fact that a single image sensor is shared to capture both spatial and angular information. In this paper, we present a learning based light field enhancement approach. Both spatial and angular resolution of captured light field is enhanced using convolutional neural networks. The proposed method is tested with real light field data captured with a Lytro light field camera, clearly demonstrating spatial and angular resolution improvement.

  16. The 18 mm[superscript 2] Laboratory: Teaching MEMS Development with the SUMMiT Foundry Process

    ERIC Educational Resources Information Center

    Dallas, T.; Berg, J. M.; Gale, R. O.

    2012-01-01

    This paper describes the goals, pedagogical system, and educational outcomes of a three-semester curriculum in microelectromechanical systems (MEMS). The sequence takes engineering students with no formal MEMS training and gives them the skills to participate in cutting-edge MEMS research and development. The evolution of the curriculum from…

  17. Electrostatic MEMS devices with high reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  18. Electrical latching of microelectromechanical devices

    DOEpatents

    Garcia, Ernest J.; Sleefe, Gerard E.

    2004-11-02

    Methods are disclosed for row and column addressing of an array of microelectromechanical (MEM) devices. The methods of the present invention are applicable to MEM micromirrors or memory elements and allow the MEM array to be programmed and maintained latched in a programmed state with a voltage that is generally lower than the voltage required for electrostatically switching the MEM devices.

  19. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  20. Surface chemistry and tribology of MEMS.

    PubMed

    Maboudian, Roya; Carraro, Carlo

    2004-01-01

    The microscopic length scale and high surface-to-volume ratio, characteristic of microelectro-mechanical systems (MEMS), dictate that surface properties are of paramount importance. This review deals with the effects of surface chemical treatments on tribological properties (adhesion, friction, and wear) of MEMS devices. After a brief review of materials and processes that are utilized in MEMS technology, the relevant tribological and chemical issues are discussed. Various MEMS microinstruments are discussed, which are commonly employed to perform adhesion, friction, and wear measurements. The effects of different surface treatments on the reported tribological properties are discussed.

  1. JPRS Report. East Europe: Reference Aid, Abbreviations and Acronyms Used in the Bulgarian Press

    DTIC Science & Technology

    1990-10-25

    MHcneKUHfl 3a atprcaBeH TeXHHMeCKH KOHTpOJl ME MHTepHaUHOHaJIHH eflHHHUH MEMM M3BeCTHH Ha ETHOrpa<I>CKHfl HHCTHTyT c My3efi MEM ...HapofleH mezhdunar. international MEM MaillHHHO-eJieKTpOTeXHHHeCKH HHCTHTyT ME I Machine-Electrical Engineering Institute MEM MOCKOBCKH... MEM MHHHCTepCTBO Ha eJieKTpH$HKaUHHTa H MejiHopauHHTe MEM Ministry of Electrification and Land Reclamation (obs) 165 Menpo-Bajinpo

  2. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Montague, S.; Smith, J.H.; Sniegowski, J.J.; McWhorter, P.J.

    1998-08-25

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry. The method comprises the steps of forming each MEM device within a cavity below a device surface of the substrate; encapsulating the MEM device prior to forming electronic circuitry on the substrate; and releasing the MEM device for operation after fabrication of the electronic circuitry. Planarization of the encapsulated MEM device prior to formation of the electronic circuitry allows the use of standard processing steps for fabrication of the electronic circuitry. 13 figs.

  3. Application of Micro-Electro-Mechanical Sensors Contactless NDT of Concrete Structures.

    PubMed

    Ham, Suyun; Popovics, John S

    2015-04-17

    The utility of micro-electro-mechanical sensors (MEMS) for application in air-coupled (contactless or noncontact) sensing to concrete nondestructive testing (NDT) is studied in this paper. The fundamental operation and characteristics of MEMS are first described. Then application of MEMS sensors toward established concrete test methods, including vibration resonance, impact-echo, ultrasonic surface wave, and multi-channel analysis of surface waves (MASW), is demonstrated. In each test application, the performance of MEMS is compared with conventional contactless and contact sensing technology. Favorable performance of the MEMS sensors demonstrates the potential of the technology for applied contactless NDT efforts. To illustrate the utility of air-coupled MEMS sensors for concrete NDT, as compared with conventional sensor technology.

  4. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    NASA Technical Reports Server (NTRS)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  5. Wireless health monitoring of cracks in structures with MEMS-IDT sensors

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Sung; Vinoy, K. J.; Varadan, Vijay K.

    2002-07-01

    The integration of MEMS, IDTs and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real- time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characteristics and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC, providing a low power microsystem. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.

  6. Wireless microsensors for health monitoring of aircraft structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-01-01

    The integration of MEMS, IDTs (interdigital transducers) and required microelectronics and conformal antennas to realize programmable, robust and low cost passive microsensors suitable for many military structures and systems including aircraft, missiles and munitions is presented in this paper. The technology is currently being applied to the structural health monitoring of critical aircraft components. The approach integrates acoustic emission, strain gauges, MEMS accelerometers, gyroscopes and vibration monitoring devices with signal processing electronics to provide real-time indicators of incipient failure of aircraft components with a known history of catastrophic failure due to fracture. Recently a combination of the need for safety in the air and the desire to control costs is encouraging the use of in-flight monitoring of aircraft components and systems using light-weight, wireless and cost effective microsensors and MEMS. An in-situ Aircraft structural health monitoring (ASHM) system, with sensors embedded in the composite structure or surface-mounted on the structure, would permit the timely detection of damage in aircraft. Micromachining offers the potential for fabricating a range of microsensors and MEMS for structural applications including load, vibration and acoustics characterization and monitoring. Such microsensors are extremely small; they can be embedded into structural materials, can be mass-produced and are therefore potentially cheap. Additionally a range of sensor types can be integrated onto a single chip with built-in electronics and ASIC (Application Specific Integrated Circuit), providing a low power Microsystems. The smart sensors are being developed using the standard microelectronics and micromachining in conjunction with novel Penn State smart electronics or wireless communication systems suitable for condition monitoring of aircraft structures in-flight. A hybrid accelerometer and gyroscope in a single chip suitable for inertial navigation system and other microsensors for health monitoring and condition-based maintenance of structures, drag sensing and control of aircraft, strain and deflection of structures and systems, ice sensing on aircraft, remote temperature and humidity measurement of propellant in munitions, chemical sensing, etc. are discussed.

  7. Laser ablation for membrane processing of AlGaN/GaN- and micro structured ferroelectric thin film MEMS and SiC pressure sensors for extreme conditions

    NASA Astrophysics Data System (ADS)

    Zehetner, J.; Vanko, G.; Dzuba, J.; Ryger, I.; Lalinsky, T.; Benkler, Manuel; Lucki, Michal

    2015-05-01

    AlGaN/GaN based high electron mobility transistors (HEMTs), Schottky diodes and/or resistors have been presented as sensing devices for mechanical or chemical sensors operating in extreme conditions. In addition we investigate ferroelectric thin films for integration into micro-electro-mechanical-systems (MEMS). Creation of appropriate diaphragms and/or cantilevers out of SiC is necessary for further improvement of sensing properties of such MEMS sensors. For example sensitivity of the AlGaN/GaN based MEMS pressure sensor can be modified by membrane thickness. We demonstrated that a 4H-SiC 80μm thick diaphragms can be fabricated much faster with laser ablation than by electrochemical, photochemical or reactive ion etching (RIE). We were able to verify the feasibility of this process by fabrication of micromechanical membrane structures also in bulk 3C-SiC, borosilicate glass, sapphire and Al2O3 ceramic substrates by femtosecond laser (520nm) ablation. On a 350μm thick 4H-SiC substrate we produced an array of 275μm deep and 1000μm to 3000μm of diameter blind holes without damaging the 2μm AlN layer at the back side. In addition we investigated ferroelectric thin films as they can be deposited and micro-patterned by a direct UV-lithography method after the ablation process for a specific membrane design. The risk to harm or damage the function of thin films was eliminated by that means. Some defects in the ablated membranes are also affected by the polarisation of the laser light. Ripple structures oriented perpendicular to the laser polarisation promote creation of pin holes which would perforate a thin membrane. We developed an ablation technique strongly inhibiting formation of ripples and pin poles.

  8. Light Pollution at Mount Wilson: Effect of Lighting Technology Changes

    NASA Astrophysics Data System (ADS)

    Garstang, R. H.

    2000-05-01

    In an earlier paper (Bull. AAS. 30, 838, 1998; Mem. Soc. Astr. Italia, in press, 2000) I studied the effects of population growth and of smog on the historical growth of light pollution at Mount Wilson. I have now done some very crude calculations to evaluate the effect of changes in lighting technology - the most important change being from incandescent lamps to mercury vapor lamps to high pressure sodium lamps in street lighting. I am greatly indebted to George Eslinger, lately Director of the Bureau of Public Lighting of the City of Los Angeles, for information on the numbers and types of street lights in that City. The ratio of numbers of lamps of different kinds throughout the Los Angeles basin at any given date has been assumed to be the same as in the City. The contributions to the photon output in the B and V photometric bands have been estimated. The calculations show a rate of increase of the V brightness greater than that obtained if lighting changes are neglected. The B brightness shows a maximum during the period when mercury vapor street lighting predominated. I hope to refine my calculations when additional information becomes available.

  9. Pre-release plastic packaging of MEMS and IMEMS devices

    DOEpatents

    Peterson, Kenneth A.; Conley, William R.

    2002-01-01

    A method is disclosed for pre-release plastic packaging of MEMS and IMEMS devices. The method can include encapsulating the MEMS device in a transfer molded plastic package. Next, a perforation can be made in the package to provide access to the MEMS elements. The non-ablative material removal process can include wet etching, dry etching, mechanical machining, water jet cutting, and ultrasonic machining, or any combination thereof. Finally, the MEMS elements can be released by using either a wet etching or dry plasma etching process. The MEMS elements can be protected with a parylene protective coating. After releasing the MEMS elements, an anti-stiction coating can be applied. The perforating step can be applied to both sides of the device or package. A cover lid can be attached to the face of the package after releasing any MEMS elements. The cover lid can include a window for providing optical access. The method can be applied to any plastic packaged microelectronic device that requires access to the environment, including chemical, pressure, or temperature-sensitive microsensors; CCD chips, photocells, laser diodes, VCSEL's, and UV-EPROMS. The present method places the high-risk packaging steps ahead of the release of the fragile portions of the device. It also provides protection for the die in shipment between the molding house and the house that will release the MEMS elements and subsequently treat the surfaces.

  10. The Impact of Emerging MEMS-Based Microsystems on US Defense Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STAPLE,BEVAN D.; JAKUBCZAK II,JEROME F.

    2000-01-20

    This paper examines the impact of inserting Micro-Electro-Mechanical Systems (MEMS) into US defense applications. As specific examples, the impacts of micro Inertial Measurement Units (IMUs), radio frequency MEMS (RF MEMS), and Micro-Opto-Electro-Mechanical Systems (MOEMS) to provide integrated intelligence, communication, and control to the defense infrastructure with increased affordability, functionality, and performance are highlighted.

  11. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  12. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menchhofer, Paul A.

    PiMEMS Inc. (Santa Barbara, CA) in collaboration with ORNL investigated the use of Titanium Bonded Graphite Foam Composites (TBGC) for thermal mitigation in Micro Electronic Mechanical Systems (MEMS) applications. Also considered were potentially new additive manufacturing routes to producing novel high surface area micro features and diverse shaped heat transfer components for numerous lightweight MEMs applications.

  13. Managing design for manufacture and assembly in the development of MEMS-based products

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Yao; Narasimhan, Nachchinarkkinian; Hariz, Alex J.

    2006-12-01

    Design for manufacturability, assembly and reliability of MEMS products is being applied to a multitude of novel MEMS products to make up for the lack of "Standard Process for MEMS" concept. The latter has proved a major handicap in commercialization of MEMS devices when compared to integrated circuits products. Furthermore, an examination of recent engineering literature seems to suggest convergence towards the development of the design for manufacturability and reliability of MEMS products. This paper will highlight the advantages and disadvantages of conventional techniques that have been pursued up to this point to achieve commercialization of MEMS products, identify some of the problems slowing down development, and explore measures that could be taken to try to address those problems. Successful commercialization critically depends on packaging and assembly, manufacturability, and reliability for micro scale products. However, a methodology that appropriately shadows next generation knowledge management will undoubtedly address most of the critical problems that are hampering development of MEMS industries. Finally this paper will also identify contemporary issues that are challenging the industry in regards to product commercialization and will recommend appropriate measures based on knowledge flow to address those shortcomings and lay out plans to expedient and successful paths to market.

  14. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock.

    PubMed

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode.

  15. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    NASA Astrophysics Data System (ADS)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  16. Performance characterization of a single bi-axial scanning MEMS mirror-based head-worn display

    NASA Astrophysics Data System (ADS)

    Liang, Minhua

    2002-06-01

    The NomadTM Personal Display System is a head-worn display (HWD) with a see-through, high-resolution, high-luminance display capability. It is based on a single bi-axial scanning MEMS mirror. In the Nomad HWD system, a red laser diode emits a beam of light that is scanned bi-axially by a single MEMS mirror. A diffractive beam diffuser and an ocular expand the beam to form a 12mm exit pupil for comfortable viewing. The Nomad display has an SVGA (800x600) resolution, 60Hz frame rate, 23-degree horizontal field of view (FOV) and 3:4 vertical to horizontal aspect ratio, a luminance of 800~900 foot-Lamberts, see-through capability, 30mm eye-relief distance, and 1-foot to infinity focusing adjustment. We have characterized the performance parameters, such as field of view, distortion, contrast ratio (4x4 black and white checker board), modulation depth, exit pupil size, eye relief distance, maximum luminance, dynamic range ratio (full-on-to-full-off ratio), dimming ratio, and luminance uniformity at image plane. The Class-1 eye-safety requirements per IEC 60825-1 Amendment 2 (CDRH Laser Notice No. 50) are analyzed and verified by experiments. The paper describes all of the testing methods and set-ups as well as the representative test results. The test results demonstrate that the Nomad display is an eye-safe display product with good image quality and good user ergonomics.

  17. Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array

    PubMed Central

    Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara

    2009-01-01

    A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304

  18. Track Detection in Railway Sidings Based on MEMS Gyroscope Sensors

    PubMed Central

    Broquetas, Antoni; Comerón, Adolf; Gelonch, Antoni; Fuertes, Josep M.; Castro, J. Antonio; Felip, Damià; López, Miguel A.; Pulido, José A.

    2012-01-01

    The paper presents a two-step technique for real-time track detection in single-track railway sidings using low-cost MEMS gyroscopes. The objective is to reliably know the path the train has taken in a switch, diverted or main road, immediately after the train head leaves the switch. The signal delivered by the gyroscope is first processed by an adaptive low-pass filter that rejects noise and converts the temporal turn rate data in degree/second units into spatial turn rate data in degree/meter. The conversion is based on the travelled distance taken from odometer data. The filter is implemented to achieve a speed-dependent cut-off frequency to maximize the signal-to-noise ratio. Although direct comparison of the filtered turn rate signal with a predetermined threshold is possible, the paper shows that better detection performance can be achieved by processing the turn rate signal with a filter matched to the rail switch curvature parameters. Implementation aspects of the track detector have been optimized for real-time operation. The detector has been tested with both simulated data and real data acquired in railway campaigns. PMID:23443376

  19. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  20. Microelectromechanical Systems for Aerodynamics Applications

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran; DeAnna, Russell G.; Reshotko, Eli

    1996-01-01

    Microelectromechanical systems (MEMS) embody the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including micro-sensors and micro-actuators, are attractive because they can be made small (characteristic dimension about microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. MEMS pressure sensors, wall-shear-stress sensors, and micromachined hot-wires are nearing application in aeronautics. MEMS actuators face a tougher challenge since they have to be scaled (up) to the physical phenomena that are being controlled. MEMS actuators are proposed, for example, for controlling the small structures in a turbulent boundary layer, for aircraft control, for cooling, and for mixing enhancement. Data acquisition or control logistics require integration of electronics along with the transducer elements with appropriate consideration of analog-to-digital conversion, multiplexing, and telemetry. Altogether, MEMS technology offers exciting opportunities for aerodynamics applications both in wind tunnels and in flight

  1. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  2. A non-resonant fiber scanner based on an electrothermally-actuated MEMS stage

    PubMed Central

    Zhang, Xiaoyang; Duan, Can; Liu, Lin; Li, Xingde; Xie, Huikai

    2015-01-01

    Scanning fiber tips provides the most convenient way for forward-viewing fiber-optic microendoscopy. In this paper, a distal fiber scanning method based on a large-displacement MEMS actuator is presented. A single-mode fiber is glued on the micro-platform of an electrothermal MEMS stage to realize large range non-resonantscanning. The micro-platform has a large piston scan range of up to 800 µm at only 6V. The tip deflection of the fiber can be further amplified by placing the MEMS stage at a proper location along the fiber. A quasi-static model of the fiber-MEMS assembly has been developed and validated experimentally. The frequency response has also been studied and measured. A fiber tip deflection of up to 1650 µm for the 45 mm-long movable fiber portion has been achieved when the MEMS electrothermal stage was placed 25 mm away from the free end. The electrothermally-actuated MEMS stage shows a great potential for forward viewing fiber scanning and optical applications. PMID:26347583

  3. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s-1 and 20 µm s-1.

  4. Thermal Hysteresis of MEMS Packaged Capacitive Pressure Sensor (CPS) Based 3C-SiC

    NASA Astrophysics Data System (ADS)

    Marsi, N.; Majlis, B. Y.; Mohd-Yasin, F.; Hamzah, A. A.; Mohd Rus, A. Z.

    2016-11-01

    Presented herein are the effects of thermal hysteresis analyses of the MEMS packaged capacitive pressure sensor (CPS). The MEMS CPS was employed on Si-on-3C-SiC wafer that was performed using the hot wall low-pressure chemical vapour deposition (LPCVD) reactors at the Queensland Micro and Nanotechnology Center (QMNC), Griffith University and fabricated using the bulk-micromachining process. The MEMS CPS was operated at an extreme temperature up to 500°C and high external pressure at 5.0 MPa. The thermal hysteresis phenomenon that causes the deflection, strain and stress on the 3C-SiC diaphragm spontaneously influence the MEMS CPS performances. The differences of temperature, hysteresis, and repeatability test were presented to demonstrate the functionality of the MEMS packaged CPS. As expected, the output hysteresis has a low hysteresis (less than 0.05%) which has the hardness greater than the traditional silicon. By utilizing this low hysteresis, it was revealed that the MEMS packaged CPS has high repeatability and stability of the sensor.

  5. A review of microelectromechanical systems for nanoscale mechanical characterization

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Chang, Tzu-Hsuan

    2015-09-01

    A plethora of nanostructures with outstanding properties have emerged over the past decades. Measuring their mechanical properties and understanding their deformation mechanisms is of paramount importance for many of their device applications. To address this need innovative experimental techniques have been developed, among which a promising one is based upon microelectromechanical systems (MEMS). This article reviews the recent advances in MEMS platforms for the mechanical characterization of one-dimensional (1D) nanostructures over the past decade. A large number of MEMS platforms and related nanomechanics studies are presented to demonstrate the unprecedented capabilities of MEMS for nanoscale mechanical characterization. Focusing on key design considerations, this article aims to provide useful guidelines for developing MEMS platforms. Finally, some of the challenges and future directions in the area of MEMS-enabled nanomechanical characterization are discussed.

  6. Towards memory-aware services and browsing through lifelogging sensing.

    PubMed

    Arcega, Lorena; Font, Jaime; Cetina, Carlos

    2013-11-05

    Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem) in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time.

  7. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for applications in high temperature environments and can be used for high-temperature MEMS applications. With SiC, diodes and more complex electronics have been shown to operate to about 600 C, while the mechanical properties of SiC are maintained to much higher temperatures. Even when MEMS devices show benefits in the laboratory, there are many packaging challenges for any aeronautics application. Incorporating MEMS into these applications requires new approaches to packaging that goes beyond traditional integrated circuit (IC) packaging technologies. MEMS must interact mechanically, as well as electrically with their environment, making most traditional chip packaging and mounting techniques inadequate. Wind tunnels operate over wide temperature ranges in an environment that is far from being a 'clean-room.' In flight, aircraft are exposed to natural elements (e.g. rain, sun, ice, insects and dirt) and operational interferences(e.g. cleaning and deicing fluids, and maintenance crews). In propulsion systems applications, MEMS devices will have to operate in environments containing gases with very high temperatures, abrasive particles and combustion products. Hence deployment and packaging that maintains the integrity of the MEMS system is crucial. This paper presents an overview of MEMS fabrication and materials, descriptions of available sensors with more details on those being developed in our laboratories, and a discussion of sensor deployment options for wind tunnel and flight applications.

  8. Applications and requirements for MEMS scanner mirrors

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Hsu, Shu-Ting; Schenk, Harald; Lakner, Hubert K.

    2005-01-01

    Micro scanning mirrors are quite versatile MEMS devices for the deflection of a laser beam or a shaped beam from another light source. The most exciting application is certainly in laser-scanned displays. Laser television, home cinema and data projectors will display the most brilliant colors exceeding even plasma, OLED and CRT. Devices for front and rear projection will have advantages in size, weight and price. These advantages will be even more important in near-eye virtual displays like head-mounted displays or viewfinders in digital cameras and potentially in UMTS handsets. Optical pattern generation by scanning a modulated beam over an area can be used also in a number of other applications: laser printers, direct writing of photo resist for printed circuit boards or laser marking and with higher laser power laser ablation or material processing. Scanning a continuous laser beam over a printed pattern and analyzing the scattered reflection is the principle of barcode reading in 1D and 2D. This principle works also for identification of signatures, coins, bank notes, vehicles and other objects. With a focused white-light or RGB beam even full color imaging with high resolution is possible from an amazingly small device. The form factor is also very interesting for the application in endoscopes. Further applications are light curtains for intrusion control and the generation of arbitrary line patterns for triangulation. Scanning a measurement beam extends point measurements to 1D or 2D scans. Automotive LIDAR (laser RADAR) or scanning confocal microscopy are just two examples. Last but not least there is the field of beam steering. E.g. for all-optical fiber switches or positioning of read-/write heads in optical storage devices. The variety of possible applications also brings a variety of specifications. This publication discusses various applications and their requirements.

  9. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  10. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.

  11. Nonlinear adaptive optics: aberration correction in three photon fluorescence microscopy for mouse brain imaging

    NASA Astrophysics Data System (ADS)

    Sinefeld, David; Paudel, Hari P.; Wang, Tianyu; Wang, Mengran; Ouzounov, Dimitre G.; Bifano, Thomas G.; Xu, Chris

    2017-02-01

    Multiphoton fluorescence microscopy is a well-established technique for deep-tissue imaging with subcellular resolution. Three-photon microscopy (3PM) when combined with long wavelength excitation was shown to allow deeper imaging than two-photon microscopy (2PM) in biological tissues, such as mouse brain, because out-of-focus background light can be further reduced due to the higher order nonlinear excitation. As was demonstrated in 2PM systems, imaging depth and resolution can be improved by aberration correction using adaptive optics (AO) techniques which are based on shaping the scanning beam using a spatial light modulator (SLM). In this way, it is possible to compensate for tissue low order aberration and to some extent, to compensate for tissue scattering. Here, we present a 3PM AO microscopy system for brain imaging. Soliton self-frequency shift is used to create a femtosecond source at 1675 nm and a microelectromechanical (MEMS) SLM serves as the wavefront shaping device. We perturb the 1020 segment SLM using a modified nonlinear version of three-point phase shifting interferometry. The nonlinearity of the fluorescence signal used for feedback ensures that the signal is increasing when the spot size decreases, allowing compensation of phase errors in an iterative optimization process without direct phase measurement. We compare the performance for different orders of nonlinear feedback, showing an exponential growth in signal improvement as the nonlinear order increases. We demonstrate the impact of the method by applying the 3PM AO system for in-vivo mouse brain imaging, showing improvement in signal at 1-mm depth inside the brain.

  12. Scanned Image Projection System Employing Intermediate Image Plane

    NASA Technical Reports Server (NTRS)

    DeJong, Christian Dean (Inventor); Hudman, Joshua M. (Inventor)

    2014-01-01

    In imaging system, a spatial light modulator is configured to produce images by scanning a plurality light beams. A first optical element is configured to cause the plurality of light beams to converge along an optical path defined between the first optical element and the spatial light modulator. A second optical element is disposed between the spatial light modulator and a waveguide. The first optical element and the spatial light modulator are arranged such that an image plane is created between the spatial light modulator and the second optical element. The second optical element is configured to collect the diverging light from the image plane and collimate it. The second optical element then delivers the collimated light to a pupil at an input of the waveguide.

  13. Demonstration of the AGI Universal Samplers (F.K.A. the GORE Modules) for Passive Sampling of Groundwater

    DTIC Science & Technology

    2014-03-27

    Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an

  14. Demonstration of the AGI Universal Samplers (F.K.A. the GORE (registered trademark) Modules) for Passive Sampling of Groundwater

    DTIC Science & Technology

    2014-03-01

    Coefficient from Water into the Sorbent KOW Octanol-Water Partition Coefficient LF Low Flow LNAPL Light Non-aqueous Phase Liquid LTM Long-Term...Once in the vapor phase, the molecule can then diffuse through the mem- ERDC/CRREL TR-14-4 5 brane while liquid water is prevented from passing...remediation at this site was conducted in two phases. Phase I consisted of vertical contamina- tion profiling followed by the in situ injection of an

  15. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  16. Coherent beam control through inhomogeneous media in multi-photon microscopy

    NASA Astrophysics Data System (ADS)

    Paudel, Hari Prasad

    Multi-photon fluorescence microscopy has become a primary tool for high-resolution deep tissue imaging because of its sensitivity to ballistic excitation photons in comparison to scattered excitation photons. The imaging depth of multi-photon microscopes in tissue imaging is limited primarily by background fluorescence that is generated by scattered light due to the random fluctuations in refractive index inside the media, and by reduced intensity in the ballistic focal volume due to aberrations within the tissue and at its interface. We built two multi-photon adaptive optics (AO) correction systems, one for combating scattering and aberration problems, and another for compensating interface aberrations. For scattering correction a MEMS segmented deformable mirror (SDM) was inserted at a plane conjugate to the objective back-pupil plane. The SDM can pre-compensate for light scattering by coherent combination of the scattered light to make an apparent focus even at a depths where negligible ballistic light remains (i.e. ballistic limit). This problem was approached by investigating the spatial and temporal focusing characteristics of a broad-band light source through strongly scattering media. A new model was developed for coherent focus enhancement through or inside the strongly media based on the initial speckle contrast. A layer of fluorescent beads under a mouse skull was imaged using an iterative coherent beam control method in the prototype two-photon microscope to demonstrate the technique. We also adapted an AO correction system to an existing in three-photon microscope in a collaborator lab at Cornell University. In the second AO correction approach a continuous deformable mirror (CDM) is placed at a plane conjugate to the plane of an interface aberration. We demonstrated that this "Conjugate AO" technique yields a large field-of-view (FOV) advantage in comparison to Pupil AO. Further, we showed that the extended FOV in conjugate AO is maintained over a relatively large axial misalignment of the conjugate planes of the CDM and the aberrating interface. This dissertation advances the field of microscopy by providing new models and techniques for imaging deeply within strongly scattering tissue, and by describing new adaptive optics approaches to extending imaging FOV due to sample aberrations.

  17. Sleep Estimates Using Microelectromechanical Systems (MEMS)

    PubMed Central

    te Lindert, Bart H. W.; Van Someren, Eus J. W.

