Sample records for mental state decoding

  1. Electrophysiological difference between mental state decoding and mental state reasoning.

    PubMed

    Cao, Bihua; Li, Yiyuan; Li, Fuhong; Li, Hong

    2012-06-29

    Previous studies have explored the neural mechanism of Theory of Mind (ToM), but the neural correlates of its two components, mental state decoding and mental state reasoning, remain unclear. In the present study, participants were presented with various photographs, showing an actor looking at 1 of 2 objects, either with a happy or an unhappy expression. They were asked to either decode the emotion of the actor (mental state decoding task), predict which object would be chosen by the actor (mental state reasoning task), or judge at which object the actor was gazing (physical task), while scalp potentials were recorded. Results showed that (1) the reasoning task elicited an earlier N2 peak than the decoding task did over the prefrontal scalp sites; and (2) during the late positive component (240-440 ms), the reasoning task elicited a more positive deflection than the other two tasks did at the prefrontal scalp sites. In addition, neither the decoding task nor the reasoning task has no left/right hemisphere difference. These findings imply that mental state reasoning differs from mental state decoding early (210 ms) after stimulus onset, and that the prefrontal lobe is the neural basis of mental state reasoning. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mental State Decoding in Adolescent Boys with Major Depressive Disorder versus Sex-Matched Healthy Controls.

    PubMed

    Mellick, William; Sharp, Carla

    2016-01-01

    Several adult depression studies have investigated mental state decoding, the basis for theory of mind, using the Reading the Mind in the Eyes Test. Findings have been mixed, but a comprehensive study found a greater severity of depression to be associated with poorer mental state decoding. Importantly, there has yet to be a similar study of adolescent depression. Converging evidence suggests that atypical mental state decoding may have particularly profound effects for psychosocial functioning among depressed adolescent boys. Adolescent boys with major depressive disorder (MDD, n = 33) and sex-matched healthy controls (HCs, n = 84) completed structured clinical interviews, self-report measures of psychopathology and the Child Eyes Test (CET). The MDD group performed significantly better than HCs on the CET overall (p = 0.002), underscored by greater accuracy for negatively valenced items (p = 0.003). Group differences on items depicting positive (p = 0.129) and neutral mental states (p = 0.081) were nonsignificant. Enhanced mental state decoding among depressed adolescent boys may play a role in the maintenance of and vulnerability to adolescent depression. Findings and implications are discussed. Limitations of this study include a reliance on self-report data for HC boys, as well as a lack of 'pure' depression among the boys with MDD. © 2016 S. Karger AG, Basel.

  3. Decoding emotion of the other differs among schizophrenia patients and schizoaffective patients: A pilot study.

    PubMed

    Tadmor, Hagar; Levin, Maya; Dadon, Tzameret; Meiman, Meital E; Ajameeh, Alaa; Mazzawi, Hosam; Rigbi, Amihai; Kremer, Ilana; Golani, Idit; Shamir, Alon

    2016-09-01

    The deficit in ability to attribute mental states such as thoughts, beliefs, and intentions of another person is a key component in the functional impairment of social cognition in schizophrenia. In the current study, we compared the ability of persons with first episode schizophrenia (FE-SZ) and individuals with schizophrenia displaying symptomatic remission (SZ-CR) to decode the mental state of others with healthy individuals and schizoaffective patients. In addition, we analyzed the effect of dopamine-related genes polymorphism on the ability to decode the mental state of another, and searched for different genetic signatures. Our results show that overall, individuals with schizophrenia performed worse in the "Reading the Mind in the Eyes" (eyes) test, a simple well-defined task to infer the mental state of others than healthy individuals. Within the schizophrenia group, schizoaffective scored significantly higher than FE-SZ, SZ-CR, and healthy individuals. No difference was observed in performance between FE-SZ and SZ-CR subjects. Interestingly, FE-SZ and SZ-CR, but not schizoaffective individuals, performed worse in decoding negative and neutral emotional valance than the healthy control group. At the genetic level, we observed a significant effect of the DAT genotype, but not D4R genotype, on the eyes test performance. Our data suggest that understanding the mental state of another person is a trait marker of the illness, and might serve as an intermediate phenotype in the diagnostic process of schizophrenia disorders, and raise the possibility that DA-related DAT gene might have a role in decoding the mental state of another person.

  4. Capacities for theory of mind, metacognition, and neurocognitive function are independently related to emotional recognition in schizophrenia.

    PubMed

    Lysaker, Paul H; Leonhardt, Bethany L; Brüne, Martin; Buck, Kelly D; James, Alison; Vohs, Jenifer; Francis, Michael; Hamm, Jay A; Salvatore, Giampaolo; Ringer, Jamie M; Dimaggio, Giancarlo

    2014-09-30

    While many with schizophrenia spectrum disorders experience difficulties understanding the feelings of others, little is known about the psychological antecedents of these deficits. To explore these issues we examined whether deficits in mental state decoding, mental state reasoning and metacognitive capacity predict performance on an emotion recognition task. Participants were 115 adults with a schizophrenia spectrum disorder and 58 adults with substance use disorders but no history of a diagnosis of psychosis who completed the Eyes and Hinting Test. Metacognitive capacity was assessed using the Metacognitive Assessment Scale Abbreviated and emotion recognition was assessed using the Bell Lysaker Emotion Recognition Test. Results revealed that the schizophrenia patients performed more poorly than controls on tests of emotion recognition, mental state decoding, mental state reasoning and metacognition. Lesser capacities for mental state decoding, mental state reasoning and metacognition were all uniquely related emotion recognition within the schizophrenia group even after controlling for neurocognition and symptoms in a stepwise multiple regression. Results suggest that deficits in emotion recognition in schizophrenia may partly result from a combination of impairments in the ability to judge the cognitive and affective states of others and difficulties forming complex representations of self and others. Published by Elsevier Ireland Ltd.

  5. Aspects of Theory of Mind that attenuate the relationship between persecutory delusions and social functioning in schizophrenia spectrum disorders.

    PubMed

    Phalen, Peter L; Dimaggio, Giancarlo; Popolo, Raffaele; Lysaker, Paul H

    2017-09-01

    Despite the apparent relevance of persecutory delusions to social relationships, evidence linking these beliefs to social functioning has been inconsistent. In this study, we examined the hypothesis that theory of mind moderates the relationship between persecutory delusions and social functioning. 88 adults with schizophrenia or schizoaffective disorder were assessed concurrently for social functioning, severity of persecutory delusions, and two components of theory of mind: mental state decoding and mental state reasoning. Mental state decoding was assessed using the Eyes Test, mental state reasoning using the Hinting Task, and social functioning assessed with the Social Functioning Scale. Moderation effects were evaluated using linear models and the Johnson-Neyman procedure. Mental state reasoning was found to moderate the relationship between persecutory delusions and social functioning, controlling for overall psychopathology. For participants with reasoning scores in the bottom 78th percentile, persecutory delusions showed a significant negative relationship with social functioning. However, for those participants with mental state reasoning scores in the top 22nd percentile, more severe persecutory delusions were not significantly associated with worse social functioning. Mental state decoding was not a statistically significant moderator. Generalizability is limited as participants were generally men in later phases of illness. Mental state reasoning abilities may buffer the impact of persecutory delusions on social functioning, possibly by helping individuals avoid applying global beliefs of persecution to specific individuals or by allowing for the correction of paranoid inferences. Published by Elsevier Ltd.

  6. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    NASA Astrophysics Data System (ADS)

    Omurtag, Ahmet; Aghajani, Haleh; Onur Keles, Hasan

    2017-12-01

    Objective. Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system’s ability to decode mental states and compare it with its unimodal components. Approach. We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results. EEG+fNIRS’s decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance. Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

  7. Serotonin and Dopamine Gene Variation and Theory of Mind Decoding Accuracy in Major Depression: A Preliminary Investigation.

    PubMed

    Zahavi, Arielle Y; Sabbagh, Mark A; Washburn, Dustin; Mazurka, Raegan; Bagby, R Michael; Strauss, John; Kennedy, James L; Ravindran, Arun; Harkness, Kate L

    2016-01-01

    Theory of mind-the ability to decode and reason about others' mental states-is a universal human skill and forms the basis of social cognition. Theory of mind accuracy is impaired in clinical conditions evidencing social impairment, including major depressive disorder. The current study is a preliminary investigation of the association of polymorphisms of the serotonin transporter (SLC6A4), dopamine transporter (DAT1), dopamine receptor D4 (DRD4), and catechol-O-methyl transferase (COMT) genes with theory of mind decoding in a sample of adults with major depression. Ninety-six young adults (38 depressed, 58 non-depressed) completed the 'Reading the Mind in the Eyes task' and a non-mentalistic control task. Genetic associations were only found for the depressed group. Specifically, superior accuracy in decoding mental states of a positive valence was seen in those homozygous for the long allele of the serotonin transporter gene, 9-allele carriers of DAT1, and long-allele carriers of DRD4. In contrast, superior accuracy in decoding mental states of a negative valence was seen in short-allele carriers of the serotonin transporter gene and 10/10 homozygotes of DAT1. Results are discussed in terms of their implications for integrating social cognitive and neurobiological models of etiology in major depression.

  8. Decoding brain activity using a large-scale probabilistic functional-anatomical atlas of human cognition

    PubMed Central

    Jones, Michael N.

    2017-01-01

    A central goal of cognitive neuroscience is to decode human brain activity—that is, to infer mental processes from observed patterns of whole-brain activation. Previous decoding efforts have focused on classifying brain activity into a small set of discrete cognitive states. To attain maximal utility, a decoding framework must be open-ended, systematic, and context-sensitive—that is, capable of interpreting numerous brain states, presented in arbitrary combinations, in light of prior information. Here we take steps towards this objective by introducing a probabilistic decoding framework based on a novel topic model—Generalized Correspondence Latent Dirichlet Allocation—that learns latent topics from a database of over 11,000 published fMRI studies. The model produces highly interpretable, spatially-circumscribed topics that enable flexible decoding of whole-brain images. Importantly, the Bayesian nature of the model allows one to “seed” decoder priors with arbitrary images and text—enabling researchers, for the first time, to generate quantitative, context-sensitive interpretations of whole-brain patterns of brain activity. PMID:29059185

  9. Cross-cultural reading the mind in the eyes: an fMRI investigation.

    PubMed

    Adams, Reginald B; Rule, Nicholas O; Franklin, Robert G; Wang, Elsie; Stevenson, Michael T; Yoshikawa, Sakiko; Nomura, Mitsue; Sato, Wataru; Kveraga, Kestutis; Ambady, Nalini

    2010-01-01

    The ability to infer others' thoughts, intentions, and feelings is regarded as uniquely human. Over the last few decades, this remarkable ability has captivated the attention of philosophers, primatologists, clinical and developmental psychologists, anthropologists, social psychologists, and cognitive neuroscientists. Most would agree that the capacity to reason about others' mental states is innately prepared, essential for successful human social interaction. Whether this ability is culturally tuned, however, remains entirely uncharted on both the behavioral and neural levels. Here we provide the first behavioral and neural evidence for an intracultural advantage (better performance for same- vs. other-culture) in mental state decoding in a sample of native Japanese and white American participants. We examined the neural correlates of this intracultural advantage using fMRI, revealing greater bilateral posterior superior temporal sulci recruitment during same- versus other-culture mental state decoding in both cultural groups. These findings offer preliminary support for cultural consistency in the neurological architecture subserving high-level mental state reasoning, as well as its differential recruitment based on cultural group membership.

  10. The manic phase of Bipolar disorder significantly impairs theory of mind decoding.

    PubMed

    Hawken, Emily R; Harkness, Kate L; Lazowski, Lauren K; Summers, David; Khoja, Nida; Gregory, James Gardner; Milev, Roumen

    2016-05-30

    Bipolar disorder is associated with significant deficits in the decoding of others' mental states in comparison to healthy participants. However, differences in theory of mind decoding ability among patients in manic, depressed, and euthymic phases of bipolar disorder is currently unknown. Fifty-nine patients with bipolar I or II disorder (13 manic, 25 depressed, 20 euthymic) completed the "Reading the Mind in the Eyes" Task (Eyes task) and the Animals Task developed to control for non-mentalistic response demands of the Eyes Task. Patients also completed self-report and clinician-rated measures of depression, mania, and anxiety symptoms. Patients in the manic phase were significantly less accurate than those in the depressed and euthymic phases at decoding mental states in the Eyes task, and this effect was strongest for eyes of a positive or neutral valence. Further Eyes task performance was negatively correlated with the symptoms of language/thought disorder, pressured speech, and disorganized thoughts and appearance. These effects held when controlling for accuracy on the Animals task, response times, and relevant demographic and clinical covariates. Results suggest that the state of mania, and particularly psychotic symptoms that may overlap with the schizophrenia spectrum, are most strongly related to social cognitive deficits in bipolar disorder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Decoding Problem Gamblers' Signals: A Decision Model for Casino Enterprises.

    PubMed

    Ifrim, Sandra

    2015-12-01

    The aim of the present study is to offer a validated decision model for casino enterprises. The model enables those users to perform early detection of problem gamblers and fulfill their ethical duty of social cost minimization. To this end, the interpretation of casino customers' nonverbal communication is understood as a signal-processing problem. Indicators of problem gambling recommended by Delfabbro et al. (Identifying problem gamblers in gambling venues: final report, 2007) are combined with Viterbi algorithm into an interdisciplinary model that helps decoding signals emitted by casino customers. Model output consists of a historical path of mental states and cumulated social costs associated with a particular client. Groups of problem and non-problem gamblers were simulated to investigate the model's diagnostic capability and its cost minimization ability. Each group consisted of 26 subjects and was subsequently enlarged to 100 subjects. In approximately 95% of the cases, mental states were correctly decoded for problem gamblers. Statistical analysis using planned contrasts revealed that the model is relatively robust to the suppression of signals performed by casino clientele facing gambling problems as well as to misjudgments made by staff regarding the clients' mental states. Only if the last mentioned source of error occurs in a very pronounced manner, i.e. judgment is extremely faulty, cumulated social costs might be distorted.

  12. Decoding Humor Experiences from Brain Activity of People Viewing Comedy Movies

    PubMed Central

    Sawahata, Yasuhito; Komine, Kazuteru; Morita, Toshiya; Hiruma, Nobuyuki

    2013-01-01

    Humans naturally have a sense of humor. Experiencing humor not only encourages social interactions, but also produces positive physiological effects on the human body, such as lowering blood pressure. Recent neuro-imaging studies have shown evidence for distinct mental state changes at work in people experiencing humor. However, the temporal characteristics of these changes remain elusive. In this paper, we objectively measured humor-related mental states from single-trial functional magnetic resonance imaging (fMRI) data obtained while subjects viewed comedy TV programs. Measured fMRI data were labeled on the basis of the lag before or after the viewer’s perception of humor (humor onset) determined by the viewer-reported humor experiences during the fMRI scans. We trained multiple binary classifiers, or decoders, to distinguish between fMRI data obtained at each lag from ones obtained during a neutral state in which subjects were not experiencing humor. As a result, in the right dorsolateral prefrontal cortex and the right temporal area, the decoders showed significant classification accuracies even at two seconds ahead of the humor onsets. Furthermore, given a time series of fMRI data obtained during movie viewing, we found that the decoders with significant performance were also able to predict the upcoming humor events on a volume-by-volume basis. Taking into account the hemodynamic delay, our results suggest that the upcoming humor events are encoded in specific brain areas up to about five seconds before the awareness of experiencing humor. Our results provide evidence that there exists a mental state lasting for a few seconds before actual humor perception, as if a viewer is expecting the future humorous events. PMID:24324656

  13. For love or money? What motivates people to know the minds of others?

    PubMed

    Harkness, Kate L; Jacobson, Jill A; Sinclair, Brooke; Chan, Emilie; Sabbagh, Mark A

    2012-01-01

    Mood affects social cognition and "theory of mind", such that people in a persistent negative mood (i.e., dysphoria) have enhanced abilities at making subtle judgements about others' mental states. Theorists have argued that this hypersensitivity to subtle social cues may have adaptive significance in terms of solving interpersonal problems and/or minimising social risk. We tested whether increasing the social salience of a theory of mind task would preferentially increase dyspshoric individuals' performance on the task. Forty-four dysphoric and 51 non-dysphoric undergraduate women participated in a theory of mind decoding task following one of three motivational manipulations: (i) social motivation (ii) monetary motivation, or (iii) no motivation. Social motivation was associated with the greatest accuracy of mental state decoding for the dysphoric group, whereas the non-dysphoric group showed the highest accuracy in the monetary motivation condition. These results suggest that dysphoric individuals may be especially, and preferentially, motivated to understand the mental states of others.

  14. Theory of mind in social anxiety disorder, depression, and comorbid conditions.

    PubMed

    Washburn, Dustin; Wilson, Gillian; Roes, Meighen; Rnic, Katerina; Harkness, Kate Leslie

    2016-01-01

    Social anxiety disorder is characterized by marked interpersonal impairment, particularly when presenting with comorbid major depression. However, the foundational social-cognitive skills that underlie interpersonal impairment in comorbid and non-comorbid manifestations of SAD has to date received very little empirical investigation. In a sample of 119 young adults, the current study examined differences in theory of mind (ToM), defined as the ability to decode and reason about others' mental states, across four groups: (a) non-comorbid SAD; (b) non-comorbid Lifetime MDD; (c) comorbid SAD and Lifetime MDD; and (d) healthy control. The non-comorbid SAD group was significantly less accurate at decoding mental states than the non-comorbid MDD and control groups. Further, both the comorbid and non-comorbid SAD groups made significantly more 'excessive' ToM reasoning errors than the non-comorbid MDD group, suggesting a pattern of over-mentalizing. Findings are discussed in terms of their implications for understanding the social cognitive foundations of social anxiety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mental state decoding impairment in major depression and borderline personality disorder: meta-analysis.

    PubMed

    Richman, Mara J; Unoka, Zsolt

    2015-12-01

    Patients with major depression and borderline personality disorder are characterised by a distorted perception of other people's intentions. Deficits in mental state decoding are thought to be the underlying cause of this clinical feature. To examine, using meta-analysis, whether mental state decoding abilities in patients with major depression and borderline personality disorder differ from those of healthy controls. A systematic review of 13 cross-sectional studies comparing Reading in the Mind of the Eyes Test (RMET) accuracy performance of patients with major depression or borderline personality disorder and healthy age-matched controls (n = 976). Valence scores, where reported, were also assessed. Large significant deficits were seen for global RMET performance in patients with major depression (d = -0.751). The positive RMET valence scores of patients with depression were significantly worse; patients with borderline personality disorder had worse neutral scores. Both groups were worse than controls. Moderator analysis revealed that individuals with comorbid borderline personality disorder and major depression did better than those with borderline personality disorder alone on accuracy. Those with comorbid borderline personality disorder and any cluster B or C personality disorder did worse than borderline personality disorder alone. Individuals with both borderline personality disorder and major depression performed better then those with borderline personality disorder without major depression for positive valence. These findings highlight the relevance of RMET performance in patients with borderline personality disorder and major depression, and the importance of considering comorbidity in future analysis. © The Royal College of Psychiatrists 2015.

  16. Decoding Spontaneous Emotional States in the Human Brain

    PubMed Central

    Kragel, Philip A.; Knodt, Annchen R.; Hariri, Ahmad R.; LaBar, Kevin S.

    2016-01-01

    Pattern classification of human brain activity provides unique insight into the neural underpinnings of diverse mental states. These multivariate tools have recently been used within the field of affective neuroscience to classify distributed patterns of brain activation evoked during emotion induction procedures. Here we assess whether neural models developed to discriminate among distinct emotion categories exhibit predictive validity in the absence of exteroceptive emotional stimulation. In two experiments, we show that spontaneous fluctuations in human resting-state brain activity can be decoded into categories of experience delineating unique emotional states that exhibit spatiotemporal coherence, covary with individual differences in mood and personality traits, and predict on-line, self-reported feelings. These findings validate objective, brain-based models of emotion and show how emotional states dynamically emerge from the activity of separable neural systems. PMID:27627738

  17. Hybrid EEG-fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control.

    PubMed

    Khan, Muhammad Jawad; Hong, Keum-Shik

    2017-01-01

    In this paper, a hybrid electroencephalography-functional near-infrared spectroscopy (EEG-fNIRS) scheme to decode eight active brain commands from the frontal brain region for brain-computer interface is presented. A total of eight commands are decoded by fNIRS, as positioned on the prefrontal cortex, and by EEG, around the frontal, parietal, and visual cortices. Mental arithmetic, mental counting, mental rotation, and word formation tasks are decoded with fNIRS, in which the selected features for classification and command generation are the peak, minimum, and mean ΔHbO values within a 2-s moving window. In the case of EEG, two eyeblinks, three eyeblinks, and eye movement in the up/down and left/right directions are used for four-command generation. The features in this case are the number of peaks and the mean of the EEG signal during 1 s window. We tested the generated commands on a quadcopter in an open space. An average accuracy of 75.6% was achieved with fNIRS for four-command decoding and 86% with EEG for another four-command decoding. The testing results show the possibility of controlling a quadcopter online and in real-time using eight commands from the prefrontal and frontal cortices via the proposed hybrid EEG-fNIRS interface.

  18. Social cognition in anorexia nervosa: Specific difficulties in decoding emotional but not nonemotional mental states.

    PubMed

    Brockmeyer, Timo; Pellegrino, Judith; Münch, Hannah; Herzog, Wolfgang; Dziobek, Isabell; Friederich, Hans-Christoph

    2016-09-01

    Building on recent models of anorexia nervosa (AN) that emphasize the importance of impaired social cognition in the development and maintenance of the disorder, the present study aimed at examining whether women with AN have more difficulties with inferring other people's emotional and nonemotional mental states than healthy women. Social cognition was assessed in 25 adult women with AN and 25 age-matched healthy women. To overcome limitations of previous research on social cognition in AN, the processing of social information was examined in a more complex and ecologically valid manner. The Movie for the Assessment of Social Cognition (MASC) reflects complex real-life social interaction and allows for disentangling emotional and non-emotional mental state inference as well as different types of errors in mentalizing. Women with AN showed poorer emotional mental state inference, whereas non-emotional mental state inference was largely intact. Groups did not differ in undermentalizing (overly simplistic theory of mind) and overmentalizing (overly complex or over-interpretative mental state reasoning). Performance in the MASC was independent of levels of eating disorder psychopathology and symptoms of depression and anxiety. The findings suggest that AN is associated with specific difficulties in emotional mental state inference despite largely intact nonemotional mental state inference. Upon replication in larger samples, these findings advocate a stronger emphasis on socio-emotional processing in AN treatment. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:883-890). © 2016 Wiley Periodicals, Inc.

  19. Decoding Actions and Emotions in Deaf Children: Evidence from a Biological Motion Task

    ERIC Educational Resources Information Center

    Ludlow, Amanda Katherine; Heaton, Pamela; Deruelle, Christine

    2013-01-01

    This study aimed to explore the recognition of emotional and non-emotional biological movements in children with severe and profound deafness. Twenty-four deaf children, together with 24 control children matched on mental age and 24 control children matched on chronological age, were asked to identify a person's actions, subjective states,…

  20. Fast mental states decoding in mixed reality.

    PubMed

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.

  1. Fast mental states decoding in mixed reality

    PubMed Central

    De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea

    2014-01-01

    The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878

  2. State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements

    PubMed Central

    Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.

    2013-01-01

    The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714

  3. Detecting and interpreting conscious experiences in behaviorally non-responsive patients.

    PubMed

    Naci, Lorina; Sinai, Leah; Owen, Adrian M

    2017-01-15

    Decoding the contents of consciousness from brain activity is one of the most challenging frontiers of cognitive neuroscience. The ability to interpret mental content without recourse to behavior is most relevant for understanding patients who may be demonstrably conscious, but entirely unable to speak or move willfully in any way, precluding any systematic investigation of their conscious experience. The lack of consistent behavioral responsivity engenders unique challenges to decoding any conscious experiences these patients may have solely based on their brain activity. For this reason, paradigms that have been successful in healthy individuals cannot serve to interpret conscious mental states in this patient group. Until recently, patient studies have used structured instructions to elicit willful modulation of brain activity according to command, in order to decode the presence of willful brain-based responses in this patient group. In recent work, we have used naturalistic paradigms, such as watching a movie or listening to an audio-story, to demonstrate that a common neural code supports conscious experiences in different individuals. Moreover, we have demonstrated that this code can be used to interpret the conscious experiences of a patient who had remained non-responsive for several years. This approach is easy to administer, brief, and does not require compliance with task instructions. Rather, it engages attention naturally through meaningful stimuli that are similar to the real-world sensory information in a patient's environment. Therefore, it may be particularly suited to probing consciousness and revealing residual brain function in highly impaired, acute, patients in a comatose state, thus helping to improve diagnostication and prognostication for this vulnerable patient group from the critical early stages of severe brain-injury. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Brain-based decoding of mentally imagined film clips and sounds reveals experience-based information patterns in film professionals.

    PubMed

    de Borst, Aline W; Valente, Giancarlo; Jääskeläinen, Iiro P; Tikka, Pia

    2016-04-01

    In the perceptual domain, it has been shown that the human brain is strongly shaped through experience, leading to expertise in highly-skilled professionals. What has remained unclear is whether specialization also shapes brain networks underlying mental imagery. In our fMRI study, we aimed to uncover modality-specific mental imagery specialization of film experts. Using multi-voxel pattern analysis we decoded from brain activity of professional cinematographers and sound designers whether they were imagining sounds or images of particular film clips. In each expert group distinct multi-voxel patterns, specific for the modality of their expertise, were found during classification of imagery modality. These patterns were mainly localized in the occipito-temporal and parietal cortex for cinematographers and in the auditory cortex for sound designers. We also found generalized patterns across perception and imagery that were distinct for the two expert groups: they involved frontal cortex for the cinematographers and temporal cortex for the sound designers. Notably, the mental representations of film clips and sounds of cinematographers contained information that went beyond modality-specificity. We were able to successfully decode the implicit presence of film genre from brain activity during mental imagery in cinematographers. The results extend existing neuroimaging literature on expertise into the domain of mental imagery and show that experience in visual versus auditory imagery can alter the representation of information in modality-specific association cortices. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Playing charades in the fMRI: are mirror and/or mentalizing areas involved in gestural communication?

    PubMed

    Schippers, Marleen B; Gazzola, Valeria; Goebel, Rainer; Keysers, Christian

    2009-08-27

    Communication is an important aspect of human life, allowing us to powerfully coordinate our behaviour with that of others. Boiled down to its mere essentials, communication entails transferring a mental content from one brain to another. Spoken language obviously plays an important role in communication between human individuals. Manual gestures however often aid the semantic interpretation of the spoken message, and gestures may have played a central role in the earlier evolution of communication. Here we used the social game of charades to investigate the neural basis of gestural communication by having participants produce and interpret meaningful gestures while their brain activity was measured using functional magnetic resonance imaging. While participants decoded observed gestures, the putative mirror neuron system (pMNS: premotor, parietal and posterior mid-temporal cortex), associated with motor simulation, and the temporo-parietal junction (TPJ), associated with mentalizing and agency attribution, were significantly recruited. Of these areas only the pMNS was recruited during the production of gestures. This suggests that gestural communication relies on a combination of simulation and, during decoding, mentalizing/agency attribution brain areas. Comparing the decoding of gestures with a condition in which participants viewed the same gestures with an instruction not to interpret the gestures showed that although parts of the pMNS responded more strongly during active decoding, most of the pMNS and the TPJ did not show such significant task effects. This suggests that the mere observation of gestures recruits most of the system involved in voluntary interpretation.

  6. Error-trellis Syndrome Decoding Techniques for Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decoding is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  7. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.

    PubMed

    Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan

    2013-01-01

    The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.

  8. Learning a common dictionary for subject-transfer decoding with resting calibration.

    PubMed

    Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin

    2015-05-01

    Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Theory of mind and verbal working memory deficits in parents of autistic children.

    PubMed

    Gokcen, Sezen; Bora, Emre; Erermis, Serpil; Kesikci, Hande; Aydin, Cahide

    2009-03-31

    The objective of this study was to investigate the potential values of executive function and social cognition deficits as endophenotypes of autism. While theory of mind (ToM) is generally accepted as a unitary concept, some have suggested that ToM may be separated into two components (mental state reasoning and decoding). In this study, both aspects of ToM and verbal working memory abilities were investigated with relatively demanding tasks. The authors used a neurocognitive battery to compare the executive function and social cognition skills of 76 parents of autistic probands with 41 parents of healthy children. Both groups were matched for IQ, age and gender. Index parents had verbal working memory deficits. They had also low performance on a mental state reasoning task. Index parents had difficulties in reasoning about others' emotions. In contrast to findings in the control group, low performance of mental state reasoning ability was not associated with working memory deficit in index parents. Social cognition and working memory impairments may represent potential endophenotypes, related to an underlying vulnerability for autistic spectrum disorders.

  10. Error-trellis syndrome decoding techniques for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1985-01-01

    An error-trellis syndrome decoding technique for convolutional codes is developed. This algorithm is then applied to the entire class of systematic convolutional codes and to the high-rate, Wyner-Ash convolutional codes. A special example of the one-error-correcting Wyner-Ash code, a rate 3/4 code, is treated. The error-trellis syndrome decoding method applied to this example shows in detail how much more efficient syndrome decordig is than Viterbi decoding if applied to the same problem. For standard Viterbi decoding, 64 states are required, whereas in the example only 7 states are needed. Also, within the 7 states required for decoding, many fewer transitions are needed between the states.

  11. Coding/decoding two-dimensional images with orbital angular momentum of light.

    PubMed

    Chu, Jiaqi; Li, Xuefeng; Smithwick, Quinn; Chu, Daping

    2016-04-01

    We investigate encoding and decoding of two-dimensional information using the orbital angular momentum (OAM) of light. Spiral phase plates and phase-only spatial light modulators are used in encoding and decoding of OAM states, respectively. We show that off-axis points and spatial variables encoded with a given OAM state can be recovered through decoding with the corresponding complimentary OAM state.

  12. State-space decoding of primary afferent neuron firing rates

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. B.; Ventura, V.; Weber, D. J.

    2011-02-01

    Kinematic state feedback is important for neuroprostheses to generate stable and adaptive movements of an extremity. State information, represented in the firing rates of populations of primary afferent (PA) neurons, can be recorded at the level of the dorsal root ganglia (DRG). Previous work in cats showed the feasibility of using DRG recordings to predict the kinematic state of the hind limb using reverse regression. Although accurate decoding results were attained, reverse regression does not make efficient use of the information embedded in the firing rates of the neural population. In this paper, we present decoding results based on state-space modeling, and show that it is a more principled and more efficient method for decoding the firing rates in an ensemble of PA neurons. In particular, we show that we can extract confounded information from neurons that respond to multiple kinematic parameters, and that including velocity components in the firing rate models significantly increases the accuracy of the decoded trajectory. We show that, on average, state-space decoding is twice as efficient as reverse regression for decoding joint and endpoint kinematics.

  13. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface

    NASA Astrophysics Data System (ADS)

    Sachs, Nicholas A.; Ruiz-Torres, Ricardo; Perreault, Eric J.; Miller, Lee E.

    2016-02-01

    Objective. It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. Approach. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. Main results. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor’s proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. Significance. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  14. Brain-state classification and a dual-state decoder dramatically improve the control of cursor movement through a brain-machine interface.

    PubMed

    Sachs, Nicholas A; Ruiz-Torres, Ricardo; Perreault, Eric J; Miller, Lee E

    2016-02-01

    It is quite remarkable that brain machine interfaces (BMIs) can be used to control complex movements with fewer than 100 neurons. Success may be due in part to the limited range of dynamical conditions under which most BMIs are tested. Achieving high-quality control that spans these conditions with a single linear mapping will be more challenging. Even for simple reaching movements, existing BMIs must reduce the stochastic noise of neurons by averaging the control signals over time, instead of over the many neurons that normally control movement. This forces a compromise between a decoder with dynamics allowing rapid movement and one that allows postures to be maintained with little jitter. Our current work presents a method for addressing this compromise, which may also generalize to more highly varied dynamical situations, including movements with more greatly varying speed. We have developed a system that uses two independent Wiener filters as individual components in a single decoder, one optimized for movement, and the other for postural control. We computed an LDA classifier using the same neural inputs. The decoder combined the outputs of the two filters in proportion to the likelihood assigned by the classifier to each state. We have performed online experiments with two monkeys using this neural-classifier, dual-state decoder, comparing it to a standard, single-state decoder as well as to a dual-state decoder that switched states automatically based on the cursor's proximity to a target. The performance of both monkeys using the classifier decoder was markedly better than that of the single-state decoder and comparable to the proximity decoder. We have demonstrated a novel strategy for dealing with the need to make rapid movements while also maintaining precise cursor control when approaching and stabilizing within targets. Further gains can undoubtedly be realized by optimizing the performance of the individual movement and posture decoders.

  15. Belief propagation decoding of quantum channels by passing quantum messages

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2017-07-01

    The belief propagation (BP) algorithm is a powerful tool in a wide range of disciplines from statistical physics to machine learning to computational biology, and is ubiquitous in decoding classical error-correcting codes. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding of the channel, in some cases even up to the Shannon capacity. Here we construct the first BP algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the code length. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.

  16. State-Dependent Decoding Algorithms Improve the Performance of a Bidirectional BMI in Anesthetized Rats.

    PubMed

    De Feo, Vito; Boi, Fabio; Safaai, Houman; Onken, Arno; Panzeri, Stefano; Vato, Alessandro

    2017-01-01

    Brain-machine interfaces (BMIs) promise to improve the quality of life of patients suffering from sensory and motor disabilities by creating a direct communication channel between the brain and the external world. Yet, their performance is currently limited by the relatively small amount of information that can be decoded from neural activity recorded form the brain. We have recently proposed that such decoding performance may be improved when using state-dependent decoding algorithms that predict and discount the large component of the trial-to-trial variability of neural activity which is due to the dependence of neural responses on the network's current internal state. Here we tested this idea by using a bidirectional BMI to investigate the gain in performance arising from using a state-dependent decoding algorithm. This BMI, implemented in anesthetized rats, controlled the movement of a dynamical system using neural activity decoded from motor cortex and fed back to the brain the dynamical system's position by electrically microstimulating somatosensory cortex. We found that using state-dependent algorithms that tracked the dynamics of ongoing activity led to an increase in the amount of information extracted form neural activity by 22%, with a consequently increase in all of the indices measuring the BMI's performance in controlling the dynamical system. This suggests that state-dependent decoding algorithms may be used to enhance BMIs at moderate computational cost.

  17. Decoding the direction of imagined visual motion using 7 T ultra-high field fMRI

    PubMed Central

    Emmerling, Thomas C.; Zimmermann, Jan; Sorger, Bettina; Frost, Martin A.; Goebel, Rainer

    2016-01-01

    There is a long-standing debate about the neurocognitive implementation of mental imagery. One form of mental imagery is the imagery of visual motion, which is of interest due to its naturalistic and dynamic character. However, so far only the mere occurrence rather than the specific content of motion imagery was shown to be detectable. In the current study, the application of multi-voxel pattern analysis to high-resolution functional data of 12 subjects acquired with ultra-high field 7 T functional magnetic resonance imaging allowed us to show that imagery of visual motion can indeed activate the earliest levels of the visual hierarchy, but the extent thereof varies highly between subjects. Our approach enabled classification not only of complex imagery, but also of its actual contents, in that the direction of imagined motion out of four options was successfully identified in two thirds of the subjects and with accuracies of up to 91.3% in individual subjects. A searchlight analysis confirmed the local origin of decodable information in striate and extra-striate cortex. These high-accuracy findings not only shed new light on a central question in vision science on the constituents of mental imagery, but also show for the first time that the specific sub-categorical content of visual motion imagery is reliably decodable from brain imaging data on a single-subject level. PMID:26481673

  18. The Berlin Brain–Computer Interface: Non-Medical Uses of BCI Technology

    PubMed Central

    Blankertz, Benjamin; Tangermann, Michael; Vidaurre, Carmen; Fazli, Siamac; Sannelli, Claudia; Haufe, Stefan; Maeder, Cecilia; Ramsey, Lenny; Sturm, Irene; Curio, Gabriel; Müller, Klaus-Robert

    2010-01-01

    Brain–computer interfacing (BCI) is a steadily growing area of research. While initially BCI research was focused on applications for paralyzed patients, increasingly more alternative applications in healthy human subjects are proposed and investigated. In particular, monitoring of mental states and decoding of covert user states have seen a strong rise of interest. Here, we present some examples of such novel applications which provide evidence for the promising potential of BCI technology for non-medical uses. Furthermore, we discuss distinct methodological improvements required to bring non-medical applications of BCI technology to a diversity of layperson target groups, e.g., ease of use, minimal training, general usability, short control latencies. PMID:21165175

  19. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  20. A High-Performance Neural Prosthesis Incorporating Discrete State Selection With Hidden Markov Models.

    PubMed

    Kao, Jonathan C; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V

    2017-04-01

    Communication neural prostheses aim to restore efficient communication to people with motor neurological injury or disease by decoding neural activity into control signals. These control signals are both analog (e.g., the velocity of a computer mouse) and discrete (e.g., clicking an icon with a computer mouse) in nature. Effective, high-performing, and intuitive-to-use communication prostheses should be capable of decoding both analog and discrete state variables seamlessly. However, to date, the highest-performing autonomous communication prostheses rely on precise analog decoding and typically do not incorporate high-performance discrete decoding. In this report, we incorporated a hidden Markov model (HMM) into an intracortical communication prosthesis to enable accurate and fast discrete state decoding in parallel with analog decoding. In closed-loop experiments with nonhuman primates implanted with multielectrode arrays, we demonstrate that incorporating an HMM into a neural prosthesis can increase state-of-the-art achieved bitrate by 13.9% and 4.2% in two monkeys ( ). We found that the transition model of the HMM is critical to achieving this performance increase. Further, we found that using an HMM resulted in the highest achieved peak performance we have ever observed for these monkeys, achieving peak bitrates of 6.5, 5.7, and 4.7 bps in Monkeys J, R, and L, respectively. Finally, we found that this neural prosthesis was robustly controllable for the duration of entire experimental sessions. These results demonstrate that high-performance discrete decoding can be beneficially combined with analog decoding to achieve new state-of-the-art levels of performance.

  1. Reading visually embodied meaning from the brain: Visually grounded computational models decode visual-object mental imagery induced by written text.

    PubMed

    Anderson, Andrew James; Bruni, Elia; Lopopolo, Alessandro; Poesio, Massimo; Baroni, Marco

    2015-10-15

    Embodiment theory predicts that mental imagery of object words recruits neural circuits involved in object perception. The degree of visual imagery present in routine thought and how it is encoded in the brain is largely unknown. We test whether fMRI activity patterns elicited by participants reading objects' names include embodied visual-object representations, and whether we can decode the representations using novel computational image-based semantic models. We first apply the image models in conjunction with text-based semantic models to test predictions of visual-specificity of semantic representations in different brain regions. Representational similarity analysis confirms that fMRI structure within ventral-temporal and lateral-occipital regions correlates most strongly with the image models and conversely text models correlate better with posterior-parietal/lateral-temporal/inferior-frontal regions. We use an unsupervised decoding algorithm that exploits commonalities in representational similarity structure found within both image model and brain data sets to classify embodied visual representations with high accuracy (8/10) and then extend it to exploit model combinations to robustly decode different brain regions in parallel. By capturing latent visual-semantic structure our models provide a route into analyzing neural representations derived from past perceptual experience rather than stimulus-driven brain activity. Our results also verify the benefit of combining multimodal data to model human-like semantic representations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Linguistic Effects on Children's Encoding and Decoding Performance in Japan and the United States.

    ERIC Educational Resources Information Center

    Foorman, Barbara R.; Kinoshita, Yoshiko

    The role of linguistic structure in a referential communication task was examined by comparing encoding and decoding performance of 80 five- and seven-year-old children from Japan and the United States. The linguist structure demanded by the task was the simultaneous encoding and decoding of attributes of size, color, pattern, and shape. (In…

  3. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people

    NASA Astrophysics Data System (ADS)

    Miao, Minmin; Zeng, Hong; Wang, Aimin; Zhao, Fengkui; Liu, Feixiang

    2017-09-01

    Electroencephalogram (EEG)-based motor imagery (MI) brain-computer interface (BCI) has shown its effectiveness for the control of rehabilitation devices designed for large body parts of the patients with neurologic impairments. In order to validate the feasibility of using EEG to decode the MI of a single index finger and constructing a BCI-enhanced finger rehabilitation system, we collected EEG data during right hand index finger MI and rest state for five healthy subjects and proposed a pattern recognition approach for classifying these two mental states. First, Fisher's linear discriminant criteria and power spectral density analysis were used to analyze the event-related desynchronization patterns. Second, both band power and approximate entropy were extracted as features. Third, aiming to eliminate the abnormal samples in the dictionary and improve the classification performance of the conventional sparse representation-based classification (SRC) method, we proposed a novel dictionary cleaned sparse representation-based classification (DCSRC) method for final classification. The experimental results show that the proposed DCSRC method gives better classification accuracies than SRC and an average classification accuracy of 81.32% is obtained for five subjects. Thus, it is demonstrated that single right hand index finger MI can be decoded from the sensorimotor rhythms, and the feature patterns of index finger MI and rest state can be well recognized for robotic exoskeleton initiation.

  4. Robust decoding of selective auditory attention from MEG in a competing-speaker environment via state-space modeling✩

    PubMed Central

    Akram, Sahar; Presacco, Alessandro; Simon, Jonathan Z.; Shamma, Shihab A.; Babadi, Behtash

    2015-01-01

    The underlying mechanism of how the human brain solves the cocktail party problem is largely unknown. Recent neuroimaging studies, however, suggest salient temporal correlations between the auditory neural response and the attended auditory object. Using magnetoencephalography (MEG) recordings of the neural responses of human subjects, we propose a decoding approach for tracking the attentional state while subjects are selectively listening to one of the two speech streams embedded in a competing-speaker environment. We develop a biophysically-inspired state-space model to account for the modulation of the neural response with respect to the attentional state of the listener. The constructed decoder is based on a maximum a posteriori (MAP) estimate of the state parameters via the Expectation Maximization (EM) algorithm. Using only the envelope of the two speech streams as covariates, the proposed decoder enables us to track the attentional state of the listener with a temporal resolution of the order of seconds, together with statistical confidence intervals. We evaluate the performance of the proposed model using numerical simulations and experimentally measured evoked MEG responses from the human brain. Our analysis reveals considerable performance gains provided by the state-space model in terms of temporal resolution, computational complexity and decoding accuracy. PMID:26436490

  5. Educational action research on Facebook®: combining leisure and learning.

    PubMed

    Labegalini, Célia Maria Gomes; Nogueira, Iara Sescon; Rodrigues, Daysi Mara Murio Ribeiro; Almeida, Elton Carlos; Bueno, Sonia Maria Villela; Baldissera, Vanessa Denardi Antoniassi

    2017-04-06

    To analyse the path of dialogical education in leisure and mental health in social media. Action research based on the theoretical-methodological framework of Paulo Freire, conducted with 11 nursing students of a public university in the state of Paraná, Brazil, during seven days of June 2015, in a closed group on Facebook®. The dialogues were called, 'Virtual Culture Circles' and preceded by self-administered questionnaires that addressed the relationship between leisure and mental health. The data were analysed in an interpretive way, using the encoding and decoding proposed by Freire. The students related leisure to pleasurable activities and quality of life; however, it is not widely or critically practiced in their personal lives or education. The Virtual Culture Circles provided emancipatory dialogues and a critical analysis of the subject matter, with possible repercussions on the personal and professional lives of the subjects.

  6. Neurodevelopmental changes of reading the mind in the eyes

    PubMed Central

    Op de Macks, Zdeňa A.; Güroğlu, Berna; Rombouts, Serge A. R. B.; Van der Molen, Maurits W.; Crone, Eveline A.

    2012-01-01

    The eyes provide important information for decoding the mental states of others. In this fMRI study we examined how reading the mind in the eyes develops across adolescence and we tested the developmental trajectories of brain regions involved in this basic perceptual mind-reading ability. Participants from three age groups (early adolescents, mid adolescents and young adults) participated in the study and performed an adapted version of the ‘Reading the Mind in the Eyes task’, in which photographs of the eye region of faces were presented. Behavioral results show that the ability to decode the feelings and thoughts of others from the eyes develops before early adolescence. For all ages, brain activity was found in the posterior superior temporal sulcus during reading the mind in the eyes relative to a control condition requiring age and gender judgments using the same eyes stimuli. Only early adolescents showed additional involvement of the medial prefrontal cortex, the inferior frontal gyrus and the temporal pole. The results are discussed in the light of recent findings on the development of the social brain network. PMID:21515640

  7. Recent advances in coding theory for near error-free communications

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Deutsch, L. J.; Dolinar, S. J.; Mceliece, R. J.; Pollara, F.; Shahshahani, M.; Swanson, L.

    1991-01-01

    Channel and source coding theories are discussed. The following subject areas are covered: large constraint length convolutional codes (the Galileo code); decoder design (the big Viterbi decoder); Voyager's and Galileo's data compression scheme; current research in data compression for images; neural networks for soft decoding; neural networks for source decoding; finite-state codes; and fractals for data compression.

  8. Population decoding of motor cortical activity using a generalized linear model with hidden states.

    PubMed

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas; Paninski, Liam

    2010-06-15

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (reducing the mean square error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Population Decoding of Motor Cortical Activity using a Generalized Linear Model with Hidden States

    PubMed Central

    Lawhern, Vernon; Wu, Wei; Hatsopoulos, Nicholas G.; Paninski, Liam

    2010-01-01

    Generalized linear models (GLMs) have been developed for modeling and decoding population neuronal spiking activity in the motor cortex. These models provide reasonable characterizations between neural activity and motor behavior. However, they lack a description of movement-related terms which are not observed directly in these experiments, such as muscular activation, the subject's level of attention, and other internal or external states. Here we propose to include a multi-dimensional hidden state to address these states in a GLM framework where the spike count at each time is described as a function of the hand state (position, velocity, and acceleration), truncated spike history, and the hidden state. The model can be identified by an Expectation-Maximization algorithm. We tested this new method in two datasets where spikes were simultaneously recorded using a multi-electrode array in the primary motor cortex of two monkeys. It was found that this method significantly improves the model-fitting over the classical GLM, for hidden dimensions varying from 1 to 4. This method also provides more accurate decoding of hand state (lowering the Mean Square Error by up to 29% in some cases), while retaining real-time computational efficiency. These improvements on representation and decoding over the classical GLM model suggest that this new approach could contribute as a useful tool to motor cortical decoding and prosthetic applications. PMID:20359500

  10. Improved prediction of bimanual movements by a two-staged (effector-then-trajectory) decoder with epidural ECoG in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Choi, Hoseok; Lee, Jeyeon; Park, Jinsick; Lee, Seho; Ahn, Kyoung-ha; Kim, In Young; Lee, Kyoung-Min; Jang, Dong Pyo

    2018-02-01

    Objective. In arm movement BCIs (brain-computer interfaces), unimanual research has been much more extensively studied than its bimanual counterpart. However, it is well known that the bimanual brain state is different from the unimanual one. Conventional methodology used in unimanual studies does not take the brain stage into consideration, and therefore appears to be insufficient for decoding bimanual movements. In this paper, we propose the use of a two-staged (effector-then-trajectory) decoder, which combines the classification of movement conditions and uses a hand trajectory predicting algorithm for unimanual and bimanual movements, for application in real-world BCIs. Approach. Two micro-electrode patches (32 channels) were inserted over the dura mater of the left and right hemispheres of two rhesus monkeys, covering the motor related cortex for epidural electrocorticograph (ECoG). Six motion sensors (inertial measurement unit) were used to record the movement signals. The monkeys performed three types of arm movement tasks: left unimanual, right unimanual, bimanual. To decode these movements, we used a two-staged decoder, which combines the effector classifier for four states (left unimanual, right unimanual, bimanual movements, and stationary state) and movement predictor using regression. Main results. Using this approach, we successfully decoded both arm positions using the proposed decoder. The results showed that decoding performance for bimanual movements were improved compared to the conventional method, which does not consider the effector, and the decoding performance was significant and stable over a period of four months. In addition, we also demonstrated the feasibility of epidural ECoG signals, which provided an adequate level of decoding accuracy. Significance. These results provide evidence that brain signals are different depending on the movement conditions or effectors. Thus, the two-staged method could be useful if BCIs are used to generalize for both unimanual and bimanual operations in human applications and in various neuro-prosthetics fields.

