Science.gov

Sample records for mer mediated microbial

  1. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR

    PubMed Central

    Chang, Chih-Chiang; Lin, Li-Ying; Zou, Xiao-Wei; Huang, Chieh-Chen; Chan, Nei-Li

    2015-01-01

    The mer operon confers bacterial resistance to inorganic mercury (Hg2+) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcription initiation, but is converted into an activator upon Hg2+-binding. To understand how MerR interacts with Hg2+ and how Hg2+-binding modulates MerR function, we report here the crystal structures of apo and Hg2+-bound MerR from Bacillus megaterium, corresponding respectively to the repressor and activator conformation of MerR. To our knowledge, the apo-MerR structure represents the first visualization of a MerR family member in its intact and inducer-free form. And the Hg2+-MerR structure offers the first view of a triligated Hg2+-thiolate center in a metalloprotein, confirming that MerR binds Hg2+ via trigonal planar coordination geometry. Structural comparison revealed the conformational transition of MerR is coupled to the assembly/disassembly of a buried Hg2+ binding site, thereby providing a structural basis for the Hg2+-mediated functional switching of MerR. The pronounced Hg2+-induced repositioning of the MerR DNA-binding domains suggests a plausible mechanism for the transcriptional regulation of the mer operon. PMID:26150423

  2. Microbially mediated phosphine emission.

    PubMed

    Roels, Joris; Huyghe, Gwen; Verstraete, Willy

    2005-02-15

    There is still a lot of controversy in literature concerning the question whether a biochemical system exists enabling micro-organisms to reduce phosphate to phosphine gas. The search for so-called 'de novo synthesised' phosphine is complicated by the fact that soils, slurries, sludges, etc., which are often used as inocula, usually contain matrix bound phosphine (MBP). Matrix bound phosphine is a general term used to indicate non-gaseous reduced phosphorus compounds that are transformed into phosphine gas upon reaction with bases or acids. A study was carried out to compare the different digestion methods, used to transform matrix bound phosphine into phosphine gas. It was demonstrated that caustic and acidic digestion methods should be used to measure the matrix bound phosphine of the inoculum prior to inoculation to avoid false positive results concerning de novo synthesis. This is especially true if anthropogenically influenced inocula possibly containing minute steel or aluminium particles are used. The comparative study on different digestion methods also revealed that the fraction of phosphorus in mild steel, converted to phosphine during acid corrosion depended on the temperature. Following these preliminary studies, anaerobic growth experiments were set up using different inocula and media to study the emission of phosphine gas. Phosphine was detected in the headspace gases and its quantity and timeframe of emission depended on the medium composition, suggesting microbially mediated formation of the gas. The amount of phosphine emitted during the growth experiments never exceeded the bound phosphine present in inocula, prior to inoculation. Hence, de novo synthesis of phosphine from phosphate could not be demonstrated. Yet, microbially mediated conversion to phosphine of hitherto unknown reduced phosphorus compounds in the inoculum was evidenced.

  3. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation.

    PubMed

    Cai, Bishuang; Thorp, Edward B; Doran, Amanda C; Subramanian, Manikandan; Sansbury, Brian E; Lin, Chyuan-Sheng; Spite, Matthew; Fredman, Gabrielle; Tabas, Ira

    2016-06-07

    The acute inflammatory response requires a coordinated resolution program to prevent excessive inflammation, repair collateral damage, and restore tissue homeostasis, and failure of this response contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated in part by long-chain fatty acid-derived lipid mediators called specialized proresolving mediators (SPMs). However, how SPMs are regulated during the inflammatory response, and how this process goes awry in inflammatory diseases, are poorly understood. We now show that signaling through the Mer proto-oncogene tyrosine kinase (MerTK) receptor in cultured macrophages and in sterile inflammation in vivo promotes SPM biosynthesis by a mechanism involving an increase in the cytoplasmic:nuclear ratio of a key SPM biosynthetic enzyme, 5-lipoxygenase. This action of MerTK is linked to the resolution of sterile peritonitis and, after ischemia-reperfusion (I/R) injury, to increased circulating SPMs and decreased remote organ inflammation. MerTK is susceptible to ADAM metallopeptidase domain 17 (ADAM17)-mediated cell-surface cleavage under inflammatory conditions, but the functional significance is not known. We show here that SPM biosynthesis is increased and inflammation resolution is improved in a new mouse model in which endogenous MerTK was replaced with a genetically engineered variant that is cleavage-resistant (Mertk(CR)). Mertk(CR) mice also have increased circulating levels of SPMs and less lung injury after I/R. Thus, MerTK cleavage during inflammation limits SPM biosynthesis and the resolution response. These findings contribute to our understanding of how SPM synthesis is regulated during the inflammatory response and suggest new therapeutic avenues to boost resolution in settings where defective resolution promotes disease progression.

  4. MerTK cleavage limits proresolving mediator biosynthesis and exacerbates tissue inflammation

    PubMed Central

    Cai, Bishuang; Thorp, Edward B.; Doran, Amanda C.; Subramanian, Manikandan; Sansbury, Brian E.; Lin, Chyuan-Sheng; Spite, Matthew; Fredman, Gabrielle; Tabas, Ira

    2016-01-01

    The acute inflammatory response requires a coordinated resolution program to prevent excessive inflammation, repair collateral damage, and restore tissue homeostasis, and failure of this response contributes to the pathology of numerous chronic inflammatory diseases. Resolution is mediated in part by long-chain fatty acid-derived lipid mediators called specialized proresolving mediators (SPMs). However, how SPMs are regulated during the inflammatory response, and how this process goes awry in inflammatory diseases, are poorly understood. We now show that signaling through the Mer proto-oncogene tyrosine kinase (MerTK) receptor in cultured macrophages and in sterile inflammation in vivo promotes SPM biosynthesis by a mechanism involving an increase in the cytoplasmic:nuclear ratio of a key SPM biosynthetic enzyme, 5-lipoxygenase. This action of MerTK is linked to the resolution of sterile peritonitis and, after ischemia–reperfusion (I/R) injury, to increased circulating SPMs and decreased remote organ inflammation. MerTK is susceptible to ADAM metallopeptidase domain 17 (ADAM17)-mediated cell-surface cleavage under inflammatory conditions, but the functional significance is not known. We show here that SPM biosynthesis is increased and inflammation resolution is improved in a new mouse model in which endogenous MerTK was replaced with a genetically engineered variant that is cleavage-resistant (MertkCR). MertkCR mice also have increased circulating levels of SPMs and less lung injury after I/R. Thus, MerTK cleavage during inflammation limits SPM biosynthesis and the resolution response. These findings contribute to our understanding of how SPM synthesis is regulated during the inflammatory response and suggest new therapeutic avenues to boost resolution in settings where defective resolution promotes disease progression. PMID:27199481

  5. Microbially mediated mineral carbonation

    NASA Astrophysics Data System (ADS)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  6. Environmental significance of the potential for mer(Tn21)-mediated reduction of Hg2+ to Hg0 in natural waters.

    PubMed Central

    Barkay, T; Liebert, C; Gillman, M

    1989-01-01

    The role of mer(Tn21) in the adaptation of aquatic microbial communities to Hg2+ was investigated. Elemental mercury was the sole product of Hg2+ volatilization by freshwater and saline water microbial communities. Bacterial activity was responsible for biotransformation because most microeucaryotes did not survive the exposure conditions, and removal of larger microbes (greater than 1 micromole) from adapted communities did not significantly (P greater than 0.01) reduce Hg2+ volatilization rates. DNA sequences homologous to mer(Tn21) were found in 50% of Hg2+-resistant bacterial strains representing two freshwater communities, but in only 12% of strains representing two saline communities (the difference was highly significant; P less than 0.001). Thus, mer(Tn21) played a significant role in Hg2+ resistance among strains isolated from fresh waters, in which microbial activity had a limited role in Hg2+ volatilization. In saline water environments in which microbially mediated volatilization was the major mechanism of Hg2+ loss, other bacterial genes coded for this biotransformation. PMID:2547336

  7. Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems.

    PubMed

    Yin, Huaqun; Cao, Linhui; Qiu, Guanzhou; Wang, Dianzuo; Kellogg, Laurie; Zhou, Jizhong; Dai, Zhimin; Liu, Xueduan

    2007-07-01

    To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. The functional genes in the microarray were involved in carbon metabolism (158), nitrogen metabolism (72), sulfur metabolism (39), iron metabolism (68), DNA replication and repair (97), metal-resistance (27), membrane-relate gene (16), transposon (13) and IST sequence (11). Based on the results of microarray hybridizations, specificity tests with representative pure cultures indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. The detection limit was 5 ng of genomic DNA in the absence of background DNA. Strong linear relationships between the signal intensity and the target DNA were observed (r(2) approximately 0.98). Application of this type of the microarray to analyze the acidic environments and bioleaching systems demonstrated that the developed microarray appeared to be useful for profiling differences in microbial community structures of acidic environments and bioleaching systems. Our results indicate that this technology has potential as a specific, sensitive, and quantitative tool in revealing a comprehensive picture of the compositions of genes related with acidophilic microorganism and the microbial community in acidic environments and bioleaching systems, although more work is needed to improve.

  8. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.

    PubMed

    Møller, Annette K; Barkay, Tamar; Hansen, Martin A; Norman, Anders; Hansen, Lars H; Sørensen, Søren J; Boyd, Eric S; Kroer, Niels

    2014-01-01

    Bacterial reduction in Hg(2+) to Hg(0) , mediated by the mercuric reductase (MerA), is important in the biogeochemical cycling of Hg in temperate environments. Little is known about the occurrence and diversity of merA in the Arctic. Seven merA determinants were identified among bacterial isolates from High Arctic snow, freshwater and sea-ice brine. Three determinants in Bacteriodetes, Firmicutes and Actinobacteria showed < 92% (amino acid) sequence similarity to known merA, while one merA homologue in Alphaproteobacteria and 3 homologues from Betaproteobacteria and Gammaproteobacteria were > 99% similar to known merA's. Phylogenetic analysis showed the Bacteroidetes merA to be part of an early lineage in the mer phylogeny, whereas the Betaproteobacteria and Gammaproteobacteria merA appeared to have evolved recently. Several isolates, in which merA was not detected, were able to reduce Hg(2+) , suggesting presence of unidentified merA genes. About 25% of the isolates contained plasmids, two of which encoded mer operons. One plasmid was a broad host-range IncP-α plasmid. No known incompatibility group could be assigned to the others. The presence of conjugative plasmids, and an incongruent distribution of merA within the taxonomic groups, suggests horizontal transfer of merA as a likely mechanism for High Arctic microbial communities to adapt to changing mercury concentration.

  9. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands.

    PubMed

    Toda, Satoshi; Segawa, Katsumori; Nagata, Shigekazu

    2014-06-19

    Definitive erythropoiesis takes place at erythroblastic islands, where erythroblasts proliferate and differentiate in association with central macrophages. At the final stage of erythropoiesis, pyrenocytes (nuclei surrounded by plasma membranes) are excluded from erythroblasts, expose phosphatidylserine (PtdSer), and are engulfed by the macrophages in a PtdSer-dependent manner. However, the molecular mechanism(s) involved in the engulfment of pyrenocytes are incompletely understood. Here, we constructed an in vitro assay system for the enucleation and engulfment of pyrenocytes using a methylcellulose-based culture. As reported previously, erythroblasts were bound to macrophages via interactions between integrin-α4β1 on erythroblasts and Vcam1 on macrophages. After enucleation, the resulting pyrenocytes exhibited a reduced affinity for Vcam1 that correlated with the presence of inactive integrin-α4β1 complexes. The pyrenocytes were then engulfed by the macrophages via a MerTK-protein S-dependent mechanism. Protein S appeared to function as a bridge between the pyrenocytes and macrophages by binding to PtdSer on the pyrenocytes and MerTK on the macrophages. Normally, NIH3T3 cells do not engulf pyrenocytes, but when they were transformed with MerTK, they efficiently engulfed pyrenocytes in the presence of protein S. These results suggest that macrophages use similar mechanisms to engulf both pyrenocytes and apoptotic cells. © 2014 by The American Society of Hematology.

  10. Role of MerC, MerE, MerF, MerT, and/or MerP in resistance to mercurials and the transport of mercurials in Escherichia coli.

    PubMed

    Sone, Yuka; Nakamura, Ryosuke; Pan-Hou, Hidemitsu; Itoh, Tomoo; Kiyono, Masako

    2013-01-01

    The characteristics of bacteria take up mercury into cells via membrane potential-dependent sequence-divergent members of the mercuric ion (Mer) superfamily, i.e., a periplasmic mercuric ion scavenging protein (MerP) and one or more inner membrane-spanning proteins (MerC, MerE, MerF, and MerT), which transport mercuric ions into the cytoplasm, have been applied in engineering of bioreactor used for mercurial bioremediation. We engineered bacteria to express MerC, MerE, MerF, or MerT with or without MerP to clarify their individual role and potential in transport of mercurial. By immunoblot analysis using specific polyclonal antibody, the proteins encoded by merC, merE, merF, merT or merP, were certainly expressed and identified in the membrane fraction. Bacteria expressing MerC, MerE, MerF or MerT in the absence of MerP transported significantly more C6H5Hg(I) and Hg(II) across bacterial membrane than their isogenic strain. In vivo expression of MerP in the presence of all the transporters did not cause apparent difference to the C6H5Hg(I) transport, but gives an apparently higher Hg(II) transport than that did by MerE, MerF or MerT but not by MerC. Among the four transporters studied, MerC showed more potential to transport Hg(II) across bacterial membrane than MerE, MerF and MerT. Together these findings, we demonstrated for the first time that in addition to MerE and MerT, MerF and MerC are broad-spectrum mercury transporters that mediate both Hg(II) and phenylmercury transport into cells. Our results suggested that MerC is the most efficient tool for designing mercurial bioremediation systems, because MerC is sufficient for mercurial transport into cells.

  11. One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV.

    PubMed

    Lee, Se Hee; Baek, Yun Hee; Kim, Yang-Hoon; Choi, Young-Ki; Song, Min-Suk; Ahn, Ji-Young

    2016-01-01

    Due to the limitation of rapid development of specific antiviral drug or vaccine for novel emerging viruses, an accurate and rapid diagnosis is a key to manage the virus spread. We developed an efficient and rapid method with high specificity for the Middle East Respiratory Syndrome coronavirus (MERS-CoV), based on one-pot reverse transcription loop-mediated isothermal amplification (one-pot RT-LAMP). A set of six LAMP primers [F3, B3, FIP, BIP, LF (Loop-F), and LB (Loop-B)] were designed using the sequence of nucleocapsid (N) gene with optimized RT-LAMP enzyme conditions: 100 U M-MLV RTase and 4 U Bst polymerase, implying that the reaction was able to detect four infectious viral genome copies of MERS-CoV within a 60 min reaction time period. Significantly, EvaGreen dye has better signal read-out properties in one-pot RT-LAMP reaction and is more compatible with DNA polymerase than SYBR green I. Isothermally amplified specific N genes were further evaluated using field-deployable microchamber devices, leading to the specific identification of as few as 0.4 infectious viral genome copies, with no cross-reaction to the other acute respiratory disease viruses, including influenza type A (H1N1 and H3N2), type B, human coronavirus 229E, and human metapneumovirus. This sensitive, specific and feasible method provides a large-scale technical support in emergencies, and is also applied as a sample-to-detection module in Point of Care Testing devices.

  12. One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV

    PubMed Central

    Lee, Se Hee; Baek, Yun Hee; Kim, Yang-Hoon; Choi, Young-Ki; Song, Min-Suk; Ahn, Ji-Young

    2017-01-01

    Due to the limitation of rapid development of specific antiviral drug or vaccine for novel emerging viruses, an accurate and rapid diagnosis is a key to manage the virus spread. We developed an efficient and rapid method with high specificity for the Middle East Respiratory Syndrome coronavirus (MERS-CoV), based on one-pot reverse transcription loop-mediated isothermal amplification (one-pot RT-LAMP). A set of six LAMP primers [F3, B3, FIP, BIP, LF (Loop-F), and LB (Loop-B)] were designed using the sequence of nucleocapsid (N) gene with optimized RT-LAMP enzyme conditions: 100 U M-MLV RTase and 4 U Bst polymerase, implying that the reaction was able to detect four infectious viral genome copies of MERS-CoV within a 60 min reaction time period. Significantly, EvaGreen dye has better signal read-out properties in one-pot RT-LAMP reaction and is more compatible with DNA polymerase than SYBR green I. Isothermally amplified specific N genes were further evaluated using field-deployable microchamber devices, leading to the specific identification of as few as 0.4 infectious viral genome copies, with no cross-reaction to the other acute respiratory disease viruses, including influenza type A (H1N1 and H3N2), type B, human coronavirus 229E, and human metapneumovirus. This sensitive, specific and feasible method provides a large-scale technical support in emergencies, and is also applied as a sample-to-detection module in Point of Care Testing devices. PMID:28119682

  13. k-merSNP discovery: Software for alignment-and reference-free scalable SNP discovery, phylogenetics, and annotation for hundreds of microbial genomes

    SciTech Connect

    2014-11-18

    With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.

  14. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  15. Microbial mediation of complex subterranean mineral structures.

    PubMed

    Tisato, Nicola; Torriani, Stefano F F; Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Tavagna, Maria Luisa; D'Angeli, Ilenia M; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I; Bontognali, Tomaso R R

    2015-10-29

    Helictites--an enigmatic type of mineral structure occurring in some caves--differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes.

  16. Microbial mediation of complex subterranean mineral structures

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Torriani, Stefano F. F.; Monteux, Sylvain; Sauro, Francesco; de Waele, Jo; Tavagna, Maria Luisa; D'Angeli, Ilenia M.; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso R. R.

    2015-10-01

    Helictites—an enigmatic type of mineral structure occurring in some caves—differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes.

  17. Microbial mediation of complex subterranean mineral structures

    PubMed Central

    Tisato, Nicola; Torriani, Stefano F. F.; Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Tavagna, Maria Luisa; D’Angeli, Ilenia M.; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso R. R.

    2015-01-01

    Helictites—an enigmatic type of mineral structure occurring in some caves—differ from classical speleothems as they develop with orientations that defy gravity. While theories for helictite formation have been forwarded, their genesis remains equivocal. Here, we show that a remarkable suite of helictites occurring in Asperge Cave (France) are formed by biologically-mediated processes, rather than abiotic processes as had hitherto been proposed. Morphological and petro-physical properties are inconsistent with mineral precipitation under purely physico-chemical control. Instead, microanalysis and molecular-biological investigation reveals the presence of a prokaryotic biofilm intimately associated with the mineral structures. We propose that microbially-influenced mineralization proceeds within a gliding biofilm which serves as a nucleation site for CaCO3, and where chemotaxis influences the trajectory of mineral growth, determining the macroscopic morphology of the speleothems. The influence of biofilms may explain the occurrence of similar speleothems in other caves worldwide, and sheds light on novel biomineralization processes. PMID:26510667

  18. Microbially mediated barite dissolution in anoxic brines

    USGS Publications Warehouse

    Ouyang, Bingjie; Akob, Denise M.; Dunlap, Darren S.; Renock, Devon

    2017-01-01

    Fluids injected into shale formations during hydraulic fracturing of black shale return with extraordinarily high total-dissolved-solids (TDS) and high concentrations of barium (Ba) and radium (Ra). Barite, BaSO4, has been implicated as a possible source of Ba as well as a problematic mineral scale that forms on internal well surfaces, often in close association with radiobarite, (Ba,Ra)SO4. The dissolution of barite by abiotic processes is well quantified. However, the identification of microbial communities in flowback and produced water necessitates the need to understand barite dissolution in the presence of bacteria. Therefore, we evaluated the rates and mechanisms of abiotic and microbially-mediated barite dissolution under anoxic and hypersaline conditions in the laboratory. Barite dissolution experiments were conducted with bacterial enrichment cultures established from produced water from Marcellus Shale wells located in northcentral Pennsylvania. These cultures were dominated by anaerobic halophilic bacteria from the genus Halanaerobium. Dissolved Ba was determined by ICP-OES and barite surfaces were investigated by SEM and AFM. Our results reveal that: 1) higher amounts of barium (up to ∼5 × ) are released from barite in the presence of Halanaerobium cultures compared to brine controls after 30 days of reaction, 2) etch pits that develop on the barite (001) surface in the presence of Halanaerobium exhibit a morphology that is distinct from those that form during control experiments without bacteria, 3) etch pits that develop in the presence of Halanaerobium exhibit a morphology that is similar to the morphology of etch pits formed in the presence of strong organic chelators, EDTA and DTPA, and 4) experiments using dialysis membranes to separate barite from bacteria suggest that direct contact between the two is not required in order to promote dissolution. These results suggest that Halanaerobium increase the rate of barite dissolution in anoxic and

  19. Chlorine stress mediates microbial surface attachment in drinking water systems.

    PubMed

    Liu, Li; Le, Yang; Jin, Juliang; Zhou, Yuliang; Chen, Guowei

    2015-03-01

    Microbial attachment to drinking water pipe surfaces facilitates pathogen survival and deteriorates disinfection performance, directly threatening the safety of drinking water. Notwithstanding that the formation of biofilm has been studied for decades, the underlying mechanisms for the origins of microbial surface attachment in biofilm development in drinking water pipelines remain largely elusive. We combined experimental and mathematical methods to investigate the role of environmental stress-mediated cell motility on microbial surface attachment in chlorination-stressed drinking water distribution systems. Results show that at low levels of disinfectant (0.0-1.0 mg/L), the presence of chlorine promotes initiation of microbial surface attachment, while higher amounts of disinfectant (>1.0 mg/L) inhibit microbial attachment. The proposed mathematical model further demonstrates that chlorination stress (0.0-5.0 mg/L)-mediated microbial cell motility regulates the frequency of cell-wall collision and thereby controls initial microbial surface attachment. The results reveal that transport processes and decay patterns of chlorine in drinking water pipelines regulate microbial cell motility and, thus, control initial surface cell attachment. It provides a mechanistic understanding of microbial attachment shaped by environmental disinfection stress and leads to new insights into microbial safety protocols in water distribution systems.

  20. Structural basis for the neutralization of MERS-CoV by a human monoclonal antibody MERS-27

    PubMed Central

    Yu, Xiaojuan; Zhang, Senyan; Jiang, Liwei; Cui, Ye; Li, Dongxia; Wang, Dongli; Wang, Nianshuang; Fu, Lili; Shi, Xuanlin; Li, Ziqiang; Zhang, Linqi; Wang, Xinquan

    2015-01-01

    The recently reported Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory illness in humans with an approximately 30% mortality rate. The envelope spike glycoprotein on the surface of MERS-CoV mediates receptor binding, membrane fusion, and viral entry. We previously reported two human monoclonal antibodies that target the receptor binding domain (RBD) of the spike and exhibit strong neutralization activity against live and pesudotyped MERS-CoV infection. Here we determined the crystal structure of MERS-CoV RBD bound to the Fab fragment of MERS-27 antibody at 3.20 Å resolution. The MERS-27 epitope in the RBD overlaps with the binding site of the MERS-CoV receptor DPP4. Further biochemical, viral entry, and neutralization analyses identified two critical residues in the RBD for both MERS-27 recognition and DPP4 binding. One of the residues, Trp535, was found to function as an anchor residue at the binding interface with MERS-27. Upon receptor binding, Trp535 interacts with the N-linked carbohydrate moiety of DPP4. Thus, MERS-27 inhibits MERS-CoV infection by directly blocking both protein-protein and protein-carbohydrate interactions between MERS-CoV RBD and DPP4. These results shed light on the molecular basis of MERS-27 neutralization and will assist in the optimization of MERS-27 as a tool to combat MERS-CoV infection. PMID:26281793

  1. Allelopathy-mediated Competition in Microbial Mats from Antarctic Lakes.

    PubMed

    Slattery, Marc; Lesser, Michael P

    2017-02-18

    Microbial mats are vertically stratified communities that host a complex consortium of microorganisms, dominated by cyanobacteria, that compete for available nutrients and environmental niches, within these extreme habitats. The Antarctic Dry Valleys near McMurdo Sound include a series of lakes within the drainage basin that are bisected by glacial traverses. These lakes are traditionally independent, but recent increases in glacial melting have allowed two lakes (Chad and Hoare) to become connected by a meltwater stream. Microbial mats were collected from these lakes, and cultured under identical conditions at the McMurdo Station laboratory. Replicate pairings of the microbial mats exhibited consistent patterns of growth inhibition indicative of competitive dominance. Natural products were extracted from the microbial mats, and a disc diffusion assay was utilized to show that allelochemical compounds mediate competitive interactions. Both microscopy and 16S rRNA sequencing show that these mats contain significant populations of cyanobacteria known to produce allelochemicals. Two compounds were isolated from these microbial mats that might be important in the chemical ecology of these psychrophiles. In other disc:mat pairings, including extract versus mat of origin, the allelochemicals exhibited no effect. Taken together, these results indicate that Antarctic lake microbial mats can compete via allelopathy.

  2. Humic substances-mediated microbial reductive dehalogenation of triclosan

    NASA Astrophysics Data System (ADS)

    Wang, L.; Xu, S.; Yang, Y.

    2015-12-01

    The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.

  3. Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.

    2014-12-01

    Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.

  4. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-02

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.

  5. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    NASA Astrophysics Data System (ADS)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    effective soil age. My research is focused on addressing the questions of the extent of microbial N limitation in arctic tundra soils, the potential for co-limitation of labile C despite a high SOC environment, and the dependence, if any, nutrient limitation may have on the effective age of the soil. I have addressed these questions by conducting a laboratory soil incubation of factorial design with treatments of amended glucose, amended ammonium nitrate, and a control consisting of an addition of an equivalent volume of deionized water. Moist acid tundra soils possessing similar soil properties from two arctic sites of close proximity yet with varying deglaciation chronologies were utilized in my study. Soil properties of C-mineralization via respiration, microbial biomass, and nitrogen content in the forms of ammonium, nitrate, and total free amino acids and microbial extra-cellular enzyme production were assayed to determine the microbial response to the experimental treatments. Through the results of this work, I hope to better our understanding of biogeochemical cycling within arctic tundra ecosystems and the response to climate change by contributing to existing knowledge of nutrient limitation on microbial mediated decomposition of SOC in the arctic and how this may differ in soils of varying effective age.

  6. A common toxin fold mediates microbial attack and plant defense.

    PubMed

    Ottmann, Christian; Luberacki, Borries; Küfner, Isabell; Koch, Wolfgang; Brunner, Frédéric; Weyand, Michael; Mattinen, Laura; Pirhonen, Minna; Anderluh, Gregor; Seitz, Hanns Ulrich; Nürnberger, Thorsten; Oecking, Claudia

    2009-06-23

    Many plant pathogens secrete toxins that enhance microbial virulence by killing host cells. Usually, these toxins are produced by particular microbial taxa, such as bacteria or fungi. In contrast, many bacterial, fungal and oomycete species produce necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) that trigger leaf necrosis and immunity-associated responses in various plants. We have determined the crystal structure of an NLP from the phytopathogenic oomycete Pythium aphanidermatum to 1.35A resolution. The protein fold exhibits structural similarities to cytolytic toxins produced by marine organisms (actinoporins). Computational modeling of the 3-dimensional structure of NLPs from another oomycete, Phytophthora parasitica, and from the phytopathogenic bacterium, Pectobacterium carotovorum, revealed a high extent of fold conservation. Expression of the 2 oomycete NLPs in an nlp-deficient P. carotovorum strain restored bacterial virulence, suggesting that NLPs of prokaryotic and eukaryotic origins are orthologous proteins. NLP mutant protein analyses revealed that identical structural properties were required to cause plasma membrane permeabilization and cytolysis in plant cells, as well as to restore bacterial virulence. In sum, NLPs are conserved virulence factors whose taxonomic distribution is exceptional for microbial phytotoxins, and that contribute to host infection by plasma membrane destruction and cytolysis. We further show that NLP-mediated phytotoxicity and plant defense gene expression share identical fold requirements, suggesting that toxin-mediated interference with host integrity triggers plant immunity-associated responses. Phytotoxin-induced cellular damage-associated activation of plant defenses is reminiscent of microbial toxin-induced inflammasome activation in vertebrates and may thus constitute another conserved element in animal and plant innate immunity.

  7. MER SPICE Interface

    NASA Technical Reports Server (NTRS)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  8. Embryo fossilization is a biological process mediated by microbial biofilms

    PubMed Central

    Raff, Elizabeth C.; Schollaert, Kaila L.; Nelson, David E.; Donoghue, Philip C. J.; Thomas, Ceri-Wyn; Turner, F. Rudolf; Stein, Barry D.; Dong, Xiping; Bengtson, Stefan; Huldtgren, Therese; Stampanoni, Marco; Chongyu, Yin; Raff, Rudolf A.

    2008-01-01

    Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process. PMID:19047625

  9. Microbial communities mediating algal detritus turnover under anaerobic conditions

    PubMed Central

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  10. Microbial communities mediating algal detritus turnover under anaerobic conditions.

    PubMed

    Morrison, Jessica M; Murphy, Chelsea L; Baker, Kristina; Zamor, Richard M; Nikolai, Steve J; Wilder, Shawn; Elshahed, Mostafa S; Youssef, Noha H

    2017-01-01

    Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O' the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13-16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched included the

  11. Microbially Mediated Glass Alteration in the Geological Record: Textural clues for Microbial Functions.

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Furnes, H.; McLoughlin, N.; Banerjee, N.

    2007-12-01

    Fe and Mn oxidizing microbes interact with their environment through the microbially mediated formation of Fe/Mn oxides and through the corrosion textures they may leave behind in the solids they colonize and from which they extract nutrients. Understanding the geo-biology of Fe and Mn oxidation may focus on the study of the microbes themselves, the mineral products, its biocorrosion features and the relationships between these types of observations. We have reviewed our own data on glass bio-corrosion and in particular the wider literature on microbial mineral tunneling to develop a two stage biocorrosion model for volcanic glass that offers feedback for our understanding of the mechanisms and the dynamics of microbial dissolution. Traces of microbially mediated dissolution of volcanic glass are commonly observed in volcanic glass found in submarine volcanoes on the seafloor, and in uplifted submarine volcanoes of almost any geological age back to the origin of life. Two main bioalteration textures care observed, granular and tubular. Based on a comparison of these features in particular with tunneling by ectomycorrhizal fungi, we propose two distinct types of biocorrosion that affects glass: (1) Granular alteration textures, made up of colonies of microbe-sized, near spherical mineral - filled cavities that form irregular clusters ranging to a tens of micron thick bands at the glas surfaces. These granular textures are interpreted as the result of microbial colonization. accompanied by dissolution of the glass in their contact surface, deposition of authigenic minerals and the formation of a biofilm, that eventually seals the glass from easy access by seawater for hydration, or from microbes accessing Fe (II) in the glass. (2) The most spectacular bioalteration feature, repesented by the formation of tubes cannot be easily formed by the former mechanism because near spherical, individual microbes are likely not to produce the directionality that is required to

  12. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.

    PubMed

    Phieler, René; Merten, Dirk; Roth, Martin; Büchel, Georg; Kothe, Erika

    2015-12-01

    Reclaiming land that has been anthropogenically contaminated with multiple heavy metal elements, e.g., during mining operations, is a growing challenge worldwide. The use of phytoremediation has been discussed with varying success. Here, we show that a careful examination of options of microbial determination of plant performance is a key element in providing a multielement remediation option for such landscapes. We used both (a) mycorrhiza with Rhizophagus irregularis and (b) bacterial amendments with Streptomyces acidiscabies E13 and Streptomyces tendae F4 to mediate plant-promoting and metal-accumulating properties to Sorghum bicolor. In pot experiments, the effects on plant growth and metal uptake were scored, and in a field trial at a former uranium leaching heap site near Ronneburg, Germany, we could show the efficacy under field conditions. Different metals could be extracted at the same time, with varying microbial inoculation and soil amendment scenarios possible when a certain metal is the focus of interest. Especially, manganese was extracted at very high levels which might be useful even for phytomining approaches.

  13. Microbial-mediated method for metal oxide nanoparticle formation

    DOEpatents

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  14. MerTK regulates thymic selection of autoreactive T cells.

    PubMed

    Wallet, Mark A; Flores, Rafael R; Wang, Yaming; Yi, Zuoan; Kroger, Charles J; Mathews, Clayton E; Earp, H Shelton; Matsushima, Glenn; Wang, Bo; Tisch, Roland

    2009-03-24

    T cell-mediated autoimmune diseases such as type 1 diabetes (T1D) are believed to be the result in part of inefficient negative selection of self-specific thymocytes. However, the events regulating thymic negative selection are not fully understood. In the current study, we demonstrate that nonobese diabetic (NOD) mice lacking expression of the Mer tyrosine kinase (MerTK) have reduced inflammation of the pancreatic islets and fail to develop diabetes. Furthermore, NOD mice deficient in MerTK expression (Mer(-/-)) exhibit a reduced frequency of beta cell-specific T cells independent of immunoregulatory effectors. The establishment of bone marrow chimeric mice demonstrated that the block in beta cell autoimmunity required hematopoietic-derived cells lacking MerTK expression. Notably, fetal thymic organ cultures and self-peptide administration showed increased thymic negative selection in Mer(-/-) mice. Finally, thymic dendritic cells (DC) prepared from Mer(-/-) mice exhibited an increased capacity to induce thymocyte apoptosis in a peptide-specific manner in vitro. These findings provide evidence for a unique mechanism involving MerTK-mediated regulation of thymocyte negative selection and thymic DC, and suggest a role for MerTK in contributing to beta cell autoimmunity.

  15. Microbial-mediated reduction of perchlorate in groundwater

    SciTech Connect

    Herman, D.C.; Frankenberger, W.T. Jr.

    1998-07-01

    Perchlorate has been widely used as a propellant in solid rocket fuel, and has recently been identified as a contaminant in both groundwater and surface waters. Perchlorate is recognized by the US Environmental Protection Agency (USEPA) as a potential health risk, and the State of California has set a drinking water action level of 18 {micro}g L{sup {minus}1}. Incidents of groundwater contamination have been associated with industrial sites in California and Nevada that have been involved in the manufacturing or testing of solid rocket propellants. Microorganisms have been shown to be capable of reducing perchlorate (ClO{sub 4}{sup {minus}}) to chloride (Cl{sup {minus}}) and oxygen, thus transforming perchlorate into innocuous end-products. Bioreactor processes for the remediation of perchlorate contaminated wastewater have previously been established. However, these systems were optimized for perchlorate concentrations in the grams per liter range, while groundwater contamination can be a million-fold lower but still exceed the water quality action level. This literature review will focus on microbial-mediated perchlorate reduction, and discuss issues of importance to the remediation of perchlorate-contaminated groundwater.

  16. MER Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Lee, Hyun H.

    2012-01-01

    MERTELEMPROC processes telemetered data in data product format and generates Experiment Data Records (EDRs) for many instruments (HAZCAM, NAVCAM, PANCAM, microscopic imager, Moessbauer spectrometer, APXS, RAT, and EDLCAM) on the Mars Exploration Rover (MER). If the data is compressed, then MERTELEMPROC decompresses the data with an appropriate decompression algorithm. There are two compression algorithms (ICER and LOCO) used in MER. This program fulfills a MER specific need to generate Level 1 products within a 60-second time requirement. EDRs generated by this program are used by merinverter, marscahv, marsrad, and marsjplstereo to generate higher-level products for the mission operations. MERTELEPROC was the first GDS program to process the data product. Metadata of the data product is in XML format. The software allows user-configurable input parameters, per-product processing (not streambased processing), and fail-over is allowed if the leading image header is corrupted. It is used within the MER automated pipeline. MERTELEMPROC is part of the OPGS (Operational Product Generation Subsystem) automated pipeline, which analyzes images returned by in situ spacecraft and creates level 1 products to assist in operations, science, and outreach.

  17. MER ARA pyroshock test results

    NASA Technical Reports Server (NTRS)

    Chang, Kurng Y.

    2004-01-01

    This paper presents the shock test results achieved in the MER ARA/brush motor pyroshock qualification. The results of MER flight system pyrofiring tests in comparison with the ARA shock test requirements are discussed herein. Alternate test methods were developed in an effort to qualify the critical MER equipment for adequate performance in the actual flight pyroshock condition.

  18. MER ARA pyroshock test results

    NASA Technical Reports Server (NTRS)

    Chang, Kurng Y.

    2004-01-01

    This paper presents the shock test results achieved in the MER ARA/brush motor pyroshock qualification. The results of MER flight system pyrofiring tests in comparison with the ARA shock test requirements are discussed herein. Alternate test methods were developed in an effort to qualify the critical MER equipment for adequate performance in the actual flight pyroshock condition.

  19. THE NEAR-EQUILIBRIUM OF MICROBIALLY MEDIATED REDOX COUPLES IN REDUCING GROUNDWATER ENVIRONMENTS

    EPA Science Inventory

    Redox couples are commonly held to be in disequilibrium among each other in most natural waters. To evaluate this view for microbially mediated, reducing, groundwater environments, monitoring data were examined for several couples under conditions ranging from nitrate-detectable...

  20. THE NEAR-EQUILIBRIUM OF MICROBIALLY MEDIATED REDOX COUPLES IN REDUCING GROUNDWATER ENVIRONMENTS

    EPA Science Inventory

    Redox couples are commonly held to be in disequilibrium among each other in most natural waters. To evaluate this view for microbially mediated, reducing, groundwater environments, monitoring data were examined for several couples under conditions ranging from nitrate-detectable...

  1. MER-B

    NASA Image and Video Library

    2003-06-13

    An overhead crane lowers the cylindrical payload canister toward Mars Exploration Rover 1 (MER-B). Once secure inside the canister, the rover will be transported to Launch Complex 17-B, Cape Canaveral Air Force Station, for mating with the Delta rocket. The second of twin rovers being sent to Mars, it is equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow it to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can't yet go. MER-B is scheduled to launch from Pad 17-B June 26 at one of two available times, 12:27:31 a.m. EDT or 1:08:45 a.m. EDT.

  2. Analyzing MER Uplink Reports

    NASA Technical Reports Server (NTRS)

    Savin, Stephen C.

    2005-01-01

    The MER project includes two rovers working simultaneously on opposite sides of Mars each receiving commands only once a day. Creating this uplink is critical, since a failed uplink means a lost day and a waste of money. Examining the process of creating this uplink, I tracked the use of the system developed for requesting observations as well as the development, from stage to stage, in forming an activity plan. I found the system for requesting observations was commonly misused, if used at all. There are half a dozen reports to document the creation of the uplink plan and often there are discrepancies among them. Despite this, the uplink process worked very well and MER has been one of the most successful missions for NASA in recent memory. Still it is clear there is room for improvement.

  3. Analyzing MER Uplink Reports

    NASA Technical Reports Server (NTRS)

    Savin, Stephen C.