    2013-01-01

    Study Objectives: Although currently more affordable than polysomnography, actigraphic sleep estimates have disadvantages. Brand-specific differences in data reduction impede pooling of data in large-scale cohorts and may not fully exploit movement information. Sleep estimate reliability might improve by advanced analyses of three-axial, linear accelerometry data sampled at a high rate, which is now feasible using microelectromechanical systems (MEMS). However, it might take some time before these analyses become available. To provide ongoing studies with backward compatibility while already switching from actigraphy to MEMS accelerometry, we designed and validated a method to transform accelerometry data into the traditional actigraphic movement counts, thus allowing for the use of validated algorithms to estimate sleep parameters. Design: Simultaneous actigraphy and MEMS-accelerometry recording. Setting: Home, unrestrained. Participants: Fifteen healthy adults (23-36 y, 10 males, 5 females). Interventions: None. Measurements: Actigraphic movement counts/15-sec and 50-Hz digitized MEMS-accelerometry. Analyses: Passing-Bablok regression optimized transformation of MEMS-accelerometry signals to movement counts. Kappa statistics calculated agreement between individual epochs scored as wake or sleep. Bland-Altman plots evaluated reliability of common sleep variables both between and within actigraphs and MEMS-accelerometers. Results: Agreement between epochs was almost perfect at the low, medium, and high threshold (kappa = 0.87 ± 0.05, 0.85 ± 0.06, and 0.83 ± 0.07). Sleep parameter agreement was better between two MEMS-accelerometers or a MEMS-accelerometer and an actigraph than between two actigraphs. Conclusions: The algorithm allows for continuity of outcome parameters in ongoing actigraphy studies that consider switching to MEMS-accelerometers. Its implementation makes backward compatibility feasible, while collecting raw data that, in time, could provide better sleep estimates and promote cross-study data pooling. Citation: te Lindert BHW; Van Someren EJW. Sleep estimates using microelectromechanical systems (MEMS). SLEEP 2013;36(5):781-789. PMID:23633761

  18. MEMS (Micro-Electro-Mechanical Systems) for Automotive and Consumer Electronics

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Gómez, Udo-Martin

    MEMS sensors gained over the last two decades an impressive width of applications: (a) ESP: A car is skidding and stabilizes itself without driver intervention (b) Free-fall detection: A laptop falls to the floor and protects the hard drive by parking the read/write drive head automatically before impact. (c) Airbag: An airbag fires before the driver/occupant involved in an impending automotive crash impacts the steering wheel, thereby significantly reducing physical injury risk. MEMS sensors are sensing the environmental conditions and are giving input to electronic control systems. These crucial MEMS sensors are making system reactions to human needs more intelligent, precise, and at much faster reaction rates than humanly possible. Important prerequisites for the success of sensors are their size, functionality, power consumption, and costs. This technical progress in sensor development is realized by micro-machining. The development of these processes was the breakthrough to industrial mass-production for micro-electro-mechanical systems (MEMS). Besides leading-edge micromechanical processes, innovative and robust ASIC designs, thorough simulations of the electrical and mechanical behaviour, a deep understanding of the interactions (mainly over temperature and lifetime) of the package and the mechanical structures are needed. This was achieved over the last 20 years by intense and successful development activities combined with the experience of volume production of billions of sensors. This chapter gives an overview of current MEMS technology, its applications and the market share. The MEMS processes are described, and the challenges of MEMS, compared to standard IC fabrication, are discussed. The evolution of MEMS requirements is presented, and a short survey of MEMS applications is shown. Concepts of newest inertial sensors for ESP-systems are given with an emphasis on the design concepts of the sensing element and the evaluation circuit for achieving excellent noise performance. The chapter concludes with an outlook on arising new MEMS applications such as energy harvester and micro fuel cells.

  19. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how the application of this compact, efficient algorithm can improve the performance of both open- and closed-loop MEMS devices, eliminating the need for costly closed-loop approaches. This can greatly reduce the complexity, cost and yield of MEMS design and manufacture.

  20. Determination of the glycosylation-pattern of the middle ear mucosa in guinea pigs.

    PubMed

    Engleder, Elisabeth; Demmerer, Elisabeth; Wang, Xueyan; Honeder, Clemens; Zhu, Chengjing; Studenik, Christian; Wirth, Michael; Arnoldner, Christoph; Gabor, Franz

    2015-04-30

    In the present study the glycosylation pattern of the middle ear mucosa (MEM) of guinea pigs, an approved model for middle ear research, was characterized with the purpose to identify bioadhesive ligands which might prolong the contact time of drug delivery systems with the middle ear mucosa (MEM). To assess the utility of five fluorescein labeled plant lectins with different carbohydrate specificities as bioadhesive ligands, viable MEM specimens were incubated at 4°C and the lectin binding capacities were calculated from the MEM-associated relative fluorescence intensities. Among all lectins under investigation, fluorescein-labeled wheat germ agglutinin (F-WGA) emerged as the highest bioadhesive lectin. In general, the accessibility of carbohydrate moieties of the MEM followed the order: sialic acid and N-acetyl-d-glucosamine (WGA)>mannose and galactosamine (Lensculinaris agglutinin)>N-acetyl-d-glucosamine (Solanumtuberosum agglutinin)>fucose (Ulexeuropaeus isoagglutinin I)>terminal mannose α-(1,3)-mannose (Galanthusnivalis agglutinin). Competitive inhibition studies with the corresponding carbohydrate revealed that F-WGA-binding was inhibited up to 90% confirming specificity of the F-WGA-MEM interaction. The cilia of the MEM were identified as F-WGA binding sites by fluorescence imaging as well as a z-stack of overlays of transmission, F-WGA- and nuclei-stained images of the MEM. Additionally, co-localisation experiments revealed that F-WGA bound to acidic mucopolysaccharides of the MEM. All in all, lectin-mediated bioadhesion to the MEM is proposed as a new concept for drug delivery to prolong the residence time of the drug in the tympanic cavity especially for successful therapy for difficult-to-treat diseases such as otitis media. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Towards Memory-Aware Services and Browsing through Lifelogging Sensing

    PubMed Central

    Arcega, Lorena; Font, Jaime; Cetina, Carlos

    2013-01-01

    Every day we receive lots of information through our senses that is lost forever, because it lacked the strength or the repetition needed to generate a lasting memory. Combining the emerging Internet of Things and lifelogging sensors, we believe it is possible to build up a Digital Memory (Dig-Mem) in order to complement the fallible memory of people. This work shows how to realize the Dig-Mem in terms of interactions, affinities, activities, goals and protocols. We also complement this Dig-Mem with memory-aware services and a Dig-Mem browser. Furthermore, we propose a RFID Tag-Sharing technique to speed up the adoption of Dig-Mem. Experimentation reveals an improvement of the user understanding of Dig-Mem as time passes, compared to natural memories where the level of detail decreases over time. PMID:24196436

  2. Signal bi-amplification in networks of unidirectionally coupled MEMS

    NASA Astrophysics Data System (ADS)

    Tchakui, Murielle Vanessa; Woafo, Paul; Colet, Pere

    2016-01-01

    The purpose of this paper is to analyze the propagation and the amplification of an input signal in networks of unidirectionally coupled micro-electro-mechanical systems (MEMS). Two types of external excitations are considered: sinusoidal and stochastic signals. We show that sinusoidal signals are amplified up to a saturation level which depends on the transmission rate and despite MEMS being nonlinear the sinusoidal shape is well preserved if the number of MEMS is not too large. However, increasing the number of MEMS, there is an instability that leads to chaotic behavior and which is triggered by the amplification of the harmonics generated by the nonlinearities. We also show that for stochastic input signals, the MEMS array acts as a band-pass filter and after just a few elements the signal has a narrow power spectra.

  3. Wavelength tunable MEMS VCSELs for OCT imaging

    NASA Astrophysics Data System (ADS)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa; Semenova, Elizaveta; Hansen, Ole; Yvind, Kresten

    2018-02-01

    MEMS VCSELs are one of the most promising swept source (SS) lasers for optical coherence tomography (OCT) and one of the best candidates for future integration with endoscopes, surgical probes and achieving an integrated OCT system. However, the current MEMS-based SS are processed on the III-V wafers, which are small, expensive and challenging to work with. Furthermore, the actuating part, i.e., the MEMS, is on the top of the structure which causes a strong dependence on packaging to decrease its sensitivity to the operating environment. This work addresses these design drawbacks and proposes a novel design framework. The proposed device uses a high contrast grating mirror on a Si MEMS stage as the bottom mirror, all of which is defined in an SOI wafer. The SOI wafer is then bonded to an InP III-V wafer with the desired active layers, thereby sealing the MEMS. Finally, the top mirror, a dielectric DBR (7 pairs of TiO2 - SiO2), is deposited on top. The new device is based on a silicon substrate with MEMS defined on a silicon membrane in an enclosed cavity. Thus the device is much more robust than the existing MEMS VCSELs. This design also enables either a two-way actuation on the MEMS or a smaller optical cavity (pull-away design), i.e., wider FSR (Free Spectral Range) to increase the wavelength sweep. Fabrication of the proposed device is outlined and the results of device characterization are reported.

  4. A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for...ARL-RP-0536 ● SEP 2015 US Army Research Laboratory A Molecularly Imprinted Polymer (MIP)- Coated Microbeam MEMS Sensor for Chemical...TITLE AND SUBTITLE A Molecularly Imprinted Polymer (MIP)-Coated Microbeam MEMS Sensor for Chemical Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. MEMS/ECD Method for Making Bi(2-x)Sb(x)Te3 Thermoelectric Devices

    NASA Technical Reports Server (NTRS)

    Lim, James; Huang, Chen-Kuo; Ryan, Margaret; Snyder, G. Jeffrey; Herman, Jennifer; Fleurial, Jean-Pierre

    2008-01-01

    A method of fabricating Bi(2-x)Sb(x)Te3-based thermoelectric microdevices involves a combination of (1) techniques used previously in the fabrication of integrated circuits and of microelectromechanical systems (MEMS) and (2) a relatively inexpensive MEMS-oriented electrochemical-deposition (ECD) technique. The present method overcomes the limitations of prior MEMS fabrication techniques and makes it possible to satisfy requirements.

  6. Development of a MEMS-Scale Turbomachinery Based Vacuum Pump

    DTIC Science & Technology

    2012-06-01

    MEMS -SCALE TURBOMACHINERY BASED VACUUM PUMP by Michael J. Shea June 2012 Thesis Advisor: Anthony J. Gannon Second Reader...June 2012 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Development of a MEMS -Scale Turbomachinery Based Vacuum Pump 5...to develop a MEMS scale turbomachinery based vacuum pump. This would allow very high vacuum to be drawn for handheld mass spectroscopy. This

  7. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  8. A MEMS-based, wireless, biometric-like security system

    NASA Astrophysics Data System (ADS)

    Cross, Joshua D.; Schneiter, John L.; Leiby, Grant A.; McCarter, Steven; Smith, Jeremiah; Budka, Thomas P.

    2010-04-01

    We present a system for secure identification applications that is based upon biometric-like MEMS chips. The MEMS chips have unique frequency signatures resulting from fabrication process variations. The MEMS chips possess something analogous to a "voiceprint". The chips are vacuum encapsulated, rugged, and suitable for low-cost, highvolume mass production. Furthermore, the fabrication process is fully integrated with standard CMOS fabrication methods. One is able to operate the MEMS-based identification system similarly to a conventional RFID system: the reader (essentially a custom network analyzer) detects the power reflected across a frequency spectrum from a MEMS chip in its vicinity. We demonstrate prototype "tags" - MEMS chips placed on a credit card-like substrate - to show how the system could be used in standard identification or authentication applications. We have integrated power scavenging to provide DC bias for the MEMS chips through the use of a 915 MHz source in the reader and a RF-DC conversion circuit on the tag. The system enables a high level of protection against typical RFID hacking attacks. There is no need for signal encryption, so back-end infrastructure is minimal. We believe this system would make a viable low-cost, high-security system for a variety of identification and authentication applications.

  9. The Development of a Portable Hard Disk Encryption/Decryption System with a MEMS Coded Lock

    PubMed Central

    Zhang, Weiping; Chen, Wenyuan; Tang, Jian; Xu, Peng; Li, Yibin; Li, Shengyong

    2009-01-01

    In this paper, a novel portable hard-disk encryption/decryption system with a MEMS coded lock is presented, which can authenticate the user and provide the key for the AES encryption/decryption module. The portable hard-disk encryption/decryption system is composed of the authentication module, the USB portable hard-disk interface card, the ATA protocol command decoder module, the data encryption/decryption module, the cipher key management module, the MEMS coded lock controlling circuit module, the MEMS coded lock and the hard disk. The ATA protocol circuit, the MEMS control circuit and AES encryption/decryption circuit are designed and realized by FPGA(Field Programmable Gate Array). The MEMS coded lock with two couplers and two groups of counter-meshing-gears (CMGs) are fabricated by a LIGA-like process and precision engineering method. The whole prototype was fabricated and tested. The test results show that the user's password could be correctly discriminated by the MEMS coded lock, and the AES encryption module could get the key from the MEMS coded lock. Moreover, the data in the hard-disk could be encrypted or decrypted, and the read-write speed of the dataflow could reach 17 MB/s in Ultra DMA mode. PMID:22291566

  10. Feasibility of Frequency-Modulated Wireless Transmission for a Multi-Purpose MEMS-Based Accelerometer

    PubMed Central

    Sabato, Alessandro; Feng, Maria Q.

    2014-01-01

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy—especially at very low frequencies—have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline. PMID:25198003

  11. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    NASA Astrophysics Data System (ADS)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  12. Feasibility of frequency-modulated wireless transmission for a multi-purpose MEMS-based accelerometer.

    PubMed

    Sabato, Alessandro; Feng, Maria Q

    2014-09-05

    Recent advances in the Micro Electro-Mechanical System (MEMS) technology have made wireless MEMS accelerometers an attractive tool for Structural Health Monitoring (SHM) of civil engineering structures. To date, sensors' low sensitivity and accuracy--especially at very low frequencies--have imposed serious limitations for their application in monitoring large-sized structures. Conventionally, the MEMS sensor's analog signals are converted to digital signals before radio-frequency (RF) wireless transmission. The conversion can cause a low sensitivity to the important low-frequency and low-amplitude signals. To overcome this difficulty, the authors have developed a MEMS accelerometer system, which converts the sensor output voltage to a frequency-modulated signal before RF transmission. This is achieved by using a Voltage to Frequency Conversion (V/F) instead of the conventional Analog to Digital Conversion (ADC). In this paper, a prototype MEMS accelerometer system is presented, which consists of a transmitter and receiver circuit boards. The former is equipped with a MEMS accelerometer, a V/F converter and a wireless RF transmitter, while the latter contains an RF receiver and a F/V converter for demodulating the signal. The efficacy of the MEMS accelerometer system in measuring low-frequency and low-amplitude dynamic responses is demonstrated through extensive laboratory tests and experiments on a flow-loop pipeline.

  13. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2003-12-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  14. Investigation of improving MEMS-type VOA reliability

    NASA Astrophysics Data System (ADS)

    Hong, Seok K.; Lee, Yeong G.; Park, Moo Y.

    2004-01-01

    MEMS technologies have been applied to a lot of areas, such as optical communications, Gyroscopes and Bio-medical components and so on. In terms of the applications in the optical communication field, MEMS technologies are essential, especially, in multi dimensional optical switches and Variable Optical Attenuators(VOAs). This paper describes the process for the development of MEMS type VOAs with good optical performance and improved reliability. Generally, MEMS VOAs have been fabricated by silicon micro-machining process, precise fibre alignment and sophisticated packaging process. Because, it is composed of many structures with various materials, it is difficult to make devices reliable. We have developed MEMS type VOSs with many failure mode considerations (FMEA: Failure Mode Effect Analysis) in the initial design step, predicted critical failure factors and revised the design, and confirmed the reliability by preliminary test. These predicted failure factors were moisture, bonding strength of the wire, which wired between the MEMS chip and TO-CAN and instability of supplied signals. Statistical quality control tools (ANOVA, T-test and so on) were used to control these potential failure factors and produce optimum manufacturing conditions. To sum up, we have successfully developed reliable MEMS type VOAs with good optical performances by controlling potential failure factors and using statistical quality control tools. As a result, developed VOAs passed international reliability standards (Telcodia GR-1221-CORE).

  15. Nano/micro-electro mechanical systems: a patent view

    NASA Astrophysics Data System (ADS)

    Hu, Guangyuan; Liu, Weishu

    2015-12-01

    Combining both bibliometrics and citation network analysis, this research evaluates the global development of micro-electro mechanical systems (MEMS) research based on the Derwent Innovations Index database. We found that worldwide, the growth trajectory of MEMS patents demonstrates an approximate S shape, with United States, Japan, China, and Korea leading the global MEMS race. Evidenced by Derwent class codes, the technology structure of global MEMS patents remains steady over time. Yet there does exist a national competitiveness component among the top country players. The latecomer China has become the second most prolific country filing MEMS patents, but its patent quality still lags behind the global average.

  16. Thermally-induced voltage alteration for analysis of microelectromechanical devices

    DOEpatents

    Walraven, Jeremy A.; Cole, Jr., Edward I.

    2002-01-01

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing a microelectromechanical (MEM) device with or without on-board integrated circuitry. One embodiment of the TIVA apparatus uses constant-current biasing of the MEM device while scanning a focused laser beam over electrically-active members therein to produce localized heating which alters the power demand of the MEM device and thereby changes the voltage of the constant-current source. This changing voltage of the constant-current source can be measured and used in combination with the position of the focused and scanned laser beam to generate an image of any short-circuit defects in the MEM device (e.g. due to stiction or fabrication defects). In another embodiment of the TIVA apparatus, an image can be generated directly from a thermoelectric potential produced by localized laser heating at the location of any short-circuit defects in the MEM device, without any need for supplying power to the MEM device. The TIVA apparatus can be formed, in part, from a scanning optical microscope, and has applications for qualification testing or failure analysis of MEM devices.

  17. Use of thermal cycling to reduce adhesion of OTS coated coated MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-01-01

    °Microelectromechanical systems (MEMS) have enormous potential to contribute in diverse fields such as automotive, health care, aerospace, consumer products, and biotechnology, but successful commercial applications of MEMS are still small in number. Reliability of MEMS is a major impediment to the commercialization of laboratory prototypes. Due to the multitude of MEMS applications and the numerous processing and packaging steps, MEMS are exposed to a variety of environmental conditions, making the prediction of operational reliability difficult. In this paper, we investigate the effects of operating temperature on the in-use adhesive failure of electrostatically actuated MEMS microcantilevers coated with octadecyltrichlorosilane (OTS) films. The cantilevers are subjected to repeated temperature cycles and electrostatically actuated at temperatures between 25°C and 300°C in ambient air. The experimental results indicate that temperature cycling of the OTS coated cantilevers in air reduces the sticking probability of the microcantilevers. The sticking probability of OTS coated cantilevers was highest during heating, which decreased during cooling, and was lowest during reheating. Modifications to the OTS release method to increase its yield are also discussed.

  18. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  19. MEMS closed-loop control incorporating a memristor as feedback sensing element

    DOE PAGES

    Garcia, Ernest J.; Almeida, Sergio F.; Mireles, Jr., Jose; ...

    2015-12-01

    In this work the integration of a memristor with a MEMS parallel plate capacitor coupled by an amplification stage is simulated. It is shown that the MEMS upper plate position can be controlled up to 95% of the total gap. Due to its common operation principle, the change in the MEMS plate position can be interpreted by the change in the memristor resistance, or memristance. A memristance modulation of ~1 KΩ was observed. A polynomial expression representing the MEMS upper plate displacement as a function of the memristance is presented. Thereafter a simple design for a voltage closed-loop control ismore » presented showing that the MEMS upper plate can be stabilized up to 95% of the total gap using the memristor as a feedback sensing element. As a result, the memristor can play important dual roles in overcoming the limited operation range of MEMS parallel plate capacitors and in simplifying read-out circuits of those devices by representing the motion of the upper plate in the form of resistance change instead of capacitance change.« less

  20. Method for integrating microelectromechanical devices with electronic circuitry

    DOEpatents

    Barron, Carole C.; Fleming, James G.; Montague, Stephen

    1999-01-01

    A method is disclosed for integrating one or more microelectromechanical (MEM) devices with electronic circuitry on a common substrate. The MEM device can be fabricated within a substrate cavity and encapsulated with a sacrificial material. This allows the MEM device to be annealed and the substrate planarized prior to forming electronic circuitry on the substrate using a series of standard processing steps. After fabrication of the electronic circuitry, the electronic circuitry can be protected by a two-ply protection layer of titanium nitride (TiN) and tungsten (W) during an etch release process whereby the MEM device is released for operation by etching away a portion of a sacrificial material (e.g. silicon dioxide or a silicate glass) that encapsulates the MEM device. The etch release process is preferably performed using a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCI) which reduces the time for releasing the MEM device compared to use of a buffered oxide etchant. After release of the MEM device, the TiN:W protection layer can be removed with a peroxide-based etchant without damaging the electronic circuitry.

  1. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  2. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Jeong, Ki-Hun

    2018-02-19

    We report a 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Lissajous scanning was implemented by the electrothermal MEMS fiber scanner. The Lissajous scanned MEMS fiber scanner was precisely fabricated to facilitate flip-chip connection, and bonded with a printed circuit board. The scanner was successfully combined with a fiber-based confocal imaging system. A two-dimensional reflectance image of the metal pattern 'OPTICS' was successfully obtained with the scanner. The flip-chip bonded scanner minimizes electrical packaging dimensions. The inner diameter of the flip-chip bonded MEMS fiber scanner is 1.3 mm. The flip-chip bonded MEMS fiber scanner is fully packaged with a 1.65 mm diameter housing tube, 1 mm diameter GRIN lens, and a single mode optical fiber. The packaged confocal endomicroscopic catheter can provide a new breakthrough for diverse in-vivo endomicroscopic applications.

  3. Modeling nonlinearities in MEMS oscillators.

    PubMed

    Agrawal, Deepak K; Woodhouse, Jim; Seshia, Ashwin A

    2013-08-01

    We present a mathematical model of a microelectromechanical system (MEMS) oscillator that integrates the nonlinearities of the MEMS resonator and the oscillator circuitry in a single numerical modeling environment. This is achieved by transforming the conventional nonlinear mechanical model into the electrical domain while simultaneously considering the prominent nonlinearities of the resonator. The proposed nonlinear electrical model is validated by comparing the simulated amplitude-frequency response with measurements on an open-loop electrically addressed flexural silicon MEMS resonator driven to large motional amplitudes. Next, the essential nonlinearities in the oscillator circuit are investigated and a mathematical model of a MEMS oscillator is proposed that integrates the nonlinearities of the resonator. The concept is illustrated for MEMS transimpedance-amplifier- based square-wave and sine-wave oscillators. Closed-form expressions of steady-state output power and output frequency are derived for both oscillator models and compared with experimental and simulation results, with a good match in the predicted trends in all three cases.

  4. Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Bajpai, Anuroop; Kumar, Prem; Kaur, Maninder; Kumar, Amit; Chandran, Achu; Rangra, Kamaljit

    2017-02-01

    Variation in actuation voltage for RF MEMS switches is observed as a result of stress-generated buckling of MEMS structures. Large voltage driven RF-MEMS switches are a major concern in space bound communication applications. In this paper, we propose a low voltage driven RF MEMS capacitive switch with the introduction of perforations and reinforcement. The performance of the fabricated switch is compared with conventional capacitive RF MEMS switches. The pull-in voltage of the switch is reduced from 70 V to 16.2 V and the magnitude of deformation is reduced from 8 µm to 1 µm. The design of the reinforcement frame enhances the structural stiffness by 46 % without affecting the high frequency response of the switch. The measured isolation and insertion loss of the reinforced switch is more than 20 dB and 0.4 dB over the X band range.

  5. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  6. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremelyhigh surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  7. High Volume Manufacturing and Field Stability of MEMS Products

    NASA Astrophysics Data System (ADS)

    Martin, Jack

    Low volume MEMS/NEMS production is practical when an attractive concept is implemented with business, manufacturing, packaging, and test support. Moving beyond this to high volume production adds requirements on design, process control, quality, product stability, market size, market maturity, capital investment, and business systems. In a broad sense, this chapter uses a case study approach: It describes and compares the silicon-based MEMS accelerometers, pressure sensors, image projection systems, and gyroscopes that are in high volume production. Although they serve several markets, these businesses have common characteristics. For example, the manufacturing lines use automated semiconductor equipment and standard material sets to make consistent products in large quantities. Standard, well controlled processes are sometimes modified for a MEMS product. However, novel processes that cannot run with standard equipment and material sets are avoided when possible. This reliance on semiconductor tools, as well as the organizational practices required to manufacture clean, particle-free products partially explains why the MEMS market leaders are integrated circuit manufacturers. There are other factors. MEMS and NEMS are enabling technologies, so it can take several years for high volume applications to develop. Indeed, market size is usually a strong function of price. This becomes a vicious circle, because low price requires low cost - a result that is normally achieved only after a product is in high volume production. During the early years, IC companies reduced cost and financial risk by using existing facilities for low volume MEMS production. As a result, product architectures are partially determined by capabilities developed for previous products. This chapter includes a discussion of MEMS product architecture with particular attention to the impact of electronic integration, packaging, and surfaces. Packaging and testing are critical, because they are significant factors in MEMS product cost. These devices have extremely high surface/volume ratios, so performance and stability may depend on the control of surface characteristics after packaging. Looking into the future, the competitive advantage of IC suppliers will decrease as small companies learn to integrate MEMS/NEMS devices on CMOS foundry wafers. Packaging challenges still remain, because most MEMS/NEMS products must interact with the environment without degrading stability or reliability. Generic packaging solutions are unlikely. However, packaging subcontractors recognize that MEMS/NEMS is a growth opportunity. They will spread the overhead burden of high-capital-cost-facilities by developing flexible processes in order to package several types of moderate volume integrated MEMS/NEMS products on the same equipment.

  8. Sensor fabrication method for in situ temperature and humidity monitoring of light emitting diodes.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Chan, Pin-Cheng; Lin, Chia-Hung

    2010-01-01

    In this work micro temperature and humidity sensors are fabricated to measure the junction temperature and humidity of light emitting diodes (LED). The junction temperature is frequently measured using thermal resistance measurement technology. The weakness of this method is that the timing of data capture is not regulated by any standard. This investigation develops a device that can stably and continually measure temperature and humidity. The device is light-weight and can monitor junction temperature and humidity in real time. Using micro-electro-mechanical systems (MEMS), this study minimizes the size of the micro temperature and humidity sensors, which are constructed on a stainless steel foil substrate (40 μm-thick SS-304). The micro temperature and humidity sensors can be fixed between the LED chip and frame. The sensitivities of the micro temperature and humidity sensors are 0.06±0.005 (Ω/°C) and 0.033 pF/%RH, respectively.

  9. Period change in GP And

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Rolland, A.; Lopez de Coca, P.

    1993-05-01

    GP And is a high amplitude d Scuti type star with V~10.m75, DV~0.m55, P=0.d0787 and spectral type A3 (Lopez de Coca et al. 1990, A & A 83, 51). To study the stability of its fundamental pulsation we have carried out simultaneous uvby photometry of this star in the years 1987 and 1992 at Sierra Nevada and Caltar Alto observatories, both in Spain. Ten new times of light maxima were obtained. In total, forty-one time s of light maxima (from 1973 to 1992, collected from Splittgerber 1976, Mitt. Veraend. Sterne 7, 137; Eggen 1978, IBVS 1517; Gieseking et al. 1979, A & AS 36, 457; Burchi et al. 1992, Mem. Soc. Astron. Ital. 63, 87 and us) were used to determinate the ephemeris of the light curve of GP And by means of the classical O-C method.

  10. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  11. The low-power potential of oven-controlled MEMS oscillators.

    PubMed

    Vig, John; Kim, Yoonkee

    2013-04-01

    It is shown that oven-controlled micro electromechanical systems (MEMS) oscillators have the potential of attaining a higher frequency stability, with a lower power consumption, than temperature-compensated crystal oscillators (TCXOs) and the currently manufactured MEMS oscillators.

  12. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    NASA Astrophysics Data System (ADS)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  13. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  14. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  15. Microelectromechanical systems(MEMS): Launching Research Concepts into the Marketplace

    NASA Astrophysics Data System (ADS)

    Arney, Susanne

    1999-04-01

    More than a decade following the demonstration of the first spinning micromotors and microgears, the field of microelectromechanical systems (MEMS) has burgeoned on a worldwide basis. Integrated circuit design, fabrication, and packaging techniques have provided the foundation for the growth of an increasingly mature MEMS infrastructure which spans numerous topics of research as well as industrial application. The remarkable proliferation of MEMS concepts into such contrasting arenas of application as automotive sensors, biology, optical and wireless telecommunications, displays, printing, and physics experiments will be described. Challenges to commercialization of research prototypes will be discussed with emphasis on the development of design, fabrication, packaging, reliability and standards which fundamentally enable the application of MEMS to a highly diversified marketplace.