  11. Elegant Grapheme-Phoneme Correspondence: A Periodic Chart and Singularity Generalization Unify Decoding

    ERIC Educational Resources Information Center

    Gates, Louis

    2018-01-01

    The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization--this generalization unifies…

  12. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and sectionalization of trellises. Chapter 7 discusses trellis decomposition and subtrellises for low-weight codewords. Chapter 8 first presents well known methods for constructing long powerful codes from short component codes or component codes of smaller dimensions, and then provides methods for constructing their trellises which include Shannon and Cartesian product techniques. Chapter 9 deals with convolutional codes, puncturing, zero-tail termination and tail-biting.Chapters 10 through 13 present various trellis-based decoding algorithms, old and new. Chapter 10 first discusses the application of the well known Viterbi decoding algorithm to linear block codes, optimum sectionalization of a code trellis to minimize computation complexity, and design issues for IC (integrated circuit) implementation of a Viterbi decoder. Then it presents a new decoding algorithm for convolutional codes, named Differential Trellis Decoding (DTD) algorithm. Chapter 12 presents a suboptimum reliability-based iterative decoding algorithm with a low-weight trellis search for the most likely codeword. This decoding algorithm provides a good trade-off between error performance and decoding complexity. All the decoding algorithms presented in Chapters 10 through 12 are devised to minimize word error probability. Chapter 13 presents decoding algorithms that minimize bit error probability and provide the corresponding soft (reliability) information at the output of the decoder. Decoding algorithms presented are the MAP (maximum a posteriori probability) decoding algorithm and the Soft-Output Viterbi Algorithm (SOVA) algorithm. Finally, the minimization of bit error probability in trellis-based MLD is discussed.

  13. Continuous movement decoding using a target-dependent model with EMG inputs.

    PubMed

    Sachs, Nicholas A; Corbett, Elaine A; Miller, Lee E; Perreault, Eric J

    2011-01-01

    Trajectory-based models that incorporate target position information have been shown to accurately decode reaching movements from bio-control signals, such as muscle (EMG) and cortical activity (neural spikes). One major hurdle in implementing such models for neuroprosthetic control is that they are inherently designed to decode single reaches from a position of origin to a specific target. Gaze direction can be used to identify appropriate targets, however information regarding movement intent is needed to determine when a reach is meant to begin and when it has been completed. We used linear discriminant analysis to classify limb states into movement classes based on recorded EMG from a sparse set of shoulder muscles. We then used the detected state transitions to update target information in a mixture of Kalman filters that incorporated target position explicitly in the state, and used EMG activity to decode arm movements. Updating the target position initiated movement along new trajectories, allowing a sequence of appropriately timed single reaches to be decoded in series and enabling highly accurate continuous control.

  14. More than meets the eye: the role of self-identity in decoding complex emotional states.

    PubMed

    Stevenson, Michael T; Soto, José A; Adams, Reginald B

    2012-10-01

    Folk wisdom asserts that "the eyes are the window to the soul," and empirical science corroborates a prominent role for the eyes in the communication of emotion. Herein we examine variation in the ability to "read" the eyes of others as a function of social group membership, employing a widely used emotional state decoding task: "Reading the Mind in Eyes." This task has documented impaired emotional state decoding across racial groups, with cross-race performance on par with that previously reported as a function of autism spectrum disorders. The present study extended this work by examining the moderating role of social identity in such impairments. For college students more highly identified with their university, cross-race performance differences were not found for judgments of "same-school" eyes but remained for "rival-school" eyes. These findings suggest that impaired emotional state decoding across groups may thus be more amenable to remediation than previously realized.

  15. Automated selection of brain regions for real-time fMRI brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Lührs, Michael; Sorger, Bettina; Goebel, Rainer; Esposito, Fabrizio

    2017-02-01

    Objective. Brain-computer interfaces (BCIs) implemented with real-time functional magnetic resonance imaging (rt-fMRI) use fMRI time-courses from predefined regions of interest (ROIs). To reach best performances, localizer experiments and on-site expert supervision are required for ROI definition. To automate this step, we developed two unsupervised computational techniques based on the general linear model (GLM) and independent component analysis (ICA) of rt-fMRI data, and compared their performances on a communication BCI. Approach. 3 T fMRI data of six volunteers were re-analyzed in simulated real-time. During a localizer run, participants performed three mental tasks following visual cues. During two communication runs, a letter-spelling display guided the subjects to freely encode letters by performing one of the mental tasks with a specific timing. GLM- and ICA-based procedures were used to decode each letter, respectively using compact ROIs and whole-brain distributed spatio-temporal patterns of fMRI activity, automatically defined from subject-specific or group-level maps. Main results. Letter-decoding performances were comparable to supervised methods. In combination with a similarity-based criterion, GLM- and ICA-based approaches successfully decoded more than 80% (average) of the letters. Subject-specific maps yielded optimal performances. Significance. Automated solutions for ROI selection may help accelerating the translation of rt-fMRI BCIs from research to clinical applications.

  16. Word-Decoding Skill Interacts with Working Memory Capacity to Influence Inference Generation during Reading

    ERIC Educational Resources Information Center

    Hamilton, Stephen; Freed, Erin; Long, Debra L.

    2016-01-01

    The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…

  17. Resting-state brain activity in the motor cortex reflects task-induced activity: A multi-voxel pattern analysis.

    PubMed

    Kusano, Toshiki; Kurashige, Hiroki; Nambu, Isao; Moriguchi, Yoshiya; Hanakawa, Takashi; Wada, Yasuhiro; Osu, Rieko

    2015-08-01

    It has been suggested that resting-state brain activity reflects task-induced brain activity patterns. In this study, we examined whether neural representations of specific movements can be observed in the resting-state brain activity patterns of motor areas. First, we defined two regions of interest (ROIs) to examine brain activity associated with two different behavioral tasks. Using multi-voxel pattern analysis with regularized logistic regression, we designed a decoder to detect voxel-level neural representations corresponding to the tasks in each ROI. Next, we applied the decoder to resting-state brain activity. We found that the decoder discriminated resting-state neural activity with accuracy comparable to that associated with task-induced neural activity. The distribution of learned weighted parameters for each ROI was similar for resting-state and task-induced activities. Large weighted parameters were mainly located on conjunctive areas. Moreover, the accuracy of detection was higher than that for a decoder whose weights were randomly shuffled, indicating that the resting-state brain activity includes multi-voxel patterns similar to the neural representation for the tasks. Therefore, these results suggest that the neural representation of resting-state brain activity is more finely organized and more complex than conventionally considered.

  18. Good Trellises for IC Implementation of Viterbi Decoders for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Moorthy, Hari T.; Lin, Shu; Uehara, Gregory T.

    1997-01-01

    This paper investigates trellis structures of linear block codes for the integrated circuit (IC) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper-bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called add-compare-select (ACS)-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the very large scale integration (VISI) complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a nonminimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  19. Good trellises for IC implementation of viterbi decoders for linear block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Uehara, Gregory T.

    1996-01-01

    This paper investigates trellis structures of linear block codes for the IC (integrated circuit) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called ACS-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the VLSI complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a non-minimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  20. A tensorial approach to access cognitive workload related to mental arithmetic from EEG functional connectivity estimates.

    PubMed

    Dimitriadis, S I; Sun, Yu; Kwok, K; Laskaris, N A; Bezerianos, A

    2013-01-01

    The association of functional connectivity patterns with particular cognitive tasks has long been a topic of interest in neuroscience, e.g., studies of functional connectivity have demonstrated its potential use for decoding various brain states. However, the high-dimensionality of the pairwise functional connectivity limits its usefulness in some real-time applications. In the present study, the methodology of tensor subspace analysis (TSA) is used to reduce the initial high-dimensionality of the pairwise coupling in the original functional connectivity network to a space of condensed descriptive power, which would significantly decrease the computational cost and facilitate the differentiation of brain states. We assess the feasibility of the proposed method on EEG recordings when the subject was performing mental arithmetic task which differ only in the difficulty level (easy: 1-digit addition v.s. 3-digit additions). Two different cortical connective networks were detected, and by comparing the functional connectivity networks in different work states, it was found that the task-difficulty is best reflected in the connectivity structure of sub-graphs extending over parietooccipital sites. Incorporating this data-driven information within original TSA methodology, we succeeded in predicting the difficulty level from connectivity patterns in an efficient way that can be implemented so as to work in real-time.

  1. On how the brain decodes vocal cues about speaker confidence.

    PubMed

    Jiang, Xiaoming; Pell, Marc D

    2015-05-01

    In speech communication, listeners must accurately decode vocal cues that refer to the speaker's mental state, such as their confidence or 'feeling of knowing'. However, the time course and neural mechanisms associated with online inferences about speaker confidence are unclear. Here, we used event-related potentials (ERPs) to examine the temporal neural dynamics underlying a listener's ability to infer speaker confidence from vocal cues during speech processing. We recorded listeners' real-time brain responses while they evaluated statements wherein the speaker's tone of voice conveyed one of three levels of confidence (confident, close-to-confident, unconfident) or were spoken in a neutral manner. Neural responses time-locked to event onset show that the perceived level of speaker confidence could be differentiated at distinct time points during speech processing: unconfident expressions elicited a weaker P2 than all other expressions of confidence (or neutral-intending utterances), whereas close-to-confident expressions elicited a reduced negative response in the 330-500 msec and 550-740 msec time window. Neutral-intending expressions, which were also perceived as relatively confident, elicited a more delayed, larger sustained positivity than all other expressions in the 980-1270 msec window for this task. These findings provide the first piece of evidence of how quickly the brain responds to vocal cues signifying the extent of a speaker's confidence during online speech comprehension; first, a rough dissociation between unconfident and confident voices occurs as early as 200 msec after speech onset. At a later stage, further differentiation of the exact level of speaker confidence (i.e., close-to-confident, very confident) is evaluated via an inferential system to determine the speaker's meaning under current task settings. These findings extend three-stage models of how vocal emotion cues are processed in speech comprehension (e.g., Schirmer & Kotz, 2006) by revealing how a speaker's mental state (i.e., feeling of knowing) is simultaneously inferred from vocal expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Predicting the integration of overlapping memories by decoding mnemonic processing states during learning

    PubMed Central

    Richter, Franziska R.; Chanales, Avi J. H.; Kuhl, Brice A.

    2015-01-01

    The hippocampal memory system is thought to alternate between two opposing processing states: encoding and retrieval. When present experience overlaps with past experience, this creates a potential tradeoff between encoding the present and retrieving the past. This tradeoff may be resolved by memory integration—that is, by forming a mnemonic representation that links present experience with overlapping past experience. Here, we used fMRI decoding analyses to predict when—and establish how—past and present experiences become integrated in memory. In an initial experiment, we alternately instructed subjects to adopt encoding, retrieval or integration states during overlapping learning. We then trained across-subject pattern classifiers to ‘read out’ the instructed processing states from fMRI activity patterns. We show that an integration state was clearly dissociable from encoding or retrieval states. Moreover, trial-by-trial fluctuations in decoded evidence for an integration state during learning reliably predicted behavioral expressions of successful memory integration. Strikingly, the decoding algorithm also successfully predicted specific instances of spontaneous memory integration in an entirely independent sample of subjects for whom processing state instructions were not administered. Finally, we show that medial prefrontal cortex and hippocampus differentially contribute to encoding, retrieval, and integration states: whereas hippocampus signals the tradeoff between encoding vs. retrieval states, medial prefrontal cortex actively represents past experience in relation to new learning. PMID:26327243

  3. Direct migration motion estimation and mode decision to decoder for a low-complexity decoder Wyner-Ziv video coding

    NASA Astrophysics Data System (ADS)

    Lei, Ted Chih-Wei; Tseng, Fan-Shuo

    2017-07-01

    This paper addresses the problem of high-computational complexity decoding in traditional Wyner-Ziv video coding (WZVC). The key focus is the migration of two traditionally high-computationally complex encoder algorithms, namely motion estimation and mode decision. In order to reduce the computational burden in this process, the proposed architecture adopts the partial boundary matching algorithm and four flexible types of block mode decision at the decoder. This approach does away with the need for motion estimation and mode decision at the encoder. The experimental results show that the proposed padding block-based WZVC not only decreases decoder complexity to approximately one hundredth that of the state-of-the-art DISCOVER decoding but also outperforms DISCOVER codec by up to 3 to 4 dB.

  4. Analysis of Demand for Decoders of Television Captioning for Deaf and Hearing-Impaired Children and Adults.

    ERIC Educational Resources Information Center

    Sherman, Renee Z.; Sherman, Joel D.

    This market research report analyzed the published literature, the size of the deaf/severely hard-of-hearing population, factors that affect demand for closed-captioned television decoders, and the supply of decoders. The analysis found that the number of hearing-impaired people in the United States is between 16 and 21 million; hearing impairment…

  5. Kernel Temporal Differences for Neural Decoding

    PubMed Central

    Bae, Jihye; Sanchez Giraldo, Luis G.; Pohlmeyer, Eric A.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2015-01-01

    We study the feasibility and capability of the kernel temporal difference (KTD)(λ) algorithm for neural decoding. KTD(λ) is an online, kernel-based learning algorithm, which has been introduced to estimate value functions in reinforcement learning. This algorithm combines kernel-based representations with the temporal difference approach to learning. One of our key observations is that by using strictly positive definite kernels, algorithm's convergence can be guaranteed for policy evaluation. The algorithm's nonlinear functional approximation capabilities are shown in both simulations of policy evaluation and neural decoding problems (policy improvement). KTD can handle high-dimensional neural states containing spatial-temporal information at a reasonable computational complexity allowing real-time applications. When the algorithm seeks a proper mapping between a monkey's neural states and desired positions of a computer cursor or a robot arm, in both open-loop and closed-loop experiments, it can effectively learn the neural state to action mapping. Finally, a visualization of the coadaptation process between the decoder and the subject shows the algorithm's capabilities in reinforcement learning brain machine interfaces. PMID:25866504

  6. Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.

    PubMed

    Schuck, Nicolas W; Cai, Ming Bo; Wilson, Robert C; Niv, Yael

    2016-09-21

    Although the orbitofrontal cortex (OFC) has been studied intensely for decades, its precise functions have remained elusive. We recently hypothesized that the OFC contains a "cognitive map" of task space in which the current state of the task is represented, and this representation is especially critical for behavior when states are unobservable from sensory input. To test this idea, we apply pattern-classification techniques to neuroimaging data from humans performing a decision-making task with 16 states. We show that unobservable task states can be decoded from activity in OFC, and decoding accuracy is related to task performance and the occurrence of individual behavioral errors. Moreover, similarity between the neural representations of consecutive states correlates with behavioral accuracy in corresponding state transitions. These results support the idea that OFC represents a cognitive map of task space and establish the feasibility of decoding state representations in humans using non-invasive neuroimaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data.

    PubMed

    Grootswagers, Tijl; Wardle, Susan G; Carlson, Thomas A

    2017-04-01

    Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain-computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to "decode" different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.

  8. Revealing hidden states in visual working memory using electroencephalography

    PubMed Central

    Wolff, Michael J.; Ding, Jacqueline; Myers, Nicholas E.; Stokes, Mark G.

    2015-01-01

    It is often assumed that information in visual working memory (vWM) is maintained via persistent activity. However, recent evidence indicates that information in vWM could be maintained in an effectively “activity-silent” neural state. Silent vWM is consistent with recent cognitive and neural models, but poses an important experimental problem: how can we study these silent states using conventional measures of brain activity? We propose a novel approach that is analogous to echolocation: using a high-contrast visual stimulus, it may be possible to drive brain activity during vWM maintenance and measure the vWM-dependent impulse response. We recorded electroencephalography (EEG) while participants performed a vWM task in which a randomly oriented grating was remembered. Crucially, a high-contrast, task-irrelevant stimulus was shown in the maintenance period in half of the trials. The electrophysiological response from posterior channels was used to decode the orientations of the gratings. While orientations could be decoded during and shortly after stimulus presentation, decoding accuracy dropped back close to baseline in the delay. However, the visual evoked response from the task-irrelevant stimulus resulted in a clear re-emergence in decodability. This result provides important proof-of-concept for a promising and relatively simple approach to decode “activity-silent” vWM content using non-invasive EEG. PMID:26388748

  9. Elegant grapheme-phoneme correspondence: a periodic chart and singularity generalization unify decoding.

    PubMed

    Gates, Louis

    2018-04-01

    The accompanying article introduces highly transparent grapheme-phoneme relationships embodied within a Periodic table of decoding cells, which arguably presents the quintessential transparent decoding elements. The study then folds these cells into one highly transparent but simply stated singularity generalization-this generalization unifies the decoding cells (97% transparency). Deeper, the periodic table and singularity generalization together highlight the connectivity of the periodic cells. Moreover, these interrelated cells, coupled with the singularity generalization, clarify teaching targets and enable efficient learning of the letter-sound code. This singularity generalization, in turn, serves as a model for creating unified but easily stated subordinate generalizations for any one of the transparent cells or groups of cells shown within the tables. The article then expands the periodic cells into two tables of teacher-ready sample word lists-one table includes sample words for the basic and phonogram vowel cells, and the other table embraces word samples for the transparent consonant cells. The paper concludes with suggestions for teaching the cellular transparency embedded within reoccurring isolated words and running text to promote decoding automaticity of the periodic cells.

  10. Decoding with limited neural data: a mixture of time-warped trajectory models for directional reaches.

    PubMed

    Corbett, Elaine A; Perreault, Eric J; Körding, Konrad P

    2012-06-01

    Neuroprosthetic devices promise to allow paralyzed patients to perform the necessary functions of everyday life. However, to allow patients to use such tools it is necessary to decode their intent from neural signals such as electromyograms (EMGs). Because these signals are noisy, state of the art decoders integrate information over time. One systematic way of doing this is by taking into account the natural evolution of the state of the body--by using a so-called trajectory model. Here we use two insights about movements to enhance our trajectory model: (1) at any given time, there is a small set of likely movement targets, potentially identified by gaze; (2) reaches are produced at varying speeds. We decoded natural reaching movements using EMGs of muscles that might be available from an individual with spinal cord injury. Target estimates found from tracking eye movements were incorporated into the trajectory model, while a mixture model accounted for the inherent uncertainty in these estimates. Warping the trajectory model in time using a continuous estimate of the reach speed enabled accurate decoding of faster reaches. We found that the choice of richer trajectory models, such as those incorporating target or speed, improves decoding particularly when there is a small number of EMGs available.

  11. Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm

    NASA Astrophysics Data System (ADS)

    Makin, Joseph G.; O'Doherty, Joseph E.; Cardoso, Mariana M. B.; Sabes, Philip N.

    2018-04-01

    Objective. The aim of this work is to improve the state of the art for motor-control with a brain-machine interface (BMI). BMIs use neurological recording devices and decoding algorithms to transform brain activity directly into real-time control of a machine, archetypically a robotic arm or a cursor. The standard procedure treats neural activity—vectors of spike counts in small temporal windows—as noisy observations of the kinematic state (position, velocity, acceleration) of the fingertip. Inferring the state from the observations then takes the form of a dynamical filter, typically some variant on Kalman’s (KF). The KF, however, although fairly robust in practice, is optimal only when the relationships between variables are linear and the noise is Gaussian, conditions usually violated in practice. Approach. To overcome these limitations we introduce a new filter, the ‘recurrent exponential-family harmonium’ (rEFH), that models the spike counts explicitly as Poisson-distributed, and allows for arbitrary nonlinear dynamics and observation models. Furthermore, the model underlying the filter is acquired through unsupervised learning, which allows temporal correlations in spike counts to be explained by latent dynamics that do not necessarily correspond to the kinematic state of the fingertip. Main results. We test the rEFH on offline reconstruction of the kinematics of reaches in the plane. The rEFH outperforms the standard, as well as three other state-of-the-art, decoders, across three monkeys, two different tasks, most kinematic variables, and a range of bin widths, amounts of training data, and numbers of neurons. Significance. Our algorithm establishes a new state of the art for offline decoding of reaches—in particular, for fingertip velocities, the variable used for control in most online decoders.

  12. Beyond Decoding: Literacy and Libraries.

    ERIC Educational Resources Information Center

    Bookmark, 1992

    1992-01-01

    This issue contains 21 articles discussing library-sponsored literacy programs, tutoring and programming techniques, and state and national efforts. The articles include: (1) "Beyond Decoding: Literacy and Libraries--Introduction" (Amy Spaulding); (2) "Libraries: Natural Centers for Literacy" (Jacqueline Cook); (3) "Kids…

  13. Decoding individual episodic memory traces in the human hippocampus.

    PubMed

    Chadwick, Martin J; Hassabis, Demis; Weiskopf, Nikolaus; Maguire, Eleanor A

    2010-03-23

    In recent years, multivariate pattern analyses have been performed on functional magnetic resonance imaging (fMRI) data, permitting prediction of mental states from local patterns of blood oxygen-level-dependent (BOLD) signal across voxels. We previously demonstrated that it is possible to predict the position of individuals in a virtual-reality environment from the pattern of activity across voxels in the hippocampus. Although this shows that spatial memories can be decoded, substantially more challenging, and arguably only possible to investigate in humans, is whether it is feasible to predict which complex everyday experience, or episodic memory, a person is recalling. Here we document for the first time that traces of individual rich episodic memories are detectable and distinguishable solely from the pattern of fMRI BOLD signals across voxels in the human hippocampus. In so doing, we uncovered a possible functional topography in the hippocampus, with preferential episodic processing by some hippocampal regions over others. Moreover, our results imply that the neuronal traces of episodic memories are stable (and thus predictable) even over many re-activations. Finally, our data provide further evidence for functional differentiation within the medial temporal lobe, in that we show the hippocampus contains significantly more episodic information than adjacent structures. 2010 Elsevier Ltd. All rights reserved.

  14. Preserved Affective Sharing But Impaired Decoding of Contextual Complex Emotions in Alcohol Dependence.

    PubMed

    Grynberg, Delphine; Maurage, Pierre; Nandrino, Jean-Louis

    2017-04-01

    Prior research has repeatedly shown that alcohol dependence is associated with a large range of impairments in psychological processes, which could lead to interpersonal deficits. Specifically, it has been suggested that these interpersonal difficulties are underpinned by reduced recognition and sharing of others' emotional states. However, this pattern of deficits remains to be clarified. This study thus aimed to investigate whether alcohol dependence is associated with impaired abilities in decoding contextual complex emotions and with altered sharing of others' emotions. Forty-one alcohol-dependent individuals (ADI) and 37 matched healthy individuals completed the Multifaceted Empathy Test, in which they were instructed to identify complex emotional states expressed by individuals in contextual scenes and to state to what extent they shared them. Compared to healthy individuals, ADI were impaired in identifying negative (Cohen's d = 0.75) and positive (Cohen's d = 0.46) emotional states but, conversely, presented preserved abilities in sharing others' emotional states. This study shows that alcohol dependence is characterized by an impaired ability to decode complex emotional states (both positive and negative), despite the presence of complementary contextual cues, but by preserved emotion-sharing. Therefore, these results extend earlier data describing an impaired ability to decode noncontextualized emotions toward contextualized and ecologically valid emotional states. They also indicate that some essential emotional competences such as emotion-sharing are preserved in alcohol dependence, thereby offering potential therapeutic levers. Copyright © 2017 by the Research Society on Alcoholism.

  15. Harmonic Brain Modes: A Unifying Framework for Linking Space and Time in Brain Dynamics.

    PubMed

    Atasoy, Selen; Deco, Gustavo; Kringelbach, Morten L; Pearson, Joel

    2018-06-01

    A fundamental characteristic of spontaneous brain activity is coherent oscillations covering a wide range of frequencies. Interestingly, these temporal oscillations are highly correlated among spatially distributed cortical areas forming structured correlation patterns known as the resting state networks, although the brain is never truly at "rest." Here, we introduce the concept of harmonic brain modes-fundamental building blocks of complex spatiotemporal patterns of neural activity. We define these elementary harmonic brain modes as harmonic modes of structural connectivity; that is, connectome harmonics, yielding fully synchronous neural activity patterns with different frequency oscillations emerging on and constrained by the particular structure of the brain. Hence, this particular definition implicitly links the hitherto poorly understood dimensions of space and time in brain dynamics and its underlying anatomy. Further we show how harmonic brain modes can explain the relationship between neurophysiological, temporal, and network-level changes in the brain across different mental states ( wakefulness, sleep, anesthesia, psychedelic). Notably, when decoded as activation of connectome harmonics, spatial and temporal characteristics of neural activity naturally emerge from the interplay between excitation and inhibition and this critical relation fits the spatial, temporal, and neurophysiological changes associated with different mental states. Thus, the introduced framework of harmonic brain modes not only establishes a relation between the spatial structure of correlation patterns and temporal oscillations (linking space and time in brain dynamics), but also enables a new dimension of tools for understanding fundamental principles underlying brain dynamics in different states of consciousness.

  16. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan

    2016-09-01

    In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to "yes" or "no" intentions (e.g., mental arithmetic calculation for "yes"). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient's internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an "fNIRS-based direct intention decoding" paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing "yes" or "no" intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ±1.39 and 74.08% ±2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p<0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.

  17. Reprogrammable read only variable threshold transistor memory with isolated addressing buffer

    DOEpatents

    Lodi, Robert J.

    1976-01-01

    A monolithic integrated circuit, fully decoded memory comprises a rectangular array of variable threshold field effect transistors organized into a plurality of multi-bit words. Binary address inputs to the memory are decoded by a field effect transistor decoder into a plurality of word selection lines each of which activates an address buffer circuit. Each address buffer circuit, in turn, drives a word line of the memory array. In accordance with the word line selected by the decoder the activated buffer circuit directs reading or writing voltages to the transistors comprising the memory words. All of the buffer circuits additionally are connected to a common terminal for clearing all of the memory transistors to a predetermined state by the application to the common terminal of a large magnitude voltage of a predetermined polarity. The address decoder, the buffer and the memory array, as well as control and input/output control and buffer field effect transistor circuits, are fabricated on a common substrate with means provided to isolate the substrate of the address buffer transistors from the remainder of the substrate so that the bulk clearing function of simultaneously placing all of the memory transistors into a predetermined state can be performed.

  18. High-speed architecture for the decoding of trellis-coded modulation

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.

  19. Orientation decoding depends on maps, not columns

    PubMed Central

    Freeman, Jeremy; Brouwer, Gijs Joost; Heeger, David J.; Merriam, Elisha P.

    2011-01-01

    The representation of orientation in primary visual cortex (V1) has been examined at a fine spatial scale corresponding to the columnar architecture. We present functional magnetic resonance imaging (fMRI) measurements providing evidence for a topographic map of orientation preference in human V1 at a much coarser scale, in register with the angular-position component of the retinotopic map of V1. This coarse-scale orientation map provides a parsimonious explanation for why multivariate pattern analysis methods succeed in decoding stimulus orientation from fMRI measurements, challenging the widely-held assumption that decoding results reflect sampling of spatial irregularities in the fine-scale columnar architecture. Decoding stimulus attributes and cognitive states from fMRI measurements has proven useful for a number of applications, but our results demonstrate that the interpretation cannot assume decoding reflects or exploits columnar organization. PMID:21451017

  20. Decoding fMRI Signatures of Real-world Autobiographical Memory Retrieval.

    PubMed

    Rissman, Jesse; Chow, Tiffany E; Reggente, Nicco; Wagner, Anthony D

    2016-04-01

    Extant neuroimaging data implicate frontoparietal and medial-temporal lobe regions in episodic retrieval, and the specific pattern of activity within and across these regions is diagnostic of an individual's subjective mnemonic experience. For example, in laboratory-based paradigms, memories for recently encoded faces can be accurately decoded from single-trial fMRI patterns [Uncapher, M. R., Boyd-Meredith, J. T., Chow, T. E., Rissman, J., & Wagner, A. D. Goal-directed modulation of neural memory patterns: Implications for fMRI-based memory detection. Journal of Neuroscience, 35, 8531-8545, 2015; Rissman, J., Greely, H. T., & Wagner, A. D. Detecting individual memories through the neural decoding of memory states and past experience. Proceedings of the National Academy of Sciences, U.S.A., 107, 9849-9854, 2010]. Here, we investigated the neural patterns underlying memory for real-world autobiographical events, probed at 1- to 3-week retention intervals as well as whether distinct patterns are associated with different subjective memory states. For 3 weeks, participants (n = 16) wore digital cameras that captured photographs of their daily activities. One week later, they were scanned while making memory judgments about sequences of photos depicting events from their own lives or events captured by the cameras of others. Whole-brain multivoxel pattern analysis achieved near-perfect accuracy at distinguishing correctly recognized events from correctly rejected novel events, and decoding performance did not significantly vary with retention interval. Multivoxel pattern classifiers also differentiated recollection from familiarity and reliably decoded the subjective strength of recollection, of familiarity, or of novelty. Classification-based brain maps revealed dissociable neural signatures of these mnemonic states, with activity patterns in hippocampus, medial PFC, and ventral parietal cortex being particularly diagnostic of recollection. Finally, a classifier trained on previously acquired laboratory-based memory data achieved reliable decoding of autobiographical memory states. We discuss the implications for neuroscientific accounts of episodic retrieval and comment on the potential forensic use of fMRI for probing experiential knowledge.

  1. Commonalities and differences in the neural representations of English, Portuguese, and Mandarin sentences: When knowledge of the brain-language mappings for two languages is better than one.

    PubMed

    Yang, Ying; Wang, Jing; Bailer, Cyntia; Cherkassky, Vladimir; Just, Marcel Adam

    2017-12-01

    This study extended cross-language semantic decoding (based on a concept's fMRI signature) to the decoding of sentences across three different languages (English, Portuguese and Mandarin). A classifier was trained on either the mapping between words and activation patterns in one language or the mappings in two languages (using an equivalent amount of training data), and then tested on its ability to decode the semantic content of a third language. The model trained on two languages was reliably more accurate than a classifier trained on one language for all three pairs of languages. This two-language advantage was selective to abstract concept domains such as social interactions and mental activity. Representational Similarity Analyses (RSA) of the inter-sentence neural similarities resulted in similar clustering of sentences in all the three languages, indicating a shared neural concept space among languages. These findings identify semantic domains that are common across these three languages versus those that are more language or culture-specific. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Linear-time general decoding algorithm for the surface code

    NASA Astrophysics Data System (ADS)

    Darmawan, Andrew S.; Poulin, David

    2018-05-01

    A quantum error correcting protocol can be substantially improved by taking into account features of the physical noise process. We present an efficient decoder for the surface code which can account for general noise features, including coherences and correlations. We demonstrate that the decoder significantly outperforms the conventional matching algorithm on a variety of noise models, including non-Pauli noise and spatially correlated noise. The algorithm is based on an approximate calculation of the logical channel using a tensor-network description of the noisy state.

  3. On the decoding process in ternary error-correcting output codes.

    PubMed

    Escalera, Sergio; Pujol, Oriol; Radeva, Petia

    2010-01-01

    A common way to model multiclass classification problems is to design a set of binary classifiers and to combine them. Error-Correcting Output Codes (ECOC) represent a successful framework to deal with these type of problems. Recent works in the ECOC framework showed significant performance improvements by means of new problem-dependent designs based on the ternary ECOC framework. The ternary framework contains a larger set of binary problems because of the use of a "do not care" symbol that allows us to ignore some classes by a given classifier. However, there are no proper studies that analyze the effect of the new symbol at the decoding step. In this paper, we present a taxonomy that embeds all binary and ternary ECOC decoding strategies into four groups. We show that the zero symbol introduces two kinds of biases that require redefinition of the decoding design. A new type of decoding measure is proposed, and two novel decoding strategies are defined. We evaluate the state-of-the-art coding and decoding strategies over a set of UCI Machine Learning Repository data sets and into a real traffic sign categorization problem. The experimental results show that, following the new decoding strategies, the performance of the ECOC design is significantly improved.

  4. Mental ability and psychological work performance in Chinese workers.

    PubMed

    Zhong, Fei; Yano, Eiji; Lan, Yajia; Wang, Mianzhen; Wang, Zhiming; Wang, Xiaorong

    2006-10-01

    This study was to explore the relationship among mental ability, occupational stress, and psychological work performance in Chinese workers, and to identify relevant modifiers of mental ability and psychological work performance. Psychological Stress Intensity (PSI), psychological work performance, and mental ability (Mental Function Index, MFI) were determined among 485 Chinese workers (aged 33 to 62 yr, 65% of men) with varied work occupations. Occupational Stress Questionnaire (OSQ) and mental ability with 3 tests (including immediate memory, digit span, and cipher decoding) were used. The relationship between mental ability and psychological work performance was analyzed with multiple linear regression approach. PSI, MFI, or psychological work performance were significantly different among different work types and educational level groups (p<0.01). Multiple linear regression analysis showed that MFI was significantly related to gender, age, educational level, and work type. Higher MFI and lower PSI predicted a better psychological work performance, even after adjusted for gender, age, educational level, and work type. The study suggests that occupational stress and low mental ability are important predictors for poor psychological work performance, which is modified by both gender and educational level.

  5. Influence of incident angle on the decoding in laser polarization encoding guidance

    NASA Astrophysics Data System (ADS)

    Zhou, Muchun; Chen, Yanru; Zhao, Qi; Xin, Yu; Wen, Hongyuan

    2009-07-01

    Dynamic detection of polarization states is very important for laser polarization coding guidance systems. In this paper, a set of dynamic polarization decoding and detection system used in laser polarization coding guidance was designed. Detection process of the normal incident polarized light is analyzed with Jones Matrix; the system can effectively detect changes in polarization. Influence of non-normal incident light on performance of polarization decoding and detection system is studied; analysis showed that changes in incident angle will have a negative impact on measure results, the non-normal incident influence is mainly caused by second-order birefringence and polarization sensitivity effect generated in the phase delay and beam splitter prism. Combined with Fresnel formula, decoding errors of linearly polarized light, elliptically polarized light and circularly polarized light with different incident angles into the detector are calculated respectively, the results show that the decoding errors increase with increase of incident angle. Decoding errors have relations with geometry parameters, material refractive index of wave plate, polarization beam splitting prism. Decoding error can be reduced by using thin low-order wave-plate. Simulation of detection of polarized light with different incident angle confirmed the corresponding conclusions.

  6. Mixed coherent states in coupled chaotic systems: Design of secure wireless communication

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, M.; Dana, S. K.; Padmanaban, E.

    2016-12-01

    A general coupling design is proposed to realize a mixed coherent (MC) state: coexistence of complete synchronization, antisynchronization, and amplitude death in different pairs of similar state variables of the coupled chaotic system. The stability of coupled system is ensured by the Lyapunov function and a scaling of each variable is also separately taken care of. When heterogeneity as a parameter mismatch is introduced in the coupled system, the coupling function facilitates to retain its coherence and displays the global stability with renewed scaling factor. Robust synchronization features facilitated by a MC state enable to design a dual modulation scheme: binary phase shift key (BPSK) and parameter mismatch shift key (PMSK), for secure data transmission. Two classes of decoders (coherent and noncoherent) are discussed, the noncoherent decoder shows better performance over the coherent decoder, mostly a noncoherent demodulator is preferred in biological implant applications. Both the modulation schemes are demonstrated numerically by using the Lorenz oscillator and the BPSK scheme is demonstrated experimentally using radio signals.

  7. Can communication power of separable correlations exceed that of entanglement resource?

    PubMed

    Horodecki, Paweł; Tuziemski, Jan; Mazurek, Paweł; Horodecki, Ryszard

    2014-04-11

    The scenario of remote state preparation with a shared correlated quantum state and one bit of forward communication [B. Dakić et al., Nat. Phys. 8, 666 (2012)] is considered. Optimization of the transmission efficiency is extended to include general encoding and decoding strategies. The importance of the use of linear fidelity is recognized. It is shown that separable states cannot exceed the efficiency of entangled states by means of “local operations plus classical communication” actions limited to 1 bit of forward communication. It is proven however that such a surprising phenomena may naturally occur when the decoding agent has limited resources in the sense that either (i) has to use decoding which is insensitive to the change of the coordinate system in the plane in question (which is the natural choice if the receiver does not know the latter) or (ii) is forced to use bistochastic operations which may be imposed by physically inconvenient local thermodynamical conditions.

  8. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation

    PubMed Central

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2013-01-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method. PMID:23750314

  9. Adaptive distributed video coding with correlation estimation using expectation propagation

    NASA Astrophysics Data System (ADS)

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-01

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  10. Adaptive Distributed Video Coding with Correlation Estimation using Expectation Propagation.

    PubMed

    Cui, Lijuan; Wang, Shuang; Jiang, Xiaoqian; Cheng, Samuel

    2012-10-15

    Distributed video coding (DVC) is rapidly increasing in popularity by the way of shifting the complexity from encoder to decoder, whereas no compression performance degrades, at least in theory. In contrast with conventional video codecs, the inter-frame correlation in DVC is explored at decoder based on the received syndromes of Wyner-Ziv (WZ) frame and side information (SI) frame generated from other frames available only at decoder. However, the ultimate decoding performances of DVC are based on the assumption that the perfect knowledge of correlation statistic between WZ and SI frames should be available at decoder. Therefore, the ability of obtaining a good statistical correlation estimate is becoming increasingly important in practical DVC implementations. Generally, the existing correlation estimation methods in DVC can be classified into two main types: pre-estimation where estimation starts before decoding and on-the-fly (OTF) estimation where estimation can be refined iteratively during decoding. As potential changes between frames might be unpredictable or dynamical, OTF estimation methods usually outperforms pre-estimation techniques with the cost of increased decoding complexity (e.g., sampling methods). In this paper, we propose a low complexity adaptive DVC scheme using expectation propagation (EP), where correlation estimation is performed OTF as it is carried out jointly with decoding of the factor graph-based DVC code. Among different approximate inference methods, EP generally offers better tradeoff between accuracy and complexity. Experimental results show that our proposed scheme outperforms the benchmark state-of-the-art DISCOVER codec and other cases without correlation tracking, and achieves comparable decoding performance but with significantly low complexity comparing with sampling method.

  11. Coset Codes Viewed as Terminated Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1996-01-01

    In this paper, coset codes are considered as terminated convolutional codes. Based on this approach, three new general results are presented. First, it is shown that the iterative squaring construction can equivalently be defined from a convolutional code whose trellis terminates. This convolutional code determines a simple encoder for the coset code considered, and the state and branch labelings of the associated trellis diagram become straightforward. Also, from the generator matrix of the code in its convolutional code form, much information about the trade-off between the state connectivity and complexity at each section, and the parallel structure of the trellis, is directly available. Based on this generator matrix, it is shown that the parallel branches in the trellis diagram of the convolutional code represent the same coset code C(sub 1), of smaller dimension and shorter length. Utilizing this fact, a two-stage optimum trellis decoding method is devised. The first stage decodes C(sub 1), while the second stage decodes the associated convolutional code, using the branch metrics delivered by stage 1. Finally, a bidirectional decoding of each received block starting at both ends is presented. If about the same number of computations is required, this approach remains very attractive from a practical point of view as it roughly doubles the decoding speed. This fact is particularly interesting whenever the second half of the trellis is the mirror image of the first half, since the same decoder can be implemented for both parts.

  12. Decoding negative affect personality trait from patterns of brain activation to threat stimuli.

    PubMed

    Fernandes, Orlando; Portugal, Liana C L; Alves, Rita de Cássia S; Arruda-Sanchez, Tiago; Rao, Anil; Volchan, Eliane; Pereira, Mirtes; Oliveira, Letícia; Mourao-Miranda, Janaina

    2017-01-15

    Pattern recognition analysis (PRA) applied to functional magnetic resonance imaging (fMRI) has been used to decode cognitive processes and identify possible biomarkers for mental illness. In the present study, we investigated whether the positive affect (PA) or negative affect (NA) personality traits could be decoded from patterns of brain activation in response to a human threat using a healthy sample. fMRI data from 34 volunteers (15 women) were acquired during a simple motor task while the volunteers viewed a set of threat stimuli that were directed either toward them or away from them and matched neutral pictures. For each participant, contrast images from a General Linear Model (GLM) between the threat versus neutral stimuli defined the spatial patterns used as input to the regression model. We applied a multiple kernel learning (MKL) regression combining information from different brain regions hierarchically in a whole brain model to decode the NA and PA from patterns of brain activation in response to threat stimuli. The MKL model was able to decode NA but not PA from the contrast images between threat stimuli directed away versus neutral with a significance above chance. The correlation and the mean squared error (MSE) between predicted and actual NA were 0.52 (p-value=0.01) and 24.43 (p-value=0.01), respectively. The MKL pattern regression model identified a network with 37 regions that contributed to the predictions. Some of the regions were related to perception (e.g., occipital and temporal regions) while others were related to emotional evaluation (e.g., caudate and prefrontal regions). These results suggest that there was an interaction between the individuals' NA and the brain response to the threat stimuli directed away, which enabled the MKL model to decode NA from the brain patterns. To our knowledge, this is the first evidence that PRA can be used to decode a personality trait from patterns of brain activation during emotional contexts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Iterative deep convolutional encoder-decoder network for medical image segmentation.

    PubMed

    Jung Uk Kim; Hak Gu Kim; Yong Man Ro

    2017-07-01

    In this paper, we propose a novel medical image segmentation using iterative deep learning framework. We have combined an iterative learning approach and an encoder-decoder network to improve segmentation results, which enables to precisely localize the regions of interest (ROIs) including complex shapes or detailed textures of medical images in an iterative manner. The proposed iterative deep convolutional encoder-decoder network consists of two main paths: convolutional encoder path and convolutional decoder path with iterative learning. Experimental results show that the proposed iterative deep learning framework is able to yield excellent medical image segmentation performances for various medical images. The effectiveness of the proposed method has been proved by comparing with other state-of-the-art medical image segmentation methods.

  14. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  15. Fast and Flexible Successive-Cancellation List Decoders for Polar Codes

    NASA Astrophysics Data System (ADS)

    Hashemi, Seyyed Ali; Condo, Carlo; Gross, Warren J.

    2017-11-01

    Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next generation of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable trade-off between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of bit estimations required to decode rate one and single parity check codes. Thus, the number of estimations can be limited while guaranteeing exactly the same error-correction performance as if all bits of the code were estimated. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of bit estimations in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: it is shown that our design can achieve 1.86 Gb/s throughput, higher than the best state-of-the-art decoders.

  16. Integrating robotic action with biologic perception: A brain-machine symbiosis theory

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Babak

    In patients with motor disability the natural cyclic flow of information between the brain and external environment is disrupted by their limb impairment. Brain-Machine Interfaces (BMIs) aim to provide new communication channels between the brain and environment by direct translation of brain's internal states into actions. For enabling the user in a wide range of daily life activities, the challenge is designing neural decoders that autonomously adapt to different tasks, environments, and to changes in the pattern of neural activity. In this dissertation, a novel decoding framework for BMIs is developed in which a computational agent autonomously learns how to translate neural states into action based on maximization of a measure of shared goal between user and the agent. Since the agent and brain share the same goal, a symbiotic relationship between them will evolve therefore this decoding paradigm is called a Brain-Machine Symbiosis (BMS) framework. A decoding agent was implemented within the BMS framework based on the Actor-Critic method of Reinforcement Learning. The rule of the Actor as a neural decoder was to find mapping between the neural representation of motor states in the primary motor cortex (MI) and robot actions in order to solve reaching tasks. The Actor learned the optimal control policy using an evaluative feedback that was estimated by the Critic directly from the user's neural activity of the Nucleus Accumbens (NAcc). Through a series of computational neuroscience studies in a cohort of rats it was demonstrated that NAcc could provide a useful evaluative feedback by predicting the increase or decrease in the probability of earning reward based on the environmental conditions. Using a closed-loop BMI simulator it was demonstrated the Actor-Critic decoding architecture was able to adapt to different tasks as well as changes in the pattern of neural activity. The custom design of a dual micro-wire array enabled simultaneous implantation of MI and NAcc for the development of a full closed-loop system. The Actor-Critic decoding architecture was able to solve the brain-controlled reaching task using a robotic arm by capturing the interdependency between the simultaneous action representation in MI and reward expectation in NAcc.

  17. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control

    PubMed Central

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A.; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world. PMID:27917107

  18. The Berlin Brain-Computer Interface: Progress Beyond Communication and Control.

    PubMed

    Blankertz, Benjamin; Acqualagna, Laura; Dähne, Sven; Haufe, Stefan; Schultze-Kraft, Matthias; Sturm, Irene; Ušćumlic, Marija; Wenzel, Markus A; Curio, Gabriel; Müller, Klaus-Robert

    2016-01-01

    The combined effect of fundamental results about neurocognitive processes and advancements in decoding mental states from ongoing brain signals has brought forth a whole range of potential neurotechnological applications. In this article, we review our developments in this area and put them into perspective. These examples cover a wide range of maturity levels with respect to their applicability. While we assume we are still a long way away from integrating Brain-Computer Interface (BCI) technology in general interaction with computers, or from implementing neurotechnological measures in safety-critical workplaces, results have already now been obtained involving a BCI as research tool. In this article, we discuss the reasons why, in some of the prospective application domains, considerable effort is still required to make the systems ready to deal with the full complexity of the real world.

  19. A Behaviour-Genetic Analysis of Orthographic Learning, Spelling and Decoding

    ERIC Educational Resources Information Center

    Byrne, Brian; Coventry, William L.; Olson, Richard K.; Hulslander, Jacqueline; Wadsworth, Sally; DeFries, John C.; Corley, Robin; Willcutt, Erik G.; Samuelsson, Stefan

    2008-01-01

    As part of a longitudinal twin study of literacy and language, we conducted a behaviour-genetic analysis of orthographic learning, spelling and decoding in Grade 2 children (225 identical and 214 fraternal twin pairs) in the United States and Australia. Each variable showed significant genetic and unique environment influences. Multivariate…

  20. Behavioral decoding of working memory items inside and outside the focus of attention.

    PubMed

    Mallett, Remington; Lewis-Peacock, Jarrod A

    2018-03-31

    How we attend to our thoughts affects how we attend to our environment. Holding information in working memory can automatically bias visual attention toward matching information. By observing attentional biases on reaction times to visual search during a memory delay, it is possible to reconstruct the source of that bias using machine learning techniques and thereby behaviorally decode the content of working memory. Can this be done when more than one item is held in working memory? There is some evidence that multiple items can simultaneously bias attention, but the effects have been inconsistent. One explanation may be that items are stored in different states depending on the current task demands. Recent models propose functionally distinct states of representation for items inside versus outside the focus of attention. Here, we use behavioral decoding to evaluate whether multiple memory items-including temporarily irrelevant items outside the focus of attention-exert biases on visual attention. Only the single item in the focus of attention was decodable. The other item showed a brief attentional bias that dissipated until it returned to the focus of attention. These results support the idea of dynamic, flexible states of working memory across time and priority. © 2018 New York Academy of Sciences.