    2005-01-01

    The MER project includes two rovers working simultaneously on opposite sides of Mars each receiving commands only once a day. Creating this uplink is critical, since a failed uplink means a lost day and a waste of money. Examining the process of creating this uplink, I tracked the use of the system developed for requesting observations as well as the development, from stage to stage, in forming an activity plan. I found the system for requesting observations was commonly misused, if used at all. There are half a dozen reports to document the creation of the uplink plan and often there are discrepancies among them. Despite this, the uplink process worked very well and MER has been one of the most successful missions for NASA in recent memory. Still it is clear there is room for improvement.

  4. MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae

    PubMed Central

    Tardu, Mehmet; Bulut, Selma; Kavakli, Ibrahim Halil

    2017-01-01

    Blue light (BL) is a major environmental factor that affects the physiology, behavior, and infectivity of bacteria as it contributes to the generation of reactive oxygen species (ROS) while increasing photo-oxidative stress in cells. However, precise photo-oxidative response mechanism in non-phototrophic bacteria is yet to be elucidated. In this study, we investigated the effect of BL in Vibrio cholerae by using genetics and transcriptome profiling. Genome-wide analysis revealed that transcription of 6.3% of V. cholerae genes were regulated by BL. We further showed that BL enhances ROS production, which is generated through the oxidative phosphorylation. To understand signaling mechanisms, we generated several knockouts and analyzed their transcriptome under BL exposure. Studies with a double-knockout confirm an anti-sigma factor (ChrR) and putative metalloregulatory-like protein (MerR) are responsible for the genome-wide regulation to BL response in V. cholerae. Collectively, these results demonstrate that MerR-like proteins, in addition to ChrR, are required for V. cholerae to mount an appropriate response against photo-oxidative stress induced by BL. Outside its natural host, V. cholerae can survive for extended periods in natural aquatic environments. Therefore, the regulation of light response for V. cholerae may be a critical cellular process for its survival in these environments. PMID:28098242

  5. A biophysical index for predicting hydration-mediated microbial diversity in soils

    NASA Astrophysics Data System (ADS)

    Wang, G.; Or, D.

    2012-04-01

    Exploring the origins of soil microbial diversity represents an immense and uncharted scientific frontier. Progress in resolving mechanisms that promote and sustain the unparalleled soil microbial diversity found in soil requires development of process-based predictive tools that consider dynamic biophysical interactions at highly resolved spatial and temporal scales. We report a novel biophysical metric for hydration-mediated microbial coexistence in soils by integrating key biophysical variables, such as aquatic habitat size and connectivity, nutrient diffusion affecting microbial growth, and aqueous films controlling motility and dispersal, into a predictive index. Results show a surprisingly narrow range of hydration conditions (a few kPa) that mark a sharp transition from suppression (wet) to promotion (dry) of microbial diversity in unsaturated soils in agreement with limited observations and with simulation results based on individual-based models of competing populations. The framework enables systematic hypothesis testing for key factors that regulate microbial populations and affect soil bio-geochemical functions, and represents a step towards deciphering key mechanisms that support soil microbial diversity. New insights into the different roles of biophysical mechanisms in promoting soil microbial diversity enable predictions concerning microbial consortia function and bioremediation activities in soils, and may shape how we quantify microbial diversity within the context of land resources and biogeochemical cycling.

  6. Microbially mediated alteration of crystalline basalts as identified from analogical reactive percolation experiments

    NASA Astrophysics Data System (ADS)

    Moore, Rachael; Ménez, Bénédicte; Stéphant, Sylvian; Dupraz, Sébastien; Ranchou-Peyruse, Magali; Ranchou-Peyruse, Anthony; Gérard, Emmanuelle

    2017-04-01

    Alteration in the ocean crust through fluid circulation is an ongoing process affecting the first kilometers and at low temperatures some alteration may be microbially mediated. Hydrothermal activity through the hard rock basement supports diverse microbial communities within the rock by providing nutrient and energy sources. Currently, the impact of basement hosted microbial communities on alteration is poorly understood. In order to identify and quantify the nature of microbially mediated alteration two reactive percolation experiments mimicking circulation of CO2 enriched ground water were performed at 35 °C and 30 bar for 21 days each. The experiments were performed using a crystalline basalt substrate from an earlier drilled deep Icelandic aquifer. One experiment was conducted on sterile rock while the other was conducted with the addition of a microbial inoculate derived from groundwater enrichment cultures obtained from the same aquifer. µCT on the experimental basaltic substrate before and after the reactive percolation experiment along with synchrotron radiation x-ray tomographic microscopy and the mineralogical characterization of resulting material allows for the comparative volumetric quantification of dissolution and precipitation. The unique design of this experiment allows for the identification of alteration which occurs solely abiotically and of microbially mediated alteration. Experimental results are compared to natural basaltic cores from Iceland retrieved following a large field CO2 injection experiment that stimulated microbial activity at depth.

  7. Microbial mediated formation of low-temperature hydrothermal barite chimneys

    NASA Astrophysics Data System (ADS)

    Thorseth, I. H.; Steen, I. H.; Eickmann, B.; Dahle, H.; Baumberger, T.; Peters, M.; Strauss, H.; Pedersen, R. B.

    2012-12-01

    A low-temperature (20 degrees C) venting area with numerous active and extinct barite chimneys (up to 1 m tall) are located on the eastern flank of the hydrothermal mound of Loki's Castle black smoker field at the Mohns-Knipovich bend of the Arctic Mid-Ocean Ridge. The active barite chimneys are covered by white mats containing abundant microbial cells and extracellular material with attached barite crystals. Within the chimneys microbial cells are partly embedded in barite and crystals are covered by extracellular material. These observations indicate that the microbial material serve as a substrate for nucleation and precipitation of barite with the potential of having an important control on the construction of the chimneys. In addition, the presence of framboidal pyrite in black interior flow channels and in the underlying hydrothermal sediment further suggests that the chimney formation is linked to microbial sulphate reduction (MSR). To further investigate the relationship between chimney growth and microbial activity we used a combination of biomolecular and isotope analyses. Pyrosequencing of PCR amplicons of 16S rRNA followed by taxonomic classification revealed that sulphide oxidizers (Sulfurimonas) within the Epsilonproteobacteria dominate the microbial mats and the white barite of the chimney wall. In the black interior flow channel a more diverse microbial community was observed indicating methane, sulphur and ammonia oxidation as well as heterotrophic processes. Multiple isotope analyses (δ18O, δ34S, Δ33S) reveal that the barite chimneys precipitated from a fluid that was modified by subseafloor MSR in the sulphide mound. This is supported by the sulphur isotope signature of the framboidal pyrite, pore water, and mono- and disulphides extracted from the hydrothermal sediment as well as the biomolecular data. We suggest that the MSR was triggered by mixing of the H2 and CH4 rich high-temperature (320 degrees C) fluids and percolating seawater, which

  8. Microbially mediated cobalt oxidation in seawater revealed by radiotracer experiments

    SciTech Connect

    Lee, B.G.; Fisher, N.S. )

    1993-12-01

    The influence of microbial activity on Co and Mn oxidation in decomposing diatom cultures was determined with radiotracer techniques. Adding a consortium of microorganisms collected from coastal seawater (0.2-3-[mu]m size fraction) to the cultures increased particulate Co formation rates at 18[degrees]C by an order of magnitude (to 3.8% d[sup [minus]1]) and particulate Mn formation rates 3-fold (to 7.9% d[sup [minus

  9. Geochemical Evidence of Microbially-Mediated Subglacial Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Montross, S. N.; Skidmore, M. L.

    2006-12-01

    Interactions between dilute meltwater and fine-grained, freshly comminuted debris at the bed of temperate glaciers liberate significant solute. The proportions of solute produced in the subglacial environment via biotic and abiotic processes remains unknown, however, this work suggests the biotic contribution is substantial. Laboratory analyses of microbiological and geochemical properties of sediment and meltwater from the Haut Glacier d'Arolla (HGA) indicates that a metabolically active microbial community exists in water-saturated sediments at the ice-bedrock interface. Basal sediment slurries and meltwater were incubated in the laboratory for 100 days under near in situ subglacial conditions. Relative proportions of solute produced via abiotic v. biotic mineral weathering were analyzed by comparing the evolved aqueous chemistry of biologically active "live" sediment slurries with sterilized controls. Aqueous chemical analyses indicate an increase in solute produced from mineral weathering coupled with nitrate depletion in the biologically active slurries compared with the killed controls. These results infer that microbial activity at HGA is likely an important contributor to chemical weathering associated solute fluxes from the glaciated catchment. Due to the magnitude of past glaciations throughout geologic time (e.g., Neoproterozoic and Late-Pleistocene), and evidence that subglacial microbial activity impacts mineral weathering, greater consideration needs to be given to cold temperature biogeochemical weathering and its impact on global geochemical cycles.

  10. The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction

    PubMed Central

    Harrington, Timothy D.; Tran, Vi N.; Mohamed, Abdelrhman; Renslow, Ryan; Biria, Saeid; Orfe, Lisa; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    The aim of this work was to elucidate the mechanism of mediated microbial electrosynthesis via neutral red from an electrode to fermenting Escherichia coli cultures in a bioelectrochemical system. Chemical reduction of NAD+ by reduced neutral red did not occur as predicted. Instead, neutral red was shown to reduce the menaquinone pool in the inner bacterial membrane. The reduced menaquinone pool altered fermentative metabolite production via the arcB redoxsensing cascade in the absence of terminal electron acceptors. When the acceptors DMSO, fumarate, or nitrate were provided, as many as 19% of the electrons trapped in the reduced acceptors were derived from the electrode. These results demonstrate the mechanism of neutral red-mediated microbial electrosynthesis during fermentation as well as how neutral red enables microbial electrosynthesis of reduced terminal electron acceptors. PMID:26094195

  11. The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction.

    PubMed

    Harrington, Timothy D; Tran, Vi N; Mohamed, Abdelrhman; Renslow, Ryan; Biria, Saeid; Orfe, Lisa; Call, Douglas R; Beyenal, Haluk

    2015-09-01

    The aim of this work was to elucidate the mechanism of mediated microbial electrosynthesis via neutral red from an electrode to fermenting Escherichia coli cultures in a bioelectrochemical system. Chemical reduction of NAD(+) by reduced neutral red did not occur as predicted. Instead, neutral red was shown to reduce the menaquinone pool in the inner bacterial membrane. The reduced menaquinone pool altered fermentative metabolite production via the arcB redox-sensing cascade in the absence of terminal electron acceptors. When the acceptors DMSO, fumarate, or nitrate were provided, as many as 19% of the electrons trapped in the reduced acceptors were derived from the electrode. These results demonstrate the mechanism of neutral red-mediated microbial electrosynthesis during fermentation as well as how neutral red enables microbial electrosynthesis of reduced terminal electron acceptors.

  12. Microbially Mediated Formation of Benzonaphthothiophenes from Benzo[b]thiophenes.

    PubMed

    Kropp, K G; Gonçalves, J A; Andersson, J T; Fedorak, P M

    1994-10-01

    Studies of the microbial metabolism of benzo[b]thiophene (molecular weight 134) by three Pseudomonas isolates showed the formation of benzothiophene sulfoxide, benzothiophene sulfone, and a sulfur-containing metabolite with a molecular weight of 234. Desulfurization of the high-molecular-weight product with nickel boride gave 1-phenylnaphthalene, indicating that the metabolite was benzo[b]naphtho[1,2-d]thiophene. Similarly, the isolates were capable of producing the analogous dimethyl-substituted benzonaphthothiophenes from methylbenzothiophenes that had the methyl substitution on the benzene ring. The formation of benzo[b] naphtho[1,2-d]thiophene was also observed when a petroleum-degrading mixed culture was incubated with benzothiophene-supplemented Prudhoe Bay crude oil. Investigations into the mechanism of formation of these high-molecular-weight compounds showed that they resulted from an abiotic, Diels-Alder-type condensation of two molecules of the sulfoxide, which were microbially produced from the respective benzothiophene, with the subsequent loss of two atoms of hydrogen and oxygen and one atom of sulfur. The condensation products also formed from the sulfoxides of benzothiophene and methylbenzothiophenes when the sulfoxides were enzymatically synthesized by oxidation of the benzothiophene with horse heart cytochrome c and H(2)O(2).

  13. Microbially-Mediated Precipitation of Calcium Carbonate Nanoparticles.

    PubMed

    Kang, Ser Ku; Roh, Yul

    2016-02-01

    The objective of this study was to investigate the biomineralization of carbonate minerals using microorganisms (Wu Do-1) enriched from rhodoliths. A 16S rRNA sequence analysis showed that Wu Do-1 mainly contained Proteus mirabilis. The pH decreased from 6.5 to 5.3 over the first 4 days of incubation due to microbial oxidation of organic acids, after which it increased to 7.8 over the remaining incubation period. XRD analysis showed that the precipitates were Mg-rich cal- cite (MgxCa(1-x)CO3), whereas no precipitates were formed without the addition of Wu Do-1 in D-1 medium. SEM-EDS analyses showed that the Mg-rich calcite had a rhombohedron shape and consisted of Ca, Si and Mg with an extracelluar polymeric substance (EPS). In addition, TEM-EDS analyses revealed they were hexagon in shape, 500-700 nm in size, and composed of Ca, Mg, C, and O. These results indicated that Wu Do-1 induced precipitation of Mg-rich calcite on the cell walls and EPS via the accumulation of Ca and/or Mg ions. Therefore, microbial precipitation of carbonate nanoparticles may play an important role in metal and carbon biogeochemistry, as well as in carbon sequestration in natural environments.

  14. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  15. Microbial Herd Protection Mediated by Antagonistic Interaction in Polymicrobial Communities

    PubMed Central

    Wong, Megan J. Q.; Liang, Xiaoye; Smart, Matt; Tang, Le; Moore, Richard; Ingalls, Brian

    2016-01-01

    ABSTRACT In host and natural environments, microbes often exist in complex multispecies communities. The molecular mechanisms through which such communities develop and persist, despite significant antagonistic interactions between species, are not well understood. The type VI secretion system (T6SS) is a lethal weapon commonly employed by Gram-negative bacteria to inhibit neighboring species through the delivery of toxic effectors. It is well established that intraspecies protection is conferred by immunity proteins that neutralize effector toxicities. In contrast, the mechanisms for interspecies protection are not clear. Here we use two T6SS-active antagonistic bacterial species, Aeromonas hydrophila and Vibrio cholerae, to demonstrate that interspecies protection is dependent on effectors. A. hydrophila and V. cholerae do not share conserved immunity genes but could coexist equally in a mixture. However, mutants lacking the T6SS or effectors were effectively eliminated by the competing wild-type strain. Time-lapse microscopic analyses showed that mutually lethal interactions drive the segregation of mixed species into distinct single-species clusters by eliminating interspersed single cells. Cluster formation provides herd protection by abolishing lethal interactions inside each cluster and restricting the interactions to the boundary. Using an agent-based modeling approach, we simulated the antagonistic interactions of two hypothetical species. The resulting simulations recapitulated our experimental observations. These results provide mechanistic insights regarding the general role of microbial weapons in determining the structures of complex multispecies communities. IMPORTANCE Investigating the warfare of microbes allows us to better understand the ecological relationships in complex microbial communities such as the human microbiota. Here we use the T6SS, a deadly bacterial weapon, as a model to demonstrate the importance of lethal interactions in

  16. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  17. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    PubMed

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  18. Biotic and Abiotic Properties Mediating Plant Diversity Effects on Soil Microbial Communities in an Experimental Grassland

    PubMed Central

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860

  19. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  20. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    ... also been found in camels and in one bat. While it is believed to come from animals, ... Prevention. Middle East Respiratory Syndrome (MERS): Frequently Asked Questions and Answers. Updated December 2, 2015. www.cdc. ...

  1. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    ... United Kingdom (UK), and United States of America (USA). CDC Commentary: Be on the Lookout for MERS- ... OIG 1600 Clifton Road Atlanta , GA 30329-4027 USA 800-CDC-INFO (800-232-4636) , TTY: 888- ...

  2. Development of a rapid ferricyanide mediated assay for biochemical oxygen demand using a mixed microbial consortium.

    PubMed

    Catterall, Kylie; Zhao, Huijun; Pasco, Neil; John, Richard

    2003-06-01

    Ferricyanide-mediated (FM) microbial reactions were used for the rapid determination of the biochemical oxygen demand (BOD) of a range of synthetic and real wastewater samples. Four single-species microbial seeds and a synthetically prepared microbial consortium were compared. In all cases, the microbial consortium exhibited a greater extent and rate of biodegradation compared to the individual microbial seeds. Markedly improved correlation to the standard BOD5 method was also noted for the microbial consortium (compared to the single-species seeds). A linear dynamic range up to 200 mg BOD5 L(-1) was observed, which is considerably greater than the linear range of the standard BOD5 assay and most other rapid BOD assays reported. In addition, biodegradation efficiencies comparable to the 5-day BOD5 assay (and much greater than other rapid BOD assays) were observed in 3 h. A highly significant correlation (R = 0.935, p = 0.000, n = 30) between the FM-BOD method and the standard BOD5 method was found for a wide diversity of real wastewater samples. The results indicate that the FM-BOD assay is a promising, rapid, alternative to the standard 5-day BOD5 assay.

  3. Influence of coral and algal exudates on microbially mediated reef metabolism.

    PubMed

    Haas, Andreas F; Nelson, Craig E; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D; Carlson, Craig A; Leichter, James J; Hatay, Mark; Smith, Jennifer E

    2013-01-01

    producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs.

  4. Influence of coral and algal exudates on microbially mediated reef metabolism

    PubMed Central

    Nelson, Craig E.; Rohwer, Forest; Wegley-Kelly, Linda; Quistad, Steven D.; Carlson, Craig A.; Leichter, James J.; Hatay, Mark; Smith, Jennifer E.

    2013-01-01

    producers were always estimated to be net autotrophic. However, estimates of microbial consumption of DOC at the reef scale surpassed the DOC exudation rates suggesting net consumption of DOC at the reef-scale. In situ mesocosm experiments using custom-made benthic chambers placed over different types of benthic communities exhibited identical trends to those found in incubation experiments. Here we provide the first comprehensive dataset examining direct primary producer-induced, and indirect microbially mediated alterations of elemental cycling in both benthic and planktonic reef environments over diurnal cycles. Our results highlight the variability of the influence of different benthic primary producers on microbial metabolism in reef ecosystems and the potential implications for energy transfer to higher trophic levels during shifts from coral to algal dominance on reefs. PMID:23882445

  5. Molecular mechanisms of CRISPR-mediated microbial immunity.

    PubMed

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.

  6. Plant roots alter microbial potential for mediation of soil organic carbon decomposition

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Shi, S.; Herman, D.; He, Z.; Zhou, J.

    2014-12-01

    Plant root regulation of soil organic carbon (SOC) decomposition is a key controller of terrestrial C-cycling. Although many studies have tested possible mechanisms underlying plant "priming" of decomposition, few have investigated the microbial mediators of decomposition, which can be greatly influenced by plant activities. Here we examined effects of Avena fatua roots on decomposition of 13C-labeled root litter in a California grassland soil over two simulated growing-seasons. The presence of plant roots consistently suppressed rates of litter decomposition. Reduction of inorganic nitrogen (N) concentration in soil reduced but did not completely relieve this suppressive effect. The presence of plants significantly altered the abundance, composition and functional potential of microbial communities. Significantly higher signal intensities of genes capable of degrading low molecular weight organic compounds (e.g., glucose, formate and malate) were observed in microbial communities from planted soils, while microorganisms in unplanted soils had higher relative abundances of genes involved in degradation of some macromolecules (e.g., hemicellulose and lignin). Additionally, compared to unplanted soils, microbial communities from planted soils had higher signal intensities of proV and proW, suggesting microbial osmotic stress in planted soils. Possible mechanisms for the observed inhibition of decomposition are 1) microbes preferentially using simple substrates from root exudates and 2) soil drying by plant evapotranspiration impairing microbial activity. We propose a simple data-based model suggesting that the impacts of roots, the soil environment, and microbial community composition on decomposition processes result from impacts of these factors on the soil microbial functional gene potential.

  7. Calcium isotopic fractionation in microbially mediated gypsum precipitates

    NASA Astrophysics Data System (ADS)

    Harouaka, Khadouja; Mansor, Muammar; Macalady, Jennifer L.; Fantle, Matthew S.

    2016-07-01

    Gypsum (CaSO4·2H2O) precipitation experiments were carried out at low pH in the presence of the sulfur oxidizing bacterium Acidithiobacillus thiooxidans. The observed Ca isotopic fractionation (expressed as Δ44/40Cas-f = δ44/40Casolid-δ44/40Cafluid) at the end of each experimental time period (∼50 to 60 days) was -1.41‰ to -1.09‰ in the biotic experiments, -1.09‰ in the killed control, and -1.01‰ to -0.88‰ in the abiotic controls. As there were no strong differences in the solution chemistry and the rate at which gypsum precipitated in the biotic and abiotic controls, we deduce a biological Ca isotope effect on the order of -0.3‰. The isotope effect correlates with a difference in crystal aspect ratios between the biotic experiments (8.05 ± 3.99) and abiotic controls (31.9 ± 8.40). We hypothesize that soluble and/or insoluble organic compounds selectively inhibit crystal growth at specific crystal faces, and that the growth inhibition affects the fractionation factor associated with gypsum precipitation. The experimental results help explain Ca isotopic variability in gypsum sampled from a sulfidic cave system, in which gypsum crystals exhibiting a diversity of morphologies (microcrystalline to cm-scale needles) have a broad range of δ44/40Ca values (∼1.2-0.4‰) relative to the limestone wall (δ44/40Ca = 1.3‰). In light of the laboratory experiments, the variation in Ca isotope values in the caves can be interpreted as a consequence of gypsum precipitation in the presence of microbial organic matter and subsequent isotopic re-equilibration with the Ca source.

  8. Role of Soil Microstructure in Microbially-mediated Drying Resistance

    NASA Astrophysics Data System (ADS)

    Cruz, B. C.; Shor, L. M.; Gage, D. J.

    2015-12-01

    The retention of soil moisture between rainfall or irrigation events is imperative to the productivity of terrestrial ecosystems. Amplified weather conditions are expected to result in widespread reduction in soil moisture. Extracellular polysaccharides (EPS) produced by soil bacteria have the ability to influence soil moisture by (i) retaining water directly within the hydrogel matrix, and (ii) promoting an aggregated soil structure. We have developed microfluidic devices that emulate realistic soil microstructures and enable direct observation of EPS production and drying resistance. The objective of this study was to compare moisture retention in emulated soil micromodels containing different soil microstructures. "Aggregated" devices contain a greater number of small (<30 μm) and large (>100 μm) pores, while "non-aggregated" devices contained more intermediate-sized (30-100 μm) pores. Particle-size distributions, similar to a sandy loam, were identical in both cases. Dilute suspensions of either of two strains of Sinorhizobium meliloti were introduced into replicate micromodels: one strain produced EPS ("EPS+") and the other did not produce EPS ("EPS-"). Loaded micromodels were equilibrated at saturated conditions, then dried at 83% RH for several days. Direct observation showed micro-scale patterns of air infiltration. The rate and extent of moisture loss was determined as a function of bacterial strain and microstructure aggregation state. Results showed devices loaded with EPS+ bacteria retained moisture longer than devices loaded with EPS- bacteria. Moisture retention by EPS+ bacteria was enhanced in aggregated versus non-aggregated microstructures. This work illustrates how moisture retention in soil is the result of microbial processes acting within pore-scale soil microstructures. Validated microfluidics-based approaches may help quantitatively link pore-scale phenomena to ecosystem function.

  9. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    PubMed Central

    Hunter, W. R.; Battin, T. J.

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  10. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    PubMed

    Hunter, W R; Battin, T J

    2016-08-02

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  11. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  12. Plant stimulation of soil microbial community succession: how sequential expression mediates soil carbon stabilization and turnover

    SciTech Connect

    Firestone, Mary

    2015-03-31

    It is now understood that most plant C is utilized or transformed by soil microorganisms en route to stabilization. Hence the composition of microbial communities that mediate decomposition and transformation of root C is critical, as are the metabolic capabilities of these communities. The change in composition and function of the C-transforming microbial communities over time in effect defines the biological component of soil C stabilization. Our research was designed to test 2 general hypotheses; the first two hypotheses are discussed first; H1: Root-exudate interactions with soil microbial populations results in the expression of enzymatic capacities for macromolecular, complex carbon decomposition; and H2: Microbial communities surrounding roots undergo taxonomic succession linked to functional gene activities as roots grow, mature, and decompose in soil. Over the term of the project we made significant progress in 1) quantifying the temporal pattern of root interactions with the soil decomposing community and 2) characterizing the role of root exudates in mediating these interactions.

  13. [Microbial reduction of Cu2+ mediated by electroactive biofilms].

    PubMed

    Liu, Yi; Zhou, Shun-Gui; Yuan, Yong; Liu, Zhi

    2014-04-01

    The formation, electron transfer mechanism and environmental effect of electrochemically active biofilms (EABs) have become a hot research topic in environmental science. In this study, bacteria were enriched on a carbon felt to form an EAB under controlled potential conditions. The electrochemical properties of the EAB were evaluated with electrochemical methods. The process of copper reduction and transformation mediated by the EAB was revealed. Analytical techniques such as scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to examine the morphology, content and state of copper in the biofilm. The results showed that the EAB could utilize acetate as electron donor to produce electrons and Cu2+ was reduced to Cu or Cu+. Laser scanning confocal microscope (LSCM) was employed to probe the toxic effects of Cu2+ on the EAB. Copper toxicity on the microbes was reduced in the presence of acetate because of the reduction transformation of Cu2+ to less toxic Cu or Cu+. The results from this study are expected to be instructive for using EABs to stabilize and recover copper from copper-contaminated environments.

  14. Microbially mediated mineral carbonation: roles of phototrophy and heterotrophy.

    PubMed

    Power, Ian M; Wilson, Siobhan A; Small, Darcy P; Dipple, Gregory M; Wan, Wankei; Southam, Gordon

    2011-10-15

    Ultramafic mine tailings from the Diavik Diamond Mine, Canada and the Mount Keith Nickel Mine, Western Australia are valuable feedstocks for sequestering CO₂ via mineral carbonation. In microcosm experiments, tailings were leached using various dilute acids to produce subsaline solutions at circumneutral pH that were inoculated with a phototrophic consortium that is able to induce carbonate precipitation. Geochemical modeling of the experimental solutions indicates that up to 2.5% and 16.7% of the annual emissions for Diavik and Mount Keith mines, respectively, could be sequestered as carbonate minerals and phototrophic biomass. CO₂ sequestration rates are mainly limited by cation availability and the uptake of CO₂. Abundant carbonate mineral precipitation occurred when heterotrophic oxidation of acetate acted as an alternative pathway for CO₂ delivery. These experiments highlight the importance of heterotrophy in producing sufficient DIC concentrations while phototrophy causes alkalinization of waters and produces biomass (fatty acids = 7.6 wt.%), a potential feedstock for biofuel production. Tailings storage facilities could be redesigned to promote CO₂ sequestration by directing leachate waters from tailings piles into specially designed ponds where carbonate precipitation would be mediated by both chemical and biological processes, thereby storing carbon in stable carbonate minerals and potentially valuable biomass.

  15. Microbially mediated carbon mineralization: Geoengineering a carbon-neutral mine

    NASA Astrophysics Data System (ADS)

    Power, I. M.; McCutcheon, J.; Harrison, A. L.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2013-12-01

    Ultramafic and mafic mine tailings are a potentially valuable feedstock for carbon mineralization, affording the mining industry an opportunity to completely offset their carbon emissions. Passive carbon mineralization has previously been documented at the abandoned Clinton Creek asbestos mine, and the active Diavik diamond mine and Mount Keith nickel mine, yet the majority of tailings remain unreacted. Examples of microbe-carbonate interactions at each mine suggest that biological pathways could be harnessed to promote carbon mineralization. In suitable environmental conditions, microbes can mediate geochemical processes to accelerate mineral dissolution, increase the supply of carbon dioxide (CO2), and induce carbonate precipitation, all of which may accelerate carbon mineralization. Tailings mineralogy and the availability of a CO2 point source are key considerations in designing tailings storage facilities (TSF) for optimizing carbon mineralization. We evaluate the efficacy of acceleration strategies including bioleaching, biologically induced carbonate precipitation, and heterotrophic oxidation of waste organics, as well as abiotic strategies including enhancing passive carbonation through modifying tailings management practices and use of CO2 point sources (Fig. 1). With the aim of developing carbon-neutral mines, implementation of carbon mineralization strategies into TSF design will be driven by economic incentives and public pressure for environmental sustainability in the mining industry. Figure 1. Schematic illustrating geoengineered scenarios for carbon mineralization of ultramafic mine tailings. Scenarios A and B are based on non-point and point sources of CO2, respectively.

  16. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    Treesearch

    Aimee T. Classen; Steven T. Overby; Stephen C. Hart; George W. Koch; Thomas G. Whitham

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality of an ecosystem or indirectly by shifting the composition of microbial communities that mediate nutrient processes. We examined the effects of tree susceptibility and resistance to herbivory on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore...

  17. MERS-CoV spike protein: Targets for vaccines and therapeutics.

    PubMed

    Wang, Qihui; Wong, Gary; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-09-01

    The disease outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) is still ongoing in the Middle East. Over 1700 people have been infected since it was first reported in September 2012. Despite great efforts, licensed vaccines or therapeutics against MERS-CoV remain unavailable. The MERS-CoV spike (S) protein is an important viral antigen known to mediate host-receptor binding and virus entry, as well as induce robust humoral and cell-mediated responses in humans during infection. In this review, we highlight the importance of the S protein in the MERS-CoV life cycle, summarize recent advances in the development of vaccines and therapeutics based on the S protein, and discuss strategies that can be explored to develop new medical countermeasures against MERS-CoV.

  18. Microbial Mediated Mineralization in the Extreme Hypersaline Sabkha Environment of Abu Dhabi (UAE)

    NASA Astrophysics Data System (ADS)

    Bontognali, T.; McKenzie, J.; Warthmann, R.; Vasconcelos, C.

    2005-12-01

    Studies of microbes living in extreme environments provide important information about microbial metabolisms, survival strategies and production of biominerals. Knowledge of these geobiological processes and the ultimate product can be used to better reconstruct the evolution of life during the early Earth, when skeletal fossils are absent. Our study focuses on a well-documented extreme hypersaline environment, the coastal sabkhas of Abu Dhabi (UAE), which is among the rare geological settings where primary dolomite is forming today. The origin of dolomite still remains one of the most debated subjects in sedimentary geology. Although microbial mediation is proposed as a solution for this controversy, the relationship between microbial activity and dolomite precipitation in the sabkha environment has not been fully evaluated. The goal of this study is to investigate this microbial dolomite factor combining sedimentological, geochemical and microbiological approaches. Preliminary results indicate the existence of a new dolomite facies consisting of dolomite spheres enveloped in a biofilm. This association is evidence supporting the microbial hypothesis of dolomite formation. Together with other evaporite minerals, the spheres grow in situ accumulating between 10 and 40 cm depth below the sabkha surface in an organic carbon-rich sediment. The co-existence of dolomite with gypsum leads us to hypothesize a link between the C and S cycles under hypersaline conditions. We propose that formation of significant amounts of gypsum within the zone of dolomite precipitation could be related to the recycling of S compounds during microbial metabolism, such as a combination of sulfate reduction and sulfide oxidation, which could lead to the retention of S in the system. Additionally, the EPS included within the biofilm is widely recognized as an important organic component involved in the precipitation of carbonates. EDS/SEM studies of the biofilm encompassing the dolomite

  19. Monte Carlo evaluation of microbial-mediated contaminant reactions in heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed M. A.; Hatfield, Kirk; Hassan, Ahmed E.

    2006-08-01

    Monte Carlo simulations are conducted to evaluate microbial-mediated contaminant reactions in an aquifer comprised of spatially variable microbial biomass concentrations, aquifer hydraulic conductivities, and initial electron donor/acceptor concentrations. A finite element simulation model is used that incorporates advection, dispersion, and Monod kinetic expressions to describe biological processes. Comparisons between Monte Carlo simulations of heterogeneous systems and simulations using homogeneous formulation of the same two-dimensional transport problem are presented. For the assumed set of parameters, physical aquifer heterogeneity is found to have a minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system; however, it noticeably changes the dispersion, skewness, and peakness of contaminant concentration distributions. Similarly, for low microbial growth rate, given favorable microbial growth characteristics, biological heterogeneity has minor effect on the mass of contaminant biodegraded/transformed when compared to a homogeneous system. On the other hand, when higher effective growth rates are assumed, biological heterogeneity and spatial heterogeneities in essential electron donor/acceptors reduce the efficiency of biotic contaminant reactions; consequently, model simulations derived from heterogeneous biomass distributions predict remediation time scales that are longer than those simulated for homogeneous systems. When correlations between physical aquifer and biological heterogeneities are considered, the assumed correlation affects predicted mean and variance of contaminant concentration and biomass distributions. For example, an assumed negative correlation between hydraulic conductivity and the initial biomass distribution produces a plume where less efficient biotic contaminant reactions occur at the leading edge of the plume; this is consistent with less degradation/transformation occurring over regions

  20. Microbially-mediated transformation and mobilization of soil Fe-organic associations

    NASA Astrophysics Data System (ADS)

    Poggenburg, Christine; Mikutta, Robert; Schippers, Axel; Dohrmann, Reiner; Kaufhold, Stephan; Guggenberger, Georg

    2014-05-01

    Soil organic matter (OM) has been proposed to be stabilized in the long term via sorption to iron((oxy)hydr)oxides under aerobic conditions. However, in an anaerobic environment, Fe-organic associations may be subject to microbial reduction and mobilization, which counteract the suggested stabilizing effect of Fe compounds. Desorption of OM can result in its microbial decomposition causing the emission of greenhouse gases (CO2, CH4, N2O) or release of associated contaminants into the soil solution and groundwater. While the reductive dissolution of pure iron((oxy)hydr)oxides by dissimilatory FeIII reducing bacteria is well established, little is known about the influence of natural OM on microbially mediated mobilization of Fe-organic associations. Therefore, this study aims to elucidate the effect of adsorbed OM on microbial FeIII reduction of Fe-organic associations with regard to (i) the composition of OM, (ii) the carbon loading, and (iii) surface coverage and/or pore blockage by adsorbed OM. Mineral-organic associations with varying carbon contents were synthesized using several iron((oxy)hydr)oxides (Goethite, Lepidocrocite, Ferrihydrite, Hematite, Magnetite) and OM of different origin (dissolved OM extracted from the Oa horizon of a Podzol and Oi horizon of a Cambisol, extracellular polymeric substance extracted from Bacillus subtilis). Incubation experiments under anaerobic conditions were conducted for 16 days using two different strains of dissimilatory FeIII reducing bacteria (Shewanella putrefaciens, Geobacter metallireducens). At five sampling points in time the solution phase was analyzed for pH, Fetotal, and FeII. The initial mineral-organic associations and post-incubation phase were characterized by N2 gas adsorption, FTIR, XRD, and XPS. The results indicate that the composition of OM and carbon loading significantly influence the rate and extend of microbial reduction of Fe-organic associations depending on the type of microbial strain and iron

  1. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping

    PubMed Central

    Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2014-01-01

    Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling. PMID:24694714

  2. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping.

    PubMed

    Zhao, Mengxin; Xue, Kai; Wang, Feng; Liu, Shanshan; Bai, Shijie; Sun, Bo; Zhou, Jizhong; Yang, Yunfeng

    2014-10-01

    Despite microbes' key roles in driving biogeochemical cycles, the mechanism of microbe-mediated feedbacks to global changes remains elusive. Recently, soil transplant has been successfully established as a proxy to simulate climate changes, as the current trend of global warming coherently causes range shifts toward higher latitudes. Four years after southward soil transplant over large transects in China, we found that microbial functional diversity was increased, in addition to concurrent changes in microbial biomass, soil nutrient content and functional processes involved in the nitrogen cycle. However, soil transplant effects could be overridden by maize cropping, which was attributed to a negative interaction. Strikingly, abundances of nitrogen and carbon cycle genes were increased by these field experiments simulating global change, coinciding with higher soil nitrification potential and carbon dioxide (CO2) efflux. Further investigation revealed strong correlations between carbon cycle genes and CO2 efflux in bare soil but not cropped soil, and between nitrogen cycle genes and nitrification. These findings suggest that changes of soil carbon and nitrogen cycles by soil transplant and cropping were predictable by measuring microbial functional potentials, contributing to a better mechanistic understanding of these soil functional processes and suggesting a potential to incorporate microbial communities in greenhouse gas emission modeling.

  3. Mediated microbial biosensor using a novel yeast strain for wastewater BOD measurement.

    PubMed

    Trosok, S P; Driscoll, B T; Luong, J H

    2001-08-01

    Two new yeast strains (SPT1 and SPT2) were isolated and immobilized on glassy carbon electrodes to form microbial biosensors for estimation of biochemical oxygen demand (BOD). Ferricyanide was proven to be the most efficient mediator to shuttle electrons from the redox center of reduced microbial enzymes to the electrode in the presence of excess glucose/glutamic acid (GGA). With a 3-fold greater metabolic assimilation capability and greater responses to various effluent samples, SPT1 was selected for sensor-BOD measurements. BOD estimations for the GGA standard resulted in an extended linear range: 2-100 mg/l. Response reproducibility was +/-10% for a GGA standard containing 10 mg BOD/l. For analysis of pulp mill effluents, the BOD detection limit was 2 mg/l with a response time of 5 min.

  4. Hydrodynamic Coupling in Microbially Mediated Fracture Mineralization: Formation of Self-Organized Groundwater Flow Channels

    NASA Astrophysics Data System (ADS)

    Lunn, R. J.; El Mountassir, G.; MacLachlan, E.; Moir, H.

    2013-12-01

    Evidence of fossilized microorganisms embedded within mineral veins and mineral-filled fractures has been observed in a wide range of geological environments. Microorganisms can act as sites for mineral nucleation and also contribute to mineral precipitation by inducing local geochemical changes. In this study, we explore fundamental controls on microbially induced mineralization in rock fractures. Specifically, we systematically investigate the influence of hydrodynamics (velocity, flow rate, aperture) on microbially mediated calcite precipitation. We use a case study of microbially induced calcite precipitation as a model biomineralization system to investigate potential feedback mechanisms between the temporally varying patterns of mineral precipitation within a fracture and the resulting variations in the local velocity field. Fractures are represented as a series of precision-etched parallel channels between a pair of sealed Perspex plates. Multiple channels are designed to maintain a constant flow rate, whilst independently adjusting channel aperture and width to explore the effects of aperture and fluid velocity on biomineral precipitation. Our experimental results demonstrate that a feedback mechanism exists between the gradual reduction in fracture aperture due to precipitation, and its effect on the local fluid velocity. This feedback results in mineral fill distributions that focus flow into a small number of self-organizing channels that remain open, ultimately controlling the final aperture profile that governs flow within the fracture. This feedback mechanism exists because precipitation on the fracture walls (as opposed to in solution) requires the bacteria to be transported to the fracture surface. Bacteria settle out of a quiescent solution at a velocity that is dependent on individual floc size and density. This settling velocity competes with the bed shear velocity, inhibiting deposition via entrainment. As precipitation progresses, the flow

  5. Microbial Mediation of Carbonate Precipitation: Biogeochemistry of Stromatolitic Mats of Lagoa Vermelha, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Vasconcelos, C.; Visscher, P. T.; Mauclaire, L.; Warthmann, R. J.; McKenzie, J. A.