  16. U.S. Army Corrosion Office's storage and quality requirements for military MEMS program

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III; Skelton, D. R.

    2007-04-01

    As the Army transforms into a more lethal, lighter and agile force, the technologies that support these systems must decrease in size while increasing in intelligence. Micro-electromechanical systems (MEMS) are one such technology that the Army and DOD will rely on heavily to accomplish these objectives. Conditions for utilization of MEMS by the military are unique. Operational and storage environments for the military are significantly different than those found in the commercial sector. Issues unique to the military include; high G-forces during gun launch, extreme temperature and humidity ranges, extended periods of inactivity (20 years plus) and interaction with explosives and propellants. The military operational environments in which MEMS will be stored or required to function are extreme and far surpass any commercial operating conditions. Security and encryption are a must for all MEMS communication, tracking, or data reporting devices employed by the military. Current and future military applications of MEMS devices include safety and arming devices, fuzing devices, various guidance systems, sensors/detectors, inertial measurement units, tracking devices, radio frequency devices, wireless Radio Frequency Identifications (RFIDs) and network systems, GPS's, radar systems, mobile base systems and information technology. MEMS embedded into these weapons systems will provide the military with new levels of speed, awareness, lethality, and information dissemination. The system capabilities enhanced by MEMS will translate directly into tactical and strategic military advantages.

  17. Modeling and Compensation of Random Drift of MEMS Gyroscopes Based on Least Squares Support Vector Machine Optimized by Chaotic Particle Swarm Optimization.

    PubMed

    Xing, Haifeng; Hou, Bo; Lin, Zhihui; Guo, Meifeng

    2017-10-13

    MEMS (Micro Electro Mechanical System) gyroscopes have been widely applied to various fields, but MEMS gyroscope random drift has nonlinear and non-stationary characteristics. It has attracted much attention to model and compensate the random drift because it can improve the precision of inertial devices. This paper has proposed to use wavelet filtering to reduce noise in the original data of MEMS gyroscopes, then reconstruct the random drift data with PSR (phase space reconstruction), and establish the model for the reconstructed data by LSSVM (least squares support vector machine), of which the parameters were optimized using CPSO (chaotic particle swarm optimization). Comparing the effect of modeling the MEMS gyroscope random drift with BP-ANN (back propagation artificial neural network) and the proposed method, the results showed that the latter had a better prediction accuracy. Using the compensation of three groups of MEMS gyroscope random drift data, the standard deviation of three groups of experimental data dropped from 0.00354°/s, 0.00412°/s, and 0.00328°/s to 0.00065°/s, 0.00072°/s and 0.00061°/s, respectively, which demonstrated that the proposed method can reduce the influence of MEMS gyroscope random drift and verified the effectiveness of this method for modeling MEMS gyroscope random drift.

  18. Maximum entropy analysis of polarized fluorescence decay of (E)GFP in aqueous solution

    NASA Astrophysics Data System (ADS)

    Novikov, Eugene G.; Skakun, Victor V.; Borst, Jan Willem; Visser, Antonie J. W. G.

    2018-01-01

    The maximum entropy method (MEM) was used for the analysis of polarized fluorescence decays of enhanced green fluorescent protein (EGFP) in buffered water/glycerol mixtures, obtained with time-correlated single-photon counting (Visser et al 2016 Methods Appl. Fluoresc. 4 035002). To this end, we used a general-purpose software module of MEM that was earlier developed to analyze (complex) laser photolysis kinetics of ligand rebinding reactions in oxygen binding proteins. We demonstrate that the MEM software provides reliable results and is easy to use for the analysis of both total fluorescence decay and fluorescence anisotropy decay of aqueous solutions of EGFP. The rotational correlation times of EGFP in water/glycerol mixtures, obtained by MEM as maxima of the correlation-time distributions, are identical to the single correlation times determined by global analysis of parallel and perpendicular polarized decay components. The MEM software is also able to determine homo-FRET in another dimeric GFP, for which the transfer correlation time is an order of magnitude shorter than the rotational correlation time. One important advantage utilizing MEM analysis is that no initial guesses of parameters are required, since MEM is able to select the least correlated solution from the feasible set of solutions.

  19. Liquid crystal television spatial light modulators

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang; Chao, Tien-Hsin

    1989-01-01

    The spatial light modulation characteristics and capabilities of the liquid crystal television (LCTV) spatial light modulators (SLMs) are discussed. A comparison of Radio Shack, Epson, and Citizen LCTV SLMs is made.

  20. Can mobile phones used in strong motion seismology?

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Antonino; D'Anna, Giuseppe

    2013-04-01

    Micro Electro-Mechanical Systems (MEMS) accelerometers are electromechanical devices able to measure static or dynamic accelerations. In the 1990s MEMS accelerometers revolutionized the automotive-airbag system industry and are currently widely used in laptops, game controllers and mobile phones. Nowadays MEMS accelerometers seems provide adequate sensitivity, noise level and dynamic range to be applicable to earthquake strong motion acquisition. The current use of 3 axes MEMS accelerometers in mobile phone maybe provide a new means to easy increase the number of observations when a strong earthquake occurs. However, before utilize the signals recorded by a mobile phone equipped with a 3 axes MEMS accelerometer for any scientific porpoise, it is fundamental to verify that the signal collected provide reliable records of ground motion. For this reason we have investigated the suitability of the iPhone 5 mobile phone (one of the most popular mobile phone in the world) for strong motion acquisition. It is provided by several MEMS devise like a three-axis gyroscope, a three-axis electronic compass and a the LIS331DLH three-axis accelerometer. The LIS331DLH sensor is a low-cost high performance three axes linear accelerometer, with 16 bit digital output, produced by STMicroelectronics Inc. We have tested the LIS331DLH MEMS accelerometer using a vibrating table and the EpiSensor FBA ES-T as reference sensor. In our experiments the reference sensor was rigidly co-mounted with the LIS331DHL MEMS sensor on the vibrating table. We assessment the MEMS accelerometer in the frequency range 0.2-20 Hz, typical range of interesting in strong motion seismology and earthquake engineering. We generate both constant and damped sine waves with central frequency starting from 0.2 Hz until 20 Hz with step of 0.2 Hz. For each frequency analyzed we generate sine waves with mean amplitude 50, 100, 200, 400, 800 and 1600 mg0. For damped sine waves we generate waveforms with initial amplitude of 2 g0. Our tests show as, in the frequency and amplitude range analyzed (0.2-20 Hz, 10-2000 mg0), the LIS331DLH MEMS accelerometer have excellent frequency and phase response, comparable with that of some standard FBA accelerometer used in strong motion seismology. However, we found that the signal recorded by the LIS331DLH MEMS accelerometer slightly underestimates the real acceleration (of about 2.5%). This suggests that may be important to calibrate a MEMS sensor before using it in scientific applications. A drawback of the LIS331DLH MEMS accelerometer is its low sensitivity. This is an important limitation of all the low cost MEMS accelerometers; therefore nowadays they are desirable to use only in strong motion seismology. However, the rapid development of this technology will lead in the coming years to the development of high sensitivity and low noise digital MEMS sensors that may be replace the current seismic accelerometer used in seismology. Actually, the real main advantage of these sensors is their common use in the mobile phones.

  1. Old and new techniques mixed up into optical photomask measurement method

    NASA Astrophysics Data System (ADS)

    Fukui, Jumpei; Tachibana, Yusaku; Osanai, Makoto

    2017-07-01

    It has been still highly required for cost efficient solution with easy operation for full-automated CD measurement for line width about 500nm up to 5μm on photomask, because it is frequently use such photomask in the process of manufacturing MEMS sensor for IoT and some devices made in BCD (Bipola CMOS DMOS). As reply to such demand in photomask manufacturing field, we try to take a low noise digital camera technology and LED light source for i-line, which are recently developed, into new measuring tool in order to achieve 1nm (3σ) repeatability for line width measurement between 300nm to 10μm. In addition, for the purpose of full-automated operation, it is very important to find where an initial target line in dense pattern. To achieve such auto line detection precisely, we have improved accuracy of high precision stage (20nm as 3σ) and an alignment algorithm of MEMS Stepper to combine with this tool. As for user-friendly interface, Windows based software helps a lot for not only the operation but also recipe creation or edition in Excel. Actually, in the MEMS manufacturing process, there are various photomasks which need to be check and measure frequently therefore various recipe files are also have to be created and edited frequently.. In order to meet such a requirement in photomask management, we try to make it true by mixing old and new techniques together into one system, which comes to fully automated and cost efficient tool with 1nm repeatability in CD measurement.

  2. Design of the deformable mirror demonstration CubeSat (DeMi)

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  3. A Fourier Transform Spectrometer Based on an Electrothermal MEMS Mirror with Improved Linear Scan Range

    PubMed Central

    Wang, Wei; Chen, Jiapin; Zivkovic, Aleksandar. S.; Xie, Huikai

    2016-01-01

    A Fourier transform spectrometer (FTS) that incorporates a closed-loop controlled, electrothermally actuated microelectromechanical systems (MEMS) micromirror is proposed and experimentally verified. The scan range and the tilting angle of the mirror plate are the two critical parameters for MEMS-based FTS. In this work, the MEMS mirror with a footprint of 4.3 mm × 3.1 mm is based on a modified lateral-shift-free (LSF) bimorph actuator design with large piston and reduced tilting. Combined with a position-sensitive device (PSD) for tilt angle sensing, the feedback controlled MEMS mirror generates a 430 µm stable linear piston scan with the mirror plate tilting angle less than ±0.002°. The usable piston scan range is increased to 78% of the MEMS mirror’s full scan capability, and a spectral resolution of 0.55 nm at 531.9 nm wavelength, has been achieved. It is a significant improvement compared to the prior work. PMID:27690047

  4. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  5. Protection of Radial Glial-Like Cells in the Hippocampus of APP/PS1 Mice: a Novel Mechanism of Memantine in the Treatment of Alzheimer's Disease.

    PubMed

    Sun, Dayu; Chen, Junhua; Bao, Xiaohang; Cai, Yulong; Zhao, Jinghui; Huang, Jing; Huang, Wei; Fan, Xiaotang; Xu, Haiwei

    2015-08-01

    The failure of adult neurogenesis in the hippocampal dentate gyrus (DG) is closely correlated with memory decline in Alzheimer's disease (AD). Radial glial-like cells (RGLs) localized to the adult DG generate intermediate progenitor cells and immature neurons and thus contribute to adult hippocampus neurogenesis. Memantine (MEM) has been indicated to dramatically increase hippocampal neurogenesis by promoting the proliferation of RGLs. In this study, we examined the effect of MEM on the capacity for hippocampal cell proliferation and the amount of RGLs in APPswe/PS1∆E9 transgenic (APP/PS1) mice between 9 and 13 months of age. MEM could enhance hippocampal neurogenesis and increase the number of RGLs in the DG subgranular zone (DG-SGZ) of APP/PS1 mice of both ages. Moreover, MEM decreased amyloidogenesis in 13-month-old APP/PS1 mice and protected cultured radial glia cells (RGCs, L2.3 cells) from apoptosis induced by the β amyloid peptide (Aβ). Additionally, MEM inhibited microglial activation in a vertical process in DG-SGZ of APP/PS1 mice and decreased interacting with RGL processes. Reelin is involved in the proliferation of RGLs in the hippocampus, which was typically upregulated in the hippocampus of APP/PS1 mice by MEM and thought to be an active signaling pathway associated with the MEM-induced increase in RGLs. Our data suggest a previously uncharacterized role for MEM in treating AD.

  6. Spatial Light Modulator Would Serve As Electronic Iris

    NASA Technical Reports Server (NTRS)

    Gutow, David A.

    1991-01-01

    In proposed technique for controlling brightness of image formed by lens, spatial light modulator serves as segmented, electronically variable aperture. Offers several advantages: spatial light modulator controlled remotely and responds faster than motorized iris or other remotely controlled mechanical iris. Unlike iris, modulator also configured so as not to vary depth of field appreciably. Unlike lead lanthanum zirconate titanate crystal, spatial light modulator does not require high voltage.

  7. Bayesian extraction of the parton distribution amplitude from the Bethe-Salpeter wave function

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Chang, Lei; Liu, Yu-xin

    2017-07-01

    We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Euclidean Bethe-Salpeter wave function. The essential step is to extract the weight function in the Nakanishi representation of the Bethe-Salpeter wave function in Euclidean space, which is an ill-posed inversion problem, via the maximum entropy method (MEM). The Nakanishi weight function as well as the corresponding light-front parton distribution amplitude (PDA) can be well determined. We confirm prior work on PDA computations, which was based on different methods.

  8. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Soutar, Colin (Inventor); Juday, Richard D. (Inventor)

    2000-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain the optical processing objective.

  9. Method and Apparatus for Improved Spatial Light Modulation

    NASA Technical Reports Server (NTRS)

    Colin, Soutar (Inventor); Juday, Richard D. (Inventor)

    1999-01-01

    A method and apparatus for modulating a light beam in an optical processing system is described. Preferably, an electrically-controlled polarizer unit and/or an analyzer unit are utilized in combination with a spatial light modulator and a controller. Preferably, the spatial light modulator comprises a pixelated birefringent medium such as a liquid crystal video display. The combination of the electrically controlled polarizer unit and analyzer unit make it simple and fast to reconfigure the modulation described by the Jones matrix of the spatial light modulator. A particular optical processing objective is provided to the controller. The controller performs calculations and supplies control signals to the polarizer unit, the analyzer unit, and the spatial light modulator in order to obtain die optical processing objective.

  10. A molecularly imprinted polymer (MIP)-coated microbeam MEMS sensor for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Li, Lily; Hiller, Tobias; Turner, Kimberly L.

    2015-05-01

    Recently, microcantilever-based technology has emerged as a viable sensing platform due to its many advantages such as small size, high sensitivity, and low cost. However, microcantilevers lack the inherent ability to selectively identify hazardous chemicals (e.g., explosives, chemical warfare agents). The key to overcoming this challenge is to functionalize the top surface of the microcantilever with a receptor material (e.g., a polymer coating) so that selective binding between the cantilever and analyte of interest takes place. Molecularly imprinted polymers (MIPs) can be utilized as artificial recognition elements for target chemical analytes of interest. Molecular imprinting involves arranging polymerizable functional monomers around a template molecule followed by polymerization and template removal. The selectivity for the target analyte is based on the spatial orientation of the binding site and covalent or noncovalent interactions between the functional monomer and the analyte. In this work, thin films of sol-gel-derived xerogels molecularly imprinted for TNT and dimethyl methylphosphonate (DMMP), a chemical warfare agent stimulant, have demonstrated selectivity and stability in combination with a fixed-fixed beam microelectromechanical systems (MEMS)-based gas sensor. The sensor was characterized by parametric bifurcation noise-based tracking.

  11. Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images

    PubMed Central

    Izquierdo, Alberto; Suárez, Luis; Suárez, David

    2017-01-01

    Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485

  12. RF-MEMS capacitive switches with high reliability

    DOEpatents

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  13. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, volume II

    DOT National Transportation Integrated Search

    2016-08-01

    This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...

  14. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Nowak, Olivier

    2006-04-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  15. MEMS microdisplays: overview and markets

    NASA Astrophysics Data System (ADS)

    Bouchaud, Jérémie; Wicht, Henning

    2006-01-01

    MEMS based microdisplays have been given a lot of attention recently since the DLP based products have started to generate substantial revenues for Texas Instrument. Other companies are trying to enter this promising market with similar or alternative concepts. How will he MEMS-based microdisplay market develop until the end of the decade? May other mass markets emerge such as displays for cell phones? Is anyone in the position to challenge TI? This paper presents the results of the analysis of MEMS microdisplay applications and markets in the NEXUS III study.

  16. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  17. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  18. 3D MEMS in Standard Processes: Fabrication, Quality Assurance, and Novel Measurement Microstructures

    NASA Technical Reports Server (NTRS)

    Lin, Gisela; Lawton, Russell A.

    2000-01-01

    Three-dimensional MEMS microsystems that are commercially fabricated require minimal post-processing and are easily integrated with CMOS signal processing electronics. Measurements to evaluate the fabrication process (such as cross-sectional imaging and device performance characterization) provide much needed feedback in terms of reliability and quality assurance. MEMS technology is bringing a new class of microscale measurements to fruition. The relatively small size of MEMS microsystems offers the potential for higher fidelity recordings compared to macrosize counterparts, as illustrated in the measurement of muscle cell forces.

  19. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R.; Polosky, Marc A.

    2007-10-30

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  20. Eddy-current-damped microelectromechanical switch

    DOEpatents

    Christenson, Todd R [Albuquerque, NM; Polosky, Marc A [Tijeras, NM

    2009-12-15

    A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

  1. Performance Thresholds for Application of MEMS Inertial Sensors in Space

    NASA Technical Reports Server (NTRS)

    Smit, Geoffrey N.

    1995-01-01

    We review types of inertial sensors available and current usage of inertial sensors in space and the performance requirements for these applications. We then assess the performance available from micro-electro-mechanical systems (MEMS) devices, both in the near and far term. Opportunities for the application of these devices are identified. A key point is that although the performance available from MEMS inertial sensors is significantly lower than that achieved by existing macroscopic devices (at least in the near term), the low cost, low size, and power of the MEMS devices opens up a number of applications. In particular, we show that there are substantial benefits to using MEMS devices to provide vibration, and for some missions, attitude sensing. In addition, augmentation for global positioning system (GPS) navigation systems holds much promise.

  2. Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide

    NASA Astrophysics Data System (ADS)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey

    We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.

  3. Use of silicon oxynitride as a sacrificial material for microelectromechanical devices

    DOEpatents

    Habermehl, Scott D.; Sniegowski, Jeffry J.

    2001-01-01

    The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.

  4. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  5. Development of Probabilistic Life Prediction Methodologies and Testing Strategies for MEMS and CMC's

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama

    2003-01-01

    This effort is to investigate probabilistic life prediction methodologies for ceramic matrix composites and MicroElectroMechanical Systems (MEMS) and to analyze designs that determine stochastic properties of MEMS. For CMC's this includes a brief literature survey regarding lifing methodologies. Also of interest for MEMS is the design of a proper test for the Weibull size effect in thin film (bulge test) specimens. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. A main objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures/Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads. A second set of objectives is to determine the applicability/suitability of the CARES/Life methodology for CMC analysis, what changes would be needed to the methodology and software, and if feasible, run a demonstration problem. Also important is an evaluation of CARES/Life coupled to the ANSYS Probabilistic Design System (PDS) and the potential of coupling transient reliability analysis to the ANSYS PDS.

  6. Development of the micro pixel chamber based on MEMS technology

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Takada, A.; Kishimoto, T.; Komura, S.; Kubo, H.; Matsuoka, Y.; Miuchi, K.; Miyamoto, S.; Mizumoto, T.; Mizumura, Y.; Motomura, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Ohta, K.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2018-02-01

    Micro pixel chambers (μ-PIC) are gaseous two-dimensional imaging detectors originally manufactured using printed circuit board (PCB) technology. They are used in MeV gamma-ray astronomy, medicalimaging, neutron imaging, the search for dark matter, and dose monitoring. The position resolution of the present μ-PIC is approximately 120 μm (RMS), however some applications require a fine position resolution of less than 100 μm. To this end, we have started to develop a μ-PIC based on micro electro mechanical system (MEMS) technology, which provides better manufacturing accuracy than PCB technology. Our simulation predicted the gains of MEMS μ-PICs to be twice those of PCB μ-PICs at the same anode voltage. We manufactured two MEMS μ-PICs and tested them to study their behavior. In these experiments, we successfully operated the fabricatedMEMS μ-PICs and we achieved a maximum gain of approximately 7×103 and collected their energy spectra under irradiation of X-rays from 55Fe. However, the measured gains of the MEMS μ-PICs were less than half of the values predicted in the simulations. We postulated that the gains of the MEMS μ-PICs are diminished by the effect of the silicon used as a semiconducting substrate.

  7. Design and Fabrication of High Gain Multi-element Multi-segment Quarter-sector Cylindrical Dielectric Resonator Antenna

    NASA Astrophysics Data System (ADS)

    Ranjan, Pinku; Gangwar, Ravi Kumar

    2017-12-01

    A novel design and analysis of quarter cylindrical dielectric resonator antenna (q-CDRA) with multi-element and multi-segment (MEMS) approach has been presented. The MEMS q-CDRA has been designed by splitting four identical quarters from a solid cylinder and then multi-segmentation approach has been utilized to design q-CDRA. The proposed antenna has been designed for enhancement in bandwidth as well as for high gain. For bandwidth enhancement, multi-segmentation method has been explained for the selection of dielectric constant of materials. The performance of the proposed MEMS q-CDRA has been demonstrated with design guideline of MEMS approach. To validate the antenna performance, three segments q-CDRA has been fabricated and analyzed practically. The simulated results have been in good agreement with measured one. The MEMS q-CDRA has wide impedance bandwidth (|S11|≤-10 dB) of 133.8 % with monopole-like radiation pattern. The proposed MEMS q-CDRA has been operating at TM01δ mode with the measured gain of 6.65 dBi and minimum gain of 4.5 dBi in entire operating frequency band (5.1-13.7 GHz). The proposed MEMS q-CDRA may find appropriate applications in WiMAX and WLAN band.

  8. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  9. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film.

    PubMed

    Zhang, Wenchao; Yin, Baoqing; Shen, Ruiqi; Ye, Jiahai; Thomas, Jason A; Chao, Yimin

    2013-01-23

    A three-dimensionally ordered macroporous Fe(2)O(3)/Al nanothermite membrane has been prepared with a polystyrene spheres template. The nanothermite, with an enhanced interfacial contact between fuel and oxidizer, outputs 2.83 kJ g(-1) of energy. This is significantly more than has been reported before. This approach, fully compatible with MEMS technology, provides an efficient way to produce micrometer thick three-dimensionally ordered nanostructured thermite films with overall spatial uniformity. These exciting achievements will greatly facilitate potential for the future development of applications of nanothermites.

  10. EDITORIAL: The Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004)

    NASA Astrophysics Data System (ADS)

    Tanaka, Shuji; Toriyama, Toshiyuki

    2005-09-01

    This special issue of the Journal of Micromechanics and Microengineering features papers selected from the Fourth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2004). The workshop was held in Kyoto, Japan, on 28-30 November 2004, by The Ritsumeikan Research Institute of Micro System Technology in cooperation with The Global Emerging Technology Institute, The Institute of Electrical Engineers of Japan, The Sensors and Micromachines Society, The Micromachine Center and The Kyoto Nanotech Cluster. Power MEMS is one of the newest categories of MEMS, which encompasses microdevices and microsystems for power generation, energy conversion and propulsion. The first concept of power MEMS was proposed in the late 1990s by Epstein's group at the Massachusetts Institute of Technology, where they continue to study MEMS-based gas turbine generators. Since then, the research and development of power MEMS have been promoted by the need for compact power sources with high energy and power density. Since its inception, power MEMS has expanded to include not only various MEMS-based power generators but also small energy machines and microdevices for macro power generators. At the last workshop, various devices and systems, such as portable fuel cells and their peripherals, micro and small turbo machinery, energy harvesting microdevices, and microthrusters, were presented. Their power levels vary from ten nanowatts to hundreds of watts, spanning ten orders of magnitude. The first PowerMEMS workshop was held in 2000 in Sendai, Japan, and consisted of only seven invited presentations. The workshop has grown since then, and in 2004 there were 5 invited, 20 oral and 29 poster presentations. From the 54 papers in the proceedings, 12 papers have been selected for this special issue. I would like to express my appreciation to the members of the Organizing Committee and Technical Program Committee. This special issue was edited in collaboration with Professor Toshiyuki Toriyama (Ritsumeikan University), Co-chair of the Technical Program Committee, and the Institute of Physics Publishing staff.

  11. Manufacturing process and material selection in concurrent collaborative design of MEMS devices

    NASA Astrophysics Data System (ADS)

    Zha, Xuan F.; Du, H.

    2003-09-01

    In this paper we present knowledge of an intensive approach and system for selecting suitable manufacturing processes and materials for microelectromechanical systems (MEMS) devices in concurrent collaborative design environment. In the paper, fundamental issues on MEMS manufacturing process and material selection such as concurrent design framework, manufacturing process and material hierarchies, and selection strategy are first addressed. Then, a fuzzy decision support scheme for a multi-criteria decision-making problem is proposed for estimating, ranking and selecting possible manufacturing processes, materials and their combinations. A Web-based prototype advisory system for the MEMS manufacturing process and material selection, WebMEMS-MASS, is developed based on the client-knowledge server architecture and framework to help the designer find good processes and materials for MEMS devices. The system, as one of the important parts of an advanced simulation and modeling tool for MEMS design, is a concept level process and material selection tool, which can be used as a standalone application or a Java applet via the Web. The running sessions of the system are inter-linked with webpages of tutorials and reference pages to explain the facets, fabrication processes and material choices, and calculations and reasoning in selection are performed using process capability and material property data from a remote Web-based database and interactive knowledge base that can be maintained and updated via the Internet. The use of the developed system including operation scenario, use support, and integration with an MEMS collaborative design system is presented. Finally, an illustration example is provided.

  12. The MEMS process of a micro friction sensor

    NASA Astrophysics Data System (ADS)

    Yuan, Ming-Quan; Lei, Qiang; Wang, Xiong

    2018-02-01

    The research and testing techniques of friction sensor is an important support for hypersonic aircraft. Compared with the conventional skin friction sensor, the MEMS skin friction sensor has the advantages of small size, high sensitivity, good stability and dynamic response. The MEMS skin friction sensor can be integrated with other flow field sensors whose process is compatible with MEMS skin friction sensor to achieve multi-physical measurement of the flow field; and the micro-friction balance sensor array enable to achieve large area and accurate measurement for the near-wall flow. A MEMS skin friction sensor structure is proposed, which sensing element not directly contacted with the flow field. The MEMS fabrication process of the sensing element is described in detail. The thermal silicon oxide is used as the mask to solve the selection ratio problem of silicon DRIE. The optimized process parameters of silicon DRIE: etching power 1600W/LF power 100 W; SF6 flux 360 sccm; C4F8 flux 300 sccm; O2 flux 300 sccm. With Cr/Au mask, etch depth of glass shallow groove can be controlled in 30°C low concentration HF solution; the spray etch and wafer rotate improve the corrosion surface quality of glass shallow groove. The MEMS skin friction sensor samples were fabricated by the above MEMS process, and results show that the error of the length and width of the elastic cantilever is within 2 μm, the depth error of the shallow groove is less than 0.03 μm, and the static capacitance error is within 0.2 pF, which satisfy the design requirements.

  13. Incidence of Acute Kidney Injury among Patients Treated with Piperacillin-Tazobactam or Meropenem in Combination with Vancomycin.

    PubMed

    Rutter, W Cliff; Burgess, David S

    2018-07-01

    Acute kidney injury (AKI) increases during empirical antimicrobial therapy with the combination of piperacillin-tazobactam (TZP) and vancomycin (VAN) compared to the number of incidences with monotherapy or the combination of cefepime and VAN. Limited data regarding the impact of meropenem (MEM) combined with VAN exist. This study examined the AKI incidence among patients treated with MEM plus VAN (MEM+VAN) or TZP+VAN. Data were collected from the University of Kentucky Center for Clinical and Translational Science Enterprise Data Trust from September 2007 through October 2015. Adults without previous renal disease who received MEM+VAN or TZP+VAN for at least 2 days were included. AKI was assessed using risk, injury, failure, loss, and end-stage (RIFLE) criteria. Inverse probability of treatment weighting was utilized to control for differences between groups. In total, 10,236 patients met inclusion criteria, with 9,898 receiving TZP+VAN and 338 receiving MEM+VAN. AKI occurred in 15.4% of MEM+VAN patients and in 27.4% of TZP+VAN patients ( P < 0.001). TZP+VAN was associated with increased AKI compared to the level with MEM+VAN (odds ratio [OR], 2.53; 95% confidence interval [CI], 1.82 to 3.52), after controlling for confounders. Use of MEM+VAN should be considered an appropriate alternative therapy to TZP+VAN if nephrotoxicity is a major concern. The results of this study demonstrate that judicial use of TZP+VAN for empirical coverage of infection is needed. Copyright © 2018 American Society for Microbiology.