  1. The unique role of lexical accessibility in predicting kindergarten emergent literacy.

    PubMed

    Verhoeven, Ludo; van Leeuwe, Jan; Irausquin, Rosemarie; Segers, Eliane

    The goal of this longitudinal study was to examine how lexical quality predicts the emergence of literacy abilities in 169 Dutch kindergarten children before formal reading instruction has started. At the beginning of the school year, a battery of precursor measures associated with lexical quality was related to the emergence of letter knowledge and word decoding. Confirmatory factor analysis evidenced five domains related to lexical quality, i.e., vocabulary, phonological coding, phonological awareness, lexical retrieval and phonological working memory. Structural equation modeling showed that the development of letter knowledge during the year could be predicted from children's phonological awareness and lexical retrieval, and the emergence of word decoding from their phonological awareness and letter knowledge. It is concluded that it is primarily the accessibility of phonological representations in the mental lexicon that predicts the emergence of literacy in kindergarten.

  2. MDMA enhances "mind reading" of positive emotions and impairs "mind reading" of negative emotions.

    PubMed

    Hysek, Cédric M; Domes, Gregor; Liechti, Matthias E

    2012-07-01

    3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) increases sociability. The prosocial effects of MDMA may result from the release of the "social hormone" oxytocin and associated alterations in the processing of socioemotional stimuli. We investigated the effects of MDMA (125 mg) on the ability to infer the mental states of others from social cues of the eye region in the Reading the Mind in the Eyes Test. The study included 48 healthy volunteers (24 men, 24 women) and used a double-blind, placebo-controlled, within-subjects design. A choice reaction time test was used to exclude impairments in psychomotor function. We also measured circulating oxytocin and cortisol levels and subjective drug effects. MDMA differentially affected mind reading depending on the emotional valence of the stimuli. MDMA enhanced the accuracy of mental state decoding for positive stimuli (e.g., friendly), impaired mind reading for negative stimuli (e.g., hostile), and had no effect on mind reading for neutral stimuli (e.g., reflective). MDMA did not affect psychomotor performance, increased circulating oxytocin and cortisol levels, and produced subjective prosocial effects, including feelings of being more open, talkative, and closer to others. The shift in the ability to correctly read socioemotional information toward stimuli associated with positive emotional valence, together with the prosocial feelings elicited by MDMA, may enhance social approach behavior and sociability when MDMA is used recreationally and facilitate therapeutic relationships in MDMA-assisted psychotherapeutic settings.

  3. Parameter as a Switch Between Dynamical States of a Network in Population Decoding.

    PubMed

    Yu, Jiali; Mao, Hua; Yi, Zhang

    2017-04-01

    Population coding is a method to represent stimuli using the collective activities of a number of neurons. Nevertheless, it is difficult to extract information from these population codes with the noise inherent in neuronal responses. Moreover, it is a challenge to identify the right parameter of the decoding model, which plays a key role for convergence. To address the problem, a population decoding model is proposed for parameter selection. Our method successfully identified the key conditions for a nonzero continuous attractor. Both the theoretical analysis and the application studies demonstrate the correctness and effectiveness of this strategy.

  4. Continuous detection of the self-initiated walking pre-movement state from EEG correlates without session-to-session recalibration

    NASA Astrophysics Data System (ADS)

    Ioana Sburlea, Andreea; Montesano, Luis; Minguez, Javier

    2015-06-01

    Objective. Brain-computer interfaces (BCI) as a rehabilitation tool have been used to restore functions in patients with motor impairments by actively involving the central nervous system and triggering prosthetic devices according to the detected pre-movement state. However, since EEG signals are highly variable between subjects and recording sessions, typically a BCI is calibrated at the beginning of each session. This process is inconvenient especially for patients suffering locomotor disabilities in maintaining a bipedal position for a longer time. This paper presents a continuous EEG decoder of a pre-movement state in self-initiated walking and the usage of this decoder from session to session without recalibrating. Approach. Ten healthy subjects performed a self-initiated walking task during three sessions, with an intersession interval of one week. The implementation of our continuous decoder is based on the combination of movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features with sparse classification models. Main results. During intrasession our technique detects the pre-movement state with 70% accuracy. Moreover this decoder can be applied from session to session without recalibration, with a decrease in performance of about 4% on a one- or two-week intersession interval. Significance. Our detection model operates in a continuous manner, which makes it a straightforward asset for rehabilitation scenarios. By using both temporal and spectral information we attained higher detection rates than the ones obtained with the MRCP and ERD detection models, both during the intrasession and intersession conditions.

  5. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach

    PubMed Central

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z.; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ1-regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings. PMID:29765298

  6. Real-Time Tracking of Selective Auditory Attention From M/EEG: A Bayesian Filtering Approach.

    PubMed

    Miran, Sina; Akram, Sahar; Sheikhattar, Alireza; Simon, Jonathan Z; Zhang, Tao; Babadi, Behtash

    2018-01-01

    Humans are able to identify and track a target speaker amid a cacophony of acoustic interference, an ability which is often referred to as the cocktail party phenomenon. Results from several decades of studying this phenomenon have culminated in recent years in various promising attempts to decode the attentional state of a listener in a competing-speaker environment from non-invasive neuroimaging recordings such as magnetoencephalography (MEG) and electroencephalography (EEG). To this end, most existing approaches compute correlation-based measures by either regressing the features of each speech stream to the M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce robust results, these procedures require multiple trials for training purposes. Also, their decoding accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-suited for emerging real-time applications such as smart hearing aid devices or brain-computer interface systems, where training data might be limited and high temporal resolutions are desired. In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding of the attentional state. Our proposed framework consists of three main modules: (1) Real-time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive filtering, (2) Extracting reliable markers of the attentional state, and thereby generalizing the widely-used correlation-based measures thereof, and (3) Devising a near real-time state-space estimator that translates the noisy and variable attention markers to robust and statistically interpretable estimates of the attentional state with minimal delay. Our proposed algorithms integrate various techniques including forgetting factor-based adaptive filtering, ℓ 1 -regularization, forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We validate the performance of our proposed framework using comprehensive simulations as well as application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while providing a significant degree of adaptivity, statistical robustness, and computational savings.

  7. A four-dimensional virtual hand brain-machine interface using active dimension selection.

    PubMed

    Rouse, Adam G

    2016-06-01

    Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s(-1) for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  8. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions.

    PubMed

    Du, Jing; Wang, Jian

    2015-11-01

    Bessel beams carrying orbital angular momentum (OAM) with helical phase fronts exp(ilφ)(l=0;±1;±2;…), where φ is the azimuthal angle and l corresponds to the topological number, are orthogonal with each other. This feature of Bessel beams provides a new dimension to code/decode data information on the OAM state of light, and the theoretical infinity of topological number enables possible high-dimensional structured light coding/decoding for free-space optical communications. Moreover, Bessel beams are nondiffracting beams having the ability to recover by themselves in the face of obstructions, which is important for free-space optical communications relying on line-of-sight operation. By utilizing the OAM and nondiffracting characteristics of Bessel beams, we experimentally demonstrate 12 m distance obstruction-free optical m-ary coding/decoding using visible Bessel beams in a free-space optical communication system. We also study the bit error rate (BER) performance of hexadecimal and 32-ary coding/decoding based on Bessel beams with different topological numbers. After receiving 500 symbols at the receiver side, a zero BER of hexadecimal coding/decoding is observed when the obstruction is placed along the propagation path of light.

  9. Large constraint length high speed viterbi decoder based on a modular hierarchial decomposition of the deBruijn graph

    NASA Technical Reports Server (NTRS)

    Collins, Oliver (Inventor); Dolinar, Jr., Samuel J. (Inventor); Hus, In-Shek (Inventor); Bozzola, Fabrizio P. (Inventor); Olson, Erlend M. (Inventor); Statman, Joseph I. (Inventor); Zimmerman, George A. (Inventor)

    1991-01-01

    A method of formulating and packaging decision-making elements into a long constraint length Viterbi decoder which involves formulating the decision-making processors as individual Viterbi butterfly processors that are interconnected in a deBruijn graph configuration. A fully distributed architecture, which achieves high decoding speeds, is made feasible by novel wiring and partitioning of the state diagram. This partitioning defines universal modules, which can be used to build any size decoder, such that a large number of wires is contained inside each module, and a small number of wires is needed to connect modules. The total system is modular and hierarchical, and it implements a large proportion of the required wiring internally within modules and may include some external wiring to fully complete the deBruijn graph. pg,14.

  10. Product code optimization for determinate state LDPC decoding in robust image transmission.

    PubMed

    Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G

    2006-08-01

    We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.

  11. Freedom of Thought and Mental Integrity: The Moral Requirements for Any Neural Prosthesis

    PubMed Central

    Lavazza, Andrea

    2018-01-01

    There are many kinds of neural prostheses available or being researched today. In most cases they are intended to cure or improve the condition of patients affected by some cerebral deficiency. In other cases, their goal is to provide new means to maintain or improve an individual's normal performance. In all these circumstances, one of the possible risks is that of violating the privacy of brain contents (which partly coincide with mental contents) or of depriving individuals of full control over their thoughts (mental states), as the latter are at least partly detectable by new prosthetic technologies. Given the (ethical) premise that the absolute privacy and integrity of the most relevant part of one's brain data is (one of) the most valuable and inviolable human right(s), I argue that a (technical) principle should guide the design and regulation of new neural prostheses. The premise is justified by the fact that whatever the coercion, the threat or the violence undergone, the person can generally preserve a “private repository” of thought in which to defend her convictions and identity, her dignity, and autonomy. Without it, the person may end up in a state of complete subjection to other individuals. The following functional principle is that neural prostheses should be technically designed and built so as to prevent such outcomes. They should: (a) incorporate systems that can find and signal the unauthorized detection, alteration, and diffusion of brain data and brain functioning; (b) be able to stop any unauthorized detection, alteration, and diffusion of brain data. This should not only regard individual devices, but act as a general (technical) operating principle shared by all interconnected systems that deal with decoding brain activity and brain functioning. PMID:29515355

  12. Evidence for Impaired Verbal Identification but Intact Nonverbal Recognition of Fearful Body Postures in Asperger's Syndrome

    ERIC Educational Resources Information Center

    Doody, John P.; Bull, Peter

    2013-01-01

    While most studies of emotion recognition in Asperger's Syndrome (AS) have focused solely on the verbal decoding of affective states, the current research employed the novel technique of using both nonverbal matching and verbal labeling tasks to examine the decoding of emotional body postures and facial expressions. AS participants performed…

  13. Detecting individual memories through the neural decoding of memory states and past experience.

    PubMed

    Rissman, Jesse; Greely, Henry T; Wagner, Anthony D

    2010-05-25

    A wealth of neuroscientific evidence indicates that our brains respond differently to previously encountered than to novel stimuli. There has been an upswell of interest in the prospect that functional MRI (fMRI), when coupled with multivariate data analysis techniques, might allow the presence or absence of individual memories to be detected from brain activity patterns. This could have profound implications for forensic investigations and legal proceedings, and thus the merits and limitations of such an approach are in critical need of empirical evaluation. We conducted two experiments to investigate whether neural signatures of recognition memory can be reliably decoded from fMRI data. In Exp. 1, participants were scanned while making explicit recognition judgments for studied and novel faces. Multivoxel pattern analysis (MVPA) revealed a robust ability to classify whether a given face was subjectively experienced as old or new, as well as whether recognition was accompanied by recollection, strong familiarity, or weak familiarity. Moreover, a participant's subjective mnemonic experiences could be reliably decoded even when the classifier was trained on the brain data from other individuals. In contrast, the ability to classify a face's objective old/new status, when holding subjective status constant, was severely limited. This important boundary condition was further evidenced in Exp. 2, which demonstrated that mnemonic decoding is poor when memory is indirectly (implicitly) probed. Thus, although subjective memory states can be decoded quite accurately under controlled experimental conditions, fMRI has uncertain utility for objectively detecting an individual's past experiences.

  14. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations

    PubMed Central

    Wang, Nancy X. R.; Olson, Jared D.; Ojemann, Jeffrey G.; Rao, Rajesh P. N.; Brunton, Bingni W.

    2016-01-01

    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Implementing Brain Computer Interfaces (BCIs) outside carefully controlled experiments in laboratory settings requires adaptive and scalable strategies with minimal supervision. Here we describe an unsupervised approach to decoding neural states from naturalistic human brain recordings. We analyzed continuous, long-term electrocorticography (ECoG) data recorded over many days from the brain of subjects in a hospital room, with simultaneous audio and video recordings. We discovered coherent clusters in high-dimensional ECoG recordings using hierarchical clustering and automatically annotated them using speech and movement labels extracted from audio and video. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Interpretable behaviors were decoded from ECoG data, including moving, speaking and resting; the results were assessed by comparison with manual annotation. Discovered clusters were projected back onto the brain revealing features consistent with known functional areas, opening the door to automated functional brain mapping in natural settings. PMID:27148018

  15. A four-dimensional virtual hand brain-machine interface using active dimension selection

    NASA Astrophysics Data System (ADS)

    Rouse, Adam G.

    2016-06-01

    Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.

  16. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    PubMed Central

    2017-01-01

    Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041

  17. A four-dimensional virtual hand brain-machine interface using active dimension selection

    PubMed Central

    Rouse, Adam G.

    2018-01-01

    Objective Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach ADS utilizes a two stage decoder by using neural signals to both i) select an active dimension being controlled and ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main Results Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits/s for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand. PMID:27171896

  18. Deep hierarchical attention network for video description

    NASA Astrophysics Data System (ADS)

    Li, Shuohao; Tang, Min; Zhang, Jun

    2018-03-01

    Pairing video to natural language description remains a challenge in computer vision and machine translation. Inspired by image description, which uses an encoder-decoder model for reducing visual scene into a single sentence, we propose a deep hierarchical attention network for video description. The proposed model uses convolutional neural network (CNN) and bidirectional LSTM network as encoders while a hierarchical attention network is used as the decoder. Compared to encoder-decoder models used in video description, the bidirectional LSTM network can capture the temporal structure among video frames. Moreover, the hierarchical attention network has an advantage over single-layer attention network on global context modeling. To make a fair comparison with other methods, we evaluate the proposed architecture with different types of CNN structures and decoders. Experimental results on the standard datasets show that our model has a more superior performance than the state-of-the-art techniques.

  19. Use of Frontal Lobe Hemodynamics as Reinforcement Signals to an Adaptive Controller

    PubMed Central

    DiStasio, Marcello M.; Francis, Joseph T.

    2013-01-01

    Decision-making ability in the frontal lobe (among other brain structures) relies on the assignment of value to states of the animal and its environment. Then higher valued states can be pursued and lower (or negative) valued states avoided. The same principle forms the basis for computational reinforcement learning controllers, which have been fruitfully applied both as models of value estimation in the brain, and as artificial controllers in their own right. This work shows how state desirability signals decoded from frontal lobe hemodynamics, as measured with near-infrared spectroscopy (NIRS), can be applied as reinforcers to an adaptable artificial learning agent in order to guide its acquisition of skills. A set of experiments carried out on an alert macaque demonstrate that both oxy- and deoxyhemoglobin concentrations in the frontal lobe show differences in response to both primarily and secondarily desirable (versus undesirable) stimuli. This difference allows a NIRS signal classifier to serve successfully as a reinforcer for an adaptive controller performing a virtual tool-retrieval task. The agent's adaptability allows its performance to exceed the limits of the NIRS classifier decoding accuracy. We also show that decoding state desirabilities is more accurate when using relative concentrations of both oxyhemoglobin and deoxyhemoglobin, rather than either species alone. PMID:23894500

  20. Neurophysiology of perceived confidence.

    PubMed

    Graziano, Martin; Parra, Lucas C; Sigman, Mariano

    2010-01-01

    In a partial report paradigm, subjects observe during a brief presentation a cluttered field and after some time - typically ranging from 100 ms to a second - are asked to report a subset of the presented elements. A vast buffer of information is transiently available to be broadcasted which, if not retrieved in time, fades rapidly without reaching consciousness. An interesting feature of this experiment is that objective performance and subjective confidence is decoupled. This converts this paradigm in an ideal vehicle to understand the brain dynamics of the construction of confidence. Here we report a high-density EEG experiment in which we infer elements of the EEG response which are indicative of subjective confidence. We find that an early response during encoding partially correlates with perceived confidence. However, the bulk of the weight of subjective confidence is determined during a late, N400-like waveform, during the retrieval stage. This shows that we can find markers of access to internal, subjective states, that are uncoupled from objective response and stimulus properties of the task, and we propose that this can be used with decoding methods of EEG to infer subjective mental states.

  1. Representations of Invariant Musical Categories Are Decodable by Pattern Analysis of Locally Distributed BOLD Responses in Superior Temporal and Intraparietal Sulci

    PubMed Central

    Klein, Mike E.; Zatorre, Robert J.

    2015-01-01

    In categorical perception (CP), continuous physical signals are mapped to discrete perceptual bins: mental categories not found in the physical world. CP has been demonstrated across multiple sensory modalities and, in audition, for certain over-learned speech and musical sounds. The neural basis of auditory CP, however, remains ambiguous, including its robustness in nonspeech processes and the relative roles of left/right hemispheres; primary/nonprimary cortices; and ventral/dorsal perceptual processing streams. Here, highly trained musicians listened to 2-tone musical intervals, which they perceive categorically while undergoing functional magnetic resonance imaging. Multivariate pattern analyses were performed after grouping sounds by interval quality (determined by frequency ratio between tones) or pitch height (perceived noncategorically, frequency ratios remain constant). Distributed activity patterns in spheres of voxels were used to determine sound sample identities. For intervals, significant decoding accuracy was observed in the right superior temporal and left intraparietal sulci, with smaller peaks observed homologously in contralateral hemispheres. For pitch height, no significant decoding accuracy was observed, consistent with the non-CP of this dimension. These results suggest that similar mechanisms are operative for nonspeech categories as for speech; espouse roles for 2 segregated processing streams; and support hierarchical processing models for CP. PMID:24488957

  2. Reconstructing dynamic mental models of facial expressions in prosopagnosia reveals distinct representations for identity and expression.

    PubMed

    Richoz, Anne-Raphaëlle; Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G; Caldara, Roberto

    2015-04-01

    The human face transmits a wealth of signals that readily provide crucial information for social interactions, such as facial identity and emotional expression. Yet, a fundamental question remains unresolved: does the face information for identity and emotional expression categorization tap into common or distinct representational systems? To address this question we tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions that are assumed to contribute to facial expression (de)coding (i.e., the amygdala, the insula and the posterior superior temporal sulcus--pSTS). We previously demonstrated that PS does not use information from the eye region to identify faces, but relies on the suboptimal mouth region. PS's abnormal information use for identity, coupled with her neural dissociation, provides a unique opportunity to probe the existence of a dichotomy in the face representational system. To reconstruct the mental models of the six basic facial expressions of emotion in PS and age-matched healthy observers, we used a novel reverse correlation technique tracking information use on dynamic faces. PS was comparable to controls, using all facial features to (de)code facial expressions with the exception of fear. PS's normal (de)coding of dynamic facial expressions suggests that the face system relies either on distinct representational systems for identity and expression, or dissociable cortical pathways to access them. Interestingly, PS showed a selective impairment for categorizing many static facial expressions, which could be accounted for by her lesion in the right inferior occipital gyrus. PS's advantage for dynamic facial expressions might instead relate to a functionally distinct and sufficient cortical pathway directly connecting the early visual cortex to the spared pSTS. Altogether, our data provide critical insights on the healthy and impaired face systems, question evidence of deficits obtained from patients by using static images of facial expressions, and offer novel routes for patient rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  4. Dissociable roles of internal feelings and face recognition ability in facial expression decoding.

    PubMed

    Zhang, Lin; Song, Yiying; Liu, Ling; Liu, Jia

    2016-05-15

    The problem of emotion recognition has been tackled by researchers in both affective computing and cognitive neuroscience. While affective computing relies on analyzing visual features from facial expressions, it has been proposed that humans recognize emotions by internally simulating the emotional states conveyed by others' expressions, in addition to perceptual analysis of facial features. Here we investigated whether and how our internal feelings contributed to the ability to decode facial expressions. In two independent large samples of participants, we observed that individuals who generally experienced richer internal feelings exhibited a higher ability to decode facial expressions, and the contribution of internal feelings was independent of face recognition ability. Further, using voxel-based morphometry, we found that the gray matter volume (GMV) of bilateral superior temporal sulcus (STS) and the right inferior parietal lobule was associated with facial expression decoding through the mediating effect of internal feelings, while the GMV of bilateral STS, precuneus, and the right central opercular cortex contributed to facial expression decoding through the mediating effect of face recognition ability. In addition, the clusters in bilateral STS involved in the two components were neighboring yet separate. Our results may provide clues about the mechanism by which internal feelings, in addition to face recognition ability, serve as an important instrument for humans in facial expression decoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    PubMed

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-02

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Solid state safety jumper cables

    DOEpatents

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  7. Solid state safety jumper cables

    DOEpatents

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  8. Towards a symbiotic brain-computer interface: exploring the application-decoder interaction

    NASA Astrophysics Data System (ADS)

    Verhoeven, T.; Buteneers Wiersema, P., Jr.; Dambre, J.; Kindermans, PJ

    2015-12-01

    Objective. State of the art brain-computer interface (BCI) research focuses on improving individual components such as the application or the decoder that converts the user’s brain activity to control signals. In this study, we investigate the interaction between these components in the P300 speller, a BCI for communication. We introduce a synergistic approach in which the stimulus presentation sequence is modified to enhance the machine learning decoding. In this way we aim for an improved overall BCI performance. Approach. First, a new stimulus presentation paradigm is introduced which provides us flexibility in tuning the sequence of visual stimuli presented to the user. Next, an experimental setup in which this paradigm is compared to other paradigms uncovers the underlying mechanism of the interdependence between the application and the performance of the decoder. Main results. Extensive analysis of the experimental results reveals the changing requirements of the decoder concerning the data recorded during the spelling session. When few data is recorded, the balance in the number of target and non-target stimuli shown to the user is more important than the signal-to-noise rate (SNR) of the recorded response signals. Only when more data has been collected, the SNR becomes the dominant factor. Significance. For BCIs in general, knowing the dominant factor that affects the decoder performance and being able to respond to it is of utmost importance to improve system performance. For the P300 speller, the proposed tunable paradigm offers the possibility to tune the application to the decoder’s needs at any time and, as such, fully exploit this application-decoder interaction.

  9. Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings.

    PubMed

    Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan

    2018-05-15

    Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.

  10. Circuit for high resolution decoding of multi-anode microchannel array detectors

    NASA Technical Reports Server (NTRS)

    Kasle, David B. (Inventor)

    1995-01-01

    A circuit for high resolution decoding of multi-anode microchannel array detectors consisting of input registers accepting transient inputs from the anode array; anode encoding logic circuits connected to the input registers; midpoint pipeline registers connected to the anode encoding logic circuits; and pixel decoding logic circuits connected to the midpoint pipeline registers is described. A high resolution algorithm circuit operates in parallel with the pixel decoding logic circuit and computes a high resolution least significant bit to enhance the multianode microchannel array detector's spatial resolution by halving the pixel size and doubling the number of pixels in each axis of the anode array. A multiplexer is connected to the pixel decoding logic circuit and allows a user selectable pixel address output according to the actual multi-anode microchannel array detector anode array size. An output register concatenates the high resolution least significant bit onto the standard ten bit pixel address location to provide an eleven bit pixel address, and also stores the full eleven bit pixel address. A timing and control state machine is connected to the input registers, the anode encoding logic circuits, and the output register for managing the overall operation of the circuit.

  11. Sparsity-aware multiple relay selection in large multi-hop decode-and-forward relay networks

    NASA Astrophysics Data System (ADS)

    Gouissem, A.; Hamila, R.; Al-Dhahir, N.; Foufou, S.

    2016-12-01

    In this paper, we propose and investigate two novel techniques to perform multiple relay selection in large multi-hop decode-and-forward relay networks. The two proposed techniques exploit sparse signal recovery theory to select multiple relays using the orthogonal matching pursuit algorithm and outperform state-of-the-art techniques in terms of outage probability and computation complexity. To reduce the amount of collected channel state information (CSI), we propose a limited-feedback scheme where only a limited number of relays feedback their CSI. Furthermore, a detailed performance-complexity tradeoff investigation is conducted for the different studied techniques and verified by Monte Carlo simulations.

  12. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  13. Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface

    PubMed Central

    Khan, M. Jawad; Hong, Melissa Jiyoun; Hong, Keum-Shik

    2014-01-01

    The hybrid brain-computer interface (BCI)'s multimodal technology enables precision brain-signal classification that can be used in the formulation of control commands. In the present study, an experimental hybrid near-infrared spectroscopy-electroencephalography (NIRS-EEG) technique was used to extract and decode four different types of brain signals. The NIRS setup was positioned over the prefrontal brain region, and the EEG over the left and right motor cortex regions. Twelve subjects participating in the experiment were shown four direction symbols, namely, “forward,” “backward,” “left,” and “right.” The control commands for forward and backward movement were estimated by performing arithmetic mental tasks related to oxy-hemoglobin (HbO) changes. The left and right directions commands were associated with right and left hand tapping, respectively. The high classification accuracies achieved showed that the four different control signals can be accurately estimated using the hybrid NIRS-EEG technology. PMID:24808844

  14. Emotion recognition in body dysmorphic disorder: application of the Reading the Mind in the Eyes Task.

    PubMed

    Buhlmann, Ulrike; Winter, Anna; Kathmann, Norbert

    2013-03-01

    Body dysmorphic disorder (BDD) is characterized by perceived appearance-related defects, often tied to aspects of the face or head (e.g., acne). Deficits in decoding emotional expressions have been examined in several psychological disorders including BDD. Previous research indicates that BDD is associated with impaired facial emotion recognition, particularly in situations that involve the BDD sufferer him/herself. The purpose of this study was to further evaluate the ability to read other people's emotions among 31 individuals with BDD, and 31 mentally healthy controls. We applied the Reading the Mind in the Eyes task, in which participants are presented with a series of pairs of eyes, one at a time, and are asked to identify the emotion that describes the stimulus best. The groups did not differ with respect to decoding other people's emotions by looking into their eyes. Findings are discussed in light of previous research examining emotion recognition in BDD. Copyright © 2013. Published by Elsevier Ltd.

  15. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    2000-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomom outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft-decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  16. An Interactive Concatenated Turbo Coding System

    NASA Technical Reports Server (NTRS)

    Liu, Ye; Tang, Heng; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents a concatenated turbo coding system in which a Reed-Solomon outer code is concatenated with a binary turbo inner code. In the proposed system, the outer code decoder and the inner turbo code decoder interact to achieve both good bit error and frame error performances. The outer code decoder helps the inner turbo code decoder to terminate its decoding iteration while the inner turbo code decoder provides soft-output information to the outer code decoder to carry out a reliability-based soft- decision decoding. In the case that the outer code decoding fails, the outer code decoder instructs the inner code decoder to continue its decoding iterations until the outer code decoding is successful or a preset maximum number of decoding iterations is reached. This interaction between outer and inner code decoders reduces decoding delay. Also presented in the paper are an effective criterion for stopping the iteration process of the inner code decoder and a new reliability-based decoding algorithm for nonbinary codes.

  17. Decoding the individual finger movements from single-trial functional magnetic resonance imaging recordings of human brain activity.

    PubMed

    Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia

    2014-06-01

    Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Integrated Performance of Next Generation High Data Rate Receiver and AR4JA LDPC Codec for Space Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Lyubarev, Mark; Nakashima, Michael A.; Andrews, Kenneth S.; Lee, Dennis

    2008-01-01

    Low-density parity-check (LDPC) codes are the state-of-the-art in forward error correction (FEC) technology that exhibits capacity approaching performance. The Jet Propulsion Laboratory (JPL) has designed a family of LDPC codes that are similar in structure and therefore, leads to a single decoder implementation. The Accumulate-Repeat-by-4-Jagged- Accumulate (AR4JA) code design offers a family of codes with rates 1/2, 2/3, 4/5 and lengths 1024, 4096, 16384 information bits. Performance is less than one dB from capacity for all combinations.Integrating a stand-alone LDPC decoder with a commercial-off-the-shelf (COTS) receiver faces additional challenges than building a single receiver-decoder unit from scratch. In this work, we outline the issues and show that these additional challenges can be over-come by simple solutions. To demonstrate that an LDPC decoder can be made to work seamlessly with a COTS receiver, we interface an AR4JA LDPC decoder developed on a field-programmable gate array (FPGA) with a modern high data rate receiver and mea- sure the combined receiver-decoder performance. Through optimizations that include an improved frame synchronizer and different soft-symbol scaling algorithms, we show that a combined implementation loss of less than one dB is possible and therefore, most of the coding gain evidence in theory can also be obtained in practice. Our techniques can benefit any modem that utilizes an advanced FEC code.

  19. Decoding communities in networks

    NASA Astrophysics Data System (ADS)

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  20. Decoding communities in networks.

    PubMed

    Radicchi, Filippo

    2018-02-01

    According to a recent information-theoretical proposal, the problem of defining and identifying communities in networks can be interpreted as a classical communication task over a noisy channel: memberships of nodes are information bits erased by the channel, edges and nonedges in the network are parity bits introduced by the encoder but degraded through the channel, and a community identification algorithm is a decoder. The interpretation is perfectly equivalent to the one at the basis of well-known statistical inference algorithms for community detection. The only difference in the interpretation is that a noisy channel replaces a stochastic network model. However, the different perspective gives the opportunity to take advantage of the rich set of tools of coding theory to generate novel insights on the problem of community detection. In this paper, we illustrate two main applications of standard coding-theoretical methods to community detection. First, we leverage a state-of-the-art decoding technique to generate a family of quasioptimal community detection algorithms. Second and more important, we show that the Shannon's noisy-channel coding theorem can be invoked to establish a lower bound, here named as decodability bound, for the maximum amount of noise tolerable by an ideal decoder to achieve perfect detection of communities. When computed for well-established synthetic benchmarks, the decodability bound explains accurately the performance achieved by the best community detection algorithms existing on the market, telling us that only little room for their improvement is still potentially left.

  1. On the photonic implementation of universal quantum gates, bell states preparation circuit and quantum LDPC encoders and decoders based on directional couplers and HNLF.

    PubMed

    Djordjevic, Ivan B

    2010-04-12

    The Bell states preparation circuit is a basic circuit required in quantum teleportation. We describe how to implement it in all-fiber technology. The basic building blocks for its implementation are directional couplers and highly nonlinear optical fiber (HNLF). Because the quantum information processing is based on delicate superposition states, it is sensitive to quantum errors. In order to enable fault-tolerant quantum computing the use of quantum error correction is unavoidable. We show how to implement in all-fiber technology encoders and decoders for sparse-graph quantum codes, and provide an illustrative example to demonstrate this implementation. We also show that arbitrary set of universal quantum gates can be implemented based on directional couplers and HNLFs.

  2. Multiple-access relaying with network coding: iterative network/channel decoding with imperfect CSI

    NASA Astrophysics Data System (ADS)

    Vu, Xuan-Thang; Renzo, Marco Di; Duhamel, Pierre

    2013-12-01

    In this paper, we study the performance of the four-node multiple-access relay channel with binary Network Coding (NC) in various Rayleigh fading scenarios. In particular, two relay protocols, decode-and-forward (DF) and demodulate-and-forward (DMF) are considered. In the first case, channel decoding is performed at the relay before NC and forwarding. In the second case, only demodulation is performed at the relay. The contributions of the paper are as follows: (1) two joint network/channel decoding (JNCD) algorithms, which take into account possible decoding error at the relay, are developed in both DF and DMF relay protocols; (2) both perfect channel state information (CSI) and imperfect CSI at receivers are studied. In addition, we propose a practical method to forward the relays error characterization to the destination (quantization of the BER). This results in a fully practical scheme. (3) We show by simulation that the number of pilot symbols only affects the coding gain but not the diversity order, and that quantization accuracy affects both coding gain and diversity order. Moreover, when compared with the recent results using DMF protocol, our proposed DF protocol algorithm shows an improvement of 4 dB in fully interleaved Rayleigh fading channels and 0.7 dB in block Rayleigh fading channels.

  3. A Novel Nonparametric Approach for Neural Encoding and Decoding Models of Multimodal Receptive Fields.

    PubMed

    Agarwal, Rahul; Chen, Zhe; Kloosterman, Fabian; Wilson, Matthew A; Sarma, Sridevi V

    2016-07-01

    Pyramidal neurons recorded from the rat hippocampus and entorhinal cortex, such as place and grid cells, have diverse receptive fields, which are either unimodal or multimodal. Spiking activity from these cells encodes information about the spatial position of a freely foraging rat. At fine timescales, a neuron's spike activity also depends significantly on its own spike history. However, due to limitations of current parametric modeling approaches, it remains a challenge to estimate complex, multimodal neuronal receptive fields while incorporating spike history dependence. Furthermore, efforts to decode the rat's trajectory in one- or two-dimensional space from hippocampal ensemble spiking activity have mainly focused on spike history-independent neuronal encoding models. In this letter, we address these two important issues by extending a recently introduced nonparametric neural encoding framework that allows modeling both complex spatial receptive fields and spike history dependencies. Using this extended nonparametric approach, we develop novel algorithms for decoding a rat's trajectory based on recordings of hippocampal place cells and entorhinal grid cells. Results show that both encoding and decoding models derived from our new method performed significantly better than state-of-the-art encoding and decoding models on 6 minutes of test data. In addition, our model's performance remains invariant to the apparent modality of the neuron's receptive field.

  4. A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control

    PubMed Central

    Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.

    2014-01-01

    Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569

  5. Agent-specific learning signals for self–other distinction during mentalising

    PubMed Central

    Dolan, Raymond J.; Kurth-Nelson, Zeb

    2018-01-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self–other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self–other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self–other distinction also had a reduced behavioural capacity for self–other distinction and displayed more marked subclinical psychopathological traits. The neural self–other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self–other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker. PMID:29689053

  6. The Construction of Visual-spatial Situation Models in Children's Reading and Their Relation to Reading Comprehension

    PubMed Central

    Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.

    2014-01-01

    Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376

  7. Agent-specific learning signals for self-other distinction during mentalising.

    PubMed

    Ereira, Sam; Dolan, Raymond J; Kurth-Nelson, Zeb

    2018-04-01

    Humans have a remarkable ability to simulate the minds of others. How the brain distinguishes between mental states attributed to self and mental states attributed to someone else is unknown. Here, we investigated how fundamental neural learning signals are selectively attributed to different agents. Specifically, we asked whether learning signals are encoded in agent-specific neural patterns or whether a self-other distinction depends on encoding agent identity separately from this learning signal. To examine this, we tasked subjects to learn continuously 2 models of the same environment, such that one was selectively attributed to self and the other was selectively attributed to another agent. Combining computational modelling with magnetoencephalography (MEG) enabled us to track neural representations of prediction errors (PEs) and beliefs attributed to self, and of simulated PEs and beliefs attributed to another agent. We found that the representational pattern of a PE reliably predicts the identity of the agent to whom the signal is attributed, consistent with a neural self-other distinction implemented via agent-specific learning signals. Strikingly, subjects exhibiting a weaker neural self-other distinction also had a reduced behavioural capacity for self-other distinction and displayed more marked subclinical psychopathological traits. The neural self-other distinction was also modulated by social context, evidenced in a significantly reduced decoding of agent identity in a nonsocial control task. Thus, we show that self-other distinction is realised through an encoding of agent identity intrinsic to fundamental learning signals. The observation that the fidelity of this encoding predicts psychopathological traits is of interest as a potential neurocomputational psychiatric biomarker.

  8. Protograph-Based Raptor-Like Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Chen, Tsung-Yi; Wang, Jiadong; Wesel, Richard D.

    2014-01-01

    Theoretical analysis has long indicated that feedback improves the error exponent but not the capacity of pointto- point memoryless channels. The analytic and empirical results indicate that at short blocklength regime, practical rate-compatible punctured convolutional (RCPC) codes achieve low latency with the use of noiseless feedback. In 3GPP, standard rate-compatible turbo codes (RCPT) did not outperform the convolutional codes in the short blocklength regime. The reason is the convolutional codes for low number of states can be decoded optimally using Viterbi decoder. Despite excellent performance of convolutional codes at very short blocklengths, the strength of convolutional codes does not scale with the blocklength for a fixed number of states in its trellis.

  9. Robust inter-subject audiovisual decoding in functional magnetic resonance imaging using high-dimensional regression.

    PubMed

    Raz, Gal; Svanera, Michele; Singer, Neomi; Gilam, Gadi; Cohen, Maya Bleich; Lin, Tamar; Admon, Roee; Gonen, Tal; Thaler, Avner; Granot, Roni Y; Goebel, Rainer; Benini, Sergio; Valente, Giancarlo

    2017-12-01

    Major methodological advancements have been recently made in the field of neural decoding, which is concerned with the reconstruction of mental content from neuroimaging measures. However, in the absence of a large-scale examination of the validity of the decoding models across subjects and content, the extent to which these models can be generalized is not clear. This study addresses the challenge of producing generalizable decoding models, which allow the reconstruction of perceived audiovisual features from human magnetic resonance imaging (fMRI) data without prior training of the algorithm on the decoded content. We applied an adapted version of kernel ridge regression combined with temporal optimization on data acquired during film viewing (234 runs) to generate standardized brain models for sound loudness, speech presence, perceived motion, face-to-frame ratio, lightness, and color brightness. The prediction accuracies were tested on data collected from different subjects watching other movies mainly in another scanner. Substantial and significant (Q FDR <0.05) correlations between the reconstructed and the original descriptors were found for the first three features (loudness, speech, and motion) in all of the 9 test movies (R¯=0.62, R¯ = 0.60, R¯ = 0.60, respectively) with high reproducibility of the predictors across subjects. The face ratio model produced significant correlations in 7 out of 8 movies (R¯=0.56). The lightness and brightness models did not show robustness (R¯=0.23, R¯ = 0). Further analysis of additional data (95 runs) indicated that loudness reconstruction veridicality can consistently reveal relevant group differences in musical experience. The findings point to the validity and generalizability of our loudness, speech, motion, and face ratio models for complex cinematic stimuli (as well as for music in the case of loudness). While future research should further validate these models using controlled stimuli and explore the feasibility of extracting more complex models via this method, the reliability of our results indicates the potential usefulness of the approach and the resulting models in basic scientific and diagnostic contexts. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance

    PubMed Central

    Meng, Jianjun; Edelman, Bradley J.; Olsoe, Jaron; Jacobs, Gabriel; Zhang, Shuying; Beyko, Angeliki; He, Bin

    2018-01-01

    Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session—performance increases asymptotically by increasing the number of channels, saturates, and then decreases—no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method. PMID:29681792

  11. A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance.

    PubMed

    Meng, Jianjun; Edelman, Bradley J; Olsoe, Jaron; Jacobs, Gabriel; Zhang, Shuying; Beyko, Angeliki; He, Bin

    2018-01-01

    Motor imagery-based brain-computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital role in the online performance and progressing of BCI control. While several offline analyses report the effect of these factors on BCI accuracy for a single session-performance increases asymptotically by increasing the number of channels, saturates, and then decreases-no online study, to the best of our knowledge, has yet been performed to compare for a single session or across training. The purpose of the current study is to assess, in a group of forty-five subjects, the effect of channel number and decoding method on the progression of BCI performance across multiple training sessions and the corresponding neurophysiological changes. The 45 subjects were divided into three groups using Laplacian Filtering (LAP/S) with nine channels, Common Spatial Pattern (CSP/L) with 40 channels and CSP (CSP/S) with nine channels for online decoding. At the first training session, subjects using CSP/L displayed no significant difference compared to CSP/S but a higher average BCI performance over those using LAP/S. Despite the average performance when using the LAP/S method was initially lower, but LAP/S displayed improvement over first three sessions, whereas the other two groups did not. Additionally, analysis of the recorded EEG during BCI control indicates that the LAP/S produces control signals that are more strongly correlated with the target location and a higher R-square value was shown at the fifth session. In the present study, we found that subjects' average online BCI performance using a large EEG montage does not show significantly better performance after the first session than a smaller montage comprised of a common subset of these electrodes. The LAP/S method with a small EEG montage allowed the subjects to improve their skills across sessions, but no improvement was shown for the CSP method.

  12. Within-Category Decoding of Information in Different Attentional States in Short-Term Memory.

    PubMed

    LaRocque, Joshua J; Riggall, Adam C; Emrich, Stephen M; Postle, Bradley R

    2017-10-01

    A long-standing assumption of cognitive neuroscience has been that working memory (WM) is accomplished by sustained, elevated neural activity. More recently, theories of WM have expanded this view by describing different attentional states in WM with differing activation levels. Several studies have used multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) data to study neural activity corresponding to these WM states. Intriguingly, no evidence was found for active neural representations for information held in WM outside the focus of attention ("unattended memory items," UMIs), suggesting that only attended memory items (AMIs) are accompanied by an active trace. However, these results depended on category-level decoding, which lacks sensitivity to neural representations of individual items. Therefore, we employed a WM task in which subjects remembered the directions of motion of two dot arrays, with a retrocue indicating which was relevant for an imminent memory probe (the AMI). This design allowed MVPA decoding of delay-period fMRI signal at the stimulus-item level, affording a more sensitive test of the neural representation of UMIs. Whereas evidence for the AMI was reliably high, evidence for the UMI dropped to baseline, consistent with the notion that different WM attentional states may have qualitatively different mechanisms of retention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    PubMed

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  14. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

    PubMed Central

    Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-01-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information. PMID:27304526

  15. Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding.

    PubMed

    Huang, Chao; Resnik, Andrey; Celikel, Tansu; Englitz, Bernhard

    2016-06-01

    Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.

  16. Restoration of fMRI Decodability Does Not Imply Latent Working Memory States

    PubMed Central

    Schneegans, Sebastian; Bays, Paul M.

    2018-01-01

    Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674

  17. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    PubMed

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-03

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility. Copyright © 2015 the authors 0270-6474/15/358531-15$15.00/0.

  18. Biological 2-Input Decoder Circuit in Human Cells

    PubMed Central

    2015-01-01

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2n outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions. PMID:24694115

  19. Biological 2-input decoder circuit in human cells.

    PubMed

    Guinn, Michael; Bleris, Leonidas

    2014-08-15

    Decoders are combinational circuits that convert information from n inputs to a maximum of 2(n) outputs. This operation is of major importance in computing systems yet it is vastly underexplored in synthetic biology. Here, we present a synthetic gene network architecture that operates as a biological decoder in human cells, converting 2 inputs to 4 outputs. As a proof-of-principle, we use small molecules to emulate the two inputs and fluorescent reporters as the corresponding four outputs. The experiments are performed using transient transfections in human kidney embryonic cells and the characterization by fluorescence microscopy and flow cytometry. We show a clear separation between the ON and OFF mean fluorescent intensity states. Additionally, we adopt the integrated mean fluorescence intensity for the characterization of the circuit and show that this metric is more robust to transfection conditions when compared to the mean fluorescent intensity. To conclude, we present the first implementation of a genetic decoder. This combinational system can be valuable toward engineering higher-order circuits as well as accommodate a multiplexed interface with endogenous cellular functions.

  20. Markov source model for printed music decoding

    NASA Astrophysics Data System (ADS)

    Kopec, Gary E.; Chou, Philip A.; Maltz, David A.

    1995-03-01

    This paper describes a Markov source model for a simple subset of printed music notation. The model is based on the Adobe Sonata music symbol set and a message language of our own design. Chord imaging is the most complex part of the model. Much of the complexity follows from a rule of music typography that requires the noteheads for adjacent pitches to be placed on opposite sides of the chord stem. This rule leads to a proliferation of cases for other typographic details such as dot placement. We describe the language of message strings accepted by the model and discuss some of the imaging issues associated with various aspects of the message language. We also point out some aspects of music notation that appear problematic for a finite-state representation. Development of the model was greatly facilitated by the duality between image synthesis and image decoding. Although our ultimate objective was a music image model for use in decoding, most of the development proceeded by using the evolving model for image synthesis, since it is computationally far less costly to image a message than to decode an image.

  1. Vector adaptive predictive coder for speech and audio

    NASA Technical Reports Server (NTRS)

    Chen, Juin-Hwey (Inventor); Gersho, Allen (Inventor)

    1990-01-01

    A real-time vector adaptive predictive coder which approximates each vector of K speech samples by using each of M fixed vectors in a first codebook to excite a time-varying synthesis filter and picking the vector that minimizes distortion. Predictive analysis for each frame determines parameters used for computing from vectors in the first codebook zero-state response vectors that are stored at the same address (index) in a second codebook. Encoding of input speech vectors s.sub.n is then carried out using the second codebook. When the vector that minimizes distortion is found, its index is transmitted to a decoder which has a codebook identical to the first codebook of the decoder. There the index is used to read out a vector that is used to synthesize an output speech vector s.sub.n. The parameters used in the encoder are quantized, for example by using a table, and the indices are transmitted to the decoder where they are decoded to specify transfer characteristics of filters used in producing the vector s.sub.n from the receiver codebook vector selected by the vector index transmitted.

  2. Decoding of finger trajectory from ECoG using deep learning.

    PubMed

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  3. Decoding of finger trajectory from ECoG using deep learning

    NASA Astrophysics Data System (ADS)

    Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek

    2018-06-01

    Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.

  4. Enhanced decoding for the Galileo low-gain antenna mission: Viterbi redecoding with four decoding stages

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1995-01-01

    The Galileo low-gain antenna mission will be supported by a coding system that uses a (14,1/4) inner convolutional code concatenated with Reed-Solomon codes of four different redundancies. Decoding for this code is designed to proceed in four distinct stages of Viterbi decoding followed by Reed-Solomon decoding. In each successive stage, the Reed-Solomon decoder only tries to decode the highest redundancy codewords not yet decoded in previous stages, and the Viterbi decoder redecodes its data utilizing the known symbols from previously decoded Reed-Solomon codewords. A previous article analyzed a two-stage decoding option that was not selected by Galileo. The present article analyzes the four-stage decoding scheme and derives the near-optimum set of redundancies selected for use by Galileo. The performance improvements relative to one- and two-stage decoding systems are evaluated.

  5. Meta-analysis of theory of mind in anorexia nervosa and bulimia nervosa: A specific İmpairment of cognitive perspective taking in anorexia nervosa?