    2002-12-01

    Contemporary microbial mats are organosedimentary constructions, which have a structure similar to ancient stromatolites. However, only a few marine and hypersaline microbial mats have been found to precipitate carbonates. In addition, the formation of continuous laminae of carbonates has been observed only in Shark Bay (Western Australia) and Highborne Cay (Bahamas). Here, we describe microcrystalline carbonate precipitation in microbial mats of the moderate hypersaline lagoon, Lagoa Vermelha (RJ, Brazil), where precipitation of dolomite at ca. 15 cm depth in the sediments has been previously reported. The Lagoa Vermelha mats sustain high rates of photosynthesis, aerobic respiration, sulfate reduction and fermentation, resulting in large pH fluctuations in the upper 5-8 mm. Several discrete lithified calcium carbonate layers are present, in which the Mg content increases with depth. The first lithified layer (Ca:Mg of 11:1) in the mats is found beneath a 2-mm-thick biofilm which contains Gloeocapsa. Below the underlying dense Microcoleus layer, the second micrite deposit (Ca:Mg of 8:1) is observed at 4-5 mm depth. Successive micritic laminae (Ca:Mg of 3:1 and lower) are found in the layer of decaying cyanobacteria that harbors large numbers of heterotrophic microbes and purple sulfur bacteria. This is the first report of microbial-mediated Ca-Mg carbonate precipitation in discrete laminae. Observations in this particular environment will undoubtedly offer clues to understand complex ancient conditions involved in stromatolite formation, as well as provide information about the role played by microorganisms during high-Mg calcite and dolomite precipitation. As dolomitic stromatolites are abundant from the Precambrian, understanding the mechanisms driving microbial dolomite precipitation in this microcosm will lead to insights about one of the oldest biomineralization processes.

  6. Carbon nanoparticles-assisted mediator-less microbial fuel cells using Proteus vulgaris.

    PubMed

    Yuan, Yong; Ahmed, Jalal; Zhou, Lihua; Zhao, Bo; Kim, Sunghyun

    2011-09-15

    Recently mediator-less microbial fuel cells (MFCs) are attracting great interest among researchers due to their potential applications to electricity generation as well as wastewater treatment. Common mediator-less MFCs employ electroactive bacteria called exoelectrogens to directly transfer electrons to the anode from the bacteria. However, exoelectrogens are rather limited in number and thus may not find general use for practical purposes. Here we showed our results in which mediator-less MFCs could be developed from Gram-negative non-exoelectrogens. By using carbon nanoparticles as a conductive medium to immobilize bacteria, it was possible to generate appreciable electricity from Proteus vulgaris without exogenous mediators. Maximum power density of 269 mW m(-2) and cell voltage of ca. 400 mV were obtained using glucose as a substrate. Power generation was attributed to direct electron transfer and to self-produced mediators, both of which were assisted by carbon nanoparticles. Bacillus subtilis, a Gram-positive bacterium, in the meantime, did not produce appreciable electricity.

  7. Taking aim at Mer and Axl receptor tyrosine kinases as novel therapeutic targets in solid tumors

    PubMed Central

    Linger, Rachel M.A.; Keating, Amy K.; Earp, H. Shelton

    2010-01-01

    Importance of the field Axl and/or Mer expression correlates with poor prognosis in several cancers. Until recently, the specific role of these receptor tyrosine kinases (RTKs) in the development and progression of cancer remained unexplained. Studies demonstrating that Axl and Mer contribute to mechanisms of cell survival, migration, invasion, metastasis, and chemosensitivity justify further investigation of Axl and Mer as novel therapeutic targets in cancer. Areas covered in this review Axl and Mer signaling pathways in cancer cells are summarized and evidence validating these RTKs as therapeutic targets in glioblastoma multiforme, non-small cell lung cancer, and breast cancer is examined. A comprehensive discussion of Axl and/or Mer inhibitors in development is also provided. What the reader will gain Potential toxicities associated with Axl or Mer inhibition are addressed. We hypothesize that the probable action of Mer and Axl inhibitors on cells within the tumor microenvironment will provide a unique therapeutic opportunity to target both tumor cells and the stromal components which facilitate disease progression. Take home message Axl and Mer mediate multiple oncogenic phenotypes and activation of these RTKs constitutes a mechanism of chemoresistance in a variety of solid tumors. Targeted inhibition of these RTKs may be effective as anti-tumor and/or anti-metastatic therapy, particularly if combined with standard cytotoxic therapies. PMID:20809868

  8. Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils

    SciTech Connect

    Jeremy Semrau; Sung-Woo Lee; Jeongdae Im; Sukhwan Yoon; Michael Barcelona

    2010-09-30

    The overall objective of this project, 'Strategies to Optimize Microbially-Mediated Mitigation of Greenhouse Gas Emissions from Landfill Cover Soils' was to develop effective, efficient, and economic methodologies by which microbial production of nitrous oxide can be minimized while also maximizing microbial consumption of methane in landfill cover soils. A combination of laboratory and field site experiments found that the addition of nitrogen and phenylacetylene stimulated in situ methane oxidation while minimizing nitrous oxide production. Molecular analyses also indicated that methane-oxidizing bacteria may play a significant role in not only removing methane, but in nitrous oxide production as well, although the contribution of ammonia-oxidizing archaea to nitrous oxide production can not be excluded at this time. Future efforts to control both methane and nitrous oxide emissions from landfills as well as from other environments (e.g., agricultural soils) should consider these issues. Finally, a methanotrophic biofiltration system was designed and modeled for the promotion of methanotrophic activity in local methane 'hotspots' such as landfills. Model results as well as economic analyses of these biofilters indicate that the use of methanotrophic biofilters for controlling methane emissions is technically feasible, and provided either the costs of biofilter construction and operation are reduced or the value of CO{sub 2} credits is increased, can also be economically attractive.

  9. Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.

    PubMed

    Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin

    2016-11-15

    Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions.

  10. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions.

    PubMed

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; San Martin-Uriz, Patxi; Rodríguez, Nuria; McKenzie, Judith A; Vasconcelos, Crisogono

    2014-04-23

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.

  11. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    NASA Astrophysics Data System (ADS)

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-04-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets.

  12. Monitoring of microbially mediated corrosion and scaling processes using redox potential measurements.

    PubMed

    Opel, Oliver; Eggerichs, Tanja; Otte, Tobias; Ruck, Wolfgang K L

    2014-06-01

    The use of redox potential measurements for corrosion and scaling monitoring, including microbially mediated processes, is demonstrated. As a case study, monitoring data from 10years of operation of an aquifer thermal energy storage (ATES) site located in Berlin, Germany, were examined. (Fe(2+))-activities as well as [Fe(3+)]-build up rates were calculated from redox potential, pH, conductivity, temperature and dissolved oxygen measurements. Calculations are based on assuming (Fe(3+))-activity being controlled by Fe(OH)3-solubility, the primary iron(III)-precipitate. This approach was tested using a simple log-linear model including dissolved oxygen besides major Fe(2+)-ligands. Measured redox potential values in groundwater used for thermal storage are met within ±8mV. In other systems comprising natural groundwater and in heating and cooling systems in buildings, quantitatively interpretable values are obtained also. It was possible to calculate particulate [Fe(3+)]-loads in the storage fluids in the order of 2μM and correlate a decrease in filter lifetimes to [Fe(3+)]-build up rates, although observations show clear signs of microbially mediated scaling processes involving iron and sulphur cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Microbial mediated formation of Fe-carbonate minerals under extreme acidic conditions

    PubMed Central

    Sánchez-Román, Mónica; Fernández-Remolar, David; Amils, Ricardo; Sánchez-Navas, Antonio; Schmid, Thomas; Martin-Uriz, Patxi San; Rodríguez, Nuria; McKenzie, Judith A.; Vasconcelos, Crisogono

    2014-01-01

    Discovery of Fe-carbonate precipitation in Rio Tinto, a shallow river with very acidic waters, situated in Huelva, South-western Spain, adds a new dimension to our understanding of carbonate formation. Sediment samples from this low-pH system indicate that carbonates are formed in physico-chemical conditions ranging from acid to neutral pH. Evidence for microbial mediation is observed in secondary electron images (Fig. 1), which reveal rod-shaped bacteria embedded in the surface of siderite nanocrystals. The formation of carbonates in Rio Tinto is related to the microbial reduction of ferric iron coupled to the oxidation of organic compounds. Herein, we demonstrate for the first time, that Acidiphilium sp. PM, an iron-reducing bacterium isolated from Rio Tinto, mediates the precipitation of siderite (FeCO3) under acidic conditions and at a low temperature (30°C). We describe nucleation of siderite on nanoglobules in intimate association with the bacteria cell surface. This study has major implications for understanding carbonate formation on the ancient Earth or extraterrestrial planets. PMID:24755961

  14. Microbial Populations Associated with Phosphate-Mediated Vadose Zone Sequestration of Strontium and Uranium

    NASA Astrophysics Data System (ADS)

    Wu, C. H.; Chou, J.; Fujita, Y.; Bill, M.; Brodie, E. L.; Andersen, G. L.; Hazen, T. C.; Conrad, M. S.

    2007-12-01

    Significant quantities of metals and radionuclides are contained in thick unsaturated zones at several contaminated sites in the western US. In many cases, this contamination has migrated to underlying groundwater, sometimes decades after being released into the subsurface. Because of the prohibitive costs associated with physically removing the contamination, an attractive remedy to this problem is to develop methods for long-term in situ stabilization of the contamination in the vadose zone. Our research focuses on developing a method of introducing gaseous compounds to stimulate precipitation of stable phosphate mineral phases in the vadose zone to immobilize soluble contaminants thus minimizing further transport to groundwater. Preliminary studies have demonstrated that biological precipitation of phosphate minerals can be stimulated under unsaturated conditions by injection of triethyl phosphate (TEP) gas. Microorganisms hydrolyze TEP, releasing inorganic phosphate, catalyzing the precipitation of metals and radionuclide-containing phosphate minerals. Our initial results demonstrate that a mixed culture of aerobic microorganisms from vadose zone sediments, enriched with TEP, produce significantly higher concentrations of inorganic phosphate than the no TEP control. A high-density microarray (PhyloChip) capable of detecting up to 9,000 prokaryotic taxa will be used to identify the microbial community composition of the enriched culture. In addition, the metabolically active organisms will be investigated through extraction and hybridization of ribosomal RNA. Organisms capable of hydrolyzing TEP to inorganic phosphate will be further characterized to determine the requirements for aerobic microbially-mediated radionuclide immobilization. The chemical and isotopic compositions of the reactants and products will be measured to enable in situ monitoring of microbial TEP utilization. The result of these studies will be the basis for unsaturated column experiments

  15. Salt marsh plants as key mediators on the level of cadmium impact on microbial denitrification.

    PubMed

    Almeida, C Marisa R; Mucha, Ana P; da Silva, Marta Nunes; Monteiro, Maria; Salgado, Paula; Necrasov, Tatiana; Magalhães, Catarina

    2014-09-01

    The fate of excess nitrogen in estuaries is determined by the microbial-driven nitrogen cycle, being denitrification a key process since it definitely removes fixed nitrogen as N2. However, estuaries receive and retain metals, which may negatively affect this process efficiency. In this study, we evaluated the role of salt marsh plants in mediating cadmium (Cd) impact on microbial denitrification process. Juncus maritimus and Phragmites australis from an estuary were collected together with the sediment involving their roots, each placed in vessels and maintained in a greenhouse, exposed to natural light, with tides simulation. Similar non-vegetated sediment vessels were prepared. After 3 weeks of accommodation, nine vessels (three per plant species plus three non-vegetated) were doped with 20 mg/L Cd(2+) saline solution, nine vessels were doped with 2 mg/L Cd(2+) saline solution and nine vessels were left undoped. After 10 weeks, vessels were dissembled and denitrification potential was measured in sediment slurries. Results revealed that the addition of Cd did not cause an effect on the denitrification process in non-vegetated sediment but had a clear stimulation in colonized ones (39 % for P. australis and 36 % for J. maritimus). In addition, this increase on denitrification rates was followed by a decrease on N2O emissions and on N2O/N2 ratios in both J. maritimus and P. australis sediments, increasing the efficiency of the N2O step of denitrification pathway. Therefore, our results suggested that the presence of salt marsh plants functioned as key mediators on the degree of Cd impact on microbial denitrification.

  16. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses

    SciTech Connect

    Wang, Gangsheng; Post, Wilfred M; Mayes, Melanie

    2013-01-01

    We developed a Microbial-ENzyme-mediated Decomposition (MEND) model, based on the Michaelis-Menten kinetics, that describes the dynamics of physically defined pools of soil organic matter (SOC). These include particulate, mineral-associated, dissolved organic matter (POC, MOC, and DOC, respectively), microbial biomass, and associated exoenzymes. The ranges and/or distributions of parameters were determined by both analytical steady-state and dynamic analyses with SOC data from the literature. We used an improved multi-objective parameter sensitivity analysis (MOPSA) to identify the most important parameters for the full model: maintenance of microbial biomass, turnover and synthesis of enzymes, and carbon use efficiency (CUE). The model predicted an increase of 2 C (baseline temperature =12 C) caused the pools of POC-Cellulose, MOC, and total SOC to increase with dynamic CUE and decrease with constant CUE, as indicated by the 50% confidence intervals. Regardless of dynamic or constant CUE, the pool sizes of POC, MOC, and total SOC varied from 8% to 8% under +2 C. The scenario analysis using a single parameter set indicates that higher temperature with dynamic CUE might result in greater net increases in both POC-Cellulose and MOC pools. Different dynamics of various SOC pools reflected the catalytic functions of specific enzymes targeting specific substrates and the interactions between microbes, enzymes, and SOC. With the feasible parameter values estimated in this study, models incorporating fundamental principles of microbial-enzyme dynamics can lead to simulation results qualitatively different from traditional models with fast/slow/passive pools.

  17. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Beazley, Melanie J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2017-01-01

    The bioreduction of uranium may immobilize a significant fraction of this toxic contaminant in reduced environments at circumneutral pH. In oxic and low pH environments, however, the low solubility of U(VI)-phosphate minerals also makes them good candidates for the immobilization of U(VI) in the solid phase. As inorganic phosphate is generally scarce in soils, the biomineralization of U(VI)-phosphate minerals via microbially-mediated organophosphate hydrolysis may represent the main immobilization process of uranium in these environments. In this study, contaminated sediments were incubated aerobically in two pH conditions to examine whether phytate, a naturally-occurring and abundant organophosphate in soils, could represent a potential phosphorous source to promote U(VI)-phosphate biomineralization by natural microbial communities. While phytate hydrolysis was not evident at pH 7.0, nearly complete hydrolysis was observed both with and without electron donor at pH 5.5, suggesting indigenous microorganisms express acidic phytases in these sediments. While the rate of hydrolysis of phytate generally increased in the presence of uranium, the net rate of inorganic phosphate production in solution was decreased and inositol phosphate intermediates were generated in contrast to similar incubations conducted without uranium. These findings suggest uranium stress enhanced the phytate-metabolism of the microbial community, while simultaneously inhibiting phosphatase production and/or activity by the indigenous population. Finally, phytate hydrolysis drastically decreased uranium solubility, likely due to formation of ternary sorption complexes, U(VI)-phytate precipitates, and U(VI)-phosphate minerals. Overall, the results of this study provide evidence for the ability of natural microbial communities to liberate phosphate from phytate in acidic sediments, possibly as a detoxification mechanism, and demonstrate the potential utility of phytate-promoted uranium

  18. New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell.

    PubMed

    Hassan, Md Mahamudul; Cheng, Ka Yu; Ho, Goen; Cord-Ruwisch, Ralf

    2017-01-15

    Microbial biofilms are significant ecosystems where the existence of redox gradients drive electron transfer often via soluble electron mediators. This study describes the use of two interfacing working electrodes (WEs) to simulate redox gradients within close proximity (250µm) for the detection and quantification of electron mediators. By using a common counter and reference electrode, the potentials of the two WEs were independently controlled to maintain a suitable "voltage window", which enabled simultaneous oxidation and reduction of electron mediators as evidenced by the concurrent anodic and cathodic currents, respectively. To validate the method, the electrochemical properties of different mediators (hexacyanoferrate, HCF, riboflavin, RF) were characterized by stepwise shifting the "voltage window" (ranging between 25 and 200mV) within a range of potentials after steady equilibrium current of both WEs was established. The resulting differences in electrical currents between the two WEs were recorded across a defined potential spectrum (between -1V and +0.5V vs. Ag/AgCl). Results indicated that the technique enabled identification (by the distinct peak locations at the potential scale) and quantification (by the peak of current) of the mediators for individual species as well as in an aqueous mixture. It enabled a precise determination of mid-potentials of the externally added mediators (HCF, RF) and mediators produced by pyocyanin-producing Pseudomonas aeruginosa (WACC 91) culture. The twin working electrode described is particularly suitable for studying mediator-dependent microbial electron transfer processes or simulating redox gradients as they exist in microbial biofilms.

  19. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis

    PubMed Central

    Cook, Rebecca S.; Jacobsen, Kristen M.; Wofford, Anne M.; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L.; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M.; Strunk, Karen E.; Graham, Douglas K.; Earp, H. Shelton

    2013-01-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK–/– mice. Transplantation of MerTK–/– bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK–/– leukocytes exhibited lower tumor cell–induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK–/– mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK–/– mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies. PMID:23867499

  20. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis.

    PubMed

    Cook, Rebecca S; Jacobsen, Kristen M; Wofford, Anne M; DeRyckere, Deborah; Stanford, Jamie; Prieto, Anne L; Redente, Elizabeth; Sandahl, Melissa; Hunter, Debra M; Strunk, Karen E; Graham, Douglas K; Earp, H Shelton

    2013-08-01

    MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.

  1. Adaptation of Aquatic Microbial Communities to Hg2+ Stress †

    PubMed Central

    Barkay, Tamar

    1987-01-01

    The mechanism of adaptation to Hg2+ in four aquatic habitats was studied by correlating microbially mediated Hg2+ volatilization with the adaptive state of the exposed communities. Community diversity, heterotrophic activity, and Hg2+ resistance measurements indicated that adaptation of all four communities was stimulated by preexposure to Hg2+. In saline water communities, adaptation was associated with rapid volatilization after an initial lag period. This mechanism, however, did not promote adaptation in a freshwater sample, in which Hg2+ was volatilized slowly, regardless of the resistance level of the microbial community. Distribution of the mer operon among representative colonies of the communities was not related to adaptation to Hg2+. Thus, although volatilization enabled some microbial communities to sustain their functions in Hg2+-stressed environments, it was not mediated by the genes that serve as a model system in molecular studies of bacterial resistance to mercurials. PMID:16347488

  2. Humic acids enhance the microbially mediated release of sedimentary ferrous iron.

    PubMed

    Chang, Chun-Han; Wei, Chia-Cheng; Lin, Li-Hung; Tu, Tzu-Hsuan; Liao, Vivian Hsiu-Chuan

    2016-03-01

    Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids

  3. Earliest microbially mediated pyrite oxidation in ~ 3.4 billion-year-old sediments

    NASA Astrophysics Data System (ADS)

    Wacey, David; Saunders, Martin; Brasier, Martin D.; Kilburn, Matt R.

    2011-01-01

    Pyrite (FeS2) oxidation in modern sedimentary environments is neither a purely chemical nor purely microbial process, but it is significantly enhanced by the activity of microorganisms that use reduced forms of iron and sulphur in their metabolisms. On the early Earth, where oxygen levels were thought to be < 10-5 of the present atmospheric level and chemical oxidants scarce, such biological mediation may have been critical in the redox cycles of iron and sulphur. Here, we show that detrital sedimentary pyrite grains in a ~ 3.4 billion-year-old sandstone were colonised by microbial communities. The detrital pyrite comes from the basal quartz arenite member of the 3.43-3.35 Ga Strelley Pool Formation (SPF) in the East Strelley greenstone belt of the Pilbara Craton, Western Australia. Rock chips and petrographic thin sections of black sandstones occurring on two ridges close to the SPF type locality of Strelley Pool were investigated using optical microscopy, SEM, TEM, laser Raman and NanoSIMS. The detrital pyrite grains exhibit laminated carbonaceous coatings of early Archean age, with localised enrichments of nitrogen that are interpreted as the in situ remains of biofilms growing on these nutrient-rich minerals. Pyrite surfaces contain spherical pits, chains of pits and channels that are morphologically distinct from abiotic alteration features. The pits and channels are widespread, have a clustered distribution typical of microbial colonisation, and are closely comparable to biologically mediated microstructures in the younger rock record and those created by extant Fe- and S-oxidising microbes in the laboratory. They are thus interpreted as trace fossils formed by the attachment of bacteria to the pyrite surfaces. A nano-layer and discreet nano-grains of secondary mineral precipitates, namely Fe-oxides belonging to the magnetite-maghaemite group, attest to pyrite oxidation. These are intimately associated with the biofilms and trace fossils, and are interpreted

  4. Applying Reactive Barrier Technology to Enhance Microbially-mediated Denitrification during Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.

    2015-12-01

    We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.

  5. Microbial mediation of authigenic clays during hydrothermal alteration of basaltic tephra, Kilauea Volcano

    NASA Astrophysics Data System (ADS)

    Konhauser, Kurt O.; Schiffman, Peter; Fisher, Quentin J.

    2002-12-01

    Highly altered, glassy tephras within the active steam vents at Kilauea Volcano, Hawaii, contain subsurface bacteria characterized by small (<500 nm in diameter), epicellular grains attached directly to the cell walls. Compositionally, the grains were dominated by Si, Al, Fe, and K, in a stoichiometry similar to a dioctahedral smectite. The initial dissolution of glass, which may in part have been microbiologically mediated, served as the source for many of the elements sequestered into the biomineralized clays. Overlying the tephras are white crusts (silica and calcite) and green-colored biofilms. The biofilms comprise a filamentous, likely cyanobacterial, community coated with spherical (<100 nm in diameter) grains of amorphous silica directly attached to the sheaths. Individual precipitates can easily be resolved, but quite often they coalesce, forming a dense mineral matrix of amorphous silica. For both the clays and silica, the microbial surfaces are clearly sites for mineral nucleation and growth. These observations imply that microbial biomineralization may be a significant process in the overall alteration of primary basaltic glass in active steam vent systems.

  6. Microbially-Mediated Subsurface Calcite Precipitation for Removal of Hazardous Divalent Cations

    SciTech Connect

    Colwell, Frederick S.; Smith, R.W.; Ferris, F. Gratn; Ingram, Jani C.; Reysenbach, A.-L.; Fujita, Yoshiko; Tyler, T.L.; Taylor, J.L.; Banta, A.; Delwiche, M.E.; McLing, T.; Cortez, Marnie, M.; Watwood, M.E.

    2003-03-27

    We are investigating microbially-mediated acceleration of calcite precipitation and co-precipitation of hazardous divalent cations (e.g., 90Sr) in calcite saturated subsurface systems. In theory, the addition of urea to an aquifer or vadose zone and its subsequent hydrolysis by indigenous microbes will cause an increase in alkalinity, pH and calcite precipitation. Lab studies indicated the ability of various bacteria to precipitate calcite through urea hydrolysis and that incorporation of strontium in biogenically-formed calcite is greater than in abiotically formed calcite. Results from a field experiment in a pristine location in the Snake River Plain aquifer involving the phased addition of molasses and then urea showed increases in total cell numbers, rate of urea hydrolysis and calcite formation during the study. The combined diagnostic approaches of microbiology, molecular ecology and analytical chemistry demonstrate the feasibility of this biogeochemical manipulation for subsurface remediation at arid Western DOE sites such as Hanford and INEEL.

  7. Robust k-mer frequency estimation using gapped k-mers

    PubMed Central

    Ghandi, Mahmoud; Mohammad-Noori, Morteza

    2013-01-01

    Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome. PMID:23861010

  8. A subset of Mer1p-dependent introns requires Bud13p for splicing activation and nuclear retention

    PubMed Central

    Scherrer, Frederick W.; Spingola, Marc

    2006-01-01

    In the yeast Saccharomyces cerevisiae, Mer1p is expressed only during meiosis, and its expression is linked to the splicing of at least three mRNAs: MER2, MER3, and AMA1. Previous evidence suggests that Mer1p activates splicing by directly recruiting snRNPs or stabilizing intermediate splicing complexes formed on pre-mRNA that contains an intronic Mer1p enhancer element. However, some splicing factors, especially accessory/non-snRNP factors, have critical roles in retaining unspliced pre-mRNAs in the nucleus. We tested if Mer1p may indirectly regulate splicing by preventing the export of pre-mRNAs to the cytoplasm and also demonstrated that a second subunit of the Retention and Splicing (RES) complex, Bud13p, has transcript-specific effects on Mer1p-activated splicing. The results indicated that Mer1p can retain unspliced pre-mRNA in the nucleus; however, nuclear retention could not be uncoupled from splicing activation. In the absence of Mer1p, the AMA1 pre-mRNA is exported to the cytoplasm, translated, but not subjected to nonsense-mediated decay (NMD) despite a premature stop codon in the intron. These data imply that Mer1p can retain pre-mRNAs in the nucleus only by facilitating their interaction with the spliceosome and that two subunits of the RES complex modulate Mer1p function on two of the three Mer1p-dependent introns. The results also support models for cytoplasmic degradation of unspliced pre-mRNAs that fail to assemble into spliceosomes in yeast. PMID:16738408

  9. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    SciTech Connect

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  10. Quinone-mediated microbial synthesis of reduced graphene oxide with peroxidase-like activity.

    PubMed

    Liu, Guangfei; Zhang, Xin; Zhou, Jiti; Wang, Aijie; Wang, Jing; Jin, Ruofei; Lv, Hong

    2013-12-01

    The effects of different quinones on graphene oxide (GO) reduction by Shewanella oneidensis MR-1 and the peroxidase activity of the resultant reduced graphene oxide (QRGO) were studied. The presence of 100 μM anthraquinone-2-sulfonate (AQS), anthraquinone-2,6-disulfonate and 5-hydroxy-1,4-naphthoquinone could lead to 1.6-2.8-fold increase in GO reduction rate, whereas anthraquinone-2-carboxylate slowed down the reduction. The stimulating effects of AQS increased with the increase of its concentration (10-100 μM). The mediated effects were proved by direct GO reduction by microbially reduced AQS. The mediated reduction of GO to QRGO was characterized by UV-vis, XRD, FTIR, Raman spectra, XPS, TEM and AFM, respectively. The as-prepared QRGO possessed peroxidase-like activity, which could catalyze the oxidation of 3,3'5,5'-tetramethylbenzidine by H2O2, and followed Michealis-Menten kinetics. A colorimetric sensor for quantitative determination of glucose based on the peroxidase activity of QRGO was developed over a range of 1-120 μM with a detection limit of 1 μM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. MER EDL: Overview and Reconstruction Status

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Lee, Wayne J.

    2005-01-01

    An overview and reconstruction of the Mars Exploration Rover (MER) Entry Descent and Landing (EDL) is shown. The topics include: 1) Background; 2) MER Candidate Landing Sites; 3) MER Entry Heritage w/Viking & Mars Pathfinder; 4) MER EDL Animation; 5) MER Entry, Descent, and Landing (EDL) Sequence; 6) Pre-Entry Spirit Entry Atmosphere Models; 7) Spirit Landing Ellipse at Final OD, & Updated Estimate Differenced 1-way Doppler; 8) Spirit Landing Ellipse at Final OD and Final Location Estimates; 9) Monte Carlo Results for Spirit ; 10) Reconstructed and refined Spirit Entry Density Profile; 11) Mars Pathfinder Attitude Reconstruction; 12) Spirit Attitude Reconstruction; 13) Spirit Entry Ground Track; 14) Reconstructed Spirit Terminal Descent Dynamics (Side View); 15) Opportunity Landing Ellipse at Final OD, & Updated Estimate Differenced 1-way Doppler; 16) Spirit Landing Ellipse at Final OD and Final Location Estimates; 17) Monte Carlo Results for Opportunity; 18) Reconstructed Opportunity Entry Density Profile; and 19) Opportunity Attitude Reconstruction.

  12. MERS-CoV spike nanoparticles protect mice from MERS-CoV infection.

    PubMed

    Coleman, Christopher M; Venkataraman, Thiagarajan; Liu, Ye V; Glenn, Gregory M; Smith, Gale E; Flyer, David C; Frieman, Matthew B

    2017-03-14

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first discovered in late 2012 and has gone on to cause over 1800 infections and 650 deaths. There are currently no approved therapeutics or vaccinations for MERS-CoV. The MERS-CoV spike (S) protein is responsible for receptor binding and virion entry to cells, is immunodominant and induces neutralizing antibodies in vivo, all of which, make the S protein an ideal target for anti-MERS-CoV vaccines. In this study, we demonstrate protection induced by vaccination with a recombinant MERS-CoV S nanoparticle vaccine and Matrix-M1 adjuvant combination in mice. The MERS-CoV S nanoparticle vaccine produced high titer anti-S neutralizing antibody and protected mice from MERS-CoV infection in vivo.

  13. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland

    SciTech Connect

    Classen, Aimee T; Overby, Stephen; Hart, Stephen C; Koch, George W; Whitham, Thomas G

    2007-01-01

    Herbivores can directly impact ecosystem function by altering litter quality entering an ecosystem or indirectly by affecting a shift in the microbial community that mediate nutrient processes. We examine herbivore susceptibility and resistance effects on litter microarthropod and soil microbial communities to test the general hypothesis that herbivore driven changes in litter inputs will feedback to the microbial community. Our study population consisted of individual trees that are susceptible or resistant to the stem-boring moth (Dioryctria albovittella) and trees that herbivores have been manually removed since 1982. Moth herbivory increased pi on litter nitrogen concentrations (16%) and canopy precipitation infiltration (28%), both significant factors influencing litter and soil microbial populations. Our research resulted in three major conclusions: 1) In spite of an increase in litter quality, herbivory does not change litter microarthropod abundance or species richness. 2) Herbivore susceptibility alters bulk soil microbial communities, but not soil properties. 3) Season has a strong influence on microbial communities, and their response to herbivore inputs, in this semi-arid ecosystem.

  14. Evidence for microbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii

    NASA Astrophysics Data System (ADS)

    Sylvan, Jason B.; Wankel, Scott D.; LaRowe, Douglas E.; Charoenpong, Chawalit N.; Huber, Julie A.; Moyer, Craig L.; Edwards, Katrina J.

    2017-02-01

    The role of nitrogen cycling in submarine hydrothermal systems is far less studied than that of other biologically reactive elements such as sulfur and iron. In order to address this knowledge gap, we investigated nitrogen redox processes at Loihi Seamount, Hawaii, using a combination of biogeochemical and isotopic measurements, bioenergetic calculations and analysis of the prokaryotic community composition in venting fluids sampled during four cruises in 2006, 2008, 2009 and 2013. Concentrations of NH4+ were positively correlated to dissolved Si and negatively correlated to NO3- + NO2-, while NO2- was not correlated to NO3- + NO2-, dissolved Si or NH4+. This is indicative of hydrothermal input of NH4+ and biological mediation influencing NO2- concentrations. The stable isotope ratios of NO3- (δ15N and δ18O) was elevated with respect to background seawater, with δ18O values exhibiting larger changes than corresponding δ15N values, reflecting the occurrence of both production and reduction of NO3- by an active microbial community. δ15N-NH4+ values ranged from 0‰ to +16.7‰, suggesting fractionation during consumption and potentially N-fixation as well. Bioenergetic calculations reveal that several catabolic strategies involving the reduction of NO3- and NO2- coupled to sulfide and iron oxidation could provide energy to microbes in Loihi fluids, while 16S rRNA gene sequencing of Archaea and Bacteria in the fluids reveals groups known to participate in denitrification and N-fixation. Taken together, our data support the hypothesis that microbes are mediating N-based redox processes in venting hydrothermal fluids at Loihi Seamount.

  15. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2017-09-19

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  16. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    DOEpatents

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  17. Effects of microbially mediated redox conditions on PAH-soil interactions.

    PubMed

    Kim, Han S; Pfaender, Frederic K

    2005-12-01

    The impacts of microbially mediated redox conditions on the bioavailability of persistent polycyclic aromatic hydrocarbons (PAHs) in soils and sediments have received little study, despite the fact that most water-saturated soils and sediments spend a significant portion of the time under reduced conditions. To address this need an uncontaminated surface soil was incubated under various redox conditions (aerobic, nitrate-reducing, sulfate-reducing, and methanogenic). Depending on redox conditions, different quantities of fulvic and humic acids were liberated as dissolved organic matter (DOM) from the soil during incubation. The DOM released under highly reduced conditions was more nonpolar, aromatic, and polydisperse, of higher molecular weight, and had a higher sorption capacity for pyrene compared to that obtained from relatively oxic incubations. The soil-phase organic matter incubated under reduced conditions also became relatively more aromatic, containing nonpolar organic molecules of lower oxygen contents and exhibiting higher capacity and more nonlinear and hysteric sorption/desorption behavior for pyrene. These observations support the hypothesis that reduced environments established by indigenous soil microbes alter soil organic matter in a matter similar to diagenetic processes. Such humification-like alteration occurred principally in relatively more labile fractions of soil organic matter. These findings are important for assessing the ultimate fate and exposure risk of hydrophobic organic contaminants in soils and sediments where living microorganisms play a significant role in formation and evolution of soil/sediment organic matter.

  18. Efficacy of a Mer and Flt3 tyrosine kinase small molecule inhibitor, UNC1666, in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, Alisa B.; Zhang, Weihe; Menachof, Kelly K.; Hill, Amanda A.; Rinella, Sean; Kirkpatrick, Gregory; Page, Lauren S.; Stashko, Michael A.; Jordan, Craig T.; Wei, Qi; Liu, Jing; Zhang, Dehui; DeRyckere, Deborah; Wang, Xiaodong; Frye, Stephen; Earp, H. Shelton; Graham, Douglas K.

    2015-01-01

    Mer and Flt3 receptor tyrosine kinases have been implicated as therapeutic targets in acute myeloid leukemia (AML). In this manuscript we describe UNC1666, a novel ATP-competitive small molecule tyrosine kinase inhibitor, which potently diminishes Mer and Flt3 phosphorylation in AML. Treatment with UNC1666 mediated biochemical and functional effects in AML cell lines expressing Mer or Flt3 internal tandem duplication (ITD), including decreased phosphorylation of Mer, Flt3 and downstream effectors Stat, Akt and Erk, induction of apoptosis in up to 98% of cells, and reduction of colony formation by greater than 90%, compared to treatment with vehicle. These effects were dose-dependent, with inhibition of downstream signaling and functional effects correlating with the degree of Mer or Flt3 kinase inhibition. Treatment of primary AML patient samples expressing Mer and/or Flt3-ITD with UNC1666 also inhibited Mer and Flt3 intracellular signaling, induced apoptosis, and inhibited colony formation. In summary, UNC1666 is a novel potent small molecule tyrosine kinase inhibitor that decreases oncogenic signaling and myeloblast survival, thereby validating dual Mer/Flt3 inhibition as an attractive treatment strategy for AML. PMID:25762638

  19. Discovery of Mer specific tyrosine kinase inhibitors for the treatment and prevention of thrombosis.

    PubMed

    Zhang, Weihe; McIver, Andrew L; Stashko, Michael A; DeRyckere, Deborah; Branchford, Brian R; Hunter, Debra; Kireev, Dmitri; Miley, Michael J; Norris-Drouin, Jacqueline; Stewart, Wendy M; Lee, Minjung; Sather, Susan; Zhou, Yingqiu; Di Paola, Jorge A; Machius, Mischa; Janzen, William P; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2013-12-12

    The role of Mer kinase in regulating the second phase of platelet activation generates an opportunity to use Mer inhibitors for preventing thrombosis with diminished likelihood for bleeding as compared to current therapies. Toward this end, we have discovered a novel, Mer kinase specific substituted-pyrimidine scaffold using a structure-based drug design and a pseudo ring replacement strategy. The cocrystal structure of Mer with two compounds (7 and 22) possessing distinct activity have been determined. Subsequent SAR studies identified compound 23 (UNC2881) as a lead compound for in vivo evaluation. When applied to live cells, 23 inhibits steady-state Mer kinase phosphorylation with an IC50 value of 22 nM. Treatment with 23 is also sufficient to block EGF-mediated stimulation of a chimeric receptor containing the intracellular domain of Mer fused to the extracellular domain of EGFR. In addition, 23 potently inhibits collagen-induced platelet aggregation, suggesting that this class of inhibitors may have utility for prevention and/or treatment of pathologic thrombosis.

  20. Discovery of Mer Specific Tyrosine Kinase Inhibitors for the Treatment and Prevention of Thrombosis

    PubMed Central

    Zhang, Weihe; McIver, Andrew L.; Stashko, Michael A.; DeRyckere, Deborah; Branchford, Brian R.; Hunter, Debra; Kireev, Dmitri; Miley, Michael J.; Norris-Drouin, Jacqueline; Stewart, Wendy M.; Lee, Minjung; Sather, Susan; Zhou, Yingqiu; Di Paola, Jorge A.; Machius, Mischa; Janzen, William P.; Earp, H. Shelton; Graham, Douglas K.; Frye, Stephen V.; Wang, Xiaodong

    2014-01-01

    The role of Mer kinase in regulating the second phase of platelet activation generates an opportunity to use Mer inhibitors for preventing thrombosis with diminished likelihood for bleeding as compared to current therapies. Toward this end, we have discovered a novel, Mer kinase specific substituted-pyrimidine scaffold using a structure-based drug design and a pseudo-ring replacement strategy. The co-crystal structure of Mer with two compounds (7 & 22) possessing distinct activity have been determined. Subsequent SAR studies identified compound 23 (UNC2881) as a lead compound for in vivo evaluation. When applied to live cells, 23 inhibits steady-state Mer kinase phosphorylation with an IC50 value of 22 nM. Treatment with 23 is also sufficient to block EGF-mediated stimulation of a chimeric receptor containing the intracellular domain of Mer fused to the extracellular domain of EGFR. In addition, 23 potently inhibits collagen-induced platelet aggregation, suggesting that this class of inhibitors may have utility for prevention and/or treatment of pathologic thrombosis. PMID:24219778

  1. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.