  14. Novel packaging approaches for increased robustness and overall performance of gimbal-less MEMS mirrors

    NASA Astrophysics Data System (ADS)

    Milanović, Veljko; Kasturi, Abhishek; Yang, James; Su, Yu Roger; Hu, Frank

    2017-02-01

    2D quasistatic (point-to-point) gimbal-less MEMS mirrors enable programmable, arbitrary control of laser beam position and velocity - up to their maximum limits. Hence, they provide the ability to track targets, point lasercom beams, and to scan uniform velocity lines over objects in laser imaging. They are becoming increasingly established in applications including 3D scanning, laser marking and 3D printing, biomedical imaging, communications, and LiDAR. With the increased utility in applications that demand larger mirror sizes and larger overall angle*diameter (θ*D) figures of merit, the technology is continuously pushed against its limit. As a result we have implemented mirrors with larger diameters including 5.0mm, 6.4mm, and 7.5mm, and have designed actuators with larger torque and angles to match the Θ*D demand. While the results have been very positive in certain application cases, a limitation for their more wide-spread use has been the relatively high susceptibility of large- θ*D mirrors to shock and vibrations. On the other hand, one of the challenges of MEMS mirrors of small diameters is their lower optical power tolerance simply due to their smaller area and heat removal ability. Although they can be operated at up to 2-3W of CW laser power, new developments in dynamic solid state lighting in e.g. headlights demand operation at up to 10W or beyond. In this work we study and present several package-level approaches to increase mechanical damping, shock robustness, and laser power tolerance. Specifically, we study back-filling of MEMS packages with different gases as well as with different (increased) pressures to control damping and in turn increase robustness and useable bandwidth. Additionally, we study the effects of specialized mechanical structures which were designed and fabricated to modify packages to significantly reduce volumes of space around moving structures. In their standard form and packaging the MEMS mirrors tested in this study typically measure quality factors of 75-100. Increases of pressure up to 50psi have shown relatively modest reductions of the overall quality factor to the 40-50 range. Backfilling of packages with heavier inert gasses such as Ar and SF6 results in lowering of the quality factor down to 20-30 range. Mechanical modifications of the package with special structures and reduced air-gap to the window yielded the best results, reducing the quality factor to 9-14. Combination of specialized packaging structures and gas backfill and pressure control could provide a very efficient heat transfer from the mirror and the desired near-critical damping, but has not been demonstrated yet. The increased performance does not change the compactness and low power consumption - the improved MEMS mirrors still consume <1mW. So far, designs with mirror sizes through 3.0mm diameter with increased damping have passed 500G shock tests. In terms of improved heat removal we have found that the packaging improvement greatly increased optical power tolerance of MEMS mirrors from few Watts of CW laser power to <10 Watts. The exact numbers for the upper limit are not yet available - in samples where the heat removing structure was added and air was replaced with Helium, our setup with 3 combined lasers was not able to damage any samples.

  15. The effect of spatially variable overstory on the understory light environment of an open-canopied longleaf pine forest

    Treesearch

    Michael A. Battaglia; Pu Mou; Brian Palik; Robert J. Mitchell

    2002-01-01

    Spatial aggregation of forest structure strongly regulates understory light and its spatial variation in longleaf pine (Pinus palustris Mill.) forest ecosystems. Previous studies have demonstrated that light availability strongly influences longleaf pine seedling growth. In this study, the relationship between spatial structure of a longleaf pine...

  16. Using the Wiimote to Learn MEMS in a Physics Degree Program

    ERIC Educational Resources Information Center

    Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Celma, Santiago; Aldea, Concepción

    2016-01-01

    This paper describes a learning experience designed to introduce students in a Micro- and Nanosystems course in a Physics Bachelor's degree program to the use of professional tools for the design and characterization of micro-electromechanical systems (MEMS) through a specific commercial case: the MEMS used by the well-known gaming platform…

  17. Linear-Quadratic Control of a MEMS Micromirror using Kalman Filtering

    DTIC Science & Technology

    2011-12-01

    LINEAR-QUADRATIC CONTROL OF A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Jamie P...A MEMS MICROMIRROR USING KALMAN FILTERING THESIS Presented to the Faculty Department of Electrical Engineering Graduate School of...actuated micromirrors fabricated by PolyMUMPs. Successful application of these techniques enables demonstration of smooth, stable deflections of 50% and

  18. Development of Testing Methodologies for the Mechanical Properties of MEMS

    NASA Technical Reports Server (NTRS)

    Ekwaro-Osire, Stephen

    2003-01-01

    This effort is to investigate and design testing strategies to determine the mechanical properties of MicroElectroMechanical Systems (MEMS) as well as investigate the development of a MEMS Probabilistic Design Methodology (PDM). One item of potential interest is the design of a test for the Weibull size effect in pressure membranes. The Weibull size effect is a consequence of a stochastic strength response predicted from the Weibull distribution. Confirming that MEMS strength is controlled by the Weibull distribution will enable the development of a probabilistic design methodology for MEMS - similar to the GRC developed CARES/Life program for bulk ceramics. However, the primary area of investigation will most likely be analysis and modeling of material interfaces for strength as well as developing a strategy to handle stress singularities at sharp corners, filets, and material interfaces. This will be a continuation of the previous years work. The ultimate objective of this effort is to further develop and verify the ability of the Ceramics Analysis and Reliability Evaluation of Structures Life (CARES/Life) code to predict the time-dependent reliability of MEMS structures subjected to multiple transient loads.

  19. Influence of Casimir-Lifshitz forces on actuation dynamics of MEMS

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Palasantzas, George; Knoester, Jasper; Svetovoy, Vitaly

    2013-03-01

    Electromagnetic fluctuations generate forces between neutral bodies known as Casimir-Lifshitz forces, of which van der Waals forces are special cases, and which can become important in micromechanical systems (MEMS). For surface areas big enough but gaps small enough, the Casimir force can possibly draw and lock MEMS components together, an effect called stiction, causing device malfunction. Alternatively, stiction can also be exploited to add new functionalities to MEMS architecture. Here, using as inputs the measured frequency dependent dielectric response and surface roughness statistics from Atomic Force Microscopy (AFM) images, we perform the first realistic calculation of MEMS actuation. For our analysis the Casimir force is combined with the electrostatic force between rough surfaces to counterbalance the elastic restoring force. It is found that, even though surface roughness has an adverse effect on the availability of (stable) equilibria, it ensures that those stable equilibria can be reached more easily than in the case of flat surfaces. Hence our results can have significant implications on how to design MEM surfaces. The author would like this abstract to appear in a Casimir related session.

  20. Goos-Hänchen shifts of partially coherent light beams from a cavity with a four-level Raman gain medium

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-09-01

    We theoretically investigate spatial and angular Goos-Hänchen (GH) shifts (both negative and positive) in the reflected light for a partial coherent light incident on a cavity. A four-level Raman gain atomic medium is considered in a cavity. The effects of spatial coherence, beam width, and mode index of partial coherent light fields on spatial and angular GH shifts are studied. Our results reveal that a large magnitude of negative and positive GH shifts in the reflected light is achievable with the introduction of partial coherent light fields. Furthermore, the amplitude of spatial (negative and positive) GH shifts are sharply affected by the partial coherent light beam as compared to angular (negative and positive) GH shifts in the reflected light.

  1. MEMS sensing and control: an aerospace perspective

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Arch, David K.; Yang, Wei; Cabuz, Cleopatra; Hocker, Ben; Johnson, Burgess R.; Wilson, Mark L.

    2000-06-01

    Future advanced fixed- and rotary-wing aircraft, launch vehicles, and spacecraft will incorporate smart microsensors to monitor flight integrity and provide flight control inputs. This paper provides an overview of Honeywell's MEMS technologies for aerospace applications of sensing and control. A unique second-generation polysilicon resonant microbeam sensor design is described. It incorporates a micron-level vacuum-encapsulated microbeam to optically sense aerodynamic parameters and to optically excite the sensor pick off: optically excited self-resonant microbeams form the basis for a new class of versatile, high- performance, low-cost MEMS sensors that uniquely combine silicon microfabrication technology with optoelectronic technology that can sense dynamic pressure, acceleration forces, acoustic emission, and many other aerospace parameters of interest. Honeywell's recent work in MEMS tuning fork gyros for inertial sensing and a MEMS free- piston engine are also described.

  2. RF MEMS devices for multifunctional integrated circuits and antennas

    NASA Astrophysics Data System (ADS)

    Peroulis, Dimitrios

    Micromachining and RF Micro-Electro-Mechanical Systems (RF MEMS) have been identified as two of the most significant enabling technologies in developing miniaturized low-cost communications systems and sensor networks. The key components in these MEMS-based architectures are the RF MEMS switches and varactors. The first part of this thesis focuses on three novel RF MEMS components with state-of-the-art performance. In particular, a broadband 6 V capacitive MEMS switch is presented with insertion loss of only 0.04 and 0.17 dB at 10 and 40 GHz respectively. Special consideration is given to particularly challenging issues, such as residual stress, planarity, power handling capability and switching speed. The need for switches operating below 1 GHz is also identified and a spring-loaded metal-to-metal contact switch is developed. The measured on-state contact resistance and off-state series capacitance are 0.5 O and 10 fF respectively for this switch. An analog millimeter-wave variable capacitor is the third MEMS component presented in this thesis. This variable capacitor shows an ultra high measured tuning range of nearly 4:1, which is the highest reported value for the millimeter-wave region. The second part of this thesis primarily concentrates on MEMS-based reconfigurable systems and their potential to revolutionize the design of future RF/microwave multifunctional systems. High-isolation switches and switch packets with isolation of more than 60 dB are designed and implemented. Furthermore, lowpass and bandpass tunable filters with 3:1 and 2:1 tuning ratios respectively are demonstrated. Similar methods have been also applied to the field of slot antennas and a novel design technique for compact reconfigurable antennas has been developed. The main advantage of these antennas is that they essentially preserve their impedance, radiation pattern, polarization, gain and efficiency for all operating frequencies. The thesis concludes by discussing the future challenges of RF MEMS, such as packaging and reliability.

  3. CNES reliability approach for the qualification of MEMS for space

    NASA Astrophysics Data System (ADS)

    Pressecq, Francis; Lafontan, Xavier; Perez, Guy; Fortea, Jean-Pierre

    2001-10-01

    This paper describes the reliability approach performs at CNES to evaluate MEMS for space application. After an introduction and a detailed state of the art on the space requirements and on the use of MEMS for space, different approaches for taking into account MEMS in the qualification phases are presented. CNES proposes improvement to theses approaches in term of failure mechanisms identification. Our approach is based on a design and test phase deeply linked with a technology study. This workflow is illustrated with an example: the case of a variable capacitance processed with MUMPS process is presented.

  4. A low-noise MEMS accelerometer for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Speller, Kevin E.; Yu, Duli

    2004-09-01

    A low-noise micro-machined servo accelerometer has been developed for use in Unattended Ground Sensors (UGS). Compared to conventional coil-and-magnet based velocity transducers, this Micro-Electro-Mechanical System (MEMS) accelerometer offers several key benefits for battlefield monitoring. Many UGS require a compass to determine deployment orientation with respect to magnetic North. This orientation information is critical for determining the bearing of incoming signals. Conventional sensors with sensing technology based on a permanent magnet can cause interference with a compass when used in close proximity. This problem is solved with a MEMS accelerometer which does not require any magnetic materials. Frequency information below 10 Hz is valuable for identification of signal sources. Conventional seismometers used in UGS are typically limited in frequency response from 20 to 200 Hz. The MEMS accelerometer has a flat frequency response from DC to 5 kHz. The wider spectrum of signals received improves detection, classification and monitoring on the battlefield. The DC-coupled output of the MEMS accelerometer also has the added benefit of providing tilt orientation data for the deployed UGS. Other performance parameters of the MEMS accelerometer that are important to UGS such as size, weight, shock survivability, phase response, distortion, and cross-axis rejection will be discussed. Additionally, field test data from human footsteps recorded with the MEMS accelerometer will be presented.

  5. A novel approach to the analysis of squeezed-film air damping in microelectromechanical systems

    NASA Astrophysics Data System (ADS)

    Yang, Weilin; Li, Hongxia; Chatterjee, Aveek N.; Elfadel, Ibrahim (Abe M.; Ender Ocak, Ilker; Zhang, TieJun

    2017-01-01

    Squeezed-film damping (SFD) is a phenomenon that significantly affects the performance of micro-electro-mechanical systems (MEMS). The total damping force in MEMS mainly include the viscous damping force and elastic damping force. Quality factor (Q factor) is usually used to evaluate the damping in MEMS. In this work, we measure the Q factor of a resonator through experiments in a wide range of pressure levels. In fact, experimental characterizations of MEMS have some limitations because it is difficult to conduct experiments at very high vacuum and also hard to differentiate the damping mechanisms from the overall Q factor measurements. On the other hand, classical theoretical analysis of SFD is restricted to strong assumptions and simple geometries. In this paper, a novel numerical approach, which is based on lattice Boltzmann simulations, is proposed to investigate SFD in MEMS. Our method considers the dynamics of squeezed air flow as well as fluid-solid interactions in MEMS. It is demonstrated that Q factor can be directly predicted by numerical simulation, and our simulation results agree well with experimental data. Factors that influence SFD, such as pressure, oscillating amplitude, and driving frequency, are investigated separately. Furthermore, viscous damping and elastic damping forces are quantitatively compared based on comprehensive simulation. The proposed numerical approach as well as experimental characterization enables us to reveal the insightful physics of squeezed-film air damping in MEMS.

  6. Novel First-Level Interconnect Techniques for Flip Chip on MEMS Devices

    PubMed Central

    Sutanto, Jemmy; Anand, Sindhu; Patel, Chetan; Muthuswamy, Jit

    2013-01-01

    Flip-chip packaging is desirable for microelectro-mechanical systems (MEMS) devices because it reduces the overall package size and allows scaling up the number of MEMS chips through 3-D stacks. In this report, we demonstrate three novel techniques to create first-level interconnect (FLI) on MEMS: 1) Dip and attach technology for Ag epoxy; 2) Dispense technology for solder paste; 3) Dispense, pull, and attach technology (DPAT) for solder paste. The above techniques required no additional microfabrication steps, produced no visible surface contamination on the MEMS active structures, and generated high-aspect-ratio interconnects. The developed FLIs were successfully tested on MEMS moveable microelectrodes microfabricated by SUMMiTVTM process producing no apparent detrimental effect due to outgassing. The bumping processes were successfully applied on Al-deposited bond pads of 100 μm × 100 μm with an average bump height of 101.3 μm for Ag and 184.8 μm for solder (63Sn, 37Pb). DPAT for solder paste produced bumps with the aspect ratio of 1.8 or more. The average shear strengths of Ag and solder bumps were 78 MPa and 689 kPa, respectively. The electrical test on Ag bumps at 794 A/cm2 demonstrated reliable electrical interconnects with negligible resistance. These scalable FLI technologies are potentially useful for MEMS flip-chip packaging and 3-D stacking. PMID:24504168

  7. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  8. Auditory Brainstem Circuits That Mediate the Middle Ear Muscle Reflex

    PubMed Central

    Mukerji, Sudeep; Windsor, Alanna Marie; Lee, Daniel J.

    2010-01-01

    The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and nonauditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research. PMID:20870664

  9. Study on real-time images compounded using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Chen, Zhebo; Ni, Xuxiang; Lu, Zukang

    2007-01-01

    Image compounded technology is often used on film and its facture. In common, image compounded use image processing arithmetic, get useful object, details, background or some other things from the images firstly, then compounding all these information into one image. When using this method, the film system needs a powerful processor, for the process function is very complex, we get the compounded image for a few time delay. In this paper, we introduce a new method of image real-time compounded, use this method, we can do image composite at the same time with movie shot. The whole system is made up of two camera-lens, spatial light modulator array and image sensor. In system, the spatial light modulator could be liquid crystal display (LCD), liquid crystal on silicon (LCoS), thin film transistor liquid crystal display (TFTLCD), Deformable Micro-mirror Device (DMD), and so on. Firstly, one camera-lens images the object on the spatial light modulator's panel, we call this camera-lens as first image lens. Secondly, we output an image to the panel of spatial light modulator. Then, the image of the object and image that output by spatial light modulator will be spatial compounded on the panel of spatial light modulator. Thirdly, the other camera-lens images the compounded image to the image sensor, and we call this camera-lens as second image lens. After these three steps, we will gain the compound images by image sensor. For the spatial light modulator could output the image continuously, then the image will be compounding continuously too, and the compounding procedure is completed in real-time. When using this method to compounding image, if we will put real object into invented background, we can output the invented background scene on the spatial light modulator, and the real object will be imaged by first image lens. Then, we get the compounded images by image sensor in real time. The same way, if we will put real background to an invented object, we can output the invented object on the spatial light modulator and the real background will be imaged by first image lens. Then, we can also get the compounded images by image sensor real time. Commonly, most spatial light modulator only can do modulate light intensity, so we can only do compounding BW images if use only one panel which without color filter. If we will get colorful compounded image, we need use the system like three spatial light modulator panel projection. In the paper, the system's optical system framework we will give out. In all experiment, the spatial light modulator used liquid crystal on silicon (LCoS). At the end of the paper, some original pictures and compounded pictures will be given on it. Although the system has a few shortcomings, we can conclude that, using this system to compounding images has no delay to do mathematic compounding process, it is a really real time images compounding system.

  10. In situ MEMS testing: correlation of high-resolution X-ray diffraction with mechanical experiments and finite element analysis

    NASA Astrophysics Data System (ADS)

    Schifferle, Andreas; Dommann, Alex; Neels, Antonia

    2017-12-01

    New methods are needed in microsystems technology for evaluating microelectromechanical systems (MEMS) because of their reduced size. The assessment and characterization of mechanical and structural relations of MEMS are essential to assure the long-term functioning of devices, and have a significant impact on design and fabrication.

  11. MEMS-based flexible reflective analog modulators (FRAM) for projection displays: a technology review and scale-down study

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Ilias, Samir; Asselin, Daniel; Boucher, Marc-André; Duchesne, François; Jacob, Michel; Larouche, Carl; Vachon, Carl; Niall, Keith K.; Jerominek, Hubert

    2011-02-01

    A MEMS based technology for projection display is reviewed. This technology relies on mechanically flexible and reflective microbridges made of aluminum alloy. A linear array of such micromirrors is combined with illumination and Schlieren optics to produce a pixels line. Each microbridge in the array is individually controlled using electrostatic actuation to adjust the pixels intensities. Results of the simulation, fabrication and characterization of these microdevices are presented. Activation voltages below 250 V with response times below 10 μs were obtained for 25 μm × 25 μm micromirrors. With appropriate actuation voltage waveforms, response times of 5 μs and less are achievable. A damage threshold of the mirrors above 8 kW/cm2 has been evaluated. Development of the technology has produced projector engines demonstrating this light modulation principle. The most recent of these engines is DVI compatible and displays VGA video streams at 60 Hz. Recently applications have emerged that impose more stringent requirements on the dimensions of the MEMS array and associated optical system. This triggered a scale down study to evaluate the minimum micromirror size achievable, the impact of this reduced size on the damage threshold and the achievable minimum size of the associated optical system. Preliminary results of this scale down study are reported. FRAM with active surface as small as 5 μm × 5 μm have been investigated. Simulations have shown that such micromirrors could be activated with 107 V to achieve f-number of 1.25. The damage threshold has been estimated for various FRAM sizes. Finally, design of a conceptual miniaturized projector based on 1000×1 array of 5 μm × 5 μm micromirrors is presented. The volume of this projector concept is about 12 cm3.

  12. A novel method of measuring spatial rotation angle using MEMS tilt sensors

    NASA Astrophysics Data System (ADS)

    Cao, Jian'an; Zhu, Xin; Wu, Hao; Zhang, Leping

    2017-10-01

    This paper presents a novel method of measuring spatial rotation angle with a dual-axis micro-electro-mechanical systems tilt sensor. When the sensor is randomly mounted on the surface of the rotating object, there are three unpredictable and unknown mounting position parameters: α, the sensor’s swing angle on the measuring plane; β, the angle between the rotation axis and the horizontal plane; and γ, the angle between the measuring plane and the rotation axis. Thus, the sensor’s spatial rotation model is established to describe the relationship between the measuring axis, rotation axis, and horizontal plane, and the corresponding analytical equations are derived. Furthermore, to eliminate the deviation caused by the uncertain direction of the rotation axis, an extra perpendicularly mounted, single-axis tilt sensor is combined with the dual-axis tilt sensor, forming a three-axis tilt sensor. Then, by measuring the sensors’ three tilts and solving the model’s equations, the object’s spatial rotation angle is obtained. Finally, experimental results show that the developed tilt sensor is capable of measuring spatial rotation angle in the range of  ±180° with an accuracy of 0.2° if the angle between the rotation axis and the horizontal plane is less than 75°.

  13. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NASA Astrophysics Data System (ADS)

    Roozeboom, F.; Kniknie, B.; Lankhorst, A. M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.; Dingemans, G.; Keuning, W.; Kessels, W. M. M.

    2012-12-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In this work we report on a novel alternative and disruptive technology concept of Spatially-divided Deep Reactive Ion Etching, S-DRIE, where the process is converted from the time-divided into the spatially divided regime. The spatial division can be accomplished by inert gas bearing 'curtains' of heights down to ~20 μm. These curtains confine the reactive gases to individual (often linear) injection slots constructed in a gas injector head. By horizontally moving the substrate back and forth under the head one can realize the alternate exposures to the overall cycle. A second improvement in the spatially divided approach is the replacement of the CVD-based C4F8 passivation steps by ALD-based oxide (e.g. SiO2) deposition cycles. The method can have industrial potential in cost-effective creation of advanced 3D interconnects (TSVs), MEMS manufacturing and advanced patterning, e.g., in nanoscale transistor line edge roughness using Atomic Layer Etching.

  14. Nanotwinned metal MEMS films with unprecedented strength and stability

    PubMed Central

    Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.

    2017-01-01

    Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015

  15. Method for fabricating a microelectromechanical resonator

    DOEpatents

    Wojciechowski, Kenneth E; Olsson, III, Roy H

    2013-02-05

    A method is disclosed which calculates dimensions for a MEM resonator in terms of integer multiples of a grid width G for reticles used to fabricate the resonator, including an actual sub-width L.sub.a=NG and an effective electrode width W.sub.e=MG where N and M are integers which minimize a frequency error f.sub.e=f.sub.d-f.sub.a between a desired resonant frequency f.sub.d and an actual resonant frequency f.sub.a. The method can also be used to calculate an overall width W.sub.o for the MEM resonator, and an effective electrode length L.sub.e which provides a desired motional impedance for the MEM resonator. The MEM resonator can then be fabricated using these values for L.sub.a, W.sub.e, W.sub.o and L.sub.e. The method can also be applied to a number j of MEM resonators formed on a common substrate.

  16. Microelectromechanical pump utilizing porous silicon

    DOEpatents

    Lantz, Jeffrey W [Albuquerque, NM; Stalford, Harold L [Norman, OK

    2011-07-19

    A microelectromechanical (MEM) pump is disclosed which includes a porous silicon region sandwiched between an inlet chamber and an outlet chamber. The porous silicon region is formed in a silicon substrate and contains a number of pores extending between the inlet and outlet chambers, with each pore having a cross-section dimension about equal to or smaller than a mean free path of a gas being pumped. A thermal gradient is provided along the length of each pore by a heat source which can be an electrical resistance heater or an integrated circuit (IC). A channel can be formed through the silicon substrate so that inlet and outlet ports can be formed on the same side of the substrate, or so that multiple MEM pumps can be connected in series to form a multi-stage MEM pump. The MEM pump has applications for use in gas-phase MEM chemical analysis systems, and can also be used for passive cooling of ICs.

  17. Surface-micromachined and high-aspect ratio electrostatic actuators for aeronautic and space applications: design and lifetime considerations

    NASA Astrophysics Data System (ADS)

    Vescovo, P.; Joseph, E.; Bourbon, G.; Le Moal, P.; Minotti, P.; Hibert, C.; Pont, G.

    2003-09-01

    This paper focuses on recent advances in the field of MEMS-based actuators and distributed microelectromechanical systems (MEMS). IC-processed actuators (e.g. actuators that are machined using integrated circuit batch processes) are expected to open a wide range of industrial applications on the near term. The most promising investigations deal with high-aspect ratio electric field driven microactuators suitable for use in numerous technical fields such as aeronautics and space industry. Because the silicon micromachining technology have the potential to integrate both mechanical components and control circuits within a single process, MEMS-based active control of microscopic and macroscopic structures appears to be one of the most promising challenges for the next decade. As a first step towards new generations of MEMS-based smart structures, recent investigations dealing with silicon mechanisms involving MEMS-based actuators are briefly discussed in this paper.

  18. Hybrid power systems for autonomous MEMS

    NASA Astrophysics Data System (ADS)

    Bennett, Daniel M.; Selfridge, Richard H.; Humble, Paul; Harb, John N.

    2001-08-01

    This paper describes the design of a hybrid power system for use with autonomous MEMS and other microdevices. This hybrid power system includes energy conversion and storage along with an electronic system for managing the collection and distribution of power. It offers flexibility and longevity in a compact package. The hybrid power system couples a silicon solar cell with a microbattery specially designed for MEMS applications. We have designed a control/interface charging circuit to be compatible with a MEMS duty cycle. The design permits short pulses of 'high' power while taking care to avoid excessive charging or discharging of the battery. Charging is carefully controlled to provide a balance between acceptably small charging times and a charging profile that extends battery life. Our report describes the charging of our Ni/Zn microbatteries using solar cells. To date we have demonstrated thousands of charge/discharge cycles of a simulated MEMS duty cycle.

  19. Method for fabricating five-level microelectromechanical structures and microelectromechanical transmission formed

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; McWhorter, Paul J.

    2000-01-01

    A process for forming complex microelectromechanical (MEM) devices having five layers or levels of polysilicon, including four structural polysilicon layers wherein mechanical elements can be formed, and an underlying polysilicon layer forming a voltage reference plane. A particular type of MEM device that can be formed with the five-level polysilicon process is a MEM transmission for controlling or interlocking mechanical power transfer between an electrostatic motor and a self-assembling structure (e.g. a hinged pop-up mirror for use with an incident laser beam). The MEM transmission is based on an incomplete gear train and a bridging set of gears that can be moved into place to complete the gear train to enable power transfer. The MEM transmission has particular applications as a safety component for surety, and for this purpose can incorporate a pin-in-maze discriminator responsive to a coded input signal.

  20. MEMS reliability: coming of age

    NASA Astrophysics Data System (ADS)

    Douglass, Michael R.

    2008-02-01

    In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.

  1. MEMS FPI-based smartphone hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Saari, Heikki; Rainio, Kari; Stuns, Ingmar; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Ojanen, Harri

    2016-05-01

    This paper demonstrates a mobile phone- compatible hyperspectral imager based on a tunable MEMS Fabry-Perot interferometer. The realized iPhone 5s hyperspectral imager (HSI) demonstrator utilizes MEMS FPI tunable filter for visible-range, which consist of atomic layer deposited (ALD) Al2O3/TiO2-thin film Bragg reflectors. Characterization results for the mobile phone hyperspectral imager utilizing MEMS FPI chip optimized for 500 nm is presented; the operation range is λ = 450 - 550 nm with FWHM between 8 - 15 nm. Also a configuration of two cascaded FPIs (λ = 500 nm and λ = 650 nm) combined with an RGB colour camera is presented. With this tandem configuration, the overall wavelength tuning range of MEMS hyperspectral imagers can be extended to cover a larger range than with a single FPI chip. The potential applications of mobile hyperspectral imagers in the vis-NIR range include authentication, counterfeit detection and potential health/wellness and food sensing applications.