    PubMed

    Bora, Emre; Köse, Sezen

    2016-08-01

    Deficits in theory of mind (ToM), ability to infer mental states of others, can play a significant role in interpersonal difficulties and/or unawareness of illness observed in AN and other eating disorders including bulimia Nervosa (BN). Current meta-analysis aimed to summarize available evidence for deficits in ToM in AN and BN and examine the effects of number of study-level variables on observed findings. In this meta-analysis, 15 studies (22 samples with eating disorders) investigating ToM performances of 677 individuals with AN or BN and 514 healthy controls were included. AN was associated with significant deficits in ToM (d = 0.59) which were more pronounced in the acute patients (d = 0.67). Small sized deficits in ToM were observed in BN (d = 0.34) and recovered AN (d = 0.35). Both cognitive perspective-taking (ToM-PT) (d = 0.99) and decoding mental states (ToM-decoding) (d = 0.61) aspects of ToM were impaired in acute AN. ToM-decoding impairment in BN was modest. There was no evidence for significant ToM-PT deficit in BN. Several study-level variables including longer duration of illness, lower BMI, and depressive symptoms were associated with more severe deficits in ToM in AN. ToM deficits, particularly in ToM-PT, can be a specific feature of AN but not BN. ToM impairment can contribute to poor insight, treatment resistance, and social impairment in AN. © 2016 Wiley Periodicals, Inc. RESUMEN META ANÁLISIS DE LA TEORÍA DE LA MENTE EN ANOREXIA NERVOSA Y BULIMIA NERVOSA: ¿Un deterioro de la toma de perspectiva cognitiva en Anorexia Nervosa? Las deficiencias en la teoría de la mente (ToM), la habilidad parar inferir los estados mentales de otros, pueden jugar una función significativa en las dificultades interpersonales y/o falta de reconocimiento de la enfermedad observada en Anorexia Nervosa (AN) y otros trastornos de la conducta alimentaria incluyendo la Bulimia Nervosa (BN). Los meta análisis actuales dirigidos a resumir la evidencia disponible sobre el déficit en ToM en AN y BN y examinar los efectos de un número de variables a nivel estudio en los resultados observados. En este meta análisis fueron incluidos 15 estudios (22 muestras con trastornos alimenticios) investigando la función de ToM de 677 individuos con AN o BN y 514 controles sanos. La AN fue relacionada con déficit significativo en ToM (d=0.59) los cuales fueron pronunciados en los pacientes agudos (d=0.67). Se observaron déficits de tamaño pequeño en BN (d=0.34) y AN recuperada (d=0.35). La toma de perspectiva cognitiva (ToM-PT) (d=0.99) y la descodificación de los procesos mentales (descodificación de ToM) (d=0.61) fueron deteriorados en la AN aguda. El deterioro en la descodificación de ToM en BN fue moderado. No se encontró evidencia significativa de déficit en ToM-PT en BN. Algunas variables a nivel estudio incluyendo la larga duración de la enfermedad, índice de masa corporal (IMC) bajo y síntomas depresivos fueron asociados con mayores déficit severos en ToM en AN. DISCUSIÓN: El déficit en ToM, particularmente en ToM-PT puede ser una característica específica en la AN pero no en la BN. El deterioro en la descodificación de ToM puede contribuir a mala percepción, resistencia al tratamiento y deterioro social en AN. © 2016 Wiley Periodicals, Inc.(Int J Eat Disord 2016; 49:739-749). © 2016 Wiley Periodicals, Inc.

  6. A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals

    NASA Astrophysics Data System (ADS)

    Farrokhi, Behraz; Erfanian, Abbas

    2018-06-01

    Objective. The primary concern of this study is to develop a probabilistic regression method that would improve the decoding of the hand movement trajectories from epidural ECoG as well as from subdural ECoG signals. Approach. The model is characterized by the conditional expectation of the hand position given the ECoG signals. The conditional expectation of the hand position is then modeled by a linear combination of the conditional probability density functions defined for each segment of the movement. Moreover, a spatial linear filter is proposed for reducing the dimension of the feature space. The spatial linear filter is applied to each frequency band of the ECoG signals and extract the features with highest decoding performance. Main results. For evaluating the proposed method, a dataset including 28 ECoG recordings from four adult Japanese macaques is used. The results show that the proposed decoding method outperforms the results with respect to the state of the art methods using this dataset. The relative kinematic information of each frequency band is also investigated using mutual information and decoding performance. The decoding performance shows that the best performance was obtained for high gamma bands from 50 to 200 Hz as well as high frequency ECoG band from 200 to 400 Hz for subdural recordings. However, the decoding performance was decreased for these frequency bands using epidural recordings. The mutual information shows that, on average, the high gamma band from 50 to 200 Hz and high frequency ECoG band from 200 to 400 Hz contain significantly more information than the average of the rest of the frequency bands ≤ft( p<0.001 \\right) for both subdural and epidural recordings. The results of high resolution time-frequency analysis show that ERD/ERS patterns in all frequency bands could reveal the dynamics of the ECoG responses during the movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns. Significance. Reliable decoding the kinematic information from the brain signals paves the way for robust control of external devices.

  7. Scalable SCPPM Decoder

    NASA Technical Reports Server (NTRS)

    Quir, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy; Nakashima, Michael A.; Moision, Bruce E.

    2012-01-01

    A decoder was developed that decodes a serial concatenated pulse position modulation (SCPPM) encoded information sequence. The decoder takes as input a sequence of four bit log-likelihood ratios (LLR) for each PPM slot in a codeword via a XAUI 10-Gb/s quad optical fiber interface. If the decoder is unavailable, it passes the LLRs on to the next decoder via a XAUI 10-Gb/s quad optical fiber interface. Otherwise, it decodes the sequence and outputs information bits through a 1-GB/s Ethernet UDP/IP (User Datagram Protocol/Internet Protocol) interface. The throughput for a single decoder unit is 150-Mb/s at an average of four decoding iterations; by connecting a number of decoder units in series, a decoding rate equal to that of the aggregate rate is achieved. The unit is controlled through a 1-GB/s Ethernet UDP/IP interface. This ground station decoder was developed to demonstrate a deep space optical communication link capability, and is unique in the scalable design to achieve real-time SCPP decoding at the aggregate data rate.

  8. A novel parallel pipeline structure of VP9 decoder

    NASA Astrophysics Data System (ADS)

    Qin, Huabiao; Chen, Wu; Yi, Sijun; Tan, Yunfei; Yi, Huan

    2018-04-01

    To improve the efficiency of VP9 decoder, a novel parallel pipeline structure of VP9 decoder is presented in this paper. According to the decoding workflow, VP9 decoder can be divided into sub-modules which include entropy decoding, inverse quantization, inverse transform, intra prediction, inter prediction, deblocking and pixel adaptive compensation. By analyzing the computing time of each module, hotspot modules are located and the causes of low efficiency of VP9 decoder can be found. Then, a novel pipeline decoder structure is designed by using mixed parallel decoding methods of data division and function division. The experimental results show that this structure can greatly improve the decoding efficiency of VP9.

  9. Singer product apertures-A coded aperture system with a fast decoding algorithm

    NASA Astrophysics Data System (ADS)

    Byard, Kevin; Shutler, Paul M. E.

    2017-06-01

    A new type of coded aperture configuration that enables fast decoding of the coded aperture shadowgram data is presented. Based on the products of incidence vectors generated from the Singer difference sets, we call these Singer product apertures. For a range of aperture dimensions, we compare experimentally the performance of three decoding methods: standard decoding, induction decoding and direct vector decoding. In all cases the induction and direct vector methods are several orders of magnitude faster than the standard method, with direct vector decoding being significantly faster than induction decoding. For apertures of the same dimensions the increase in speed offered by direct vector decoding over induction decoding is better for lower throughput apertures.

  10. Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin

    2017-02-01

    Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.

  11. Differences in the Predictors of Reading Comprehension in First Graders from Low Socio-Economic Status Families with Either Good or Poor Decoding Skills

    PubMed Central

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on “poor comprehenders” by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills. PMID:25793519

  12. Differences in the predictors of reading comprehension in first graders from low socio-economic status families with either good or poor decoding skills.

    PubMed

    Gentaz, Edouard; Sprenger-Charolles, Liliane; Theurel, Anne

    2015-01-01

    Based on the assumption that good decoding skills constitute a bootstrapping mechanism for reading comprehension, the present study investigated the relative contribution of the former skill to the latter compared to that of three other predictors of reading comprehension (listening comprehension, vocabulary and phonemic awareness) in 392 French-speaking first graders from low SES families. This large sample was split into three groups according to their level of decoding skills assessed by pseudoword reading. Using a cutoff of 1 SD above or below the mean of the entire population, there were 63 good decoders, 267 average decoders and 62 poor decoders. 58% of the variance in reading comprehension was explained by our four predictors, with decoding skills proving to be the best predictor (12.1%, 7.3% for listening comprehension, 4.6% for vocabulary and 3.3% for phonemic awareness). Interaction between group versus decoding skills, listening comprehension and phonemic awareness accounted for significant additional variance (3.6%, 1.1% and 1.0%, respectively). The effects on reading comprehension of decoding skills and phonemic awareness were higher in poor and average decoders than in good decoders whereas listening comprehension accounted for more variance in good and average decoders than in poor decoders. Furthermore, the percentage of children with impaired reading comprehension skills was higher in the group of poor decoders (55%) than in the two other groups (average decoders: 7%; good decoders: 0%) and only 6 children (1.5%) had impaired reading comprehension skills with unimpaired decoding skills, listening comprehension or vocabulary. These results challenge the outcomes of studies on "poor comprehenders" by showing that, at least in first grade, poor reading comprehension is strongly linked to the level of decoding skills.

  13. Squeeze-SegNet: a new fast deep convolutional neural network for semantic segmentation

    NASA Astrophysics Data System (ADS)

    Nanfack, Geraldin; Elhassouny, Azeddine; Oulad Haj Thami, Rachid

    2018-04-01

    The recent researches in Deep Convolutional Neural Network have focused their attention on improving accuracy that provide significant advances. However, if they were limited to classification tasks, nowadays with contributions from Scientific Communities who are embarking in this field, they have become very useful in higher level tasks such as object detection and pixel-wise semantic segmentation. Thus, brilliant ideas in the field of semantic segmentation with deep learning have completed the state of the art of accuracy, however this architectures become very difficult to apply in embedded systems as is the case for autonomous driving. We present a new Deep fully Convolutional Neural Network for pixel-wise semantic segmentation which we call Squeeze-SegNet. The architecture is based on Encoder-Decoder style. We use a SqueezeNet-like encoder and a decoder formed by our proposed squeeze-decoder module and upsample layer using downsample indices like in SegNet and we add a deconvolution layer to provide final multi-channel feature map. On datasets like Camvid or City-states, our net gets SegNet-level accuracy with less than 10 times fewer parameters than SegNet.

  14. Optimum decoding and detection of a multiplicative amplitude-encoded watermark

    NASA Astrophysics Data System (ADS)

    Barni, Mauro; Bartolini, Franco; De Rosa, Alessia; Piva, Alessandro

    2002-04-01

    The aim of this paper is to present a novel approach to the decoding and the detection of multibit, multiplicative, watermarks embedded in the frequency domain. Watermark payload is conveyed by amplitude modulating a pseudo-random sequence, thus resembling conventional DS spread spectrum techniques. As opposed to conventional communication systems, though, the watermark is embedded within the host DFT coefficients by using a multiplicative rule. The watermark decoding technique presented in the paper is an optimum one, in that it minimizes the bit error probability. The problem of watermark presence assessment, which is often underestimated by state-of-the-art research on multibit watermarking, is addressed too, and the optimum detection rule derived according to the Neyman-Pearson criterion. Experimental results are shown both to demonstrate the validity of the theoretical analysis and to highlight the good performance of the proposed system.

  15. Long-distance quantum communication over noisy networks without long-time quantum memory

    NASA Astrophysics Data System (ADS)

    Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Łodyga, Justyna; Pankowski, Łukasz; PrzysieŻna, Anna

    2014-12-01

    The problem of sharing entanglement over large distances is crucial for implementations of quantum cryptography. A possible scheme for long-distance entanglement sharing and quantum communication exploits networks whose nodes share Einstein-Podolsky-Rosen (EPR) pairs. In Perseguers et al. [Phys. Rev. A 78, 062324 (2008), 10.1103/PhysRevA.78.062324] the authors put forward an important isomorphism between storing quantum information in a dimension D and transmission of quantum information in a D +1 -dimensional network. We show that it is possible to obtain long-distance entanglement in a noisy two-dimensional (2D) network, even when taking into account that encoding and decoding of a state is exposed to an error. For 3D networks we propose a simple encoding and decoding scheme based solely on syndrome measurements on 2D Kitaev topological quantum memory. Our procedure constitutes an alternative scheme of state injection that can be used for universal quantum computation on 2D Kitaev code. It is shown that the encoding scheme is equivalent to teleporting the state, from a specific node into a whole two-dimensional network, through some virtual EPR pair existing within the rest of network qubits. We present an analytic lower bound on fidelity of the encoding and decoding procedure, using as our main tool a modified metric on space-time lattice, deviating from a taxicab metric at the first and the last time slices.

  16. Architecture for time or transform domain decoding of reed-solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor); Deutsch, Leslie J. (Inventor); Shao, Howard M. (Inventor)

    1989-01-01

    Two pipeline (255,233) RS decoders, one a time domain decoder and the other a transform domain decoder, use the same first part to develop an errata locator polynomial .tau.(x), and an errata evaluator polynominal A(x). Both the time domain decoder and transform domain decoder have a modified GCD that uses an input multiplexer and an output demultiplexer to reduce the number of GCD cells required. The time domain decoder uses a Chien search and polynomial evaluator on the GCD outputs .tau.(x) and A(x), for the final decoding steps, while the transform domain decoder uses a transform error pattern algorithm operating on .tau.(x) and the initial syndrome computation S(x), followed by an inverse transform algorithm in sequence for the final decoding steps prior to adding the received RS coded message to produce a decoded output message.

  17. Quantum image coding with a reference-frame-independent scheme

    NASA Astrophysics Data System (ADS)

    Chapeau-Blondeau, François; Belin, Etienne

    2016-07-01

    For binary images, or bit planes of non-binary images, we investigate the possibility of a quantum coding decodable by a receiver in the absence of reference frames shared with the emitter. Direct image coding with one qubit per pixel and non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise increasing with the misalignment. We show the feasibility of frame-invariant coding by using for each pixel a qubit pair prepared in one of two controlled entangled states. With just one common axis shared between the emitter and receiver, exact decoding for each pixel can be obtained by means of two two-outcome projective measurements operating separately on each qubit of the pair. With strictly no alignment information between the emitter and receiver, exact decoding can be obtained by means of a two-outcome projective measurement operating jointly on the qubit pair. In addition, the frame-invariant coding is shown much more resistant to quantum bit-flip noise compared to the direct non-invariant coding. For a cost per pixel of two (entangled) qubits instead of one, complete frame-invariant image coding and enhanced noise resistance are thus obtained.

  18. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra

    NASA Astrophysics Data System (ADS)

    Gopinath, T.; Veglia, Gianluigi

    2013-05-01

    We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-13C, 15N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during 15N-13C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-13C, 15N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.

  19. FPGA implementation of low complexity LDPC iterative decoder

    NASA Astrophysics Data System (ADS)

    Verma, Shivani; Sharma, Sanjay

    2016-07-01

    Low-density parity-check (LDPC) codes, proposed by Gallager, emerged as a class of codes which can yield very good performance on the additive white Gaussian noise channel as well as on the binary symmetric channel. LDPC codes have gained lots of importance due to their capacity achieving property and excellent performance in the noisy channel. Belief propagation (BP) algorithm and its approximations, most notably min-sum, are popular iterative decoding algorithms used for LDPC and turbo codes. The trade-off between the hardware complexity and the decoding throughput is a critical factor in the implementation of the practical decoder. This article presents introduction to LDPC codes and its various decoding algorithms followed by realisation of LDPC decoder by using simplified message passing algorithm and partially parallel decoder architecture. Simplified message passing algorithm has been proposed for trade-off between low decoding complexity and decoder performance. It greatly reduces the routing and check node complexity of the decoder. Partially parallel decoder architecture possesses high speed and reduced complexity. The improved design of the decoder possesses a maximum symbol throughput of 92.95 Mbps and a maximum of 18 decoding iterations. The article presents implementation of 9216 bits, rate-1/2, (3, 6) LDPC decoder on Xilinx XC3D3400A device from Spartan-3A DSP family.

  20. The design plan of a VLSI single chip (255, 223) Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Shao, H. M.; Deutsch, L. J.

    1987-01-01

    The very large-scale integration (VLSI) architecture of a single chip (255, 223) Reed-Solomon decoder for decoding both errors and erasures is described. A decoding failure detection capability is also included in this system so that the decoder will recognize a failure to decode instead of introducing additional errors. This could happen whenever the received word contains too many errors and erasures for the code to correct. The number of transistors needed to implement this decoder is estimated at about 75,000 if the delay for received message is not included. This is in contrast to the older transform decoding algorithm which needs about 100,000 transistors. However, the transform decoder is simpler in architecture than the time decoder. It is therefore possible to implement a single chip (255, 223) Reed-Solomon decoder with today's VLSI technology. An implementation strategy for the decoder system is presented. This represents the first step in a plan to take advantage of advanced coding techniques to realize a 2.0 dB coding gain for future space missions.

  1. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao

    1991-01-01

    Various types of multistage decoding for multilevel block modulation codes, in which the decoding of a component code at each stage can be either soft decision or hard decision, maximum likelihood or bounded distance are discussed. Error performance for codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. It was found that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. It was found that the difference in performance between the suboptimum multi-stage soft decision maximum likelihood decoding of a modulation code and the single stage optimum decoding of the overall code is very small, only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  2. Hamming and Accumulator Codes Concatenated with MPSK or QAM

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel

    2009-01-01

    In a proposed coding-and-modulation scheme, a high-rate binary data stream would be processed as follows: 1. The input bit stream would be demultiplexed into multiple bit streams. 2. The multiple bit streams would be processed simultaneously into a high-rate outer Hamming code that would comprise multiple short constituent Hamming codes a distinct constituent Hamming code for each stream. 3. The streams would be interleaved. The interleaver would have a block structure that would facilitate parallelization for high-speed decoding. 4. The interleaved streams would be further processed simultaneously into an inner two-state, rate-1 accumulator code that would comprise multiple constituent accumulator codes - a distinct accumulator code for each stream. 5. The resulting bit streams would be mapped into symbols to be transmitted by use of a higher-order modulation - for example, M-ary phase-shift keying (MPSK) or quadrature amplitude modulation (QAM). The novelty of the scheme lies in the concatenation of the multiple-constituent Hamming and accumulator codes and the corresponding parallel architectures of the encoder and decoder circuitry (see figure) needed to process the multiple bit streams simultaneously. As in the cases of other parallel-processing schemes, one advantage of this scheme is that the overall data rate could be much greater than the data rate of each encoder and decoder stream and, hence, the encoder and decoder could handle data at an overall rate beyond the capability of the individual encoder and decoder circuits.

  3. Decoding Trajectories from Posterior Parietal Cortex Ensembles

    PubMed Central

    Mulliken, Grant H.; Musallam, Sam; Andersen, Richard A.

    2009-01-01

    High-level cognitive signals in the posterior parietal cortex (PPC) have previously been used to decode the intended endpoint of a reach, providing the first evidence that PPC can be used for direct control of a neural prosthesis (Musallam et al., 2004). Here we expand on this work by showing that PPC neural activity can be harnessed to estimate not only the endpoint but also to continuously control the trajectory of an end effector. Specifically, we trained two monkeys to use a joystick to guide a cursor on a computer screen to peripheral target locations while maintaining central ocular fixation. We found that we could accurately reconstruct the trajectory of the cursor using a relatively small ensemble of simultaneously recorded PPC neurons. Using a goal-based Kalman filter that incorporates target information into the state-space, we showed that the decoded estimate of cursor position could be significantly improved. Finally, we tested whether we could decode trajectories during closed-loop brain control sessions, in which the real-time position of the cursor was determined solely by a monkey’s neural activity in PPC. The monkey learned to perform brain control trajectories at 80% success rate(for 8 targets) after just 4–5 sessions. This improvement in behavioral performance was accompanied by a corresponding enhancement in neural tuning properties (i.e., increased tuning depth and coverage of encoding parameter space) as well as an increase in off-line decoding performance of the PPC ensemble. PMID:19036985

  4. The serial message-passing schedule for LDPC decoding algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Mingshan; Liu, Shanshan; Zhou, Yuan; Jiang, Xue

    2015-12-01

    The conventional message-passing schedule for LDPC decoding algorithms is the so-called flooding schedule. It has the disadvantage that the updated messages cannot be used until next iteration, thus reducing the convergence speed . In this case, the Layered Decoding algorithm (LBP) based on serial message-passing schedule is proposed. In this paper the decoding principle of LBP algorithm is briefly introduced, and then proposed its two improved algorithms, the grouped serial decoding algorithm (Grouped LBP) and the semi-serial decoding algorithm .They can improve LBP algorithm's decoding speed while maintaining a good decoding performance.

  5. Mapping visual stimuli to perceptual decisions via sparse decoding of mesoscopic neural activity.

    PubMed

    Sajda, Paul

    2010-01-01

    In this talk I will describe our work investigating sparse decoding of neural activity, given a realistic mapping of the visual scene to neuronal spike trains generated by a model of primary visual cortex (V1). We use a linear decoder which imposes sparsity via an L1 norm. The decoder can be viewed as a decoding neuron (linear summation followed by a sigmoidal nonlinearity) in which there are relatively few non-zero synaptic weights. We find: (1) the best decoding performance is for a representation that is sparse in both space and time, (2) decoding of a temporal code results in better performance than a rate code and is also a better fit to the psychophysical data, (3) the number of neurons required for decoding increases monotonically as signal-to-noise in the stimulus decreases, with as little as 1% of the neurons required for decoding at the highest signal-to-noise levels, and (4) sparse decoding results in a more accurate decoding of the stimulus and is a better fit to psychophysical performance than a distributed decoding, for example one imposed by an L2 norm. We conclude that sparse coding is well-justified from a decoding perspective in that it results in a minimum number of neurons and maximum accuracy when sparse representations can be decoded from the neural dynamics.

  6. Image transmission system using adaptive joint source and channel decoding

    NASA Astrophysics Data System (ADS)

    Liu, Weiliang; Daut, David G.

    2005-03-01

    In this paper, an adaptive joint source and channel decoding method is designed to accelerate the convergence of the iterative log-dimain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec, which makes it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. Due to the error resilience modes, some bits are known to be either correct or in error. The positions of these bits are then fed back to the channel decoder. The log-likelihood ratios (LLR) of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. That is, for lower channel SNR, a larger factor is assigned, and vice versa. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the non-source controlled decoding method up to 5dB in terms of PSNR for various reconstructed images.

  7. Programmable Pulser

    NASA Technical Reports Server (NTRS)

    Baumann, Eric; Merolla, Anthony

    1988-01-01

    User controls number of clock pulses to prevent burnout. New digital programmable pulser circuit in three formats; freely running, counted, and single pulse. Operates at frequencies up to 5 MHz, with no special consideration given to layout of components or to terminations. Pulser based on sequential circuit with four states and binary counter with appropriate decoding logic. Number of programmable pulses increased beyond 127 by addition of another counter and decoding logic. For very large pulse counts and/or very high frequencies, use synchronous counters to avoid errors caused by propagation delays. Invaluable tool for initial verification or diagnosis of digital or digitally controlled circuity.

  8. Quantized Iterative Learning Consensus Tracking of Digital Networks With Limited Information Communication.

    PubMed

    Xiong, Wenjun; Yu, Xinghuo; Chen, Yao; Gao, Jie

    2017-06-01

    This brief investigates the quantized iterative learning problem for digital networks with time-varying topologies. The information is first encoded as symbolic data and then transmitted. After the data are received, a decoder is used by the receiver to get an estimate of the sender's state. Iterative learning quantized communication is considered in the process of encoding and decoding. A sufficient condition is then presented to achieve the consensus tracking problem in a finite interval using the quantized iterative learning controllers. Finally, simulation results are given to illustrate the usefulness of the developed criterion.

  9. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  10. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness

    PubMed Central

    King, J.R.; Faugeras, F.; Gramfort, A.; Schurger, A.; El Karoui, I.; Sitt, J.D.; Rohaut, B.; Wacongne, C.; Labyt, E.; Bekinschtein, T.; Cohen, L.; Naccache, L.; Dehaene, S.

    2017-01-01

    Detecting residual consciousness in unresponsive patients is a major clinical concern and a challenge for theoretical neuroscience. To tackle this issue, we recently designed a paradigm that dissociates two electro-encephalographic (EEG) responses to auditory novelty. Whereas a local change in pitch automatically elicits a mismatch negativity (MMN), a change in global sound sequence leads to a late P300b response. The latter component is thought to be present only when subjects consciously perceive the global novelty. Unfortunately, it can be difficult to detect because individual variability is high, especially in clinical recordings. Here, we show that multivariate pattern classifiers can extract subject-specific EEG patterns and predict single-trial local or global novelty responses. We first validate our method with 38 high-density EEG, MEG and intracranial EEG recordings. We empirically demonstrate that our approach circumvents the issues associated with multiple comparisons and individual variability while improving the statistics. Moreover, we confirm in control subjects that local responses are robust to distraction whereas global responses depend on attention. We then investigate 104 vegetative state (VS), minimally conscious state (MCS) and conscious state (CS) patients recorded with high-density EEG. For the local response, the proportion of significant decoding scores (M = 60%) does not vary with the state of consciousness. By contrast, for the global response, only 14% of the VS patients' EEG recordings presented a significant effect, compared to 31% in MCS patients' and 52% in CS patients'. In conclusion, single-trial multivariate decoding of novelty responses provides valuable information in non-communicating patients and paves the way towards real-time monitoring of the state of consciousness. PMID:23859924

  11. A long constraint length VLSI Viterbi decoder for the DSN

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Zimmerman, G.; Pollara, F.; Collins, O.

    1988-01-01

    A Viterbi decoder, capable of decoding convolutional codes with constraint lengths up to 15, is under development for the Deep Space Network (DSN). The objective is to complete a prototype of this decoder by late 1990, and demonstrate its performance using the (15, 1/4) encoder in Galileo. The decoder is expected to provide 1 to 2 dB improvement in bit SNR, compared to the present (7, 1/2) code and existing Maximum Likelihood Convolutional Decoder (MCD). The decoder will be fully programmable for any code up to constraint length 15, and code rate 1/2 to 1/6. The decoder architecture and top-level design are described.

  12. Decoding small surface codes with feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  13. Multi-stage decoding for multi-level block modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1991-01-01

    In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.

  14. The brain’s response to pleasant touch: an EEG investigation of tactile caressing

    PubMed Central

    Singh, Harsimrat; Bauer, Markus; Chowanski, Wojtek; Sui, Yi; Atkinson, Douglas; Baurley, Sharon; Fry, Martin; Evans, Joe; Bianchi-Berthouze, Nadia

    2014-01-01

    Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex – the well-known mu-suppression (10–20 Hz) – and a beta-band response (25–30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements. PMID:25426047

  15. Impairment on theory of mind and empathy in patients with stroke.

    PubMed

    Yeh, Zai-Ting; Tsai, Chung-Fen

    2014-08-01

    Impaired social function has been described in patients following stroke. The present study was designed to explore the degree of impairment in the ability to infer mental states in others, or cognitive and affective theory of mind, and empathy, in patients with stroke. A total of 34 patients with stroke were compared to 40 control subjects on tasks testing verbal and non-verbal theory of mind and empathy. Results indicated that patients with stroke were significantly impaired in both cognitive and affective theory of mind, even controlling for basic cognitive function and emotional processing. The patients with right stroke had poorer performance than those with left stroke on the cognitive component of non-verbal theory of mind. On the subscale of cognitive empathy, the right stroke group had poorer performance on perspective-taking than the control group. The right hemisphere may play an important role in decoding non-verbal cues to infer others' minds as well as the processing of empathy, especially the ability of perspective-taking. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  16. Adaptive decoding of convolutional codes

    NASA Astrophysics Data System (ADS)

    Hueske, K.; Geldmacher, J.; Götze, J.

    2007-06-01

    Convolutional codes, which are frequently used as error correction codes in digital transmission systems, are generally decoded using the Viterbi Decoder. On the one hand the Viterbi Decoder is an optimum maximum likelihood decoder, i.e. the most probable transmitted code sequence is obtained. On the other hand the mathematical complexity of the algorithm only depends on the used code, not on the number of transmission errors. To reduce the complexity of the decoding process for good transmission conditions, an alternative syndrome based decoder is presented. The reduction of complexity is realized by two different approaches, the syndrome zero sequence deactivation and the path metric equalization. The two approaches enable an easy adaptation of the decoding complexity for different transmission conditions, which results in a trade-off between decoding complexity and error correction performance.

  17. Real-time minimal-bit-error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L.-N.

    1974-01-01

    A recursive procedure is derived for decoding of rate R = 1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

  18. Real-time minimal bit error probability decoding of convolutional codes

    NASA Technical Reports Server (NTRS)

    Lee, L. N.

    1973-01-01

    A recursive procedure is derived for decoding of rate R=1/n binary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit subject to the constraint that the decoding delay be limited to Delta branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A real-time, i.e. fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications such as in the inner coding system for concatenated coding.

  19. Bayesian decoding using unsorted spikes in the rat hippocampus

    PubMed Central

    Layton, Stuart P.; Chen, Zhe; Wilson, Matthew A.

    2013-01-01

    A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces. PMID:24089403

  20. Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

    NASA Astrophysics Data System (ADS)

    Sheikh, Alireza; Amat, Alexandre Graell i.; Liva, Gianluigi

    2017-12-01

    We analyze the achievable information rates (AIRs) for coded modulation schemes with QAM constellations with both bit-wise and symbol-wise decoders, corresponding to the case where a binary code is used in combination with a higher-order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga \\emph{et al.} analyzed the AIRs for bit-wise and symbol-wise decoders considering what the authors called \\emph{hard decision decoder} which, however, exploits \\emph{soft information} of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bit-wise decoders yield significantly higher AIRs than symbol-wise decoders. As a result, contrary to the conclusion by Liga \\emph{et al.}, binary decoders together with the BICM paradigm are preferable for spectrally-efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

  1. The design of high performance, low power triple-track magnetic sensor chip.

    PubMed

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-07-09

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target.

  2. The Design of High Performance, Low Power Triple-Track Magnetic Sensor Chip

    PubMed Central

    Wu, Xiulong; Li, Minghua; Lin, Zhiting; Xi, Mengyuan; Chen, Junning

    2013-01-01

    This paper presents a design of a high performance and low power consumption triple-track magnetic sensor chip which was fabricated in TSMC 0.35 μm CMOS process. This chip is able to simultaneously sense, decode and read out the information stored in triple-track magnetic cards. A reference voltage generating circuit, a low-cost filter circuit, a power-on reset circuit, an RC oscillator, and a pre-decoding circuit are utilized as the basic modules. The triple-track magnetic sensor chip has four states, i.e., reset, sleep, swiping card and data read-out. In sleep state, the internal RC oscillator is closed, which means that the digital part does not operate to optimize energy consumption. In order to improve decoding accuracy and expand the sensing range of the signal, two kinds of circuit are put forward, naming offset correction circuit, and tracking circuit. With these two circuits, the sensing function of this chip can be more efficiently and accurately. We simulated these circuit modules with TSMC technology library. The results showed that these modules worked well within wide range input signal. Based on these results, the layout and tape-out were carried out. The measurement results showed that the chip do function well within a wide swipe speed range, which achieved the design target. PMID:23839231

  3. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface.

    PubMed

    Kamrunnahar, M; Schiff, S J

    2011-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%-90% for the hand movements and 70%-90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models.

  4. Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications

    NASA Astrophysics Data System (ADS)

    Rigosa, J.; Weber, D. J.; Prochazka, A.; Stein, R. B.; Micera, S.

    2011-08-01

    Functional electrical stimulation (FES) is used to improve motor function after injury to the central nervous system. Some FES systems use artificial sensors to switch between finite control states. To optimize FES control of the complex behavior of the musculo-skeletal system in activities of daily life, it is highly desirable to implement feedback control. In theory, sensory neural signals could provide the required control signals. Recent studies have demonstrated the feasibility of deriving limb-state estimates from the firing rates of primary afferent neurons recorded in dorsal root ganglia (DRG). These studies used multiple linear regression (MLR) methods to generate estimates of limb position and velocity based on a weighted sum of firing rates in an ensemble of simultaneously recorded DRG neurons. The aim of this study was to test whether the use of a neuro-fuzzy (NF) algorithm (the generalized dynamic fuzzy neural networks (GD-FNN)) could improve the performance, robustness and ability to generalize from training to test sets compared to the MLR technique. NF and MLR decoding methods were applied to ensemble DRG recordings obtained during passive and active limb movements in anesthetized and freely moving cats. The GD-FNN model provided more accurate estimates of limb state and generalized better to novel movement patterns. Future efforts will focus on implementing these neural recording and decoding methods in real time to provide closed-loop control of FES using the information extracted from sensory neurons.

  5. Privacy Protection by Masking Moving Objects for Security Cameras

    NASA Astrophysics Data System (ADS)

    Yabuta, Kenichi; Kitazawa, Hitoshi; Tanaka, Toshihisa

    Because of an increasing number of security cameras, it is crucial to establish a system that protects the privacy of objects in the recorded images. To this end, we propose a framework of image processing and data hiding for security monitoring and privacy protection. First, we state the requirements of the proposed monitoring systems and suggest possible implementation that satisfies those requirements. The underlying concept of our proposed framework is as follows: (1) in the recorded images, the objects whose privacy should be protected are deteriorated by appropriate image processing; (2) the original objects are encrypted and watermarked into the output image, which is encoded using an image compression standard; (3) real-time processing is performed such that no future frame is required to generate on output bitstream. It should be noted that in this framework, anyone can observe the decoded image that includes the deteriorated objects that are unrecognizable or invisible. On the other hand, for crime investigation, this system allows a limited number of users to observe the original objects by using a special viewer that decrypts and decodes the watermarked objects with a decoding password. Moreover, the special viewer allows us to select the objects to be decoded and displayed. We provide an implementation example, experimental results, and performance evaluations to support our proposed framework.

  6. Synchronization Control for a Class of Discrete-Time Dynamical Networks With Packet Dropouts: A Coding-Decoding-Based Approach.

    PubMed

    Wang, Licheng; Wang, Zidong; Han, Qing-Long; Wei, Guoliang

    2017-09-06

    The synchronization control problem is investigated for a class of discrete-time dynamical networks with packet dropouts via a coding-decoding-based approach. The data is transmitted through digital communication channels and only the sequence of finite coded signals is sent to the controller. A series of mutually independent Bernoulli distributed random variables is utilized to model the packet dropout phenomenon occurring in the transmissions of coded signals. The purpose of the addressed synchronization control problem is to design a suitable coding-decoding procedure for each node, based on which an efficient decoder-based control protocol is developed to guarantee that the closed-loop network achieves the desired synchronization performance. By applying a modified uniform quantization approach and the Kronecker product technique, criteria for ensuring the detectability of the dynamical network are established by means of the size of the coding alphabet, the coding period and the probability information of packet dropouts. Subsequently, by resorting to the input-to-state stability theory, the desired controller parameter is obtained in terms of the solutions to a certain set of inequality constraints which can be solved effectively via available software packages. Finally, two simulation examples are provided to demonstrate the effectiveness of the obtained results.

  7. Decoding of top-down cognitive processing for SSVEP-controlled BMI

    PubMed Central

    Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert

    2016-01-01

    We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting. PMID:27808125

  8. Decoding of top-down cognitive processing for SSVEP-controlled BMI

    NASA Astrophysics Data System (ADS)

    Min, Byoung-Kyong; Dähne, Sven; Ahn, Min-Hee; Noh, Yung-Kyun; Müller, Klaus-Robert

    2016-11-01

    We present a fast and accurate non-invasive brain-machine interface (BMI) based on demodulating steady-state visual evoked potentials (SSVEPs) in electroencephalography (EEG). Our study reports an SSVEP-BMI that, for the first time, decodes primarily based on top-down and not bottom-up visual information processing. The experimental setup presents a grid-shaped flickering line array that the participants observe while intentionally attending to a subset of flickering lines representing the shape of a letter. While the flickering pixels stimulate the participant’s visual cortex uniformly with equal probability, the participant’s intention groups the strokes and thus perceives a ‘letter Gestalt’. We observed decoding accuracy of 35.81% (up to 65.83%) with a regularized linear discriminant analysis; on average 2.05-fold, and up to 3.77-fold greater than chance levels in multi-class classification. Compared to the EEG signals, an electrooculogram (EOG) did not significantly contribute to decoding accuracies. Further analysis reveals that the top-down SSVEP paradigm shows the most focalised activation pattern around occipital visual areas; Granger causality analysis consistently revealed prefrontal top-down control over early visual processing. Taken together, the present paradigm provides the first neurophysiological evidence for the top-down SSVEP BMI paradigm, which potentially enables multi-class intentional control of EEG-BMIs without using gaze-shifting.

  9. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... decoders manufactured after August 1, 2003 must provide a means to permit the selective display and logging... upgrade their decoders on an optional basis to include a selective display and logging capability for EAS... decoders after February 1, 2004 must install decoders that provide a means to permit the selective display...

  10. A real-time MPEG software decoder using a portable message-passing library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Man Kam; Tang, P.T. Peter; Lin, Biquan

    1995-12-31

    We present a real-time MPEG software decoder that uses message-passing libraries such as MPL, p4 and MPI. The parallel MPEG decoder currently runs on the IBM SP system but can be easil ported to other parallel machines. This paper discusses our parallel MPEG decoding algorithm as well as the parallel programming environment under which it uses. Several technical issues are discussed, including balancing of decoding speed, memory limitation, 1/0 capacities, and optimization of MPEG decoding components. This project shows that a real-time portable software MPEG decoder is feasible in a general-purpose parallel machine.

  11. NP-hardness of decoding quantum error-correction codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Le Gall, François

    2011-05-01

    Although the theory of quantum error correction is intimately related to classical coding theory and, in particular, one can construct quantum error-correction codes (QECCs) from classical codes with the dual-containing property, this does not necessarily imply that the computational complexity of decoding QECCs is the same as their classical counterparts. Instead, decoding QECCs can be very much different from decoding classical codes due to the degeneracy property. Intuitively, one expects degeneracy would simplify the decoding since two different errors might not and need not be distinguished in order to correct them. However, we show that general quantum decoding problem is NP-hard regardless of the quantum codes being degenerate or nondegenerate. This finding implies that no considerably fast decoding algorithm exists for the general quantum decoding problems and suggests the existence of a quantum cryptosystem based on the hardness of decoding QECCs.

  12. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  13. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    NASA Technical Reports Server (NTRS)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  14. Simple scheme for encoding and decoding a qubit in unknown state for various topological codes

    PubMed Central

    Łodyga, Justyna; Mazurek, Paweł; Grudka, Andrzej; Horodecki, Michał

    2015-01-01

    We present a scheme for encoding and decoding an unknown state for CSS codes, based on syndrome measurements. We illustrate our method by means of Kitaev toric code, defected-lattice code, topological subsystem code and 3D Haah code. The protocol is local whenever in a given code the crossings between the logical operators consist of next neighbour pairs, which holds for the above codes. For subsystem code we also present scheme in a noisy case, where we allow for bit and phase-flip errors on qubits as well as state preparation and syndrome measurement errors. Similar scheme can be built for two other codes. We show that the fidelity of the protected qubit in the noisy scenario in a large code size limit is of , where p is a probability of error on a single qubit per time step. Regarding Haah code we provide noiseless scheme, leaving the noisy case as an open problem. PMID:25754905

  15. Toward more intuitive brain-computer interfacing: classification of binary covert intentions using functional near-infrared spectroscopy.

    PubMed

    Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan

    2016-09-01

    In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to “yes” or “no” intentions (e.g., mental arithmetic calculation for “yes”). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient’s internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an “fNIRS-based direct intention decoding” paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing “yes” or “no” intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ± 1.39 and 74.08% ± 2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p < 0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.

  16. Unsupervised learning of facial emotion decoding skills.

    PubMed

    Huelle, Jan O; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2014-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant's response or the sender's true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple stimuli described in previous studies and practice effects often observed in cognitive tasks.

  17. Unsupervised learning of facial emotion decoding skills

    PubMed Central

    Huelle, Jan O.; Sack, Benjamin; Broer, Katja; Komlewa, Irina; Anders, Silke

    2013-01-01

    Research on the mechanisms underlying human facial emotion recognition has long focussed on genetically determined neural algorithms and often neglected the question of how these algorithms might be tuned by social learning. Here we show that facial emotion decoding skills can be significantly and sustainably improved by practice without an external teaching signal. Participants saw video clips of dynamic facial expressions of five different women and were asked to decide which of four possible emotions (anger, disgust, fear, and sadness) was shown in each clip. Although no external information about the correctness of the participant’s response or the sender’s true affective state was provided, participants showed a significant increase of facial emotion recognition accuracy both within and across two training sessions two days to several weeks apart. We discuss several similarities and differences between the unsupervised improvement of facial decoding skills observed in the current study, unsupervised perceptual learning of simple visual stimuli described in previous studies and practice effects often observed in cognitive tasks. PMID:24578686

  18. Information hiding techniques for infrared images: exploring the state-of-the art and challenges

    NASA Astrophysics Data System (ADS)

    Pomponiu, Victor; Cavagnino, Davide; Botta, Marco; Nejati, Hossein

    2015-10-01

    The proliferation of Infrared technology and imaging systems enables a different perspective to tackle many computer vision problems in defense and security applications. Infrared images are widely used by the law enforcement, Homeland Security and military organizations to achieve a significant advantage or situational awareness, and thus is vital to protect these data against malicious attacks. Concurrently, sophisticated malware are developed which are able to disrupt the security and integrity of these digital media. For instance, illegal distribution and manipulation are possible malicious attacks to the digital objects. In this paper we explore the use of a new layer of defense for the integrity of the infrared images through the aid of information hiding techniques such as watermarking. In this context, we analyze the efficiency of several optimal decoding schemes for the watermark inserted into the Singular Value Decomposition (SVD) domain of the IR images using an additive spread spectrum (SS) embedding framework. In order to use the singular values (SVs) of the IR images with the SS embedding we adopt several restrictions that ensure that the values of the SVs will maintain their statistics. For both the optimal maximum likelihood decoder and sub-optimal decoders we assume that the PDF of SVs can be modeled by the Weibull distribution. Furthermore, we investigate the challenges involved in protecting and assuring the integrity of IR images such as data complexity and the error probability behavior, i.e., the probability of detection and the probability of false detection, for the applied optimal decoders. By taking into account the efficiency and the necessary auxiliary information for decoding the watermark, we discuss the suitable decoder for various operating situations. Experimental results are carried out on a large dataset of IR images to show the imperceptibility and efficiency of the proposed scheme against various attack scenarios.

  19. Near Real-Time Comprehension Classification with Artificial Neural Networks: Decoding e-Learner Non-Verbal Behavior

    ERIC Educational Resources Information Center

    Holmes, Mike; Latham, Annabel; Crockett, Keeley; O'Shea, James D.

    2018-01-01

    Comprehension is an important cognitive state for learning. Human tutors recognize comprehension and non-comprehension states by interpreting learner non-verbal behavior (NVB). Experienced tutors adapt pedagogy, materials, and instruction to provide additional learning scaffold in the context of perceived learner comprehension. Near real-time…

  20. Turbo Trellis Coded Modulation With Iterative Decoding for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Divsalar, D.; Pollara, F.

    1997-01-01

    In this paper, analytical bounds on the performance of parallel concatenation of two codes, known as turbo codes, and serial concatenation of two codes over fading channels are obtained. Based on this analysis, design criteria for the selection of component trellis codes for MPSK modulation, and a suitable bit-by-bit iterative decoding structure are proposed. Examples are given for throughput of 2 bits/sec/Hz with 8PSK modulation. The parallel concatenation example uses two rate 4/5 8-state convolutional codes with two interleavers. The convolutional codes' outputs are then mapped to two 8PSK modulations. The serial concatenated code example uses an 8-state outer code with rate 4/5 and a 4-state inner trellis code with 5 inputs and 2 x 8PSK outputs per trellis branch. Based on the above mentioned design criteria for fading channels, a method to obtain he structure of the trellis code with maximum diversity is proposed. Simulation results are given for AWGN and an independent Rayleigh fading channel with perfect Channel State Information (CSI).

  1. Bounded-Angle Iterative Decoding of LDPC Codes

    NASA Technical Reports Server (NTRS)

    Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2009-01-01

    Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).

  2. Optimizing the learning rate for adaptive estimation of neural encoding models

    PubMed Central

    2018-01-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains. PMID:29813069

  3. Optimizing the learning rate for adaptive estimation of neural encoding models.

    PubMed

    Hsieh, Han-Lin; Shanechi, Maryam M

    2018-05-01

    Closed-loop neurotechnologies often need to adaptively learn an encoding model that relates the neural activity to the brain state, and is used for brain state decoding. The speed and accuracy of adaptive learning algorithms are critically affected by the learning rate, which dictates how fast model parameters are updated based on new observations. Despite the importance of the learning rate, currently an analytical approach for its selection is largely lacking and existing signal processing methods vastly tune it empirically or heuristically. Here, we develop a novel analytical calibration algorithm for optimal selection of the learning rate in adaptive Bayesian filters. We formulate the problem through a fundamental trade-off that learning rate introduces between the steady-state error and the convergence time of the estimated model parameters. We derive explicit functions that predict the effect of learning rate on error and convergence time. Using these functions, our calibration algorithm can keep the steady-state parameter error covariance smaller than a desired upper-bound while minimizing the convergence time, or keep the convergence time faster than a desired value while minimizing the error. We derive the algorithm both for discrete-valued spikes modeled as point processes nonlinearly dependent on the brain state, and for continuous-valued neural recordings modeled as Gaussian processes linearly dependent on the brain state. Using extensive closed-loop simulations, we show that the analytical solution of the calibration algorithm accurately predicts the effect of learning rate on parameter error and convergence time. Moreover, the calibration algorithm allows for fast and accurate learning of the encoding model and for fast convergence of decoding to accurate performance. Finally, larger learning rates result in inaccurate encoding models and decoders, and smaller learning rates delay their convergence. The calibration algorithm provides a novel analytical approach to predictably achieve a desired level of error and convergence time in adaptive learning, with application to closed-loop neurotechnologies and other signal processing domains.

  4. Iterative channel decoding of FEC-based multiple-description codes.

    PubMed

    Chang, Seok-Ho; Cosman, Pamela C; Milstein, Laurence B

    2012-03-01

    Multiple description coding has been receiving attention as a robust transmission framework for multimedia services. This paper studies the iterative decoding of FEC-based multiple description codes. The proposed decoding algorithms take advantage of the error detection capability of Reed-Solomon (RS) erasure codes. The information of correctly decoded RS codewords is exploited to enhance the error correction capability of the Viterbi algorithm at the next iteration of decoding. In the proposed algorithm, an intradescription interleaver is synergistically combined with the iterative decoder. The interleaver does not affect the performance of noniterative decoding but greatly enhances the performance when the system is iteratively decoded. We also address the optimal allocation of RS parity symbols for unequal error protection. For the optimal allocation in iterative decoding, we derive mathematical equations from which the probability distributions of description erasures can be generated in a simple way. The performance of the algorithm is evaluated over an orthogonal frequency-division multiplexing system. The results show that the performance of the multiple description codes is significantly enhanced.

  5. High rate concatenated coding systems using bandwidth efficient trellis inner codes

    NASA Technical Reports Server (NTRS)

    Deng, Robert H.; Costello, Daniel J., Jr.

    1989-01-01

    High-rate concatenated coding systems with bandwidth-efficient trellis inner codes and Reed-Solomon (RS) outer codes are investigated for application in high-speed satellite communication systems. Two concatenated coding schemes are proposed. In one the inner code is decoded with soft-decision Viterbi decoding, and the outer RS code performs error-correction-only decoding (decoding without side information). In the other, the inner code is decoded with a modified Viterbi algorithm, which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, whereas branch metrics are used to provide reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. The two schemes have been proposed for high-speed data communication on NASA satellite channels. The rates considered are at least double those used in current NASA systems, and the results indicate that high system reliability can still be achieved.

  6. Efficient Decoding of Compressed Data.

    ERIC Educational Resources Information Center

    Bassiouni, Mostafa A.; Mukherjee, Amar

    1995-01-01

    Discusses the problem of enhancing the speed of Huffman decoding of compressed data. Topics addressed include the Huffman decoding tree; multibit decoding; binary string mapping problems; and algorithms for solving mapping problems. (22 references) (LRW)

  7. A new VLSI architecture for a single-chip-type Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.

    1989-01-01

    A new very large scale integration (VLSI) architecture for implementing Reed-Solomon (RS) decoders that can correct both errors and erasures is described. This new architecture implements a Reed-Solomon decoder by using replication of a single VLSI chip. It is anticipated that this single chip type RS decoder approach will save substantial development and production costs. It is estimated that reduction in cost by a factor of four is possible with this new architecture. Furthermore, this Reed-Solomon decoder is programmable between 8 bit and 10 bit symbol sizes. Therefore, both an 8 bit Consultative Committee for Space Data Systems (CCSDS) RS decoder and a 10 bit decoder are obtained at the same time, and when concatenated with a (15,1/6) Viterbi decoder, provide an additional 2.1-dB coding gain.