    PubMed

    Kalathil, Shafeer; Lee, Jintae; Cho, Moo Hwan

    2013-02-01

    Oppan quantized style: By adding a gold precursor at its cathode, a microbial fuel cell (MFC) is demonstrated to form gold nanoparticles that can be used to simultaneously produce bioelectricity and hydrogen. By exploiting the quantized capacitance charging effect, the gold nanoparticles mediate the production of hydrogen without requiring an external power supply, while the MFC produces a stable power density. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genetic analysis of transcriptional activation and repression in the Tn21 mer operon. [Bacteria

    SciTech Connect

    Ross, W.; Park, S.J.; Summers, A.O. )

    1989-07-01

    Transcription of the Tn21 mercury resistance operon (mer) is controlled by the toxic metal cation Hg(II). This control is mediated by the product of the merR gene, a 144-amino-acid protein which represses transcription of the structural genes (merTPCAD) in the absence of Hg(II) and activates transcription in the presence of Hg(II). We have used a mer-lac transcriptional fusion to obtain regulatory mutants in this metal-responsive system. Some mutants were defective in Hg(II)-induced activation while retaining repression function, others were defective in repression but not activation, and some had lost both functions. Mutations in three of the four cysteine residues of merR resulted in complete loss of Hg(II)-inducible activation but retention of the repressor function. Other lesions adjacent to or very near these cysteines exhibited severely reduced activation and also retained repressor function. There were two putative helix-turn-helix (HTH) domains in merR, and mutants in each had very different phenotypes. A partially dominant mutation in the more amino-terminal region of the two putative HTH regions resulted in loss of both activation and repression, consistent with a role for this region in DNA binding. Mutations in the more centrally located HTH region resulted only in loss of Hg(II)-induced activation. Lesions in the central and in the carboxy-terminal regions of merR exhibited both Hg(II)-independent and Hg(II)-dependent transcriptional activation. The sole cis-acting mutant obtained with this operon fusion strategy, a down-promoter mutation, lies in a highly conserved base in the -35 region of the merTPCAD promoter.

  3. Microbial Mediation of Dolomite Precipitation in Natural Environments, Culture Experiments and Molecular Studies

    NASA Astrophysics Data System (ADS)

    Meister, P.; Nealson, K.; McKenzie, J. A.; Warthmann, R.; Vasconcelos, C.

    2005-12-01

    Although dolomite [CaMg(CO3)2] is a common carbonate mineral in sedimentary rocks, it is rarely observed forming in modern environments, and, until recently, experimental precipitation under Earth surface conditions proved impossible. With the discovery of microbial mediated dolomite formation in culture experiments with sulfate-reducing bacteria, it has become apparent that microbes play an important role in overcoming the kinetic barrier of mineral precipitation and, thus, may represent a key factor controlling early diagenetic processes throughout Earth history. The detailed mechanisms of these processes, however, remain poorly understood. Recent studies of dolomite layers in organic carbon-rich hemipelagic sediments recovered on the Peru margin during Ocean Drilling Program Leg 201 (Meister et al., in prep.) indicate precipitation at the interface between the sulphate reduction and methanogenic zones. At this chemical front, alkalinity is strongly increased, sulphate ions, a possible inhibitor of dolomite precipitation, are efficiently removed, and highest total cell densities were counted (up to 10 to the 9 cells / cm3; Shipboard Scientific Party, 2003). These results strengthen the model that microbes are involved in dolomite formation, providing the appropriate chemical conditions, whereas the high cell density may kinetically control the strictly focused precipitation process. We are currently conducting a systematic study of the precipitation of dolomite and other carbonate minerals in the Ca-Mg-bicarbonate-system. In preliminary experiments under aerobic conditions we used agar plates with a marine medium to grow a bacterium isolated from sediments of the San Pedro basin (California), an upwelling area similar to the Peru margin. We observed that the crystals formed only inside of the colonies and showed a dumbbell-shaped morphology similar to dolomite produced in anaerobic experiments. X-ray diffraction patterns revealed, however, that the product was

  4. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-10

    A trail of smoke is all that identifies the Delta II rocket with its Mars Exploration Rover (MER-A) payload as it hurtles into space. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  5. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-10

    The Delta II rocket with its Mars Exploration Rover (MER-A) payload leaps from the smoke and steam below into space. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  6. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-11

    Amid billows of smoke and steam, the Delta II rocket with its Mars Exploration Rover (MER-A) payload lifts off the pad on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A, known as "Spirit," is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  7. Analysis of common k-mers for whole genome sequences using SSB-tree.

    PubMed

    Choi, Jeong-Hyeon; Cho, Hwan-Gue

    2002-01-01

    As sequenced genomes become larger and sequencing process becomes faster, there is a need to develop a tool to analyze sequences in the whole genomic scale. However, on-memory algorithms such as suffix tree and suffix array are not applicable to the analysis of whole genome sequence set, since the size of individual whole genome ranges from several million base pairs to hundreds billion base pairs. In order to effectively manipulate the huge sequence data, it is necessary to use the indexed data structure for external memory. In this paper, we introduce a workbench called SequeX for the analysis and visualization of whole genome sequences using SSB-tree (Static SB-tree). It consists of two parts: the analysis query subsystem and the visualization subsystem. The query subsystem supports various transactions such as pattern matching, k-occurrence, and k-mer analysis. The visualization subsystem helps biologists to easily understand whole genome structure and feature by sequence viewer, annotation viewer, CGR (Chaos Game Representation) viewer, and k-mer viewer. The system also supports a user-friendly programming interface based on Java script for batch processing and the extension for a specific purpose of a user. SequeX can be used to identify conserved genes or sequences by the analysis of the common k-mers and annotation. We analyze the common k-mer for 72 microbial genomes announced by Entrez, and find an interesting biological fact that the longest common k-mer for 72 sequences is 11-mer, and only 11 such sequences exist. Finally we note that many common k-mers occur in conserved region such as CDS, rRNA, and tRNA.

  8. Effects of sediment iron mineral composition on microbially mediated changes in divalent metal speciation: Importance of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cooper, D. Craig; Neal, Andrew L.; Kukkadapu, Ravi K.; Brewe, Dale; Coby, Aaron; Picardal, Flynn W.

    2005-04-01

    Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the Fe III source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB ( Shewanella putrefaciens 200) and a divalent metal (Zn II) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of "microbial iron reducibility," it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed Zn II increased both [Zn II-aq] and the proportion of adsorbed Zn II that is insoluble in 0.5 M HCl. Microbial reduction of Fe III in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial Fe III reduction on Zn II association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial Fe III reduction altered Zn II bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO 6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced Zn II substitution within goethite in the microbially reduced sample, though these data do not

  9. Impedance spectroscopy as a tool for non-intrusive detection of extracellular mediators in microbial fuel cells.

    PubMed

    Ramasamy, Ramaraja P; Gadhamshetty, Venkataramana; Nadeau, Lloyd J; Johnson, Glenn R

    2009-12-01

    Endogenously produced, diffusible redox mediators can act as electron shuttles for bacterial respiration. Accordingly, the mediators also serve a critical role in microbial fuel cells (MFCs), as they assist extracellular electron transfer from the bacteria to the anode serving as the intermediate electron sink. Electrochemical impedance spectroscopy (EIS) may be a valuable tool for evaluating the role of mediators in an operating MFC. EIS offers distinct advantages over some conventional analytical methods for the investigation of MFC systems because EIS can elucidate the electrochemical properties of various charge transfer processes in the bio-energetic pathway. Preliminary investigations of Shewanella oneidensis DSP10-based MFCs revealved that even low quantities of extracellular mediators significantly influence the impedance behavior of MFCs. EIS results also suggested that for the model MFC studied, electron transfer from the mediator to the anode may be up to 15 times faster than the electron transfer from bacteria to the mediator. When a simple carbonate membrane separated the anode and cathode chambers, the extracellular mediators were also detected at the cathode, indicating diffusion from the anode under open circuit conditions. The findings demonstrated that EIS can be used as a tool to indicate presence of extracellular redox mediators produced by microorganisms and their participation in extracellular electron shuttling.

  10. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community

    PubMed Central

    Zhang, Dayi; Berry, James P; Zhu, Di; Wang, Yun; Chen, Yin; Jiang, Bo; Huang, Shi; Langford, Harry; Li, Guanghe; Davison, Paul A; Xu, Jian; Aries, Eric; Huang, Wei E

    2015-01-01

    Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders—Rhodococcus sp., Chryseobacterium sp. and three different Pseudomonas spp.—were also isolated from the same biosludge using traditional methods. The kinetics of phenol degradation by MMI-recovered cells (MRCs) was similar to that of the original sludge. Stable isotope probing (SIP) and pyrosequencing of the 16S rRNA from the ‘heavy' DNA (13C-DNA) fractions indicated that Burkholderiales spp. were the key phenol degraders in situ in the biosludge, consistent with the results of MRCs. Single-cell Raman micro-spectroscopy was applied to probe individual bacteria in the MRCs obtained from the SIP experiment and showed that 79% of them were fully 13C-labelled. Biolog assays on the MRCs revealed the impact of various carbon and nitrogen substrates on the efficiency of phenol degradation in the wastewater treatment plant biosludge. Specifically, hydroxylamine, a metabolite of ammonia oxidisation, but not nitrite, nitrate or ammonia, inhibited phenol degradation in the biosludge. Our results provided a novel insight into the occasional abrupt failure events that occur in the wastewater treatment plant. This study demonstrated that MMI is a powerful tool to recover live and functional cells in situ from a complex microbial community to enable further characterisation of their physiology. PMID:25191996

  11. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community.

    PubMed

    Zhang, Dayi; Berry, James P; Zhu, Di; Wang, Yun; Chen, Yin; Jiang, Bo; Huang, Shi; Langford, Harry; Li, Guanghe; Davison, Paul A; Xu, Jian; Aries, Eric; Huang, Wei E

    2015-03-01

    Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders-Rhodococcus sp., Chryseobacterium sp. and three different Pseudomonas spp.-were also isolated from the same biosludge using traditional methods. The kinetics of phenol degradation by MMI-recovered cells (MRCs) was similar to that of the original sludge. Stable isotope probing (SIP) and pyrosequencing of the 16S rRNA from the 'heavy' DNA ((13)C-DNA) fractions indicated that Burkholderiales spp. were the key phenol degraders in situ in the biosludge, consistent with the results of MRCs. Single-cell Raman micro-spectroscopy was applied to probe individual bacteria in the MRCs obtained from the SIP experiment and showed that 79% of them were fully (13)C-labelled. Biolog assays on the MRCs revealed the impact of various carbon and nitrogen substrates on the efficiency of phenol degradation in the wastewater treatment plant biosludge. Specifically, hydroxylamine, a metabolite of ammonia oxidisation, but not nitrite, nitrate or ammonia, inhibited phenol degradation in the biosludge. Our results provided a novel insight into the occasional abrupt failure events that occur in the wastewater treatment plant. This study demonstrated that MMI is a powerful tool to recover live and functional cells in situ from a complex microbial community to enable further characterisation of their physiology.

  12. Conversion of orange peel waste biomass to bioelectricity using a mediator-less microbial fuel cell.

    PubMed

    Miran, Waheed; Nawaz, Mohsin; Jang, Jiseon; Lee, Dae Sung

    2016-03-15

    Microorganisms have the potential to become a game-changer in sustainable energy production in the coming generations. Microbial fuel cells (MFCs) as an alternative renewable technology can capture bioenergy (electricity) from carbon-based sources by utilizing microorganisms as biocatalysts. This study demonstrated that MFC technology can be explored for bioelectricity production from orange peel waste (OPW), an agricultural byproduct and an organic substrate, without any chemical pretreatment or the addition of extra mediators. A maximum voltage generation of 0.59 ± 0.02 V (at 500 Ω) was achieved in a dual chamber MFC during stable voltage generation stages. The maximum power density and current density obtained were 358.8 ± 15.6 mW/m(2) and 847 ± 18.4 mA/m(2), respectively. Key components of OPW, namely pectin and cellulose, were also tested in their pure form, with pectin giving a stable current, while no significant current generation was achieved using cellulose alone as the substrate, thus demonstrating the absence of cellulose-degrading bacteria. Maximum pectinase and polygalacturonase enzyme activities of 18.55 U/g and 9.04 U/g (per gram of substrate), respectively were achieved during orange peel degradation in MFCs. Bacterial identification using 16S rRNA analysis of the initial inoculum fed to the MFC, the biofilm attached to the anode, and the anode suspension, showed significant diversity in community composition. A well-known exoelectrogen, Pseudomonas, was present among the predominant genera in the anode biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.

    PubMed

    Whaley-Martin, K J; Mailloux, B J; van Geen, A; Bostick, B C; Silvern, R F; Kim, C; Ahmed, K M; Choudhury, I; Slater, G F

    2016-07-19

    The sources of reduced carbon driving the microbially mediated release of arsenic to shallow groundwater in Bangladesh remain poorly understood. Using radiocarbon analysis of phospholipid fatty acids (PLFAs) and potential carbon pools, the abundance and carbon sources of the active, sediment-associated, in situ bacterial communities inhabiting shallow aquifers (<30 m) at two sites in Araihazar, Bangladesh, were investigated. At both sites, sedimentary organic carbon (SOC) Δ(14)C signatures of -631 ± 54‰ (n = 12) were significantly depleted relative to dissolved inorganic carbon (DIC) of +24 ± 30‰ and dissolved organic carbon (DOC) of -230 ± 100‰. Sediment-associated PLFA Δ(14)C signatures (n = 10) at Site F (-167‰ to +20‰) and Site B (-163‰ to +21‰) were highly consistent and indicated utilization of carbon sources younger than the SOC, likely from the DOC pool. Sediment-associated PLFA Δ(14)C signatures were consistent with previously determined Δ(14)C signatures of microbial DNA sampled from groundwater at Site F indicating that the carbon source for these two components of the subsurface microbial community is consistent and is temporally stable over the two years between studies. These results demonstrate that the utilization of relatively young carbon sources by the subsurface microbial community occurs at sites with varying hydrology. Further they indicate that these young carbon sources drive the metabolism of the more abundant sediment-associated microbial communities that are presumably more capable of Fe reduction and associated release of As. This implies that an introduction of younger carbon to as of yet unaffected sediments (such as those comprising the deeper Pleistocene aquifer) could stimulate microbial communities and result in arsenic release.

  14. Nutrient limitation and microbially mediated chemistry: studies using tuff inoculum obtained from the Exploratory Studies Facility, Yucca Mountain

    SciTech Connect

    Chen, C. I.; Chuu, Y. J.; Meike, A.; Ringelberg, D.; Sawvel, A.

    1998-10-30

    Flow-through bioreactors are used to investigate the relationship between the supply (and limitation) of major nutrients required by microorganisms (C, N, P, S) and effluent chemistry to obtain data that can be useful to develop models of microbially mediated aqueous chemistry. The bioreactors were inoculated with crushed tuff from Yucca Mountain. Six of the 14 bioreactor experiments currently in operation have shown growth, which occurred in as few as 5 days and as much as a few months after initiation of the experiment. All of the bioreactors exhibiting growth contained glucose as a carbon source, but other nutritional components varied. Chemical signatures of each bioreactor were compared to each other and selected results were compared to computer simulations of the equivalent abiotic chemical reactions. At 21 C, the richest medium formulation produced a microbial community that lowered the effluent pH from 6.4 to as low as 3.9. The same medium formulation at 50 C produced no significant change in pH but caused a significant increase in Cl after a period of 200 days. Variations in concentrations of other elements, some of which appear to be periodic (Ca, Mg, etc.) also occur. Bioreactors fed with low C, N, P, S media showed growth, but had stabilized at lower cell densities. The room temperature bioreactor in this group exhibited a phospholipid fatty acid (PLFA) signature of sulfur- or iron-reducing bacteria, which produced a significant chemical signature in the effluent from that bioreactor. Growth had not been observed yet in the alkaline bioreactors, even in those containing glucose. The value of combining detailed chemical and community (e.g., ester-linked PLFA) analyses, long-duration experiments, and abiotic chemical models to distinguish chemical patterns is evident. Although all of the bioreactors contain the same initial microorganisms and mineral constituents, PLFA analysis demonstrates that both input chemistry and temperature determine the

  15. Introduction to the Special Issue: The role of soil microbial-driven belowground processes in mediating exotic plant invasions

    PubMed Central

    Inderjit

    2015-01-01

    Soil microbial communities are one of the multiple factors that facilitate or resist plant invasion. Regional and biogeographic studies help to determine how soil communities and the processes mediated by soil microbes are linked to other mechanisms of invasion. Both the success of plant invasions and their impacts are profoundly influenced by a wide range of soil communities and the soil processes mediated by them. With an aim to better understand the mechanisms responsible for the soil community-driven routes, a special issue of AoB PLANTS was conceived. I hope that the range of papers included in the special issue will reveal some of the complexities in soil community-mediated plant invasion. PMID:25979967

  16. Exploring redox-mediating characteristics of textile dye-bearing microbial fuel cells: thionin and malachite green.

    PubMed

    Chen, Bor-Yann; Xu, Bin; Qin, Lian-Jie; Lan, John Chi-Wei; Hsueh, Chung-Chuan

    2014-10-01

    Prior studies indicated that biodecolorized intermediates of azo dyes could act as electron shuttles to stimulate wastewater decolorization and bioelectricity generation (WD&BG) in microbial fuel cells (MFCs). This study tended to explore whether non-azo textile dyes (i.e., thionin and malachite green) could also own such redox-mediating capabilities for WD&BG. Prior findings mentioned that OH and/or NH2 substitute-containing auxochrome compounds (e.g., 2-aminophenol and 1,2-dihydroxybenzene) could effectively mediate electron transport in MFCs for simultaneous WD&BG. This work clearly suggested that the presence of electron-mediating textile dyes (e.g., thionin and malachite green (MG)) in MFCs is promising to stimulate color removal and bioelectricity generation. That is, using MFCs as operation strategy for wastewater biodecolorization is economically promising in industrial applications due to autocatalytic acceleration of electron-flux for WD&BG in MFCs.

  17. Interactions Between Temperature and Nutrient Availability in Mediating Microbial Respiration in High Arctic Polar Semi-desert Soils

    NASA Astrophysics Data System (ADS)

    Holland, K. J.; Sullivan, P.; Wallenstein, M.; Arens, S.; Schimel, J. P.; Welker, J. M.

    2005-12-01

    Field respiration measurements in high arctic polar semi-desert in northern Greenland suggest a divergence in respiration rates of microbial communities in fertilization treatments at temperatures above 4°C. We hypothesized that this divergence could be attributed to either greater temperature responsiveness of microbial communities in nitrogen fertilized treatments, or to increased substrate availability in nitrogen fertilization treatments at higher temperatures. Microbial respiration responses to labile substrate addition were equal across fertilization treatments, suggesting that microbial communities had similar temperature sensitivities. To determine whether substrate availability differed between fertilization treatments, we measured 13CO2 of respiration at four temperatures. With increased temperature, rates of CO2 efflux increased and isotopic signatures of respired carbon became lighter, suggesting increasing turnover of more recalcitrant C at higher temperatures. Respiration of nitrogen fertilized soils had lighter 13CO2 signatures than ambient soils, suggesting that nitrogen might increase turnover of more recalcitrant soil carbon. These data suggest the divergence in CO2 efflux in the nitrogen fertilization treatments could be mediated by increasing availability of recalcitrant carbon.

  18. Temporal dynamic of parasite-mediated linkages between the forest canopy and soil processes and the microbial community.

    PubMed

    Mellado, Ana; Morillas, Lourdes; Gallardo, Antonio; Zamora, Regino

    2016-09-01

    Parasitic plants are important drivers of community and ecosystem properties. In this study, we identify different mechanisms by which mistletoe (Viscum album subsp. austriacum) can affect soil chemical and biological properties at different temporal stages of parasitism. We quantified the effect of parasitism on host growth and the number of frugivorous mutualists visiting the host canopy. Then we collected, identified, and weighed the organic matter input underneath tree canopies and analyzed its nutrient content. Simultaneously, we analyzed soil samples under tree canopies and examined the chemical properties, microbial abundance, and functional evenness of heterotrophic microbial communities. Mistletoe increased the amount, quality, and diversity of organic matter input beneath the host canopy, directly through its nutrient-rich litter and indirectly through a reduction in host litterfall and an increase in bird-derived debris. All these effects gave rise to enriched hotspots able to support larger and more functionally even soil microbial communities beneath parasitized hosts, the effects of which were accentuated after host death. We conclude that mistletoe, together with the biotic interactions it mediates, plays a key role in intensifying soil resource availability, regulating the functional evenness, abundance, and spatial distribution of soil microbial communities. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication.

    PubMed

    Kristoff, Jan; Haret-Richter, George; Ma, Dongzhu; Ribeiro, Ruy M; Xu, Cuiling; Cornell, Elaine; Stock, Jennifer L; He, Tianyu; Mobley, Adam D; Ross, Samantha; Trichel, Anita; Wilson, Cara; Tracy, Russell; Landay, Alan; Apetrei, Cristian; Pandrea, Ivona

    2014-06-01

    Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.

  20. Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

    PubMed Central

    Kristoff, Jan; Haret-Richter, George; Ma, Dongzhu; Ribeiro, Ruy M.; Xu, Cuiling; Cornell, Elaine; Stock, Jennifer L.; He, Tianyu; Mobley, Adam D.; Ross, Samantha; Trichel, Anita; Wilson, Cara; Tracy, Russell; Landay, Alan; Apetrei, Cristian; Pandrea, Ivona

    2014-01-01

    Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS. PMID:24837437

  1. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-10

    Blue sky and sun are the backdrop for a flawless launch of MER-A, known as“Spirit,” the first of two Mars Exploration Rovers to be sent to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  2. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-10

    Blue sky and sun are the backdrop for a flawless launch of MER-A, known as “Spirit,” the first of two Mars Exploration Rovers to be sent to Mars. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. When the two rovers arrive at Mars in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  3. Delta II MER-A Spirit Launch

    NASA Image and Video Library

    2003-06-10

    As if perched on top of a candle, the Mars Exploration Rover known as “Spirit” is hurled into space on a Delta II rocket. Liftoff occurred on time at 1:58 p.m. EDT from Launch Complex 17-A, Cape Canaveral Air Force Station. MER-A is the first of two rovers being launched to Mars. When the two rovers arrive at the red planet in 2004, they will bounce to airbag-cushioned landings at sites offering a balance of favorable conditions for safe landings and interesting science. The rovers see sharper images, can explore farther and examine rocks better than anything that has ever landed on Mars. The designated site for the MER-A mission is Gusev Crater, which appears to have been a crater lake. The second rover, MER-B, is scheduled to launch June 25.

  4. Microbially mediated formation of a new REE enriched Mn-oxide, Ytterby mine, Sweden

    NASA Astrophysics Data System (ADS)

    Sjöberg, Susanne; Allard, Bert; Rattray, Jayne E.; Callac, Nolwenn; Skelton, Alasdair; Ivarsson, Magnus; Karlsson, Stefan; Sjöberg, Viktor; Dupraz, Christophe

    2016-04-01

    Characterization of a black substance seeping from fractured bedrock in a subterranean tunnel revealed a new, microbially mediated, secondary manganese oxide mineralisation, highly enriched in rare earth elements (REEs). This tunnel is dry and at shallow depth and was built to convert the former Ytterby mine, known for the discovery of yttrium (Y), scandium (Sc) and five rare earth elements, into a fuel deposit for the Swedish Armed Forces. As the type locality of these rare earth elements, the Ytterby mine gave its name to yttrium, ytterbium, erbium and terbium. Geochemical analysis shows that the substance is enriched in REEs with concentrations one to two orders of magnitude higher than the surrounding rocks. Elemental analysis and X-ray diffraction establish that the main component is a manganese oxide of the birnessite type (general formula: [Na,Ca]0.5[Mn(III),Mn(IV)]2O4xAq). There are also minor fractions of calcite, some other manganese oxides, feldspars, quartz and about 1% organic matter, but no iron oxides. Leaching studies (sequential and selective) were performed in order to establish how the minor components are associated with the matrix (in the lattice or merely adsorbed on the outer surface). It shows that the Ytterby birnessite contains about 1% REEs in the lattice, as well as calcium but no sodium. Formation of birnessite by manganese oxidizing bacteria is well-known (e.g. Tebo et al, 2004). Quantitative PCR shows that the total number of bacteria in the Ytterby substance is in the order 1010 cells per g substance while the water feeding the fracture has in the order of 106 cells per ml groundwater. qPCR data further confirm that manganese oxidizing microorganisms are present and that the abundance varies with the seasons. Analysis of the precipitated manganese using electron paramagnetic resonance spectroscopy shows that the substance is composed of two or more components, with one part having a biogenic signature. The occurrence of C31 to C35

  5. Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction.

    PubMed

    Zizzo, Gaetano; Hilliard, Brendan A; Monestier, Marc; Cohen, Philip L

    2012-10-01

    Mer tyrosine kinase (MerTK) is a major macrophage apoptotic cell (AC) receptor. Its functional impairment promotes autoimmunity and atherosclerosis, whereas overexpression correlates with poor prognosis in cancer. However, little is known about mechanisms regulating MerTK expression in humans. We found that MerTK expression is heterogenous among macrophage subsets, being mostly restricted to anti-inflammatory M2c (CD14(+)CD16(+)CD163(+)CD204(+)CD206(+)CD209(-)) cells, differentiated by M-CSF or glucocorticoids. Small numbers of MerTK(+) "M2c-like" cells are also detectable among circulating CD14(bright)CD16(+) monocytes. MerTK expression levels adapt to changing immunologic environment, being suppressed in M1 and M2a macrophages and in dendritic cells. Remarkably, although glucocorticoid-induced differentiation is IL-10 independent, M-CSF-driven M2c polarization and related MerTK upregulation require IL-10. However, neither IL-10 alone nor TGF-β are sufficient to fully differentiate M2c (CD16(+)CD163(+)MerTK(+)) macrophages. M-CSF and IL-10, both released by T lymphocytes, may thus be required together to promote regulatory T cell-mediated induction of anti-inflammatory monocytes-macrophages. MerTK enables M2c macrophages to clear early ACs more efficiently than other macrophage subsets, and it mediates AC clearance by CD14(bright)CD16(+) monocytes. Moreover, M2c cells release Gas6, which in turn amplifies IL-10 secretion via MerTK. IL-10-dependent induction of the Gas6/MerTK pathway may, therefore, constitute a positive loop for M2c macrophage homeostasis and a critical checkpoint for maintenance of anti-inflammatory conditions. Our findings give new insight into human macrophage polarization and favor a central role for MerTK in regulation of macrophage functions. Eliciting M2c polarization can have therapeutic utility for diseases such as lupus, in which a defective AC clearance contributes to initiate and perpetuate the pathological process.

  6. MER Caching Rover for 2018 Exploration of Ancient Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Grotzinger, J. P.; Manning, R. M.; Rivellini, T. P.; Backes, P. G.; Ganino, A. J.; Shiraishi, L. R.; Klein, K. J.; Allen, W. C.; Kahn, C. L.; Ziemer, J. K.; Sherwood, B.; Eisen, H. J.

    2012-06-01

    A modern, minimally updated MER rover can begin sample return in 2018. We demonstrate MER accommodates a caching system and robust science payload. A guided entry airbag landing system enables exploration and sample collection at high priority sites.

  7. Design and Synthesis of Novel Macrocyclic Mer Tyrosine Kinase Inhibitors.

    PubMed

    Wang, Xiaodong; Liu, Jing; Zhang, Weihe; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Chen, Zhilong; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V

    2016-12-08

    Mer tyrosine kinase (MerTK) is aberrantly elevated in various tumor cells and has a normal anti-inflammatory role in the innate immune system. Inhibition of MerTK may provide dual effects against these MerTK-expressing tumors through reducing cancer cell survival and redirecting the innate immune response. Recently, we have designed novel and potent macrocyclic pyrrolopyrimidines as MerTK inhibitors using a structure-based approach. The most active macrocycles had an EC50 below 40 nM in a cell-based MerTK phosphor-protein ELISA assay. The X-ray structure of macrocyclic analogue 3 complexed with MerTK was also resolved and demonstrated macrocycles binding in the ATP binding pocket of the MerTK protein as anticipated. In addition, the lead compound 16 (UNC3133) had a 1.6 h half-life and 16% oral bioavailability in a mouse PK study.

  8. Environmental Stress-mediated EPS Production Shape Microbial Activity on Various Hydrated Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.; Liu, L.; Chen, G.

    2016-12-01

    The complex environmental physical and chemical processes and interplay with the associating biological responses are keys to understanding the environmental microbiology ensconced in environmental remediation, water quality control, food safety, nutrient cycling, and etc., yet remain poorly understood. Using experimental micromodels, we study how environmental conditions (e.g., hydration fluctuation, nutrient limitation, pH variation, etc.) affect microbial extracellular polymeric substances (EPS) production and their configuration within various hydrated surfaces, and impacts on microbial motility, surface attachment, aggregation, and other bioremediation activities. To elucidate the potential mechanisms underlying the complex bio-physicochemical processes, we developed an individual-based and spatio-temporally resolved modeling platform that explicitly considers microscale aqueous-phase configuration and nutrient transport/diffusion and associated biophysical processes affecting individual microbial cell life history. We quantitatively explore the effects of the above microscale environmental processes on bio-physicochemical interactions affecting microbial growth, motility, surface attachment and aggregation, and shaping population interactions and functions. Simulation scenarios of microbial induced pollutant (e.g., roxarsone) biotransformation on various hydrated rough surfaces will also be present.

  9. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors

    PubMed Central

    Almatouq, Abdullah; Babatunde, Akintunde O.

    2016-01-01

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, −550 ± 10 mV and 50 mL/min respectively, for COD, pHcathode, ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m2 power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value. PMID:27043584

  10. Concurrent Phosphorus Recovery and Energy Generation in Mediator-Less Dual Chamber Microbial Fuel Cells: Mechanisms and Influencing Factors.

    PubMed

    Almatouq, Abdullah; Babatunde, Akintunde O

    2016-03-29

    This study investigated the mechanism and key factors influencing concurrent phosphorus (P) recovery and energy generation in microbial fuel cells (MFC) during wastewater treatment. Using a mediator-less dual chamber microbial fuel cell operated for 120 days; P was shown to precipitate as struvite when ammonium and magnesium chloride solutions were added to the cathode chamber. Monitoring data for chemical oxygen demand (COD), pH, oxidation reduction potential (ORP) and aeration flow rate showed that a maximum 38% P recovery was achieved; and this corresponds to 1.5 g/L, pH > 8, -550 ± 10 mV and 50 mL/min respectively, for COD, pH(cathode), ORP and cathode aeration flow rate. More importantly, COD and aeration flow rate were shown to be the key influencing factors for the P recovery and energy generation. Results further show that the maximum P recovery corresponds to 72 mW/m² power density. However, the energy generated at maximum P recovery was not the optimum; this shows that whilst P recovery and energy generation can be concurrently achieved in a microbial fuel cell, neither can be at the optimal value.

  11. Autophagy protein Rubicon mediates phagocytic NADPH oxidase activation in response to microbial infection or TLR stimulation.

    PubMed

    Yang, Chul-Su; Lee, Jong-Soo; Rodgers, Mary; Min, Chan-Ki; Lee, June-Yong; Kim, Hee Jin; Lee, Kwang-Hoon; Kim, Chul-Joong; Oh, Byungha; Zandi, Ebrahim; Yue, Zhenyu; Kramnik, Igor; Liang, Chengyu; Jung, Jae U

    2012-03-15

    Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection.

  12. The MER/CIP Portal for Ground Operations

    NASA Technical Reports Server (NTRS)

    Chan, Louise; Desai, Sanjay; DOrtenzio, Matthew; Filman, Robtert E.; Heher, Dennis M.; Hubbard, Kim; Johan, Sandra; Keely, Leslie; Magapu, Vish; Mak, Ronald

    2003-01-01

    We developed the Mars Exploration Rover/Collaborative Information Portal (MER/CIP) to facilitate MER operations. MER/CIP provides a centralized, one-stop delivery platform integrating science and engineering data from several distributed heterogeneous data sources. Key issues for MER/CIP include: 1) Scheduling and schedule reminders; 2) Tracking the status of daily predicted outputs; 3) Finding and analyzing data products; 4) Collaboration; 5) Announcements; 6) Personalization.

  13. The MER/CIP Portal for Ground Operations

    NASA Technical Reports Server (NTRS)

    Chan, Louise; Desai, Sanjay; DOrtenzio, Matthew; Filman, Robtert E.; Heher, Dennis M.; Hubbard, Kim; Johan, Sandra; Keely, Leslie; Magapu, Vish; Mak, Ronald

    2003-01-01

    We developed the Mars Exploration Rover/Collaborative Information Portal (MER/CIP) to facilitate MER operations. MER/CIP provides a centralized, one-stop delivery platform integrating science and engineering data from several distributed heterogeneous data sources. Key issues for MER/CIP include: 1) Scheduling and schedule reminders; 2) Tracking the status of daily predicted outputs; 3) Finding and analyzing data products; 4) Collaboration; 5) Announcements; 6) Personalization.

  14. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  15. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  16. PDS Analyst's Notebook for MSL and MER

    NASA Astrophysics Data System (ADS)

    Stein, T. C.; Arvidson, R. E.; Zhou, F.

    2017-06-01

    The PDS Analyst’s Notebook (http://an.rsl.wustl.edu) for MSL and MER provides access to science information from several of NASA’s landed missions. Peer-reviewed data, documentation, and support files, updated coincident with PDS data releases.

  17. Potential MER Landing Site in Melas Chasma

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Parker, Timothy J.; Anderson, F. Scott

    2001-01-01

    We have selected one area in Valles Marineris as a potential landing site for the Mars Exploration Rover (MER) mission. After 30 years of analyses, the formation of the Valles Marineris system of troughs and its associated deposits still remains an enigma. Understanding all aspects of the Valles Marineris would significantly contribute to deciphering the internal and external history of Mars. A landing site within Melas Chasma could provide insight into both the formation of Valles Marineris and the composition and origin of the interior layered deposits (ILDs). The ILDs have been proposed as: (1) sedimentary deposits formed in lakes mass wasted material from the walls; (3) remnants of the wall rock; (4) carbonate deposits; (5) aeolian deposits; and (6) volcanic. More recently, Malin and Edgett suggest that the fine-scale, rhythmic layering seen in the interior deposits, as well as other layered deposits in craters, supports a sedimentary origin. Because an understanding of the formation of Valles Marineris and its interior deposits is so important to deciphering the history of Mars, we have proposed a landing site for the MER mission on an exposure of interior deposits in western Melas Chasma. Either MER-A and MER-B could land at this same location.

  18. Isotope evidence for the microbially mediated formation of elemental sulfur: A case study from Lake Peten Itza, Guatemala

    NASA Astrophysics Data System (ADS)

    Turchyn, A. V.; Bennett, V. A.; Hodell, D. A.

    2013-12-01

    Elemental, or native, sulfur nodules or veins can be formed during aqueous diagenesis and have been found in a range of natural environments, including lake sediments. What governs the formation of elemental sulfur remains enigmatic, although it is widely thought to be microbially-mediated. While most of the literature suggests elemental sulfur is formed by partial re-oxidation of hydrogen sulphide, elemental sulfur can also form during incomplete bacterial sulfate reduction or during aborted sulfur disproportionation. Lake Peten Itza, in Northern Guatemala, which was cored during the International Continental Drilling program in 2006, is one of the few places where elemental sulfur nodules are forming during microbial diagenesis today. Sulfur isotopes are strongly partitioned during bacterial sulfate reduction and the magnitude of the partitioning yields insight into the microbial reactions and environmental conditions. For example, sulfate reduction that terminates at elemental sulfur likely requires the use of the intracellular trithonite pathway, which may drive larger overall sulfur isotope fractionation between the precursor sulfate and the elemental sulfur product. Sulfur isotopes combined with oxygen isotopes in the precursor sulfate may provide even more information about microbial mechanisms. We present coupled pore fluid sulfate concentrations and sulfur and oxygen isotope measurements, as well as co-existing nodule sulfur isotopes from the Lake Peten Itza sediments. The δ34S of the nodules in the lake sediments ranges from +12 to -13‰, often within a single nodule. This suggests formation from an open system where sulfate is replenished by diffusion, as might be expected during pore fluid diagenesis. The δ34S of the pore fluid sulfate at the depth of nodule formation is between 50 and 60‰ (versus the precursor gypsum which is 17 to 18‰) suggesting a large sulfur isotope fractionation between sulfate and elemental sulfur (38 to 73‰). Pyrite was

  19. Deciphering MERS-CoV Evolution in Dromedary Camels.

    PubMed

    Du, Lin; Han, Guan-Zhu

    2016-02-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) poses a potential threat to global public health. Many aspects of the evolution and transmission of MERS-CoV in its animal reservoir remain unclear. A recent study provides new insights into the evolution and transmission of MERS-CoV in dromedary camels.

  20. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies.

    PubMed

    Yan, Jianyun; Sultana, Nishat; Zhang, Lu; Park, David S; Shekhar, Akshay; Hu, Jun; Bu, Lei; Cai, Chen-Leng

    2015-06-01

    Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.

  1. Microbial Contamination of Ice Machines Is Mediated by Activated Charcoal Filtration Systems in a City Hospital.

    PubMed

    Yorioka, Katsuhiro; Oie, Shigeharu; Hayashi, Koji; Kimoto, Hiroo; Furukawa, Hiroyuki

    2016-06-01

    Although microbial contamination of ice machines has been reported, no previous study has addressed microbial contamination of ice produced by machines equipped with activated charcoal (AC) filters in hospitals. The aim of this study was to provide clinical data for evaluating AC filters to prevent microbial contamination of ice. We compared microbial contamination in ice samples produced by machines with (n = 20) and without an AC filter (n = 40) in Shunan City Shinnanyo Municipal Hospital. All samples from the ice machine equipped with an AC filter contained 10-116 CFUs/g of glucose nonfermenting gram-negative bacteria such as Pseudomonas aeruginosa and Chryseobacterium meningosepticum. No microorganisms were detected in samples from ice machines without AC filters. After the AC filter was removed from the ice machine that tested positive for Gram-negative bacteria, the ice was resampled (n = 20). Analysis found no contaminants. Ice machines equipped with AC filters pose a serious risk factor for ice contamination. New filter-use guidelines and regulations on bacterial detection limits to prevent contamination of ice in healthcare facilities are necessary.

  2. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    NASA Astrophysics Data System (ADS)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  3. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    NASA Astrophysics Data System (ADS)

    Lehmeier, C. A.; Ballantyne, F., IV; Min, K.; Billings, S. A.

    2015-10-01

    Understanding how carbon dioxide (CO2) flux from soils feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert soil organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of soil organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in soils fundamentally limit our ability to project soil, and thus ecosystem, C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan soil microorganism growing at a constant rate. Specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future soil C fluxes.