  2. Development of Clinically Relevant Implantable Pressure Sensors: Perspectives and Challenges

    PubMed Central

    Clausen, Ingelin; Glott, Thomas

    2014-01-01

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians. Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported. PMID:25248071

  3. 2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback

    NASA Astrophysics Data System (ADS)

    Lani, S.; Bayat, D.; Despont, M.

    2015-02-01

    An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.

  4. LIDAR pulse coding for high resolution range imaging at improved refresh rate.

    PubMed

    Kim, Gunzung; Park, Yongwan

    2016-10-17

    In this study, a light detection and ranging system (LIDAR) was designed that codes pixel location information in its laser pulses using the direct- sequence optical code division multiple access (DS-OCDMA) method in conjunction with a scanning-based microelectromechanical system (MEMS) mirror. This LIDAR can constantly measure the distance without idle listening time for the return of reflected waves because its laser pulses include pixel location information encoded by applying the DS-OCDMA. Therefore, this emits in each bearing direction without waiting for the reflected wave to return. The MEMS mirror is used to deflect and steer the coded laser pulses in the desired bearing direction. The receiver digitizes the received reflected pulses using a low-temperature-grown (LTG) indium gallium arsenide (InGaAs) based photoconductive antenna (PCA) and the time-to-digital converter (TDC) and demodulates them using the DS-OCDMA. When all of the reflected waves corresponding to the pixels forming a range image are received, the proposed LIDAR generates a point cloud based on the time-of-flight (ToF) of each reflected wave. The results of simulations performed on the proposed LIDAR are compared with simulations of existing LIDARs.

  5. Development of clinically relevant implantable pressure sensors: perspectives and challenges.

    PubMed

    Clausen, Ingelin; Glott, Thomas

    2014-09-22

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians.  Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported.

  6. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    PubMed

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  7. MEMS Microshutter Array System for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; hide

    2008-01-01

    A complex MEMS microshutter array system has been developed at NASA Goddard Space Flight Center (GSFC) for use as a multi-object aperture array for a Near-Infrared Spectrometer (NIRSpec). The NIRSpec is one of the four major instruments carried by the James Webb Space Telescope (JWST), the next generation of space telescope after the Hubble Space Telescope retires. The microshutter arrays (MSAs) are designed for the selective transmission of light with high efficiency and high contrast. It is demonstrated in Figure 1 how a MSA is used as a multiple object selector in deep space. The MSAs empower the NIRSpec instrument simultaneously collect spectra from more than 100 targets therefore increases the instrument efficiency 100 times or more. The MSA assembly is one of three major innovations on JWST and the first major MEMS devices serving observation missions in space. The MSA system developed at NASA GSFC is assembled with four quadrant fully addressable 365x171 shutter arrays that are actuated magnetically, latched and addressed electrostatically. As shown in Figure 2, each MSA is fabricated out of a 4' silicon-on-insulator (SOI) wafer using MEMS bulk-micromachining technology. Individual shutters are close-packed silicon nitride membranes with a pixel size close to 100x200 pm (Figure 3). Shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. In order to prevent light leak, light shields are made on to the surrounding frame of each shutter to cover the gaps between the shutters and the Game (Figure 4). Micro-ribs and sub-micron bumps are tailored on hack walls and light shields, respectively, to prevent sticktion, shown in Figures 4 and 5. JWST instruments are required to operate at cryogenic temperatures as low as 35K, though they are to be subjected to various levels of ground tests at room temperature. The shutters should therefore maintain nearly flat in the entire temperature range between 35K and 300K. Through intensive numerical simulations and experimental studies, an optically opaque and electrically conductive metal-nitride thin film was selected as a coating material deposited on the shutters with the best thermal-expansion match to silicon nitride - the shutter blade thin film material. A shutter image shown in Figure 6 was taken at room temperature, presenting shutters slightly bowing down as expected. Shutters become flat when the temperature decreases to 35K. The MSAs are then bonded to silicon substrates that are fabricated out of 6" single-silicon wafers in the thickness of 2mm. The bonding is conducted using a novel single-sided indium flip-chip bonding technology. Indium bumps fabricated on a substrate are shown in Figure 7. There are 180,000 indium bumps for bonding a flight format MSA array to its substrate. Besides a MSA, each substrate houses five customer-designed ASIC (Application Specific Integrated Circuit) multiplexer/address chips for 2-dimensional addressing, twenty capacitors, two temperature sensors, numbers of resistors and all necessary interconnects, as shown in Figure 8. Complete MSA quadrant assemblies have been successfully manufactured and fully functionally tested. The assemblies have passed a series of critical reviews required by JWST in satisfying all the design specifications. The qualification tests cover programmable 2-D addressing, life tests, optical contrast tests, and environmental tests including radiation, vibration, and acoustic tests. A 2-D addressing pattern with 'ESA' letters programmed in a MSA is shown in Figure 9. The MSAs passed 1 million cycle life tests and achieved high optical contrast over 10,000. MSA teams are now making progress in final fabrication, testing and assembly (Figure 10). The delivery of flight-format MSA system is scheduled at the end of 2008 for being integrated to the focal plane of the NIRSpec detectors.

  8. Joint transform correlators with spatially incoherent illumination

    NASA Astrophysics Data System (ADS)

    Bykovsky, Yuri A.; Karpiouk, Andrey B.; Markilov, Anatoly A.; Rodin, Vladislav G.; Starikov, Sergey N.

    1997-03-01

    Two variants of joint transform correlators with monochromatic spatially incoherent illumination are considered. The Fourier-holograms of the reference and recognized images are recorded simultaneously or apart in a time on the same spatial light modulator directly by monochromatic spatially incoherent light. To create the signal of mutual correlation of the images it is necessary to execute nonlinear transformation when the hologram is illuminated by coherent light. In the first scheme of the correlator this aim was achieved by using double pas of a restoring coherent wave through the hologram. In the second variant of the correlator the non-linearity of the characteristic of the spatial light modulator for hologram recording was used. Experimental schemes and results on processing teste images by both variants of joint transform correlators with monochromatic spatially incoherent illumination. The use of spatially incoherent light on the input of joint transform correlators permits to reduce the requirements to optical quality of elements, to reduce accuracy requirements on elements positioning and to expand a number of devices suitable to input images in correlators.

  9. Using a pseudo-thermal light source to teach spatial coherence

    NASA Astrophysics Data System (ADS)

    Pieper, K.; Bergmann, A.; Dengler, R.; Rockstuhl, C.

    2018-07-01

    Teaching students spatial coherence constitutes a challenge. On the one hand, discussing it theoretically requires a quite demanding mathematical breadth. On the other hand, discussing it experimentally is hardly possible as coherence usually cannot be directly observed. To solve this problem, we show, by studying the contrast of interference patterns of a double slit, that speckles of a pseudo-thermal light source, consisting of a laser and a rotating diffuser disc, are equivalent to the spatial extent of coherent areas of a thermal light source. Coherent areas are spatial regions within which light can be considered as coherent. The unique advantage of such pseudo-thermal light source is the opportunity to directly observe the spatial extent of the coherent areas. This renders the phenomena perceptible and accessible by various experiments, as described in this contribution. This opens modern paths to teach spatial coherence to students with a notably reduced order of abstraction.

  10. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application

    PubMed Central

    Kwon, Ki Yong; Lee, Hyung-Min; Ghovanloo, Maysam; Weber, Arthur; Li, Wen

    2015-01-01

    The recent development of optogenetics has created an increased demand for advancing engineering tools for optical modulation of neural circuitry. This paper details the design, fabrication, integration, and packaging procedures of a wirelessly-powered, light emitting diode (LED) coupled optrode neural interface for optogenetic studies. The LED-coupled optrode array employs microscale LED (μLED) chips and polymer-based microwaveguides to deliver light into multi-level cortical networks, coupled with microelectrodes to record spontaneous changes in neural activity. An integrated, implantable, switched-capacitor based stimulator (SCS) system provides high instantaneous power to the μLEDs through an inductive link to emit sufficient light and evoke neural activities. The presented system is mechanically flexible, biocompatible, miniaturized, and lightweight, suitable for chronic implantation in small freely behaving animals. The design of this system is scalable and its manufacturing is cost effective through batch fabrication using microelectromechanical systems (MEMS) technology. It can be adopted by other groups and customized for specific needs of individual experiments. PMID:25999823

  11. RF-MEMS Technology for High-Performance Passives; The challenge of 5G mobile applications

    NASA Astrophysics Data System (ADS)

    Iannacci, Jacopo

    2017-11-01

    Commencing with a review of the characteristics of RF-MEMS in relation to 5G, the book proceeds to develop practical insight concerning the design and development of RF-MEMS including case studies of design concepts. Including multiphysics simulation and animated figures, the book will be essential reading for both academic and industrial researchers and engineers.

  12. HARM processing techniques for MEMS and MOEMS devices using bonded SOI substrates and DRIE

    NASA Astrophysics Data System (ADS)

    Gormley, Colin; Boyle, Anne; Srigengan, Viji; Blackstone, Scott C.

    2000-08-01

    Silicon-on-Insulator (SOI) MEMS devices (1) are rapidly gaining popularity in realizing numerous solutions for MEMS, especially in the optical and inertia application fields. BCO recently developed a DRIE trench etch, utilizing the Bosch process, and refill process for high voltage dielectric isolation integrated circuits on thick SOI substrates. In this paper we present our most recently developed DRIE processes for MEMS and MOEMS devices. These advanced etch techniques are initially described and their integration with silicon bonding demonstrated. This has enabled process flows that are currently being utilized to develop optical router and filter products for fiber optics telecommunications and high precision accelerometers.

  13. Progress and opportunities in high-voltage microactuator powering technology towards one-chip MEMS

    NASA Astrophysics Data System (ADS)

    Mita, Yoshio; Hirakawa, Atsushi; Stefanelli, Bruno; Mori, Isao; Okamoto, Yuki; Morishita, Satoshi; Kubota, Masanori; Lebrasseur, Eric; Kaiser, Andreas

    2018-04-01

    In this paper, we address issues and solutions for micro-electro-mechanical-systems (MEMS) powering through semiconductor devices towards one-chip MEMS, especially those with microactuators that require high voltage (HV, which is more than 10 V, and is often over 100 V) for operation. We experimentally and theoretically demonstrated that the main reason why MEMS actuators need such HV is the tradeoff between resonant frequency and displacement amplitude. Indeed, the product of frequency and displacement is constant regardless of the MEMS design, but proportional to the input energy, which is the square of applied voltage in an electrostatic actuator. A comprehensive study on the principles of HV device technology and associated circuit technologies, especially voltage shifter circuits, was conducted. From the viewpoint of on-chip energy source, series-connected HV photovoltaic cells have been discussed. Isolation and electrical connection methods were identified to be key enabling technologies. Towards future rapid development of such autonomous devices, a technology to convert standard 5 V CMOS devices into HV circuits using SOI substrate and a MEMS postprocess is presented. HV breakdown experiments demonstrated this technology can hold over 700 to 1000 V, depending on the layout.

  14. BioMEMS for biosensors and closed-loop drug delivery.

    PubMed

    Coffel, Joel; Nuxoll, Eric

    2018-06-15

    The efficacy of pharmaceutical treatments can be greatly enhanced by physiological feedback from the patient using biosensors, though this is often invasive or infeasible. By adapting microelectromechanical systems (MEMS) technology to miniaturize such biosensors, previously inaccessible signals can be obtained, often from inside the patient. This is enabled by the device's extremely small footprint which minimizes both power consumption and implantation trauma, as well as the transport time for chemical analytes, in turn decreasing the sensor's response time. MEMS fabrication also allows mass production which can be easily scaled without sacrificing its high reproducibility and reliability, and allows seamless integration with control circuitry and telemetry which is already produced using the same materials and fabrication steps. By integrating these systems with drug delivery devices, many of which are also MEMS-based, closed loop drug delivery can be achieved. This paper surveys the types of signal transduction devices available for biosensing-primarily electrochemical, optical, and mechanical-looking at their implementation via MEMS technology. The impact of MEMS technology on the challenges of biosensor development, particularly safety, power consumption, degradation, fouling, and foreign body response, are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  16. A brief test of the Hewlett-Packard MEMS seismic accelerometer

    USGS Publications Warehouse

    Homeijer, Brian D.; Milligan, Donald J.; Hutt, Charles R.

    2014-01-01

    Testing was performed on a prototype of Hewlett-Packard (HP) Micro-Electro-Mechanical Systems (MEMS) seismic accelerometer at the U.S. Geological Survey’s Albuquerque Seismological Laboratory. This prototype was built using discrete electronic components. The self-noise level was measured during low seismic background conditions and found to be 9.8 ng/√Hz at periods below 0.2 s (frequencies above 5 Hz). The six-second microseism noise was also discernible. The HP MEMS accelerometer was compared to a Geotech Model GS-13 reference seismometer during seismic noise and signal levels well above the self-noise of the accelerometer. Matching power spectral densities (corrected for accelerometer and seismometer responses to represent true ground motion) indicated that the HP MEMS accelerometer has a flat (constant) response to acceleration from 0.0125 Hz to at least 62.5 Hz. Tilt calibrations of the HP MEMS accelerometer verified that the flat response to acceleration extends to 0 Hz. Future development of the HP MEMS accelerometer includes replacing the discreet electronic boards with a low power application-specific integrated circuit (ASIC) and increasing the dynamic range of the sensor to detect strong motion signals above one gravitational acceleration, while maintaining the self-noise observed during these tests.

  17. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  18. Design and Optimization of AlN based RF MEMS Switches

    NASA Astrophysics Data System (ADS)

    Hasan Ziko, Mehadi; Koel, Ants

    2018-05-01

    Radio frequency microelectromechanical system (RF MEMS) switch technology might have potential to replace the semiconductor technology in future communication systems as well as communication satellites, wireless and mobile phones. This study is to explore the possibilities of RF MEMS switch design and optimization with aluminium nitride (AlN) thin film as the piezoelectric actuation material. Achieving low actuation voltage and high contact force with optimal geometry using the principle of piezoelectric effect is the main motivation for this research. Analytical and numerical modelling of single beam type RF MEMS switch used to analyse the design parameters and optimize them for the minimum actuation voltage and high contact force. An analytical model using isotropic AlN material properties used to obtain the optimal parameters. The optimized geometry of the device length, width and thickness are 2000 µm, 500 µm and 0.6 µm respectively obtained for the single beam RF MEMS switch. Low actuation voltage and high contact force with optimal geometry are less than 2 Vand 100 µN obtained by analytical analysis. Additionally, the single beam RF MEMS switch are optimized and validated by comparing the analytical and finite element modelling (FEM) analysis.

  19. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  20. Pilot study to harmonize the reported influenza intensity levels within the Spanish Influenza Sentinel Surveillance System (SISSS) using the Moving Epidemic Method (MEM).

    PubMed

    Bangert, M; Gil, H; Oliva, J; Delgado, C; Vega, T; DE Mateo, S; Larrauri, A

    2017-03-01

    The intensity of annual Spanish influenza activity is currently estimated from historical data of the Spanish Influenza Sentinel Surveillance System (SISSS) using qualitative indicators from the European Influenza Surveillance Network. However, these indicators are subjective, based on qualitative comparison with historical data of influenza-like illness rates. This pilot study assesses the implementation of Moving Epidemic Method (MEM) intensity levels during the 2014-2015 influenza season within the 17 sentinel networks covered by SISSS, comparing them to historically reported indicators. Intensity levels reported and those obtained with MEM at the epidemic peak of the influenza wave, and at national and regional levels did not show statistical difference (P = 0·74, Wilcoxon signed-rank test), suggesting that the implementation of MEM would have limited disrupting effects on the dynamic of notification within the surveillance system. MEM allows objective influenza surveillance monitoring and standardization of criteria for comparing the intensity of influenza epidemics in regions in Spain. Following this pilot study, MEM has been adopted to harmonize the reporting of intensity levels of influenza activity in Spain, starting in the 2015-2016 season.

  1. A Study on the Performance of Low Cost MEMS Sensors in Strong Motion Studies

    NASA Astrophysics Data System (ADS)

    Tanırcan, Gulum; Alçık, Hakan; Kaya, Yavuz; Beyen, Kemal

    2017-04-01

    Recent advances in sensors have helped the growth of local networks. In recent years, many Micro Electro Mechanical System (MEMS)-based accelerometers have been successfully used in seismology and earthquake engineering projects. This is basically due to the increased precision obtained in these downsized instruments. Moreover, they are cheaper alternatives to force-balance type accelerometers. In Turkey, though MEMS-based accelerometers have been used in various individual applications such as magnitude and location determination of earthquakes, structural health monitoring, earthquake early warning systems, MEMS-based strong motion networks are not currently available in other populated areas of the country. Motivation of this study comes from the fact that, if MEMS sensors are qualified to record strong motion parameters of large earthquakes, a dense network can be formed in an affordable price at highly populated areas. The goals of this study are 1) to test the performance of MEMS sensors, which are available in the inventory of the Institute through shake table tests, and 2) to setup a small scale network for observing online data transfer speed to a trusted in-house routine. In order to evaluate the suitability of sensors in strong motion related studies, MEMS sensors and a reference sensor are tested under excitations of sweeping waves as well as scaled earthquake recordings. Amplitude response and correlation coefficients versus frequencies are compared. As for earthquake recordings, comparisons are carried out in terms of strong motion(SM) parameters (PGA, PGV, AI, CAV) and elastic response of structures (Sa). Furthermore, this paper also focuses on sensitivity and selectivity for sensor performances in time-frequency domain to compare different sensing characteristics and analyzes the basic strong motion parameters that influence the design majors. Results show that the cheapest MEMS sensors under investigation are able to record the mid-frequency dominant SM parameters PGV and CAV with high correlation. PGA and AI, the high frequency components of the ground motion, are underestimated. Such a difference, on the other hand, does not manifest itself on intensity estimations. PGV and CAV values from the reference and MEMS sensors converge to the same seismic intensity level. Hence a strong motion network with MEMS sensors could be a modest option to produce PGV-based damage impact of an urban area under large magnitude earthquake threats in the immediate vicinity.

  2. Managing the spatial properties and photon correlations in squeezed non-classical twisted light

    NASA Astrophysics Data System (ADS)

    Zakharov, R. V.; Tikhonova, O. V.

    2018-05-01

    Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.

  3. Low-voltage high-reliability MEMS switch for millimeter wave 5G applications

    NASA Astrophysics Data System (ADS)

    Shekhar, Sudhanshu; Vinoy, K. J.; Ananthasuresh, G. K.

    2018-07-01

    Lack of reliability of radio-frequency microelectromechanical systems (RF MEMS) switches has inhibited their commercial success. Dielectric stiction/breakdown and mechanical shock due to high actuation voltage are common impediments in capacitive MEMS switches. In this work, we report low-actuation voltage RF MEMS switch and its reliability test. Experimental characterization of fabricated devices demonstrate that proposed MEMS switch topology needs very low voltage (4.8 V) for actuation. The mechanical resonant frequency, f 0, quality factor, Q, and switching time are measured to be 8.35 kHz, 1.2, and 33 microsecond, respectively. These MEMS switches have high reliability in terms of switching cycles. Measurements are performed using pulse waveform of magnitude of 6 V under hot-switching condition. Temperature measurement results confirm that the reported switch topology has good thermal stability. The robustness in terms of the measured pull-in voltage shows a variation of 0.08 V °C‑1. Lifetime measurement results after 10 million switching cycles demonstrate insignificant change in the RF performance without any failure. Experimental results show that low voltage improves the lifetime. Low insertion loss (less than 0.6 dB) and improved isolation (above 40 dB) in the frequency range up to 60 GHz have been reported. Measured RF characteristics in the frequency range from 10 MHz to 60 GHz support that these MEMS switches are favorable choice for mm-wave 5G applications.

  4. Thermo-optical characterization of fluorescent rhodamine B based temperature-sensitive nanosensors using a CMOS MEMS micro-hotplate☆

    PubMed Central

    Chauhan, Veeren M.; Hopper, Richard H.; Ali, Syed Z.; King, Emma M.; Udrea, Florin; Oxley, Chris H.; Aylott, Jonathan W.

    2014-01-01

    A custom designed microelectromechanical systems (MEMS) micro-hotplate, capable of operating at high temperatures (up to 700 °C), was used to thermo-optically characterize fluorescent temperature-sensitive nanosensors. The nanosensors, 550 nm in diameter, are composed of temperature-sensitive rhodamine B (RhB) fluorophore which was conjugated to an inert silica sol–gel matrix. Temperature-sensitive nanosensors were dispersed and dried across the surface of the MEMS micro-hotplate, which was mounted in the slide holder of a fluorescence confocal microscope. Through electrical control of the MEMS micro-hotplate, temperature induced changes in fluorescence intensity of the nanosensors was measured over a wide temperature range. The fluorescence response of all nanosensors dispersed across the surface of the MEMS device was found to decrease in an exponential manner by 94%, when the temperature was increased from 25 °C to 145 °C. The fluorescence response of all dispersed nanosensors across the whole surface of the MEMS device and individual nanosensors, using line profile analysis, were not statistically different (p < 0.05). The MEMS device used for this study could prove to be a reliable, low cost, low power and high temperature micro-hotplate for the thermo-optical characterisation of sub-micron sized particles. The temperature-sensitive nanosensors could find potential application in the measurement of temperature in biological and micro-electrical systems. PMID:25844025

  5. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  6. Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices

    NASA Astrophysics Data System (ADS)

    Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro

    2012-09-01

    An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.

  7. Tribo-functionalizing Si and SU8 materials by surface modification for application in MEMS/NEMS actuator-based devices

    NASA Astrophysics Data System (ADS)

    Singh, R. A.; Satyanarayana, N.; Kustandi, T. S.; Sinha, S. K.

    2011-01-01

    Micro/nano-electro-mechanical-systems (MEMS/NEMS) are miniaturized devices built at micro/nanoscales. At these scales, the surface/interfacial forces are extremely strong and they adversely affect the smooth operation and the useful operating lifetimes of such devices. When these forces manifest in severe forms, they lead to material removal and thereby reduce the wear durability of the devices. In this paper, we present a simple, yet robust, two-step surface modification method to significantly enhance the tribological performance of MEMS/NEMS materials. The two-step method involves oxygen plasma treatment of polymeric films and the application of a nanolubricant, namely perfluoropolyether. We apply the two-step method to the two most important MEMS/NEMS structural materials, namely silicon and SU8 polymer. On applying surface modification to these materials, their initial coefficient of friction reduces by ~4-7 times and the steady-state coefficient of friction reduces by ~2.5-3.5 times. Simultaneously, the wear durability of both the materials increases by >1000 times. The two-step method is time effective as each of the steps takes the time duration of approximately 1 min. It is also cost effective as the oxygen plasma treatment is a part of the MEMS/NEMS fabrication process. The two-step method can be readily and easily integrated into MEMS/NEMS fabrication processes. It is anticipated that this method will work for any kind of structural material from which MEMS/NEMS are or can be made.

  8. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  9. Recent Progress in Silicon Mems Oscillators

    DTIC Science & Technology

    2008-12-01

    MEMS oscillator. As shown, a MEMS resonator is connected to an IC. The reference oscillator, which is basically a transimpedance amplifier ...small size), and (3) DC bias voltage required to operate the resonators. As a result, instead of Colpitts or Pierce architecture, a transimpedence ... amplifier is typically used for sustain the oscillation. The frequency of the resonators is determined by both material properties and geometry of

  10. Silicon Carbide Capacitive High Temperature MEMS Strain Transducer

    DTIC Science & Technology

    2012-03-22

    SILICON CARBIDE CAPACITIVE HIGH TEMPURATURE MEMS STRAIN TRANSDUCER THESIS Richard P. Weisenberger, DR01, USAF AFIT/GE/ENG...declared a work of the U.S. Government and is not subject to copyright protection in the United States AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE IDGH TEMPURATURE MEMS STRAIN TRANSDUCER

  11. MEMS, Ka-Band Single-Pole Double-Throw (SPDT) Switch for Switched Line Phase Shifters

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2002-01-01

    Ka-band MEMS doubly anchored cantilever beam capacitive shunt devices are used to demonstrate a MEMS SPDT switch fabricated on high resistivity silicon (HRS) utilizing finite ground coplanar waveguide (FGC) transmission lines. The SPDT switch has an insertion loss (IL), return loss (RL), and isolation of 0.3dB, 40dB, and 30 dB, respectively at Ka-band.

  12. Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15

    DTIC Science & Technology

    2015-09-01

    TECHNICAL DOCUMENT 3298 September 2015 Micro-Electro-Mechanical Systems (MEMS) Fabrication Course Projects Review for FY15 Paul D. Swanson...Naval Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. SSC Pacific’s Naval Innovative Science and Engineering (NISE) Program provided...for Miniaturized Flow Cytometer o Howard Dyckman: 71730 Infrared Waveguides o Teresa Emery: 55360 Bistable MEMS systems for Energy

  13. MemAxes Visualization Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  14. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate orientation that could improve the MEMS device performance. Potential application of these devices is as battery operated disposable drug delivery systems. This work will also investigate the fabrication of a flexural plate wave based microfluidic device using the PZT thin film of appropriate orientation that would enhance the device performance. (Abstract shortened by UMI.)

  15. Planar-constructed spatial micro-stage

    DOEpatents

    Jokiel, Jr., Bernhard; Benavides, Gilbert L.; Bieg, Lothar F.; Allen, James J.

    2004-01-13

    A multiple degree of freedom platform assembly formed from a plurality of thin films on a substrate can, when activated, move out of the plane of the substrate without additional manufacturing steps. The platform is connected to the substrate by at least three linkages, each linkage being pivotally connected to the platform and the base. At least two of the base connections are to powered traveling devices that are manufactured at one end of a path and which may be moved to locations along the path to cause the platform to move to predetermined positions. The entire assembly, including hinges, is manufactured as planar structures; preferably by a thin film technology such as MEMS.

  16. Programmable wide field spectrograph for earth observation

    NASA Astrophysics Data System (ADS)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  17. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  18. Tensile-stressed microelectromechanical apparatus and tiltable micromirrors formed therefrom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, James G.

    A microelectromechanical (MEM) apparatus is disclosed which includes a pair of tensile-stressed actuators suspending a platform above a substrate to tilt the platform relative to the substrate. A tensile stress built into the actuators initially tilts the platform when a sacrificial material used in fabrication of the MEM apparatus is removed. Further tilting of the platform can occur with a change in the ambient temperature about the MEM apparatus, or by applying a voltage to one or both of the tensile-stressed actuators. The MEM apparatus can be used to form a tiltable micromirror or an array of such devices, andmore » also has applications for thermal management within satellites.« less

  19. Effect of residual stress on modal patterns of MEMS vibratory gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Shankar, E-mail: shankardutta77@gmail.com; Panchal, Abha; Kumar, Manoj

    Deep boron diffusion often induces residual stress in bulk micromachined MEMS structures, which may affect the MEMS devices operation. In this study, we studied the modal patterns of MEMS vibratory gyroscope under the residual stress (100 – 1000 MPa). Modal patterns and modal frequencies of the gyro are found to be dependent on the residual stress values. Without any residual stress, the modal frequencies drive and sense modeswere found to be 20.06 kHz and 20.36 kHz respectively. In presence of 450 MPa residual stress, the modal frequencies of the drive and sense modes were changed to 42.75 kHz and 43.07 kHz respectively.

  20. Spatial Reasoning Training Through Light Curves Of Model Asteroids

    NASA Astrophysics Data System (ADS)

    Ziffer, Julie; Nakroshis, Paul A.; Rudnick, Benjamin T.; Brautigam, Maxwell J.; Nelson, Tyler W.