  8. Deconstructing multivariate decoding for the study of brain function.

    PubMed

    Hebart, Martin N; Baker, Chris I

    2017-08-04

    Multivariate decoding methods were developed originally as tools to enable accurate predictions in real-world applications. The realization that these methods can also be employed to study brain function has led to their widespread adoption in the neurosciences. However, prior to the rise of multivariate decoding, the study of brain function was firmly embedded in a statistical philosophy grounded on univariate methods of data analysis. In this way, multivariate decoding for brain interpretation grew out of two established frameworks: multivariate decoding for predictions in real-world applications, and classical univariate analysis based on the study and interpretation of brain activation. We argue that this led to two confusions, one reflecting a mixture of multivariate decoding for prediction or interpretation, and the other a mixture of the conceptual and statistical philosophies underlying multivariate decoding and classical univariate analysis. Here we attempt to systematically disambiguate multivariate decoding for the study of brain function from the frameworks it grew out of. After elaborating these confusions and their consequences, we describe six, often unappreciated, differences between classical univariate analysis and multivariate decoding. We then focus on how the common interpretation of what is signal and noise changes in multivariate decoding. Finally, we use four examples to illustrate where these confusions may impact the interpretation of neuroimaging data. We conclude with a discussion of potential strategies to help resolve these confusions in interpreting multivariate decoding results, including the potential departure from multivariate decoding methods for the study of brain function. Copyright © 2017. Published by Elsevier Inc.

  9. Real-time SHVC software decoding with multi-threaded parallel processing

    NASA Astrophysics Data System (ADS)

    Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu

    2014-09-01

    This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.

  10. The VLSI design of an error-trellis syndrome decoder for certain convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Hsu, I.-S.; Truong, T. K.

    1986-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  11. Systolic VLSI Reed-Solomon Decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.

    1986-01-01

    Decoder for digital communications provides high-speed, pipelined ReedSolomon (RS) error-correction decoding of data streams. Principal new feature of proposed decoder is modification of Euclid greatest-common-divisor algorithm to avoid need for time-consuming computations of inverse of certain Galois-field quantities. Decoder architecture suitable for implementation on very-large-scale integrated (VLSI) chips with negative-channel metaloxide/silicon circuitry.

  12. The VLSI design of error-trellis syndrome decoding for convolutional codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Jensen, J. M.; Truong, T. K.; Hsu, I. S.

    1985-01-01

    A recursive algorithm using the error-trellis decoding technique is developed to decode convolutional codes (CCs). An example, illustrating the very large scale integration (VLSI) architecture of such a decode, is given for a dual-K CC. It is demonstrated that such a decoder can be realized readily on a single chip with metal-nitride-oxide-semiconductor technology.

  13. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3

    NASA Technical Reports Server (NTRS)

    Lin, Shu

    1998-01-01

    Decoding algorithms based on the trellis representation of a code (block or convolutional) drastically reduce decoding complexity. The best known and most commonly used trellis-based decoding algorithm is the Viterbi algorithm. It is a maximum likelihood decoding algorithm. Convolutional codes with the Viterbi decoding have been widely used for error control in digital communications over the last two decades. This chapter is concerned with the application of the Viterbi decoding algorithm to linear block codes. First, the Viterbi algorithm is presented. Then, optimum sectionalization of a trellis to minimize the computational complexity of a Viterbi decoder is discussed and an algorithm is presented. Some design issues for IC (integrated circuit) implementation of a Viterbi decoder are considered and discussed. Finally, a new decoding algorithm based on the principle of compare-select-add is presented. This new algorithm can be applied to both block and convolutional codes and is more efficient than the conventional Viterbi algorithm based on the add-compare-select principle. This algorithm is particularly efficient for rate 1/n antipodal convolutional codes and their high-rate punctured codes. It reduces computational complexity by one-third compared with the Viterbi algorithm.

  14. A test of the role of the medial temporal lobe in single-word decoding.

    PubMed

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2011-01-15

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A Test of the Role of the Medial Temporal Lobe in Single-Word Decoding

    PubMed Central

    Osipowicz, Karol; Rickards, Tyler; Shah, Atif; Sharan, Ashwini; Sperling, Michael; Kahn, Waseem; Tracy, Joseph

    2012-01-01

    The degree to which the MTL system contributes to effective language skills is not well delineated. We sought to determine if the MTL plays a role in single-word decoding in healthy, normal skilled readers. The experiment follows from the implications of the dual-process model of single-word decoding, which provides distinct predictions about the nature of MTL involvement. The paradigm utilized word (regular and irregularly spelled words) and pseudoword (phonetically regular) stimuli that differed in their demand for non-lexical as opposed lexical decoding. The data clearly showed that the MTL system was not involved in single word decoding in skilled, native English readers. Neither the hippocampus, nor the MTL system as a whole showed significant activation during lexical or non-lexical based decoding. The results provide evidence that lexical and non-lexical decoding are implemented by distinct but overlapping neuroanatomical networks. Non-lexical decoding appeared most uniquely associated with cuneus and fusiform gyrus activation biased toward the left hemisphere. In contrast, lexical decoding appeared associated with right middle frontal and supramarginal, and bilateral cerebellar activation. Both these decoding operations appeared in the context of a shared widespread network of activations including bilateral occipital cortex and superior frontal regions. These activations suggest that the absence of MTL involvement in either lexical or non-lexical decoding appears likely a function of the skilled reading ability of our sample such that whole-word recognition and retrieval processes do not utilize the declarative memory system, in the case of lexical decoding, and require only minimal analysis and recombination of the phonetic elements of a word, in the case of non-lexical decoding. PMID:20884357

  16. A square root ensemble Kalman filter application to a motor-imagery brain-computer interface

    PubMed Central

    Kamrunnahar, M.; Schiff, S. J.

    2017-01-01

    We here investigated a non-linear ensemble Kalman filter (SPKF) application to a motor imagery brain computer interface (BCI). A square root central difference Kalman filter (SR-CDKF) was used as an approach for brain state estimation in motor imagery task performance, using scalp electroencephalography (EEG) signals. Healthy human subjects imagined left vs. right hand movements and tongue vs. bilateral toe movements while scalp EEG signals were recorded. Offline data analysis was conducted for training the model as well as for decoding the imagery movements. Preliminary results indicate the feasibility of this approach with a decoding accuracy of 78%–90% for the hand movements and 70%–90% for the tongue-toes movements. Ongoing research includes online BCI applications of this approach as well as combined state and parameter estimation using this algorithm with different system dynamic models. PMID:22255799

  17. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RNI subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a hi ch data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  18. High-Speed Soft-Decision Decoding of Two Reed-Muller Codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing, a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study, which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating, and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these sub-trellises.

  19. LDPC-based iterative joint source-channel decoding for JPEG2000.

    PubMed

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  20. Construction of optimal resources for concatenated quantum protocols

    NASA Astrophysics Data System (ADS)

    Pirker, A.; Wallnöfer, J.; Briegel, H. J.; Dür, W.

    2017-06-01

    We consider the explicit construction of resource states for measurement-based quantum information processing. We concentrate on special-purpose resource states that are capable to perform a certain operation or task, where we consider unitary Clifford circuits as well as non-trace-preserving completely positive maps, more specifically probabilistic operations including Clifford operations and Pauli measurements. We concentrate on 1 →m and m →1 operations, i.e., operations that map one input qubit to m output qubits or vice versa. Examples of such operations include encoding and decoding in quantum error correction, entanglement purification, or entanglement swapping. We provide a general framework to construct optimal resource states for complex tasks that are combinations of these elementary building blocks. All resource states only contain input and output qubits, and are hence of minimal size. We obtain a stabilizer description of the resulting resource states, which we also translate into a circuit pattern to experimentally generate these states. In particular, we derive recurrence relations at the level of stabilizers as key analytical tool to generate explicit (graph) descriptions of families of resource states. This allows us to explicitly construct resource states for encoding, decoding, and syndrome readout for concatenated quantum error correction codes, code switchers, multiple rounds of entanglement purification, quantum repeaters, and combinations thereof (such as resource states for entanglement purification of encoded states).

  1. Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi

    Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.

  2. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI.

    PubMed

    Omedes, Jason; Schwarz, Andreas; Müller-Putz, Gernot R; Montesano, Luis

    2018-05-01

    This paper presents a hybrid BCI combining neural correlates of natural movements and interaction error-related potentials (ErrP) to perform a 3D reaching task. It focuses on the impact that design factors of such a hybrid BCI have on the ErrP signatures and in their classification. Approach. Users attempted to control a 3D virtual interface that simulated their own hand, to reach and grasp two different objects. Three factors of interest were modulated during the experimentation: (1) execution speed of the grasping, (2) type of grasping and (3) motor commands generated by motor imagery or real motion. Thirteen healthy subjects carried out the protocol. The peaks and latencies of the ErrP were analyzed for the different factors as well as the classification performance. Main results. ErrP are evoked for erroneous commands decoded from neural correlates of natural movements. The ANOVA analyses revealed that latency and magnitude of the most characteristic ErrP peaks were significantly influenced by the speed at which the grasping was executed, but not the type of grasp. This resulted in an greater accuracy of single-trial decoding of errors for fast movements (75.65%) compared to slow ones (68.99%). Significance. Invariance of ErrP to different type of grasping movements and mental strategies proves this type of hybrid interface to be useful for the design of out of the lab applications such as the operation/control of prosthesis. Factors such as the speed of the movements have to be carefully tuned in order to optimize the performance of the system. . © 2018 IOP Publishing Ltd.

  3. Literacy achievement of children with intellectual disabilities and differing linguistic backgrounds.

    PubMed

    Verhoeven, L; Vermeer, A

    2006-10-01

    The aim of the present study was to examine the literacy achievement of 10- to 12-year-old native and non-native children with intellectual disabilities (ID) living in the Netherlands. An intriguing question within this context was whether the second language learning non-native children with ID would show a double disadvantage when compared with their monolingual Dutch peers with no ID. Dutch literacy scores in the domains of word decoding, vocabulary, syntax and text were therefore compared for: (1) intellectually disabled native Dutch children; (2) intellectually disabled non-native children; (3) normally developing native Dutch children; and (4) normally developing non-native children. The interrelations between literacy subskills were also compared for native vs. non-native children with ID. The native and non-native students diagnosed as intellectually disabled produced substantially lower literacy scores than their non-disabled peers. The differences between the native (L1) and non-native (L2) children in regular vs. special education were found to depend on the aspect of literacy considered. Word decoding and language skills turned out to significantly predict the children's reading comprehension, although some differences in the strength of relationships could also be evidenced. The literacy achievement of intellectually disabled children with differing linguistic backgrounds generally falls behind that of their non-disabled peers. For word decoding, the non-native children in regular and special education were generally able to keep up with their native peers. For higher-order literacy abilities closely related to the mental lexicon, sentence processing and text processing, however, significant differences in the performances of the native (L1) and non-native (L2) children in regular vs. special education were found, suggesting a double disadvantage for the non-native children in special education.

  4. A Web-Based Visualization and Animation Platform for Digital Logic Design

    ERIC Educational Resources Information Center

    Shoufan, Abdulhadi; Lu, Zheng; Huss, Sorin A.

    2015-01-01

    This paper presents a web-based education platform for the visualization and animation of the digital logic design process. This includes the design of combinatorial circuits using logic gates, multiplexers, decoders, and look-up-tables as well as the design of finite state machines. Various configurations of finite state machines can be selected…

  5. Buffer management for sequential decoding. [block erasure probability reduction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    Sequential decoding has been found to be an efficient means of communicating at low undetected error rates from deep space probes, but erasure or computational overflow remains a significant problem. Erasure of a block occurs when the decoder has not finished decoding that block at the time that it must be output. By drawing upon analogies in computer time sharing, this paper develops a buffer-management strategy which reduces the decoder idle time to a negligible level, and therefore improves the erasure probability of a sequential decoder. For a decoder with a speed advantage of ten and a buffer size of ten blocks, operating at an erasure rate of .01, use of this buffer-management strategy reduces the erasure rate to less than .0001.

  6. Adaptive Chroma Subsampling-binding and Luma-guided Chroma Reconstruction Method for Screen Content Images.

    PubMed

    Chung, Kuo-Liang; Huang, Chi-Chao; Hsu, Tsu-Chun

    2017-09-04

    In this paper, we propose a novel adaptive chroma subsampling-binding and luma-guided (ASBLG) chroma reconstruction method for screen content images (SCIs). After receiving the decoded luma and subsampled chroma image from the decoder, a fast winner-first voting strategy is proposed to identify the used chroma subsampling scheme prior to compression. Then, the decoded luma image is subsampled as the identified subsampling scheme was performed on the chroma image such that we are able to conclude an accurate correlation between the subsampled decoded luma image and the decoded subsampled chroma image. Accordingly, an adaptive sliding window-based and luma-guided chroma reconstruction method is proposed. The related computational complexity analysis is also provided. We take two quality metrics, the color peak signal-to-noise ratio (CPSNR) of the reconstructed chroma images and SCIs and the gradient-based structure similarity index (CGSS) of the reconstructed SCIs to evaluate the quality performance. Let the proposed chroma reconstruction method be denoted as 'ASBLG'. Based on 26 typical test SCIs and 6 JCT-VC test screen content video sequences (SCVs), several experiments show that on average, the CPSNR gains of all the reconstructed UV images by 4:2:0(A)-ASBLG, SCIs by 4:2:0(MPEG-B)-ASBLG, and SCVs by 4:2:0(A)-ASBLG are 2.1 dB, 1.87 dB, and 1.87 dB, respectively, when compared with that of the other combinations. Specifically, in terms of CPSNR and CGSS, CSBILINEAR-ASBLG for the test SCIs and CSBICUBIC-ASBLG for the test SCVs outperform the existing state-of-the-art comparative combinations, where CSBILINEAR and CSBICUBIC denote the luma-aware based chroma subsampling schemes by Wang et al.

  7. Decoding fMRI events in sensorimotor motor network using sparse paradigm free mapping and activation likelihood estimates.

    PubMed

    Tan, Francisca M; Caballero-Gaudes, César; Mullinger, Karen J; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L; Francis, Susan T; Gowland, Penny A

    2017-11-01

    Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Decoding fMRI events in Sensorimotor Motor Network using Sparse Paradigm Free Mapping and Activation Likelihood Estimates

    PubMed Central

    Tan, Francisca M.; Caballero-Gaudes, César; Mullinger, Karen J.; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L.; Francis, Susan T.; Gowland, Penny A.

    2017-01-01

    Most fMRI studies map task-driven brain activity using a block or event-related paradigm. Sparse Paradigm Free Mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information; but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of Activation Likelihood Estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the Sensorimotor Network (SMN) to six motor function (left/right fingers, left/right toes, swallowing and eye blinks). We validated the framework using simultaneous Electromyography-fMRI experiments and motor tasks with short and long duration, and random inter-stimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events was 77 ± 13% and 74 ± 16% respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55 and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this paper discusses methodological implications and improvements to increase the decoding performance. PMID:28815863

  9. Application of source biasing technique for energy efficient DECODER circuit design: memory array application

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav

    2018-04-01

    Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.

  10. Decoding Task and Stimulus Representations in Face-responsive Cortex

    PubMed Central

    Kliemann, Dorit; Jacoby, Nir; Anzellotti, Stefano; Saxe, Rebecca R.

    2017-01-01

    Faces provide rich social information about others’ stable traits (e.g., age) and fleeting states of mind (e.g., emotional expression). While some of these facial aspects may be processed automatically, observers can also deliberately attend to some features while ignoring others. It remains unclear how internal goals (e.g., task context) influence the representational geometry of variable and stable facial aspects in face-responsive cortex. We investigated neural response patterns related to decoding i) the intention to attend to a facial aspect before its perception, ii) the attended aspect of a face and iii) stimulus properties. We measured neural responses while subjects watched videos of dynamic positive and negative expressions, and judged the age or the expression’s valence. Split-half multivoxel pattern analyses (MVPA) showed that (i) the intention to attend to a specific aspect of a face can be decoded from left fronto-lateral, but not face-responsive regions; (ii) during face perception, the attend aspect (age vs emotion) could be robustly decoded from almost all face-responsive regions; and (iii) a stimulus property (valence), was represented in right posterior superior temporal sulcus and medial prefrontal cortices. The effect of deliberately shifting the focus of attention on representations suggest a powerful influence of top-down signals on cortical representation of social information, varying across cortical regions, likely reflecting neural flexibility to optimally integrate internal goals and dynamic perceptual input. PMID:27978778

  11. Human gustation: when the brain has taste.

    PubMed

    Toepel, Ulrike; Murray, Micah M

    2015-05-04

    What we put into our mouths can nourish or kill us. A new study uses state-of-the-art electroencephalogram decoding to detail how we and our brains know what we taste. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A Scalable Architecture of a Structured LDPC Decoder

    NASA Technical Reports Server (NTRS)

    Lee, Jason Kwok-San; Lee, Benjamin; Thorpe, Jeremy; Andrews, Kenneth; Dolinar, Sam; Hamkins, Jon

    2004-01-01

    We present a scalable decoding architecture for a certain class of structured LDPC codes. The codes are designed using a small (n,r) protograph that is replicated Z times to produce a decoding graph for a (Z x n, Z x r) code. Using this architecture, we have implemented a decoder for a (4096,2048) LDPC code on a Xilinx Virtex-II 2000 FPGA, and achieved decoding speeds of 31 Mbps with 10 fixed iterations. The implemented message-passing algorithm uses an optimized 3-bit non-uniform quantizer that operates with 0.2dB implementation loss relative to a floating point decoder.

  13. Multiuser signal detection using sequential decoding

    NASA Astrophysics Data System (ADS)

    Xie, Zhenhua; Rushforth, Craig K.; Short, Robert T.

    1990-05-01

    The application of sequential decoding to the detection of data transmitted over the additive white Gaussian noise channel by K asynchronous transmitters using direct-sequence spread-spectrum multiple access is considered. A modification of Fano's (1963) sequential-decoding metric, allowing the messages from a given user to be safely decoded if its Eb/N0 exceeds -1.6 dB, is presented. Computer simulation is used to evaluate the performance of a sequential decoder that uses this metric in conjunction with the stack algorithm. In many circumstances, the sequential decoder achieves results comparable to those obtained using the much more complicated optimal receiver.

  14. Complementary Reliability-Based Decodings of Binary Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Fossorier, Marc P. C.; Lin, Shu

    1997-01-01

    This correspondence presents a hybrid reliability-based decoding algorithm which combines the reprocessing method based on the most reliable basis and a generalized Chase-type algebraic decoder based on the least reliable positions. It is shown that reprocessing with a simple additional algebraic decoding effort achieves significant coding gain. For long codes, the order of reprocessing required to achieve asymptotic optimum error performance is reduced by approximately 1/3. This significantly reduces the computational complexity, especially for long codes. Also, a more efficient criterion for stopping the decoding process is derived based on the knowledge of the algebraic decoding solution.

  15. Visual perception as retrospective Bayesian decoding from high- to low-level features

    PubMed Central

    Ding, Stephanie; Cueva, Christopher J.; Tsodyks, Misha; Qian, Ning

    2017-01-01

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. PMID:29073108

  16. Simultaneous real-time monitoring of multiple cortical systems.

    PubMed

    Gupta, Disha; Jeremy Hill, N; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L; Schalk, Gerwin

    2014-10-01

    Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. We study these questions using electrocorticographic signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (six for offline parameter optimization, six for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main Results: Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelopes. These decoders were trained separately and executed simultaneously in real time. This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic.

  17. Simultaneous Real-Time Monitoring of Multiple Cortical Systems

    PubMed Central

    Gupta, Disha; Hill, N. Jeremy; Brunner, Peter; Gunduz, Aysegul; Ritaccio, Anthony L.; Schalk, Gerwin

    2014-01-01

    Objective Real-time monitoring of the brain is potentially valuable for performance monitoring, communication, training or rehabilitation. In natural situations, the brain performs a complex mix of various sensory, motor, or cognitive functions. Thus, real-time brain monitoring would be most valuable if (a) it could decode information from multiple brain systems simultaneously, and (b) this decoding of each brain system were robust to variations in the activity of other (unrelated) brain systems. Previous studies showed that it is possible to decode some information from different brain systems in retrospect and/or in isolation. In our study, we set out to determine whether it is possible to simultaneously decode important information about a user from different brain systems in real time, and to evaluate the impact of concurrent activity in different brain systems on decoding performance. Approach We study these questions using electrocorticographic (ECoG) signals recorded in humans. We first document procedures for generating stable decoding models given little training data, and then report their use for offline and for real-time decoding from 12 subjects (6 for offline parameter optimization, 6 for online experimentation). The subjects engage in tasks that involve movement intention, movement execution and auditory functions, separately, and then simultaneously. Main results Our real-time results demonstrate that our system can identify intention and movement periods in single trials with an accuracy of 80.4% and 86.8%, respectively (where 50% would be expected by chance). Simultaneously, the decoding of the power envelope of an auditory stimulus resulted in an average correlation coefficient of 0.37 between the actual and decoded power envelope. These decoders were trained separately and executed simultaneously in real time. Significance This study yielded the first demonstration that it is possible to decode simultaneously the functional activity of multiple independent brain systems. Our comparison of univariate and multivariate decoding strategies, and our analysis of the influence of their decoding parameters, provides benchmarks and guidelines for future research on this topic. PMID:25080161

  18. The ribosome as an optimal decoder: a lesson in molecular recognition.

    PubMed

    Savir, Yonatan; Tlusty, Tsvi

    2013-04-11

    The ribosome is a complex molecular machine that, in order to synthesize proteins, has to decode mRNAs by pairing their codons with matching tRNAs. Decoding is a major determinant of fitness and requires accurate and fast selection of correct tRNAs among many similar competitors. However, it is unclear whether the modern ribosome, and in particular its large conformational changes during decoding, are the outcome of adaptation to its task as a decoder or the result of other constraints. Here, we derive the energy landscape that provides optimal discrimination between competing substrates and thereby optimal tRNA decoding. We show that the measured landscape of the prokaryotic ribosome is sculpted in this way. This model suggests that conformational changes of the ribosome and tRNA during decoding are means to obtain an optimal decoder. Our analysis puts forward a generic mechanism that may be utilized broadly by molecular recognition systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; An Iterative Decoding Algorithm for Linear Block Codes Based on a Low-Weight Trellis Search

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    For long linear block codes, maximum likelihood decoding based on full code trellises would be very hard to implement if not impossible. In this case, we may wish to trade error performance for the reduction in decoding complexity. Sub-optimum soft-decision decoding of a linear block code based on a low-weight sub-trellis can be devised to provide an effective trade-off between error performance and decoding complexity. This chapter presents such a suboptimal decoding algorithm for linear block codes. This decoding algorithm is iterative in nature and based on an optimality test. It has the following important features: (1) a simple method to generate a sequence of candidate code-words, one at a time, for test; (2) a sufficient condition for testing a candidate code-word for optimality; and (3) a low-weight sub-trellis search for finding the most likely (ML) code-word.

  20. Enhanced decoding for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Belongie, M.

    1993-01-01

    A coding system under consideration for the Galileo S-band low-gain antenna mission is a concatenated system using a variable redundancy Reed-Solomon outer code and a (14,1/4) convolutional inner code. The 8-bit Reed-Solomon symbols are interleaved to depth 8, and the eight 255-symbol codewords in each interleaved block have redundancies 64, 20, 20, 20, 64, 20, 20, and 20, respectively (or equivalently, the codewords have 191, 235, 235, 235, 191, 235, 235, and 235 8-bit information symbols, respectively). This concatenated code is to be decoded by an enhanced decoder that utilizes a maximum likelihood (Viterbi) convolutional decoder; a Reed Solomon decoder capable of processing erasures; an algorithm for declaring erasures in undecoded codewords based on known erroneous symbols in neighboring decodable words; a second Viterbi decoding operation (redecoding) constrained to follow only paths consistent with the known symbols from previously decodable Reed-Solomon codewords; and a second Reed-Solomon decoding operation using the output from the Viterbi redecoder and additional erasure declarations to the extent possible. It is estimated that this code and decoder can achieve a decoded bit error rate of 1 x 10(exp 7) at a concatenated code signal-to-noise ratio of 0.76 dB. By comparison, a threshold of 1.17 dB is required for a baseline coding system consisting of the same (14,1/4) convolutional code, a (255,223) Reed-Solomon code with constant redundancy 32 also interleaved to depth 8, a one-pass Viterbi decoder, and a Reed Solomon decoder incapable of declaring or utilizing erasures. The relative gain of the enhanced system is thus 0.41 dB. It is predicted from analysis based on an assumption of infinite interleaving that the coding gain could be further improved by approximately 0.2 dB if four stages of Viterbi decoding and four levels of Reed-Solomon redundancy are permitted. Confirmation of this effect and specification of the optimum four-level redundancy profile for depth-8 interleaving is currently being done.

  1. Multi-stage decoding of multi-level modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Costello, Daniel J., Jr.

    1991-01-01

    Various types of multi-stage decoding for multi-level modulation codes are investigated. It is shown that if the component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding of the code is very small, only a fraction of dB loss in signal to noise ratio at a bit error rate (BER) of 10(exp -6).

  2. Decoding the attended speech stream with multi-channel EEG: implications for online, daily-life applications

    NASA Astrophysics Data System (ADS)

    Mirkovic, Bojana; Debener, Stefan; Jaeger, Manuela; De Vos, Maarten

    2015-08-01

    Objective. Recent studies have provided evidence that temporal envelope driven speech decoding from high-density electroencephalography (EEG) and magnetoencephalography recordings can identify the attended speech stream in a multi-speaker scenario. The present work replicated the previous high density EEG study and investigated the necessary technical requirements for practical attended speech decoding with EEG. Approach. Twelve normal hearing participants attended to one out of two simultaneously presented audiobook stories, while high density EEG was recorded. An offline iterative procedure eliminating those channels contributing the least to decoding provided insight into the necessary channel number and optimal cross-subject channel configuration. Aiming towards the future goal of near real-time classification with an individually trained decoder, the minimum duration of training data necessary for successful classification was determined by using a chronological cross-validation approach. Main results. Close replication of the previously reported results confirmed the method robustness. Decoder performance remained stable from 96 channels down to 25. Furthermore, for less than 15 min of training data, the subject-independent (pre-trained) decoder performed better than an individually trained decoder did. Significance. Our study complements previous research and provides information suggesting that efficient low-density EEG online decoding is within reach.

  3. A Parallel Decoding Algorithm for Short Polar Codes Based on Error Checking and Correcting

    PubMed Central

    Pan, Xiaofei; Pan, Kegang; Ye, Zhan; Gong, Chao

    2014-01-01

    We propose a parallel decoding algorithm based on error checking and correcting to improve the performance of the short polar codes. In order to enhance the error-correcting capacity of the decoding algorithm, we first derive the error-checking equations generated on the basis of the frozen nodes, and then we introduce the method to check the errors in the input nodes of the decoder by the solutions of these equations. In order to further correct those checked errors, we adopt the method of modifying the probability messages of the error nodes with constant values according to the maximization principle. Due to the existence of multiple solutions of the error-checking equations, we formulate a CRC-aided optimization problem of finding the optimal solution with three different target functions, so as to improve the accuracy of error checking. Besides, in order to increase the throughput of decoding, we use a parallel method based on the decoding tree to calculate probability messages of all the nodes in the decoder. Numerical results show that the proposed decoding algorithm achieves better performance than that of some existing decoding algorithms with the same code length. PMID:25540813

  4. Decoding Facial Expressions: A New Test with Decoding Norms.

    ERIC Educational Resources Information Center

    Leathers, Dale G.; Emigh, Ted H.

    1980-01-01

    Describes the development and testing of a new facial meaning sensitivity test designed to determine how specialized are the meanings that can be decoded from facial expressions. Demonstrates the use of the test to measure a receiver's current level of skill in decoding facial expressions. (JMF)

  5. Edge-Related Activity Is Not Necessary to Explain Orientation Decoding in Human Visual Cortex.

    PubMed

    Wardle, Susan G; Ritchie, J Brendan; Seymour, Kiley; Carlson, Thomas A

    2017-02-01

    Multivariate pattern analysis is a powerful technique; however, a significant theoretical limitation in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. This is exemplified by the continued controversy over the source of orientation decoding from fMRI responses in human V1. Recently Carlson (2014) identified a potential source of decodable information by modeling voxel responses based on the Hubel and Wiesel (1972) ice-cube model of visual cortex. The model revealed that activity associated with the edges of gratings covaries with orientation and could potentially be used to discriminate orientation. Here we empirically evaluate whether "edge-related activity" underlies orientation decoding from patterns of BOLD response in human V1. First, we systematically mapped classifier performance as a function of stimulus location using population receptive field modeling to isolate each voxel's overlap with a large annular grating stimulus. Orientation was decodable across the stimulus; however, peak decoding performance occurred for voxels with receptive fields closer to the fovea and overlapping with the inner edge. Critically, we did not observe the expected second peak in decoding performance at the outer stimulus edge as predicted by the edge account. Second, we evaluated whether voxels that contribute most to classifier performance have receptive fields that cluster in cortical regions corresponding to the retinotopic location of the stimulus edge. Instead, we find the distribution of highly weighted voxels to be approximately random, with a modest bias toward more foveal voxels. Our results demonstrate that edge-related activity is likely not necessary for orientation decoding. A significant theoretical limitation of multivariate pattern analysis in neuroscience is the ambiguity in interpreting the source of decodable information used by classifiers. For example, orientation can be decoded from BOLD activation patterns in human V1, even though orientation columns are at a finer spatial scale than 3T fMRI. Consequently, the source of decodable information remains controversial. Here we test the proposal that information related to the stimulus edges underlies orientation decoding. We map voxel population receptive fields in V1 and evaluate orientation decoding performance as a function of stimulus location in retinotopic cortex. We find orientation is decodable from voxels whose receptive fields do not overlap with the stimulus edges, suggesting edge-related activity does not substantially drive orientation decoding. Copyright © 2017 the authors 0270-6474/17/371187-10$15.00/0.

  6. Tail Biting Trellis Representation of Codes: Decoding and Construction

    NASA Technical Reports Server (NTRS)

    Shao. Rose Y.; Lin, Shu; Fossorier, Marc

    1999-01-01

    This paper presents two new iterative algorithms for decoding linear codes based on their tail biting trellises, one is unidirectional and the other is bidirectional. Both algorithms are computationally efficient and achieves virtually optimum error performance with a small number of decoding iterations. They outperform all the previous suboptimal decoding algorithms. The bidirectional algorithm also reduces decoding delay. Also presented in the paper is a method for constructing tail biting trellises for linear block codes.

  7. Visual perception as retrospective Bayesian decoding from high- to low-level features.

    PubMed

    Ding, Stephanie; Cueva, Christopher J; Tsodyks, Misha; Qian, Ning

    2017-10-24

    When a stimulus is presented, its encoding is known to progress from low- to high-level features. How these features are decoded to produce perception is less clear, and most models assume that decoding follows the same low- to high-level hierarchy of encoding. There are also theories arguing for global precedence, reversed hierarchy, or bidirectional processing, but they are descriptive without quantitative comparison with human perception. Moreover, observers often inspect different parts of a scene sequentially to form overall perception, suggesting that perceptual decoding requires working memory, yet few models consider how working-memory properties may affect decoding hierarchy. We probed decoding hierarchy by comparing absolute judgments of single orientations and relative/ordinal judgments between two sequentially presented orientations. We found that lower-level, absolute judgments failed to account for higher-level, relative/ordinal judgments. However, when ordinal judgment was used to retrospectively decode memory representations of absolute orientations, striking aspects of absolute judgments, including the correlation and forward/backward aftereffects between two reported orientations in a trial, were explained. We propose that the brain prioritizes decoding of higher-level features because they are more behaviorally relevant, and more invariant and categorical, and thus easier to specify and maintain in noisy working memory, and that more reliable higher-level decoding constrains less reliable lower-level decoding. Published under the PNAS license.

  8. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion.

    PubMed

    Zafar, Raheel; Dass, Sarat C; Malik, Aamir Saeed

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain-computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method.

  9. Joint reconstruction of multiview compressed images.

    PubMed

    Thirumalai, Vijayaraghavan; Frossard, Pascal

    2013-05-01

    Distributed representation of correlated multiview images is an important problem that arises in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed images are decoded together in order to take benefit from the image correlation. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG) with a balanced rate distribution among different cameras. A central decoder first estimates the inter-view image correlation from the independently compressed data. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images, which comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be as close as possible to their compressed versions. We show through experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our algorithm compares advantageously to state-of-the-art distributed coding schemes based on motion learning and on the DISCOVER algorithm.

  10. Robo-Psychophysics: Extracting Behaviorally Relevant Features from the Output of Sensors on a Prosthetic Finger.

    PubMed

    Delhaye, Benoit P; Schluter, Erik W; Bensmaia, Sliman J

    2016-01-01

    Efforts are underway to restore sensorimotor function in amputees and tetraplegic patients using anthropomorphic robotic hands. For this approach to be clinically viable, sensory signals from the hand must be relayed back to the patient. To convey tactile feedback necessary for object manipulation, behaviorally relevant information must be extracted in real time from the output of sensors on the prosthesis. In the present study, we recorded the sensor output from a state-of-the-art bionic finger during the presentation of different tactile stimuli, including punctate indentations and scanned textures. Furthermore, the parameters of stimulus delivery (location, speed, direction, indentation depth, and surface texture) were systematically varied. We developed simple decoders to extract behaviorally relevant variables from the sensor output and assessed the degree to which these algorithms could reliably extract these different types of sensory information across different conditions of stimulus delivery. We then compared the performance of the decoders to that of humans in analogous psychophysical experiments. We show that straightforward decoders can extract behaviorally relevant features accurately from the sensor output and most of them outperform humans.

  11. Maximum-Entropy Inference with a Programmable Annealer

    PubMed Central

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-01-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition. PMID:26936311

  12. Decoding and Encoding Facial Expressions in Preschool-Age Children.

    ERIC Educational Resources Information Center

    Zuckerman, Miron; Przewuzman, Sylvia J.

    1979-01-01

    Preschool-age children drew, decoded, and encoded facial expressions depicting five different emotions. Accuracy of drawing, decoding and encoding each of the five emotions was consistent across the three tasks; decoding ability was correlated with drawing ability among female subjects, but neither of these abilities was correlated with encoding…

  13. Multichannel error correction code decoder

    NASA Technical Reports Server (NTRS)

    Wagner, Paul K.; Ivancic, William D.

    1993-01-01

    A brief overview of a processing satellite for a mesh very-small-aperture (VSAT) communications network is provided. The multichannel error correction code (ECC) decoder system, the uplink signal generation and link simulation equipment, and the time-shared decoder are described. The testing is discussed. Applications of the time-shared decoder are recommended.

  14. Evidence for Trait Related Theory of Mind Impairment in First Episode Psychosis Patients and Its Relationship with Processing Speed: A 3 Year Follow-up Study.

    PubMed

    Ayesa-Arriola, Rosa; Setién-Suero, Esther; Neergaard, Karl D; Ferro, Adele; Fatjó-Vilas, Mar; Ríos-Lago, Marcos; Otero, Soraya; Rodríguez-Sánchez, Jose M; Crespo-Facorro, Benedicto

    2016-01-01

    This study aimed to confirm whether first-episode psychosis patients present a stable trait impairment in theory of mind (ToM) and to examine the potential relationship between ToM and clinical symptomatology and neurocognition. Patients with a first episode of psychosis (N = 160) and healthy controls (N = 159) were assessed with an extensive neuropsychological test battery, which included a mental state decoding task known as "The Reading the Mind in the Eyes" (Eyes test), at baseline and reassessed after 1 and 3 years. The clinical group performed below healthy controls on the Eyes test while not showing test-retest differences between baseline and follow-up administrations. Analyses revealed age, education and premorbid IQ as potential moderators. Poorer performance on the Eyes test was not linked to clinical symptomatology but was associated with greater neurocognitive deficit, particularly related to processing speed. The persistence of ToM deficits in patients suggests that there are trait related metalizing impairments in first episode psychosis. This study shows the influence of processing speed and moderator variables on efficient ToM.

  15. Evidence for Trait Related Theory of Mind Impairment in First Episode Psychosis Patients and Its Relationship with Processing Speed: A 3 Year Follow-up Study

    PubMed Central

    Ayesa-Arriola, Rosa; Setién-Suero, Esther; Neergaard, Karl D.; Ferro, Adele; Fatjó-Vilas, Mar; Ríos-Lago, Marcos; Otero, Soraya; Rodríguez-Sánchez, Jose M.; Crespo-Facorro, Benedicto

    2016-01-01

    This study aimed to confirm whether first-episode psychosis patients present a stable trait impairment in theory of mind (ToM) and to examine the potential relationship between ToM and clinical symptomatology and neurocognition. Patients with a first episode of psychosis (N = 160) and healthy controls (N = 159) were assessed with an extensive neuropsychological test battery, which included a mental state decoding task known as “The Reading the Mind in the Eyes” (Eyes test), at baseline and reassessed after 1 and 3 years. The clinical group performed below healthy controls on the Eyes test while not showing test-retest differences between baseline and follow-up administrations. Analyses revealed age, education and premorbid IQ as potential moderators. Poorer performance on the Eyes test was not linked to clinical symptomatology but was associated with greater neurocognitive deficit, particularly related to processing speed. The persistence of ToM deficits in patients suggests that there are trait related metalizing impairments in first episode psychosis. This study shows the influence of processing speed and moderator variables on efficient ToM. PMID:27199826

  16. A software simulation study of a (255,223) Reed-Solomon encoder-decoder

    NASA Technical Reports Server (NTRS)

    Pollara, F.

    1985-01-01

    A set of software programs which simulates a (255,223) Reed-Solomon encoder/decoder pair is described. The transform decoder algorithm uses a modified Euclid algorithm, and closely follows the pipeline architecture proposed for the hardware decoder. Uncorrectable error patterns are detected by a simple test, and the inverse transform is computed by a finite field FFT. Numerical examples of the decoder operation are given for some test codewords, with and without errors. The use of the software package is briefly described.

  17. High data rate Reed-Solomon encoding and decoding using VLSI technology

    NASA Technical Reports Server (NTRS)

    Miller, Warner; Morakis, James

    1987-01-01

    Presented as an implementation of a Reed-Solomon encode and decoder, which is 16-symbol error correcting, each symbol is 8 bits. This Reed-Solomon (RS) code is an efficient error correcting code that the National Aeronautics and Space Administration (NASA) will use in future space communications missions. A Very Large Scale Integration (VLSI) implementation of the encoder and decoder accepts data rates up 80 Mbps. A total of seven chips are needed for the decoder (four of the seven decoding chips are customized using 3-micron Complementary Metal Oxide Semiconduction (CMOS) technology) and one chip is required for the encoder. The decoder operates with the symbol clock being the system clock for the chip set. Approximately 1.65 billion Galois Field (GF) operations per second are achieved with the decoder chip set and 640 MOPS are achieved with the encoder chip.

  18. The basis of orientation decoding in human primary visual cortex: fine- or coarse-scale biases?

    PubMed

    Maloney, Ryan T

    2015-01-01

    Orientation signals in human primary visual cortex (V1) can be reliably decoded from the multivariate pattern of activity as measured with functional magnetic resonance imaging (fMRI). The precise underlying source of these decoded signals (whether by orientation biases at a fine or coarse scale in cortex) remains a matter of some controversy, however. Freeman and colleagues (J Neurosci 33: 19695-19703, 2013) recently showed that the accuracy of decoding of spiral patterns in V1 can be predicted by a voxel's preferred spatial position (the population receptive field) and its coarse orientation preference, suggesting that coarse-scale biases are sufficient for orientation decoding. Whether they are also necessary for decoding remains an open question, and one with implications for the broader interpretation of multivariate decoding results in fMRI studies. Copyright © 2015 the American Physiological Society.

  19. Emotion Decoding and Incidental Processing Fluency as Antecedents of Attitude Certainty.

    PubMed

    Petrocelli, John V; Whitmire, Melanie B

    2017-07-01

    Previous research demonstrates that attitude certainty influences the degree to which an attitude changes in response to persuasive appeals. In the current research, decoding emotions from facial expressions and incidental processing fluency, during attitude formation, are examined as antecedents of both attitude certainty and attitude change. In Experiment 1, participants who decoded anger or happiness during attitude formation expressed their greater attitude certainty, and showed more resistance to persuasion than participants who decoded sadness. By manipulating the emotion decoded, the diagnosticity of processing fluency experienced during emotion decoding, and the gaze direction of the social targets, Experiment 2 suggests that the link between emotion decoding and attitude certainty results from incidental processing fluency. Experiment 3 demonstrated that fluency in processing irrelevant stimuli influences attitude certainty, which in turn influences resistance to persuasion. Implications for appraisal-based accounts of attitude formation and attitude change are discussed.

  20. Deep Learning Methods for Improved Decoding of Linear Codes

    NASA Astrophysics Data System (ADS)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  1. Decoding Children's Expressions of Affect.

    ERIC Educational Resources Information Center

    Feinman, Joel A.; Feldman, Robert S.

    Mothers' ability to decode the emotional expressions of their male and female children was compared to the decoding ability of non-mothers. Happiness, sadness, fear and anger were induced in children in situations that varied in terms of spontaneous and role-played encoding modes. It was hypothesized that mothers would be more accurate decoders of…

  2. Decoding Area Studies and Interdisciplinary Majors: Building a Framework for Entry-Level Students

    ERIC Educational Resources Information Center

    MacPherson, Kristina Ruth

    2015-01-01

    Decoding disciplinary expertise for novices is increasingly part of the undergraduate curriculum. But how might area studies and other interdisciplinary programs, which require integration of courses from multiple disciplines, decode expertise in a similar fashion? Additionally, as a part of decoding area studies and interdisciplines, how might a…

  3. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  4. 47 CFR 11.12 - Two-tone Attention Signal encoder and decoder.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Two-tone Attention Signal encoder and decoder... SYSTEM (EAS) General § 11.12 Two-tone Attention Signal encoder and decoder. Existing two-tone Attention Signal encoder and decoder equipment type accepted for use as Emergency Broadcast System equipment under...

  5. Sequential Syndrome Decoding of Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1984-01-01

    The algebraic structure of convolutional codes are reviewed and sequential syndrome decoding is applied to those codes. These concepts are then used to realize by example actual sequential decoding, using the stack algorithm. The Fano metric for use in sequential decoding is modified so that it can be utilized to sequentially find the minimum weight error sequence.

  6. On decoding of multi-level MPSK modulation codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Gupta, Alok Kumar

    1990-01-01

    The decoding problem of multi-level block modulation codes is investigated. The hardware design of soft-decision Viterbi decoder for some short length 8-PSK block modulation codes is presented. An effective way to reduce the hardware complexity of the decoder by reducing the branch metric and path metric, using a non-uniform floating-point to integer mapping scheme, is proposed and discussed. The simulation results of the design are presented. The multi-stage decoding (MSD) of multi-level modulation codes is also investigated. The cases of soft-decision and hard-decision MSD are considered and their performance are evaluated for several codes of different lengths and different minimum squared Euclidean distances. It is shown that the soft-decision MSD reduces the decoding complexity drastically and it is suboptimum. The hard-decision MSD further simplifies the decoding while still maintaining a reasonable coding gain over the uncoded system, if the component codes are chosen properly. Finally, some basic 3-level 8-PSK modulation codes using BCH codes as component codes are constructed and their coding gains are found for hard decision multistage decoding.

  7. Contributions of phonological awareness, phonological short-term memory, and rapid automated naming, toward decoding ability in students with mild intellectual disability.

    PubMed

    Soltani, Amanallah; Roslan, Samsilah

    2013-03-01

    Reading decoding ability is a fundamental skill to acquire word-specific orthographic information necessary for skilled reading. Decoding ability and its underlying phonological processing skills have been heavily investigated typically among developing students. However, the issue has rarely been noticed among students with intellectual disability who commonly suffer from reading decoding problems. This study is aimed at determining the contributions of phonological awareness, phonological short-term memory, and rapid automated naming, as three well known phonological processing skills, to decoding ability among 60 participants with mild intellectual disability of unspecified origin ranging from 15 to 23 years old. The results of the correlation analysis revealed that all three aspects of phonological processing are significantly correlated with decoding ability. Furthermore, a series of hierarchical regression analysis indicated that after controlling the effect of IQ, phonological awareness, and rapid automated naming are two distinct sources of decoding ability, but phonological short-term memory significantly contributes to decoding ability under the realm of phonological awareness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Grasp movement decoding from premotor and parietal cortex.

    PubMed

    Townsend, Benjamin R; Subasi, Erk; Scherberger, Hansjörg

    2011-10-05

    Despite recent advances in harnessing cortical motor-related activity to control computer cursors and robotic devices, the ability to decode and execute different grasping patterns remains a major obstacle. Here we demonstrate a simple Bayesian decoder for real-time classification of grip type and wrist orientation in macaque monkeys that uses higher-order planning signals from anterior intraparietal cortex (AIP) and ventral premotor cortex (area F5). Real-time decoding was based on multiunit signals, which had similar tuning properties to cells in previous single-unit recording studies. Maximum decoding accuracy for two grasp types (power and precision grip) and five wrist orientations was 63% (chance level, 10%). Analysis of decoder performance showed that grip type decoding was highly accurate (90.6%), with most errors occurring during orientation classification. In a subsequent off-line analysis, we found small but significant performance improvements (mean, 6.25 percentage points) when using an optimized spike-sorting method (superparamagnetic clustering). Furthermore, we observed significant differences in the contributions of F5 and AIP for grasp decoding, with F5 being better suited for classification of the grip type and AIP contributing more toward decoding of object orientation. However, optimum decoding performance was maximal when using neural activity simultaneously from both areas. Overall, these results highlight quantitative differences in the functional representation of grasp movements in AIP and F5 and represent a first step toward using these signals for developing functional neural interfaces for hand grasping.

  9. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces.

    PubMed

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well.