  4. Microbially-mediated fate of {sup 14}C-pyrene in soil organic matter

    SciTech Connect

    Guthroe, E.A.; Pfaender, F.K.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental contaminants that result from both natural and anthropogenic combustion processes. Several microbial processes are known to influence the fate of PAH in soil. Their effect on PAH structure and mobility can affect the potential health risk exposure to humans and indigenous organisms in soil. Microbial metabolism of PAHs can result in the accumulation of more polar by-products or the formation of by-products that may be further metabolized or mineralized by other microorganisms. A third possible fate is the incorporation of PAHs into soil organic matter via various sorption/binding processes. Experiments were conducted to determine the extent of {sup 14}C-pyrene associations with soil organic matter (SOM) in adapted and non-adapted soils. Changes in microbial respiration (CO{sub 2} efflux), {sup 14}C volatile organics, {sup 14}C water soluble metabolites and {sup 14}C SOM were measured in aerated soil systems treated individually with 100 mg/kg [4,5,9,10-{sup 14}C] pyrene over time. Mass balances were generated based on V products in water extracts, CO{sub 2} efflux. SOM, {sup 14}C-volatiles, and residual soil. The {sup 14}C products in SOM were further fractionated into humic acids (HA), fulvic acids (FA), and humin. The presence of an adapted, microbial community enhances {sup 14}C-pyrene mineralization and increases the {sup 14}C product accumulation in water extracts and fulvic acids (FA).

  5. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.

    PubMed

    Sevda, Surajbhan; Sreekrishnan, T R

    2012-01-01

    The aim of this study was to investigate the feasibility of using agar salt bridges for proton transport in Microbial Fuel Cells (MFC). It also tries to elucidate and effect of mediators on electricity production from wastewaters through experimentation using a simulated wastewater. In order to offset the very high cost of proton exchange membrane, salt bridges have been used in dual chamber MFCs. When the concentration of salt was varied in agar salt bridges from 1% to 10%, the volumetric power density changed from 1.71 to 84.99 mW/m(3) with a concomitant variation in power density from 0.32 to 16.02 mW/m(2). The maximum power density was observed at 5% salt concentration with 10% agar, which was accompanied by 88.41% COD reduction. In the case of methylene blue (0.01 mM) as the electron mediator, the voltage and current generation were 0.551 V and 0.47 mA, respectively. A maximum open circuit voltage of 0.718 V was seen at 0.08 mM methylene blue concentration, whereas maximum power densities of 17.59 mW/m(2) and 89.22 mW/m(3) were obtained. Different concentrations of neutral red were also tried out as mediators. A maximum open circuit voltage of 0.730 V was seen at 0.01 mM neutral red, corresponding to a power density of 12.02 mW/m(2) (volumetric power density of 60.97 mW/m(3)). Biofilm formation on the electrode surface was not observed in the presence of mediators, but was present in the absence of mediators. The results clearly demonstrated the feasibility to use agar salt bridge for proton transport and role of mediators in MFCs to generate electricity.

  6. pH-Mediated Microbial and Metabolic Interactions in Fecal Enrichment Cultures

    PubMed Central

    Ilhan, Zehra Esra; Marcus, Andrew K.; Kang, Dae-Wook; Rittmann, Bruce E.

    2017-01-01

    ABSTRACT pH and fermentable substrates impose selective pressures on gut microbial communities and their metabolisms. We evaluated the relative contributions of pH, alkalinity, and substrate on microbial community structure, metabolism, and functional interactions using triplicate batch cultures started from fecal slurry and incubated with an initial pH of 6.0, 6.5, or 6.9 and 10 mM glucose, fructose, or cellobiose as the carbon substrate. We analyzed 16S rRNA gene sequences and fermentation products. Microbial diversity was driven by both pH and substrate type. Due to insufficient alkalinity, a drop in pH from 6.0 to ~4.5 clustered pH 6.0 cultures together and distant from pH 6.5 and 6.9 cultures, which experienced only small pH drops. Cellobiose yielded more acidity than alkalinity due to the amount of fermentable carbon, which moved cellobiose pH 6.5 cultures away from other pH 6.5 cultures. The impact of pH on microbial community structure was reflected by fermentative metabolism. Lactate accumulation occurred in pH 6.0 cultures, whereas propionate and acetate accumulations were observed in pH 6.5 and 6.9 cultures and independently from the type of substrate provided. Finally, pH had an impact on the interactions between lactate-producing and -consuming communities. Lactate-producing Streptococcus dominated pH 6.0 cultures, and acetate- and propionate-producing Veillonella, Bacteroides, and Escherichia dominated the cultures started at pH 6.5 and 6.9. Acid inhibition on lactate-consuming species led to lactate accumulation. Our results provide insights into pH-derived changes in fermenting microbiota and metabolisms in the human gut. IMPORTANCE The human gut is a dynamic environment in which microorganisms consistently interact with the host via their metabolic products. Some of the most important microbial metabolic products are fermentation products such as short-chain fatty acids. Production of these fermentation products and the prevalence of fermenting

  7. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment

    PubMed Central

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0–2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20–40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment. PMID:28217124

  8. Sulfur-Oxidizing Bacteria Mediate Microbial Community Succession and Element Cycling in Launched Marine Sediment.

    PubMed

    Ihara, Hideyuki; Hori, Tomoyuki; Aoyagi, Tomo; Takasaki, Mitsuru; Katayama, Yoko

    2017-01-01

    A large amount of marine sediment was launched on land by the Great East Japan earthquake. Here, we employed both on-site and laboratory studies on the launched marine sediment to investigate the succession of microbial communities and its effects on geochemical properties of the sediment. Twenty-two-month on-site survey showed that microbial communities at the uppermost layer (0-2 mm depth) of the sediment changed significantly with time, whereas those at the deeper layer (20-40 mm depth) remained nearly unchanged and kept anaerobic microbial communities. Nine months after the incidence, various sulfur-oxidizing bacteria (SOB) prevailed in the uppermost layer, in which afterwards diverse chemoorganotrophic bacteria predominated. Geochemical analyses indicated that the concentration of metals other than Fe was lower in the uppermost layer than that in the deeper layer. Laboratory study was carried out by incubating the sediment for 57 days, and clearly indicated the dynamic transition of microbial communities in the uppermost layer exposed to atmosphere. SOB affiliated in the class Epsilonproteobacteria rapidly proliferated and dominated at the uppermost layer during the first 3 days, after that Fe(II)-oxidizing bacteria and chemoorganotrophic bacteria were sequentially dominant. Furthermore, the concentration of sulfate ion increased and the pH decreased. Consequently, SOB may have influenced the mobilization of heavy metals in the sediment by metal-bound sulfide oxidation and/or sediment acidification. These results demonstrate that SOB initiated the dynamic shift from the anaerobic to aerobic microbial communities, thereby playing a critical role in element cycling in the marine sediment.

  9. Environmental Conditions Constrain the Distribution and Diversity of Archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Wang, Y.; Boyd, E.; Crane, S.; Lu-Irving, P.; Krabbenhoft, D.; King, S.; Dighton, J.; Geesey, G.; Barkay, T.

    2011-01-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient. ?? 2011 Springer Science+Business Media, LLC.

  10. Environmental conditions constrain the distribution and diversity of archaeal merA in Yellowstone National Park, Wyoming, U.S.A.

    PubMed

    Wang, Yanping; Boyd, Eric; Crane, Sharron; Lu-Irving, Patricia; Krabbenhoft, David; King, Susan; Dighton, John; Geesey, Gill; Barkay, Tamar

    2011-11-01

    The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.

  11. Metagenome Fragment Classification Using N-Mer Frequency Profiles

    PubMed Central

    Rosen, Gail; Garbarine, Elaine; Caseiro, Diamantino; Polikar, Robi; Sokhansanj, Bahrad

    2008-01-01

    A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique N-mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC) that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions). Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced. PMID:19956701

  12. Metagenome fragment classification using N-mer frequency profiles.

    PubMed

    Rosen, Gail; Garbarine, Elaine; Caseiro, Diamantino; Polikar, Robi; Sokhansanj, Bahrad

    2008-01-01

    A vast amount of microbial sequencing data is being generated through large-scale projects in ecology, agriculture, and human health. Efficient high-throughput methods are needed to analyze the mass amounts of metagenomic data, all DNA present in an environmental sample. A major obstacle in metagenomics is the inability to obtain accuracy using technology that yields short reads. We construct the unique N-mer frequency profiles of 635 microbial genomes publicly available as of February 2008. These profiles are used to train a naive Bayes classifier (NBC) that can be used to identify the genome of any fragment. We show that our method is comparable to BLAST for small 25 bp fragments but does not have the ambiguity of BLAST's tied top scores. We demonstrate that this approach is scalable to identify any fragment from hundreds of genomes. It also performs quite well at the strain, species, and genera levels and achieves strain resolution despite classifying ubiquitous genomic fragments (gene and nongene regions). Cross-validation analysis demonstrates that species-accuracy achieves 90% for highly-represented species containing an average of 8 strains. We demonstrate that such a tool can be used on the Sargasso Sea dataset, and our analysis shows that NBC can be further enhanced.

  13. Growth and Quantification of MERS-CoV Infection

    PubMed Central

    Coleman, Christopher M.; Frieman, Matthew B.

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging highly pathogenic respiratory virus. Although MERS-CoV only emerged in 2012, we and others have developed assays to grow and quantify infectious MERS-CoV and RNA products of replication in vitro. MERS-CoV is able to infect a range of cell types, but replicates to high titers in Vero E6 cells. Protocols for the propagation and quantification of MERS-CoV are presented. PMID:26344219

  14. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis.

    PubMed

    Menachery, Vineet D; Mitchell, Hugh D; Cockrell, Adam S; Gralinski, Lisa E; Yount, Boyd L; Graham, Rachel L; McAnarney, Eileen T; Douglas, Madeline G; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F; Hale, Andrew E; Stratton, Kelly G; Waters, Katrina M; Baric, Ralph S

    2017-08-22

    While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward.IMPORTANCE The initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants. Copyright © 2017 Menachery et al.

  15. Recapitulating phylogenies using k-mers: from trees to networks

    PubMed Central

    Bernard, Guillaume; Ragan, Mark A.; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k-mers (subsequences at fixed length k). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel’s idea of ontogeny, we argue that genome phylogenies can be inferred using k-mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner. PMID:28105314

  16. Recapitulating phylogenies using k-mers: from trees to networks.

    PubMed

    Bernard, Guillaume; Ragan, Mark A; Chan, Cheong Xin

    2016-01-01

    Ernst Haeckel based his landmark Tree of Life on the supposed ontogenic recapitulation of phylogeny, i.e. that successive embryonic stages during the development of an organism re-trace the morphological forms of its ancestors over the course of evolution. Much of this idea has since been discredited. Today, phylogenies are often based on families of molecular sequences. The standard approach starts with a multiple sequence alignment, in which the sequences are arranged relative to each other in a way that maximises a measure of similarity position-by-position along their entire length. A tree (or sometimes a network) is then inferred. Rigorous multiple sequence alignment is computationally demanding, and evolutionary processes that shape the genomes of many microbes (bacteria, archaea and some morphologically simple eukaryotes) can add further complications. In particular, recombination, genome rearrangement and lateral genetic transfer undermine the assumptions that underlie multiple sequence alignment, and imply that a tree-like structure may be too simplistic. Here, using genome sequences of 143 bacterial and archaeal genomes, we construct a network of phylogenetic relatedness based on the number of shared k-mers (subsequences at fixed length k). Our findings suggest that the network captures not only key aspects of microbial genome evolution as inferred from a tree, but also features that are not treelike. The method is highly scalable, allowing for investigation of genome evolution across a large number of genomes. Instead of using specific regions or sequences from genome sequences, or indeed Haeckel's idea of ontogeny, we argue that genome phylogenies can be inferred using k-mers from whole-genome sequences. Representing these networks dynamically allows biological questions of interest to be formulated and addressed quickly and in a visually intuitive manner.

  17. Effective inhibition of MERS-CoV infection by resveratrol.

    PubMed

    Lin, Shih-Chao; Ho, Chi-Tang; Chuo, Wen-Ho; Li, Shiming; Wang, Tony T; Lin, Chi-Chen

    2017-02-13

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging viral pathogen that causes severe morbidity and mortality. Up to date, there is no approved or licensed vaccine or antiviral medicines can be used to treat MERS-CoV-infected patients. Here, we analyzed the antiviral activities of resveratrol, a natural compound found in grape seeds and skin and in red wine, against MERS-CoV infection. We performed MTT and neutral red uptake assays to assess the survival rates of MERS-infected Vero E6 cells. In addition, quantitative PCR, western blotting, and immunofluorescent assays determined the intracellular viral RNA and protein expression. For viral productivity, we utilized plaque assays to confirm the antiviral properties of resveratrol against MERS-CoV. Resveratrol significantly inhibited MERS-CoV infection and prolonged cellular survival after virus infection. We also found that the expression of nucleocapsid (N) protein essential for MERS-CoV replication was decreased after resveratrol treatment. Furthermore, resveratrol down-regulated the apoptosis induced by MERS-CoV in vitro. By consecutive administration of resveratrol, we were able to reduce the concentration of resveratrol while achieving inhibitory effectiveness against MERS-CoV. In this study, we first demonstrated that resveratrol is a potent anti-MERS agent in vitro. We perceive that resveratrol can be a potential antiviral agent against MERS-CoV infection in the near future.

  18. Chirality in microbial biofilms is mediated by close interactions between the cell surface and the substratum.

    PubMed

    Jauffred, Liselotte; Munk Vejborg, Rebecca; Korolev, Kirill S; Brown, Stanley; Oddershede, Lene B

    2017-07-01

    From microbial biofilms to human migrations, spatial competition is central to the evolutionary history of many species. The boundary between expanding populations is the focal point of competition for space and resources and is of particular interest in ecology. For all Escherichia coli strains studied here, these boundaries move in a counterclockwise direction even when the competing strains have the same fitness. We find that chiral growth of bacterial colonies is strongly suppressed by the expression of extracellular features such as adhesive structures and pili. Experiments with other microbial species show that chiral growth is found in other bacteria and exclude cell wall biosynthesis and anisotropic shape as the primary causes of chirality. Instead, intimate contact with the substratum is necessary for chirality. Our results demonstrate that through a handful of surface molecules cells can fundamentally reorganize their migration patterns, which might affect intra- and interspecific competitions through colony morphology or other mechanisms.

  19. Microbially mediated transformations of phosphorus in the sea: new views of an old cycle.

    PubMed

    Karl, David M

    2014-01-01

    Phosphorus (P) is a required element for life. Its various chemical forms are found throughout the lithosphere and hydrosphere, where they are acted on by numerous abiotic and biotic processes collectively referred to as the P cycle. In the sea, microorganisms are primarily responsible for P assimilation and remineralization, including recently discovered P reduction-oxidation bioenergetic processes that add new complexity to the marine microbial P cycle. Human-induced enhancement of the global P cycle via mining of phosphate-bearing rock will likely influence the pace of P-cycle dynamics, especially in coastal marine habitats. The inextricable link between the P cycle and cycles of other bioelements predicts future impacts on, for example, nitrogen fixation and carbon dioxide sequestration. Additional laboratory and field research is required to build a comprehensive understanding of the marine microbial P cycle.

  20. Plasmid-Mediated Bioaugmentation of Wastewater Microbial Communities in a Laboratory-Scale Bioreactor

    NASA Astrophysics Data System (ADS)

    Bathe, Stephan; Hausner, Martina

    Xenobiotic degradation during biological wastewater treatment can be established or enhanced by bioaugmentation - the addition of biological agents carrying biodegradation genes required to perform the task. Whereas the addition of microbial cells carrying chromosomally encoded catabolic genes can be impaired by limited survival of the added microorganisms, the addition of donor organisms carrying a transmissible catabolic plasmid is a promising alternative. This plasmid can spread within the indigenous microbial community of the system, circumventing the need for extended survival of the introduced bacterial strain. Here we discuss how the catabolic plasmid pNB2 can be evaluated towards its potential to facilitate the degradation of a xenobiotic compound, 3-chloroaniline, and demonstrate the applicability of this plasmid to accomplish 3-chloroaniline degradation in a bioreactor setting after in situ transfer to suitable recipient strains.

  1. Trends, application and future prospectives of microbial carbonic anhydrase mediated carbonation process for CCUS.

    PubMed

    Bhagat, Chintan; Dudhagara, Pravin; Tank, Shantilal

    2017-09-18

    Growing industrialisation and desire for better economy of countries accelerated the emission of greenhouse gasses, more than the buffering capacity of earth atmosphere. Among, various Green House Gasses (GHGs), CO2 occupies the first position in anthroposphere and has detrimental effects on the ecosystem. For decarbonization, several non-biological methods of carbon capture, utilisation, and storage (CCUS) are in use from last few decades, but they are suffering from narrow applicability. Recently, CO2 emission and its disposal related problem encourage for implementation of bioprocessing to achieve zero waste economy for a sustainable environment. Microbial carbonic anhydrase (CA) catalyse the reversible CO2 hydration and forming metal carbonates that mimic natural phenomenon of weathering/carbonation and is getting merits for CCUS. Thus, diversity and specificity of CAs from the different microorganisms would be explored for CCUS. In literature, more than 50 different microbial CAs explored for mineral carbonation. Further, microbial CAs can be engineered for mineral carbonation process to develop new technology. CA driven carbonation is an encouraging due to its large storage capacity, favourable chemistries, allowing site-specific sequestration and reusable product formation for other industries. Moreover, carbonation based CCUS holds fivefold more sequestration capacity for next hundred year. Thus, it is an eco-friendly, feasible, viable option and believed to be impending technology for CCUS. Here, we attempt to enlighten the distribution of various types of microbial CAs with their potential applications and future direction for carbon capture. Although, there are few key challenges in the bio-based technology, need to be addressed to commercialise the technology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Microbial Diversity And Evidence For Bacterially Mediated Basalt Dissolution On Vailulu'u Seamount

    NASA Astrophysics Data System (ADS)

    Sudek, L. A.; Bailey, B. E.; Templeton, A. S.; Staudigel, H.; Tebo, B. M.

    2006-12-01

    In the deep ocean, seamounts are one of the most common topographic features and their role as highly productive centers of biodiversity was discovered in the last decades. Together with mid-ocean ridge and back- arc systems, seamounts are the main source of basaltic glass, volcanic rocks highly enriched in the reduced forms of bio-essential elements such as Mn and Fe (Mn(II) and Fe(II)). Weathering of these rocks takes place through ion exchange mechanisms resulting in a significant change in rock and local oceanic chemistry. These processes can be significantly enhanced by the activity of chemolithotrophic bacteria such as Fe(II)- and Mn(II)-oxidizers. The extent to which microbes are able to use basalt to satisfy their energy and/or nutrient needs as well as the mechanisms of microbial basalt dissolution are not well understood. We have used molecular techniques such as 16S rDNA libraries, t-RFLP and FISH analysis to investigate microbial interactions with Fe and Mn and microbial diversity in different samples (e.g., basalt surfaces, Fe-oxide mats) collected from Vailulu'u Seamount. Culture-based studies were also conducted to provide information on the diversity of Fe- and Mn-oxidizing strains, their physiological features, and the complexity of mechanisms potentially involved in microbial basalt dissolution. Studies have been carried out with one model Fe(II)- oxidizing bacterium to identify and understand the primary and any secondary mechanisms of Fe acquisition that might allow the use of basaltic glass as a source of nutrients and energy.

  3. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.

    PubMed

    Tobler, Nicole B; Hofstetter, Thomas B; Straub, Kristina L; Fontana, Daniela; Schwarzenbach, René P

    2007-11-15

    In anoxic environments, the oxidation of organic compounds, such as BTEX fuel components, by dissimilatory Fe(III) reduction can generate reactive mineral-bound Fe(II) species, which in turn are able to reduce other classes of organic and inorganic groundwater contaminants. In this study, we designed and evaluated an anaerobic batch reactor that mimicks iron-reducing conditions to investigate the factors that favor the coupling of microbial toluene oxidation and abiotic reduction of nitroaromatic contaminants. We investigated the influence of different Fe(III)-bearing minerals and combinations thereof on the coupling of these two processes. Results from laboratory model systems show that complete oxidation of toluene to CO2 by Geobacter metallireducens in the presence of Fe(III)-bearing minerals leads to the formation of mineral-bound Fe(II) species capable of the reduction of 4-nitroacetophenone. Whereas significant microbial toluene oxidation was only observed in the presence of amorphous Fe(III) phases, reduction of nitroaromatic compounds only proceeded with Fe(II) species bound to crystalline Fe(III) oxides. Our results suggest that in anoxic soils and sediments containing amorphous and crystalline iron phases simultaneously, coupling of microbial oxidation and abiotic reduction of organic compounds may allow for concurrent natural attenuation of different contaminant classes.

  4. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels.

    PubMed

    Haagmans, Bart L; van den Brand, Judith M A; Raj, V Stalin; Volz, Asisa; Wohlsein, Peter; Smits, Saskia L; Schipper, Debby; Bestebroer, Theo M; Okba, Nisreen; Fux, Robert; Bensaid, Albert; Solanes Foz, David; Kuiken, Thijs; Baumgärtner, Wolfgang; Segalés, Joaquim; Sutter, Gerd; Osterhaus, Albert D M E

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox. Copyright © 2016, American Association for the Advancement of Science.

  5. Enhanced microbial decolorization of methyl red with oxidized carbon fiber as redox mediator.

    PubMed

    Emilia Rios-Del Toro, E; Celis, Lourdes B; Cervantes, Francisco J; Rangel-Mendez, J Rene

    2013-09-15

    The anaerobic degradation of azo dyes under anaerobic conditions is possible but at a slow rate. Redox mediators (quinones, activated carbon) are used to improve the reduction rate. The aim of this work was to use activated carbon fiber (ACF) as a redox mediator for the anaerobic reduction of the azo dye methyl red. ACF was chemically modified with 8M HNO₃ to increase its redox-mediating capacity and used in chemical and anaerobic biological batch assays for the reduction of methyl red. ACF increased its redox-mediating capacity up to 3-fold in chemical assays; in biological assays ACF increased the reduction rate up to 8-fold compared to controls without ACF. However, since the ACF served as support for biomass, a biofilm formed on the fiber significantly reduced its redox-mediating capacity; substrate consumption suggested that the electron transport from ACF to methyl red was the rate-limiting step in the process. These results are the first evidence of the role of ACF as a redox mediator in the reductive decolorization of methyl red, in addition to the effect of biofilm attached to ACF on methyl red reduction. Due to the versatile characteristics of ACF and its redox-mediating capacity, carbon fibers could be used in biological wastewater treatment systems to accelerate the reductive transformation of pollutants commonly found in industrial effluents.

  6. Microbially Mediated Biodegradation of Hexahydro-1,3,5-Trinitro-1,3,5- Triazine by Extracellular Electron Shuttling Compounds

    PubMed Central

    Kwon, Man Jae; Finneran, Kevin T.

    2006-01-01

    The potential for humic substances to stimulate the reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was investigated. This study describes a novel approach for the remediation of RDX-contaminated environments using microbially mediated electron shuttling. Incubations without cells demonstrated that reduced AQDS transfers electrons directly to RDX, which was reduced without significant accumulation of the nitroso intermediates. Three times as much reduced AQDS (molar basis) was needed to completely reduce RDX. The rate and extent of RDX reduction differed greatly among electron shuttle/acceptor amendments for resting cell suspensions of Geobacter metallireducens and G. sulfurreducens with acetate as the sole electron donor. AQDS and purified humic substances stimulated the fastest rate of RDX reduction. The nitroso metabolites did not significantly accumulate in the presence of AQDS or humic substances. RDX reduction in the presence of poorly crystalline Fe(III) was relatively slow and metabolites transiently accumulated. However, adding humic substances or AQDS to Fe(III)-containing incubations increased the reduction rates. Cells of G. metallireducens alone reduced RDX; however, the rate of RDX reduction was slow relative to AQDS-amended incubations. These data suggest that extracellular electron shuttle-mediated RDX transformation is not organism specific but rather is catalyzed by multiple Fe(III)- and humic-reducing species. Electron shuttle-mediated RDX reduction may eventually become a rapid and effective cleanup strategy in both Fe(III)-rich and Fe(III)-poor environments. PMID:16957213

  7. Animal models for SARS and MERS coronaviruses.

    PubMed

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-08-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV.

  8. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  9. Two Years Onboard the MER Opportunity Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  10. Barrier properties of k-mer packings

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Khrapatiy, S.; Vygornitskyi; Pivovarova, N.

    2014-08-01

    This work discusses numerical studies of the barrier properties of k-mer packings by the Monte Carlo method. The studied variants of regular and non-regular arrangements on a square lattice included models of random sequential adsorption (RSA) and random deposition (RD). The discrete problem of diffusion through the bonds of a square lattice was considered. The k-mers were perfectly oriented perpendicular to the diffusion direction and blocked certain fraction of bonds fb against diffusion. The barrier efficiency was estimated by calculation of the ratio D/Do where D is diffusion coefficient in direction perpendicular to the orientation of k-mers and Do is the same value for diffusion on the square lattice without blocked bonds, i.e., at fb=0. The value of k varied from 1 to 512 and different lattice sizes up to L=8192 lattice units were used. For dense packings (p=1), the obtained D/Do versus fb dependences deviated from the theoretical prediction of effective medium (EM) theory and deviation was the most obvious for the regular non-staggered arrangement. For loose RSA and RD packings, the percolation like-behavior of D/Do with threshold at fb=p∞ was observed and the data evidenced that their barrier properties at large values of k may be more effective than those of some dense packings. Such anomalous behavior can reflect the details of k-mer spatial organization (aggregation) and structure of pores in RD and RSA packings. The contradictions between simulation data and predictions of EM theory were also discussed.

  11. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  12. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  13. Automated Targeting for the MER Rovers

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Castano, Rebecca; Anderson, Robert C.; Bornstein, Benjamin; Gaines, Daniel; de Granville, Charles; Thompson, David; Burl, Michael; Chien, Steve; Judd, Michele

    2009-01-01

    The Autonomous Exploration for Gathering Increased Science System (AEGIS) will soon provide automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which currently which currently has two rovers exploring the surface of Mars. Currently, targets for rover remote-sensing instruments, especially narrow field-of-view instruments (such as the MER Mini- TES spectrometer or the 2011 Mars Science Laboratory (MSL) Mission ChemCam Spectrometer), must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In this paper, we first provide some background information on the larger autonomous science framework in which AEGIS was developed. We then describe how AEGIS was specifically developed and tested on the JPL FIDO rover. Finally we discuss how AEGIS will be uploaded and used on the Mars Exploration Rover (MER) mission in early 2009.

  14. Extracellular Saccharide-Mediated Reduction of Au(3+) to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    PubMed

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-02-15

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au(3+)) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au(3+)was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au(3+) reduction, reflecting the predominance of the extracellular matrix in Au(3+) reduction. XPS, UV-vis, and FTIR analyses corroborated that Au(3+) reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au(3+) and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  15. The effects of spatial structure, frequency dependence and resistance evolution on the dynamics of toxin-mediated microbial invasions.

    PubMed

    Libberton, Ben; Horsburgh, Malcolm J; Brockhurst, Michael A

    2015-08-01

    Recent evidence suggests that interference competition between bacteria shapes the distribution of the opportunistic pathogen Staphylococcus aureus in the lower nasal airway of humans, either by preventing colonization or by driving displacement. This competition within the nasal microbial community would add to known host factors that affect colonization. We tested the role of toxin-mediated interference competition in both structured and unstructured environments, by culturing S. aureus with toxin-producing or nonproducing Staphylococcus epidermidis nasal isolates. Toxin-producing S. epidermidis invaded S. aureus populations more successfully than nonproducers, and invasion was promoted by spatial structure. Complete displacement of S. aureus was prevented by the evolution of toxin resistance. Conversely, toxin-producing S. epidermidis restricted S. aureus invasion. Invasion of toxin-producing S. epidermidis populations by S. aureus resulted from the evolution of toxin resistance, which was favoured by high initial frequency and low spatial structure. Enhanced toxin production also evolved in some invading populations of S. epidermidis. Toxin production therefore promoted invasion by, and constrained invasion into, populations of producers. Spatial structure enhanced both of these invasion effects. Our findings suggest that manipulation of the nasal microbial community could be used to limit colonization by S. aureus, which might limit transmission and infection rates.

  16. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas.

    PubMed

    Lavania, Meeta; Sarma, Priyangshu M; Mandal, Ajoy K; Cheema, Simrita; Lal, Banwari

    2011-01-01

    We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, and formaldehyde, glutaraldehyde, to control microbial induced corrosion in oil pipelines. The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts, H2S production, Fe(II) production, production of extracellular polymeric substances and structure of biofilm. The treatment with cow urine had minimum planktonic cell counts of 3 x 10(2) CFU/mL as well as biofilm cell counts of 9 x 10(1) CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, formaldehyde and glutaraldehyde. Sulfide production was the lowest with cow urine (0.08 mmol/L), followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmol/L. On day 90 of treatment, Fe(II) production was also found to be the lowest with cow urine. The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine. These results demonstrate the cow urine mediated control of microbially induced corrosion, and this is indicative of its potential as a viable substitute of toxic biocides. To the best of our knowledge, this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using.

  17. Biodegradation and surfactant-mediated biodegradation of diesel fuel by 218 microbial consortia are not correlated to cell surface hydrophobicity.

    PubMed

    Owsianiak, Mikołaj; Szulc, Alicja; Chrzanowski, Łukasz; Cyplik, Paweł; Bogacki, Mariusz; Olejnik-Schmidt, Agnieszka K; Heipieper, Hermann J

    2009-09-01

    In this study, we elucidated the role of cell surface hydrophobicity (microbial adhesion to hydrocarbons method, MATH) and the effect of anionic rhamnolipids and nonionic Triton X-100 surfactants on biodegradation of diesel fuel employing 218 microbial consortia isolated from petroleum-contaminated soils. Applied enrichment procedure with floating diesel fuel as a sole carbon source in liquid cultures resulted in consortia of varying biodegradation potential and diametrically different cell surface properties, suggesting that cell surface hydrophobicity is a conserved parameter. Surprisingly, no correlations between cell surface hydrophobicity and biodegradation of diesel fuel were found. Nevertheless, both surfactants altered cell surface hydrophobicity of the consortia in similar manner: increased for the hydrophilic and decreased for the hydrophobic cultures. In addition to this, the surfactants exhibited similar influence on diesel fuel biodegradation: Increase was observed for initially slow-degrading cultures and the opposite for fast degraders. This indicates that in the surfactant-mediated biodegradation, effectiveness of surfactants depends on the specification of microorganisms and not on the type of surfactant. In contrary to what was previously reported for pure strains, cell surface hydrophobicity, as determined by MATH, is not a good descriptor of biodegrading potential for mixed cultures.

  18. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession

    PubMed Central

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-01-01

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages—which provide a larger spatiotemporal scale relative to within stage analyses—revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended—and experimentally testable—conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems. PMID:25733885

  19. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    PubMed

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  20. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  1. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow

    PubMed Central

    Jiang, Jing; Shi, Peili; Song, Minghua; Shen, Zhenxi; Zhang, Xianzhou

    2015-01-01

    Quantifying the effects of nutrient additions on soil microbial respiration (R m) and its contribution to soil respiration (R s) are of great importance for accurate assessment ecosystem carbon (C) flux. Nitrogen (N) addition either alone (coded as LN and HN) or in combination with phosphorus (P) (coded as LN + P and HN + P) were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect R m, while LN + P enhanced R m during peak growing periods, but HN + P did not affect R m. Nutrient addition also significantly affected R m/R s, and the correlations of R m/R s with climatic factors varied with years. Soil water content (Sw) was the main factor controlling the variations of R m/R s. During the years with large rainfall variations, R m/R s was negatively correlated with Sw, while, in years with even rainfall, R m/R s was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on R m/R s were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on R m/R s suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems. PMID:26347902

  2. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow.

    PubMed

    Zong, Ning; Jiang, Jing; Shi, Peili; Song, Minghua; Shen, Zhenxi; Zhang, Xianzhou

    2015-01-01

    Quantifying the effects of nutrient additions on soil microbial respiration (R m) and its contribution to soil respiration (R s) are of great importance for accurate assessment ecosystem carbon (C) flux. Nitrogen (N) addition either alone (coded as LN and HN) or in combination with phosphorus (P) (coded as LN + P and HN + P) were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect R m, while LN + P enhanced R m during peak growing periods, but HN + P did not affect R m. Nutrient addition also significantly affected R m /R s, and the correlations of R m /R s with climatic factors varied with years. Soil water content (Sw) was the main factor controlling the variations of R m /R s. During the years with large rainfall variations, R m /R s was negatively correlated with Sw, while, in years with even rainfall, R m/R s was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on R m /R s were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on R m /R s suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.

  3. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    NASA Astrophysics Data System (ADS)

    Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; Yee, Nathan; O'Brien, Michael; Hubbard, Susan

    2008-06-01

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (˜-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed ˜10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  4. Microbially Mediated Leaching of Low-Sulfur Coal in Experimental Coal Columns †

    PubMed Central

    Radway, JoAnn C.; Tuttle, Jon H.; Fendinger, Nicholas J.; Means, Jay C.

    1987-01-01

    The leaching of a low-sulfur bituminous coal was investigated with experimental coal columns subjected to simulated rainfall events. Leachates from the columns became dominated by iron-oxidizing bacteria as evidenced by specific enrichment cultures and measurements of CO2 assimilation. Heterotrophic microorganisms were also present in the coal leachates, but their numbers and activity decreased with decreasing pH. This pattern could be reversed by increasing the pH of the coal with lime. Organosulfur-utilizing bacteria made up a substantial portion of the heterotrophic community. Measurements of microbial activity in coal cores indicated that although much of the microbial community remained associated with coal particles, the relative abundance of heterotrophs and autotrophs in leachate seemed to reflect that in coal cores. When bacterial growth was delayed by autoclaving coal samples, acid production and leaching of iron and sulfur were also delayed. Rapid leaching of materials from coal thus appears to be strongly dependent on the presence of the natural bacterial microflora. PMID:16347336

  5. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen.

    PubMed

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S; Wrapp, Daniel; Kirchdoerfer, Robert N; Turner, Hannah L; Cottrell, Christopher A; Becker, Michelle M; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L; Kettenbach, Arminja N; Denison, Mark R; Chappell, James D; Graham, Barney S; Ward, Andrew B; McLellan, Jason S

    2017-08-29

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines.

  6. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen

    PubMed Central

    Pallesen, Jesper; Wang, Nianshuang; Corbett, Kizzmekia S.; Wrapp, Daniel; Kirchdoerfer, Robert N.; Turner, Hannah L.; Cottrell, Christopher A.; Becker, Michelle M.; Wang, Lingshu; Shi, Wei; Kong, Wing-Pui; Andres, Erica L.; Kettenbach, Arminja N.; Denison, Mark R.; Chappell, James D.; Graham, Barney S.; Ward, Andrew B.

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that since its emergence in 2012 has caused outbreaks in human populations with case-fatality rates of ∼36%. As in other coronaviruses, the spike (S) glycoprotein of MERS-CoV mediates receptor recognition and membrane fusion and is the primary target of the humoral immune response during infection. Here we use structure-based design to develop a generalizable strategy for retaining coronavirus S proteins in the antigenically optimal prefusion conformation and demonstrate that our engineered immunogen is able to elicit high neutralizing antibody titers against MERS-CoV. We also determined high-resolution structures of the trimeric MERS-CoV S ectodomain in complex with G4, a stem-directed neutralizing antibody. The structures reveal that G4 recognizes a glycosylated loop that is variable among coronaviruses and they define four conformational states of the trimer wherein each receptor-binding domain is either tightly packed at the membrane-distal apex or rotated into a receptor-accessible conformation. Our studies suggest a potential mechanism for fusion initiation through sequential receptor-binding events and provide a foundation for the structure-based design of coronavirus vaccines. PMID:28807998

  7. Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis.

    PubMed

    Harrington, Timothy D; Mohamed, Abdelrhman; Tran, Vi N; Biria, Saeid; Gargouri, Mahmoud; Park, Jeong-Jin; Gang, David R; Beyenal, Haluk

    2015-11-01

    The aim of this work was to compare the effects of electrosynthesis on different bacterial species. The effects of neutral red-mediated electrosynthesis on the metabolite profiles of three microorganisms: Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis, were measured and compared and contrasted. A statistically comprehensive analysis of neutral red-mediated electrosynthesis is presented using the analysis of end-product profiles, current delivered, and changes in cellular protein expression. K. pneumoniae displayed the most dramatic response to electrosynthesis of the three bacteria, producing 93% more ethanol and 76% more lactate vs. control fermentation with no neutral red and no electron delivery. Z. mobilis showed no response to electrosynthesis except elevated acetate titers. Stoichiometric comparison showed that NAD(+) reduction by neutral red could not account for changes in metabolites during electrosynthesis. Neutral red-mediated electrosynthesis was shown to have multifarious effects on the three species.

  8. Neutral red-mediated microbial electrosynthesis by Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis

    PubMed Central

    Harrington, Timothy D.; Mohamed, Abdelrhman; Tran, Vi N.; Biria, Saeid; Gargouri, Mahmoud; Park, Jeong-Jin; Gang, David R.; Beyenal, Haluk

    2015-01-01

    The aim of this work was to compare the effects of electrosynthesis on different bacterial species. The effects of neutral red-mediated electrosynthesis on the metabolite profiles of three microorganisms: Escherichia coli, Klebsiella pneumoniae, and Zymomonas mobilis, were measured and compared and contrasted. A statistically comprehensive analysis of neutral red-mediated electrosynthesis is presented using the analysis of end-product profiles, current delivered, and changes in cellular protein expression. K. pneumoniae displayed the most dramatic response to electrosynthesis of the three bacteria, producing 93% more ethanol and 76% more lactate vs. control fermentation with no neutral red and no electron delivery. Z. mobilis showed no response to electrosynthesis except elevated acetate titers. Stoichiometric comparison showed that NAD+ reduction by neutral red could not account for changes in metabolites during electrosynthesis. Neutral red-mediated electrosynthesis was shown to have multifarious effects on the three species. PMID:26096579

  9. Implementation of hierarchical clustering using k-mer sparse matrix to analyze MERS-CoV genetic relationship

    NASA Astrophysics Data System (ADS)

    Bustamam, A.; Ulul, E. D.; Hura, H. F. A.; Siswantining, T.

    2017-07-01

    Hierarchical clustering is one of effective methods in creating a phylogenetic tree based on the distance matrix between DNA (deoxyribonucleic acid) sequences. One of the well-known methods to calculate the distance matrix is k-mer method. Generally, k-mer is more efficient than some distance matrix calculation techniques. The steps of k-mer method are started from creating k-mer sparse matrix, and followed by creating k-mer singular value vectors. The last step is computing the distance amongst vectors. In this paper, we analyze the sequences of MERS-CoV (Middle East Respiratory Syndrome - Coronavirus) DNA by implementing hierarchical clustering using k-mer sparse matrix in order to perform the phylogenetic analysis. Our results show that the ancestor of our MERS-CoV is coming from Egypt. Moreover, we found that the MERS-CoV infection that occurs in one country may not necessarily come from the same country of origin. This suggests that the process of MERS-CoV mutation might not only be influenced by geographical factor.