    2015-11-01

    Recent research has demonstrated that spatial reasoning skills, long known to be crucial to math and science success, are teachable. Even short stints of training can improve spatial reasoning skills among students who lack them (Sorby et al., 2006). Teaching spatial reasoning is particularly valuable to women and minorities who, through societal pressure, often doubt their spatial reasoning skill (Hill et al., 2010). We have designed a hands on asteroid rotation lab that provides practice in spatial reasoning tasks while building the student’s understanding of photometry. For our tool, we mount a model asteroid, with any shape of our choosing, on a slowly rotating motor shaft, whose speed is controlled by the experimenter. To mimic an asteroid light curve, we place the model asteroid in a dark box, shine a movable light source upon our asteroid, and record the light reflected onto a moveable camera. Students may then observe changes in the light curve that result from varying a) the speed of rotation, b) the model asteroid’s orientation with respect to the motor axis, c) the model asteroid’s shape or albedo, and d) the phase angle. After practicing with our tool, students are asked to pair new objects to their corresponding light curves. To correctly pair objects to their light curves, students must imagine how light scattering off of a three dimensional rotating object is imaged on a ccd sensor plane, and then reduced to a series of points on a light curve plot. Through the use of our model asteroid, the student develops confidence in spatial reasoning skills.

  1. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  2. Grayscale lithography-automated mask generation for complex three-dimensional topography

    NASA Astrophysics Data System (ADS)

    Loomis, James; Ratnayake, Dilan; McKenna, Curtis; Walsh, Kevin M.

    2016-01-01

    Grayscale lithography is a relatively underutilized technique that enables fabrication of three-dimensional (3-D) microstructures in photosensitive polymers (photoresists). By spatially modulating ultraviolet (UV) dosage during the writing process, one can vary the depth at which photoresist is developed. This means complex structures and bioinspired designs can readily be produced that would otherwise be cost prohibitive or too time intensive to fabricate. The main barrier to widespread grayscale implementation, however, stems from the laborious generation of mask files required to create complex surface topography. We present a process and associated software utility for automatically generating grayscale mask files from 3-D models created within industry-standard computer-aided design (CAD) suites. By shifting the microelectromechanical systems (MEMS) design onus to commonly used CAD programs ideal for complex surfacing, engineering professionals already familiar with traditional 3-D CAD software can readily utilize their pre-existing skills to make valuable contributions to the MEMS community. Our conversion process is demonstrated by prototyping several samples on a laser pattern generator-capital equipment already in use in many foundries. Finally, an empirical calibration technique is shown that compensates for nonlinear relationships between UV exposure intensity and photoresist development depth as well as a thermal reflow technique to help smooth microstructure surfaces.

  3. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  4. Micromirror-based manipulation of synchrotron x-ray beams

    NASA Astrophysics Data System (ADS)

    Walko, D. A.; Chen, Pice; Jung, I. W.; Lopez, D.; Schwartz, C. P.; Shenoy, G. K.; Wang, Jin

    2017-08-01

    Synchrotron beamlines typically use macroscopic, quasi-static optics to manipulate x-ray beams. We present the use of dynamic microelectromechanical systems-based optics (MEMS) to temporally modulate synchrotron x-ray beams. We demonstrate this concept using single-crystal torsional MEMS micromirrors oscillating at frequencies of 75 kHz. Such a MEMS micromirror, with lateral dimensions of a few hundred micrometers, can interact with x rays by operating in grazing-incidence reflection geometry; x rays are deflected only when an x-ray pulse is incident on the rotating micromirror under appropriate conditions, i.e., at an angle less than the critical angle for reflectivity. The time window for such deflections depends on the frequency and amplitude of the MEMS rotation. We demonstrate that reflection geometry can produce a time window of a few microseconds. We further demonstrate that MEMS optics can isolate x rays from a selected synchrotron bunch or group of bunches. With ray-trace simulations we explain the currently achievable time windows and suggest a path toward improvements.

  5. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  6. MEMS-based IR-sources

    NASA Astrophysics Data System (ADS)

    Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen

    2016-03-01

    The series JSIR350 sources are MEMS based infrared emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our pyro-electric or thermopile detectors. The MEMS chips used in Micro-Hybrid's infrared emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of infrared radiation sources with soldered infrared filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based infrared emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.

  7. A geometrical defect detection method for non-silicon MEMS part based on HU moment invariants of skeleton image

    NASA Astrophysics Data System (ADS)

    Cheng, Xu; Jin, Xin; Zhang, Zhijing; Lu, Jun

    2014-01-01

    In order to improve the accuracy of geometrical defect detection, this paper presented a method based on HU moment invariants of skeleton image. This method have four steps: first of all, grayscale images of non-silicon MEMS parts are collected and converted into binary images, secondly, skeletons of binary images are extracted using medialaxis- transform method, and then HU moment invariants of skeleton images are calculated, finally, differences of HU moment invariants between measured parts and qualified parts are obtained to determine whether there are geometrical defects. To demonstrate the availability of this method, experiments were carried out between skeleton images and grayscale images, and results show that: when defects of non-silicon MEMS part are the same, HU moment invariants of skeleton images are more sensitive than that of grayscale images, and detection accuracy is higher. Therefore, this method can more accurately determine whether non-silicon MEMS parts qualified or not, and can be applied to nonsilicon MEMS part detection system.

  8. In Defense of Competition during Syntactic Ambiguity Resolution

    ERIC Educational Resources Information Center

    Vosse, Theo; Kempen, Gerard

    2009-01-01

    In a recent series of publications (Traxler et al. J Mem Lang 39:558-592, 1998; Van Gompel et al. J Mem Lang 52:284-307, 2005; see also Van Gompel et al. (In: Kennedy, et al.(eds) Reading as a perceptual process, Oxford, Elsevier pp 621-648, 2000); Van Gompel et al. J Mem Lang 45:225-258, 2001) eye tracking data are reported showing that globally…

  9. Survivability Using Controlled Security Services

    DTIC Science & Technology

    2005-06-01

    California, Irvine. ear complexities of either (or both) group public key size or signature size with respect to the number of group mem - bers. These...troduced leak-freedom and immediate-revocation. Correctness: any signature produced by any group mem - ber using Sign must be accepted by Verify...can only convince one or more appointed verifiers of its mem - bership, while no other party can verify membership even if the signer cooperates fully

  10. Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments

    NASA Astrophysics Data System (ADS)

    Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.

    2011-06-01

    The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).

  11. Ball driven type MEMS SAD for artillery fuse

    NASA Astrophysics Data System (ADS)

    Seok, Jin Oh; Jeong, Ji-hun; Eom, Junseong; Lee, Seung S.; Lee, Chun Jae; Ryu, Sung Moon; Oh, Jong Soo

    2017-01-01

    The SAD (safety and arming device) is an indispensable fuse component that ensures safe and reliable performance during the use of ammunition. Because the application of electronic devices for smart munitions is increasing, miniaturization of the SAD has become one of the key issues for next-generation artillery fuses. Based on MEMS technology, various types of miniaturized SADs have been proposed and fabricated. However, none of them have been reported to have been used in actual munitions due to their lack of high impact endurance and complicated explosive train arrangements. In this research, a new MEMS SAD using a ball driven mechanism, is successfully demonstrated based on a UV LIGA (lithography, electroplating and molding) process. Unlike other MEMS SADs, both high impact endurance and simple structure were achieved by using a ball driven mechanism. The simple structural design also simplified the fabrication process and increased the processing yield. The ball driven type MEMS SAD performed successfully under the desired safe and arming conditions of a spin test and showed fine agreement with the FEM simulation result, conducted prior to its fabrication. A field test was also performed with a grenade launcher to evaluate the SAD performance in the firing environment. All 30 of the grenade samples equipped with the proposed MEMS SAD operated successfully under the high-G setback condition.

  12. Effect of cryopreservation of peripheral blood mononuclear cells (PBMCs) on the variability of an antigen-specific memory B cell ELISpot.

    PubMed

    Trück, Johannes; Mitchell, Ruth; Thompson, Amber J; Morales-Aza, Begonia; Clutterbuck, Elizabeth A; Kelly, Dominic F; Finn, Adam; Pollard, Andrew J

    2014-01-01

    The ELISpot assay is used in vaccine studies for the quantification of antigen-specific memory B cells (B(MEM)), and can be performed using cryopreserved samples. The effects of cryopreservation on B(MEM) detection and the consistency of cultured ELISpot assays when performed by different operators or laboratories are unknown. In this study, blood was taken from healthy volunteers, and a cultured ELISpot assay was used to count B(MEM) specific for 2 routine vaccine antigens (diphtheria and tetanus toxoid). Results were assessed for intra- and inter-operator variation, and the effects of cryopreservation. Cryopreserved samples were shipped to a second laboratory in order to assess inter-laboratory variation. B(MEM) frequencies were very strongly correlated when comparing fresh and frozen samples processed by the same operator, and were also very strongly correlated when comparing 2 operators in the same laboratory. Results were slightly less consistent when samples were processed in different laboratories but correlation between the 2 measurements was still very strong. Although cell viability was reduced in some cryopreserved samples due to higher temperatures during transportation, B(MEM) could still be quantified. These results demonstrate the reproducibility of the ELISpot assay across operators and laboratories, and support the use of cryopreserved samples in future B(MEM) studies.

  13. MemFlash device: floating gate transistors as memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Riggert, C.; Ziegler, M.; Schroeder, D.; Krautschneider, W. H.; Kohlstedt, H.

    2014-10-01

    Memristive devices are promising candidates for future non-volatile memory applications and mixed-signal circuits. In the field of neuromorphic engineering these devices are especially interesting to emulate neuronal functionality. Therefore, new materials and material combinations are currently investigated, which are often not compatible with Si-technology processes. The underlying mechanisms of the device often remain unclear and are paired with low device endurance and yield. These facts define the current most challenging development tasks towards a reliable memristive device technology. In this respect, the MemFlash concept is of particular interest. A MemFlash device results from a diode configuration wiring scheme of a floating gate transistor, which enables the persistent device resistance to be varied according to the history of the charge flow through the device. In this study, we investigate the scaling conditions of the floating gate oxide thickness with respect to possible applications in the field of neuromorphic engineering. We show that MemFlash cells exhibit essential features with respect to neuromorphic applications. In particular, cells with thin floating gate oxides show a limited synaptic weight growth together with low energy dissipation. MemFlash cells present an attractive alternative for state-of-art memresitive devices. The emulation of associative learning is discussed by implementing a single MemFlash cell in an analogue circuit.

  14. Powering a leadless pacemaker using a PiezoMEMS energy harvester

    NASA Astrophysics Data System (ADS)

    Jackson, Nathan; Olszewski, Oskar; O'Murchu, Cian; Mathewson, Alan

    2017-06-01

    MEMS based vibrational energy harvesting devices have been a highly researched topic over the past decade. The application targeted in this paper focuses on a leadless pacemaker that will be implanted in the right ventricle of the heart. A leadless pacemaker requires the same functionality as a normal pacemaker, but with significantly reduced volume. The reduced volume limits the space for a battery; therefore an energy harvesting device is required. This paper compares varying the dimensions of a linear MEMS based piezoelectric energy harvester that can harvest energy from the mechanical vibrations of the heart due to shock induced vibration. Typical MEMS linear energy harvesting devices operate at high frequency (<50 Hz) with low acceleration (< 1g). The force generated from the heart acts as a series of impulses as opposed to traditional sinusoidal vibration force with high acceleration (1-4 g). Therefore the design of a MEMS harvester that is based on shock-induced vibration is necessary. PiezoMEMS energy harvesting devices consisting of a silicon substrate and mass with aluminium nitride piezoelectric material were developed and characterized using acceleration forces that mimic the heartbeat. Peak powers of up to 25μW were obtained at 1 g acceleration with a powder density of approximately 1.5 mW cm-3.

  15. Impact of radiations on the electromechanical properties of materials and on the piezoresistive and capacitive transduction mechanisms used in microsystems

    NASA Astrophysics Data System (ADS)

    Francis, Laurent A.; Gkotsis, Petros; Kilchytska, Valeriya; Tang, Xiaohui; Druart, Sylvain; Raskin, Jean-Pierre; Flandre, Denis

    2013-03-01

    The impact of different types of radiation on the electromechanical properties of materials used in microfabrication and on the capacitive and piezoresistive transduction mechanisms of MEMS is investigated. MEMS technologies could revolutionize avionics, satellite and space applications provided that the stress conditions which can compromise the reliability of microsystems in these environments are well understood. Initial tests with MEMS revealed a vulnerability of some types of devices to radiation induced dielectric charging, a physical mechanism which also affects microelectronics, however integration of novel functional materials in microfabrication and the current trend to substitute SiO2 with high-k dielectrics in ICs pose new questions regarding reliability in radiation environments. The performance of MEMS devices with moving parts could also degrade due to radiation induced changes in the mechanical properties of the materials. It is thus necessary to investigate the effects of radiation on the properties of thin films used in microfabrication and here we report on tests with γ, high energy protons and fast neutrons radiation. Prototype SOI based MEMS magnetometers which were developed in UCL are also used as test vehicles to investigate radiation effects on the reliability of magnetically actuated and capacitively coupled MEMS.

  16. Evaluation of the MEMS based portable respiratory training system with a tactile sensor for respiratory-gated radiotherapy

    NASA Astrophysics Data System (ADS)

    Moon, Sun Young; Yoon, Myonggeun; Chung, Mijoo; Chung, Weon Kuu; Kim, Dong Wook

    2017-10-01

    In respiratory-gated radiotherapy, it is important to maintain the regular respiratory cycles of patients. If patients undergo respiration training, their regular breathing pattern is affected. Therefore, we developed a respiratory training system based on a micro electromechanical system (MEMS) and evaluated the feasibility of the MEMS in radiotherapy. By comparing the measured signal before and after radiation exposure, we confirmed the effects of radiation. By evaluating the period of the electric signal emitted by a tactile sensor and its constancy, the performance of the tactile sensor was confirmed. Moreover, by comparing the delay between the motion of the MEMS and the electric signal from the tactile sensor, we confirmed the reaction time of the tactile sensor. The results showed that a baseline shift occurred for an accumulated dose of 400 Gy in the sensor, and both the amplitude and period changed. The period of the signal released by the tactile sensor was 5.39 and its standard deviation was 0.06. Considering the errors from the motion phantom, a standard deviation of 0.06 was desirable. The delay time was within 0.5 s and not distinguishable by a patient. We confirmed the performance of the MEMS and concluded that MEMS could be applied to patients for respiratory-gated radiotherapy.

  17. Effects of transfer of embryos independently cultured in essential and sequential culture media on pregnancy rates in assisted reproduction cycles.

    PubMed

    Geber, Selmo; Bossi, Renata; Guimarães, Fernando; Valle, Marcello; Sampaio, Marcos

    2012-10-01

    Several culture media are available to be used in ART. However it is uncertain whether embryos would preferably benefit from one type of medium or the association of different media. We performed this study to evaluate the impact of simultaneous transfer of embryos independently cultured in two distinct culture media, on pregnancy outcome. A total of 722 couples who underwent infertility treatment were sequentially allocated into three groups: those who had half of the embryos individually cultured in MEM and the other half cultured in sequential media (MEM + Seq Group) (n = 243); those who had all embryos cultured only in sequential medium (Seq Group) (n = 239); and those who had all embryos cultured only in MEM (MEM Group) (n = 240). The pregnancy rate was higher in the MEM + Seq group (51.8 %) than the Seq group (36.7 %) (p < 0.001). However the pregnancy rate observed in the MEM group was similar to the others (44.2 %). When a logistic regression test was applied it demonstrated that the number of transferred embryos did not interfere in the pregnancy rates. Our results suggests that offering different culture conditions for sibling embryos with subsequent transfer of embryos that were kept in distinct culture media, might increase pregnancy rates in assisted reproduction cycles.

  18. High-resolution observations of small-scale gravity waves and turbulence features in the OH airglow layer

    NASA Astrophysics Data System (ADS)

    Sedlak, René; Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-12-01

    A new version of the Fast Airglow Imager (FAIM) for the detection of atmospheric waves in the OH airglow layer has been set up at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) at Oberpfaffenhofen (48.09° N, 11.28° E), Germany. The spatial resolution of the instrument is 17 m pixel-1 in zenith direction with a field of view (FOV) of 11.1 km × 9.0 km at the OH layer height of ca. 87 km. Since November 2015, the system has been in operation in two different setups (zenith angles 46 and 0°) with a temporal resolution of 2.5 to 2.8 s. In a first case study we present observations of two small wave-like features that might be attributed to gravity wave instabilities. In order to spectrally analyse harmonic structures even on small spatial scales down to 550 m horizontal wavelength, we made use of the maximum entropy method (MEM) since this method exhibits an excellent wavelength resolution. MEM further allows analysing relatively short data series, which considerably helps to reduce problems such as stationarity of the underlying data series from a statistical point of view. We present an observation of the subsequent decay of well-organized wave fronts into eddies, which we tentatively interpret in terms of an indication for the onset of turbulence. Another remarkable event which demonstrates the technical capabilities of the instrument was observed during the night of 4-5 April 2016. It reveals the disintegration of a rather homogenous brightness variation into several filaments moving in different directions and with different speeds. It resembles the formation of a vortex with a horizontal axis of rotation likely related to a vertical wind shear. This case shows a notable similarity to what is expected from theoretical modelling of Kelvin-Helmholtz instabilities (KHIs). The comparatively high spatial resolution of the presented new version of the FAIM provides new insights into the structure of atmospheric wave instability and turbulent processes. Infrared imaging of wave dynamics on the sub-kilometre scale in the airglow layer supports the findings of theoretical simulations and modellings.

  19. Restoring the spatial resolution of refocus images on 4D light field

    NASA Astrophysics Data System (ADS)

    Lim, JaeGuyn; Park, ByungKwan; Kang, JooYoung; Lee, SeongDeok

    2010-01-01

    This paper presents the method for generating a refocus image with restored spatial resolution on a plenoptic camera, which functions controlling the depth of field after capturing one image unlike a traditional camera. It is generally known that the camera captures 4D light field (angular and spatial information of light) within a limited 2D sensor and results in reducing 2D spatial resolution due to inevitable 2D angular data. That's the reason why a refocus image is composed of a low spatial resolution compared with 2D sensor. However, it has recently been known that angular data contain sub-pixel spatial information such that the spatial resolution of 4D light field can be increased. We exploit the fact for improving the spatial resolution of a refocus image. We have experimentally scrutinized that the spatial information is different according to the depth of objects from a camera. So, from the selection of refocused regions (corresponding depth), we use corresponding pre-estimated sub-pixel spatial information for reconstructing spatial resolution of the regions. Meanwhile other regions maintain out-of-focus. Our experimental results show the effect of this proposed method compared to existing method.

  20. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical information processing with transformation of the spatial coherence of light

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Markilov, A. A.; Rodin, V. G.; Starikov, S. N.

    1995-10-01

    A description is given of systems with spatially incoherent illumination, intended for spectral and correlation analysis, and for the recording of Fourier holograms. These systems make use of transformation of the degree of the spatial coherence of light. The results are given of the processing of images and signals, including those transmitted by a bundle of fibre-optic waveguides both as monochromatic light and as quasimonochromatic radiation from a cathode-ray tube. The feasibility of spatial frequency filtering and of correlation analysis of images with a bipolar impulse response is considered for systems with spatially incoherent illumination where these tasks are performed by double transformation of the spatial coherence of light. A description is given of experimental systems and the results of image processing are reported.

  1. MEMS/MOEMS foundry services at INO

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Ilias, Samir; Williamson, Fraser; Généreux, Francis; Le Noc, Loïc; Poirier, Michel; Proulx, Christian; Tremblay, Bruno; Provençal, Francis; Desroches, Yan; Caron, Jean-Sol; Larouche, Carl; Beaupré, Patrick; Fortin, Benoit; Topart, Patrice; Picard, Francis; Alain, Christine; Pope, Timothy; Jerominek, Hubert

    2010-06-01

    In the MEMS manufacturing world, the "fabless" model is getting increasing importance in recent years as a way for MEMS manufactures and startups to minimize equipment costs and initial capital investment. In order for this model to be successful, the fabless company needs to work closely with a MEMS foundry service provider. Due to the lack of standardization in MEMS processes, as opposed to CMOS microfabrication, the experience in MEMS development processes and the flexibility of the MEMS foundry are of vital importance. A multidisciplinary team together with a complete microfabrication toolset allows INO to offer unique MEMS foundry services to fabless companies looking for low to mid-volume production. Companies that benefit from their own microfabrication facilities can also be interested in INO's assistance in conducting their research and development work during periods where production runs keep their whole staff busy. Services include design, prototyping, fabrication, packaging, and testing of various MEMS and MOEMS devices on wafers fully compatible with CMOS integration. Wafer diameters ranging typically from 1 inch to 6 inches can be accepted while 8-inch wafers can be processed in some instances. Standard microfabrication techniques such as metal, dielectric, and semiconductor film deposition and etching as well as photolithographic pattern transfer are available. A stepper permits reduction of the critical dimension to around 0.4 μm. Metals deposited by vacuum deposition methods include Au, Ag, Al, Al alloys, Ti, Cr, Cu, Mo, MoCr, Ni, Pt, and V with thickness varying from 5 nm to 2 μm. Electroplating of several materials including Ni, Au and In is also available. In addition, INO has developed and built a gold black deposition facility to answer customer's needs for broadband microbolometric detectors. The gold black deposited presents specular reflectance of less than 10% in the wavelength range from 0.2 μm to 100 μm with thickness ranging from 20 to 35 μm and a density of 0.3% the bulk density of gold. Two Balzers thin-film deposition instruments (BAP-800 and BAK-760) permit INO to offer optical thin film manufacturing. Recent work in this field includes the design and development of a custom filter for the James Webb Space Telescope (JWST) as collaboration with the Canadian company ComDEV. An overview of the different microfabrication foundry services offered by INO will be presented together with the most recent achievements in the field of MEMS/MOEMS.

  2. Multilayered microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  3. [Development of a portable mid-infrared rapid analyzer for oil concentration in water based on MEMS linear sensor array].

    PubMed

    Gao, Zhi-fan; Zeng, Li-bo; Shi, Lei; Li, Kai; Yang, Yuan-zhou; Wu, Qiong-shui

    2014-06-01

    Aiming at the existing problems such as weak environmental adaptability, low analytic efficiency and poor measuring repeatability in the traditional spectral oil analyzers, the present paper designed a portable mid-infrared rapid analyzer for oil concentration in water. To reduce the volume of the instrument, the non-symmetrical folding M-type Czerny-Turner optical structure was adopted in the core optical path. With a periodically rotating chopper, controlled by digital PID algorithm, applied for infrared light modulation, the modulating accuracy reached ±0.5%. Different from traditional grating-scanning spectrophotometers, this instrument used a fixed grating for light dispersion and avoided rotating error in the course of the measuring procedures. A new-type MEMS infrared linear sensor array was applied for modulated spectral signals detection, which improved the measuring efficiency remarkably. Optical simulation and experimental results indicate that the spectral range is 2 800 - 3 200 cm(-1), the spectral resolution is 6 cm(-1) (@3 130 cm(-1)), and the signal to noise ratio is up to 5 200 : 1. The acquisition time is 13 milliseconds per spectrogram, and the standard deviation of absorbance is less than 3 x 10(-3). These performances meet the standards of oil concentration measurements perfectly. Compared with traditional infrared spectral analyzers for oil concentration, the instrument demonstrated in this paper has many advantages such as smaller size, more efficiency, higher precision, and stronger vibration & moisture isolation. In addition, the proposed instrument is especially suitable for the environmental monitoring departments to implement real-time measurements in the field for oil concentration in water, hence it has broad prospects of application in the field of water quality monitoring.

  4. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    PubMed

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects.

  5. Longitudinal spatial coherence gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination

    NASA Astrophysics Data System (ADS)

    Mehta, Dalip Singh; Ahmad, Azeem; Dubey, Vishesh; Singh, Veena; Butola, Ankit; Mohanty, Tonmoy; Nandi, Sreyankar

    2018-02-01

    We report longitudinal spatial coherence (LSC) gated high-resolution tomography and quantitative phase microscopy of biological cells and tissues with uniform illumination using laser as a light source. To accomplish this a pseudo thermal light source was synthesized by passing laser beams through an optical system, which is basically a speckle reduction system with combined effect of spatial, temporal, angular and polarisation diversity. The longitudinal spatial coherence length of such light was significantly reduced by synthesizing a pseudo thermal source with the combined effect of spatial, angular and temporal diversity. This results in a low spatially coherent (i.e., broad angular frequency spectrum) light source with narrow temporal frequency spectrum. Light from such a pseudo thermal light source was passed through an interference microscope with varying magnification, such as, 10X and 50X. The interference microscope was used for full-field OCT imaging of multilayer objects and topography of industrial objects. Experimental results of optical sectioning of multilayer biological objects with high axial-resolution less than 10μm was achieved which is comparable to broadband white light source. The synthesized light source with reduced speckles having uniform illumination on the sample, which can be very useful for fluorescence microscopy as well as quantitative phase microscopy with less phase noise. The present system does not require any dispersion compensation optical system for biological samples as a highly monochromatic light source is used.

  6. BioMEMS –Advancing the Frontiers of Medicine

    PubMed Central

    James, Teena; Mannoor, Manu Sebastian; Ivanov, Dentcho V.

    2008-01-01

    Biological and medical application of micro-electro-mechanical-systems (MEMS) is currently seen as an area of high potential impact. Integration of biology and microtechnology has resulted in the development of a number of platforms for improving biomedical and pharmaceutical technologies. This review provides a general overview of the applications and the opportunities presented by MEMS in medicine by classifying these platforms according to their applications in the medical field. PMID:27873858

  7. The MEM of spectral analysis applied to L.O.D.

    NASA Astrophysics Data System (ADS)

    Fernandez, L. I.; Arias, E. F.

    The maximum entropy method (MEM) has been widely applied for polar motion studies taking advantage of its performance on the management of complex time series. The authors used the algorithm of the MEM to estimate Cross Spectral function in order to compare interannual Length-of-Day (LOD) time series with Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) series, which are close related to El Niño-Southern Oscillation (ENSO) events.

  8. Method and system for automated on-chip material and structural certification of MEMS devices

    DOEpatents

    Sinclair, Michael B.; DeBoer, Maarten P.; Smith, Norman F.; Jensen, Brian D.; Miller, Samuel L.

    2003-05-20

    A new approach toward MEMS quality control and materials characterization is provided by a combined test structure measurement and mechanical response modeling approach. Simple test structures are cofabricated with the MEMS devices being produced. These test structures are designed to isolate certain types of physical response, so that measurement of their behavior under applied stress can be easily interpreted as quality control and material properties information.

  9. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    DTIC Science & Technology

    1998-10-01

    transferred to a nitrocellulose mem - brane. The transferred proteins were subjected to a denaturation/rena- turation process and hybridized to the 32P...aromatase expression in adipose tissue has been recently observed to be regulated by mem - bers of the interleukin-6 (IL-6) cytokine family. Based on...shown in human adipose stromal cells that the stimulatory effects of serum on aromatase expression can be mimicked by mem - bers of the interleukin-6

  10. Application of the Moment Method in the Slip and Transition Regime for Microfluidic Flows

    DTIC Science & Technology

    2011-01-01

    systems ( MEMS ), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic understanding of the nature of flow and heat ...Couette Flow Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To understand the damping mechanisms...transfer in these devices is considered essential for efficient design and control of MEMS . Engineering applications for gas microflows include

  11. Dual Mode Thin Film Bulk Acoustic Resonators (FBARs) Based on AlN, ZnO and GaN Films with Tilted c-Axis Orientation

    DTIC Science & Technology

    2010-01-01

    TERMS MEMS , acoustic wave devices, acoustic wave sensors Qing-Ming Wang University of Pittsburgh 123 University Place University Club Pittsburgh, PA...resonators,” Proc. SPIE Vol. 6223, 62230I, Micro ( MEMS ) and Nanotechnologies for Space Applications; Thomas George, Zhong-Yang Cheng; Eds. (May...microelectromechanical resonators has been recognized as a technological challenge in the current microelectronics and MEMS development. The

  12. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei

    2017-07-01

    In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.

  13. Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology

    PubMed Central

    Droogendijk, H.; Brookhuis, R. A.; de Boer, M. J.; Sanders, R. G. P.; Krijnen, G. J. M.

    2014-01-01

    Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed. PMID:25100317

  14. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  15. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  16. Micro-electro-mechanical systems (MEMS) and agile lensing-based modules for communications, sensing and signal processing

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer

    This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.