  10. An Improved Unscented Kalman Filter Based Decoder for Cortical Brain-Machine Interfaces

    PubMed Central

    Li, Simin; Li, Jie; Li, Zheng

    2016-01-01

    Brain-machine interfaces (BMIs) seek to connect brains with machines or computers directly, for application in areas such as prosthesis control. For this application, the accuracy of the decoding of movement intentions is crucial. We aim to improve accuracy by designing a better encoding model of primary motor cortical activity during hand movements and combining this with decoder engineering refinements, resulting in a new unscented Kalman filter based decoder, UKF2, which improves upon our previous unscented Kalman filter decoder, UKF1. The new encoding model includes novel acceleration magnitude, position-velocity interaction, and target-cursor-distance features (the decoder does not require target position as input, it is decoded). We add a novel probabilistic velocity threshold to better determine the user's intent to move. We combine these improvements with several other refinements suggested by others in the field. Data from two Rhesus monkeys indicate that the UKF2 generates offline reconstructions of hand movements (mean CC 0.851) significantly more accurately than the UKF1 (0.833) and the popular position-velocity Kalman filter (0.812). The encoding model of the UKF2 could predict the instantaneous firing rate of neurons (mean CC 0.210), given kinematic variables and past spiking, better than the encoding models of these two decoders (UKF1: 0.138, p-v Kalman: 0.098). In closed-loop experiments where each monkey controlled a computer cursor with each decoder in turn, the UKF2 facilitated faster task completion (mean 1.56 s vs. 2.05 s) and higher Fitts's Law bit rate (mean 0.738 bit/s vs. 0.584 bit/s) than the UKF1. These results suggest that the modeling and decoder engineering refinements of the UKF2 improve decoding performance. We believe they can be used to enhance other decoders as well. PMID:28066170

  11. Neural Decoding and "Inner" Psychophysics: A Distance-to-Bound Approach for Linking Mind, Brain, and Behavior.

    PubMed

    Ritchie, J Brendan; Carlson, Thomas A

    2016-01-01

    A fundamental challenge for cognitive neuroscience is characterizing how the primitives of psychological theory are neurally implemented. Attempts to meet this challenge are a manifestation of what Fechner called "inner" psychophysics: the theory of the precise mapping between mental quantities and the brain. In his own time, inner psychophysics remained an unrealized ambition for Fechner. We suggest that, today, multivariate pattern analysis (MVPA), or neural "decoding," methods provide a promising starting point for developing an inner psychophysics. A cornerstone of these methods are simple linear classifiers applied to neural activity in high-dimensional activation spaces. We describe an approach to inner psychophysics based on the shared architecture of linear classifiers and observers under decision boundary models such as signal detection theory. Under this approach, distance from a decision boundary through activation space, as estimated by linear classifiers, can be used to predict reaction time in accordance with signal detection theory, and distance-to-bound models of reaction time. Our "neural distance-to-bound" approach is potentially quite general, and simple to implement. Furthermore, our recent work on visual object recognition suggests it is empirically viable. We believe the approach constitutes an important step along the path to an inner psychophysics that links mind, brain, and behavior.

  12. Progress in EEG-Based Brain Robot Interaction Systems

    PubMed Central

    Li, Mengfan; Niu, Linwei; Xian, Bin; Zeng, Ming; Chen, Genshe

    2017-01-01

    The most popular noninvasive Brain Robot Interaction (BRI) technology uses the electroencephalogram- (EEG-) based Brain Computer Interface (BCI), to serve as an additional communication channel, for robot control via brainwaves. This technology is promising for elderly or disabled patient assistance with daily life. The key issue of a BRI system is to identify human mental activities, by decoding brainwaves, acquired with an EEG device. Compared with other BCI applications, such as word speller, the development of these applications may be more challenging since control of robot systems via brainwaves must consider surrounding environment feedback in real-time, robot mechanical kinematics, and dynamics, as well as robot control architecture and behavior. This article reviews the major techniques needed for developing BRI systems. In this review article, we first briefly introduce the background and development of mind-controlled robot technologies. Second, we discuss the EEG-based brain signal models with respect to generating principles, evoking mechanisms, and experimental paradigms. Subsequently, we review in detail commonly used methods for decoding brain signals, namely, preprocessing, feature extraction, and feature classification, and summarize several typical application examples. Next, we describe a few BRI applications, including wheelchairs, manipulators, drones, and humanoid robots with respect to synchronous and asynchronous BCI-based techniques. Finally, we address some existing problems and challenges with future BRI techniques. PMID:28484488

  13. Spatiotemporal Phase Synchronization in Adaptive Reconfiguration from Action Observation Network to Mentalizing Network for Understanding Other's Action Intention.

    PubMed

    Zhang, Li; Gan, John Q; Zheng, Wenming; Wang, Haixian

    2018-05-01

    In action intention understanding, the mirror system is involved in perception-action matching process and the mentalizing system underlies higher-level intention inference. By analyzing the dynamic functional connectivity in α (8-12 Hz) and β (12-30 Hz) frequency bands over a "hand-cup interaction" observation task, this study investigates the topological transition from the action observation network (AON) to the mentalizing network (MZN), and estimates their functional relevance for intention identification from other's different action kinematics. Sequential brain microstates were extracted based on event-related potentials (ERPs), in which significantly differing neuronal responses were found in N170-P200 related to perceptually matching kinematic profiles and P400-700 involved in goal inference. Inter-electrode weighted phase lag index analysis on the ERP microstates revealed a shift of hub centrality salient in α frequency band, from the AON dominated by left-lateral frontal-premotor-temporal and temporal-parietooccipital synchronizations to the MZN consisting of more bilateral frontal-parietal and temporal-parietal synchronizations. As compared with usual actions, intention identification of unintelligible actions induces weaker synchronizations in the AON but dramatically increased connectivity in right frontal-temporal-parietal regions of the MZN, indicating a spatiotemporally complementary effect between the functional network configurations involved in mirror and mentalizing processes. Perceptual processing in observing usual/unintelligible actions decreases/increases requirements for intention inference, which would induce less/greater functional network reorganization on the way to mentalization. From the comparison, our study suggests that the adaptive topological changes from the AON to the MZN indicate implicit causal association between the mirror and mentalizing systems for decoding others' intentionality.

  14. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects

    PubMed Central

    Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin

    2012-01-01

    Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436

  15. Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding.

    PubMed

    Wong, Tak-Shing; Bouman, Charles A; Pollak, Ilya

    2013-03-01

    We introduce the hypothesis selection filter (HSF) as a new approach for image quality enhancement. We assume that a set of filters has been selected a priori to improve the quality of a distorted image containing regions with different characteristics. At each pixel, HSF uses a locally computed feature vector to predict the relative performance of the filters in estimating the corresponding pixel intensity in the original undistorted image. The prediction result then determines the proportion of each filter used to obtain the final processed output. In this way, the HSF serves as a framework for combining the outputs of a number of different user selected filters, each best suited for a different region of an image. We formulate our scheme in a probabilistic framework where the HSF output is obtained as the Bayesian minimum mean square error estimate of the original image. Maximum likelihood estimates of the model parameters are determined from an offline fully unsupervised training procedure that is derived from the expectation-maximization algorithm. To illustrate how to apply the HSF and to demonstrate its potential, we apply our scheme as a post-processing step to improve the decoding quality of JPEG-encoded document images. The scheme consistently improves the quality of the decoded image over a variety of image content with different characteristics. We show that our scheme results in quantitative improvements over several other state-of-the-art JPEG decoding methods.

  16. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    PubMed

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  17. Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Lahmeyer, Charles R. (Inventor)

    1987-01-01

    A Reed-Solomon decoder with dedicated hardware for five sequential algorithms was designed with overall pipelining by memory swapping between input, processing and output memories, and internal pipelining through the five algorithms. The code definition used in decoding is specified by a keyword received with each block of data so that a number of different code formats may be decoded by the same hardware.

  18. A study of digital holographic filters generation. Phase 2: Digital data communication system, volume 1

    NASA Technical Reports Server (NTRS)

    Ingels, F. M.; Mo, C. D.

    1978-01-01

    An empirical study of the performance of the Viterbi decoders in bursty channels was carried out and an improved algebraic decoder for nonsystematic codes was developed. The hybrid algorithm was simulated for the (2,1), k = 7 code on a computer using 20 channels having various error statistics, ranging from pure random error to pure bursty channels. The hybrid system outperformed both the algebraic and the Viterbi decoders in every case, except the 1% random error channel where the Viterbi decoder had one bit less decoding error.

  19. Large-Constraint-Length, Fast Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Collins, O.; Dolinar, S.; Hsu, In-Shek; Pollara, F.; Olson, E.; Statman, J.; Zimmerman, G.

    1990-01-01

    Scheme for efficient interconnection makes VLSI design feasible. Concept for fast Viterbi decoder provides for processing of convolutional codes of constraint length K up to 15 and rates of 1/2 to 1/6. Fully parallel (but bit-serial) architecture developed for decoder of K = 7 implemented in single dedicated VLSI circuit chip. Contains six major functional blocks. VLSI circuits perform branch metric computations, add-compare-select operations, and then store decisions in traceback memory. Traceback processor reads appropriate memory locations and puts out decoded bits. Used as building block for decoders of larger K.

  20. Locating and decoding barcodes in fuzzy images captured by smart phones

    NASA Astrophysics Data System (ADS)

    Deng, Wupeng; Hu, Jiwei; Liu, Quan; Lou, Ping

    2017-07-01

    With the development of barcodes for commercial use, people's requirements for detecting barcodes by smart phone become increasingly pressing. The low quality of barcode image captured by mobile phone always affects the decoding and recognition rates. This paper focuses on locating and decoding EAN-13 barcodes in fuzzy images. We present a more accurate locating algorithm based on segment length and high fault-tolerant rate algorithm for decoding barcodes. Unlike existing approaches, location algorithm is based on the edge segment length of EAN -13 barcodes, while our decoding algorithm allows the appearance of fuzzy region in barcode image. Experimental results are performed on damaged, contaminated and scratched digital images, and provide a quite promising result for EAN -13 barcode location and decoding.

  1. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

    PubMed

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance--competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  2. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller

    NASA Astrophysics Data System (ADS)

    Kindermans, Pieter-Jan; Tangermann, Michael; Müller, Klaus-Robert; Schrauwen, Benjamin

    2014-06-01

    Objective. Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure suitable to solve the decoding task by (a) transfer learning, (b) unsupervised adaptation, (c) language model and (d) dynamic stopping. Approach. A simulation study compares the proposed probabilistic zero framework (using transfer learning and task structure) to a state-of-the-art supervised model on n = 22 subjects. The individual influence of the involved components (a)-(d) are investigated. Main results. Without any need for a calibration session, the probabilistic zero-training framework with inter-subject transfer learning shows excellent performance—competitive to a state-of-the-art supervised method using calibration. Its decoding quality is carried mainly by the effect of transfer learning in combination with continuous unsupervised adaptation. Significance. A high-performing zero-training BCI is within reach for one of the most popular BCI paradigms: ERP spelling. Recording calibration data for a supervised BCI would require valuable time which is lost for spelling. The time spent on calibration would allow a novel user to spell 29 symbols with our unsupervised approach. It could be of use for various clinical and non-clinical ERP-applications of BCI.

  3. Children's Reading Strategies.

    ERIC Educational Resources Information Center

    Brown, Rexel E., Ed.

    1980-01-01

    This issue of the "Journal of Children and Youth" focuses on children's strategies for decoding and comprehending written language and teacher's strategies for facilitating this process. The issue includes eleven papers by members of the Indiana Reading Professors division of the Indiana State Reading Council and several invited guests. Peggy…

  4. Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex

    PubMed Central

    Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352

  5. Methods for Assessment of Memory Reactivation.

    PubMed

    Liu, Shizhao; Grosmark, Andres D; Chen, Zhe

    2018-04-13

    It has been suggested that reactivation of previously acquired experiences or stored information in declarative memories in the hippocampus and neocortex contributes to memory consolidation and learning. Understanding memory consolidation depends crucially on the development of robust statistical methods for assessing memory reactivation. To date, several statistical methods have seen established for assessing memory reactivation based on bursts of ensemble neural spike activity during offline states. Using population-decoding methods, we propose a new statistical metric, the weighted distance correlation, to assess hippocampal memory reactivation (i.e., spatial memory replay) during quiet wakefulness and slow-wave sleep. The new metric can be combined with an unsupervised population decoding analysis, which is invariant to latent state labeling and allows us to detect statistical dependency beyond linearity in memory traces. We validate the new metric using two rat hippocampal recordings in spatial navigation tasks. Our proposed analysis framework may have a broader impact on assessing memory reactivations in other brain regions under different behavioral tasks.

  6. Validity of the two-level model for Viterbi decoder gap-cycle performance

    NASA Technical Reports Server (NTRS)

    Dolinar, S.; Arnold, S.

    1990-01-01

    A two-level model has previously been proposed for approximating the performance of a Viterbi decoder which encounters data received with periodically varying signal-to-noise ratio. Such cyclically gapped data is obtained from the Very Large Array (VLA), either operating as a stand-alone system or arrayed with Goldstone. This approximate model predicts that the decoder error rate will vary periodically between two discrete levels with the same period as the gap cycle. It further predicts that the length of the gapped portion of the decoder error cycle for a constraint length K decoder will be about K-1 bits shorter than the actual duration of the gap. The two-level model for Viterbi decoder performance with gapped data is subjected to detailed validation tests. Curves showing the cyclical behavior of the decoder error burst statistics are compared with the simple square-wave cycles predicted by the model. The validity of the model depends on a parameter often considered irrelevant in the analysis of Viterbi decoder performance, the overall scaling of the received signal or the decoder's branch-metrics. Three scaling alternatives are examined: optimum branch-metric scaling and constant branch-metric scaling combined with either constant noise-level scaling or constant signal-level scaling. The simulated decoder error cycle curves roughly verify the accuracy of the two-level model for both the case of optimum branch-metric scaling and the case of constant branch-metric scaling combined with constant noise-level scaling. However, the model is not accurate for the case of constant branch-metric scaling combined with constant signal-level scaling.

  7. Decoding continuous three-dimensional hand trajectories from epidural electrocorticographic signals in Japanese macaques

    NASA Astrophysics Data System (ADS)

    Shimoda, Kentaro; Nagasaka, Yasuo; Chao, Zenas C.; Fujii, Naotaka

    2012-06-01

    Brain-machine interface (BMI) technology captures brain signals to enable control of prosthetic or communication devices with the goal of assisting patients who have limited or no ability to perform voluntary movements. Decoding of inherent information in brain signals to interpret the user's intention is one of main approaches for developing BMI technology. Subdural electrocorticography (sECoG)-based decoding provides good accuracy, but surgical complications are one of the major concerns for this approach to be applied in BMIs. In contrast, epidural electrocorticography (eECoG) is less invasive, thus it is theoretically more suitable for long-term implementation, although it is unclear whether eECoG signals carry sufficient information for decoding natural movements. We successfully decoded continuous three-dimensional hand trajectories from eECoG signals in Japanese macaques. A steady quantity of information of continuous hand movements could be acquired from the decoding system for at least several months, and a decoding model could be used for ˜10 days without significant degradation in accuracy or recalibration. The correlation coefficients between observed and predicted trajectories were lower than those for sECoG-based decoding experiments we previously reported, owing to a greater degree of chewing artifacts in eECoG-based decoding than is found in sECoG-based decoding. As one of the safest invasive recording methods available, eECoG provides an acceptable level of performance. With the ease of replacement and upgrades, eECoG systems could become the first-choice interface for real-life BMI applications.

  8. Metastable neural dynamics mediates expectation

    NASA Astrophysics Data System (ADS)

    Mazzucato, Luca; La Camera, Giancarlo; Fontanini, Alfredo

    Sensory stimuli are processed faster when their presentation is expected compared to when they come as a surprise. We previously showed that, in multiple single-unit recordings from alert rat gustatory cortex, taste stimuli can be decoded faster from neural activity if preceded by a stimulus-predicting cue. However, the specific computational process mediating this anticipatory neural activity is unknown. Here, we propose a biologically plausible model based on a recurrent network of spiking neurons with clustered architecture. In the absence of stimulation, the model neural activity unfolds through sequences of metastable states, each state being a population vector of firing rates. We modeled taste stimuli and cue (the same for all stimuli) as two inputs targeting subsets of excitatory neurons. As observed in experiment, stimuli evoked specific state sequences, characterized in terms of `coding states', i.e., states occurring significantly more often for a particular stimulus. When stimulus presentation is preceded by a cue, coding states show a faster and more reliable onset, and expected stimuli can be decoded more quickly than unexpected ones. This anticipatory effect is unrelated to changes of firing rates in stimulus-selective neurons and is absent in homogeneous balanced networks, suggesting that a clustered organization is necessary to mediate the expectation of relevant events. Our results demonstrate a novel mechanism for speeding up sensory coding in cortical circuits. NIDCD K25-DC013557 (LM); NIDCD R01-DC010389 (AF); NSF IIS-1161852 (GL).

  9. Fast transform decoding of nonsystematic Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Truong, T. K.; Cheung, K.-M.; Reed, I. S.; Shiozaki, A.

    1989-01-01

    A Reed-Solomon (RS) code is considered to be a special case of a redundant residue polynomial (RRP) code, and a fast transform decoding algorithm to correct both errors and erasures is presented. This decoding scheme is an improvement of the decoding algorithm for the RRP code suggested by Shiozaki and Nishida, and can be realized readily on very large scale integration chips.

  10. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    ERIC Educational Resources Information Center

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  11. Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2015-08-01

    TECHNICAL REPORT 2087 August 2015 Polar Coding with CRC-Aided List Decoding David Wasserman Approved...list decoding . RESULTS Our simulation results show that polar coding can produce results very similar to the FEC used in the Digital Video...standard. RECOMMENDATIONS In any application for which the DVB-S2 FEC is considered, polar coding with CRC-aided list decod - ing with N = 65536

  12. Decoding position, velocity, or goal: does it matter for brain-machine interfaces?

    PubMed

    Marathe, A R; Taylor, D M

    2011-04-01

    Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.

  13. Encoder-Decoder Optimization for Brain-Computer Interfaces

    PubMed Central

    Merel, Josh; Pianto, Donald M.; Cunningham, John P.; Paninski, Liam

    2015-01-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages. PMID:26029919

  14. Encoder-decoder optimization for brain-computer interfaces.

    PubMed

    Merel, Josh; Pianto, Donald M; Cunningham, John P; Paninski, Liam

    2015-06-01

    Neuroprosthetic brain-computer interfaces are systems that decode neural activity into useful control signals for effectors, such as a cursor on a computer screen. It has long been recognized that both the user and decoding system can adapt to increase the accuracy of the end effector. Co-adaptation is the process whereby a user learns to control the system in conjunction with the decoder adapting to learn the user's neural patterns. We provide a mathematical framework for co-adaptation and relate co-adaptation to the joint optimization of the user's control scheme ("encoding model") and the decoding algorithm's parameters. When the assumptions of that framework are respected, co-adaptation cannot yield better performance than that obtainable by an optimal initial choice of fixed decoder, coupled with optimal user learning. For a specific case, we provide numerical methods to obtain such an optimized decoder. We demonstrate our approach in a model brain-computer interface system using an online prosthesis simulator, a simple human-in-the-loop pyschophysics setup which provides a non-invasive simulation of the BCI setting. These experiments support two claims: that users can learn encoders matched to fixed, optimal decoders and that, once learned, our approach yields expected performance advantages.

  15. Decoding position, velocity, or goal: Does it matter for brain-machine interfaces?

    NASA Astrophysics Data System (ADS)

    Marathe, A. R.; Taylor, D. M.

    2011-04-01

    Arm end-point position, end-point velocity, and the intended final location or 'goal' of a reach have all been decoded from cortical signals for use in brain-machine interface (BMI) applications. These different aspects of arm movement can be decoded from the brain and used directly to control the position, velocity, or movement goal of a device. However, these decoded parameters can also be remapped to control different aspects of movement, such as using the decoded position of the hand to control the velocity of a device. People easily learn to use the position of a joystick to control the velocity of an object in a videogame. Similarly, in BMI systems, the position, velocity, or goal of a movement could be decoded from the brain and remapped to control some other aspect of device movement. This study evaluates how easily people make transformations between position, velocity, and reach goal in BMI systems. It also evaluates how different amounts of decoding error impact on device control with and without these transformations. Results suggest some remapping options can significantly improve BMI control. This study provides guidance on what remapping options to use when various amounts of decoding error are present.

  16. Improved HDRG decoders for qudit and non-Abelian quantum error correction

    NASA Astrophysics Data System (ADS)

    Hutter, Adrian; Loss, Daniel; Wootton, James R.

    2015-03-01

    Hard-decision renormalization group (HDRG) decoders are an important class of decoding algorithms for topological quantum error correction. Due to their versatility, they have been used to decode systems with fractal logical operators, color codes, qudit topological codes, and non-Abelian systems. In this work, we develop a method of performing HDRG decoding which combines strengths of existing decoders and further improves upon them. In particular, we increase the minimal number of errors necessary for a logical error in a system of linear size L from \\Theta ({{L}2/3}) to Ω ({{L}1-ε }) for any ε \\gt 0. We apply our algorithm to decoding D({{{Z}}d}) quantum double models and a non-Abelian anyon model with Fibonacci-like fusion rules, and show that it indeed significantly outperforms previous HDRG decoders. Furthermore, we provide the first study of continuous error correction with imperfect syndrome measurements for the D({{{Z}}d}) quantum double models. The parallelized runtime of our algorithm is poly(log L) for the perfect measurement case. In the continuous case with imperfect syndrome measurements, the averaged runtime is O(1) for Abelian systems, while continuous error correction for non-Abelian anyons stays an open problem.

  17. An architecture of entropy decoder, inverse quantiser and predictor for multi-standard video decoding

    NASA Astrophysics Data System (ADS)

    Liu, Leibo; Chen, Yingjie; Yin, Shouyi; Lei, Hao; He, Guanghui; Wei, Shaojun

    2014-07-01

    A VLSI architecture for entropy decoder, inverse quantiser and predictor is proposed in this article. This architecture is used for decoding video streams of three standards on a single chip, i.e. H.264/AVC, AVS (China National Audio Video coding Standard) and MPEG2. The proposed scheme is called MPMP (Macro-block-Parallel based Multilevel Pipeline), which is intended to improve the decoding performance to satisfy the real-time requirements while maintaining a reasonable area and power consumption. Several techniques, such as slice level pipeline, MB (Macro-Block) level pipeline, MB level parallel, etc., are adopted. Input and output buffers for the inverse quantiser and predictor are shared by the decoding engines for H.264, AVS and MPEG2, therefore effectively reducing the implementation overhead. Simulation shows that decoding process consumes 512, 435 and 438 clock cycles per MB in H.264, AVS and MPEG2, respectively. Owing to the proposed techniques, the video decoder can support H.264 HP (High Profile) 1920 × 1088@30fps (frame per second) streams, AVS JP (Jizhun Profile) 1920 × 1088@41fps streams and MPEG2 MP (Main Profile) 1920 × 1088@39fps streams when exploiting a 200 MHz working frequency.

  18. An Exploration of Secondary Students' Mental States When Learning about Acids and Bases

    ERIC Educational Resources Information Center

    Liu, Chia-Ju; Hou, I-Lin; Chiu, Houn-Lin; Treagust, David F.

    2014-01-01

    This study explored factors of students' mental states, including emotion, intention, internal mental representation, and external mental representation, which can affect their learning performance. In evaluating students' mental states during the science learning process and the relationship between mental states and learning…

  19. Motion Direction Biases and Decoding in Human Visual Cortex

    PubMed Central

    Wang, Helena X.; Merriam, Elisha P.; Freeman, Jeremy

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity. PMID:25209297

  20. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design

    PubMed Central

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294

  1. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design.

    PubMed

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert

    2012-08-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.

  2. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second(Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high- speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  3. Circuit Design Approaches for Implementation of a Subtrellis IC for a Reed-Muller Subcode

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Uehara, Gregory T.; Nakamura, Eric B.; Chu, Cecilia W. P.

    1996-01-01

    In this research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an inner code of a concatenated coding system with the NASA standard (255, 233, 33) Reed-Solomon (RS) code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation system to achieve reliable bandwidth efficient data transmission. This report will summarize the key progress we have made toward achieving our eventual goal of implementing a decoder system based upon this code. In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits per second (Mbps). The combination of a large number of states and a high data rate will be made possible due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will be presented and briefly described. In the second phase of study which was carried out through the past year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and implementation approaches to implement a fully custom integrated circuit (IC) which will be a key building block for a decoder system implementation. The key results will be presented in this report. This report will be divided into three primary sections. First, we will briefly describe the system block diagram in which the proposed decoder is assumed to be operating and present some of the key architectural approaches being used to implement the system at high speed. Second, we will describe details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32 independent sub-trellises. And third, we will describe results of our feasibility study on the implementation of such an IC chip in CMOS technology to implement one of these subtrellises.

  4. Soft-output decoding algorithms in iterative decoding of turbo codes

    NASA Technical Reports Server (NTRS)

    Benedetto, S.; Montorsi, G.; Divsalar, D.; Pollara, F.

    1996-01-01

    In this article, we present two versions of a simplified maximum a posteriori decoding algorithm. The algorithms work in a sliding window form, like the Viterbi algorithm, and can thus be used to decode continuously transmitted sequences obtained by parallel concatenated codes, without requiring code trellis termination. A heuristic explanation is also given of how to embed the maximum a posteriori algorithms into the iterative decoding of parallel concatenated codes (turbo codes). The performances of the two algorithms are compared on the basis of a powerful rate 1/3 parallel concatenated code. Basic circuits to implement the simplified a posteriori decoding algorithm using lookup tables, and two further approximations (linear and threshold), with a very small penalty, to eliminate the need for lookup tables are proposed.

  5. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  6. Numerical and analytical bounds on threshold error rates for hypergraph-product codes

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Prabhakar, Sanjay; Dumer, Ilya; Pryadko, Leonid P.

    2018-06-01

    We study analytically and numerically decoding properties of finite-rate hypergraph-product quantum low density parity-check codes obtained from random (3,4)-regular Gallager codes, with a simple model of independent X and Z errors. Several nontrivial lower and upper bounds for the decodable region are constructed analytically by analyzing the properties of the homological difference, equal minus the logarithm of the maximum-likelihood decoding probability for a given syndrome. Numerical results include an upper bound for the decodable region from specific heat calculations in associated Ising models and a minimum-weight decoding threshold of approximately 7 % .

  7. A new LDPC decoding scheme for PDM-8QAM BICM coherent optical communication system

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Wen-bo; Xi, Li-xia; Tang, Xian-feng; Zhang, Xiao-guang

    2015-11-01

    A new log-likelihood ratio (LLR) message estimation method is proposed for polarization-division multiplexing eight quadrature amplitude modulation (PDM-8QAM) bit-interleaved coded modulation (BICM) optical communication system. The formulation of the posterior probability is theoretically analyzed, and the way to reduce the pre-decoding bit error rate ( BER) of the low density parity check (LDPC) decoder for PDM-8QAM constellations is presented. Simulation results show that it outperforms the traditional scheme, i.e., the new post-decoding BER is decreased down to 50% of that of the traditional post-decoding algorithm.

  8. Theory of Mind in the Wild: Toward Tackling the Challenges of Everyday Mental State Reasoning

    PubMed Central

    Wertz, Annie E.; German, Tamsin C.

    2013-01-01

    A complete understanding of the cognitive systems underwriting theory of mind (ToM) abilities requires articulating how mental state representations are generated and processed in everyday situations. Individuals rarely announce their intentions prior to acting, and actions are often consistent with multiple mental states. In order for ToM to operate effectively in such situations, mental state representations should be generated in response to certain actions, even when those actions occur in the presence of mental state content derived from other aspects of the situation. Results from three experiments with preschool children and adults demonstrate that mental state information is indeed generated based on an approach action cue in situations that contain competing mental state information. Further, the frequency with which participants produced or endorsed explanations that include mental states about an approached object decreased when the competing mental state information about a different object was made explicit. This set of experiments provides some of the first steps toward identifying the observable action cues that are used to generate mental state representations in everyday situations and offers insight into how both young children and adults processes multiple mental state representations. PMID:24069160

  9. Algorithm to illustrate context using dynamic lighting effects

    NASA Astrophysics Data System (ADS)

    John, Roshy M.; Balasubramanian, T.

    2007-09-01

    With the invention of Ultra-Bright LED, solid state lighting has come to something which is much more efficient and energy saving when compared to conventional incandescent or fluorescent lighting. With the use of proper driver electronics now a days it is possible to install solid state lighting systems with the cost same as that of any other lighting technology. This paper is a part of the research project we are doing in our lab, which deals with using ultra bright LEDs of different colors for lighting applications. The driver electronics are made in such a way that, the color and brightness of the lights will change according to context. For instance, if one of the users is reading a story or listening to music in a Personal Computer or in a hand held device such as a PDA, the lighting systems and the HVAC (Heating Ventilation Air-conditioning) systems will change dramatically according to the content of the story or the music. The vulnerability of solid-state lighting helps to accomplish such an effect. Such a type of system will help the reader to feel the story mentally and physically as well. We developed complete driver electronics for the system using multiple microcomputers and a full software suite which uses complex algorithms to decode the context from text or music and synchronize it to lighting and HVAC information. The paper also presents some case-study statistics which shows the advantage of using the system to teach kindergarten children, deaf and dumb children and for language learning classes.

  10. A Systolic VLSI Design of a Pipeline Reed-solomon Decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.

    1984-01-01

    A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.

  11. A VLSI design of a pipeline Reed-Solomon decoder

    NASA Technical Reports Server (NTRS)

    Shao, H. M.; Truong, T. K.; Deutsch, L. J.; Yuen, J. H.; Reed, I. S.

    1985-01-01

    A pipeline structure of a transform decoder similar to a systolic array was developed to decode Reed-Solomon (RS) codes. An important ingredient of this design is a modified Euclidean algorithm for computing the error locator polynomial. The computation of inverse field elements is completely avoided in this modification of Euclid's algorithm. The new decoder is regular and simple, and naturally suitable for VLSI implementation.

  12. Feedback control policies employed by people using intracortical brain-computer interfaces.

    PubMed

    Willett, Francis R; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A; Memberg, William D; Blabe, Christine H; Saab, Jad; Walter, Benjamin L; Sweet, Jennifer A; Miller, Jonathan P; Henderson, Jaimie M; Shenoy, Krishna V; Simeral, John D; Hochberg, Leigh R; Kirsch, Robert F; Ajiboye, A Bolu

    2017-02-01

    When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a 'feedback control policy'. A better understanding of these policies may inform the design of higher-performing neural decoders. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users' feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user's neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor's current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  13. Feedback control policies employed by people using intracortical brain-computer interfaces

    NASA Astrophysics Data System (ADS)

    Willett, Francis R.; Pandarinath, Chethan; Jarosiewicz, Beata; Murphy, Brian A.; Memberg, William D.; Blabe, Christine H.; Saab, Jad; Walter, Benjamin L.; Sweet, Jennifer A.; Miller, Jonathan P.; Henderson, Jaimie M.; Shenoy, Krishna V.; Simeral, John D.; Hochberg, Leigh R.; Kirsch, Robert F.; Bolu Ajiboye, A.

    2017-02-01

    Objective. When using an intracortical BCI (iBCI), users modulate their neural population activity to move an effector towards a target, stop accurately, and correct for movement errors. We call the rules that govern this modulation a ‘feedback control policy’. A better understanding of these policies may inform the design of higher-performing neural decoders. Approach. We studied how three participants in the BrainGate2 pilot clinical trial used an iBCI to control a cursor in a 2D target acquisition task. Participants used a velocity decoder with exponential smoothing dynamics. Through offline analyses, we characterized the users’ feedback control policies by modeling their neural activity as a function of cursor state and target position. We also tested whether users could adapt their policy to different decoder dynamics by varying the gain (speed scaling) and temporal smoothing parameters of the iBCI. Main results. We demonstrate that control policy assumptions made in previous studies do not fully describe the policies of our participants. To account for these discrepancies, we propose a new model that captures (1) how the user’s neural population activity gradually declines as the cursor approaches the target from afar, then decreases more sharply as the cursor comes into contact with the target, (2) how the user makes constant feedback corrections even when the cursor is on top of the target, and (3) how the user actively accounts for the cursor’s current velocity to avoid overshooting the target. Further, we show that users can adapt their control policy to decoder dynamics by attenuating neural modulation when the cursor gain is high and by damping the cursor velocity more strongly when the smoothing dynamics are high. Significance. Our control policy model may help to build better decoders, understand how neural activity varies during active iBCI control, and produce better simulations of closed-loop iBCI movements.

  14. A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design

    PubMed Central

    Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.

    2013-01-01

    Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130

  15. To sort or not to sort: the impact of spike-sorting on neural decoding performance.

    PubMed

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  16. To sort or not to sort: the impact of spike-sorting on neural decoding performance

    NASA Astrophysics Data System (ADS)

    Todorova, Sonia; Sadtler, Patrick; Batista, Aaron; Chase, Steven; Ventura, Valérie

    2014-10-01

    Objective. Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A viable alternative is to avoid spike-sorting, treating all threshold crossings of the voltage waveform on an electrode as coming from one putative neuron. It is not known, however, how much decoding information might be lost by ignoring spike identity. Approach. We present a full analysis of the effects of spike-sorting schemes on decoding performance. Specifically, we compare how well two common decoders, the optimal linear estimator and the Kalman filter, reconstruct the arm movements of non-human primates performing reaching tasks, when receiving input from various sorting schemes. The schemes we tested included: using threshold crossings without spike-sorting; expert-sorting discarding the noise; expert-sorting, including the noise as if it were another neuron; and automatic spike-sorting using waveform features. We also decoded from a joint statistical model for the waveforms and tuning curves, which does not involve an explicit spike-sorting step. Main results. Discarding the threshold crossings that cannot be assigned to neurons degrades decoding: no spikes should be discarded. Decoding based on spike-sorted units outperforms decoding based on electrodes voltage crossings: spike-sorting is useful. The four waveform based spike-sorting methods tested here yield similar decoding efficiencies: a fast and simple method is competitive. Decoding using the joint waveform and tuning model shows promise but is not consistently superior. Significance. Our results indicate that simple automated spike-sorting performs as well as the more computationally or manually intensive methods used here. Even basic spike-sorting adds value to the low-threshold waveform-crossing methods often employed in BCI decoding.

  17. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... time periods expire. (4) Display and logging. A visual message shall be developed from any valid header... input. (8) Decoder Programming. Access to decoder programming shall be protected by a lock or other...

  18. On the error probability of general tree and trellis codes with applications to sequential decoding

    NASA Technical Reports Server (NTRS)

    Johannesson, R.

    1973-01-01

    An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random binary tree codes is derived and shown to be independent of the length of the tree. An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = 1/n is derived which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence. This implication is investigated by computer simulations of sequential decoding utilizing the stack algorithm. These simulations confirm the implication and further suggest an empirical formula for the true undetected decoding error probability with sequential decoding.

  19. Viterbi decoding for satellite and space communication.

    NASA Technical Reports Server (NTRS)

    Heller, J. A.; Jacobs, I. M.

    1971-01-01

    Convolutional coding and Viterbi decoding, along with binary phase-shift keyed modulation, is presented as an efficient system for reliable communication on power limited satellite and space channels. Performance results, obtained theoretically and through computer simulation, are given for optimum short constraint length codes for a range of code constraint lengths and code rates. System efficiency is compared for hard receiver quantization and 4 and 8 level soft quantization. The effects on performance of varying of certain parameters relevant to decoder complexity and cost are examined. Quantitative performance degradation due to imperfect carrier phase coherence is evaluated and compared to that of an uncoded system. As an example of decoder performance versus complexity, a recently implemented 2-Mbit/sec constraint length 7 Viterbi decoder is discussed. Finally a comparison is made between Viterbi and sequential decoding in terms of suitability to various system requirements.

  20. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights

    PubMed Central

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks. PMID:26973503

  1. Obtaining Arbitrary Prescribed Mean Field Dynamics for Recurrently Coupled Networks of Type-I Spiking Neurons with Analytically Determined Weights.

    PubMed

    Nicola, Wilten; Tripp, Bryan; Scott, Matthew

    2016-01-01

    A fundamental question in computational neuroscience is how to connect a network of spiking neurons to produce desired macroscopic or mean field dynamics. One possible approach is through the Neural Engineering Framework (NEF). The NEF approach requires quantities called decoders which are solved through an optimization problem requiring large matrix inversion. Here, we show how a decoder can be obtained analytically for type I and certain type II firing rates as a function of the heterogeneity of its associated neuron. These decoders generate approximants for functions that converge to the desired function in mean-squared error like 1/N, where N is the number of neurons in the network. We refer to these decoders as scale-invariant decoders due to their structure. These decoders generate weights for a network of neurons through the NEF formula for weights. These weights force the spiking network to have arbitrary and prescribed mean field dynamics. The weights generated with scale-invariant decoders all lie on low dimensional hypersurfaces asymptotically. We demonstrate the applicability of these scale-invariant decoders and weight surfaces by constructing networks of spiking theta neurons that replicate the dynamics of various well known dynamical systems such as the neural integrator, Van der Pol system and the Lorenz system. As these decoders are analytically determined and non-unique, the weights are also analytically determined and non-unique. We discuss the implications for measured weights of neuronal networks.

  2. Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features.

    PubMed

    Horikawa, Tomoyasu; Kamitani, Yukiyasu

    2017-01-01

    Dreaming is generally thought to be generated by spontaneous brain activity during sleep with patterns common to waking experience. This view is supported by a recent study demonstrating that dreamed objects can be predicted from brain activity during sleep using statistical decoders trained with stimulus-induced brain activity. However, it remains unclear whether and how visual image features associated with dreamed objects are represented in the brain. In this study, we used a deep neural network (DNN) model for object recognition as a proxy for hierarchical visual feature representation, and DNN features for dreamed objects were analyzed with brain decoding of fMRI data collected during dreaming. The decoders were first trained with stimulus-induced brain activity labeled with the feature values of the stimulus image from multiple DNN layers. The decoders were then used to decode DNN features from the dream fMRI data, and the decoded features were compared with the averaged features of each object category calculated from a large-scale image database. We found that the feature values decoded from the dream fMRI data positively correlated with those associated with dreamed object categories at mid- to high-level DNN layers. Using the decoded features, the dreamed object category could be identified at above-chance levels by matching them to the averaged features for candidate categories. The results suggest that dreaming recruits hierarchical visual feature representations associated with objects, which may support phenomenal aspects of dream experience.

  3. Visual coding with a population of direction-selective neurons.

    PubMed

    Fiscella, Michele; Franke, Felix; Farrow, Karl; Müller, Jan; Roska, Botond; da Silveira, Rava Azeredo; Hierlemann, Andreas

    2015-10-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. Copyright © 2015 the American Physiological Society.

  4. Visual coding with a population of direction-selective neurons

    PubMed Central

    Farrow, Karl; Müller, Jan; Roska, Botond; Azeredo da Silveira, Rava; Hierlemann, Andreas

    2015-01-01

    The brain decodes the visual scene from the action potentials of ∼20 retinal ganglion cell types. Among the retinal ganglion cells, direction-selective ganglion cells (DSGCs) encode motion direction. Several studies have focused on the encoding or decoding of motion direction by recording multiunit activity, mainly in the visual cortex. In this study, we simultaneously recorded from all four types of ON-OFF DSGCs of the rabbit retina using a microelectronics-based high-density microelectrode array (HDMEA) and decoded their concerted activity using probabilistic and linear decoders. Furthermore, we investigated how the modification of stimulus parameters (velocity, size, angle of moving object) and the use of different tuning curve fits influenced decoding precision. Finally, we simulated ON-OFF DSGC activity, based on real data, in order to understand how tuning curve widths and the angular distribution of the cells' preferred directions influence decoding performance. We found that probabilistic decoding strategies outperformed, on average, linear methods and that decoding precision was robust to changes in stimulus parameters such as velocity. The removal of noise correlations among cells, by random shuffling trials, caused a drop in decoding precision. Moreover, we found that tuning curves are broad in order to minimize large errors at the expense of a higher average error, and that the retinal direction-selective system would not substantially benefit, on average, from having more than four types of ON-OFF DSGCs or from a perfect alignment of the cells' preferred directions. PMID:26289471

  5. Electroencephalogram-based decoding cognitive states using convolutional neural network and likelihood ratio based score fusion

    PubMed Central

    2017-01-01

    Electroencephalogram (EEG)-based decoding human brain activity is challenging, owing to the low spatial resolution of EEG. However, EEG is an important technique, especially for brain–computer interface applications. In this study, a novel algorithm is proposed to decode brain activity associated with different types of images. In this hybrid algorithm, convolutional neural network is modified for the extraction of features, a t-test is used for the selection of significant features and likelihood ratio-based score fusion is used for the prediction of brain activity. The proposed algorithm takes input data from multichannel EEG time-series, which is also known as multivariate pattern analysis. Comprehensive analysis was conducted using data from 30 participants. The results from the proposed method are compared with current recognized feature extraction and classification/prediction techniques. The wavelet transform-support vector machine method is the most popular currently used feature extraction and prediction method. This method showed an accuracy of 65.7%. However, the proposed method predicts the novel data with improved accuracy of 79.9%. In conclusion, the proposed algorithm outperformed the current feature extraction and prediction method. PMID:28558002

  6. Decoding of visual activity patterns from fMRI responses using multivariate pattern analyses and convolutional neural network.

    PubMed

    Zafar, Raheel; Kamel, Nidal; Naufal, Mohamad; Malik, Aamir Saeed; Dass, Sarat C; Ahmad, Rana Fayyaz; Abdullah, Jafri M; Reza, Faruque

    2017-01-01

    Decoding of human brain activity has always been a primary goal in neuroscience especially with functional magnetic resonance imaging (fMRI) data. In recent years, Convolutional neural network (CNN) has become a popular method for the extraction of features due to its higher accuracy, however it needs a lot of computation and training data. In this study, an algorithm is developed using Multivariate pattern analysis (MVPA) and modified CNN to decode the behavior of brain for different images with limited data set. Selection of significant features is an important part of fMRI data analysis, since it reduces the computational burden and improves the prediction performance; significant features are selected using t-test. MVPA uses machine learning algorithms to classify different brain states and helps in prediction during the task. General linear model (GLM) is used to find the unknown parameters of every individual voxel and the classification is done using multi-class support vector machine (SVM). MVPA-CNN based proposed algorithm is compared with region of interest (ROI) based method and MVPA based estimated values. The proposed method showed better overall accuracy (68.6%) compared to ROI (61.88%) and estimation values (64.17%).

  7. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons.

    PubMed

    Oddo, Calogero M; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M D; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-04-04

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models.

  8. Artificial spatiotemporal touch inputs reveal complementary decoding in neocortical neurons

    PubMed Central

    Oddo, Calogero M.; Mazzoni, Alberto; Spanne, Anton; Enander, Jonas M. D.; Mogensen, Hannes; Bengtsson, Fredrik; Camboni, Domenico; Micera, Silvestro; Jörntell, Henrik

    2017-01-01

    Investigations of the mechanisms of touch perception and decoding has been hampered by difficulties in achieving invariant patterns of skin sensor activation. To obtain reproducible spatiotemporal patterns of activation of sensory afferents, we used an artificial fingertip equipped with an array of neuromorphic sensors. The artificial fingertip was used to transduce real-world haptic stimuli into spatiotemporal patterns of spikes. These spike patterns were delivered to the skin afferents of the second digit of rats via an array of stimulation electrodes. Combined with low-noise intra- and extracellular recordings from neocortical neurons in vivo, this approach provided a previously inaccessible high resolution analysis of the representation of tactile information in the neocortical neuronal circuitry. The results indicate high information content in individual neurons and reveal multiple novel neuronal tactile coding features such as heterogeneous and complementary spatiotemporal input selectivity also between neighboring neurons. Such neuronal heterogeneity and complementariness can potentially support a very high decoding capacity in a limited population of neurons. Our results also indicate a potential neuroprosthetic approach to communicate with the brain at a very high resolution and provide a potential novel solution for evaluating the degree or state of neurological disease in animal models. PMID:28374841

  9. All-in-one visual and computer decoding of multiple secrets: translated-flip VC with polynomial-style sharing

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Hua; Lee, Suiang-Shyan; Lin, Ja-Chen

    2017-06-01

    This all-in-one hiding method creates two transparencies that have several decoding options: visual decoding with or without translation flipping and computer decoding. In visual decoding, two less-important (or fake) binary secret images S1 and S2 can be revealed. S1 is viewed by the direct stacking of two transparencies. S2 is viewed by flipping one transparency and translating the other to a specified coordinate before stacking. Finally, important/true secret files can be decrypted by a computer using the information extracted from transparencies. The encoding process to hide this information includes the translated-flip visual cryptography, block types, the ways to use polynomial-style sharing, and linear congruential generator. If a thief obtained both transparencies, which are stored in distinct places, he still needs to find the values of keys used in computer decoding to break through after viewing S1 and/or S2 by stacking. However, the thief might just try every other kind of stacking and finally quit finding more secrets; for computer decoding is totally different from stacking decoding. Unlike traditional image hiding that uses images as host media, our method hides fine gray-level images in binary transparencies. Thus, our host media are transparencies. Comparisons and analysis are provided.

  10. Multiscale decoding for reliable brain-machine interface performance over time.

    PubMed

    Han-Lin Hsieh; Wong, Yan T; Pesaran, Bijan; Shanechi, Maryam M

    2017-07-01

    Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multi-scale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.

  11. Decoding the Semantic Content of Natural Movies from Human Brain Activity

    PubMed Central

    Huth, Alexander G.; Lee, Tyler; Nishimoto, Shinji; Bilenko, Natalia Y.; Vu, An T.; Gallant, Jack L.

    2016-01-01

    One crucial test for any quantitative model of the brain is to show that the model can be used to accurately decode information from evoked brain activity. Several recent neuroimaging studies have decoded the structure or semantic content of static visual images from human brain activity. Here we present a decoding algorithm that makes it possible to decode detailed information about the object and action categories present in natural movies from human brain activity signals measured by functional MRI. Decoding is accomplished using a hierarchical logistic regression (HLR) model that is based on labels that were manually assigned from the WordNet semantic taxonomy. This model makes it possible to simultaneously decode information about both specific and general categories, while respecting the relationships between them. Our results show that we can decode the presence of many object and action categories from averaged blood-oxygen level-dependent (BOLD) responses with a high degree of accuracy (area under the ROC curve > 0.9). Furthermore, we used this framework to test whether semantic relationships defined in the WordNet taxonomy are represented the same way in the human brain. This analysis showed that hierarchical relationships between general categories and atypical examples, such as organism and plant, did not seem to be reflected in representations measured by BOLD fMRI. PMID:27781035

  12. A model for sequential decoding overflow due to a noisy carrier reference. [communication performance prediction

    NASA Technical Reports Server (NTRS)

    Layland, J. W.

    1974-01-01

    An approximate analysis of the effect of a noisy carrier reference on the performance of sequential decoding is presented. The analysis uses previously developed techniques for evaluating noisy reference performance for medium-rate uncoded communications adapted to sequential decoding for data rates of 8 to 2048 bits/s. In estimating the ten to the minus fourth power deletion probability thresholds for Helios, the model agrees with experimental data to within the experimental tolerances. The computational problem involved in sequential decoding, carrier loop effects, the main characteristics of the medium-rate model, modeled decoding performance, and perspectives on future work are discussed.

  13. Does finite-temperature decoding deliver better optima for noisy Hamiltonians?

    NASA Astrophysics Data System (ADS)

    Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.

    The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.

  14. Testing interconnected VLSI circuits in the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Onyszchuk, I. M.

    1991-01-01

    The Big Viterbi Decoder (BVD) is a powerful error-correcting hardware device for the Deep Space Network (DSN), in support of the Galileo and Comet Rendezvous Asteroid Flyby (CRAF)/Cassini Missions. Recently, a prototype was completed and run successfully at 400,000 or more decoded bits per second. This prototype is a complex digital system whose core arithmetic unit consists of 256 identical very large scale integration (VLSI) gate-array chips, 16 on each of 16 identical boards which are connected through a 28-layer, printed-circuit backplane using 4416 wires. Special techniques were developed for debugging, testing, and locating faults inside individual chips, on boards, and within the entire decoder. The methods are based upon hierarchical structure in the decoder, and require that chips or boards be wired themselves as Viterbi decoders. The basic procedure consists of sending a small set of known, very noisy channel symbols through a decoder, and matching observables against values computed by a software simulation. Also, tests were devised for finding open and short-circuited wires which connect VLSI chips on the boards and through the backplane.