  10. Electrochemically Active Soluble Mediators from Shewanella oneidensis: Relevance to Microbial Fuel Cells and Extracellular Electron Transfer

    DTIC Science & Technology

    2008-05-01

    A second approach is the use of soluble mediators such as, quinones, phenazines , and riboflavin, which are able to shuttle electrons from the cell...done using the equivalent graphite felt or graphite felt coated with platinum nanoparticles . Fuel cell chambers were separated using a gas-permeable

  11. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis.

    PubMed

    Law, Ah-Lai; Parinot, Célia; Chatagnon, Jonathan; Gravez, Basile; Sahel, José-Alain; Bhattacharya, Shomi S; Nandrot, Emeline F

    2015-02-20

    Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Evaluation of CO₂ solubility-trapping and mineral-trapping in microbial-mediated CO₂-brine-sandstone interaction.

    PubMed

    Zhao, Jing; Lu, Wei; Zhang, Fengjun; Lu, Cong; Du, Juanjuan; Zhu, Rongyue; Sun, Lei

    2014-08-15

    Evaluation of CO₂ solubility-trapping and mineral-trapping by microbial-mediated process was investigated by lab experiments in this study. The results verified that microbes could adapt and keep relatively high activity under extreme subsurface environment (pH<5, temperature>50 °C, salinity>1.0 mol/L). When microbes mediated in the CO₂-brine-sandstone interaction, the CO₂ solubility-trapping was enhanced. The more biomass of microbe added, the more amount of CO₂ dissolved and trapped into the water. Consequently, the corrosion of feldspars and clay minerals such as chlorite was improved in relative short-term CO₂-brine-sandstone interaction, providing a favorable condition for CO₂ mineral-trapping. Through SEM images and EDS analyses, secondary minerals such as transition-state calcite and crystal siderite were observed, further indicating that the microbes played a positive role in CO₂ mineral trapping. As such, bioaugmentation of indigenous microbes would be a promising technology to enhance the CO₂ capture and storage in such deep saline aquifer like Erdos, China.

  13. UNC1062, a new and potent Mer inhibitor.

    PubMed

    Liu, Jing; Zhang, Weihe; Stashko, Michael A; Deryckere, Deborah; Cummings, Christopher T; Hunter, Debra; Yang, Chao; Jayakody, Chatura N; Cheng, Nancy; Simpson, Catherine; Norris-Drouin, Jacqueline; Sather, Susan; Kireev, Dmitri; Janzen, William P; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2013-07-01

    Abnormal activation of Mer kinase has been implicated in the oncogenesis of many human cancers including acute lymphoblastic and myeloid leukemia, non-small cell lung cancer, and glioblastoma. We have discovered a new family of small molecule Mer inhibitors, pyrazolopyrimidine sulfonamides, that potently inhibit the kinase activity of Mer. Importantly, these compounds do not demonstrate significant hERG activity in the PatchXpress assay. Through structure-activity relationship studies, 35 (UNC1062) was identified as a potent (IC50 = 1.1 nM) and selective Mer inhibitor. When applied to live tumor cells, UNC1062 inhibited Mer phosphorylation and colony formation in soft agar. Given the potential of Mer as a therapeutic target, UNC1062 is a promising candidate for further drug development.

  14. UNC1062, a new and potent Mer inhibitor

    PubMed Central

    Liu, Jing; Zhang, Weihe; Stashko, Michael A; DeRyckere, Deborah; Cummings, Christopher T.; Hunter, Debra; Yang, Chao; Jayakody, Chatura N.; Cheng, Nancy; Simpson, Catherine; Norris-Drouin, Jacqueline; Sather, Susan; Kireev, Dmitri; Janzen, William P.; Earp, H Shelton; Graham, Douglas K.; Frye, Stephen V.; Wang, Xiaodong

    2013-01-01

    Abnormal activation of Mer kinase has been implicated in the oncogenesis of many human cancers including acute lymphoblastic and myeloid leukemia, non-small cell lung cancer, and glioblastoma. We have discovered a new family of small molecule Mer inhibitors, pyrazolopyrimidine sulfonamides, that potently inhibit the kinase activity of Mer. Importantly, these compounds do not demonstrate significant hERG activity in the PatchXpress assay. Through structure-activity relationship studies, 35 (UNC1062) was identified as a potent (IC50 = 1.1 nM) and selective Mer inhibitor. When applied to live tumor cells, UNC1062 inhibited Mer phosphorylation and colony formation in soft agar. Given the potential of Mer as a therapeutic target, UNC1062 is a promising candidate for further drug development. PMID:23693152

  15. Disentangling Mechanisms That Mediate the Balance Between Stochastic and Deterministic Processes in Microbial Succession

    SciTech Connect

    Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; Falcao Salles, Joana

    2015-03-17

    Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic matter (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.

  16. Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival.

    PubMed

    Muturi, Ephantus J; Ramirez, Jose L; Rooney, Alejandro P; Dunlap, Chris

    2016-12-01

    Contamination of aquatic habitats with anthropogenic nutrients has been associated with an increase in mosquito larval populations but the underlying mechanisms remain poorly understood. We examined the individual and combined effects of two synthetic fertilizers (ammonium sulfate and potassium chloride) on Aedes albopictus survival, development time, and sex ratio. The bacterial and fungal communities of water samples from different fertilizer treatments were also characterized by MiSeq sequencing of the 16S rRNA gene (bacteria) and internal transcribed spacer 1 (fungi) and their relationship with mosquito survival and development determined. Mosquitoes from ammonium sulfate treatment had significantly lower survival rates and longer development times compared to those from control, potassium chloride or a mixture of the two fertilizers. Fertilizer treatment had no significant effects on Ae. albopictus sex ratio although ammonium sulfate treatment tended to be more biased towards males relative to the other treatments. There were no significant effects of fertilizer treatment on fungal communities. However, potassium chloride treatments had lower bacterial diversity compared to the other treatments and the bacterial community structure of control and potassium chloride treatments differed significantly from that of ammonium sulfate and a mixture of the two fertilizers. Microbial composition but not diversity was significantly associated with mosquito survival and development. These findings suggest that anthropogenic nutrients can have a profound impact on mosquito survival and development. In addition to any potential direct effects on mosquito physiology, our results suggest that fertilizers can act indirectly by disrupting the microbial communities that provide a critical food resource for mosquito larvae.

  17. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus.

    PubMed

    Yang, Yang; Du, Lanying; Liu, Chang; Wang, Lili; Ma, Cuiqing; Tang, Jian; Baric, Ralph S; Jiang, Shibo; Li, Fang

    2014-08-26

    Middle East respiratory syndrome coronavirus (MERS-CoV) currently spreads in humans and causes ∼ 36% fatality in infected patients. Believed to have originated from bats, MERS-CoV is genetically related to bat coronaviruses HKU4 and HKU5. To understand how bat coronaviruses transmit to humans, we investigated the receptor usage and cell entry activity of the virus-surface spike proteins of HKU4 and HKU5. We found that dipeptidyl peptidase 4 (DPP4), the receptor for MERS-CoV, is also the receptor for HKU4, but not HKU5. Despite sharing a common receptor, MERS-CoV and HKU4 spikes demonstrated functional differences. First, whereas MERS-CoV prefers human DPP4 over bat DPP4 as its receptor, HKU4 shows the opposite trend. Second, in the absence of exogenous proteases, both MERS-CoV and HKU4 spikes mediate pseudovirus entry into bat cells, whereas only MERS-CoV spike, but not HKU4 spike, mediates pseudovirus entry into human cells. Thus, MERS-CoV, but not HKU4, has adapted to use human DPP4 and human cellular proteases for efficient human cell entry, contributing to the enhanced pathogenesis of MERS-CoV in humans. These results establish DPP4 as a functional receptor for HKU4 and host cellular proteases as a host range determinant for HKU4. They also suggest that DPP4-recognizing bat coronaviruses threaten human health because of their spikes' capability to adapt to human cells for cross-species transmissions.

  18. Isolation of MERS Coronavirus from a Dromedary Camel, Qatar, 2014

    PubMed Central

    Raj, V. Stalin; Farag, Elmoubasher A.B.A.; Reusken, Chantal B.E.M.; Lamers, Mart M.; Pas, Suzan D.; Voermans, Jolanda; Smits, Saskia L.; Osterhaus, Albert D.M.E.; Al-Mawlawi, Naema; Al-Romaihi, Hamad E.; El-Sayed, Ahmed M.; Mohran, Khaled A.; Ghobashy, Hazem; Alhajri, Farhoud; Al-Thani, Mohamed; Al-Marri, Salih A.; El-Maghraby, Mamdouh M.; Koopmans, Marion P.G.

    2014-01-01

    We obtained the full genome of Middle East respiratory syndrome coronavirus (MERS-CoV) from a camel in Qatar. This virus is highly similar to the human England/Qatar 1 virus isolated in 2012. The MERS-CoV from the camel efficiently replicated in human cells, providing further evidence for the zoonotic potential of MERS-CoV from camels. PMID:25075761

  19. Managing PV Power on Mars - MER Rovers

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard

    2009-01-01

    The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance

  20. Identification of the merR gene of R100 by using mer-lac gene and operon fusions.

    PubMed Central

    Foster, T J; Brown, N L

    1985-01-01

    Transcriptional (operon) and translational (gene) fusions between the R100 merR gene and lacZ were constructed in vitro in a pBR322 plasmid carrying the mer genes derived from plasmid R100. The translational fusions were oriented in the opposite direction to and divergently from the merTCAD genes. This shows that the reading frame previously thought to be merR was incorrect. Expression of the gene fusion was repressed in trans by a compatible plasmid carrying the R100 merR+ gene, as was a similarly oriented transcriptional fusion. In contrast, expression of beta-galactosidase by the lac fragment located at the same site but in the opposite orientation was at a lower level and was not repressed by merR+. Images PMID:2993235

  1. Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury.

    PubMed

    Dash, Hirak R; Sahu, Mousumi; Mallick, Bibekanand; Das, Surajit

    2017-09-28

    MerA protein of mer operon in mercury resistant bacteria influences transformation of Hg(2+) to Hg(0). Both in-silico and in-vivo studies have been carried out and MerA sequences, conserved motifs for mercury binding and NADPH (GCVPSK and LSCCA) varied widely in both Gram-positive and Gram-negative bacteria. As MerA-NADPH-FAD complex plays an important role in mercury volatilization, molecular interaction studies between MerA, NADPH, FAD and Hg(2+) was carried out to study the efficiency of transformation of Hg(2+) to Hg(0) in mercury resistant bacteria. After the prediction of suitable models and molecular interaction analysis, the potential energies in the selected bacteria were as follows: Bacillus thuringiensis (NADPH: -5.15 kcal/mol and FAD: -9.63 kcal/mol), Pseudomonas aeruginosa (NADPH: -3.8 kcal/mol and FAD: -8.56 kcal/mol), Exiguobacterium sp. (NADPH: -3.37 kcal/mol and FAD: -8.42 kcal/mol), Vibrio sp. (NADPH: -3.3 kcal/mol and FAD: -6.7 kcal/mol) and Escherichia coli (NADPH: -3.28 kcal/mol and FAD: -5.69 kcal/mol). Additionally, the binding scores between MerA and Hg(2+) followed the similar trend and found higher in B. thuringiensis (3.79) followed by P. aeruginosa (3.57), Exiguobacterium sp. (2.37), Vibrio sp. (1.47) and E. coli (1.07). ANOVA (2-way) result showed the significant (P < 0.05) variation among the energy values obtained after interaction studies. In-vivo analysis of expression of merA gene and Hg(2+) removal efficiency also followed the same pattern with a highly significant correlation (P < 0.001) between the binding energy, binding score and expression pattern of merA gene as well as Hg(2+) volatilization. Thus, the mercury removal efficiency of bacteria is genera specific which is correlated with the binding efficiency between MerA-NADPH complex and Hg(2+) in mer operon mediated mercury resistant bacteria. Copyright © 2017. Published by Elsevier B.V.

  2. Reconstructing the Genetic Potential of the Microbially-Mediated Nitrogen Cycle in a Salt Marsh Ecosystem

    PubMed Central

    Dini-Andreote, Francisco; Brossi, Maria Julia de L.; van Elsas, Jan Dirk; Salles, Joana F.

    2016-01-01

    Coastal ecosystems are considered buffer zones for the discharge of land-derived nutrients without accounting for potential negative side effects. Hence, there is an urgent need to better understand the ecological assembly and dynamics of the microorganisms that are involved in nitrogen (N) cycling in such systems. Here, we employed two complementary methodological approaches (i.e., shotgun metagenomics and quantitative PCR) to examine the distribution and abundance of selected microbial genes involved in N transformations. We used soil samples collected along a well-established pristine salt marsh soil chronosequence that spans over a century of ecosystem development at the island of Schiermonnikoog, The Netherlands. Across the examined soil successional stages, the structure of the populations of genes involved in N cycling processes was strongly related to (shifts in the) soil nitrogen levels (i.e., NO3−, NH4+), salinity and pH (explaining 73.8% of the total variation, R2 = 0.71). Quantification of the genes used as proxies for N fixation, nitrification and denitrification revealed clear successional signatures that corroborated the taxonomic assignments obtained by metagenomics. Notably, we found strong evidence for niche partitioning, as revealed by the abundance and distribution of marker genes for nitrification (ammonia-oxidizing bacteria and archaea) and denitrification (nitrite reductase nirK, nirS and nitrous oxide reductase nosZ clades I and II). This was supported by a distinct correlation between these genes and soil physico-chemical properties, such as soil physical structure, pH, salinity, organic matter, total N, NO3−, NH4+ and SO42−, across four seasonal samplings. Overall, this study sheds light on the successional trajectories of microbial N cycle genes along a naturally developing salt marsh ecosystem. The data obtained serve as a foundation to guide the formulation of ecological models that aim to effectively monitor and manage pristine

  3. Distributed microbially- and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates

    NASA Astrophysics Data System (ADS)

    Ying, Samantha C.; Masue-Slowey, Yoko; Kocar, Benjamin D.; Griffis, Sarah D.; Webb, Samuel; Marcus, Matthew A.; Francis, Christopher A.; Fendorf, Scott

    2013-03-01

    The aggregate-based structure of soils imparts physical heterogeneity that gives rise to variation in microbial and chemical processes which influence the speciation and retention of trace elements such as As. To examine the impact of distributed redox conditions on the fate of As in soils, we imposed various redox treatments upon constructed soil aggregates composed of ferrihydrite- and birnessite-coated sands presorbed with As(V) and inoculation with the dissimilatory metal reducing bacterium Shewanella sp. ANA-3. Aeration of the advecting solution surrounding the aggregates was varied to simulate environmental conditions. We find that diffusion-limited transport within high dissolved organic carbon environments allows reducing conditions to persist in the interior of aggregates despite aerated advecting external solutes, causing As, Mn, and Fe to migrate from the reduced aggregate interiors to the aerated exterior region. Upon transitioning to anoxic conditions in the external solutes, pulses of As, Mn and Fe are released into the advecting solution, while, conversely, a transition to aerated conditions in the exterior resulted in a cessation of As, Mn, and Fe release. Importantly, we find that As(III) oxidation by birnessite is appreciable only in the presence of O2; oxidation of As(III) to As(V) by Mn-oxides ceases under anaerobic conditions apparently as a result of microbially mediated Mn(IV/III) reduction. Our results demonstrate the importance of considering redox conditions and the physical complexity of soils in determining As dynamics, where redox transitions can either enhance or inhibit As release due to speciation shifts in both sorbents (solubilization versus precipitation of Fe and Mn oxides) and sorbates (As).

  4. B. subtilis GS67 protects C. elegans from Gram-positive pathogens via fengycin-mediated microbial antagonism.

    PubMed

    Iatsenko, Igor; Yim, Joshua J; Schroeder, Frank C; Sommer, Ralf J

    2014-11-17

    Studies on Caenorhabditis elegans have provided detailed insight into host-pathogen interactions. Usually, the E. coli strain OP50 is used as food source for laboratory studies, but recent work has shown that a variety of bacteria have dramatic effects on C. elegans physiology, including immune responses. However, the mechanisms by which different bacteria impact worm resistance to pathogens are poorly understood. Although pathogen-specific immune priming is often discussed as a mechanism underlying such observations, interspecies microbial antagonism might represent an alternative mode of action. Here, we use several natural Bacillus strains to study their effects on nematode survival upon pathogen challenge. We show that B. subtilis GS67 persists in the C. elegans intestine and increases worm resistance to Gram-positive pathogens, suggesting that direct inhibition of pathogens might be the primary protective mechanism. Indeed, chemical and genetic analyses identified the lipopeptide fengycin as the major inhibitory molecule produced by B. subtilis GS67. Specifically, a fengycin-defective mutant of B. subtilis GS67 lost inhibitory activity against pathogens and was unable to protect C. elegans from infections. Furthermore, we found that purified fengycin cures infected worms in a dose-dependent manner, indicating that it acts as an antibiotic. Our results reveal a molecular mechanism for commensal-mediated C. elegans protection and highlight the importance of interspecies microbial antagonism for the outcome of animal-pathogen interactions. Furthermore, our work strengthens C. elegans as an in vivo model to reveal protective mechanisms of commensal bacteria, including those relevant to mammalian hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Microbial mediated desalination for ground water softening with simultaneous power generation.

    PubMed

    Hemalatha, Manupati; Butti, Sai Kishore; Velvizhi, G; Venkata Mohan, S

    2017-10-01

    A novel three-chambered microbial desalination cell (MDC) was designed for evaluating desalination of synthetic ground water with simultaneous energy generation and resource recovery. The specific design enabled efficient interelectrode communication by reducing the distance of separation and also maintained an appropriate surface area to volume ratio. MDC were evaluated in different circuitry modes (open and closed) to assess the desalination efficiency, bioelectricity generation, resource recovery, substrate utilization and bioelectrokinetics. The closed circuit operation has showed efficient desalination efficiency (51.5%) and substrate utilization (70%). Owing to the effective electron transfer kinetics, closed circuit mode of operation showed effective desalination of the synthetic ground water with simultaneous power production (0.35W/m(2)). Circuitry specific biocatalyst activity was observed with higher peak currents (10.1mA; -5.98mA) in closed circuit mode. MDC can function as sustainable and alternative solution for ground and surface water treatment with power productivity and resource recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates

    SciTech Connect

    De Graaff, Marie-Anne; Classen, Aimee T; Castro Gonzalez, Hector F; Schadt, Christopher Warren

    2010-01-01

    Root carbon (C) inputs may regulate decomposition rates in soil, and in this study we ask: how do labile C inputs regulate decomposition of plant residues, and soil microbial communities? In a 14 d laboratory incubation, we added C compounds often found in root exudates in seven different concentrations (0, 0.7, 1.4, 3.6, 7.2, 14.4 and 21.7 mg C g{sup -1} soil) to soils amended with and without {sup 13}C-labeled plant residue. We measured CO{sub 2} respiration and shifts in relative fungal and bacterial rRNA gene copy numbers using quantitative polymerase chain reaction (qPCR). Increased labile C input enhanced total C respiration, but only addition of C at low concentrations (0.7 mg C g{sup -1}) stimulated plant residue decomposition (+2%). Intermediate concentrations (1.4, 3.6 mg C g{sup -1}) had no impact on plant residue decomposition, while greater concentrations of C (> 7.2 mg C g{sup -1}) reduced decomposition (-50%). Concurrently, high exudate concentrations (> 3.6 mg C g{sup -1}) increased fungal and bacterial gene copy numbers, whereas low exudate concentrations (< 3.6 mg C g{sup -1}) increased metabolic activity rather than gene copy numbers. These results underscore that labile soil C inputs can regulate decomposition of more recalcitrant soil C by controlling the activity and relative abundance of fungi and bacteria.

  7. PEDF and 34-mer inhibit angiogenesis in the heart by inducing tip cells apoptosis via up-regulating PPAR-γ to increase surface FasL.

    PubMed

    Zhang, Hao; Wei, Tengteng; Jiang, Xia; Li, Zhimin; Cui, Huazhu; Pan, Jiajun; Zhuang, Wei; Sun, Teng; Liu, Zhiwei; Zhang, Zhongming; Dong, Hongyan

    2016-01-01

    Pigment epithelial-derived factor (PEDF) is a potent anti-angiogenic factor whose effects are partially mediated through the induction of endothelial cell apoptosis. However, the underlying mechanism for PEDF and the functional PEDF peptides 34-mer and 44-mer to inhibit angiogenesis in the heart has not been fully established. In the present study, by constructing adult Sprague-Dawley rat models of acute myocardial infarction (AMI) and in vitro myocardial angiogenesis, we showed that PEDF and 34-mer markedly inhibits angiogenesis by selectively inducing tip cells apoptosis rather than quiescent cells. Peptide 44-mer on the other hand exhibits no such effects. Next, we identified Fas death pathway as essential downstream regulators of PEDF and 34-mer activities in inhibiting angiogenesis. By using peroxisome proliferator-activated receptor γ (PPAR-γ) siRNA and PPAR-γ inhibitor, GW9662, we found the effects of PEDF and 34-mer were extensively blocked. These data suggest that PEDF and 34-mer inhibit angiogenesis via inducing tip cells apoptosis at least by means of up-regulating PPAR-γ to increase surface FasL in the ischemic heart, which might be a novel mechanism to understanding cardiac angiogenesis after AMI.

  8. Moderate and high amounts of tamoxifen in αMHC-MerCreMer mice induce a DNA damage response, leading to heart failure and death

    PubMed Central

    Bersell, Kevin; Choudhury, Sangita; Mollova, Mariya; Polizzotti, Brian D.; Ganapathy, Balakrishnan; Walsh, Stuart; Wadugu, Brian; Arab, Shima; Kühn, Bernhard

    2013-01-01

    SUMMARY Numerous mouse models have utilized Cre-loxP technology to modify gene expression. Adverse effects of Cre recombinase activity have been reported, including in the heart. However, the mechanisms associated with cardiac Cre toxicity are largely unknown. Here, we show that expression of Cre in cardiomyocytes induces a DNA damage response, resulting in cardiomyocyte apoptosis, cardiac fibrosis and cardiac dysfunction. In an effort to increase the recombination efficiency of a widely used tamoxifen-sensitive Cre transgene under control of the α-myosin-heavy-chain promoter (αMHC-MerCreMer), we observed myocardial dysfunction and decreased survival, which were dependent on the dose of tamoxifen injected. After excluding a Cre-independent contribution by tamoxifen, we found that Cre induced myocardial fibrosis, activation of pro-fibrotic genes and cardiomyocyte apoptosis. Examination of the molecular mechanisms showed activation of DNA damage response signaling and p53 stabilization in the absence of loxP sites, suggesting that Cre induced illegitimate DNA breaks. Cardiomyocyte apoptosis was also induced by expressing Cre using adenoviral transduction, indicating that the effect was not dependent on genomic integration of the transgene. Cre-mediated homologous recombination at loxP sites was dose-dependent and had a ceiling effect at ∼80% of cardiomyocytes showing recombination. By titrating the amount of tamoxifen to maximize recombination while minimizing animal lethality, we determined that 30 μg tamoxifen/g body weight/day injected on three consecutive days is the optimal condition for the αMHC-MerCreMer system to induce recombination in the Rosa26-lacZ strain. Our results further highlight the importance of experimental design, including the use of appropriate genetic controls for Cre expression. PMID:23929941

  9. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  10. Microbial mediated iron redox cycling in Fe (hydr)oxides for nitrite removal.

    PubMed

    Lu, Yongsheng; Xu, Lu; Shu, Weikang; Zhou, Jizhi; Chen, Xueping; Xu, Yunfeng; Qian, Guangren

    2017-01-01

    Nitrite, at an environmentally relevant concentration, was significantly reduced with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. The average nitrite removal rates of 1.28±0.08 and 0.65±0.02(mgL(-1))h(-1) were achieved with ferrihydrite and magnetite, respectively. The results showed that nitrite removal was able to undergo multiple redox cycles with iron (hydr)oxides mediated by Shewanella oneidensis MR-1. During the bioreduction of the following cycles, biogenic Fe(II) was subsequently chemically oxidized to Fe(III), which is associated with nitrite reduction. There was 11.18±1.26mgL(-1) of NH4(+)-N generated in the process of redox cycling of ferrihydrite. Additionally, results obtained by using X-ray diffraction showed that ferrihydrite and magnetite remained mainly stable in the system. This study indicated that redox cycling of Fe in iron (hydr)oxides was a potential process associated with NO2(-)-N removal from solution, and reduced most nitrite abiotically to gaseous nitrogen species.

  11. Nitrate-Mediated Microbially Enhanced Oil Recovery (N-MEOR) from model upflow bioreactors.

    PubMed

    Gassara, Fatma; Suri, Navreet; Voordouw, Gerrit

    2017-02-15

    Microbially Enhanced Oil Recovery (MEOR) can enhance oil production with less energy input and less costs than other technologies. The present study used different aqueous electron donors (acetate, glucose, molasses) and an aqueous electron acceptor (nitrate) to stimulate growth of heterotrophic nitrate reducing bacteria (hNRB) to improve production of oil. Initial flooding of columns containing heavy oil (viscosity of 3400cP at 20°C) with CSBK (Coleville synthetic brine medium) produced 0.5 pore volume (PV) of oil. Bioreactors were then inoculated with hNRB with 5.8g/L of molasses and 0, 10, 20, 40, 60 or 80mM nitrate, as well as with 17mM glucose or 57mM acetate and 80mM nitrate. During incubations no oil was produced in the bioreactors that received 5.8g/L of molasses and 0, 10, 20, 40 or 60mM nitrate. However, the bioreactors injected with 5.8g/L of molasses, 17mM glucose or 57mM acetate and 80mM nitrate produced 13.9, 11.3±3.1 and 17.8±6.6% of residual oil, respectively. The significant production of oil from these bioreactors may be caused by N2-CO2 gas production. Following continued injection with CSBK without nitrate, subsequent elution of significant residual oil (5-30%) was observed. These results also indicate possible involvement of fermentation products (organic acids, alcohols) to enhance heavy oil recovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Plasmid-mediated susceptibility to intestinal microbial antagonisms in Escherichia coli.

    PubMed

    Andremont, A; Gerbaud, G; Tancrède, C; Courvalin, P

    1985-09-01

    Self-transferable plasmid pIP1100 confers to Escherichia coli an unusually high level of resistance (1 to 2 mg/ml) to erythromycin by production of an erythromycin esterase. The effect of pIP1100 on the destiny of E. coli strains in the intestines of gnotobiotic mice was studied. In germfree mice, pIP1100 was efficiently transferred to a plasmid-free E. coli recipient. Intestinal counts of the donor, the recipient, and the transconjugants were greater than 8.5 log CFU/g of feces. When erythromycin was added to the diet of the mice, counts of the plasmid-bearing strains were only slightly lowered and partial inactivation of erythromycin was observed in the feces. Transfer of pIP1100 also occurred in human-flora-associated mice. In this model all the E. coli strains were subject to microbial antagonisms caused by the anaerobic components of the flora. However, strains harboring pIP1100 were strongly inhibited (less than 2.5 log CFU/g of feces), whereas their plasmid-free counterparts persisted at much higher population levels (greater than 5.2 log CFU/g of feces). The ecological disadvantage conferred by pIP1100 to E. coli when a complex human flora was concomitantly present in the intestine of the mice persisted during erythromycin administration. These results provide an explanation for the low incidence of isolation of highly erythromycin-resistant E. coli strains despite the extensive use of the antibiotic.

  13. Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau

    SciTech Connect

    Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

    2004-03-17

    A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

  14. Geology of the MER 2003 "Elysium" Candidate Landing Site

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; Skinner, J. A., Jr.; Carr, M. H.; Gilmore, M. S.; Hare, T. M.

    2003-03-01

    Although chosen mainly for its safety characteristics, new Mars Global Surveyor and Mars Odyssey data suggest that the MER 2003 "Elysium" candidate landing site in southeastern Utopia Planitia also meets basic science requirements for the MER mission involving the geologic activity of water.

  15. Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea.

    PubMed

    Bin, Seo Yu; Heo, Jung Yeon; Song, Min-Suk; Lee, Jacob; Kim, Eun-Ha; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Baek, Yun Hee; Choi, Won-Suk; Min, Jinsoo; Jeong, Hye Won; Choi, Young Ki

    2016-03-15

    Although Middle East Respiratory Syndrome coronavirus (MERS-CoV) is characterized by a risk of nosocomial transmission, the detailed mode of transmission and period of virus shedding from infected patients are poorly understood. The aims of this study were to investigate the potential role of environmental contamination by MERS-CoV in healthcare settings and to define the period of viable virus shedding from MERS patients. We investigated environmental contamination from 4 patients in MERS-CoV units of 2 hospitals. MERS-CoV was detected by reverse transcription polymerase chain reaction (PCR) and viable virus was isolated by cultures. Many environmental surfaces of MERS patient rooms, including points frequently touched by patients or healthcare workers, were contaminated by MERS-CoV. Viral RNA was detected up to five days from environmental surfaces following the last positive PCR from patients' respiratory specimens. MERS-CoV RNA was detected in samples from anterooms, medical devices, and air-ventilating equipment. In addition, MERS-CoV was isolated from environmental objects such as bed sheets, bedrails, IV fluid hangers, and X-ray devices. During the late clinical phase of MERS, viable virus could be isolated in 3 of the 4 enrolled patients on day 18 to day 25 after symptom onset. Most of touchable surfaces in MERS units were contaminated by patients and health care workers and the viable virus could shed through respiratory secretion from clinically fully recovered patients. These results emphasize the need for strict environmental surface hygiene practices, and sufficient isolation period based on laboratory results rather than solely on clinical symptoms. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Flow-through Column Experiments and Modeling of Microbially Mediated Cr(VI) Reduction at Hanford 100H

    NASA Astrophysics Data System (ADS)

    Yang, L.; Molins, S.; Beller, H. R.; Brodie, E. L.; Steefel, C.; Nico, P. S.; Han, R.

    2010-12-01

    Microbially mediated Cr(VI) reduction at the Hanford 100H area was investigated by flow-through column experiments. Three separate experiments were conducted to promote microbial activities associated with denitrification, iron and sulfate reduction, respectively. Replicate columns packed with natural sediments from the site under anaerobic environment were injected with 5mM Lactate as the electron donor and 5 μM Cr(VI) in all experiments. Sulfate and nitrate solutions were added to act as the main electron acceptors in the respective experiments, while iron columns relied on the indigenous sediment iron (and manganese) oxides as electron acceptors. Column effluent solutions were analyzed by IC and ICP-MS to monitor the microbial consumption/conversion of lactate and the associated Cr(VI) reduction. Biogeochemical reactive transport modeling was performed to gain further insights into the reaction mechanisms and Cr(VI) bioreduction rates. All experimental columns showed a reduction of the injected Cr(VI). Columns under denitrifying conditions showed the least Cr(VI) reduction at early stages (<60 days) compared to columns run under other experimental conditions, but became more active over time, and ultimately showed the most consistent Cr(VI) reduction. A strong correlation between denitrification and Cr(VI) reduction processes was observed and was in agreement with the results obtained in batch experiments with a denitrifying bacterium isolated from the Hanford site. The accumulation of nitrite does not appear to have an adverse effect on Cr(VI) reduction rates. Reactive transport simulations indicated that biomass growth completely depleted influent ammonium, and called for an additional source of N to account for the measured reduction rates. Iron columns were the least active with undetectable consumption of the injected lactate, slowest cell growth, and the smallest change in Cr(VI) concentrations during the course of the experiment. In contrast, columns

  17. Reactive Transport Modeling of Microbially-Mediated Chromate Reduction in 1-D Soil Columns

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Viamajala, S.; Alam, M. M.; Peyton, B. M.; Petersen, J. N.; Yonge, D. R.

    2002-12-01

    Cr(VI) reduction tests were performed with the well known metal reducing bacterium Shewanella oneidensis MR-1 in liquid phase batch reactors and continuous flow soil columns under anaerobic conditions. In the batch tests, the cultures were grown with fumarate as the terminal electron acceptor and lactate as the electron donor in a simulated groundwater medium to determine yield coefficients and specific growth rates. The bench-scale soil column experiments were carried out with MR-1 to test the hypothesis that the kinetic parameters obtained in batch studies, combined with microbial attachment /detachment processes, will accurately predict reactive transport of Cr(VI) during bacterial Cr(VI) reduction in a soil matrix. Cr(VI)-free simulated groundwater media containing fumarate as the limiting substrate and lactate was supplied to a 2.1cm (ID) x 15 cm soil column inoculated with MR-1 for a duration of 9 residence times to allow for biomass to build-up in the column. Thereafter the column was supplied with both Cr(VI) and substrate. The concentrations of effluent substrate, biomass and Cr(VI) were monitored on a periodic basis and attached biomass in the column was measured in the termination of each column test. A reactive transport model was developed in which 6 governing equations deal with Cr(VI) bioreaction, fumarate (as electron donor) consumption, aqueous biomass growth and transport, solid biomass detachment and attachment kinetics, aqueous and solid phase enzyme reaction and transport, respectively. The model incorporating the enzyme reaction kinetics for Cr(VI) reduction, Monod kinetic expressions for substrate depletion, nonlinear attachment and detachment kinetics for aqueous and solid phase microorganism concentration, was solved by a fully implicit, finite-difference procedure using RT3D (A Modular Computer Code for Reactive Multi-species Transport in 3-Dimensional Groundwater Systems) platform in one dimension. Cr(VI)-free column data was used to

  18. Enhanced electrical contact of microbes using Fe(3)O(4)/CNT nanocomposite anode in mediator-less microbial fuel cell.

    PubMed

    Park, In Ho; Christy, Maria; Kim, Pil; Nahm, Kee Suk

    2014-08-15

    A novel Fe(3)O(4)/CNT nanocomposite was synthesized and employed for the modification of carbon paper anode in a mediator-less microbial fuel cell (MFC) to enhance its performance. The Fe(3)O(4)/CNT composite modified anodes with various Fe(3)O(4) contents were investigated to find the optimum ratio of the nanocomposite for the best MFC performance. The Fe(3)O(4)/CNT modified anodes produced much higher power densities than unmodified carbon anode and the 30wt% Fe3O4/CNT modified anode exhibited a maximum power density of 830mW/m(2). In the Fe(3)O(4)/CNT composite modified anode, Fe(3)O(4) helps to attach the CNT on anode surface by its magnetic attraction and forms a multi layered network, whereas CNT offers a better nanostructure environment for bacterial growth and helps electron transfer from E.coli to electrode resulting in the increase in the current production with the catalytic activity of bacteria. The electrocatalytic behavior and all possible mechanism for their better performance are discussed in detail with the help of various structural and electrochemical techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Enhanced reductive degradation of methyl orange in a microbial fuel cell through cathode modification with redox mediators.

    PubMed

    Liu, Rong-Hua; Sheng, Guo-Ping; Sun, Min; Zang, Guo-Long; Li, Wen-Wei; Tong, Zhong-Hua; Dong, Fang; Lam, Michael Hon-Wah; Yu, Han-Qing

    2011-01-01

    A model azo dye, methyl orange (MO), was reduced through in situ utilization of the electrons derived from the anaerobic conversion of organics in a microbial fuel cell (MFC). The MO reduction process could be described by a pseudo first-order kinetic model with a rate constant of 1.29 day(-1). Electrochemical impedance spectroscopic analysis shows that the cathode had a high polarization resistance, which could decrease the reaction rate and limit the electron transfer. To improve the MO reduction efficiency, the cathode was modified with redox mediators to enhance the electron transfer. After modification with thionine, the polarization resistance significantly decreased by over 50%. As a consequence, the MO decolorization rate increased by over 20%, and the power density was enhanced by over three times. Compared with thionine, anthraquinone-2, 6-disulfonate modified cathode has less positive effect on the MFC performance. These results indicate that the electrode modification with thionine is a useful approach to accelerate the electrochemical reactions. This work provides useful information about the key factors limiting the azo dye reduction in the MFC and how to improve such a process.

  20. Dust Accumulation on MER Solar Panels

    NASA Astrophysics Data System (ADS)

    Guinness, E. A.; Arvidson, R. E.; McEwen, A. S.; Cull, S.

    2011-12-01

    HiRISE acquired in March 2011 a color image of the Spirit Mars Exploration Rover from orbit that shows an exceptionally bright reflection from the rover solar panels. HiRISE data combined with laboratory measurements of MER solar cell reflectance provide a method for constraining the thickness of dust on the solar panels. Spirit is the brightest object in the HiRISE scene with a reflectance that is about 3 times higher at 500 nm and about 1.5 times higher at 700 and 850 nm than bright outcrop and soil near the rover. The rover is also less red than these nearby materials and less red than a typical Mars dust spectrum modeled with the same geometry and seen through similar atmospheric conditions as the HiRISE image. Lighting and viewing angles for the HiRISE image of Spirit are close to a specular reflection geometry when factoring in the rover orientation, the sun position, and the location of HiRISE during image acquisition. Laboratory photometric measurements of clean and dust-coated MER solar cells show a strong specular reflection for dust coating thicknesses up to at least 45 micrometers. The specular reflection was not present in the laboratory data when the solar cell was covered with about a 135 micrometer thick layer. The dust used in the experiments consisted of less than 10 micrometer sized particles derived from a palagonitic tephra from Mauna Kea that is spectrally similar to Mars dust. A survey of MER Pancam color images acquired by Spirit and Opportunity also shows several examples of specular reflections from the solar panels. These examples correspond to times when the solar cells were moderately clean to dusty as inferred from the amount of power generated by the cells. Specular reflections in Pancam images have been observed when the solar cell output was only 45% that of a dust-free cell. Spirit HiRISE data indicate that the rover was not covered by an optical thick layer of dust because some of the reflected light must have come from the

  1. Microbial pathogenicity and virulence mediated by integrons on Gram-positive microorganisms.

    PubMed

    Li, Yanmei; Yang, Ling; Fu, Jie; Yan, Muxia; Chen, Dingqiang; Zhang, Li

    2017-09-18

    Gram-positive microorganisms are one of leading pathogenic microorganisms in public health, including several typical "Super Bugs" as methicillin-resistant Staphylococcus aureus, Klebsiella pneumoniae carbapenemase and vancomycin-resistant enterococci, which caused a increasement of infections, clinical failures and expenses. Regarded as a common genetic element responsible for horizontal gene transfer, integrons are widely distributed in various pathogens considered as a determinant in the acquisition and evolution of antibiotic resistance. Current investigations mainly focus on the distribution of integrons in Gram-negative microorganisms, while the role of integron in antibiotic resistance among Gram-positive microorganisms remains unclear and need investigation. To date, the surveillances of integrons in Gram-positive microorganism have been widely conducted in clinic, community even husbandry. China remains one of the worst country in antibiotics abuse worldwide and considered as a potential area for the prevalence of antimicrobial microorganisms and the occurrence of various 'Super Bugs'. Recently, the surveillance of the occurrence of integron and resistance gene cassettes was conducted in South China during the first 10 years of the 21st century. Referred to the surveillance in South China and other investigation in Asian countries, this review aims to summarize the occurrence, pathogenicity and virulence mediated by integrons in typical Gram-positive microorganisms (Staphylococcus, Enterococcus, Corynebacterium and Streptococcus) and the role of integrons in antibiotic resistance. Copyright © 2017. Published by Elsevier Ltd.