  17. An international review of laser Doppler vibrometry: Making light work of vibration measurement

    NASA Astrophysics Data System (ADS)

    Rothberg, S. J.; Allen, M. S.; Castellini, P.; Di Maio, D.; Dirckx, J. J. J.; Ewins, D. J.; Halkon, B. J.; Muyshondt, P.; Paone, N.; Ryan, T.; Steger, H.; Tomasini, E. P.; Vanlanduit, S.; Vignola, J. F.

    2017-12-01

    In 1964, just a few years after the invention of the laser, a fluid velocity measurement based on the frequency shift of scattered light was made and the laser Doppler technique was born. This comprehensive review paper charts advances in the development and applications of laser Doppler vibrometry (LDV) since those first pioneering experiments. Consideration is first given to the challenges that continue to be posed by laser speckle. Scanning LDV is introduced and its significant influence in the field of experimental modal analysis described. Applications in structural health monitoring and MEMS serve to demonstrate LDV's applicability on structures of all sizes. Rotor vibrations and hearing are explored as examples of the classic applications. Applications in acoustics recognise the versatility of LDV as demonstrated by visualisation of sound fields. The paper concludes with thoughts on future developments, using examples of new multi-component and multi-channel instruments.

  18. KAPAO first light: the design, construction and operation of a low-cost natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Badham, Katherine E.; Bolger, Dalton; Contreras, Daniel S.; Gilbreth, Blaine N.; Guerrero, Christian; Littleton, Erik; Long, Joseph; McGonigle, Lorcan P.; Morrison, William A.; Ortega, Fernando; Rudy, Alex R.; Wong, Jonathan R.; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2014-07-01

    We present the instrument design and first light observations of KAPAO, a natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. The KAPAO system has dual science channels with visible and near-infrared cameras, a Shack-Hartmann wavefront sensor, and a commercially available 140-actuator MEMS deformable mirror. The pupil relays are two pairs of custom off-axis parabolas and the control system is based on a version of the Robo-AO control software. The AO system and telescope are remotely operable, and KAPAO is designed to share the Cassegrain focus with the existing TMO polarimeter. We discuss the extensive integration of undergraduate students in the program including the multiple senior theses/capstones and summer assistantships amongst our partner institutions. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, James J.

    A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention,more » a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.« less

  20. Additive direct-write microfabrication for MEMS: A review

    NASA Astrophysics Data System (ADS)

    Teh, Kwok Siong

    2017-12-01

    Direct-write additive manufacturing refers to a rich and growing repertoire of well-established fabrication techniques that builds solid objects directly from computer- generated solid models without elaborate intermediate fabrication steps. At the macroscale, direct-write techniques such as stereolithography, selective laser sintering, fused deposition modeling ink-jet printing, and laminated object manufacturing have significantly reduced concept-to-product lead time, enabled complex geometries, and importantly, has led to the renaissance in fabrication known as the maker movement. The technological premises of all direct-write additive manufacturing are identical—converting computer generated three-dimensional models into layers of two-dimensional planes or slices, which are then reconstructed sequentially into threedimensional solid objects in a layer-by-layer format. The key differences between the various additive manufacturing techniques are the means of creating the finished layers and the ancillary processes that accompany them. While still at its infancy, direct-write additive manufacturing techniques at the microscale have the potential to significantly lower the barrier-of-entry—in terms of cost, time and training—for the prototyping and fabrication of MEMS parts that have larger dimensions, high aspect ratios, and complex shapes. In recent years, significant advancements in materials chemistry, laser technology, heat and fluid modeling, and control systems have enabled additive manufacturing to achieve higher resolutions at the micrometer and nanometer length scales to be a viable technology for MEMS fabrication. Compared to traditional MEMS processes that rely heavily on expensive equipment and time-consuming steps, direct-write additive manufacturing techniques allow for rapid design-to-prototype realization by limiting or circumventing the need for cleanrooms, photolithography and extensive training. With current direct-write additive manufacturing technologies, it is possible to fabricate unsophisticated micrometer scale structures at adequate resolutions and precisions using materials that range from polymers, metals, ceramics, to composites. In both academia and industry, direct-write additive manufacturing offers extraordinary promises to revolutionize research and development in microfabrication and MEMS technologies. Importantly, direct-write additive manufacturing could appreciably augment current MEMS fabrication technologies, enable faster design-to-product cycle, empower new paradigms in MEMS designs, and critically, encourage wider participation in MEMS research at institutions or for individuals with limited or no access to cleanroom facilities. This article aims to provide a limited review of the current landscape of direct-write additive manufacturing techniques that are potentially applicable for MEMS microfabrication.

  1. Cost-minimization analysis of imipenem/cilastatin versus meropenem in moderate to severe infections at a tertiary care hospital in Saudi Arabia.

    PubMed

    Joosub, Imraan; Gray, Andy; Crisostomo, Analyn; Salam, Abdul

    2015-11-01

    The aim of this study was to compare the costs of management of moderate to severe infections in patients treated with imipenem/cilastatin (IC) and meropenem (MEM). Pharmacoeconomic studies in Saudi Arabia are scarce. The current hospital formulary contains 2 carbapenems: IC and MEM. These antibiotics share a similar spectrum of activity. There are conflicting reviews with regard to the relative cost-effectiveness of these two agents. A retrospective, single-centre cohort study of 88 patients of IC versus MEM in moderate to severe infections was performed, applying cost-minimization analysis (CMA) methods. In accordance with CMA methods, the assumption of equivalent efficacy was first demonstrated by literature retrieved and appraised. Adult patients (⩾18 years old) diagnosed with moderate to severe infections, including skin and skin structure infections (SSIs), sepsis, intra-abdominal infections (IAIs), respiratory tract infections, urinary tract infections (UTIs) and hospital-acquired infections (HAIs), who were prescribed IC 500 mg every six hours intravenously (2 g per day) or MEM 1 g every eight hours (3 g per day), were included in the study. Only direct costs related to the management of the infections were included, in accordance with a payer perspective. Overall there was no difference in the mean total daily costs between IC (SAR 4784.46, 95% CI 4140.68, 5428.24) and MEM (4390.14, 95% CI 3785.82, 4994.45; p = 0.37). A significantly lower medicine acquisition cost per vial of IC was observed when compared to MEM, however there was a significantly higher cost attached to administration sets used in the IC group than the MEM group. Consultation, nursing and physician costs were not significantly different between the groups. No differences were observed in costs associated with adverse drug events (ADEs). This study has shown that while acquisition costs of IC at a dose of 500 mg q6 h may be lower than for MEM 1 g q8 h, mean total costs per day were not significantly different between IC and MEM, indicating that medicine costs are only a small element of the overall costs of managing moderate to severe infections.

  2. Speckle metrology in the nanoworld, as it is perceived today, and how it may affect industry

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    2010-09-01

    My memory goes back to my early collage studies that were almost entirely on the scale of "macroworld", as we practiced/perceived it some four decades ago. Since that time things have changed a lot constantly decreasing the scales of interest, at times at rather rapid pace, with monumental advances leading to the scales we work with today and plan for tomorrow. During that change/transition there were "meso" and "micro" developments characterized by changes in scales/sizes of things of interest. Today's scale of interest is "nano" and we are already not only working with "picotechnology", but are even reaching beyond while constantly "planning and projecting" the scales/worlds of the future. Advancement of any technology, especially new emerging ones as we witness/experience them today, is facilitated by the use of all available solution strategies. One of the emerging strategies that affect almost anything currently being developed and/or used, in the today's nanoworld, is based on recent advances of microelectromechanical systems (MEMS). Today MEMS affect almost everything we do from household appliances, via cars we drive and planes that whisk us from continent to continent, to spaceships used for search of/and exploration of other worlds. The modern microsensors are also used to explore for and produce petroleum products that are used in multitude of today's applications. To facilitate these advances a great majority of MEMS is used in the form of sensors. However development of MEMS in general and sensors in particular poses one of the greatest challenges in today's experimental mechanics. Among MEMS, the greatest contemporary interest is in the area of inertial sensors because they have numerous uses ranging from everyday applications to highly specialized ones, including many industrial platforms. As such they have tremendous potential to affect future of humanity. However, advances in MEMS, such as pressure and temperature sensors as well as gyroscopes and accelerometers, require the use of computational modeling and simulation coupled/combined with physical measurements. This author believes that successful combination of computer aided design (CAD) and multiphysics as well as multiscale simulation tools with the state-of-the-art (SOTA) measurement methodology will contribute to reduction of high prototyping costs, long product development cycles, and time-tomarket pressures while developing new sensors with nanoscale characteristics for various applications we use now and those that we will need in the future. In our approach we combine/hybridize a unique, fully integrated, software environment for multiscale, multiphysics, high fidelity analysis of the contemporary sensors with the SOTA optoelectronic laser interferometric microscope (OELIM) methodology, which is based on recent developments in speckle. The speckle-based OELIM methodology allows remote, noninvasive, full-field-of-view (FFV) measurements of deformations with high spatial resolution, nanometer accuracy, and in near real-time. In this paper, both, the software environment and the OELIM methodology are described and their applications are illustrated with representative examples demonstrating viability of the completely autonomous computer-based procedures for the development of contemporary sensors with nanocharacteristics suitable for the advancement of new evolving technologies that will shape our future. This process is demonstrated using devices of contemporary interest. The preliminary examples demonstrate capability of our approach to quantitatively determine effects of static and dynamic loads on the performance of sensors. In addition, potential economic rewards of the technology, projected into near future, will also be discussed.

  3. Pairwise graphical models for structural health monitoring with dense sensor arrays

    NASA Astrophysics Data System (ADS)

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  4. Partial characterization of normal and Haemophilus influenzae-infected mucosal complementary DNA libraries in chinchilla middle ear mucosa.

    PubMed

    Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D

    2010-04-01

    We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.

  5. Partial Characterization of Normal and Haemophilus influenzae–Infected Mucosal Complementary DNA Libraries in Chinchilla Middle Ear Mucosa

    PubMed Central

    Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.

    2010-01-01

    Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028

  6. UAV-borne lidar with MEMS mirror-based scanning capability

    NASA Astrophysics Data System (ADS)

    Kasturi, Abhishek; Milanovic, Veljko; Atwood, Bryan H.; Yang, James

    2016-05-01

    Firstly, we demonstrated a wirelessly controlled MEMS scan module with imaging and laser tracking capability which can be mounted and flown on a small UAV quadcopter. The MEMS scan module was reduced down to a small volume of <90mm x 60mm x 40mm, weighing less than 40g and consuming less than 750mW of power using a ~5mW laser. This MEMS scan module was controlled by a smartphone via Bluetooth while flying on a drone, and could project vector content, text, and perform laser based tracking. Also, a "point-and-range" LiDAR module was developed for UAV applications based on low SWaP (Size, Weight and Power) gimbal-less MEMS mirror beam-steering technology and off-the-shelf OEM LRF modules. For demonstration purposes of an integrated laser range finder module, we used a simple off-the-shelf OEM laser range finder (LRF) with a 100m range, +/-1.5mm accuracy, and 4Hz ranging capability. The LRFs receiver optics were modified to accept 20° of angle, matching the transmitter's FoR. A relatively large (5.0mm) diameter MEMS mirror with +/-10° optical scanning angle was utilized in the demonstration to maintain the small beam divergence of the module. The complete LiDAR prototype can fit into a small volume of <70mm x 60mm x 60mm, and weigh <50g when powered by the UAV's battery. The MEMS mirror based LiDAR system allows for ondemand ranging of points or areas within the FoR without altering the UAV's position. Increasing the LRF ranging frequency and stabilizing the pointing of the laser beam by utilizing the onboard inertial sensors and the camera are additional goals of the next design.

  7. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  8. On the feasibility to integrate low-cost MEMS accelerometers and GNSS receivers

    NASA Astrophysics Data System (ADS)

    Benedetti, Elisa; Dermanis, Athanasios; Crespi, Mattia

    2017-06-01

    The aim of this research was to investigate the feasibility of merging the benefits offered by low-cost GNSS and MEMS accelerometers technology, in order to promote the diffusion of low-cost monitoring solutions. A merging approach was set up at the level of the combination of kinematic results (velocities and displacements) coming from the two kinds of sensors, whose observations were separately processed, following to the so called loose integration, which sounds much more simple and flexible thinking about the possibility of an easy change of the combined sensors. At first, the issues related to the difference in reference systems, time systems and measurement rate and epochs for the two sensors were faced with. An approach was designed and tested to transform into unique reference and time systems the outcomes from GPS and MEMS and to interpolate the usually (much) more dense MEMS observation to common (GPS) epochs. The proposed approach was limited to time-independent (constant) orientation of the MEMS reference system with respect to the GPS one. Then, a data fusion approach based on the use of Discrete Fourier Transform and cubic splines interpolation was proposed both for velocities and displacements: MEMS and GPS derived solutions are firstly separated by a rectangular filter in spectral domain, and secondly back-transformed and combined through a cubic spline interpolation. Accuracies around 5 mm for slow and fast displacements and better than 2 mm/s for velocities were assessed. The obtained solution paves the way to a powerful and appealing use of low-cost single frequency GNSS receivers and MEMS accelerometers for structural and ground monitoring applications. Some additional remarks and prospects for future investigations complete the paper.

  9. Compliance assessed by the Medication Event Monitoring System.

    PubMed Central

    Olivieri, N F; Matsui, D; Hermann, C; Koren, G

    1991-01-01

    The accurate assessment of patient compliance is especially crucial in evaluating the efficacy of a new treatment. Because of the problems associated with parenteral desferrioxamine, the development of a safe, effective, and convenient iron chelator is of high priority. The high morbidity and mortality associated with iron overload requires careful evaluation of the ability of any new agent to promote long term effective iron chelation. Patients' compliance with an orally available chelating agent, 1,2,-dimethyl-3-hydroxypyrid-4-one (L1), that has been demonstrated to induce in vivo iron excretion equivalent to that of desferrioxamine during supervised short term administration, was examined. Compliance was assessed in seven patients by patient interview, by daily diaries reviewed monthly with each patient, and with the use of the Medication Event Monitoring System (MEMS) standard pill bottles with microprocessors in the cap that record the timing and frequency of bottle openings. L1 was dispensed in MEMS containers to the patients, who, unaware of their significance, recorded compliance using a daily diary. Overall compliance rate (% of prescribed doses taken) measured by MEMS was 88.7 +/- 6.8%. When 'doubling of doses' was accounted for, significantly poorer compliance with L1 was noted by MEMS (91.7 +/- 7.4%) than by patients' diaries (95.7 +/- 5.2%). There was no significant difference in patient compliance recorded between the first and last 30 day period of drug administration. MEMS can eliminate the confounding variable of erratic patient compliance in the evaluation of a new drug's efficacy. As MEMS cannot distinguish a missed dose from one doubled at the next bottle opening, the use of patient diaries is a useful adjunct to the accurate assessment of compliance and should be combined with the use of MEMS. PMID:1776885

  10. Ultra-Low-Power MEMS Selective Gas Sensors

    NASA Technical Reports Server (NTRS)

    Stetter, Joseph

    2012-01-01

    This innovation is a system for gas sensing that includes an ultra-low-power MEMS (microelectromechanical system) gas sensor, combined with unique electronic circuitry and a proprietary algorithm for operating the sensor. The electronics were created from scratch, and represent a novel design capable of low-power operation of the proprietary MEMS gas sensor platform. The algorithm is used to identify a specific target gas in a gas mixture, making the sensor selective to that target gas.

  11. JPRS Report, East Europe

    DTIC Science & Technology

    1988-02-24

    after that, it was Defense Minister Sokolov and 2 weeks later Lev Saikov, a mem - ber of the Politburo and a central committee secretary, visited...POL1TICHESKOYE OBRAZOVAN1YE in Russian No 12 Dec 87 signed to press 16 Nov 87 pp 114-120 [Article by MSZMP Central Committee Politburo Mem - ber and Central...work" which should above all find its expres- sion in: —the growth of political requirements on party mem - bers; —consolidation of a creative

  12. Emergency motorcycle: has it a place in a medical emergency system?

    PubMed

    Soares-Oliveira, Miguel; Egipto, Paula; Costa, Isabel; Cunha-Ribeiro, Luis Manuel

    2007-07-01

    In an emergency medical service system, response time is an important factor in determining the prognosis of a victim. There are well-documented increases in response time in urban areas, mainly during rush hour. Because prehospital emergency care is required to be efficient and swift, alternative measures to achieve this goal should be addressed. We report our experience with a medical emergency motorcycle (MEM) and propose major criteria for dispatching it. This work presents a prospective analysis of the data relating to MEM calls from July 2004 to December 2005. The analyzed parameters were age, sex, reason for call, action, and need for subsequent transport. A comparison was made of the need to activate more means and, if so, whether the MEM was the first to arrive. There were 1972 calls. The average time of arrival at destination was 4.4 +/- 2.5 minutes. The main action consisted of administration of oxygen (n = 626), immobilization (n = 118), and control of hemorrhage (n = 101). In 63% of cases, MEM arrived before other emergency vehicles. In 355 cases (18%), there was no need for transport. The MEM can intervene in a wide variety of clinical situations and a quick response is guaranteed. Moreover, in specific situations, MEM safely and efficiently permits better management of emergency vehicles. We propose that it should be dispatched mainly in the following situations: true life-threatening cases and uncertain need for an ambulance.

  13. Novel Fabrication and Simple Hybridization of Exotic Material MEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datskos, P.G.; Rajic, S.

    1999-11-13

    Work in materials other than silicon for MEMS applications has typically been restricted to metals and metal oxides instead of more ''exotic'' semiconductors. However, group III-V and II-VI semiconductors form a very important and versatile collection of material and electronic parameters available to the MEMS and MOEMS designer. With these materials, not only are the traditional mechanical material variables (thermal conductivity, thermal expansion, Young's modulus, etc.) available, but also chemical constituents can be varied in ternary and quaternary materials. This flexibility can be extremely important for both friction and chemical compatibility issues for MEMS. In addition, the ability to continuallymore » vary the bandgap energy can be particularly useful for many electronics and infrared detection applications. However, there are two major obstacles associated with alternate semiconductor material MEMS. The first issue is the actual fabrication of non-silicon devices and the second impediment is communicating with these novel devices. We will describe an essentially material independent fabrication method that is amenable to most group III-V and II-VI semiconductors. This technique uses a combination of non-traditional direct write precision fabrication processes such as diamond turning, ion milling, laser ablation, etc. This type of deterministic fabrication approach lends itself to an almost trivial assembly process. We will also describe in detail the mechanical, electrical, and optical self-aligning hybridization technique used for these alternate-material MEMS.« less

  14. A Compact and Low-Cost MEMS Loudspeaker for Digital Hearing Aids.

    PubMed

    Sang-Soo Je; Rivas, F; Diaz, R E; Jiuk Kwon; Jeonghwan Kim; Bakkaloglu, B; Kiaei, S; Junseok Chae

    2009-10-01

    A microelectromechanical-systems (MEMS)-based electromagnetically actuated loudspeaker to reduce form factor, cost, and power consumption, and increase energy efficiency in hearing-aid applications is presented. The MEMS loudspeaker has multilayer copper coils, an NiFe soft magnet on a thin polyimide diaphragm, and an NdFeB permanent magnet on the perimeter. The coil impedance is measured at 1.5 Omega, and the resonant frequency of the diaphragm is located far from the audio frequency range. The device is driven by a power-scalable, 0.25-mum complementary metal-oxide semiconductor class-D SigmaDelta amplifier stage. The class-D amplifier is formed by a differential H-bridge driven by a single bit, pulse-density-modulated SigmaDelta bitstream at a 1.2-MHz clock rate. The fabricated MEMS loudspeaker generates more than 0.8-mum displacement, equivalent to 106-dB sound pressure level (SPL), with 0.13-mW power consumption. Driven by the SigmaDelta class-D amplifier, the MEMS loudspeaker achieves measured 65-dB total harmonic distortion (THD) with a measurement uncertainty of less than 10%. Energy-efficient and cost-effective advanced hearing aids would benefit from further miniaturization via MEMS technology. The results from this study appear very promising for developing a compact, mass-producible, low-power loudspeaker with sufficient sound generation for hearing-aid applications.

  15. Application of the thermoelectric MEMS microwave power sensor in a power radiation monitoring system

    NASA Astrophysics Data System (ADS)

    Bo, Gao; Jing, Yang; Si, Jiang; Debo, Wang

    2016-08-01

    A power radiation monitoring system based on thermoelectric MEMS microwave power sensors is studied. This monitoring system consists of three modules: a data acquisition module, a data processing and display module, and a data sharing module. It can detect the power radiation in the environment and the date information can be processed and shared. The measured results show that the thermoelectric MEMS microwave power sensor and the power radiation monitoring system both have a relatively good linearity. The sensitivity of the thermoelectric MEMS microwave power sensor is about 0.101 mV/mW, and the sensitivity of the monitoring system is about 0.038 V/mW. The voltage gain of the monitoring system is about 380 times, which is relatively consistent with the theoretical value. In addition, the low-frequency and low-power module in the monitoring system is adopted in order to reduce the electromagnetic pollution and the power consumption, and this work will extend the application of the thermoelectric MEMS microwave power sensor in more areas. Project supported by the National Natural Science Foundation of China (No. 11304158), the Province Natural Science Foundation of Jiangsu (No. BK20140890), the Open Research Fund of the Key Laboratory of MEMS of Ministry of Education, Southeast University (No. 3206005302), and the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Nos. NY213024, NY215139).

  16. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences

    PubMed Central

    Rudd, Michael E.

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4. PMID:25202253

  17. A cortical edge-integration model of object-based lightness computation that explains effects of spatial context and individual differences.

    PubMed

    Rudd, Michael E

    2014-01-01

    Previous work has demonstrated that perceived surface reflectance (lightness) can be modeled in simple contexts in a quantitatively exact way by assuming that the visual system first extracts information about local, directed steps in log luminance, then spatially integrates these steps along paths through the image to compute lightness (Rudd and Zemach, 2004, 2005, 2007). This method of computing lightness is called edge integration. Recent evidence (Rudd, 2013) suggests that human vision employs a default strategy to integrate luminance steps only along paths from a common background region to the targets whose lightness is computed. This implies a role for gestalt grouping in edge-based lightness computation. Rudd (2010) further showed the perceptual weights applied to edges in lightness computation can be influenced by the observer's interpretation of luminance steps as resulting from either spatial variation in surface reflectance or illumination. This implies a role for top-down factors in any edge-based model of lightness (Rudd and Zemach, 2005). Here, I show how the separate influences of grouping and attention on lightness can be modeled in tandem by a cortical mechanism that first employs top-down signals to spatially select regions of interest for lightness computation. An object-based network computation, involving neurons that code for border-ownership, then automatically sets the neural gains applied to edge signals surviving the earlier spatial selection stage. Only the borders that survive both processing stages are spatially integrated to compute lightness. The model assumptions are consistent with those of the cortical lightness model presented earlier by Rudd (2010, 2013), and with neurophysiological data indicating extraction of local edge information in V1, network computations to establish figure-ground relations and border ownership in V2, and edge integration to encode lightness and darkness signals in V4.

  18. Stress Analysis of SiC MEMS Using Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ness, Stanley J.; Marciniak, M. A.; Lott, J. A.; Starman, L. A.; Busbee, J. D.; Melzak, J. M.

    2003-03-01

    During the fabrication of Micro-Electro-Mechanical Systems (MEMS), residual stress is often induced in the thin films that are deposited to create these systems. These stresses can cause the device to fail due to buckling, curling, or fracture. Industry is looking for ways to characterize the stress during the deposition of thin films in order to reduce or eliminate device failure. Micro-Raman spectroscopy has been successfully used to characterize poly-Si MEMS devices made with the MUMPS® process. Raman spectroscopy was selected because it is nondestructive, fast and has the potential for in situ stress monitoring. This research attempts to use Raman spectroscopy to analyze the stress in SiC MEMS made with the MUSiC® process. Raman spectroscopy is performed on 1-2-micron-thick SiC thin films deposited on silicon, silicon nitride, and silicon oxide substrates. The most common poly-type of SiC found in thin film MEMS made with the MUSiC® process is 3C-SiC. Research also includes baseline spectra of 6H, 4H, and 15R poly-types of bulk SiC.

  19. PLL application research of a broadband MEMS phase detector: Theory, measurement and modeling

    NASA Astrophysics Data System (ADS)

    Han, Juzheng; Liao, Xiaoping

    2017-06-01

    This paper evaluates the capability of a broadband MEMS phase detector in the application of phase locked loops (PLLs) through the aspect of theory, measurement and modeling. For the first time, it demonstrates how broadband property and optimized structure are realized through cascaded transmission lines and ANSYS simulations. The broadband MEMS phase detector shows potential in PLL application for its dc voltage output and large power handling ability which is important for munition applications. S-parameters of the power combiner in the MEMS phase detector are measured with S11 better than -15 dB and S23 better than -10 dB over the whole X-band. Compared to our previous works, developed phase detection measurements are performed and focused on signals at larger power levels up to 1 W. Cosine tendencies are revealed between the output voltage and the phase difference for both small and large signals. Simulation approach through equivalent circuit modeling is proposed to study the PLL application of the broadband MEMS phase detector. Synchronization and tracking properties are revealed.

  20. Analysis of the surface effects on adhesion in MEMS structures

    NASA Astrophysics Data System (ADS)

    Rusu, F.; Pustan, M.; Bîrleanu, C.; Müller, R.; Voicu, R.; Baracu, A.

    2015-12-01

    One of the main failure causes in microelectromechanical systems (MEMS) is stiction. Stiction is the adhesion of contacting surfaces due to surface forces. Adhesion force depends on the operating conditions and is influenced by the contact area. In this study, the adhesion force between MEMS materials and the AFM tips is analyzed using the spectroscopy in point mode of the AFM. The aim is to predict the stiction failure mode in MEMS. The investigated MEMS materials are silicon, polysilicon, platinum, aluminum, and gold. Three types of investigations were conducted. The first one aimed to determine the variation of the adhesion force with respect to the variation of the roughness. The roughness has a strong influence on the adhesion because the contact area between components increases if the roughness decreases. The second type of investigation aimed to determine the adhesion force in multiple points of each considered sample. The values obtained experimentally for the adhesion force were also validated using the JKR and DMT models. The third type of investigation was conducted with the purpose of determining the influence of the temperature on the adhesion force.

  1. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  2. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  3. High-Bandwidth Dynamic Full-Field Profilometry for Nano-Scale Characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Huang, Yao-Ting; Chang, Pi-Bai

    2006-10-01

    The article describes an innovative optical interferometric methodology to delivery dynamic surface profilometry with a measurement bandwidth up to 10MHz or higher and a vertical resolution up to 1 nm. Previous work using stroboscopic microscopic interferometry for dynamic characterization of micro (opto)electromechanical systems (M(O)EMS) has been limited in measurement bandwidth mainly within a couple of MHz. For high resonant mode analysis, the stroboscopic light pulse is insufficiently short to capture the moving fringes from dynamic motion of the detected structure. In view of this need, a microscopic prototype based on white-light stroboscopic interferometry with an innovative light superposition strategy was developed to achieve dynamic full-field profilometry with a high measurement bandwidth up to 10MHz or higher. The system primarily consists of an optical microscope, on which a Mirau interferometric objective embedded with a piezoelectric vertical translator, a high-power LED light module with dual operation modes and light synchronizing electronics unit are integrated. A micro cantilever beam used in AFM was measured to verify the system capability in accurate characterisation of dynamic behaviours of the device. The full-field seventh-mode vibration at a vibratory frequency of 3.7MHz can be fully characterized and nano-scale vertical measurement resolution as well as tens micrometers of vertical measurement range can be performed.