  15. Utilizing sensory prediction errors for movement intention decoding: A new methodology

    PubMed Central

    Nakamura, Keigo; Ando, Hideyuki

    2018-01-01

    We propose a new methodology for decoding movement intentions of humans. This methodology is motivated by the well-documented ability of the brain to predict sensory outcomes of self-generated and imagined actions using so-called forward models. We propose to subliminally stimulate the sensory modality corresponding to a user’s intended movement, and decode a user’s movement intention from his electroencephalography (EEG), by decoding for prediction errors—whether the sensory prediction corresponding to a user’s intended movement matches the subliminal sensory stimulation we induce. We tested our proposal in a binary wheelchair turning task in which users thought of turning their wheelchair either left or right. We stimulated their vestibular system subliminally, toward either the left or the right direction, using a galvanic vestibular stimulator and show that the decoding for prediction errors from the EEG can radically improve movement intention decoding performance. We observed an 87.2% median single-trial decoding accuracy across tested participants, with zero user training, within 96 ms of the stimulation, and with no additional cognitive load on the users because the stimulation was subliminal. PMID:29750195

  16. Decoding the time-course of object recognition in the human brain: From visual features to categorical decisions.

    PubMed

    Contini, Erika W; Wardle, Susan G; Carlson, Thomas A

    2017-10-01

    Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Breath Biomarkers in Environmental Health Science: Exploring Patterns in the Human Exposome

    EPA Science Inventory

    The human genome is the counterpart to the human exposome with respect to the gene × environment interaction that describes health state and outcome. The genome has already been sequenced and is in the process of being assessed for specific functionality; to similarly decode the ...

  18. Field Day: A Case Study examining scientists’ oral performance skills

    USDA-ARS?s Scientific Manuscript database

    Communication is a complex cyclic process wherein senders and receivers encode and decode information in an effort to reach a state of mutuality or mutual understanding. When the communication of scientific or technical information occurs in a public space, effective speakers follow a formula for co...

  19. Eliminating ambiguity in digital signals

    NASA Technical Reports Server (NTRS)

    Weber, W. J., III

    1979-01-01

    Multiamplitude minimum shift keying (mamsk) transmission system, method of differential encoding overcomes problem of ambiguity associated with advanced digital-transmission techniques with little or no penalty in transmission rate, error rate, or system complexity. Principle of method states, if signal points are properly encoded and decoded, bits are detected correctly, regardless of phase ambiguities.

  20. A Critical Analysis of Dyslexia Legislation in Three States

    ERIC Educational Resources Information Center

    Worthy, Jo; Villarreal, Doris; Godfrey, Vickie; DeJulio, Sam; Stefanski, Angela; Leitze, Amy; Cooper, Jennifer

    2017-01-01

    After a multitude of studies across more than a century, researchers have failed to consistently identify characteristics or patterns that distinguish dyslexia from other decoding challenges. Many researchers and educators argue the construct is too vague and contradictory to be useful for educators. Nevertheless, attention to dyslexia in policy…

  1. On the asynchronously continuous control of mobile robot movement by motor cortical spiking activity.

    PubMed

    Xu, Zhiming; So, Rosa Q; Toe, Kyaw Kyar; Ang, Kai Keng; Guan, Cuntai

    2014-01-01

    This paper presents an asynchronously intracortical brain-computer interface (BCI) which allows the subject to continuously drive a mobile robot. This system has a great implication for disabled patients to move around. By carefully designing a multiclass support vector machine (SVM), the subject's self-paced instantaneous movement intents are continuously decoded to control the mobile robot. In particular, we studied the stability of the neural representation of the movement directions. Experimental results on the nonhuman primate showed that the overt movement directions were stably represented in ensemble of recorded units, and our SVM classifier could successfully decode such movements continuously along the desired movement path. However, the neural representation of the stop state for the self-paced control was not stably represented and could drift.

  2. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, James M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is outputted to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing.

  3. Worst case encoder-decoder policies for a communication system in the presence of an unknown probabilistic jammer

    NASA Astrophysics Data System (ADS)

    Cascio, David M.

    1988-05-01

    States of nature or observed data are often stochastically modelled as Gaussian random variables. At times it is desirable to transmit this information from a source to a destination with minimal distortion. Complicating this objective is the possible presence of an adversary attempting to disrupt this communication. In this report, solutions are provided to a class of minimax and maximin decision problems, which involve the transmission of a Gaussian random variable over a communications channel corrupted by both additive Gaussian noise and probabilistic jamming noise. The jamming noise is termed probabilistic in the sense that with nonzero probability 1-P, the jamming noise is prevented from corrupting the channel. We shall seek to obtain optimal linear encoder-decoder policies which minimize given quadratic distortion measures.

  4. Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.

    PubMed

    Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N

    2015-03-04

    The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.

  5. Toward an Open-Ended BCI: A User-Centered Coadaptive Design.

    PubMed

    Dhindsa, Kiret; Carcone, Dean; Becker, Suzanna

    2017-10-01

    Brain-computer interfaces (BCIs) allow users to control a device by interpreting their brain activity. For simplicity, these devices are designed to be operated by purposefully modulating specific predetermined neurophysiological signals, such as the sensorimotor rhythm. However, the ability to modulate a given neurophysiological signal is highly variable across individuals, contributing to the inconsistent performance of BCIs for different users. These differences suggest that individuals who experience poor BCI performance with one class of brain signals might have good results with another. In order to take advantage of individual abilities as they relate to BCI control, we need to move beyond the current approaches. In this letter, we explore a new BCI design aimed at a more individualized and user-focused experience, which we call open-ended BCI. Individual users were given the freedom to discover their own mental strategies as opposed to being trained to modulate a given brain signal. They then underwent multiple coadaptive training sessions with the BCI. Our first open-ended BCI performed similarly to comparable BCIs while accommodating a wider variety of mental strategies without a priori knowledge of the specific brain signals any individual might use. Post hoc analysis revealed individual differences in terms of which sensory modality yielded optimal performance. We found a large and significant effect of individual differences in background training and expertise, such as in musical training, on BCI performance. Future research should be focused on finding more generalized solutions to user training and brain state decoding methods to fully utilize the abilities of different individuals in an open-ended BCI. Accounting for each individual's areas of expertise could have important implications on BCI training and BCI application design.

  6. Exploring Differential Effects across Two Decoding Treatments on Item-Level Transfer in Children with Significant Word Reading Difficulties: A New Approach for Testing Intervention Elements

    ERIC Educational Resources Information Center

    Steacy, Laura M.; Elleman, Amy M.; Lovett, Maureen W.; Compton, Donald L.

    2016-01-01

    In English, gains in decoding skill do not map directly onto increases in word reading. However, beyond the Self-Teaching Hypothesis, little is known about the transfer of decoding skills to word reading. In this study, we offer a new approach to testing specific decoding elements on transfer to word reading. To illustrate, we modeled word-reading…

  7. Comparison of memory thresholds for planar qudit geometries

    NASA Astrophysics Data System (ADS)

    Marks, Jacob; Jochym-O'Connor, Tomas; Gheorghiu, Vlad

    2017-11-01

    We introduce and analyze a new type of decoding algorithm called general color clustering, based on renormalization group methods, to be used in qudit color codes. The performance of this decoder is analyzed under a generalized bit-flip error model, and is used to obtain the first memory threshold estimates for qudit 6-6-6 color codes. The proposed decoder is compared with similar decoding schemes for qudit surface codes as well as the current leading qubit decoders for both sets of codes. We find that, as with surface codes, clustering performs sub-optimally for qubit color codes, giving a threshold of 5.6 % compared to the 8.0 % obtained through surface projection decoding methods. However, the threshold rate increases by up to 112% for large qudit dimensions, plateauing around 11.9 % . All the analysis is performed using QTop, a new open-source software for simulating and visualizing topological quantum error correcting codes.

  8. A high data rate universal lattice decoder on FPGA

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Huang, Xinming; Kura, Swapna

    2005-06-01

    This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.

  9. Non-tables look-up search algorithm for efficient H.264/AVC context-based adaptive variable length coding decoding

    NASA Astrophysics Data System (ADS)

    Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong

    2014-09-01

    In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.

  10. Error-correction coding for digital communications

    NASA Astrophysics Data System (ADS)

    Clark, G. C., Jr.; Cain, J. B.

    This book is written for the design engineer who must build the coding and decoding equipment and for the communication system engineer who must incorporate this equipment into a system. It is also suitable as a senior-level or first-year graduate text for an introductory one-semester course in coding theory. Fundamental concepts of coding are discussed along with group codes, taking into account basic principles, practical constraints, performance computations, coding bounds, generalized parity check codes, polynomial codes, and important classes of group codes. Other topics explored are related to simple nonalgebraic decoding techniques for group codes, soft decision decoding of block codes, algebraic techniques for multiple error correction, the convolutional code structure and Viterbi decoding, syndrome decoding techniques, and sequential decoding techniques. System applications are also considered, giving attention to concatenated codes, coding for the white Gaussian noise channel, interleaver structures for coded systems, and coding for burst noise channels.

  11. 42 CFR 483.108 - Relationship of PASARR to other Medicaid processes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mental health or mental retardation authorities cannot be countermanded by the State Medicaid agency... of this part may overturn a PASARR determination made by the State mental health or mental retardation authorities. (b) In making their determinations, however, the State mental health and mental...

  12. 42 CFR 483.108 - Relationship of PASARR to other Medicaid processes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mental health or mental retardation authorities cannot be countermanded by the State Medicaid agency... of this part may overturn a PASARR determination made by the State mental health or mental retardation authorities. (b) In making their determinations, however, the State mental health and mental...

  13. Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces

    NASA Astrophysics Data System (ADS)

    Xu, Kai; Wang, Yiwen; Wang, Yueming; Wang, Fang; Hao, Yaoyao; Zhang, Shaomin; Zhang, Qiaosheng; Chen, Weidong; Zheng, Xiaoxiang

    2013-04-01

    Objective. The high-dimensional neural recordings bring computational challenges to movement decoding in motor brain machine interfaces (mBMI), especially for portable applications. However, not all recorded neural activities relate to the execution of a certain movement task. This paper proposes to use a local-learning-based method to perform neuron selection for the gesture prediction in a reaching and grasping task. Approach. Nonlinear neural activities are decomposed into a set of linear ones in a weighted feature space. A margin is defined to measure the distance between inter-class and intra-class neural patterns. The weights, reflecting the importance of neurons, are obtained by minimizing a margin-based exponential error function. To find the most dominant neurons in the task, 1-norm regularization is introduced to the objective function for sparse weights, where near-zero weights indicate irrelevant neurons. Main results. The signals of only 10 neurons out of 70 selected by the proposed method could achieve over 95% of the full recording's decoding accuracy of gesture predictions, no matter which different decoding methods are used (support vector machine and K-nearest neighbor). The temporal activities of the selected neurons show visually distinguishable patterns associated with various hand states. Compared with other algorithms, the proposed method can better eliminate the irrelevant neurons with near-zero weights and provides the important neuron subset with the best decoding performance in statistics. The weights of important neurons converge usually within 10-20 iterations. In addition, we study the temporal and spatial variation of neuron importance along a period of one and a half months in the same task. A high decoding performance can be maintained by updating the neuron subset. Significance. The proposed algorithm effectively ascertains the neuronal importance without assuming any coding model and provides a high performance with different decoding models. It shows better robustness of identifying the important neurons with noisy signals presented. The low demand of computational resources which, reflected by the fast convergence, indicates the feasibility of the method applied in portable BMI systems. The ascertainment of the important neurons helps to inspect neural patterns visually associated with the movement task. The elimination of irrelevant neurons greatly reduces the computational burden of mBMI systems and maintains the performance with better robustness.

  14. The cognitive demands of standardized patients: understanding limitations in attention and working memory with the decoding of nonverbal behavior during improvisations.

    PubMed

    Newlin-Canzone, Elizabeth T; Scerbo, Mark W; Gliva-McConvey, Gayle; Wallace, Amelia M

    2013-08-01

    This study was designed to look at the challenges of standardized patients while in role and to use the findings to enhance training methods. The study investigated the effect of improvisations and multiple-task performance on the ability of standardized patients to observe and evaluate another's communication behaviors and its associated mental workload. Twenty standardized patients participated in a 2 types of interview (with and without improvisations)-by-2 types of observation (passive and active) within-groups design. The results indicated that both active observations and improvisations had a negative effect on the standardized patients' ability to observe the learner, missing more than 75% of nonverbal behaviors during active improvisational encounters. Moreover, standardized patients experienced the highest mental demand during active improvisational encounters. The findings suggest that the need to simultaneously portray a character and assess a learner may negatively affect the ability of standardized patients to provide accurate evaluations of a learner, particularly when they are required to improvise responses, underscoring the need for specific and targeted training.

  15. A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance.

    PubMed

    Astrand, Elaine

    2018-06-01

    Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r  =  0.47, p  <  0.05). It is furthermore shown that this measure allows to predict task performance before action (r  =  0.49, p  <  0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.

  16. A continuous time-resolved measure decoded from EEG oscillatory activity predicts working memory task performance

    NASA Astrophysics Data System (ADS)

    Astrand, Elaine

    2018-06-01

    Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r  =  0.47, p  <  0.05). It is furthermore shown that this measure allows to predict task performance before action (r  =  0.49, p  <  0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.

  17. Soft-Decision Decoding of Binary Linear Block Codes Based on an Iterative Search Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Moorthy, H. T.

    1997-01-01

    This correspondence presents a suboptimum soft-decision decoding scheme for binary linear block codes based on an iterative search algorithm. The scheme uses an algebraic decoder to iteratively generate a sequence of candidate codewords one at a time using a set of test error patterns that are constructed based on the reliability information of the received symbols. When a candidate codeword is generated, it is tested based on an optimality condition. If it satisfies the optimality condition, then it is the most likely (ML) codeword and the decoding stops. If it fails the optimality test, a search for the ML codeword is conducted in a region which contains the ML codeword. The search region is determined by the current candidate codeword and the reliability of the received symbols. The search is conducted through a purged trellis diagram for the given code using the Viterbi algorithm. If the search fails to find the ML codeword, a new candidate is generated using a new test error pattern, and the optimality test and search are renewed. The process of testing and search continues until either the MEL codeword is found or all the test error patterns are exhausted and the decoding process is terminated. Numerical results show that the proposed decoding scheme achieves either practically optimal performance or a performance only a fraction of a decibel away from the optimal maximum-likelihood decoding with a significant reduction in decoding complexity compared with the Viterbi decoding based on the full trellis diagram of the codes.

  18. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.

    PubMed

    Müller-Putz, G R; Schwarz, A; Pereira, J; Ofner, P

    2016-01-01

    In this chapter, we give an overview of the Graz-BCI research, from the classic motor imagery detection to complex movement intentions decoding. We start by describing the classic motor imagery approach, its application in tetraplegic end users, and the significant improvements achieved using coadaptive brain-computer interfaces (BCIs). These strategies have the drawback of not mirroring the way one plans a movement. To achieve a more natural control-and to reduce the training time-the movements decoded by the BCI need to be closely related to the user's intention. Within this natural control, we focus on the kinematic level, where movement direction and hand position or velocity can be decoded from noninvasive recordings. First, we review movement execution decoding studies, where we describe the decoding algorithms, their performance, and associated features. Second, we describe the major findings in movement imagination decoding, where we emphasize the importance of estimating the sources of the discriminative features. Third, we introduce movement target decoding, which could allow the determination of the target without knowing the exact movement-by-movement details. Aside from the kinematic level, we also address the goal level, which contains relevant information on the upcoming action. Focusing on hand-object interaction and action context dependency, we discuss the possible impact of some recent neurophysiological findings in the future of BCI control. Ideally, the goal and the kinematic decoding would allow an appropriate matching of the BCI to the end users' needs, overcoming the limitations of the classic motor imagery approach. © 2016 Elsevier B.V. All rights reserved.

  19. A Bidirectional Brain-Machine Interface Algorithm That Approximates Arbitrary Force-Fields

    PubMed Central

    Semprini, Marianna; Mussa-Ivaldi, Ferdinando A.; Panzeri, Stefano

    2014-01-01

    We examine bidirectional brain-machine interfaces that control external devices in a closed loop by decoding motor cortical activity to command the device and by encoding the state of the device by delivering electrical stimuli to sensory areas. Although it is possible to design this artificial sensory-motor interaction while maintaining two independent channels of communication, here we propose a rule that closes the loop between flows of sensory and motor information in a way that approximates a desired dynamical policy expressed as a field of forces acting upon the controlled external device. We previously developed a first implementation of this approach based on linear decoding of neural activity recorded from the motor cortex into a set of forces (a force field) applied to a point mass, and on encoding of position of the point mass into patterns of electrical stimuli delivered to somatosensory areas. However, this previous algorithm had the limitation that it only worked in situations when the position-to-force map to be implemented is invertible. Here we overcome this limitation by developing a new non-linear form of the bidirectional interface that can approximate a virtually unlimited family of continuous fields. The new algorithm bases both the encoding of position information and the decoding of motor cortical activity on an explicit map between spike trains and the state space of the device computed with Multi-Dimensional-Scaling. We present a detailed computational analysis of the performance of the interface and a validation of its robustness by using synthetic neural responses in a simulated sensory-motor loop. PMID:24626393

  20. MENTAL STATE LANGUAGE DEVELOPMENT: THE LONGITUDINAL ROLES OF ATTACHMENT AND MATERNAL LANGUAGE.

    PubMed

    Becker Razuri, Erin; Hiles Howard, Amanda R; Purvis, Karyn B; Cross, David R

    2017-05-01

    Maternal mental state language is thought to influence children's mental state language and sociocognitive understanding (e.g., theory of mind), but the mechanism is unclear. The current study examined the longitudinal development of mental state language in mother-child interactions. The methodology included assessments of the child and/or mother-child dyad at six time points between 12 to 52 months of the child's age. Measures determined child's attachment style and language abilities, and mental state language used by mother and child during a block-building task. Results showed that (a) mental state talk, including belief and desire language, increased over time; (b) there were differences between the type of mental state words used by the mother in insecure versus secure dyads; (c) there were differences in patterns of mental state words used in both mothers and children in insecure versus secure dyads; and (d) attachment appeared to exert a consistent influence over time. © 2017 Michigan Association for Infant Mental Health.

  1. Seeing mental states: An experimental strategy for measuring the observability of other minds

    NASA Astrophysics Data System (ADS)

    Becchio, Cristina; Koul, Atesh; Ansuini, Caterina; Bertone, Cesare; Cavallo, Andrea

    2018-03-01

    Is it possible to perceive others' mental states? Are mental states visible in others' behavior? In contrast to the traditional view that mental states are hidden and not directly accessible to perception, in recent years a phenomenologically-motivated account of social cognition has emerged: direct social perception. However, despite numerous published articles that both defend and critique direct perception, researchers have made little progress in articulating the conditions under which direct perception of others' mental states is possible. This paper proposes an empirically anchored approach to the observability of others' mentality - not just in the weak sense of discussing relevant empirical evidence for and against the phenomenon of interest, but also, and more specifically, in the stronger sense of identifying an experimental strategy for measuring the observability of mental states and articulating the conditions under which mental states are observable. We conclude this article by reframing the problem of direct perception in terms of establishing a definable and measurable relationship between movement features and perceived mental states.

  2. Multiformat decoder for a DSP-based IP set-top box

    NASA Astrophysics Data System (ADS)

    Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.

    2007-05-01

    Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.

  3. HEVC real-time decoding

    NASA Astrophysics Data System (ADS)

    Bross, Benjamin; Alvarez-Mesa, Mauricio; George, Valeri; Chi, Chi Ching; Mayer, Tobias; Juurlink, Ben; Schierl, Thomas

    2013-09-01

    The new High Efficiency Video Coding Standard (HEVC) was finalized in January 2013. Compared to its predecessor H.264 / MPEG4-AVC, this new international standard is able to reduce the bitrate by 50% for the same subjective video quality. This paper investigates decoder optimizations that are needed to achieve HEVC real-time software decoding on a mobile processor. It is shown that HEVC real-time decoding up to high definition video is feasible using instruction extensions of the processor while decoding 4K ultra high definition video in real-time requires additional parallel processing. For parallel processing, a picture-level parallel approach has been chosen because it is generic and does not require bitstreams with special indication.

  4. Approximate maximum likelihood decoding of block codes

    NASA Technical Reports Server (NTRS)

    Greenberger, H. J.

    1979-01-01

    Approximate maximum likelihood decoding algorithms, based upon selecting a small set of candidate code words with the aid of the estimated probability of error of each received symbol, can give performance close to optimum with a reasonable amount of computation. By combining the best features of various algorithms and taking care to perform each step as efficiently as possible, a decoding scheme was developed which can decode codes which have better performance than those presently in use and yet not require an unreasonable amount of computation. The discussion of the details and tradeoffs of presently known efficient optimum and near optimum decoding algorithms leads, naturally, to the one which embodies the best features of all of them.

  5. Beyond mind-reading: multi-voxel pattern analysis of fMRI data.

    PubMed

    Norman, Kenneth A; Polyn, Sean M; Detre, Greg J; Haxby, James V

    2006-09-01

    A key challenge for cognitive neuroscience is determining how mental representations map onto patterns of neural activity. Recently, researchers have started to address this question by applying sophisticated pattern-classification algorithms to distributed (multi-voxel) patterns of functional MRI data, with the goal of decoding the information that is represented in the subject's brain at a particular point in time. This multi-voxel pattern analysis (MVPA) approach has led to several impressive feats of mind reading. More importantly, MVPA methods constitute a useful new tool for advancing our understanding of neural information processing. We review how researchers are using MVPA methods to characterize neural coding and information processing in domains ranging from visual perception to memory search.

  6. Miniaturization of flight deflection measurement system

    NASA Technical Reports Server (NTRS)

    Fodale, Robert (Inventor); Hampton, Herbert R. (Inventor)

    1990-01-01

    A flight deflection measurement system is disclosed including a hybrid microchip of a receiver/decoder. The hybrid microchip decoder is mounted piggy back on the miniaturized receiver and forms an integral unit therewith. The flight deflection measurement system employing the miniaturized receiver/decoder can be used in a wind tunnel. In particular, the miniaturized receiver/decoder can be employed in a spin measurement system due to its small size and can retain already established control surface actuation functions.

  7. Overview of Decoding across the Disciplines

    ERIC Educational Resources Information Center

    Boman, Jennifer; Currie, Genevieve; MacDonald, Ron; Miller-Young, Janice; Yeo, Michelle; Zettel, Stephanie

    2017-01-01

    In this chapter we describe the Decoding the Disciplines Faculty Learning Community at Mount Royal University and how Decoding has been used in new and multidisciplinary ways in the various teaching, curriculum, and research projects that are presented in detail in subsequent chapters.

  8. Maximum likelihood decoding analysis of accumulate-repeat-accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, A.; Divsalar, D.; Yao, K.

    2004-01-01

    In this paper, the performance of the repeat-accumulate codes with (ML) decoding are analyzed and compared to random codes by very tight bounds. Some simple codes are shown that perform very close to Shannon limit with maximum likelihood decoding.

  9. Predictive Displays for High Latency Teleoperation

    DTIC Science & Technology

    2016-08-04

    PREDICTIVE DISPLAYS FOR HIGH LATENCY TELEOPERATION” Analysis of existing approach 3 C om m s. C hannel Vehicle OCU D Throttle, Steer, Brake D Video ...presents opportunity mitigate outgoing latency. • Video is not governed by physics, however, video is dependent on the state of the vehicle, which...Commands, estimates UDP: H.264 Video UDP: Vehicle state • C++ implementation • 2 threads • OpenCV for image manipulation • FFMPEG for video decoding

  10. 42 CFR 483.112 - Preadmission screening of applicants for admission to NFs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NF services. For each NF applicant with MI or MR, the State mental health or mental retardation... determined to require a NF level of care, the State mental health or mental retardation authority (as... State mental health or mental retardation authority for screening. (See § 483.128(a) for discussion of...

  11. 42 CFR 483.112 - Preadmission screening of applicants for admission to NFs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NF services. For each NF applicant with MI or MR, the State mental health or mental retardation... determined to require a NF level of care, the State mental health or mental retardation authority (as... State mental health or mental retardation authority for screening. (See § 483.128(a) for discussion of...

  12. Clusterless Decoding of Position From Multiunit Activity Using A Marked Point Process Filter

    PubMed Central

    Deng, Xinyi; Liu, Daniel F.; Kay, Kenneth; Frank, Loren M.; Eden, Uri T.

    2016-01-01

    Point process filters have been applied successfully to decode neural signals and track neural dynamics. Traditionally, these methods assume that multiunit spiking activity has already been correctly spike-sorted. As a result, these methods are not appropriate for situations where sorting cannot be performed with high precision such as real-time decoding for brain-computer interfaces. As the unsupervised spike-sorting problem remains unsolved, we took an alternative approach that takes advantage of recent insights about clusterless decoding. Here we present a new point process decoding algorithm that does not require multiunit signals to be sorted into individual units. We use the theory of marked point processes to construct a function that characterizes the relationship between a covariate of interest (in this case, the location of a rat on a track) and features of the spike waveforms. In our example, we use tetrode recordings, and the marks represent a four-dimensional vector of the maximum amplitudes of the spike waveform on each of the four electrodes. In general, the marks may represent any features of the spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal neural activity. We validate our approach with a simulation study and with experimental data recorded in the hippocampus of a rat moving through a linear environment. Our decoding algorithm accurately reconstructs the rat’s position from unsorted multiunit spiking activity. We then compare the quality of our decoding algorithm to that of a traditional spike-sorting and decoding algorithm. Our analyses show that the proposed decoding algorithm performs equivalently or better than algorithms based on sorted single-unit activity. These results provide a path toward accurate real-time decoding of spiking patterns that could be used to carry out content-specific manipulations of population activity in hippocampus or elsewhere in the brain. PMID:25973549

  13. Decoding-Accuracy-Based Sequential Dimensionality Reduction of Spatio-Temporal Neural Activities

    NASA Astrophysics Data System (ADS)

    Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu

    Performance of a brain machine interface (BMI) critically depends on selection of input data because information embedded in the neural activities is highly redundant. In addition, properly selected input data with a reduced dimension leads to improvement of decoding generalization ability and decrease of computational efforts, both of which are significant advantages for the clinical applications. In the present paper, we propose an algorithm of sequential dimensionality reduction (SDR) that effectively extracts motor/sensory related spatio-temporal neural activities. The algorithm gradually reduces input data dimension by dropping neural data spatio-temporally so as not to undermine the decoding accuracy as far as possible. Support vector machine (SVM) was used as the decoder, and tone-induced neural activities in rat auditory cortices were decoded into the test tone frequencies. SDR reduced the input data dimension to a quarter and significantly improved the accuracy of decoding of novel data. Moreover, spatio-temporal neural activity patterns selected by SDR resulted in significantly higher accuracy than high spike rate patterns or conventionally used spatial patterns. These results suggest that the proposed algorithm can improve the generalization ability and decrease the computational effort of decoding.

  14. Online decoding of object-based attention using real-time fMRI.

    PubMed

    Niazi, Adnan M; van den Broek, Philip L C; Klanke, Stefan; Barth, Markus; Poel, Mannes; Desain, Peter; van Gerven, Marcel A J

    2014-01-01

    Visual attention is used to selectively filter relevant information depending on current task demands and goals. Visual attention is called object-based attention when it is directed to coherent forms or objects in the visual field. This study used real-time functional magnetic resonance imaging for moment-to-moment decoding of attention to spatially overlapped objects belonging to two different object categories. First, a whole-brain classifier was trained on pictures of faces and places. Subjects then saw transparently overlapped pictures of a face and a place, and attended to only one of them while ignoring the other. The category of the attended object, face or place, was decoded on a scan-by-scan basis using the previously trained decoder. The decoder performed at 77.6% accuracy indicating that despite competing bottom-up sensory input, object-based visual attention biased neural patterns towards that of the attended object. Furthermore, a comparison between different classification approaches indicated that the representation of faces and places is distributed rather than focal. This implies that real-time decoding of object-based attention requires a multivariate decoding approach that can detect these distributed patterns of cortical activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Extracting duration information in a picture category decoding task using hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Tim; Heinze, Nicolai; Frysch, Robert; Deouell, Leon Y.; Schoenfeld, Mircea A.; Knight, Robert T.; Rose, Georg

    2016-04-01

    Objective. Adapting classifiers for the purpose of brain signal decoding is a major challenge in brain-computer-interface (BCI) research. In a previous study we showed in principle that hidden Markov models (HMM) are a suitable alternative to the well-studied static classifiers. However, since we investigated a rather straightforward task, advantages from modeling of the signal could not be assessed. Approach. Here, we investigate a more complex data set in order to find out to what extent HMMs, as a dynamic classifier, can provide useful additional information. We show for a visual decoding problem that besides category information, HMMs can simultaneously decode picture duration without an additional training required. This decoding is based on a strong correlation that we found between picture duration and the behavior of the Viterbi paths. Main results. Decoding accuracies of up to 80% could be obtained for category and duration decoding with a single classifier trained on category information only. Significance. The extraction of multiple types of information using a single classifier enables the processing of more complex problems, while preserving good training results even on small databases. Therefore, it provides a convenient framework for online real-life BCI utilizations.

  16. Building Bridges from the Decoding Interview to Teaching Practice

    ERIC Educational Resources Information Center

    Pettit, Jennifer; Rathburn, Melanie; Calvert, Victoria; Lexier, Roberta; Underwood, Margot; Gleeson, Judy; Dean, Yasmin

    2017-01-01

    This chapter describes a multidisciplinary faculty self-study about reciprocity in service-learning. The study began with each coauthor participating in a Decoding interview. We describe how Decoding combined with collaborative self-study had a positive impact on our teaching practice.

  17. An extended Reed Solomon decoder design

    NASA Technical Reports Server (NTRS)

    Chen, J.; Owsley, P.; Purviance, J.

    1991-01-01

    It has previously been shown that the Reed-Solomon (RS) codes can correct errors beyond the Singleton and Rieger Bounds with an arbitrarily small probability of a miscorrect. That is, an (n,k) RS code can correct more than (n-k)/2 errors. An implementation of such an RS decoder is presented in this paper. An existing RS decoder, the AHA4010, is utilized in this work. This decoder is especially useful for errors which are patterned with a long burst plus some random errors.

  18. A high speed sequential decoder

    NASA Technical Reports Server (NTRS)

    Lum, H., Jr.

    1972-01-01

    The performance and theory of operation for the High Speed Hard Decision Sequential Decoder are delineated. The decoder is a forward error correction system which is capable of accepting data from binary-phase-shift-keyed and quadriphase-shift-keyed modems at input data rates up to 30 megabits per second. Test results show that the decoder is capable of maintaining a composite error rate of 0.00001 at an input E sub b/N sub o of 5.6 db. This performance has been obtained with minimum circuit complexity.

  19. Neural Decoder for Topological Codes

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Melko, Roger G.

    2017-07-01

    We present an algorithm for error correction in topological codes that exploits modern machine learning techniques. Our decoder is constructed from a stochastic neural network called a Boltzmann machine, of the type extensively used in deep learning. We provide a general prescription for the training of the network and a decoding strategy that is applicable to a wide variety of stabilizer codes with very little specialization. We demonstrate the neural decoder numerically on the well-known two-dimensional toric code with phase-flip errors.

  20. Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain

    PubMed Central

    Oya, Hiroyuki; Howard, Matthew A.; Adolphs, Ralph

    2008-01-01

    Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus. PMID:19065268

  1. Older adults' decoding of emotions: age-related differences in interpreting dynamic emotional displays and the well-preserved ability to recognize happiness.

    PubMed

    Moraitou, Despina; Papantoniou, Georgia; Gkinopoulos, Theofilos; Nigritinou, Magdalini

    2013-09-01

    Although the ability to recognize emotions through bodily and facial muscular movements is vital to everyday life, numerous studies have found that older adults are less adept at identifying emotions than younger adults. The message gleaned from research has been one of greater decline in abilities to recognize specific negative emotions than positive ones. At the same time, these results raise methodological issues with regard to different modalities in which emotion decoding is measured. The main aim of the present study is to identify the pattern of age differences in the ability to decode basic emotions from naturalistic visual emotional displays. The sample comprised a total of 208 adults from Greece, aged from 18 to 86 years. Participants were examined using the Emotion Evaluation Test, which is the first part of a broader audiovisual tool, The Awareness of Social Inference Test. The Emotion Evaluation Test was designed to examine a person's ability to identify six emotions and discriminate these from neutral expressions, as portrayed dynamically by professional actors. The findings indicate that decoding of basic emotions occurs along the broad affective dimension of uncertainty, and a basic step in emotion decoding involves recognizing whether information presented is emotional or not. Age was found to negatively affect the ability to decode basic negatively valenced emotions as well as pleasant surprise. Happiness decoding is the only ability that was found well-preserved with advancing age. The main conclusion drawn from the study is that the pattern in which emotion decoding from visual cues is affected by normal ageing depends on the rate of uncertainty, which either is related to decoding difficulties or is inherent to a specific emotion. © 2013 The Authors. Psychogeriatrics © 2013 Japanese Psychogeriatric Society.

  2. Decoding Individual Finger Movements from One Hand Using Human EEG Signals

    PubMed Central

    Gonzalez, Jania; Ding, Lei

    2014-01-01

    Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (p<0.05). The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies. PMID:24416360

  3. Multivariate pattern analysis for MEG: A comparison of dissimilarity measures.

    PubMed

    Guggenmos, Matthias; Sterzer, Philipp; Cichy, Radoslaw Martin

    2018-06-01

    Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known about the relative performance and characteristics of the specific dissimilarity measures used to describe differences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested dissimilarity measures from a range of classifiers (Linear Discriminant Analysis - LDA, Support Vector Machine - SVM, Weighted Robust Distance - WeiRD, Gaussian Naïve Bayes - GNB) and distances (Euclidean distance, Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normalisation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected). Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for RSA. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. A low-complexity Reed-Solomon decoder using new key equation solver

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Yuan, Songxin; Tu, Xiaodong; Zhang, Chongfu

    2006-09-01

    This paper presents a low-complexity parallel Reed-Solomon (RS) (255,239) decoder architecture using a novel pipelined variable stages recursive Modified Euclidean (ME) algorithm for optical communication. The pipelined four-parallel syndrome generator is proposed. The time multiplexing and resource sharing schemes are used in the novel recursive ME algorithm to reduce the logic gate count. The new key equation solver can be shared by two decoder macro. A new Chien search cell which doesn't need initialization is proposed in the paper. The proposed decoder can be used for 2.5Gb/s data rates device. The decoder is implemented in Altera' Stratixll device. The resource utilization is reduced about 40% comparing to the conventional method.

  5. Introduction to Media Literacy Education and Media Literacy Education Bibliography.

    ERIC Educational Resources Information Center

    Robinson, Julia

    Noting that media literacy education is mandated in almost every developed country in the world except the United States, this paper introduces the concept of media literacy education and presents a 32-item annotated bibliography on media literacy education. The paper defines media literacy as the ability to access, decode, analyze, evaluate, and…

  6. Decoding Fad Diets. Nutrition in Health Promotion Series, Number 20.

    ERIC Educational Resources Information Center

    Crosser, Gail Hoddlebrink

    Nutrition is well-recognized as a necessary component of educational programs for physicians. This is to be valued in that of all factors affecting health in the United States, none is more important than nutrition. This can be argued from various perspectives, including health promotion, disease prevention, and therapeutic management. In all…

  7. Implementing Intensive Vocabulary Instruction for Students at Risk for Reading Disability

    ERIC Educational Resources Information Center

    Pullen, Paige C.; Tuckwiller, Elizabeth D.; Ashworth, Kristen; Lovelace, Shelly P.; Cash, Deanna

    2011-01-01

    Concerns regarding literacy levels in the United States are long standing. Debates have existed for decades regarding the most effective ways to teach reading, especially the polarizing dilemma of how much to focus on decoding versus code-emphasis and whole language instruction. Fortunately, as a result of concentrated research efforts and…

  8. Decoding Success: A Middle-Class Logic of Individual Advancement in a U.S. Suburb and High School

    ERIC Educational Resources Information Center

    Demerath, Peter; Lynch, Jill; Milner, H. Richard, IV; Peters, April; Davidson, Mario

    2010-01-01

    Background: Researchers have largely attributed achievement gaps between different groups of students in the United States to differences in resources, parent education, socioeconomic status (SES), and school quality. They have also shown how, through their "cultural productions," certain students may disadvantage themselves. Focus: This article…

  9. The overlapping relationship between emotion perception and theory of mind.

    PubMed

    Mitchell, Rachel L C; Phillips, Louise H

    2015-04-01

    Socio-cognitive skills are crucial for successful interpersonal interactions. Two particularly important socio-cognitive processes are emotion perception (EP) and theory of mind (ToM), but agreement is lacking on terminology and conceptual links between these constructs. Here we seek to clarify the relationship between the two at multiple levels, from concept to neuroanatomy. EP is often regarded as a low-level perceptual process necessary to decode affective cues, while ToM is usually seen as a higher-level cognitive process involving mental state deduction. In information processing models, EP tends to precede ToM. At the neuroanatomical level, lesion study data suggest that EP and ToM are both right-hemisphere based, but there is also evidence that ToM requires temporal-cingulate networks, whereas EP requires partially separable regions linked to distinct emotions. Common regions identified in fMRI studies of EP and ToM have included medial prefrontal cortex and temporal lobe areas, but differences emerge depending on the perceptual, cognitive and emotional demands of the EP and ToM tasks. For the future, clarity of definition of EP and ToM will be paramount to produce distinct task manipulations and inform models of socio-cognitive processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Decoding the neural representation of fine-grained conceptual categories.

    PubMed

    Ghio, Marta; Vaghi, Matilde Maria Serena; Perani, Daniela; Tettamanti, Marco

    2016-05-15

    Neuroscientific research on conceptual knowledge based on the grounded cognition framework has shed light on the organization of concrete concepts into semantic categories that rely on different types of experiential information. Abstract concepts have traditionally been investigated as an undifferentiated whole, and have only recently been addressed in a grounded cognition perspective. The present fMRI study investigated the involvement of brain systems coding for experiential information in the conceptual processing of fine-grained semantic categories along the abstract-concrete continuum. These categories consisted of mental state-, emotion-, mathematics-, mouth action-, hand action-, and leg action-related meanings. Thirty-five sentences for each category were used as stimuli in a 1-back task performed by 36 healthy participants. A univariate analysis failed to reveal category-specific activations. Multivariate pattern analyses, in turn, revealed that fMRI data contained sufficient information to disentangle all six fine-grained semantic categories across participants. However, the category-specific activity patterns showed no overlap with the regions coding for experiential information. These findings demonstrate the possibility of detecting specific patterns of neural representation associated with the processing of fine-grained conceptual categories, crucially including abstract ones, though bearing no anatomical correspondence with regions coding for experiential information as predicted by the grounded cognition hypothesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  12. Survey of recognition and treatment of at-risk mental state by Japanese psychiatrists.

    PubMed

    Tsujino, Naohisa; Tagata, Hiromi; Baba, Yoko; Kojima, Akiko; Yamaguchi, Taiju; Katagiri, Naoyuki; Nemoto, Takahiro; Mizuno, Masafumi

    2018-02-27

    The importance of early intervention in psychiatry is widely recognized among psychiatrists. However, it is unknown whether precise knowledge of at-risk mental state has been disseminated. With this survey, we aimed to reveal how Japanese psychiatrists diagnose patients with at-risk mental state and prescribe treatment strategies for them. Using fictional case vignettes, we conducted a questionnaire survey of psychiatrists (n = 1399) who worked in Tokyo. We mailed study documents to all eligible participants in November 2015 with a requested return date in December. Two hundred and sixty (19.3%) psychiatrists responded to the survey. Their correct diagnosis rates for the patients in the at-risk mental state vignettes were low (14.6% for the vignette describing at-risk mental state with attenuated positive symptom syndrome; 13.1% for the vignette describing at-risk mental state with brief intermittent psychotic syndrome). Many psychiatrists selected pharmacotherapy and antipsychotics to treat patients in the at-risk mental state vignettes. The psychiatrists who correctly diagnosed patients in the at-risk mental state vignettes had significantly fewer years of clinical psychiatric experience than did those who diagnosed them as having a non-at-risk mental state (12.5 years vs 22.7 years for the vignette describing at-risk mental state with attenuated positive symptom syndrome, P < 0.01; 14.3 years vs 22.2 years for the vignette describing at-risk mental state with brief intermittent psychotic syndrome, P < 0.01). This study suggests that precise knowledge of at-risk mental state has not been disseminated among Japanese psychiatrists. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  13. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation.

    PubMed

    Sorger, Bettina; Kamp, Tabea; Weiskopf, Nikolaus; Peters, Judith Caroline; Goebel, Rainer

    2018-05-15

    Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n=10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most participants further enhanced their gradual self-regulation ability. Our findings were observed across a wide variety of mental tasks and across clinical MR field strengths (i.e., at 1.5T and 3T), indicating that these findings are robust and can be generalized across mental tasks and scanner types. The suggested novel parametric activation paradigm enriches the spectrum of current rtfMRI-neurofeedback and BCI methodology and has considerable potential for fundamental and clinical neuroscience applications. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. 47 CFR 79.103 - Closed caption decoder requirements for apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RADIO SERVICES ACCESSIBILITY OF VIDEO PROGRAMMING Apparatus § 79.103 Closed caption decoder requirements... video programming transmitted simultaneously with sound, if such apparatus is manufactured in the United... with built-in closed caption decoder circuitry or capability designed to display closed-captioned video...

  15. Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond

    PubMed Central

    Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong

    2016-01-01

    In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment. PMID:27898712

  16. Modified Dynamic Decode-and-Forward Relaying Protocol for Type II Relay in LTE-Advanced and Beyond.

    PubMed

    Nam, Sung Sik; Alouini, Mohamed-Slim; Choi, Seyeong

    2016-01-01

    In this paper, we propose a modified dynamic decode-and-forward (MoDDF) relaying protocol to meet the critical requirements for user equipment (UE) relays in next-generation cellular systems (e.g., LTE-Advanced and beyond). The proposed MoDDF realizes the fast jump-in relaying and the sequential decoding with an application of random codeset to encoding and re-encoding process at the source and the multiple UE relays, respectively. A subframe-by-subframe decoding based on the accumulated (or buffered) messages is employed to achieve energy, information, or mixed combining. Finally, possible early termination of decoding at the end user can lead to the higher spectral efficiency and more energy saving by reducing the frequency of redundant subframe transmission and decoding. These attractive features eliminate the need of directly exchanging control messages between multiple UE relays and the end user, which is an important prerequisite for the practical UE relay deployment.

  17. EEG-based auditory attention decoding using unprocessed binaural signals in reverberant and noisy conditions?

    PubMed

    Aroudi, Ali; Doclo, Simon

    2017-07-01

    To decode auditory attention from single-trial EEG recordings in an acoustic scenario with two competing speakers, a least-squares method has been recently proposed. This method however requires the clean speech signals of both the attended and the unattended speaker to be available as reference signals. Since in practice only the binaural signals consisting of a reverberant mixture of both speakers and background noise are available, in this paper we explore the potential of using these (unprocessed) signals as reference signals for decoding auditory attention in different acoustic conditions (anechoic, reverberant, noisy, and reverberant-noisy). In addition, we investigate whether it is possible to use these signals instead of the clean attended speech signal for filter training. The experimental results show that using the unprocessed binaural signals for filter training and for decoding auditory attention is feasible with a relatively large decoding performance, although for most acoustic conditions the decoding performance is significantly lower than when using the clean speech signals.

  18. An Optimized Three-Level Design of Decoder Based on Nanoscale Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Seyedi, Saeid; Navimipour, Nima Jafari

    2018-03-01

    Quantum-dot Cellular Automata (QCA) has been potentially considered as a supersede to Complementary Metal-Oxide-Semiconductor (CMOS) because of its inherent advantages. Many QCA-based logic circuits with smaller feature size, improved operating frequency, and lower power consumption than CMOS have been offered. This technology works based on electron relations inside quantum-dots. Due to the importance of designing an optimized decoder in any digital circuit, in this paper, we design, implement and simulate a new 2-to-4 decoder based on QCA with low delay, area, and complexity. The logic functionality of the 2-to-4 decoder is verified using the QCADesigner tool. The results have shown that the proposed QCA-based decoder has high performance in terms of a number of cells, covered area, and time delay. Due to the lower clock pulse frequency, the proposed 2-to-4 decoder is helpful for building QCA-based sequential digital circuits with high performance.

  19. Hard decoding algorithm for optimizing thresholds under general Markovian noise

    NASA Astrophysics Data System (ADS)

    Chamberland, Christopher; Wallman, Joel; Beale, Stefanie; Laflamme, Raymond

    2017-04-01

    Quantum error correction is instrumental in protecting quantum systems from noise in quantum computing and communication settings. Pauli channels can be efficiently simulated and threshold values for Pauli error rates under a variety of error-correcting codes have been obtained. However, realistic quantum systems can undergo noise processes that differ significantly from Pauli noise. In this paper, we present an efficient hard decoding algorithm for optimizing thresholds and lowering failure rates of an error-correcting code under general completely positive and trace-preserving (i.e., Markovian) noise. We use our hard decoding algorithm to study the performance of several error-correcting codes under various non-Pauli noise models by computing threshold values and failure rates for these codes. We compare the performance of our hard decoding algorithm to decoders optimized for depolarizing noise and show improvements in thresholds and reductions in failure rates by several orders of magnitude. Our hard decoding algorithm can also be adapted to take advantage of a code's non-Pauli transversal gates to further suppress noise. For example, we show that using the transversal gates of the 5-qubit code allows arbitrary rotations around certain axes to be perfectly corrected. Furthermore, we show that Pauli twirling can increase or decrease the threshold depending upon the code properties. Lastly, we show that even if the physical noise model differs slightly from the hypothesized noise model used to determine an optimized decoder, failure rates can still be reduced by applying our hard decoding algorithm.

  20. Oppositional Decoding as an Act of Resistance.

    ERIC Educational Resources Information Center

    Steiner, Linda

    1988-01-01

    Argues that contributors to the "No Comment" feature of "Ms." magazine are engaging in oppositional decoding and speculates on why this is a satisfying group process. Also notes such decoding presents another challenge to the idea that mass media has the same effect on all audiences. (SD)

  1. 42 CFR 431.620 - Agreement with State mental health authority or mental institutions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Agreement with State mental health authority or mental institutions. 431.620 Section 431.620 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... GENERAL ADMINISTRATION Relations With Other Agencies § 431.620 Agreement with State mental health...

  2. 42 CFR 431.620 - Agreement with State mental health authority or mental institutions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Agreement with State mental health authority or mental institutions. 431.620 Section 431.620 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... GENERAL ADMINISTRATION Relations With Other Agencies § 431.620 Agreement with State mental health...

  3. 42 CFR 431.620 - Agreement with State mental health authority or mental institutions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Agreement with State mental health authority or mental institutions. 431.620 Section 431.620 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... GENERAL ADMINISTRATION Relations With Other Agencies § 431.620 Agreement with State mental health...

  4. 42 CFR 431.620 - Agreement with State mental health authority or mental institutions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Agreement with State mental health authority or mental institutions. 431.620 Section 431.620 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... GENERAL ADMINISTRATION Relations With Other Agencies § 431.620 Agreement with State mental health...

  5. 42 CFR 431.620 - Agreement with State mental health authority or mental institutions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 4 2013-10-01 2013-10-01 false Agreement with State mental health authority or mental institutions. 431.620 Section 431.620 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... GENERAL ADMINISTRATION Relations With Other Agencies § 431.620 Agreement with State mental health...

  6. Method and apparatus for reading free falling dosimeter punchcodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator.more » The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.« less

  7. Method and apparatus for reading free falling dosimeter punchcodes

    DOEpatents

    Langsted, J.M.