  2. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution.

    PubMed

    Fantauzzi, M; Rossi, G; Elsener, B; Loi, G; Atzei, D; Rossi, A

    2009-04-01

    In this work, the microbe-mediated oxidative dissolution of enargite surfaces (Cu(3)AsS(4)) was studied on powdered samples exposed to 9K nutrient solution (pH 2.3) inoculated by Acidithiobacillus ferrooxidans initially adapted to arsenopyrite. These conditions simulate the acid mine environment. The redox potential of the inoculated solutions increased up to +0.72 V vs normal hydrogen electrode (NHE), indicating the increase of the Fe(3+) to Fe(2+) ratio, and correspondingly the pH decreased to values as low as 1.9. In the sterile 9K control, the redox potential and pH remained constant at +0.52 V NHE and 2.34, respectively. Solution analyses showed that in inoculated medium Cu and As dissolved stoichiometrically with a dissolution rate of about three to five times higher compared to the sterile control. For the first time, X-ray photoelectron spectroscopy (XPS) was carried out on the bioleached enargite powder with the aim of clarifying the role of the microorganisms in the dissolution process. XPS results provide evidence of the formation of a thin oxidized layer on the mineral surface. Nitrogen was also detected on the bioleached surfaces and was attributed to the presence of an extracellular polymer substance layer supporting a mechanism of bacteria attachment via the formation of a biofilm a few nanometers thick, commonly known as nanobiofilm.

  3. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    SciTech Connect

    Anne O. Summers

    2008-12-15

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  4. Delta II Heavy MER-B Prelaunch

    NASA Image and Video Library

    2003-07-07

    On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  5. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  6. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  7. mer [Römer, Roemer], Ole [Olaf] Christensen (1644-1710)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Aarhus, Denmark, studied at the University of Copenhagen under Thomas and Erasmus Bartholin, who gave him TYCHO BRAHE's manuscripts to edit and his own daughter to wed. Rømer accompanied Bartholin and JEAN PICARD to Hven to measure the position of Tycho's observatory, the better to reduce Tycho's observations. He went on to the Paris Observatory where he made and used instruments for the ...

  8. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties

    PubMed Central

    Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426

  9. Recombination spot identification Based on gapped k-mers

    PubMed Central

    Wang, Rong; Xu, Yong; Liu, Bin

    2016-01-01

    Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the properties and function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length k is large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy. To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM) for identification of recombination spots. By using this feature, we present a new predictor called SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination spot identification. Experimental results on a widely used benchmark dataset show that SVM-GKM outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for computational genomics. PMID:27030570

  10. Microbially-mediated thiocyanate oxidation and manganese cycling control arsenic mobility in groundwater at an Australian gold mine

    NASA Astrophysics Data System (ADS)

    Horvath, A. S.; Baldisimo, J. G.; Moreau, J. W.

    2010-12-01

    Arsenic contamination of groundwater poses a serious environmental and human health problem in many regions around the world. Historical groundwater chemistry data for a Western-Central Victorian gold mine (Australia) revealed a strong inverse correlation between dissolved thiocyanate and iron(II), supporting the interpretation that oxidation of thiocyanate, a major groundwater contaminant by-product of cyanide-based gold leaching, was coupled to reductive dissolution of iron ox(yhydrox)ides in tailings dam sediments. Microbial growth was observed in this study in a selective medium using SCN- as the sole carbon and nitrogen source. The potential for use of SCN- as a tracer of mining contamination in groundwater was evaluated in the context of biological SCN- oxidation potential in the aquifer. Geochemical data also revealed a high positive correlation between dissolved arsenic and manganese, indicating that sorption on manganese-oxides most likely controls arsenic mobility at this site. Samples of groundwater and sediments along a roughly straight SW-NE traverse away from a large mine tailings storage facility, and parallel to the major groundwater flow direction, were analysed for major ions and trace metals. Groundwater from wells approaching the tailings along this traverse showed a nearly five-fold increase (roughly 25-125 ppb) in dissolved arsenic concentrations relative to aqueous Mn(II) concentrations. Thus, equivalent amounts of dissolved manganese released a five-fold difference in the amount of adsorbed arsenic. The interpretation that reductive dissolution of As-bearing MnO2 at the mine site has been mediated by groundwater (or aquifer) microorganisms is consistent with our recovery of synthetic birnessite-reducing enrichment cultures that were inoculated with As-contaminated groundwaters.

  11. High abundances of viruses in a deep-sea hydrothermal vent system indicates viral mediated microbial mortality

    NASA Astrophysics Data System (ADS)

    Ortmann, Alice C.; Suttle, Curtis A.

    2005-08-01

    Little is known about the distribution and abundance of viruses at deep-sea hydrothermal vents. Based on estimates made using epifluorescence microscopy and the dye YoPro-1, much higher viral abundances were observed at active hydrothermal vents than in the surrounding deep sea. This indicates that viral production was occurring and that viruses were a source of microbial mortality. Samples collected from three actively venting sites (Clam Bed, S&M and Salut) within the Endeavour Ridge system off the west coast of North America had viral abundances ranging from 1.45×10 5 to 9.90×10 7 ml -1, while the abundances of prokaryotes ranged from 1.30×10 5 to 4.46×10 6 ml -1. The abundances of viruses and prokaryotes in samples collected along the neutrally buoyant plume associated with the Main Endeavour Field were lower than at actively venting sites, with a mean of 5.3×10 5 prokaryotes ml -1 (s.d. 2.9×10 5, n=64) and 3.50×10 6 viruses ml -1 (s.d. 1.89×10 6, n=64), but were higher than non-plume samples (2.7×10 5 prokaryotes ml -1, s.d. 5.0×10 4, n=15 and 2.94×10 6 viruses ml -1, s.d. 1.08×10 6, n=15). Prokaryotic and viral abundances in non-hydrothermal regions were as much as 10-fold higher than found in previous studies, in which sample fixation likely resulted in underestimates. This suggests that viral infection may be a greater source of prokaryotic mortality throughout the deep sea than previously recognized. Overall, our results indicate that virus-mediated mortality of prokaryotes at these hydrothermal-vent environments is significant and may reduce energy flow to higher trophic levels.

  12. Effects of humic acid concentration on the microbially-mediated reductive solubilization of Pu(IV) polymers.

    PubMed

    Xie, Jinchuan; Han, Xiaoyuan; Wang, Weixian; Zhou, Xiaohua; Lin, Jianfeng

    2017-10-05

    The role of humic acid concentration in the microbially-mediated reductive solubilization of Pu(IV) polymers remains unclear until now. The effects of humic concentration (0-150.5mg/L) on the rate and extent of reduction of polymeric Pu(IV) were studied under anaerobic and pH 7.2 conditions. The results show that Shewanella putrefaciens, secreting flavins as endogenous electron shuttles, cannot notably stimulate the reduction of polymeric Pu(IV). In the presence of humic acids, the reduction rate of polymeric Pu(IV) increased with increasing humic concentrations (0-15.0mg/L): e.g., a 102-fold increase from 4.1×10(-15) (HA=0) to 4.2×10(-13)mol Pu(III)aq/h (HA=15.0mg/L). The bioreduced humic acids by S. putrefaciens facilitated the extracellular electron transfer to Pu(IV) polymers and thus the reduction of polymeric Pu(IV) to Pu(III)aq became thermodynamically favorable. However, the reduction rate did not increase but decrease with increasing humic concentrations from 15.0 to 150.5mg/L. Humic coatings formed on the polymer surfaces at relatively high humic concentrations limited the electron transfer to the polymers and thus decreased the reduction rate. The finding of the dynamic role of humic acids in the bioreductive solubilization may be helpful in evaluating Pu mobility in the geosphere. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells.

    PubMed

    Adelaja, Oluwaseun; Keshavarz, Tajalli; Kyazze, Godfrey

    2015-01-01

    Microbial fuel cells (MFCs) need to be robust if they are to be applied in the field for bioremediation. This study investigated the effect of temperature (20-50°C), salinity (0.5-2.5% (w/v) as sodium chloride), the use of redox mediators (riboflavin and anthraquinone-2-sulphonate, AQS) and prolonged fed-batch operation (60 days) on biodegradation of a petroleum hydrocarbon mix (i.e. phenanthrene and benzene) in MFCs. The performance criteria were degradation efficiency, % COD removal and electrochemical performance. Good electrochemical and degradation performance were maintained up to a salinity of 1.5% (w/v) but deteriorated by 35-fold and 4-fold respectively as salinity was raised to 2.5%w/v. Degradation rates and maximum power density were both improved by approximately 2-fold at 40°C compared to MFC performance at 30°C but decreased sharply by 4-fold when operating temperature was raised to 50°C. The optimum reactor performance obtained at 40°C was 1.15 mW/m(2) maximum power density, 89.1% COD removal and a degradation efficiency of 97.10%; at moderately saline (1% w/v) conditions the maximum power density was 1.06 mW/m(2), 79.1% COD removal and 91.6% degradation efficiency. This work suggests the possible application of MFC technology in the effective treatment of petroleum hydrocarbons contaminated site and refinery effluents.

  14. Characteristics and kinetic analysis of AQS transformation and microbial goethite reduction: Insight into “redox mediator-microbe-iron oxide” interaction process

    SciTech Connect

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-29

    Here, the characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12-goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.

  15. Characteristics and kinetic analysis of AQS transformation and microbial goethite reduction: Insight into “redox mediator-microbe-iron oxide” interaction process

    DOE PAGES

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; ...

    2016-03-29

    Here, the characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12-goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of themore » redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.« less

  16. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  17. Overexpression of a bacterial mercury transporter MerT in Arabidopsis enhances mercury tolerance.

    PubMed

    Xu, Sheng; Sun, Bin; Wang, Rong; He, Jia; Xia, Bing; Xue, Yong; Wang, Ren

    2017-08-19

    The phytoremediation by using of green plants in the removal of environmental pollutant is an environment friendly, green technology that is cost effective and energetically inexpensive. By using Agrobacterium-mediated gene transfer, we generated transgenic Arabidopsis plants ectopically expressing mercuric transport protein gene (merT) from Pseudomonas alcaligenes. Compared with wild-type (WT) plants, overexpressing PamerT in Arabidopsis enhanced the tolerance to HgCl2. Further results showed that the enhanced total activities or corresponding transcripts of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) were observed in transgenic Arabidopsis under HgCl2 stress. These results were confirmed by the alleviation of oxidative damage, as indicated by the decrease of thiobarbituric acid reactive substances (TBARS) contents and reactive oxygen species (ROS) accumulation. In addition, localization analysis of PaMerT in Arabidopsis protoplast showed that it is likely to be associated with vacuole. In all, PamerT increased mercury (Hg) tolerance in transgenic Arabidopsis, and decreased production of Hg-induced ROS, thereby protecting plants from oxidative damage. The present study has provided further evidence that bacterial MerT plays an important role in the plant tolerance to HgCl2 and in reducing the production of ROS induced by HgCl2. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  19. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  20. MGS and Odyssey - relay satellites for the MER mission

    NASA Technical Reports Server (NTRS)

    Esposito, Pasquale B.; Bhat, R.; Demeak, S.; Ardalan, S.; Breeden, J.; Helfrich, C.; Jefferson, D.; Stauch, J.

    2004-01-01

    Both Mars Global Surveyor (MGS) and Odyssey are currently in low altitude, nearly circular and highly inclined orbits about Mars. Thus, they are available adn compartible to serve as relay satellites for the Mars Exploration Rovers (MER) mission. Consequently, the MER project developed requirements for MGS to be overhead for MER-A (Spirit) at Gusev crater, at maximum elevation, mudway between lander separation and initial touchdown; in time, this was specified as 01/04/04. 04:24:55 UTC/SCET with a 30 sec tolerance.

  1. Translating MAPGEN to ASPEN for MER

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Knight, Russell L.; Lenda, Matthew; Maldague, Pierre F.

    2013-01-01

    This software translates MAPGEN (Europa and APGEN) domains to ASPEN, and the resulting domain can be used to perform planning for the Mars Exploration Rover (MER). In other words, this is a conversion of two distinct planning languages (both declarative and procedural) to a third (declarative) planning language in order to solve the problem of faithful translation from mixed-domain representations into the ASPEN Modeling Language. The MAPGEN planning system is an example of a hybrid procedural/declarative system where the advantages of each are leveraged to produce an effective planner/scheduler for MER tactical planning. The adaptation of the planning system (ASPEN) was investigated, and, with some translation, much of the procedural knowledge encoding is amenable to declarative knowledge encoding. The approach was to compose translators from the core languages used for adapting MAGPEN, which consists of Europa and APGEN. Europa is a constraint- based planner/scheduler where domains are encoded using a declarative model. APGEN is also constraint-based, in that it tracks constraints on resources and states and other variables. Domains are encoded in both constraints and code snippets that execute according to a forward sweep through the plan. Europa and APGEN communicate to each other using proxy activities in APGEN that represent constraints and/or tokens in Europa. The composition of a translator from Europa to ASPEN was fairly straightforward, as ASPEN is also a declarative planning system, and the specific uses of Europa for the MER domain matched ASPEN s native encoding fairly closely. On the other hand, translating from APGEN to ASPEN was considerably more involved. On the surface, the types of activities and resources one encodes in APGEN appear to match oneto- one to the activities, state variables, and resources in ASPEN. But, when looking into the definitions of how resources are profiled and activities are expanded, one sees code snippets that access

  2. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    PubMed

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation.

  3. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R. D.; Golombek, M. P.; Haldemann, A.; Castle, N.

    2003-03-01

    To aid in defining the rock distributions for MER airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high and characterize them by their shape and burial.

  4. Mars Atmosphere Argon Density Measurement on MER Mission

    NASA Astrophysics Data System (ADS)

    Economou, T. E.

    2008-11-01

    Using the Alpha Particle X-ray Spectrometer (APXS) on board Spirit and Opportunity rovers on MER mission, we were able to measure the argon density variation in the martian atmosphere as a function of seasonal changes.

  5. SARS and MERS: recent insights into emerging coronaviruses.

    PubMed

    de Wit, Emmie; van Doremalen, Neeltje; Falzarano, Darryl; Munster, Vincent J

    2016-08-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

  6. PDS Analyst's Notebook for MSL and MER

    NASA Astrophysics Data System (ADS)

    Stein, T.; Arvidson, R. E.; Zhou, F.

    2016-12-01

    The Mars Science Laboratory (MSL) and Mars Exploration Rover (MER).PDS Analyst's Notebooks (AN) (http://an.rsl.wustl.edu) provide integrated access to peer-reviewed, released data provided by the instrument teams, supported by documentation describing data format, content, and calibration and providing insight into why and how particular observations were made. Observation planning and targeting information is extracted from mission science plans, including instrument settings and observation parameters. Source commands are linked with resulting data products, albeit with limits due to the absence of round trip data tracking. Data, documents, planned observations, and mosaics are grouped in the AN for easy scanning and are displayed in order of acquisition. Sequences and individual products may be viewed in detail and downloaded. Context mosaics, which are not calibrated science products, are created for sequences of MSL Navcam, Mastcam and MAHLI single frame images that do not have a formal mosaic product in the mission archive. Rover traverses are plotted on a HiRISE basemap using drive telemetry provided by the projects. Clicking on a traverse location brings up corresponding data. Data products may be searched by time, location, instrument, command sequence, and other criteria. Sol document search is also supported. New measurement functions provide location information for points in images, as well as distance and elevation profile between points. The tool also can find a point on an image given site frame coordinates. New drawing functions support user-defined annotations such as text, lines, and arrows.

  7. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  8. Receptor-binding domain-based subunit vaccines against MERS-CoV.

    PubMed

    Zhang, Naru; Tang, Jian; Lu, Lu; Jiang, Shibo; Du, Lanying

    2015-04-16

    Development of effective vaccines, in particular, subunit-based vaccines, against emerging Middle East respiratory syndrome (MERS) caused by the MERS coronavirus (MERS-CoV) will provide the safest means of preventing the continuous spread of MERS in humans and camels. This review briefly describes the structure of the MERS-CoV spike (S) protein and its receptor-binding domain (RBD), discusses the current status of MERS vaccine development and illustrates the strategies used to develop RBD-based subunit vaccines against MERS. It also summarizes currently available animal models for MERS-CoV and proposes a future direction for MERS vaccines. Taken together, this review will assist researchers working to develop effective and safe subunit vaccines against MERS-CoV and any other emerging coronaviruses that might cause future pandemics.

  9. Discovery of Macrocyclic Pyrimidines as MerTK-Specific Inhibitors.

    PubMed

    McIver, Andrew L; Zhang, Weihe; Liu, Qingyang; Jiang, Xinpeng; Stashko, Michael A; Nichols, James; Miley, Michael J; Norris-Drouin, Jacqueline; Machius, Mischa; DeRyckere, Deborah; Wood, Edgar; Graham, Douglas K; Earp, H Shelton; Kireev, Dmitri; Frye, Stephen V; Wang, Xiaodong

    2017-02-03

    Macrocycles have attracted significant attention in drug discovery recently. In fact, a few de novo designed macrocyclic kinase inhibitors are currently in clinical trials with good potency and selectivity for their intended target. In this study, we successfully engaged a structure-based drug design approach to discover macrocyclic pyrimidines as potent Mer tyrosine kinase (MerTK)-specific inhibitors. An enzyme-linked immunosorbent assay (ELISA) in 384-well format was employed to evaluate the inhibitory activity of macrocycles in a cell-based assay assessing tyrosine phosphorylation of MerTK. Through structure-activity relationship (SAR) studies, analogue 11 [UNC2541; (S)-7-amino-N-(4-fluorobenzyl)-8-oxo-2,9,16-triaza-1(2,4)-pyrimidinacyclohexadecaphane-1-carboxamide] was identified as a potent and MerTK-specific inhibitor that exhibits sub-micromolar inhibitory activity in the cell-based ELISA. In addition, an X-ray structure of MerTK protein in complex with 11 was resolved to show that these macrocycles bind in the MerTK ATP pocket.

  10. Soils containing 2,3,7,8-tetrachlorodibenzo-p-dioxin: aspects of their microbial activity and the potential for their microbially-mediated decontamination

    SciTech Connect

    Arthur, M.F.

    1987-01-01

    Three soils from Missouri and a soil from New Jersey, containing between 0.008 and 26.3 ug/g of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were examined for microbial activity; the Missouri soils were also monitored for TCDD biodegradation. The objective was to simulate TCDD biodegradation by the indigenous microflora in order to develop a cost-effective method to decontaminate soils in situ. Microbial activity in TCDD soils was examined by enumeration of aerobic eutrophic and oligotrophic bacteria, actinomycetes, and fungi; determination of soil enzyme activity, including dehydrogenase, acid and alkaline phosphatase, arylsulfatase, and rhodanese; and measurement of soil respiration. The Missouri soils were subsequently amended with fertilizer, /sup 14/C-TCDD and a TCDD-solubilizing nonionic surfactant in order to improve the availability of TCDD to the indigenous soil microflora. Biodegradation of TCDD was monitored by the evolution of /sup 14/CO/sub 2/ and by high resolution gas chromatography/mass spectrometry (CC/MS).

  11. Predicting the Mars Atmosphere for MER EDL

    NASA Astrophysics Data System (ADS)

    Kass, D.

    2005-05-01

    As the two Mars Exploration Rovers (MER) approached Mars, Mars Global Surveyor (MGS) detected a regional dust storm. The storm developed as a local storm descending the Chryse storm track but instead of dying out near the equator, it crossed over the Meridiani landing site into the southern hemisphere and started growing. It eventually became a planet encircling storm, with a global impact on atmospheric temperatures. The storm peaked (in terms of dust loading) around December 18th. While the storm was already decaying, it was still expected to change the atmosphere from baseline "clear" atmosphere used for planning Entry Descent and Landing (EDL). To help insure the successful landing, an attempt was made to model and then predict the atmosphere as the dust from the storm (and associated warming) cleared. Two types of data analyses were performed. The first was to rapidly look at MGS-TES daily global maps and MOC weekly reports. This gave a good qualitative assessment of the activity and help give a global view of the activity. The daily global atmospheric temperature maps from TES were particularly useful in showing where there were atmospheric changes but little measurable dust. The second analysis was to use vertical temperature profiles retrieved from the TES data. An effort was made to minimize the turnaround on the analysis and a 3 day latency was achieved. The retrieved profiles from the orbit nearest to the landing site were averaged over a ~ 10 degree latitude bin. They were then incorporated into an engineering model based on the one described in Golombek et al. [2003]. This is an interpolation scheme/Monte-Carlo distribution generator and not an actual dynamical model. It basically uses the TES data as a mean and applies a variability. For Spirit, there was no attempt to make predictions (the storm was too close to landing), so the most recent profiles were just used as a best guess. This turned out to be adequate, resulting in the final model being

  12. Role of MerH in mercury resistance in the archaeon Sulfolobus solfataricus

    PubMed Central

    Schelert, James; Rudrappa, Deepak; Johnson, Tyler

    2013-01-01

    Crenarchaeota include extremely thermoacidophilic organisms that thrive in geothermal environments dominated by sulfidic ores and heavy metals such as mercury. Mercuric ion, Hg(II), inactivates transcription in the crenarchaeote Sulfolobus solfataricus and simultaneously derepresses transcription of a resistance operon, merHAI, through interaction with the MerR transcription factor. While mercuric reductase (MerA) is required for metal resistance, the role of MerH, an adjacent small and predicted product of an ORF, has not been explored. Inactivation of MerH either by nonsense mutation or by in-frame deletion diminished Hg(II) resistance of mutant cells. Promoter mapping studies indicated that Hg(II) sensitivity of the merH nonsense mutant arose through transcriptional polarity, and its metal resistance was restored partially by single copy merH complementation. Since MerH was not required in vitro for MerA-catalysed Hg(II) reduction, MerH may play an alternative role in metal resistance. Inductively coupled plasma-mass spectrometry analysis of the MerH deletion strain following metal challenge indicated that there was prolonged retention of intracellular Hg(II). Finally, a reduced rate of mer operon induction in the merH deletion mutant suggested that the requirement for MerH could result from metal trafficking to the MerR transcription factor. PMID:23619003

  13. Molecular phylogenetics before sequences: oligonucleotide catalogs as k-mer spectra.

    PubMed

    Ragan, Mark A; Bernard, Guillaume; Chan, Cheong Xin

    2014-01-01

    From 1971 to 1985, Carl Woese and colleagues generated oligonucleotide catalogs of 16S/18S rRNAs from more than 400 organisms. Using these incomplete and imperfect data, Carl and his colleagues developed unprecedented insights into the structure, function, and evolution of the large RNA components of the translational apparatus. They recognized a third domain of life, revealed the phylogenetic backbone of bacteria (and its limitations), delineated taxa, and explored the tempo and mode of microbial evolution. For these discoveries to have stood the test of time, oligonucleotide catalogs must carry significant phylogenetic signal; they thus bear re-examination in view of the current interest in alignment-free phylogenetics based on k-mers. Here we consider the aims, successes, and limitations of this early phase of molecular phylogenetics. We computationally generate oligonucleotide sets (e-catalogs) from 16S/18S rRNA sequences, calculate pairwise distances between them based on D 2 statistics, compute distance trees, and compare their performance against alignment-based and k-mer trees. Although the catalogs themselves were superseded by full-length sequences, this stage in the development of computational molecular biology remains instructive for us today.

  14. Prolonged applied potential to anode facilitate selective enrichment of bio-electrochemically active Proteobacteria for mediating electron transfer: microbial dynamics and bio-catalytic analysis.

    PubMed

    Kannaiah Goud, R; Mohan, S Venkata

    2013-06-01

    Prolonged application of poised potential to anode was evaluated to understand the influence of applied potentials [500 mV (E500); 1000 mV (E1000); 2000 mV (E2000)] on bio-electrogenic activity of microbial fuel cell (MFC) and the resulting dynamics in microbial community in comparison to control operation. E1000 system documented higher electrogenic activity (309 mW/m(2)) followed by E500 (143 mW/m(2)), E2000 (112 mW/m(2)) and control (65 mW/m(2)) operations. The improved power output at optimum applied potential (1000mV) might be attributed to the enrichment of electrochemically active bacteria majorly belonging to the phylum Proteobacteria with less extent of Firmicutes which helped in effective electron (mediated) transfer through release of exogenous shuttlers. Improved bio-electrogenic activity due to enrichment at 1000mV applied potential also correlated well with the observed cyctochrome-c peaks on the voltamatogram, lower ion ohmic losses and bio-electro kinetic analysis. Electric-shock at higher applied potential (E2000) resulted in the survival of less number of microbial species leading to lower electrogenesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Potential Noachian-Aged Sites for MER-B

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Tanaka, K. L.

    2001-01-01

    Two Mars Exploration Rovers (MER) are slated for launch in 2003 and will land in the equatorial region of Mars. These rovers are More formidable in both size and instrument complement than the Sojourner rover, potentially allowing greater range. For landing, they will be housed in an airbag system nearly identical to Pathfinder allowing them to land in an area with elevation below 1.3 km, Root Mean Square (RMS) slopes less than 6 degrees, rock abundance less than 20%, and fine component thermal inertia greater than 3-4 cgs units. MER-A may land between 15 S to 5 N and MER-B between 10 S and 10 N. Numerous sites have been identified by the JPL team as meeting the above engineering requirements for the landing of the rovers. Here we focus on a subset of these that lie in Noachian-aged terrain, as defined by Viking-era geologic mapping. This subset is further reduced by the first author's support of the selection (if possible) of a site in the Valles Marineris which can only be reached by MER-A, this study therefore focuses on those Noachian-aged sites that can be reached by MER-B.

  16. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE PAGES

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; ...

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  17. Evaluation of candidate vaccine approaches for MERS-CoV

    SciTech Connect

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; Modjarrad, Kayvon; Zhang, Yi; Leung, Kwanyee; Lees, Christopher R.; Zhou, Tongqing; Yassine, Hadi M.; Kanekiyo, Masaru; Yang, Zhi-yong; Chen, Xuejun; Becker, Michelle M.; Freeman, Megan; Vogel, Leatrice; Johnson, Joshua C.; Olinger, Gene; Todd, John P.; Bagci, Ulas; Solomon, Jeffrey; Mollura, Daniel J.; Hensley, Lisa; Jahrling, Peter; Denison, Mark R.; Rao, Srinivas S.; Subbarao, Kanta; Kwong, Peter D.; Mascola, John R.; Kong, Wing-Pui; Graham, Barney S.

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.

  18. The response of soil carbon storage and microbially mediated carbon turnover to simulated climatic disturbance in a northern peatland forest. Revisiting the concept of soil organic matter recalcitrance

    SciTech Connect

    Kostka, Joel

    2015-09-14

    closely paralleled the chemical evolution of peat, with large shifts in microbial populations occurring in the biogeochemical hotspot, the mesotelm, where the highest rates of decomposition were detected. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens dominated in the deeper catotelm. Evidence pointed to the availability of phosphorus as well as nitrogen limiting the microbially-mediated turnover of organic carbon at MEF. Prior to initiation of the experimental treatments, our study provided key baseline data for the SPRUCE site on the vertical stratification of peat decomposition, key enzymatic pathways, and microbial taxa containing these pathways. The sensitivity of soil carbon turnover to climate change is strongly linked to recalcitrant carbon stocks and the temperature sensitivity of decomposition is thought to increase with increasing molecular complexity of carbon substrates. This project delivered results on how climate change perturbations impact the microbially-mediated turnover of recalcitrant organic matter in peatland forest soils, both under controlled conditions in the laboratory and at the ecosystem-scale in the field. This project revisited the concept of “recalcitrance” in the regulation of soil carbon turnover using a combination of natural abundance radiocarbon and optical spectroscopic measurements on bulk DOM, and high resolution molecular characterization of DOM. The project elucidated how organic matter reactivity and decomposition will respond to climate change in a both a qualitative (organic matter lability) and quantitiative (increased rates) manner. An Aromaticity Index was developed to represent a more direct and accurate parameter for modeling of DOM reactivity in peatlands. The abundance and community

  19. Pigment epithelium-derived factor 34-mer peptide prevents liver fibrosis and hepatic stellate cell activation through down-regulation of the PDGF receptor.

    PubMed

    Tsai, Tung-Han; Shih, Shou-Chuan; Ho, Tsung-Chuan; Ma, Hsin-I; Liu, Ming-Ying; Chen, Show-Li; Tsao, Yeou-Ping

    2014-01-01

    Pigment epithelium-derived factor (PEDF) has been shown previously to prevent liver fibrosis and hepatic stellate cell (HSC) activation. By investigating the functional domains in PEDF, we identified a 34-mer peptide (residues Asp44-Asn77) that harbors the same function as the full-length PEDF protein. Not only did the 34-mer suppress the development of fibrosis in carbon tetrachloride (CCl4)-treated mouse liver but it also upregulated peroxisome proliferator-activated receptor-gamma (PPARγ) expression in HSCs in vivo. Platelet-derived growth factor (PDGF) plays a crucial role on the process of HSC activation in response to liver damage. The 34-mer suppressed PDGF-induced cell proliferation and expression of myofibroblastic marker proteins in primary rat HSC culture, increased the levels of PPARγ mRNA and protein in a dose-dependent manner and markedly reduced the level of active β-catenin protein, an HSC activating factor, in HSC-T6 cells. Similarly, IWR-1, an inhibitor of the Wnt response, displayed the same effect as the 34-mer in preventing HSC-T6 activation. The Wnt signaling-mediated PPARγ suppression was abolished by both the IWR-1 inhibitor and a small interfering RNA (siRNA) targeting β-catenin and the Wnt coreceptor, LRP6. Both PEDF and the 34-mer down-regulated PDGF receptor-α/β expression and blocked the PDGF-induced phosphorylation of Akt and ERK. Moreover, the inhibitory effect on PDGF receptor expression was abolished by PPARγ antagonists and PPARγ siRNA. Our observations indicate that the PEDF-derived 34-mer peptide can mimic PEDF in attenuating HSC activation. Investigation of this 34-mer peptide led to the identification of a signaling mechanism involving PPARγ induction, suppression of Wnt/β-catenin signaling and down-regulation of the PDGF receptor-α/β.

  20. Nanoporous Mo2C functionalized 3D carbon architecture anode for boosting flavins mediated interfacial bioelectrocatalysis in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan

    2017-08-01

    An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.

  1. Impedance Spectroscopy as a Tool for Non-Intrusive Detection of Extracellular Mediators in Microbial Fuel Cells

    DTIC Science & Technology

    2009-12-01

    bioseparation. Hoboken, NJ: John Wiley & Sons, p. 267. HernandezME, Kappler A, Newman DK. 2004. Phenazines and other redox active antibiotics promote...Verstraete W. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39:3401. Ramasamy RP, Ren Z, Mench MM

  2. Mars Exploration Rover (MER) Project Environmental Assurance Program

    NASA Astrophysics Data System (ADS)

    Man, Kin F.; Farguson, Christine T.; Hoffman, Alan R.

    2004-08-01

    A comprehensive prelaunch environmental assurance program was planned and implemented on NASA's Mars Exploration Rover (MER) project. This project consisted of two rovers/spacecraft launched on two separate launch vehicles. The environmental assurance program included assembly/subsystem and system-level testing in the areas of dynamics, thermal, and electromagnetic (EMC), as well as venting/pressure, dust, radiation, and micrometeoroid analyses. Due to the Martian diurnal cycles, the susceptible hardware also underwent thermal cycling qualification of their packaging designs and manufacturing processes. This paper presents a comprehensive summary of the environmental assurance program for the MER project. A series of test and analysis metrics are generated. Selections of the numerous lessons that have been learned from implementation of the MER environmental assurance program are documented in this paper. They include both technical and programmatic lessons that would be helpful in improving implementation of the environmental program for future projects.

  3. Model for the distributions of k -mers in DNA sequences

    NASA Astrophysics Data System (ADS)

    Chen, Yaw-Hwang; Nyeo, Su-Long; Yeh, Chiung-Yuh

    2005-07-01

    The evolutionary features based on the distributions of k -mers in the DNA sequences of various organisms are studied. The organisms are classified into three groups based on their evolutionary periods: (a) E. coli and T. pallidum (b) yeast, zebrafish, A. thaliana, and fruit fly, (c) mouse, chicken, and human. The distributions of 6-mers of these three groups are shown to be, respectively, (a) unimodal, (b) unimodal with peaks generally shifted to smaller frequencies of occurrence, (c) bimodal. To describe the bimodal feature of the k -mer distributions of group (c), a model based on the cytosine-guanine “ CG ” content of the DNA sequences is introduced and shown to provide reasonably good agreements.

  4. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.

    PubMed

    Benison, Gregory C; Di Lello, Paola; Shokes, Jacob E; Cosper, Nathaniel J; Scott, Robert A; Legault, Pascale; Omichinski, James G

    2004-07-06

    Bacteria isolated from organic mercury-contaminated sites have developed a system of two enzymes that allows them to efficiently convert both ionic and organic mercury compounds to the less toxic elemental mercury. Both enzymes are encoded on the mer operon and require sulfhydryl-bound substrates. The first enzyme is an organomercurial lyase (MerB), and the second enzyme is a mercuric ion reductase (MerA). MerB catalyzes the protonolysis of the carbon-mercury bond, resulting in the formation of a reduced carbon compound and inorganic ionic mercury. Of several mercury-containing MerB complexes that we attempted to prepare, the most stable was a complex consisting of the organomercurial lyase (MerB), a mercuric ion, and a molecule of the MerB inhibitor dithiothreitol (DTT). Nuclear magnetic resonance (NMR) spectroscopy and extended X-ray absorption fine structure spectroscopy of the MerB/Hg/DTT complex have shown that the ligands to the mercuric ion in the complex consist of both sulfurs from the DTT molecule and one cysteine ligand, C96, from the protein. The stability of the MerB/Hg/DTT complex, even in the presence of a large excess of competing cysteine, has been demonstrated by NMR and dialysis. We used an enzyme buffering test to determine that the MerB/Hg/DTT complex acts as a substrate for the mercuric reductase MerA. The observed MerA activity is higher than the expected activity assuming free diffusion of the mercuric ion from MerB to MerA. This suggests that the mercuric ion can be transferred between the two enzymes by a direct transfer mechanism.

  5. Cassini, Rømer, and the velocity of light

    NASA Astrophysics Data System (ADS)

    Bobis, Laurence; Lequeux, James

    2008-07-01

    The discovery of the finite nature of the velocity of light is usually attributed to Rømer. However, a text at the Paris Observatory confirms the minority opinion according to which Cassini was first to propose the ‘successive motion’ of light, while giving a rather correct order of magnitude for the duration of its propagation from the Sun to the Earth. We examine this question, and discuss why, in spite of the criticisms of Halley, Cassini abandoned this hypothesis while leaving Rømer free to publish it.

  6. The Ballerina Experiment on the Rømer Mission

    NASA Astrophysics Data System (ADS)

    Brandt, Soren

    The Rømer mission has recently been approved as the next mission within the Danish Small Satellite Program. The scientific payload will consist of two separate experiments, the MONS and the Ballerina payloads. The primary objective of Ballerina is to provide accurate, real-time positions relayed to ground for ~ 70 Gamma Ray Bursts (GRBs) per year, and to study the temporal and spectral evolution of the early GRB X-ray afterglow. As an additional goal, Ballerina will detect and study bright X-ray transients, in particular X-ray novae and micro-quasar systems. R{\\o}mer is currently scheduled for launch in late 2003.

  7. Real time metagenomics: using k-mers to annotate metagenomes.

    PubMed

    Edwards, Robert A; Olson, Robert; Disz, Terry; Pusch, Gordon D; Vonstein, Veronika; Stevens, Rick; Overbeek, Ross

    2012-12-15

    Annotation of metagenomes involves comparing the individual sequence reads with a database of known sequences and assigning a unique function to each read. This is a time-consuming task that is computationally intensive (though not computationally complex). Here we present a novel approach to annotate metagenomes using unique k-mer oligopeptide sequences from 7 to 12 amino acids long. We demonstrate that k-mer-based annotations are faster and approach the sensitivity and precision of blastx-based annotations without loosing accuracy. A last-common ancestor approach was also developed to describe the members of the community.

  8. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences.

    PubMed

    Rasmussen, L D; Zawadsky, C; Binnerup, S J; Oregaard, G; Sørensen, S J; Kroer, N

    2008-06-01

    Mercury-resistant bacteria may be important players in mercury biogeochemistry. To assess the potential for mercury reduction by two subsurface microbial communities, resistant subpopulations and their merA genes were characterized by a combined molecular and cultivation-dependent approach. The cultivation method simulated natural conditions by using polycarbonate membranes as a growth support and a nonsterile soil slurry as a culture medium. Resistant bacteria were pregrown to microcolony-forming units (mCFU) before being plated on standard medium. Compared to direct plating, culturability was increased up to 2,800 times and numbers of mCFU were similar to the total number of mercury-resistant bacteria in the soils. Denaturing gradient gel electrophoresis analysis of DNA extracted from membranes suggested stimulation of growth of hard-to-culture bacteria during the preincubation. A total of 25 different 16S rRNA gene sequences were observed, including Alpha-, Beta-, and Gammaproteobacteria; Actinobacteria; Firmicutes; and Bacteroidetes. The diversity of isolates obtained by direct plating included eight different 16S rRNA gene sequences (Alpha- and Betaproteobacteria and Actinobacteria). Partial sequencing of merA of selected isolates led to the discovery of new merA sequences. With phylum-specific merA primers, PCR products were obtained for Alpha- and Betaproteobacteria and Actinobacteria but not for Bacteroidetes and Firmicutes. The similarity to known sequences ranged between 89 and 95%. One of the sequences did not result in a match in the BLAST search. The results illustrate the power of integrating advanced cultivation methodology with molecular techniques for the characterization of the diversity of mercury-resistant populations and assessing the potential for mercury reduction in contaminated environments.

  9. Improved Method for Recovery of mRNA from Aquatic Samples and Its Application to Detection of mer Expression

    PubMed Central

    Jeffrey, Wade H.; Nazaret, Sylvie; Von Haven, Robin

    1994-01-01

    Previously described methods for extraction of mRNA from environmental samples may preclude detecting transcripts from genes that were present in low abundance in aquatic bacterial communities. By combining a boiling sodium dodecyl sulfate-diethylpyrocarbonate lysis step with acid-guanidinium extraction, we improved recovery of target mRNA from both pure cultures and environmental samples. The most significant advantage of the new protocol is that it is easily adapted to yield high recovery of mRNA from 142-mm-diameter flat filters and high-capacity cartridge filters. The lysis and extraction procedures are more rapid than previously described methods, and many samples can be handled at once. RNA extracts have been shown to be free of contaminating DNA. The lysis procedure does not damage target mRNA sequences, and mRNA can be detected from fewer than 106 bacterial cells. We used the new method to examine transcripts of genes responsible for detoxification of mercurial compounds. Induction of merA (specifying mercuric reductase) transcripts in stationary-phase Pseudomonas aeruginosa containing Tn501 occurred within 60 s of HgCl2 addition and was proportional to the amount of Hg(II) added. The new technique also allowed the detection of merA transcripts from the microbial community of a mercury-contaminated pond (Reality Lake, Oak Ridge, Tenn.). Significant differences in merA transcript abundance were observed between different locations associated with the lake. The results indicate that the new method is simple and rapid and can be applied to the study of mer gene expression of aquatic communities in their natural habitats. PMID:16349274

  10. Formation of Amorphous Mg-Si Precipitates Mediated by Microbial Activity: A Recent Analogue For Understanding their Role in Microbialite Formation

    NASA Astrophysics Data System (ADS)

    Pacton, M.; Ariztegui, D.; Vasconcelos, C.; Barbarand, J.; Gorin, G. E.; McKenzie, J. A.