  4. Wafer bonding process for building MEMS devices

    NASA Astrophysics Data System (ADS)

    Pabo, Eric F.; Meiler, Josef; Matthias, Thorsten

    2014-06-01

    The technology for the measurement of colour rendering and colour quality is not new, but many parameters related to this issue are currently changing. A number of standard methods were developed and are used by different specialty areas of the lighting industry. CIE 13.3 has been the accepted standard implemented by many users and used for many years. Light-emitting Diode (LED) technology moves at a rapid pace and, as this lighting source finds wider acceptance, it appears that traditional colour-rendering measurement methods produce inconsistent results. Practical application of various types of LEDs yielded results that challenged conventional thinking regarding colour measurement of light sources. Recent studies have shown that the anatomy and physiology of the human eye is more complex than formerly accepted. Therefore, the development of updated measurement methodology also forces a fresh look at functioning and colour perception of the human eye, especially with regard to LEDs. This paper includes a short description of the history and need for the measurement of colour rendering. Some of the traditional measurement methods are presented and inadequacies are discussed. The latest discoveries regarding the functioning of the human eye and the perception of colour, especially when LEDs are used as light sources, are discussed. The unique properties of LEDs when used in practical applications such as luminaires are highlighted.

  5. Quantitative phase imaging of biological cells using spatially low and temporally high coherent light source.

    PubMed

    Ahmad, Azeem; Dubey, Vishesh; Singh, Gyanendra; Singh, Veena; Mehta, Dalip Singh

    2016-04-01

    In this Letter, we demonstrate quantitative phase imaging of biological samples, such as human red blood cells (RBCs) and onion cells using narrow temporal frequency and wide angular frequency spectrum light source. This type of light source was synthesized by the combined effect of spatial, angular, and temporal diversity of speckle reduction technique. The importance of using low spatial and high temporal coherence light source over the broad band and narrow band light source is that it does not require any dispersion compensation mechanism for biological samples. Further, it avoids the formation of speckle or spurious fringes which arises while using narrow band light source.

  6. MEMS: A new approach to micro-optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sniegowski, J.J.

    1997-12-31

    MicroElectroMechanical Systems (MEMS) and their fabrication technologies provide great opportunities for application to micro-optical systems (MOEMS). Implementing MOEMS technology ranges from simple, passive components to complicated, active systems. Here, an overview of polysilicon surface micromachining MEMS combined with optics is presented. Recent advancements to the technology, which may enhance its appeal for micro-optics applications are emphasized. Of all the MEMS fabrication technologies, polysilicon surface micromachining technology has the greatest basis in and leverages the most the infrastructure for silicon integrated circuit fabrication. In that respect, it provides the potential for very large volume, inexpensive production of MOEMS. This paper highlightsmore » polysilicon surface micromachining technology in regards to its capability to provide both passive and active mechanical elements with quality optical elements.« less

  7. Review of Polyimides Used in the Manufacturing of Micro Systems

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.

    2007-01-01

    Since their invention, polyimides have found numerous uses in MicroElectroMechanical Systems (MEMS) technology. Polyimides can act as photoresist, sacrificial layers, structural layers, and even as a replacement for silicon as the substrate during MEMS fabrication. They enable fabrication of both low and high aspect ratio devices. Polyimides have been used to fabricate expendable molds and reusable flexible molds. Development of a variety of devices that employ polyimides for sensor applications has occurred. Micro-robotic actuator applications include hinges, thermal actuators and residual stress actuators. Currently, polyimides are being used to create new sensors and devices for aerospace applications. This paper presents a review of some of the many uses of polyimides in the development of MEMS devices, including a new polyimide based MEMS fabrication process.

  8. Microelectromechanical safe arm device

    DOEpatents

    Roesler, Alexander W [Tijeras, NM

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  9. Microelectronic device package with an integral window

    DOEpatents

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  10. KAPAO: a MEMS-based natural guide star adaptive optics system

    NASA Astrophysics Data System (ADS)

    Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed

    2013-03-01

    We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.

  11. Uncooled infrared imaging using bimaterial microcantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan

    2006-01-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparablemore » to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.« less

  12. Optical properties of micromachined polysilicon reflective surfaces with etching holes

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.

    1998-08-01

    MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.

  13. The Fundamentals of Using the Digital Micromirror Device (DMD(TM)) for Projection Display

    NASA Technical Reports Server (NTRS)

    Yoder, Lars A.

    1995-01-01

    Developed by Texas Instruments (TI) the digital micromirror device (DMD(tm)) is a quickly emerging and highly useful micro-electro-mechanical structures (MEMS) device. Using standard semiconductor fabrication technology, the DMD's simplicity in concept and design will provide advantageous solutions for many different applications. At the rudimentary level, the DMD is a precision, semiconductor light switch. In the initial commercial development of DMD technology, TI has concentrated on projection display and hardcopy. This paper will focus on how the DMD is used for projection display. Other application areas are being explored and evaluated to find appropriate and beneficial uses for the DMD.

  14. Multifuctional integrated sensors (MFISES).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and themore » real world applications of the sensors systems.« less

  15. Independent polarisation control of multiple optical traps

    PubMed Central

    Preece, Daryl; Keen, Stephen; Botvinick, Elliot; Bowman, Richard; Padgett, Miles; Leach, Jonathan

    2009-01-01

    We present a system which uses a single spatial light modulator to control the spin angular momentum of multiple optical traps. These traps may be independently controlled both in terms of spatial location and in terms of their spin angular momentum content. The system relies on a spatial light modulator used in a “split-screen” configuration to generate beams of orthogonal polarisation states which are subsequently combined at a polarising beam splitter. Defining the phase difference between the beams with the spatial light modulator enables control of the polarisation state of the light. We demonstrate the functionality of the system by controlling the rotation and orientation of birefringent vaterite crystals within holographic optical tweezers. PMID:18825226

  16. Wide-field high spatial frequency domain imaging of tissue microstructure

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.

    2018-02-01

    Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.

  17. Drivers of Macrofungi Community Structure Differ between Soil and Rotten-Wood Substrates in a Temperate Mountain Forest in China

    PubMed Central

    Chen, Yun; Svenning, Jens-Christian; Wang, Xueying; Cao, Ruofan; Yuan, Zhiliang; Ye, Yongzhong

    2018-01-01

    The effects of environmental and dispersal processes on macrofungi community assembly remain unclear. Further, it is not well understood if community assembly differs for different functional guilds of macrofungi, e.g., soil and rotten-wood macrofungi. In this study, using 2433 macrofungi sporocarps belonging to 217 species located within a forest dynamics plot in temperate mountain forest (China), we examined the explanatory power of topography, spatial eigenvectors (representing unknown spatial processes, e.g., dispersal), plant community, and light availability for local spatial variation in the macrofungi community through variance partitioning and partial least squares path modeling. We found spatial eigenvectors and light as the most important factors for explaining species richness and composition of macrofungi. Light was negatively correlated with species richness of macrofungi. Furthermore, species richness and composition of soil macrofungi were best explained by light, and species richness and composition of rotten-wood macrofungi were best explained by spatial eigenvectors. Woody plant community structure was not an important factor for species richness and composition of macrofungi. Our findings suggest that spatial processes, perhaps dispersal limitation, and light availability were the most important factors affecting macrofungi community in temperate deciduous broad-leaved forest. Major differences in influencing factors between soil and rotten-wood macrofungi were observed, with light as the major driver for soil macrofungi and unknown spatial processes as the major driver for rotten-wood macrofungi. These findings shed new light to the processes shaping community assembly in macrofungi in temperate deciduous broad-leaved forest and point to the potential importance of both intrinsic dynamics, such as dispersal, and external forcing, such as forest dynamics, via its effect on light availability. PMID:29410660

  18. Reconstruction of coded aperture images

    NASA Technical Reports Server (NTRS)

    Bielefeld, Michael J.; Yin, Lo I.

    1987-01-01

    Balanced correlation method and the Maximum Entropy Method (MEM) were implemented to reconstruct a laboratory X-ray source as imaged by a Uniformly Redundant Array (URA) system. Although the MEM method has advantages over the balanced correlation method, it is computationally time consuming because of the iterative nature of its solution. Massively Parallel Processing, with its parallel array structure is ideally suited for such computations. These preliminary results indicate that it is possible to use the MEM method in future coded-aperture experiments with the help of the MPP.

  19. Micro/nano electro mechanical systems for practical applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    2009-09-01

    Silicon MEMS as electrostatically levitated rotational gyroscope, 2D optical scanner and wafer level packaged devices as integrated capacitive pressure sensor and MEMS switch are described. MEMS which use non-silicon materials as diamond, PZT, conductive polymer, CNT (carbon nano tube), LTCC with electrical feedthrough, SiC (silicon carbide) and LiNbO3 for multi-probe data storage, multi-column electron beam lithography system, probe card for wafer-level burn-in test, mould for glass press moulding and SAW wireless passive sensor respectively are also described.

  20. Transimpedance Amplifier for MEMS SAW Oscillator in 1.4GHz

    NASA Astrophysics Data System (ADS)

    Kamarudin, N.; Karim, J.; Hussin, H.

    2018-03-01

    This work is to design a transimpedance amplifier for MEMS SAW resonator to achieve low power consumption at desired frequency. A transimpedance amplifier is designed and characterized for MEMS SAW resonator in 0.18μm CMOS process. The transimpedance amplifier achieves gain is 31 dBΩ at 176°. The power consume by oscillator is 0.6mW at VDD 1.8V while phase noise at -133.97dBc/Hz at 10kHz.

  1. Modeling Impact-induced Failure of Polysilicon MEMS: A Multi-scale Approach.

    PubMed

    Mariani, Stefano; Ghisi, Aldo; Corigliano, Alberto; Zerbini, Sarah

    2009-01-01

    Failure of packaged polysilicon micro-electro-mechanical systems (MEMS) subjected to impacts involves phenomena occurring at several length-scales. In this paper we present a multi-scale finite element approach to properly allow for: (i) the propagation of stress waves inside the package; (ii) the dynamics of the whole MEMS; (iii) the spreading of micro-cracking in the failing part(s) of the sensor. Through Monte Carlo simulations, some effects of polysilicon micro-structure on the failure mode are elucidated.

  2. The Governance of the City University of New York A System at Odds with Itself

    DTIC Science & Technology

    2000-01-01

    provided thoughtful and incisive commentary on drafts of this document. Early drafts also benefited from the reviews of task force staff mem - bers...requirements on the qualifications of mem - bers of the board. In particular, the law does not attempt to ensure that trustees have a measure of...establishing a blue-ribbon process for the appointment of the mem - bers of the Board of Trustees. Such a process would involve the cre- ation of

  3. The First Four Years: A Synopsis of the Global Effort. Department of Defense HIV/AIDS Prevention Program (DHAPP)

    DTIC Science & Technology

    2005-06-01

    prevalence esti- mates of approximately 2% in the general population. The Benin Armed Forces (BAF) is composed of approximately 7500 mem - bers, and HIV...Campaigns DHAPP funding sponsored 2 public awareness events for the BAF mem - bers who were deploying to Côte d’Ivoire. Additionally, 38 public awareness...and training programs for service mem - bers, establishing a counseling and testing (CT) program, and improved HIV surveillance and treatment. The

  4. Electrochemical Advanced Oxidation Process for Shipboard Final Purification of Filtered Black Water, Gray Water, and Bilge Water, Vol. 1

    DTIC Science & Technology

    2001-08-01

    doped SnO2 developed by Memming and M`llers (1972) is most directly applicable to our electrodes. This model ignores the effect of ions in the...electron transfer model of Memming and M`llers (1972) with the surface charging/ ion complexation model of Davis et al. (1978). The combined model...model of Memming and M`llers. The model of Davis et al. represents the diffuse double layer by an analytical expression which describes only pure

  5. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    DTIC Science & Technology

    2012-10-29

    promise for high-aspect and deep etching into fused silica. This process capability is important for a DARPA project called the Navigation-Grade...on fused silica samples that appear to allow 2 to 1 aspect ratios in fused silica with a depth of etch of around 125 microns – a dramatic result in a...very hard to etch material such as fused silica! After receiving approval from DARPA, the MEMS Exchange purchased a previously- owned Ulvac etcher

  6. Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches

    DOEpatents

    Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.

    2013-01-15

    An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.

  7. Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications.

    PubMed

    Najafi, Nader; Ludomirsky, Achiau

    2004-03-01

    This paper reports the results of the initial animal studies of a wireless, batteryless, implantable pressure sensor using microelectromechanical systems (MEMS) technology. The animal studies were acute and proved the functional feasibility of using MEMS technology for wireless bio sensing. The results are very encouraging and surpassed the majority of the application's requirements, including high sampling speed and high resolution. Based on the lessons learned, second generation wireless sensors are being developed that will provide total system solution.

  8. Uncovering the Fundamental Nature of Tribological Interfaces: High Resolution Tribology and Spectroscopy of Ultrahard Nanostructured Diamond Films for MEMS and Beyond

    DTIC Science & Technology

    2007-12-31

    Wisconsin-Madison) for 2? ol !> o "S \\ % M 31 Statement of Objectives The original objectives of the proposal were as follows: 1. Obtain high-quality...performed multiple PEEM experiments on wear tracks on carbon-based films and polysilicon micro-electro mechanical systems (MEMS) devices, a comprehensive... polysilicon MEMS device known as the "nanotractor", and studies of the structure and composition of UNCD, ta-C, and nanocrystalline diamond (NCD) films. They

  9. Pharmacodynamic Evaluation of Extending the Administration Time of Meropenem using a Monte Carlo Simulation

    PubMed Central

    Lomaestro, Ben M.; Drusano, G. L.

    2005-01-01

    A Monte Carlo simulation demonstrated that 1 g of meropenem (MEM) every 8 h (q8h) (3-h infusion) has a higher target attainment rate against Pseudomonas aeruginosa than either 500 mg of MEM q8h (3-h infusion) or 0.5 g of imipenem-cilastatin (I-C) q6h (1-h infusion). For other pathogens, 500 mg of MEM q8h was equivalent or superior to I-C. PMID:15616337

  10. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where the shutter sits are grounded. The shutters with one or both ungrounded electrodes are held open. Sub-micron bumps underneath light shields and silicon ribs on back walls are the two features to prevent stiction. These features ensure that the microshutter array functions properly in mechanical motions. The MSA technology can be used primarily in multi-object imaging and spectroscopy, photomask generation, light switches, and in the stepper equipment used to make integrated circuits and MEMS (microelectromechanical systems) devices.

  12. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.

  13. How to use mechanistic effect models in environmental risk assessment of pesticides: Case studies and recommendations from the SETAC workshop MODELINK.

    PubMed

    Hommen, Udo; Forbes, Valery; Grimm, Volker; Preuss, Thomas G; Thorbek, Pernille; Ducrot, Virginie

    2016-01-01

    Mechanistic effect models (MEMs) are useful tools for ecological risk assessment of chemicals to complement experimentation. However, currently no recommendations exist for how to use them in risk assessments. Therefore, the Society of Environmental Toxicology and Chemistry (SETAC) MODELINK workshop aimed at providing guidance for when and how to apply MEMs in regulatory risk assessments. The workshop focused on risk assessment of plant protection products under Regulation (EC) No 1107/2009 using MEMs at the organism and population levels. Realistic applications of MEMs were demonstrated in 6 case studies covering assessments for plants, invertebrates, and vertebrates in aquatic and terrestrial habitats. From the case studies and their evaluation, 12 recommendations on the future use of MEMs were formulated, addressing the issues of how to translate specific protection goals into workable questions, how to select species and scenarios to be modeled, and where and how to fit MEMs into current and future risk assessment schemes. The most important recommendations are that protection goals should be made more quantitative; the species to be modeled must be vulnerable not only regarding toxic effects but also regarding their life history and dispersal traits; the models should be as realistic as possible for a specific risk assessment question, and the level of conservatism required for a specific risk assessment should be reached by designing appropriately conservative environmental and exposure scenarios; scenarios should include different regions of the European Union (EU) and different crops; in the long run, generic MEMs covering relevant species based on representative scenarios should be developed, which will require EU-level joint initiatives of all stakeholders involved. The main conclusion from the MODELINK workshop is that the considerable effort required for making MEMs an integral part of environmental risk assessment of pesticides is worthwhile, because it will make risk assessments not only more ecologically relevant and less uncertain but also more comprehensive, coherent, and cost effective. © 2015 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of SETAC.

  14. Development of a Self-Calibrated MEMS Gyrocompass for North-Finding and Tracking

    NASA Astrophysics Data System (ADS)

    Prikhodko, Igor P.

    This Ph.D. dissertation presents development of a microelectromechanical (MEMS) gyrocompass for north-finding and north-tracking applications. The central part of this work enabling these applications is control and self-calibration architectures for drift mitigation over thermal environments, validated using a MEMS quadruple mass gyroscope. The thesis contributions are the following: • Adapted and implemented bias and scale-factor drifts compensation algorithm relying on temperature self-sensing for MEMS gyroscopes with high quality factors. The real-time self-compensation reduced a total bias error to 2 °/hr and a scale-factor error to 500 ppm over temperature range of 25 °C to 55 °C (on par with the state-of-the-art). • Adapted and implemented a scale-factor self-calibration algorithm previously employed for macroscale hemispherical resonator gyroscope to MEMS Coriolis vibratory gyroscopes. An accuracy of 100 ppm was demonstrated by simultaneously measuring the true and estimated scale-factors over temperature variations (on par with the state-of-the art). • Demonstrated north-finding accuracy satisfying a typical mission requirement of 4 meter target location error at 1 kilometer stand-off distance (on par with a GPS accuracy). Analyzed north-finding mechanizations trade-offs for MEMS vibratory gyroscopes and demonstrated measurements of the Earth's rotation (15 °/hr). • Demonstrated, for the first time, an angle measuring MEMS gyroscope operation for north-tracking applications in a +/-500 °/s rate range and 100 Hz bandwidth, eliminating both bandwidth and range constraints of conventional open-loop Coriolis vibratory gyroscopes. • Investigated hypothesis that surface-tension driven glass-blowing microfabrication can create highly spherical shells for 3-D MEMS. Without any trimming or tuning of the natural frequencies, a 1 MHz glass-blown 3-D microshell resonator demonstrated a 0.63 % frequency mismatch between two degenerate 4-node wineglass modes. • Multi-axis rotation detection for nuclear magnetic resonance (NMR) gyroscope was proposed and developed. The analysis of cross-axis sensitivities for NMR gyroscope was performed. The framework for the analysis of NMR gyroscope dynamics for both open loop and closed loop modes of operation was developed.

  15. Creation of Excitons Excited by Light with a Spatial Mode

    NASA Astrophysics Data System (ADS)

    Syouji, Atsushi; Saito, Shingo; Otomo, Akira

    2017-12-01

    When light is absorbed into matter, its degrees of freedom (i.e., energy, polarization, and phase) are transferred to the matter and conserved. In this study, we demonstrate that elementary excitations in matter, which are one-photon-forbidden transition states, become allowed states because of the phase conservation across the entire cross section of excitation light. In particular, when 1S orthoexcitons of the yellow series in the semiconductor cuprous oxide (Cu2O) were resonantly excited by light with a spatial mode, an increase in the Γ 3 - -phonon-emission peak intensity of the excitons was detected depending on the spatial mode. Using group-theory-based analysis, we show that the irreducible representation of a one-photon-forbidden exciton, which is one of the orthoexcitons, can be transmuted to an allowed state by taking the direct product with the polar vector produced from the spatial mode of the light. Although the transition process of the exciton is locally characterized by the usual quadrupole interaction, the phase conservation at each position at which the sample is irradiated causes the exciton to be in the same spatial-mode state. That causes a change in the transition selection rule. The selection rule relaxation due to the spatial mode of the light was also applied for paraexciton creation.

  16. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention.

    PubMed

    Newman, Daniel P; Lockley, Steven W; Loughnane, Gerard M; Martins, Ana Carina P; Abe, Rafael; Zoratti, Marco T R; Kelly, Simon P; O'Neill, Megan H; Rajaratnam, Shantha M W; O'Connell, Redmond G; Bellgrove, Mark A

    2016-06-13

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention.

  17. Ocular exposure to blue-enriched light has an asymmetric influence on neural activity and spatial attention

    PubMed Central

    Newman, Daniel P.; Lockley, Steven W.; Loughnane, Gerard M.; Martins, Ana Carina P.; Abe, Rafael; Zoratti, Marco T. R.; Kelly, Simon P.; O’Neill, Megan H.; Rajaratnam, Shantha M. W.; O’Connell, Redmond G.; Bellgrove, Mark A.

    2016-01-01

    Brain networks subserving alertness in humans interact with those for spatial attention orienting. We employed blue-enriched light to directly manipulate alertness in healthy volunteers. We show for the first time that prior exposure to higher, relative to lower, intensities of blue-enriched light speeds response times to left, but not right, hemifield visual stimuli, via an asymmetric effect on right-hemisphere parieto-occipital α-power. Our data give rise to the tantalising possibility of light-based interventions for right hemisphere disorders of spatial attention. PMID:27291291

  18. Narrowband infrared emitters for combat ID

    NASA Astrophysics Data System (ADS)

    Pralle, Martin U.; Puscasu, Irina; Daly, James; Fallon, Keith; Loges, Peter; Greenwald, Anton; Johnson, Edward

    2007-04-01

    There is a strong desire to create narrowband infrared light sources as personnel beacons for application in infrared Identify Friend or Foe (IFF) systems. This demand has augmented dramatically in recent years with the reports of friendly fire casualties in Afghanistan and Iraq. ICx Photonics' photonic crystal enhanced TM (PCE TM) infrared emitter technology affords the possibility of creating narrowband IR light sources tuned to specific IR wavebands (near 1-2 microns, mid 3-5 microns, and long 8-12 microns) making it the ideal solution for infrared IFF. This technology is based on a metal coated 2D photonic crystal of air holes in a silicon substrate. Upon thermal excitation the photonic crystal modifies the emitted yielding narrowband IR light with center wavelength commensurate with the periodicity of the lattice. We have integrated this technology with microhotplate MEMS devices to yield 15mW IR light sources in the 3-5 micron waveband with wall plug efficiencies in excess of 10%, 2 orders of magnitude more efficient that conventional IR LEDs. We have further extended this technology into the LWIR with a light source that produces 9 mW of 8-12 micron light at an efficiency of 8%. Viewing distances >500 meters were observed with fielded camera technologies, ideal for ground to ground troop identification. When grouped into an emitter panel, the viewing distances were extended to 5 miles, ideal for ground to air identification.

  19. Retrospective Evaluation of Accelerate Pheno™ System (AXDX, Version 1.1) for Identification/Antimicrobial Susceptibility Testing (ID/AST) of Gram-Negative Bacilli (GNB) including Carbapenemase-Producing Organisms (CPO) from Seeded Blood Culture Bottles (SBCB) Tested using AXDX PhenoTestTM BC Kits

    PubMed Central

    Willey, Barbara M; Gascon, Bryan; Lee, Samantha; Koren, Vita; Surangiwala, Salman; Paterson, Aimee; Lo, Pauline; Boyd, David A; Mulvey, Michael; Mazzulli, Tony; Poutanen, Susan M

    2017-01-01

    Abstract Background AXDX reports ID/AST in <7h from positive blood cultures. Prospective pre-FDA clinical trials were conducted in areas where CPO bacteremia was rare. This study challenged AXDX to detect CPO from SBCB. Methods 53 GNB including 31 CPO (10 KPC, 8 OXA48-type, 4 NDM, 3 GES5, 3 VIM, 1 VIM/GES5, 1 IMP7, 1 SME) were tested in AXDX post SBCB incubation in BacT/Alert® (bioMérieux). Seeding suspensions were parallel-tested by CLSI M100-S27 broth microdilution (BMD) for cefazolin (CFZ), ceftriaxone (CRO), ceftazidime (CAZ), piperacillin/tazobactam (TZP), ertapenem (ETP), meropenem (MEM), ciprofloxacin (CIP), gentamicin (GM), tobramycin (TOB), and amikacin (AN). With GNB-genera combined, AXDX-AST were assessed vs BMD using Cumitech 31A for ≥90% agreements [essential (EA); categorical (CA)] and errors [very major (VME) <3%; combined major/minor (ME/mE) <7%]. Results AXDX produced evaluable results (ID-correct/AST-reported) for 83% GNB (19 Klebsiella species; 13 Escherichia coli; 5 Pseudomonas aeruginosa; 4 Enterobacter cloacae, 2 Proteus mirabilis; 1 Serratia marcescens) tabulated below. Limits were exceeded for underlined values, but 95% confidence intervals (CI) overlapped acceptable limits except in values marked with astericks [95% CI: EA (CRO:58.8–85.6; ETP:31.6–61.4; MEM:62.8–87.3; GEN:48.8–76.3); VME (MEM:11.7–45.2); ME/mE (CAZ:7.8–30.3)]. Of 31 CPO, by BMD/AXDX respectively, 2 (6.5%; P. mirabilis NDM, E. coli KPC)/4 (12.9%; same 2 plus E. cloacae KPC, S. marcescens SME) were ETP+MEM=S, 23 (74.2%)/17 (54.8%) were ETP+MEM=I/R and 6 (19.4%; 5 OXA48; 1 KPC)/12 (38.7%; same plus 14 KPC, 1 NDM, 1 SME) were ETP = I/R but MEM=S. If ETP-I/R alone predicted CPO, BMD/AXDX detected 93.5% (95% CI: 78.3–99.2)/87.1% (95% CI: 70.5–95.5) CPO, respectively (P = 0.6713, NS). But as 3/5 (60%) ETP=R non-CPO were also MEM=S by BMD+AXDX, this rule would incur MEM ME. Conclusion Expert rules based on ETP enabled detection of 87.1% (70.5–95.5%) CPO by AXDX in <7h. But while this rule mitigates MEM VME, it risks introducing MEM ME. Further optimization of AXDX algorithms to distinguish challenging CPO growth patterns associated with low carbapenem MIC from non-CPO is underway. More CPO/non-CPO should be tested to tighten 95% CI obtained in this promising study. Disclosures B. M. Willey, Mount Sinai Hospital: Investigator, Educational support S. M. Poutanen, Accelerate Diagnostics: Research Contractor and Scientific Advisor, Consulting fee and Research support

  20. PREFACE: 14th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2014)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    It is our great pleasure to welcome you to the 14th International Conference on Micro- and Nano-Technology for Power Generation and Energy Conversion Applications, or PowerMEMS 2014, in Awaji Island, Japan. The aim of PowerMEM is to present the latest research results in the field of miniature, micro- and nano-scale technologies for power generation and energy conversion. The conference will also- give us the opportunity to exchange informations and new ideas in the field of Power MEMS/NEMS. The current status of the field of PowerMEMS spans the full spectrum from basic research to practical applications. We will enjoy valuable discussions not only from the viewpoint of academia but from commercial and industrial perspectives. In the conference, three invited speakers lead the technical program. We received 172 abstracts and after a careful reviewing process by the Technical Program Committee a total of 133 papers were selected for presentation. These have been organized into 16 Oral sessions in two parallel streams and two poster sessions including some late-news papers. The oral and regular poster papers are published by the Institute of Physics (IOP). We have also organized a PowerMEMS School in Kobe-Sannomiya contiguous to the main conference. This two-day school will cover various topics of energy harvesting. World leading experts will give invited lectures on their main topics. This is a new experiment to broaden the technology remit of our conference by organizing mini symposiums that aim to gather the latest research on the following topics by the organizers: Microscale Combustion, Wideband Vibration Energy Harvesting, RF Energy Transfer and Industrial Application. We hope this, and other activities will make PowerMEMS2014 a memorable success. One of the important programs in an international conference is the social program, and we prepare the PowerMEMS2014 banquet in the banquet room at the Westin Awaji Island Hotel. This will provide an opportunity to create strong networks between researchers. We also provide nice opportunities to experience Japanese nature and culture. The special cruise to see the magnificent whirlpool up close will definitely be one of the highlights. Additionally, we will serve Awaji's traditional performing art, Awaji Ningyo Joruri, which has a history of over 500 years and has been inherited through the generations. There are many individuals we would like to thank for their support in organizing PowerMEMS2014. The TPC, chaired by Takayuki Fujita, have given us their valuable time and best effort in reviewing abstracts. The PowerMEMS School chair Yuji Suzuki and the expert speakers made the School possible. The local organizing committee, led by Kensuke Kanda has provided us with invaluable assistance in preparing the PowerMEMS2014 venue. The financial support from both the Tsutomu Nakauchi Foundation, the Hyogo International Association and the conference sponsors have also been gratefully appreciated. Finally, we would like to thank each of you for attending the conference and bringing your expertise. We wish you all a successful conference and an exciting and relaxing stay in Awaji Island.

Top