    1992-12-22

    A punchcode reader is provided for reading data encoded in a punchcode hole array on a dosimeter. The dosimeter falls through a passage in the reader containing photosensor detectors disposed along the passage which provide output signals to a microprocessor. The signals are processed to determine the orientation of the dosimeter in the reader, the location and state of punchcode holes in a two row array thereby decoding the encoded data. Multiple rate of fall calculations are made, and if appropriate matching of the punchcode array is not obtained in three tries, an error signal is output to the operator. The punchcode reader also provides for storage of data from multiple dosimeters passed through the reader, and for the output of decoded data to an external display or a computer for further processing. 8 figs.

  8. Polarization tracking system for free-space optical communication, including quantum communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordholt, Jane Elizabeth; Newell, Raymond Thorson; Peterson, Charles Glen

    Quantum communication transmitters include beacon lasers that transmit a beacon optical signal in a predetermined state of polarization such as one of the states of polarization of a quantum communication basis. Changes in the beacon polarization are detected at a receiver, and a retarder is adjusted so that the states of polarization in a received quantum communication optical signal are matched to basis polarizations. The beacon and QC signals can be at different wavelengths so that the beacon does not interfere with detection and decoding of the QC optical signal.

  9. Trinary optical logic processors using shadow casting with polarized light

    NASA Astrophysics Data System (ADS)

    Ghosh, Amal K.; Basuray, A.

    1990-10-01

    An optical implementation is proposed of the modified trinary number (MTN) system (Datta et al., 1989) in which any binary number can have arithmetic operations performed on it in parallel without the need for carry and borrow steps. The present method extends the lensless shadow-casting technique of Tanida and Ichioka (1983, 1985). Three kinds of spatial coding are used for encoding the trinary input states, whereas in the decoding plane three states are identified by no light and light with two orthogonal states of polarization.

  10. Transfer Function Bounds for Partial-unit-memory Convolutional Codes Based on Reduced State Diagram

    NASA Technical Reports Server (NTRS)

    Lee, P. J.

    1984-01-01

    The performance of a coding system consisting of a convolutional encoder and a Viterbi decoder is analytically found by the well-known transfer function bounding technique. For the partial-unit-memory byte-oriented convolutional encoder with m sub 0 binary memory cells and (k sub 0 m sub 0) inputs, a state diagram of 2(K) (sub 0) was for the transfer function bound. A reduced state diagram of (2 (m sub 0) +1) is used for easy evaluation of transfer function bounds for partial-unit-memory codes.

  11. Spectral coherent-state quantum cryptography.

    PubMed

    Cincotti, Gabriella; Spiekman, Leo; Wada, Naoya; Kitayama, Ken-ichi

    2008-11-01

    A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen's encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

  12. Triage and the Lost Art of Decoding Vital Signs: Restoring Physiologically Based Triage Skills in Complex Humanitarian Emergencies.

    PubMed

    Burkle, Frederick M

    2018-02-01

    Triage management remains a major challenge, especially in resource-poor settings such as war, complex humanitarian emergencies, and public health emergencies in developing countries. In triage it is often the disruption of physiology, not anatomy, that is critical, supporting triage methodology based on clinician-assessed physiological parameters as well as anatomy and mechanism of injury. In recent times, too many clinicians from developed countries have deployed to humanitarian emergencies without the physical exam skills needed to assess patients without the benefit of remotely fed electronic monitoring, laboratory, and imaging studies. In triage, inclusion of the once-widely accepted and collectively taught "art of decoding vital signs" with attention to their character and meaning may provide clues to a patient's physiological state, improving triage sensitivity. Attention to decoding vital signs is not a triage methodology of its own or a scoring system, but rather a skill set that supports existing triage methodologies. With unique triage management challenges being raised by an ever-changing variety of humanitarian crises, these once useful skill sets need to be revisited, understood, taught, and utilized by triage planners, triage officers, and teams as a necessary adjunct to physiologically based triage decision-making. (Disaster Med Public Health Preparedness. 2018;12:76-85).

  13. Decoding intravesical pressure from local field potentials in rat lumbosacral spinal cord

    NASA Astrophysics Data System (ADS)

    Im, Changkyun; Park, Hae Yong; Koh, Chin Su; Ryu, Sang Baek; Seo, In Seok; Kim, Yong Jung; Kim, Kyung Hwan; Shin, Hyung-Cheul

    2016-10-01

    Chronic monitoring of intravesical pressure is required to detect the onset of intravesical hypertension and the progression of a more severe condition. Recent reports demonstrate the bladder state can be monitored from the spiking activity of the dorsal root ganglia or lumbosacral spinal cord. However, one of the most serious challenges for these methods is the difficulty of sustained spike signal acquisition due to the high-electrode-location-sensitivity of spikes or neuro-degeneration. Alternatively, it has been demonstrated that local field potential recordings are less affected by encapsulation reactions or electrode location changes. Here, we hypothesized that local field potential (LFP) from the lumbosacral dorsal horn may provide information concerning the intravesical pressure. LFP and spike activities were simultaneously recorded from the lumbosacral spinal cord of anesthetized rats during bladder filling. The results show that the LFP activities carry significant information about intravesical pressure along with spiking activities. Importantly, the intravesical pressure is decoded from the power in high-frequency bands (83.9-256 Hz) with a substantial performance similar to that of the spike train decoding. These findings demonstrate that high-frequency LFP activity can be an alternative intravesical pressure monitoring signal, which could lead to a proper closed loop system for urinary control.

  14. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding.

    PubMed

    Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M

    2017-11-08

    When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.

  15. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...

  16. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...

  17. 47 CFR 11.33 - EAS Decoder.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...: (1) Inputs. Decoders must have the capability to receive at least two audio inputs from EAS... externally, at least two minutes of audio or text messages. A decoder manufactured without an internal means to record and store audio or text must be equipped with a means (such as an audio or digital jack...

  18. Hands-On Decoding: Guidelines for Using Manipulative Letters

    ERIC Educational Resources Information Center

    Pullen, Paige Cullen; Lane, Holly B.

    2016-01-01

    Manipulative objects have long been an essential tool in the development of mathematics knowledge and skills. A growing body of evidence suggests using manipulative letters for decoding practice is an also an effective method for teaching reading, particularly in improving the phonological and decoding skills of students at risk for reading…

  19. The Contribution of Attentional Control and Working Memory to Reading Comprehension and Decoding

    ERIC Educational Resources Information Center

    Arrington, C. Nikki; Kulesz, Paulina A.; Francis, David J.; Fletcher, Jack M.; Barnes, Marcia A.

    2014-01-01

    Little is known about how specific components of working memory, namely, attentional processes including response inhibition, sustained attention, and cognitive inhibition, are related to reading decoding and comprehension. The current study evaluated the relations of reading comprehension, decoding, working memory, and attentional control in…

  20. Decoding and Spelling Accommodations for Postsecondary Students Demonstrating Dyslexia--It's More than Processing Speed

    ERIC Educational Resources Information Center

    Gregg, Noel; Hoy, Cheri; Flaherty, Donna Ann; Norris, Peggy; Coleman, Christopher; Davis, Mark; Jordan, Michael

    2005-01-01

    The vast majority of students with learning disabilities at the postsecondary level demonstrate reading decoding, reading fluency, and writing deficits. Identification of valid and reliable psychometric measures for documenting decoding and spelling disabilities at the postsecondary level is critical for determining appropriate accommodations. The…

  1. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1984-01-01

    Several error control coding techniques for reliable satellite communications were investigated to find algorithms for fast decoding of Reed-Solomon codes in terms of dual basis. The decoding of the (255,223) Reed-Solomon code, which is used as the outer code in the concatenated TDRSS decoder, was of particular concern.

  2. A /31,15/ Reed-Solomon Code for large memory systems

    NASA Technical Reports Server (NTRS)

    Lim, R. S.

    1979-01-01

    This paper describes the encoding and the decoding of a (31,15) Reed-Solomon Code for multiple-burst error correction for large memory systems. The decoding procedure consists of four steps: (1) syndrome calculation, (2) error-location polynomial calculation, (3) error-location numbers calculation, and (4) error values calculation. The principal features of the design are the use of a hardware shift register for both high-speed encoding and syndrome calculation, and the use of a commercially available (31,15) decoder for decoding Steps 2, 3 and 4.

  3. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, Samuel Lee; Miller, William Michael; McWhorter, Paul Jackson

    1997-01-01

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals.

  4. Information encoder/decoder using chaotic systems

    DOEpatents

    Miller, S.L.; Miller, W.M.; McWhorter, P.J.

    1997-10-21

    The present invention discloses a chaotic system-based information encoder and decoder that operates according to a relationship defining a chaotic system. Encoder input signals modify the dynamics of the chaotic system comprising the encoder. The modifications result in chaotic, encoder output signals that contain the encoder input signals encoded within them. The encoder output signals are then capable of secure transmissions using conventional transmission techniques. A decoder receives the encoder output signals (i.e., decoder input signals) and inverts the dynamics of the encoding system to directly reconstruct the original encoder input signals. 32 figs.

  5. Node synchronization schemes for the Big Viterbi Decoder

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Swanson, L.; Arnold, S.

    1992-01-01

    The Big Viterbi Decoder (BVD), currently under development for the DSN, includes three separate algorithms to acquire and maintain node and frame synchronization. The first measures the number of decoded bits between two consecutive renormalization operations (renorm rate), the second detects the presence of the frame marker in the decoded bit stream (bit correlation), while the third searches for an encoded version of the frame marker in the encoded input stream (symbol correlation). A detailed account of the operation is given, as well as performance comparison, of the three methods.

  6. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Cabral, Hermano A.; He, Jiali

    1997-01-01

    Bootstrap Hybrid Decoding (BHD) (Jelinek and Cocke, 1971) is a coding/decoding scheme that adds extra redundancy to a set of convolutionally encoded codewords and uses this redundancy to provide reliability information to a sequential decoder. Theoretical results indicate that bit error probability performance (BER) of BHD is close to that of Turbo-codes, without some of their drawbacks. In this report we study the use of the Multiple Stack Algorithm (MSA) (Chevillat and Costello, Jr., 1977) as the underlying sequential decoding algorithm in BHD, which makes possible an iterative version of BHD.

  7. A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    NASA Technical Reports Server (NTRS)

    Hsu, I. S.; Truong, T. K.; Deutsch, L. J.; Satorius, E. H.; Reed, I. S.

    1988-01-01

    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation.

  8. Dynamic configuration management of a multi-standard and multi-mode reconfigurable multi-ASIP architecture for turbo decoding

    NASA Astrophysics Data System (ADS)

    Lapotre, Vianney; Gogniat, Guy; Baghdadi, Amer; Diguet, Jean-Philippe

    2017-12-01

    The multiplication of connected devices goes along with a large variety of applications and traffic types needing diverse requirements. Accompanying this connectivity evolution, the last years have seen considerable evolutions of wireless communication standards in the domain of mobile telephone networks, local/wide wireless area networks, and Digital Video Broadcasting (DVB). In this context, intensive research has been conducted to provide flexible turbo decoder targeting high throughput, multi-mode, multi-standard, and power consumption efficiency. However, flexible turbo decoder implementations have not often considered dynamic reconfiguration issues in this context that requires high speed configuration switching. Starting from this assessment, this paper proposes the first solution that allows frame-by-frame run-time configuration management of a multi-processor turbo decoder without compromising the decoding performances.

  9. Convolutional coding at 50 Mbps for the Shuttle Ku-band return link

    NASA Technical Reports Server (NTRS)

    Batson, B. H.; Huth, G. K.

    1976-01-01

    Error correcting coding is required for 50 Mbps data link from the Shuttle Orbiter through the Tracking and Data Relay Satellite System (TDRSS) to the ground because of severe power limitations. Convolutional coding has been chosen because the decoding algorithms (sequential and Viterbi) provide significant coding gains at the required bit error probability of one in 10 to the sixth power and can be implemented at 50 Mbps with moderate hardware. While a 50 Mbps sequential decoder has been built, the highest data rate achieved for a Viterbi decoder is 10 Mbps. Thus, five multiplexed 10 Mbps Viterbi decoders must be used to provide a 50 Mbps data rate. This paper discusses the tradeoffs which were considered when selecting the multiplexed Viterbi decoder approach for this application.

  10. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Kasami, T.; Fujiwara, T.; Lin, S.

    1986-01-01

    In this paper, a concatenated coding scheme for error control in data communications is presented and analyzed. In this scheme, the inner code is used for both error correction and detection; however, the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error (or decoding error) of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughput efficiency of the proposed error control scheme incorporated with a selective-repeat ARQ retransmission strategy is also analyzed. Three specific examples are presented. One of the examples is proposed for error control in the NASA Telecommand System.

  11. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    PubMed

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  12. Reading skills of students with speech sound disorders at three stages of literacy development.

    PubMed

    Skebo, Crysten M; Lewis, Barbara A; Freebairn, Lisa A; Tag, Jessica; Avrich Ciesla, Allison; Stein, Catherine M

    2013-10-01

    The relationship between phonological awareness, overall language, vocabulary, and nonlinguistic cognitive skills to decoding and reading comprehension was examined for students at 3 stages of literacy development (i.e., early elementary school, middle school, and high school). Students with histories of speech sound disorders (SSD) with and without language impairment (LI) were compared to students without histories of SSD or LI (typical language; TL). In a cross-sectional design, students ages 7;0 (years;months) to 17;9 completed tests that measured reading, language, and nonlinguistic cognitive skills. For the TL group, phonological awareness predicted decoding at early elementary school, and overall language predicted reading comprehension at early elementary school and both decoding and reading comprehension at middle school and high school. For the SSD-only group, vocabulary predicted both decoding and reading comprehension at early elementary school, and overall language predicted both decoding and reading comprehension at middle school and decoding at high school. For the SSD and LI group, overall language predicted decoding at all 3 literacy stages and reading comprehension at early elementary school and middle school, and vocabulary predicted reading comprehension at high school. Although similar skills contribute to reading across the age span, the relative importance of these skills changes with children's literacy stages.

  13. Reading Skills of Students With Speech Sound Disorders at Three Stages of Literacy Development

    PubMed Central

    Skebo, Crysten M.; Lewis, Barbara A.; Freebairn, Lisa A.; Tag, Jessica; Ciesla, Allison Avrich; Stein, Catherine M.

    2015-01-01

    Purpose The relationship between phonological awareness, overall language, vocabulary, and nonlinguistic cognitive skills to decoding and reading comprehension was examined for students at 3 stages of literacy development (i.e., early elementary school, middle school, and high school). Students with histories of speech sound disorders (SSD) with and without language impairment (LI) were compared to students without histories of SSD or LI (typical language; TL). Method In a cross-sectional design, students ages 7;0 (years; months) to 17;9 completed tests that measured reading, language, and nonlinguistic cognitive skills. Results For the TL group, phonological awareness predicted decoding at early elementary school, and overall language predicted reading comprehension at early elementary school and both decoding and reading comprehension at middle school and high school. For the SSD-only group, vocabulary predicted both decoding and reading comprehension at early elementary school, and overall language predicted both decoding and reading comprehension at middle school and decoding at high school. For the SSD and LI group, overall language predicted decoding at all 3 literacy stages and reading comprehension at early elementary school and middle school, and vocabulary predicted reading comprehension at high school. Conclusion Although similar skills contribute to reading across the age span, the relative importance of these skills changes with children’s literacy stages. PMID:23833280

  14. Optimizations of a Hardware Decoder for Deep-Space Optical Communications

    NASA Technical Reports Server (NTRS)

    Cheng, Michael K.; Nakashima, Michael A.; Moision, Bruce E.; Hamkins, Jon

    2007-01-01

    The National Aeronautics and Space Administration has developed a capacity approaching modulation and coding scheme that comprises a serial concatenation of an inner accumulate pulse-position modulation (PPM) and an outer convolutional code [or serially concatenated PPM (SCPPM)] for deep-space optical communications. Decoding of this code uses the turbo principle. However, due to the nonbinary property of SCPPM, a straightforward application of classical turbo decoding is very inefficient. Here, we present various optimizations applicable in hardware implementation of the SCPPM decoder. More specifically, we feature a Super Gamma computation to efficiently handle parallel trellis edges, a pipeline-friendly 'maxstar top-2' circuit that reduces the max-only approximation penalty, a low-latency cyclic redundancy check circuit for window-based decoders, and a high-speed algorithmic polynomial interleaver that leads to memory savings. Using the featured optimizations, we implement a 6.72 megabits-per-second (Mbps) SCPPM decoder on a single field-programmable gate array (FPGA). Compared to the current data rate of 256 kilobits per second from Mars, the SCPPM coded scheme represents a throughput increase of more than twenty-six fold. Extension to a 50-Mbps decoder on a board with multiple FPGAs follows naturally. We show through hardware simulations that the SCPPM coded system can operate within 1 dB of the Shannon capacity at nominal operating conditions.

  15. Word Decoding Development during Phonics Instruction in Children at Risk for Dyslexia.

    PubMed

    Schaars, Moniek M H; Segers, Eliane; Verhoeven, Ludo

    2017-05-01

    In the present study, we examined the early word decoding development of 73 children at genetic risk of dyslexia and 73 matched controls. We conducted monthly curriculum-embedded word decoding measures during the first 5 months of phonics-based reading instruction followed by standardized word decoding measures halfway and by the end of first grade. In kindergarten, vocabulary, phonological awareness, lexical retrieval, and verbal and visual short-term memory were assessed. The results showed that the children at risk were less skilled in phonemic awareness in kindergarten. During the first 5 months of reading instruction, children at risk were less efficient in word decoding and the discrepancy increased over the months. In subsequent months, the discrepancy prevailed for simple words but increased for more complex words. Phonemic awareness and lexical retrieval predicted the reading development in children at risk and controls to the same extent. It is concluded that children at risk are behind their typical peers in word decoding development starting from the very beginning. Furthermore, it is concluded that the disadvantage increased during phonics instruction and that the same predictors underlie the development of word decoding in the two groups of children. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.

    1986-01-01

    High rate concatenated coding systems with trellis inner codes and Reed-Solomon (RS) outer codes for application in satellite communication systems are considered. Two types of inner codes are studied: high rate punctured binary convolutional codes which result in overall effective information rates between 1/2 and 1 bit per channel use; and bandwidth efficient signal space trellis codes which can achieve overall effective information rates greater than 1 bit per channel use. Channel capacity calculations with and without side information performed for the concatenated coding system. Concatenated coding schemes are investigated. In Scheme 1, the inner code is decoded with the Viterbi algorithm and the outer RS code performs error-correction only (decoding without side information). In scheme 2, the inner code is decoded with a modified Viterbi algorithm which produces reliability information along with the decoded output. In this algorithm, path metrics are used to estimate the entire information sequence, while branch metrics are used to provide the reliability information on the decoded sequence. This information is used to erase unreliable bits in the decoded output. An errors-and-erasures RS decoder is then used for the outer code. These two schemes are proposed for use on NASA satellite channels. Results indicate that high system reliability can be achieved with little or no bandwidth expansion.

  17. Behavioral health benefits for public employees: effect of mental health parity legislation.

    PubMed

    Borzi, P C; Rosenbaum, S

    2001-04-01

    With the passage of the Mental Health Parity Act of 1996 (MHPA), Congress took an important first step toward equalizing treatment under medical plans between physical and mental illnesses by requiring parity in annual and lifetime dollar limits between physical and mental illness. But the Act was limited in scope: it did not mandate mental health benefits nor prohibit other common types of differentials between physical and mental illnesses, such as higher cost-sharing or lower limits on outpatient visits or inpatient treatments. Before Congress' action in 1996, a few of the states had adopted some type of parity requirement. Since 1996, state parity activity has accelerated.Recently, the Center for Health Services Research and Policy through a grant from the Substance Abuse and Mental Health Services Administration of the U.S. Department of Health and Human Services, examined contracts providing for mental health benefits for state employees in eight states to assess whether legislative attempts to require parity between physical and mental illnesses resulted in noticeable differences in behavioral health benefits for state employees. We concluded that, except in states that have mandated full parity for some or all types of mental illnesses, behavioral health benefits for state employees have not changed significantly as a result of the state parity laws, since they still remain subject to traditional restrictions, such as higher cost-sharing and greater limitations on outpatient visits and inpatient treatment days, than those imposed on physical illnesses. Thus the considerable state activity surrounding mental health parity may have little effect on state employees' access to mental health services, since although state laws required parity in dollar limitations, they generally permitted the continuation of other plan design features that are more restrictive for mental health coverage. However, many of the contracts we examined were multi-year contract and may not have fully reflected recent state activity. Moreover, if Congress renews the Mental Health Parity Act when it expires in September, 2001, and expands the scope of the Act to cover some of these other plan design features, states with more limited parity laws are likely to follow. In that case, perhaps state employees with mental illnesses may see significant change in the future.

  18. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion

    NASA Astrophysics Data System (ADS)

    Yao, Lin; Meng, Jianjun; Sheng, Xinjun; Zhang, Dingguo; Zhu, Xiangyang

    2015-02-01

    Objective. Lack of efficient calibration and task guidance in motor imagery (MI) based brain-computer interface (BCI) would result in the failure of communication or control, especially in patients, such as a stroke with motor impairment and intact sensation, locked-in state amyotrophic lateral sclerosis, in which the sources of data for calibration may worsen the subsequent decoding. In addition, enhancing the proprioceptive experience in MI might improve the BCI performance. Approach. In this work, we propose a new calibrating and task guidance methodology to further improve the MI BCI, exploiting the afferent nerve system through tendon vibration stimulation to induce a sensation with kinesthesia illusion. A total of 30 subjects’ experiments were carried out, and randomly divided into a control group (control-group) and calibration and task guidance group (CTG-group). Main results. Online experiments have shown that MI could be decoded by classifier calibrated solely using sensation data, with 8 of the 15 subjects in the CTG-Group above 80%, 3 above 95% and all above 65%. Offline chronological cross-validation analysis shows that it has reached a comparable performance with the traditional calibration method (F(1,14)=0.14,P=0.7176). In addition, the discrimination accuracy of MI in the CTG-Group is significantly 12.17% higher on average than that in the control-group (unpaired-T test, P = 0.0086), and illusory sensation indicates no significant difference (unpaired-T test, p = 0.3412). The finding of the existed similarity of the discriminative brain patterns and grand averaged ERD/ERS between imagined movement (actively induced) and illusory movement (passively evoked) also validates the proposed calibration and task guidance framework. Significance. The cognitive complexity of the illusory sensation task is much lower and more objective than that of MI. In addition, subjects’ kinesthetic experience mentally simulated during the MI task might be enhanced by accessing sensory experiences from the illusory stimulation. This sensory stimulation aided BCI design could help make MI BCI more applicable.

  19. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    PubMed

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  20. Institutions, Politics, and Mental Health Parity

    PubMed Central

    Hernandez, Elaine M.; Uggen, Christopher

    2013-01-01

    Mental health parity laws require insurers to extend comparable benefits for mental and physical health care. Proponents argue that by placing mental health services alongside physical health services, such laws can help ensure needed treatment and destigmatize mental illness. Opponents counter that such mandates are costly or unnecessary. The authors offer a sociological account of the diffusion and spatial distribution of state mental health parity laws. An event history analysis identifies four factors as especially important: diffusion of law, political ideology, the stability of mental health advocacy organizations and the relative health of state economies. Mental health parity is least likely to be established during times of high state unemployment and under the leadership of conservative state legislatures. PMID:24353902

  1. Method and apparatus for data decoding and processing

    DOEpatents

    Hunter, Timothy M.; Levy, Arthur J.

    1992-01-01

    A system and technique is disclosed for automatically controlling the decoding and digitizaiton of an analog tape. The system includes the use of a tape data format which includes a plurality of digital codes recorded on the analog tape in a predetermined proximity to a period of recorded analog data. The codes associated with each period of analog data include digital identification codes prior to the analog data, a start of data code coincident with the analog data recording, and an end of data code subsequent to the associated period of recorded analog data. The formatted tape is decoded in a processing and digitization system which includes an analog tape player coupled to a digitizer to transmit analog information from the recorded tape over at least one channel to the digitizer. At the same time, the tape player is coupled to a decoder and interface system which detects and decodes the digital codes on the tape corresponding to each period of recorded analog data and controls tape movement and digitizer initiation in response to preprogramed modes. A host computer is also coupled to the decoder and interface system and the digitizer and programmed to initiate specific modes of data decoding through the decoder and interface system including the automatic compilation and storage of digital identification information and digitized data for the period of recorded analog data corresponding to the digital identification data, compilation and storage of selected digitized data representing periods of recorded analog data, and compilation of digital identification information related to each of the periods of recorded analog data.

  2. Modulation Depth Estimation and Variable Selection in State-Space Models for Neural Interfaces

    PubMed Central

    Hochberg, Leigh R.; Donoghue, John P.; Brown, Emery N.

    2015-01-01

    Rapid developments in neural interface technology are making it possible to record increasingly large signal sets of neural activity. Various factors such as asymmetrical information distribution and across-channel redundancy may, however, limit the benefit of high-dimensional signal sets, and the increased computational complexity may not yield corresponding improvement in system performance. High-dimensional system models may also lead to overfitting and lack of generalizability. To address these issues, we present a generalized modulation depth measure using the state-space framework that quantifies the tuning of a neural signal channel to relevant behavioral covariates. For a dynamical system, we develop computationally efficient procedures for estimating modulation depth from multivariate data. We show that this measure can be used to rank neural signals and select an optimal channel subset for inclusion in the neural decoding algorithm. We present a scheme for choosing the optimal subset based on model order selection criteria. We apply this method to neuronal ensemble spike-rate decoding in neural interfaces, using our framework to relate motor cortical activity with intended movement kinematics. With offline analysis of intracortical motor imagery data obtained from individuals with tetraplegia using the BrainGate neural interface, we demonstrate that our variable selection scheme is useful for identifying and ranking the most information-rich neural signals. We demonstrate that our approach offers several orders of magnitude lower complexity but virtually identical decoding performance compared to greedy search and other selection schemes. Our statistical analysis shows that the modulation depth of human motor cortical single-unit signals is well characterized by the generalized Pareto distribution. Our variable selection scheme has wide applicability in problems involving multisensor signal modeling and estimation in biomedical engineering systems. PMID:25265627

  3. Performance Assessment of a Custom, Portable, and Low-Cost Brain-Computer Interface Platform.

    PubMed

    McCrimmon, Colin M; Fu, Jonathan Lee; Wang, Ming; Lopes, Lucas Silva; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An Hong

    2017-10-01

    Conventional brain-computer interfaces (BCIs) are often expensive, complex to operate, and lack portability, which confines their use to laboratory settings. Portable, inexpensive BCIs can mitigate these problems, but it remains unclear whether their low-cost design compromises their performance. Therefore, we developed a portable, low-cost BCI and compared its performance to that of a conventional BCI. The BCI was assembled by integrating a custom electroencephalogram (EEG) amplifier with an open-source microcontroller and a touchscreen. The function of the amplifier was first validated against a commercial bioamplifier, followed by a head-to-head comparison between the custom BCI (using four EEG channels) and a conventional 32-channel BCI. Specifically, five able-bodied subjects were cued to alternate between hand opening/closing and remaining motionless while the BCI decoded their movement state in real time and provided visual feedback through a light emitting diode. Subjects repeated the above task for a total of 10 trials, and were unaware of which system was being used. The performance in each trial was defined as the temporal correlation between the cues and the decoded states. The EEG data simultaneously acquired with the custom and commercial amplifiers were visually similar and highly correlated ( ρ = 0.79). The decoding performances of the custom and conventional BCIs averaged across trials and subjects were 0.70 ± 0.12 and 0.68 ± 0.10, respectively, and were not significantly different. The performance of our portable, low-cost BCI is comparable to that of the conventional BCIs. Platforms, such as the one developed here, are suitable for BCI applications outside of a laboratory.

  4. Mapping and Deciphering Neural Codes of NMDA Receptor-Dependent Fear Memory Engrams in the Hippocampus

    PubMed Central

    Tsien, Joe Z.

    2013-01-01

    Mapping and decoding brain activity patterns underlying learning and memory represents both great interest and immense challenge. At present, very little is known regarding many of the very basic questions regarding the neural codes of memory: are fear memories retrieved during the freezing state or non-freezing state of the animals? How do individual memory traces give arise to a holistic, real-time associative memory engram? How are memory codes regulated by synaptic plasticity? Here, by applying high-density electrode arrays and dimensionality-reduction decoding algorithms, we investigate hippocampal CA1 activity patterns of trace fear conditioning memory code in inducible NMDA receptor knockout mice and their control littermates. Our analyses showed that the conditioned tone (CS) and unconditioned foot-shock (US) can evoke hippocampal ensemble responses in control and mutant mice. Yet, temporal formats and contents of CA1 fear memory engrams differ significantly between the genotypes. The mutant mice with disabled NMDA receptor plasticity failed to generate CS-to-US or US-to-CS associative memory traces. Moreover, the mutant CA1 region lacked memory traces for “what at when” information that predicts the timing relationship between the conditioned tone and the foot shock. The degraded associative fear memory engram is further manifested in its lack of intertwined and alternating temporal association between CS and US memory traces that are characteristic to the holistic memory recall in the wild-type animals. Therefore, our study has decoded real-time memory contents, timing relationship between CS and US, and temporal organizing patterns of fear memory engrams and demonstrated how hippocampal memory codes are regulated by NMDA receptor synaptic plasticity. PMID:24302990

  5. VLSI chip-set for data compression using the Rice algorithm

    NASA Technical Reports Server (NTRS)

    Venbrux, J.; Liu, N.

    1990-01-01

    A full custom VLSI implementation of a data compression encoder and decoder which implements the lossless Rice data compression algorithm is discussed in this paper. The encoder and decoder reside on single chips. The data rates are to be 5 and 10 Mega-samples-per-second for the decoder and encoder respectively.

  6. Training Students to Decode Verbal and Nonverbal Cues: Effects on Confidence and Performance.

    ERIC Educational Resources Information Center

    Costanzo, Mark

    1992-01-01

    A study conducted with 105 university students investigated the effectiveness of using previous research findings as a means of teaching students how to interpret verbal and nonverbal behavior (decoding). Practice may be the critical feature for training in decoding. Research findings were successfully converted into educational techniques. (SLD)

  7. Communication Encoding and Decoding in Children from Different Socioeconomic and Racial Groups.

    ERIC Educational Resources Information Center

    Quay, Lorene C.; And Others

    Although lower socioeconomic status (SES) black children have been shown to be inferior to middle-SES white children in communication accuracy, whether the problem is in encoding (production), decoding (comprehension), or both is not clear. To evaluate encoding and decoding separately, tape recordings of picture descriptions were obtained from…

  8. The Impact of Nonverbal Communication in Organizations: A Survey of Perceptions.

    ERIC Educational Resources Information Center

    Graham, Gerald H.; And Others

    1991-01-01

    Discusses a survey of 505 respondents from business organizations. Reports that self-described good decoders of nonverbal communication consider nonverbal communication more important than do other decoders. Notes that both men and women perceive women as both better decoders and encoders of nonverbal cues. Recommends paying more attention to…

  9. Does Linguistic Comprehension Support the Decoding Skills of Struggling Readers?

    ERIC Educational Resources Information Center

    Blick, Michele; Nicholson, Tom; Chapman, James; Berman, Jeanette

    2017-01-01

    This study investigated the contribution of linguistic comprehension to the decoding skills of struggling readers. Participants were 36 children aged between eight and 12 years, all below average in decoding but differing in linguistic comprehension. The children read passages from the Neale Analysis of Reading Ability and their first 25 miscues…

  10. Role of Gender and Linguistic Diversity in Word Decoding Development

    ERIC Educational Resources Information Center

    Verhoeven, Ludo; van Leeuwe, Jan

    2011-01-01

    The purpose of the present study was to investigate the role of gender and linguistic diversity in the growth of Dutch word decoding skills throughout elementary school for a representative sample of children living in the Netherlands. Following a longitudinal design, the children's decoding abilities for (1) regular CVC words, (2) complex…

  11. The Relationship between Reading Comprehension, Decoding, and Fluency in Greek: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Padeliadu, Susana; Antoniou, Faye

    2014-01-01

    Experts widely consider decoding and fluency as the basis of reading comprehension, while at the same time consistently documenting problems in these areas as major characteristics of students with learning disabilities. However, scholars have developed most of the relevant research within phonologically deep languages, wherein decoding problems…

  12. Cognitive Training and Reading Remediation

    ERIC Educational Resources Information Center

    Mahapatra, Shamita

    2015-01-01

    Reading difficulties are experienced by children either because they fail to decode the words and thus are unable to comprehend the text or simply fail to comprehend the text even if they are able to decode the words and read them out. Failure in word decoding results from a failure in phonological coding of written information, whereas, reading…

  13. Validation of the Informal Decoding Inventory

    ERIC Educational Resources Information Center

    McKenna, Michael C.; Walpole, Sharon; Jang, Bong Gee

    2017-01-01

    This study investigated the reliability and validity of Part 1 of the Informal Decoding Inventory (IDI), a free diagnostic assessment used to plan Tier 2 intervention for first graders with decoding deficits. Part 1 addresses single-syllable words and consists of five subtests that progress in difficulty and that contain real word and pseudoword…

  14. Applying the Decoding the Disciplines Process to Teaching Structural Mechanics: An Autoethnographic Case Study

    ERIC Educational Resources Information Center

    Tingerthal, John Steven

    2013-01-01

    Using case study methodology and autoethnographic methods, this study examines a process of curricular development known as "Decoding the Disciplines" (Decoding) by documenting the experience of its application in a construction engineering mechanics course. Motivated by the call to integrate what is known about teaching and learning…

  15. Error Control Coding Techniques for Space and Satellite Communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.; Takeshita, Oscar Y.; Cabral, Hermano A.; He, Jiali; White, Gregory S.

    1997-01-01

    Turbo coding using iterative SOVA decoding and M-ary differentially coherent or non-coherent modulation can provide an effective coding modulation solution: (1) Energy efficient with relatively simple SOVA decoding and small packet lengths, depending on BEP required; (2) Low number of decoding iterations required; and (3) Robustness in fading with channel interleaving.

  16. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  17. Comparison of incoming dental school patients with and without disabilities.

    PubMed

    Stiefel, D J; Truelove, E L; Martin, M D; Mandel, L S

    1997-01-01

    A survey of incoming dental school patients compared 64 adult patients (DECOD) and 73 patients without disability (ND), regarding past dental experience, current needs, and basis for selecting the school's clinics. The responses indicated that, for DECOD patients, clinic selection was based largely on Medicaid acceptance, staff experience, and inability of other dentists to manage their disability; for ND patients, selection was based on lower fee structure. Both groups expressed high treatment need, but the rate was lower for DECOD than for ND patients. More DECOD patients reported severe dental anxiety and adverse effects of dental problems on general health. Chart records revealed that clinical findings exceeded perceived need for both DECOD and ND patients. While both groups had high periodontal disease rates (91%), DECOD patients had significantly poorer oral hygiene and less restorative need than ND patients. The findings suggest differences between persons with disabilities and other patient groups in difficulty of access to dental services in the community, reasons for entering the dental school system, and in presenting treatment need and/or treatment planning.

  18. Word and Person Effects on Decoding Accuracy: A New Look at an Old Question

    PubMed Central

    Gilbert, Jennifer K.; Compton, Donald L.; Kearns, Devin M.

    2011-01-01

    The purpose of this study was to extend the literature on decoding by bringing together two lines of research, namely person and word factors that affect decoding, using a crossed random-effects model. The sample was comprised of 196 English-speaking grade 1 students. A researcher-developed pseudoword list was used as the primary outcome measure. Because grapheme-phoneme correspondence (GPC) knowledge was treated as person and word specific, we are able to conclude that it is neither necessary nor sufficient for a student to know all GPCs in a word before accurately decoding the word. And controlling for word-specific GPC knowledge, students with lower phonemic awareness and slower rapid naming skill have lower predicted probabilities of correct decoding than counterparts with superior skills. By assessing a person-by-word interaction, we found that students with lower phonemic awareness have more difficulty applying knowledge of complex vowel graphemes compared to complex consonant graphemes when decoding unfamiliar words. Implications of the methodology and results are discussed in light of future research. PMID:21743750

  19. Longitudinal Stability and Predictors of Poor Oral Comprehenders and Poor Decoders

    PubMed Central

    Elwér, Åsa; Keenan, Janice M.; Olson, Richard K.; Byrne, Brian; Samuelsson, Stefan

    2012-01-01

    Two groups of 4th grade children were selected from a population sample (N= 926) to either be Poor Oral Comprehenders (poor oral comprehension but normal word decoding), or Poor Decoders (poor decoding but normal oral comprehension). By examining both groups in the same study with varied cognitive and literacy predictors, and examining them both retrospectively and prospectively, we could assess how distinctive and stable the predictors of each deficit are. Predictors were assessed retrospectively at preschool, at the end of kindergarten, 1st, and 2nd grades. Group effects were significant at all test occasions, including those for preschool vocabulary (worse in poor oral comprehenders) and rapid naming (RAN) (worse in poor decoders). Preschool RAN and Vocabulary prospectively predicted grade 4 group membership (77–79% correct classification) within the selected samples. Reselection in preschool of at-risk poor decoder and poor oral comprehender subgroups based on these variables led to significant but relatively weak prediction of subtype membership at grade 4. Implications of the predictive stability of our results for identification and intervention of these important subgroups are discussed. PMID:23528975

  20. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  1. Robust pattern decoding in shape-coded structured light

    NASA Astrophysics Data System (ADS)

    Tang, Suming; Zhang, Xu; Song, Zhan; Song, Lifang; Zeng, Hai

    2017-09-01

    Decoding is a challenging and complex problem in a coded structured light system. In this paper, a robust pattern decoding method is proposed for the shape-coded structured light in which the pattern is designed as grid shape with embedded geometrical shapes. In our decoding method, advancements are made at three steps. First, a multi-template feature detection algorithm is introduced to detect the feature point which is the intersection of each two orthogonal grid-lines. Second, pattern element identification is modelled as a supervised classification problem and the deep neural network technique is applied for the accurate classification of pattern elements. Before that, a training dataset is established, which contains a mass of pattern elements with various blurring and distortions. Third, an error correction mechanism based on epipolar constraint, coplanarity constraint and topological constraint is presented to reduce the false matches. In the experiments, several complex objects including human hand are chosen to test the accuracy and robustness of the proposed method. The experimental results show that our decoding method not only has high decoding accuracy, but also owns strong robustness to surface color and complex textures.

  2. Encoding and decoding of digital spiral imaging based on bidirectional transformation of light's spatial eigenmodes.

    PubMed

    Zhang, Wuhong; Chen, Lixiang

    2016-06-15

    Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.

  3. Omega 3/6 fatty acids for reading in children: a randomized, double-blind, placebo-controlled trial in 9-year-old mainstream schoolchildren in Sweden.

    PubMed

    Johnson, Mats; Fransson, Gunnar; Östlund, Sven; Areskoug, Björn; Gillberg, Christopher

    2017-01-01

    Previous research has shown positive effects of Omega 3/6 fatty acids in children with inattention and reading difficulties. We aimed to investigate if Omega 3/6 improved reading ability in mainstream schoolchildren. We performed a 3-month parallel, randomized, double-blind, placebo-controlled trial followed by 3-month active treatment for all subjects. Mainstream schoolchildren aged 9-10 years were randomized 1:1 to receive three Omega 3/6 capsules twice daily or identical placebo. Assessments were made at baseline, 3 months, and 6 months. The primary outcome measure was the Logos test battery for evaluating reading abilities. The trial is registered with ClinicalTrials.gov, number NCT02557477. The study enrolled 154 children (active n = 78; placebo n = 76), of whom 122 completed the first 3 months (active n = 64; placebo n = 58) and 105 completed the whole study (active/active n = 55; placebo/active n = 50). Outcomes were assessed by per protocol (PP) and intention-to-treat (ITT) analyses. Active treatment was superior to placebo at 3 months for improvement in phonologic decoding time (PP active/placebo difference -0.16; 95% CI -0.03, -0.29; effect size (ES) .44; p = .005; and ITT ES .37; p = .036), in visual analysis time (PP active/placebo difference -0.19; 95% CI -0.05, -0.33; ES .49; p = .013; and ITT ES .40; p = .01), and for boys in phonologic decoding time (PP -0.22; 95% CI -0.03, -0.41; ES .62; p = .004). Children with ADHD-RS scores above the median showed treatment benefits in visual analysis time (PP ES .8, p = .009), reading speed per word (PP ES .61, p = .008), and phonologic decoding time per word (PP ES .85, p = .006). Adverse events were rare and mild, mainly stomach pain/diarrhea (active n = 9, placebo n = 2). Compared with placebo, 3 months of Omega 3/6 treatment improved reading ability - specifically the clinically relevant 'phonologic decoding time' and 'visual analysis time' - in mainstream schoolchildren. In particular, children with attention problems showed treatment benefits. © 2016 Association for Child and Adolescent Mental Health.

  4. Decoder calibration with ultra small current sample set for intracortical brain-machine interface

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ma, Xuan; Chen, Luyao; Zhou, Jin; Wang, Changyong; Li, Wei; He, Jiping

    2018-04-01

    Objective. Intracortical brain-machine interfaces (iBMIs) aim to restore efficient communication and movement ability for paralyzed patients. However, frequent recalibration is required for consistency and reliability, and every recalibration will require relatively large most current sample set. The aim in this study is to develop an effective decoder calibration method that can achieve good performance while minimizing recalibration time. Approach. Two rhesus macaques implanted with intracortical microelectrode arrays were trained separately on movement and sensory paradigm. Neural signals were recorded to decode reaching positions or grasping postures. A novel principal component analysis-based domain adaptation (PDA) method was proposed to recalibrate the decoder with only ultra small current sample set by taking advantage of large historical data, and the decoding performance was compared with other three calibration methods for evaluation. Main results. The PDA method closed the gap between historical and current data effectively, and made it possible to take advantage of large historical data for decoder recalibration in current data decoding. Using only ultra small current sample set (five trials of each category), the decoder calibrated using the PDA method could achieve much better and more robust performance in all sessions than using other three calibration methods in both monkeys. Significance. (1) By this study, transfer learning theory was brought into iBMIs decoder calibration for the first time. (2) Different from most transfer learning studies, the target data in this study were ultra small sample set and were transferred to the source data. (3) By taking advantage of historical data, the PDA method was demonstrated to be effective in reducing recalibration time for both movement paradigm and sensory paradigm, indicating a viable generalization. By reducing the demand for large current training data, this new method may facilitate the application of intracortical brain-machine interfaces in clinical practice.

  5. Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.

    PubMed

    Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie

    2016-12-07

    A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.

  6. The brain in time: insights from neuromagnetic recordings.

    PubMed

    Hari, Riitta; Parkkonen, Lauri; Nangini, Cathy

    2010-03-01

    The millisecond time resolution of magnetoencephalography (MEG) is instrumental for investigating the brain basis of sensory processing, motor planning, cognition, and social interaction. We review the basic principles, recent progress, and future potential of MEG in noninvasive tracking of human brain activity. Cortical activation sequences from tens to hundreds of milliseconds can be followed during, e.g., perception, motor action, imitation, and language processing by recording both spontaneous and evoked brain signals. Moreover, tagging of sensory input can be used to reveal neuronal mechanisms of binaural interaction and perception of ambiguous images. The results support the emerging ideas of multiple, hierarchically organized temporal scales in human brain function. Instrumentation and data analysis methods are rapidly progressing, enabling attempts to decode the four-dimensional spatiotemporal signal patterns to reveal correlates of behavior and mental contents.

  7. Neurocognitive therapeutics: from concept to application in the treatment of negative attention bias.

    PubMed

    Schnyer, David M; Beevers, Christopher G; deBettencourt, Megan T; Sherman, Stephanie M; Cohen, Jonathan D; Norman, Kenneth A; Turk-Browne, Nicholas B

    2015-01-01

    There is growing interest in the use of neuroimaging for the direct treatment of mental illness. Here, we present a new framework for such treatment, neurocognitive therapeutics. What distinguishes neurocognitive therapeutics from prior approaches is the use of precise brain-decoding techniques within a real-time feedback system, in order to adapt treatment online and tailor feedback to individuals' needs. We report an initial feasibility study that uses this framework to alter negative attention bias in a small number of patients experiencing significant mood symptoms. The results are consistent with the promise of neurocognitive therapeutics to improve mood symptoms and alter brain networks mediating attentional control. Future work should focus on optimizing the approach, validating its effectiveness, and expanding the scope of targeted disorders.

  8. Limb-state information encoded by peripheral and central somatosensory neurons: Implications for an afferent interface

    PubMed Central

    Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.

    2013-01-01

    A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419

  9. Neural network decoder for quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  10. New Syndrome Decoding Techniques for the (n, K) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.

  11. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  12. An embedded controller for a 7-degree of freedom prosthetic arm.

    PubMed

    Tenore, Francesco; Armiger, Robert S; Vogelstein, R Jacob; Wenstrand, Douglas S; Harshbarger, Stuart D; Englehart, Kevin

    2008-01-01

    We present results from an embedded real-time hardware system capable of decoding surface myoelectric signals (sMES) to control a seven degree of freedom upper limb prosthesis. This is one of the first hardware implementations of sMES decoding algorithms and the most advanced controller to-date. We compare decoding results from the device to simulation results from a real-time PC-based operating system. Performance of both systems is shown to be similar, with decoding accuracy greater than 90% for the floating point software simulation and 80% for fixed point hardware and software implementations.

  13. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  14. The Development of Social Cognition: Preschoolers' Use of Mental State Talk in Peer Conflicts

    ERIC Educational Resources Information Center

    Comparini, Lisa; Douglas, Edith M.; Perez, Sara N.

    2014-01-01

    Research Findings: This research examines preschoolers' use of mental state terms in naturally occurring peer conflicts in the classroom to determine how children use mental state terms for organizing their social interactions. Analyses focus on the types, frequencies, and social interactive functions of mental state terms. Utterances (N = 166)…

  15. Maternal Mental State Language and Preschool Children's Attachment Security: Relation to Children's Mental State Language and Expressions of Emotional Understanding

    ERIC Educational Resources Information Center

    Mcquaid, Nancy; Bigelow, Ann E.; McLaughlin, Jessica; MacLean, Kim

    2008-01-01

    Mothers' mental state language in conversation with their preschool children, and children's preschool attachment security were examined for their effects on children's mental state language and expressions of emotional understanding in their conversation. Children discussed an emotionally salient event with their mothers and then relayed the…

  16. The Relationships of Mental States and Intellectual Processes in the Learning Activities of Students

    ERIC Educational Resources Information Center

    Prokhorov, Alexander O.; Chernov, Albert V.; Yusupov, Mark G.

    2016-01-01

    Investigation of the interaction of mental states and cognitive processes in the classroom allows us to solve the problem of increasing the effectiveness of training by activating cognitive processes and management of students' mental states. This article is concerned with the most general patterns of interaction between mental state and…

  17. 42 CFR 483.106 - Basic rule.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mental health or mental retardation authority must conduct an annual resident review within 40 calendar... State mental health authority and be based on an independent physical and mental evaluation performed by a person or entity other than the State mental health authority; and (2) For individuals with mental...

  18. 42 CFR 483.106 - Basic rule.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... mental health or mental retardation authority must conduct an annual resident review within 40 calendar... State mental health authority and be based on an independent physical and mental evaluation performed by a person or entity other than the State mental health authority; and (2) For individuals with mental...

  19. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding.

    PubMed

    Couvillon, Margaret J; Riddell Pearce, Fiona C; Harris-Jones, Elisabeth L; Kuepfer, Amanda M; Mackenzie-Smith, Samantha J; Rozario, Laura A; Schürch, Roger; Ratnieks, Francis L W

    2012-05-15

    Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.

  20. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding

    PubMed Central

    Couvillon, Margaret J.; Riddell Pearce, Fiona C.; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Laura A.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances. PMID:23213438

Top