    2009-12-01

    Occurrence of amorphous Mg-Si precipitates has been reported in different environments, i.e., biofilms and microbialites, from acidic to alkaline conditions. They are always associated to microbial activity, while their authigenesis remains elusive. Although a biological factor is undoubtedly linked to their occurrence, different assumptions have been proposed in order to explain their role in the formation of sediments. Léveillé et al. (2002) and Souza-Egipsy et al. (2005) showed that a highly hydrated Mg-Si gel is mediated by EPS. They have been thought to be a precursor of some clays, e.g., kerolite (Léveillé et al., 2005) and dolomite (Bontognali et al., 2008). On the other hand, Arp et al. (2003) considered that they have precipitated after the dissolution of a primary carbonate mineral. They have been also demonstrated as an agent of preservation of cell walls enhancing fossilization in rocks: Mg-Si permineralization of cell walls was reported as a possible explanation for the preservation of green algae remains in subfossil freshwater microbialites (Arp et al., 2003) and cyanobacterial cell walls (Souza-Egipsy et al., 2005). From a physico-chemical point of view, little is known about the conditions required for Mg-Si complexation. For example, Kent and Kastner (1985) proposed that chemical Mg-hydroxysilicate precipitation is likely to occur in carbonate-containing siliceous sediments because the CaCO3 dissolution helps to maintain pH values near 8. However, other environments exhibit more acidic pH suggesting that the latter is not a fundamental parameter for the nucleation of Mg-Si precipitates. Modern microbial mats are excellent systems to study the processes leading to the formation of Mg-Si precipitates. Two samples from microbial mats retrieved at the hypersaline Lagoa Vermelha (Brazil) were studied. One sample was studied after recovery without any further treatment, whereas an equivalent sample was placed in an anoxic chamber without light

  11. Current advancements and potential strategies in the development of MERS-CoV vaccines.

    PubMed

    Zhang, Naru; Jiang, Shibo; Du, Lanying

    2014-06-01

    Middle East respiratory syndrome (MERS) is a newly emerging infectious disease caused by a novel coronavirus, MERS-coronavirus (MERS-CoV), a new member in the lineage C of β-coronavirus (β-CoV). The increased human cases and high mortality rate of MERS-CoV infection make it essential to develop safe and effective vaccines. In this review, the current advancements and potential strategies in the development of MERS vaccines, particularly subunit vaccines based on MERS-CoV spike (S) protein and its receptor-binding domain (RBD), are discussed. How to improve the efficacy of subunit vaccines through novel adjuvant formulations and routes of administration as well as currently available animal models for evaluating the in vivo efficacy of MERS-CoV vaccines are also addressed. Overall, these strategies may have important implications for the development of effective and safe vaccines for MERS-CoV in the future.

  12. Current advancements and potential strategies in the development of MERS-CoV vaccines

    PubMed Central

    Zhang, Naru; Jiang, Shibo; Du, Lanying

    2014-01-01

    Middle East respiratory syndrome (MERS) is a newly emerging infectious disease caused by a novel coronavirus, MERS-coronavirus (MERS-CoV), a new member in the lineage C of β-coronavirus (β-CoV). The increased human cases and high mortality rate of MERS-CoV infection make it essential to develop safe and effective vaccines. In this review, the current advancements and potential strategies in the development of MERS vaccines, particularly subunit vaccines based on MERS-CoV spike (S) protein and its receptor-binding domain (RBD), are discussed. How to improve the efficacy of subunit vaccines through novel adjuvant formulations and routes of administration as well as currently available animal models for evaluating the in vivo efficacy of MERS-CoV vaccines are also addressed. Overall, these strategies may have important implications for the development of effective and safe vaccines for MERS-CoV in the future. PMID:24766432

  13. Calling for rapid development of a safe and effective MERS vaccine.

    PubMed

    Hotez, Peter J; Bottazzi, Maria Elena; Tseng, Chien-Te K; Zhan, Bin; Lustigman, Sara; Du, Lanying; Jiang, Shibo

    2014-07-01

    The geographic spread and rapid increase in the cases of Middle East respiratory syndrome (MERS) caused by a novel coronavirus (MERS-CoV) during the past two months have raised concern about its pandemic potential. Here we call for the rapid development of an effective and safe MERS vaccine to control the spread of MERS-CoV. Copyright © 2014. Published by Elsevier Masson SAS.

  14. Planning Mars Memory: Learning from the MER Mission

    NASA Technical Reports Server (NTRS)

    Charlotte, Linde

    2004-01-01

    This viewgraph presentation discusses ways in which the lessons learned from a mission can be systematically remembered, retained, and applied by individuals and by an organization as a whole. The presentation cites lessons learned from the Mars Exploration Rover (MER) Mission as examples.

  15. Membrane fouling induced by AHL-mediated soluble microbial product (SMP) formation by fouling-causing bacteria co-cultured with fouling-enhancing bacteria.

    PubMed

    Ishizaki, So; Sugiyama, Ryoichi; Okabe, Satoshi

    2017-08-16

    Membrane fouling still remains a major obstacle for wider applications of membrane bioreactor (MBR), which is mainly caused by soluble microbial products (SMP). Identification of key bacteria responsible for SMP production is essential for mitigation of membrane fouling. Here, we investigated the effect of microbial interaction on membrane fouling. We measured the membrane fouling potentials of 13 bacterial strains isolated from a pilot-scale MBR treating domestic wastewater when they were cultivated as single-culture and co-culture. We found that fouling-causing bacteria (FCB) displayed much higher fouling potential when co-cultured even with non-FCB and mixed population (activated sludge). In particular, the fouling potential of strain S26, one of FCB, increased 26.8 times when cultivated with strain S22 (fouling-enhancing bacteria, FEB). The secretion of N-octanoyl-L-homoserine lactone (C8-HSL) was increased by co-cultivating S22 and S26 as compared with cultivating as single culture, which stimulated the production of fouling-causing SMP by S26 and consequently resulted in severe membrane fouling. This result suggests that AHL-mediated quorum-sensing (QS) regulatory system was involved in secretion of fouling-causing SMP.

  16. Antenna Designs for the Mars Exploration Rovers (MER) Spacecraft, Lander, and Rover

    NASA Technical Reports Server (NTRS)

    Vacchione, Joseph; Thelen, Michael; Brown, Paula; Huang, John; Kelly, Ken; Krishnan, Satish

    2001-01-01

    This presentation focuses on the design of antennas for the Mars Exploration Rovers (MER). Specific topics covered include: MER spacecraft architecture, the evolution of an antenna system, MER cruise stage antennas, antenna stacks, the heat-shield/back shell antenna, and lander and rover antennas. Additionally, the mission's science objectives are reviewed.

  17. Cohesions and Friction Angles of Martian Regolith from MER Wheel Trenches and Wheel Scuffs

    NASA Astrophysics Data System (ADS)

    Sullivan, R.; Anderson, R.; Biesiadecki, J.; Bond, T.; Stewart, H.

    2010-03-01

    We analyzed all MER wheel trenches and wheel scuffs along both MER traverses to derive cohesions and friction angles for martian regolith. Friction angles at both MER sites are 30-37 degrees; cohesions generally are 10 kPa or less.

  18. MERS-CoV Antibodies in Humans, Africa, 2013–2014

    PubMed Central

    Liljander, Anne; Meyer, Benjamin; Jores, Joerg; Müller, Marcel A.; Lattwein, Erik; Njeru, Ian; Bett, Bernard; Corman, Victor Max

    2016-01-01

    Dromedaries in Africa and elsewhere carry the Middle East respiratory syndrome coronavirus (MERS-CoV). To search for evidence of autochthonous MERS-CoV infection in humans, we tested archived serum from livestock handlers in Kenya for MERS-CoV antibodies. Serologic evidence of infection was confirmed for 2 persons sampled in 2013 and 2014. PMID:27071076

  19. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination.

    PubMed

    Sasanuma, Hiroyuki; Hirota, Kouji; Fukuda, Tomoyuki; Kakusho, Naoko; Kugou, Kazuto; Kawasaki, Yasuo; Shibata, Takehiko; Masai, Hisao; Ohta, Kunihiro

    2008-02-01

    Meiosis ensures genetic diversification of gametes and sexual reproduction. For successful meiosis, multiple events such as DNA replication, recombination, and chromosome segregation must occur coordinately in a strict regulated order. We investigated the meiotic roles of Cdc7 kinase in the initiation of meiotic recombination, namely, DNA double-strand breaks (DSBs) mediated by Spo11 and other coactivating proteins. Genetic analysis using bob1-1 cdc7Delta reveals that Cdc7 is essential for meiotic DSBs and meiosis I progression. We also demonstrate that the N-terminal region of Mer2, a Spo11 ancillary protein required for DSB formation and phosphorylated by cyclin-dependent kinase (CDK), contains two types of Cdc7-dependent phosphorylation sites near the CDK site (Ser30): One (Ser29) is essential for meiotic DSB formation, and the others exhibit a cumulative effect to facilitate DSB formation. Importantly, mutations on these sites confer severe defects in DSB formation even when the CDK phosphorylation is present at Ser30. Diploids of cdc7Delta display defects in the chromatin binding of not only Spo11 but also Rec114 and Mei4, other meiotic coactivators that may assist Spo11 binding to DSB hot spots. We thus propose that Cdc7, in concert with CDK, regulates Spo11 loading to DSB sites via Mer2 phosphorylation.

  20. Unraveling the drivers of MERS-CoV transmission

    PubMed Central

    Cauchemez, Simon; Nouvellet, Pierre; Cori, Anne; Jombart, Thibaut; Clapham, Hannah; Moore, Sean; Mills, Harriet Linden; Salje, Henrik; Collins, Caitlin; Rodriquez-Barraquer, Isabel; Riley, Steven; Truelove, Shaun; Algarni, Homoud; Alhakeem, Rafat; AlHarbi, Khalid; Turkistani, Abdulhafiz; Aguas, Ricardo J.; Cummings, Derek A. T.; Van Kerkhove, Maria D.; Donnelly, Christl A.; Lessler, Justin; Fraser, Christophe; Al-Barrak, Ali; Ferguson, Neil M.

    2016-01-01

    With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain. PMID:27457935

  1. Unraveling the drivers of MERS-CoV transmission.

    PubMed

    Cauchemez, Simon; Nouvellet, Pierre; Cori, Anne; Jombart, Thibaut; Garske, Tini; Clapham, Hannah; Moore, Sean; Mills, Harriet Linden; Salje, Henrik; Collins, Caitlin; Rodriquez-Barraquer, Isabel; Riley, Steven; Truelove, Shaun; Algarni, Homoud; Alhakeem, Rafat; AlHarbi, Khalid; Turkistani, Abdulhafiz; Aguas, Ricardo J; Cummings, Derek A T; Van Kerkhove, Maria D; Donnelly, Christl A; Lessler, Justin; Fraser, Christophe; Al-Barrak, Ali; Ferguson, Neil M

    2016-08-09

    With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain.

  2. MGS and Odyssey - Relay Satellites for the MER Mission

    NASA Technical Reports Server (NTRS)

    Esposito, Pasquale B.; Bhat, R.; Demcak, S.; Ardakab, S.; Breeden, J.; Helfrich, C.; Jefferson, D.; Stauch, J.

    2004-01-01

    Both Mars Global Surveyor (MGS) and Mars Odyssey are currently in low altitude, nearly circular and highly inclined orbits about Mars. Thus, they are available and compatible to serve as relay satellites for the Mars Exploration Rover (MER) mission. Consequently, the MER project developed requirements for MGS to be overhead, at a specific time with a 30 second tolerance, during the atmospheric entry, descent and landing (EDL) phase of both MER vehicles. The result, after execution of a single orbit synchronization maneuver (OSM) on 10/03/03, 92.4 days or 1130 orbits before Spirit's EDL, was that MGS was over Spirit 8 seconds past the required time. This maneuver, with a delta-velocity of 0.534 m/s, caused the orbital period to change by 3.34 s and resulted in a time-phasing change of 62 min 19 s in order to achieve the EDL overflight. Based on the navigation and execution of an OSM on 01/04/04, MGS was overhead for the Opportunity EDL on 01/25/04,3.5 seconds after the required epoch. Requirements also existed for the Odyssey over-flight of the MER rovers after landing and various equipment deployments had been completed. Thus, these requirements were that Odyssey should rise no earlier than specified times with respect to each of the landing sites. The Odyssey over-flights of both Spirit and Opportunity on sol 1 were equally successful. This paper will present the navigation plan, trajectory propagation accuracy and maneuver execution for the successful MGS and Odyssey over-flights of both the MER rovers.

  3. Adaptation of aquatic microbial communities to pollutant stress

    SciTech Connect

    Barkay, T.; Pritchard, H.

    1988-01-01

    Adaptation to biodegradation of p-nitrophenol and to volatilization of Hg/sup 2 +/ are examples of the role the process plays in removal of environmental pollutants and in maintaining active microbial communities in impacted ecosystems. A molecular mechanism of adaptation to Hg/sup 2 +/ is suggested by the enrichment of mercury resistance (MER) genes in some communities upon exposure to mercury.

  4. Intronic Cis-Regulatory Modules Mediate Tissue-Specific and Microbial Control of angptl4/fiaf Transcription

    PubMed Central

    Camp, J. Gray; Jazwa, Amelia L.; Trent, Chad M.; Rawls, John F.

    2012-01-01

    The intestinal microbiota enhances dietary energy harvest leading to increased fat storage in adipose tissues. This effect is caused in part by the microbial suppression of intestinal epithelial expression of a circulating inhibitor of lipoprotein lipase called Angiopoietin-like 4 (Angptl4/Fiaf). To define the cis-regulatory mechanisms underlying intestine-specific and microbial control of Angptl4 transcription, we utilized the zebrafish system in which host regulatory DNA can be rapidly analyzed in a live, transparent, and gnotobiotic vertebrate. We found that zebrafish angptl4 is transcribed in multiple tissues including the liver, pancreatic islet, and intestinal epithelium, which is similar to its mammalian homologs. Zebrafish angptl4 is also specifically suppressed in the intestinal epithelium upon colonization with a microbiota. In vivo transgenic reporter assays identified discrete tissue-specific regulatory modules within angptl4 intron 3 sufficient to drive expression in the liver, pancreatic islet β-cells, or intestinal enterocytes. Comparative sequence analyses and heterologous functional assays of angptl4 intron 3 sequences from 12 teleost fish species revealed differential evolution of the islet and intestinal regulatory modules. High-resolution functional mapping and site-directed mutagenesis defined the minimal set of regulatory sequences required for intestinal activity. Strikingly, the microbiota suppressed the transcriptional activity of the intestine-specific regulatory module similar to the endogenous angptl4 gene. These results suggest that the microbiota might regulate host intestinal Angptl4 protein expression and peripheral fat storage by suppressing the activity of an intestine-specific transcriptional enhancer. This study provides a useful paradigm for understanding how microbial signals interact with tissue-specific regulatory networks to control the activity and evolution of host gene transcription. PMID:22479192

  5. Microbially-Mediated Sulfur Oxidation in Diffuse Hydrothermal Vent Fluids at Axial Seamount, Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    Akerman, N. H.; Butterfield, D. A.; Huber, J. A.

    2011-12-01

    Diffusely venting hydrothermal fluids can act as a window to the subseafloor microbial environment, where chemically-reduced hydrothermal fluids mixing with oxygenated seawater in the shallow crust creates chemical disequilibria that chemotrophic microorganisms can exploit for energy gain. At Axial Seamount, an active deep-sea volcano located on the Juan de Fuca Ridge, sulfide concentrations have been measured as high as 5770 μM, and sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism. In addition, studies of microbial population structure indicate that diffuse fluids at Axial are dominated by putative sulfur- and sulfide-oxidizing bacteria belonging to the Epsilonproteobacteria. To further study this important microbial process, we surveyed diffuse vent samples from Axial over a range of temperature, pH, and sulfide concentrations for the presence and expression of sulfide-oxidizing bacteria using a functional gene approach. Dissolved oxygen concentrations decrease exponentially above 40°C and lower the potential for sulfide oxidation, so we identified six sites of different temperatures, two each in the low (< 30°C), medium (~30°C), and high temperature (30 - 50°C) range. The low temperature sites had sulfide-to-temperature ratios of 1 - 26, the medium from 15 - 29, and the high from 26 - 36. PCR primers were designed to target the sulfur oxidation gene soxB specifically from Epsilonproteobacteria and five of the six sites were positive for soxB in the DNA fraction. Bulk RNA was also extracted from the same sites to examine in situ expression of soxB. Data from these analyses, along with quantification of the soxB gene abundance and expression using quantitative PCR, are currently being carried out. Together, this data set of soxB gene diversity, expression, and abundance along with geochemical data will allow us to quantitatively determine the functional dynamics of sulfide oxidation in the subseafloor at

  6. Molecular interaction study of commercial cyclic peptides and MERS-COV papain-like protease as novel drug candidate for MERS-COV

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Azzuhdi, M. G.; Tambunan, U. S. F.

    2017-07-01

    Middle-east respiratory syndrome coronavirus (MERS-CoV) has become the current outbreak, MERS-CoV infection results in illness at the respiratory system, digestive, and even lead to death with an average mortality caused by MERS-CoV infection reaches 50 %. Until now, there is not any effective vaccine or drug to ward off MERS-CoV infection. Papain-like protease (PLpro) is responsible for cleavage of a nonstructural protein that is essential for viral maturation. Inhibition of PLpro with a ligand will block the cleavage process of nonstructural protein, thus reduce the infection of MERS-CoV. Through of bioinformatics study with molecular docking and binding interaction analysis of commercial cyclic peptides, aldosterone secretion inhibiting factor (1-35) (bovine) was obtained as an inhibitor for PLpro. Thus, aldosterone secretion inhibiting factor (1-35) (bovine) has a potential as a novel candidate drug for treating MERS-CoV.

  7. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    NASA Astrophysics Data System (ADS)

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  8. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem

    PubMed Central

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-01-01

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25–2 mm), and micro- (0.053–0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types—enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields—were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics. PMID:28211507

  9. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a Karst ecosystem.

    PubMed

    Xiao, Shuangshuang; Zhang, Wei; Ye, Yingying; Zhao, Jie; Wang, Kelin

    2017-02-17

    Understanding the effect of land use on soil carbon, nitrogen, and microbial activity associated with aggregates is critical for thorough comprehension of the C and N dynamics of karst landscapes/ecosystems. We monitored soil organic carbon (SOC), total nitrogen (TN), microbial biomass carbon (MBC), and Cmic: Corg ratio in large macro- (>2 mm), small macro- (0.25-2 mm), and micro- (0.053-0.25 mm) aggregates to determine the changes in soil properties under different land uses in the karst area of Southwest China. Five common land-use types-enclosure land (natural system, control), prescribed-burning land, fuel-wood shrubland, pasture and maize fields-were selected. Results showed that pasture and maize fields remarkably decreased the SOC and TN concentrations in aggregates. Conversion of natural system to other land uses decreased MBC (except for prescribed-burning) and increased Cmic: Corg ratios in aggregates. The extent of the response to land uses of SOC and TN concentrations was similar whereas that of MBC and Cmic: Corg ratios differed across the three aggregate sizes. Further, the SOC concentrations were significantly higher in macro-aggregates than micro-aggregates; the MBC and Cmic: Corg ratios were highest in small macro-aggregates. Therefore, small macro-aggregates might have more active C dynamics.

  10. Middle East Respiratory Syndrome (MERS) coronavirus seroprevalence in domestic livestock in Saudi Arabia, 2010 to 2013.

    PubMed

    Hemida, M G; Perera, R A; Wang, P; Alhammadi, M A; Siu, L Y; Li, M; Poon, L L; Saif, L; Alnaeem, A; Peiris, M

    2013-12-12

    In Saudi Arabia, including regions of Riyadh and Al Ahsa, pseudoparticle neutralisation (ppNT) and microneutralisation (MNT) tests detected no antibodies to Middle East Respiratory Syndrome coronavirus (MERS-CoV) in sheep (n= 100), goats (n= 45), cattle (n= 50) and chickens (n= 240). Dromedary camels however, had a high prevalence of MERS-CoV antibodies. Bovine coronavirus (BCoV) infected sera from cattle had no cross-reactivity in MERS-CoV ppNT or MNT, while many dromedary camels’ sera reacted to both BCoV and MERS-CoV. Some nevertheless displayed specific serologic reaction profiles to MERS-CoV.

  11. Mobility and microbially mediated mobilization of gold and arsenic in soils from two gold mines in semi-arid and tropical Australia

    NASA Astrophysics Data System (ADS)

    Reith, F.; McPhail, D. C.

    2007-03-01

    The mobility and microbially mediated solubilization of Au and As in regolith materials from two Au mines in Australia, i.e., the Peak Hill Gold Mine in semi-arid New South Wales and the Hit or Miss Gold Mine in tropical northern Queensland, was studied using a combination of geochemical and microbiological techniques. Gold is highly mobile in both environments, the mobility of Au increases with increasing degree of weathering of host materials, and the resident microbiota are capable of mediating its solubilization. The results of the microcosm experiments demonstrate that the activity of microorganisms needs to be taken into account when studying the mobility and solubilization of Au in the Australian regolith. In primary, unweathered mineralization material from the Hit or Miss mine 99 wt% of Au was extracted only in the strongest final step of the sequential extractions, in concentrated aqua regia. In alteration zone material from the Peak Hill Gold Mine 80 wt% of Au was associated with the operationally defined Mn and Fe oxides. In contrast, in auriferous soils overlying mineralization at both sites 90-95 wt% of Au was associated with the operationally defined exchangeable, clay-bound and organic fractions. Microcosm experiments were incubated biologically active and inactive (sterilized) in 1:4 (w/v) aqueous slurries at 25 °C in the dark for up to 95 days. In biologically active microcosms with soils from the Peak Hill- and the Hit or Miss Gold Mines approximately 55 wt% (907 ng g -1 d.w. soil) and 20 wt% (233 ng g -1 d.w. soil) of the total Au, respectively, was solubilized during the incubation. In contrast, no or significantly lower Au concentrations were observed in biologically inactive microcosms. The mobility and microbially mediated release of As was limited at both sites and appears to be mostly controlled by abiotic adsorption and desorption on Mn- and Fe-oxides. Arsenic has a low solubility in the more mobile fractions and is mostly associated

  12. Sulfide as an alternative electron donor to glucose for power generation in mediator-less microbial fuel cell.

    PubMed

    Fatemi, Sakine; Ghoreyshi, Ali A; Rahimnejad, Mostafa; Darzi, Ghasem Najafpour; Pant, Deepak

    2017-07-31

    The objective of this study was to investigate the power generation in a dual-chamber microbial fuel cell (MFC). As one of the effective parameters, glucose concentration was studied in the range of 100-1000 mg/L. At the optimum concentration of 500 mg/L of glucose, maximum power generation was 186 mW/m(2). As an alternative, sulfide was used as an electron donor and maximum power output was 401 mW/m(2) at the concentration of 100 mg/L; which was more than twice of power produced using glucose. Moreover, sulfide removal efficiencies of 70%, 66%, 60%, and 64% were obtained when initial sulfide concentrations of 10, 20, 80, and 100 mg/L were used, respectively.

  13. Microbial endocrinology

    PubMed Central

    Lyte, Mark

    2014-01-01

    The ability of microorganisms, whether present as commensals within the microbiota or introduced as part of a therapeutic regimen, to influence behavior has been demonstrated by numerous laboratories over the last few years. Our understanding of the mechanisms that are responsible for microbiota-gut-brain interactions is, however, lacking. The complexity of the microbiota is, of course, a contributing factor. Nonetheless, while microbiologists approaching the issue of microbiota-gut-brain interactions in the behavior well recognize such complexity, what is often overlooked is the equal complexity of the host neurophysiological system, especially within the gut which is differentially innervated by the enteric nervous system. As such, in the search for common mechanisms by which the microbiota may influence behavior one may look for mechanisms which are shared by both host and microbiota. Such interkingdom signaling can be found in the shared production of neurochemical mediators that are found in both eukaryotes and prokaryotes. The study of the production and recognition of neurochemicals that are exactly the same in structure to those produced in the vertebrate organisms is known as microbial endocrinology. The examination of the microbiota from the vantage point of host-microbiota neuroendocrine interactions cannot only identify new microbial endocrinology-based mechanisms by which the microbiota can influence host behavior, but also lead to the design of interventions in which the composition of the microbiota may be modulated in order to achieve a specific microbial endocrinology-based profile beneficial to overall host behavior. PMID:24690573

  14. PEDF and PEDF-derived peptide 44mer inhibit oxygen-glucose deprivation-induced oxidative stress through upregulating PPARγ via PEDF-R in H9c2 cells.

    PubMed

    Zhuang, Wei; Zhang, Hao; Pan, Jiajun; Li, Zhimin; Wei, Tengteng; Cui, Huazhu; Liu, Zhiwei; Guan, Qiuhua; Dong, Hongyan; Zhang, Zhongming

    2016-04-08

    Pigment epithelial-derived factor (PEDF) is a glycoprotein with broad biological activities including inhibiting oxygen-glucose deprivation(OGD)-induced cardiomyocytes apoptosis through its anti-oxidative properties. PEDF derived peptide-44mer shows similar cytoprotective effect to PEDF. However, the molecular mechanisms mediating cardiomyocytes apoptosis have not been fully established. Here we found that PEDF and 44mer decreased the content of ROS. This content was abolished by either PEDF-R small interfering RNA (siRNA) or PPARγ antagonist. The level of Lysophosphatidic acid (LPA) and phospholipase A2 (PLA2) was observed as drawn from the ELISA assays. PEDF and 44mer sequentially induced PPARγ expression was observed both in qPCR and Western blot assays. The level of LPA and PLA2 and PPARγ expression increased by PEDF and 44mer was significantly attenuated by PEDF-R siRNA. However, PEDF and 44mer inhibited the H9c2 cells and cultured neonatal rat myocardial cells apoptosis rate. On the other hand, TUNEL assay and cleavage of procaspase-3 showed that PEDF-R siRNA or PPARγ antagonist increased the apoptosis again. We conclude that under OGD condition, PEDF and 44mer reduce H9c2 cells apoptosis and inhibit OGD-induced oxidative stress via its receptor PEDF-R and the PPARγ signaling pathway.

  15. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli

    SciTech Connect

    Kusano, Tomonobu Akita Prefectural College of Agriculture ); Ji, Guangyong; Silver, S. ); Inoue, Chihiro )

    1990-05-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of {sup 203}Hg{sup 2+}. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of {sup 203}Hg{sup 2+} in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg{sup 2+} than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag{sup +} salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg{sup 2+}.

  16. HlSRB, a Class B scavenger receptor, is key to the granulocyte-mediated microbial phagocytosis in ticks.

    PubMed

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods.

  17. HlSRB, a Class B Scavenger Receptor, Is Key to the Granulocyte-Mediated Microbial Phagocytosis in Ticks

    PubMed Central

    Aung, Kyaw Min; Boldbaatar, Damdinsuren; Umemiya-Shirafuji, Rika; Liao, Min; Tsuji, Naotoshi; Xuenan, Xuan; Suzuki, Hiroshi; Kume, Aiko; Galay, Remil Linggatong; Tanaka, Tetsuya; Fujisaki, Kozo

    2012-01-01

    Ixodid ticks transmit various pathogens of deadly diseases to humans and animals. However, the specific molecule that functions in the recognition and control of pathogens inside ticks is not yet to be identified. Class B scavenger receptor CD36 (SRB) participates in internalization of apoptotic cells, certain bacterial and fungal pathogens, and modified low-density lipoproteins. Recently, we have reported on recombinant HlSRB, a 50-kDa protein with one hydrophobic SRB domain from the hard tick, Haemaphysalis longicornis. Here, we show that HlSRB plays vital roles in granulocyte-mediated phagocytosis to invading Escherichia coli and contributes to the first-line host defense against various pathogens. Data clearly revealed that granulocytes that up-regulated the expression of cell surface HlSRB are almost exclusively involved in hemocyte-mediated phagocytosis for E. coli in ticks, and post-transcriptional silencing of the HlSRB-specific gene ablated the granulocytes' ability to phagocytose E. coli and resulted in the mortality of ticks due to high bacteremia. This is the first report demonstrating that a scavenger receptor molecule contributes to hemocyte-mediated phagocytosis against exogenous pathogens, isolated and characterized from hematophagous arthropods. PMID:22479406

  18. Quality control of microbiota metagenomics by k-mer analysis.

    PubMed

    Plaza Onate, Florian; Batto, Jean-Michel; Juste, Catherine; Fadlallah, Jehane; Fougeroux, Cyrielle; Gouas, Doriane; Pons, Nicolas; Kennedy, Sean; Levenez, Florence; Dore, Joel; Ehrlich, S Dusko; Gorochov, Guy; Larsen, Martin

    2015-03-14

    The biological and clinical consequences of the tight interactions between host and microbiota are rapidly being unraveled by next generation sequencing technologies and sophisticated bioinformatics, also referred to as microbiota metagenomics. The recent success of metagenomics has created a demand to rapidly apply the technology to large case-control cohort studies and to studies of microbiota from various habitats, including habitats relatively poor in microbes. It is therefore of foremost importance to enable a robust and rapid quality assessment of metagenomic data from samples that challenge present technological limits (sample numbers and size). Here we demonstrate that the distribution of overlapping k-mers of metagenome sequence data predicts sequence quality as defined by gene distribution and efficiency of sequence mapping to a reference gene catalogue. We used serial dilutions of gut microbiota metagenomic datasets to generate well-defined high to low quality metagenomes. We also analyzed a collection of 52 microbiota-derived metagenomes. We demonstrate that k-mer distributions of metagenomic sequence data identify sequence contaminations, such as sequences derived from "empty" ligation products. Of note, k-mer distributions were also able to predict the frequency of sequences mapping to a reference gene catalogue not only for the well-defined serial dilution datasets, but also for 52 human gut microbiota derived metagenomic datasets. We propose that k-mer analysis of raw metagenome sequence reads should be implemented as a first quality assessment prior to more extensive bioinformatics analysis, such as sequence filtering and gene mapping. With the rising demand for metagenomic analysis of microbiota it is crucial to provide tools for rapid and efficient decision making. This will eventually lead to a faster turn-around time, improved analytical quality including sample quality metrics and a significant cost reduction. Finally, improved quality

  19. Phenetic Comparison of Prokaryotic Genomes Using k-mers.

    PubMed

    Déraspe, Maxime; Raymond, Frédéric; Boisvert, Sébastien; Culley, Alexander; Roy, Paul H; Laviolette, François; Corbeil, Jacques

    2017-10-01

    Bacterial genomics studies are getting more extensive and complex, requiring new ways to envision analyses. Using the Ray Surveyor software, we demonstrate that comparison of genomes based on their k-mer content allows reconstruction of phenetic trees without the need of prior data curation, such as core genome alignment of a species. We validated the methodology using simulated genomes and previously published phylogenomic studies of Streptococcus pneumoniae and Pseudomonas aeruginosa. We also investigated the relationship of specific genetic determinants with bacterial population structures. By comparing clusters from the complete genomic content of a genome population with clusters from specific functional categories of genes, we can determine how the population structures are correlated. Indeed, the strain clustering based on a subset of k-mers allows determination of its similarity with the whole genome clusters. We also applied this methodology on 42 species of bacteria to determine the correlational significance of five important bacterial genomic characteristics. For example, intrinsic resistance is more important in P. aeruginosa than in S. pneumoniae, and the former has increased correlation of its population structure with antibiotic resistance genes. The global view of the pangenome of bacteria also demonstrated the taxa-dependent interaction of population structure with antibiotic resistance, bacteriophage, plasmid, and mobile element k-mer data sets. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Real Time Metagenomics: Using k-mers to annotate metagenomes

    PubMed Central

    Edwards, Robert A.; Olson, Robert; Disz, Terry; Pusch, Gordon D.; Vonstein, Veronika; Stevens, Rick; Overbeek, Ross

    2012-01-01

    Summary: Annotation of metagenomes involves comparing the individual sequence reads with a database of known sequences and assigning a unique function to each read. This is a time-consuming task that is computationally intensive (though not computationally complex). Here we present a novel approach to annotate metagenomes using unique k-mer oligopeptide sequences from 7 to 12 amino acids long. We demonstrate that k-mer-based annotations are faster and approach the sensitivity and precision of blastx-based annotations without loosing accuracy. A last-common ancestor approach was also developed to describe the members of the community. Availability and implementation: This open-source application was implemented in Perl and can be accessed via a user-friendly website at http://edwards.sdsu.edu/rtmg. In addition, code to access the annotation servers is available for download from http://www.theseed.org/. FIGfams and k-mers are available for download from ftp://ftp.theseed.org/FIGfams/. Contact: redwards@mail.sdsu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23047562

  1. Computational Performance Assessment of k-mer Counting Algorithms.

    PubMed

    Pérez, Nelson; Gutierrez, Miguel; Vera, Nelson

    2016-04-01

    This article is about the assessment of several tools for k-mer counting, with the purpose to create a reference framework for bioinformatics researchers to identify computational requirements, parallelizing, advantages, disadvantages, and bottlenecks of each of the algorithms proposed in the tools. The k-mer counters evaluated in this article were BFCounter, DSK, Jellyfish, KAnalyze, KHMer, KMC2, MSPKmerCounter, Tallymer, and Turtle. Measured parameters were the following: RAM occupied space, processing time, parallelization, and read and write disk access. A dataset consisting of 36,504,800 reads was used corresponding to the 14th human chromosome. The assessment was performed for two k-mer lengths: 31 and 55. Obtained results were the following: pure Bloom filter-based tools and disk-partitioning techniques showed a lesser RAM use. The tools that took less execution time were the ones that used disk-partitioning techniques. The techniques that made the major parallelization were the ones that used disk partitioning, hash tables with lock-free approach, or multiple hash tables.

  2. Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China

    PubMed Central

    Wang, Wenling; Wang, Huijuan; Deng, Yao; Song, Tie; Lan, Jiaming; Wu, Guizhen; Ke, Changwen; Tan, Wenjie

    2016-01-01

    The first imported case of Middle East respiratory syndrome (MERS) in China recently occurred, allowing for the characterization of antibody titers in a series of the patient's sera using the following methods based on recombinant viral structural antigens: inactivated MERS coronavirus (MERS-CoV) enzyme-linked immunosorbent assay (ELISA), recombinant MERS-CoV spike (S, or fragments of S) ELISA, nucleoprotein (NP) ELISA and MERS S pseudovirus particle-based neutralization test (ppNT). A longitudinal profile of the infection showed that seroconversion detected by ELISAs based on the recombinant extracellular domain, S, S1 and receptor-binding domain (RBD) antigens occurred as early as neutralizing antibodies were detected by the ppNT and earlier than antibodies were detected by the inactivated MERS-CoV and N-terminal domain (NTD) ELISAs. Antibodies detected by the NP ELISA occurred last. Strong correlations were found between the S1, RBD and NP ELISAs and the inactivated MERS-CoV ELISA. The S and RBD ELISAs were highly correlated with the commercial S1 ELISA. The S ELISA strongly correlated with the ppNT, although the MERS-CoV, S1, NTD and RBD ELISAs were also significantly correlated with the ppNT (P<0.001). PMID:27826140

  3. Characterization of anti-MERS-CoV antibodies against various recombinant structural antigens of MERS-CoV in an imported case in China.

    PubMed

    Wang, Wenling; Wang, Huijuan; Deng, Yao; Song, Tie; Lan, Jiaming; Wu, Guizhen; Ke, Changwen; Tan, Wenjie

    2016-11-09

    The first imported case of Middle East respiratory syndrome (MERS) in China recently occurred, allowing for the characterization of antibody titers in a series of the patient's sera using the following methods based on recombinant viral structural antigens: inactivated MERS coronavirus (MERS-CoV) enzyme-linked immunosorbent assay (ELISA), recombinant MERS-CoV spike (S, or fragments of S) ELISA, nucleoprotein (NP) ELISA and MERS S pseudovirus particle-based neutralization test (ppNT). A longitudinal profile of the infection showed that seroconversion detected by ELISAs based on the recombinant extracellular domain, S, S1 and receptor-binding domain (RBD) antigens occurred as early as neutralizing antibodies were detected by the ppNT and earlier than antibodies were detected by the inactivated MERS-CoV and N-terminal domain (NTD) ELISAs. Antibodies detected by the NP ELISA occurred last. Strong correlations were found between the S1, RBD and NP ELISAs and the inactivated MERS-CoV ELISA. The S and RBD ELISAs were highly correlated with the commercial S1 ELISA. The S ELISA strongly correlated with the ppNT, although the MERS-CoV, S1, NTD and RBD ELISAs were also significantly correlated with the ppNT (P<0.001).

  4. Effect of Fish Sarcoplasmic Protein on Quality Attributes of No-fat Chicken Sausages Mediated by Microbial Transglutaminase

    PubMed Central

    Hemung, Bung-Orn

    2015-01-01

    Fish sarcoplasmic protein (SP) obtaining from lyophilization was evaluated its effect on the qualities of the no-fat chicken sausages in the presence of microbial transglutaminase (MTG) as compared to sodium tripolyphosphate (STPP). The cooking yields of all sausage samples were not different. Expressible moisture (EM) of sausage samples was reduced by adding fish SP, while the lowest EM values were observed in sausage samples containing STPP. The pH values of sausage samples were increased with the addition of fish SP and STPP. Proximate analysis revealed that the moisture, fat, and protein contents of all samples were not different (p>0.05). Textural properties (TP), measured by texture profile analysis, showed that hardness of no-fat sausages increased upon adding fish SP. However, the highest TP values were found in sausage samples with STPP. The redness values were reduced in sausage samples with STPP, while other color values were not affected by STPP. Sensory evaluation revealed that sausages with fish SP were accepted at the higher level than that of control. However, sausage samples with STPP showed highest TP and acceptability. Thus, partial substitution of STPP by SP would be possible to reduce phosphate level in the chicken sausages. PMID:26761832

  5. Cysteamine- and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance.

    PubMed

    Ma, Wen; Soroush, Adel; Luong, Tran Van Anh; Rahaman, Md Saifur

    2017-09-01

    In this work, copper nanoparticles (CuNPs) were decorated onto the polyamide RO membranes via in-situ reduction for biofouling mitigation. To increase CuNPs loading and improve anti-microbial properties of the membrane, cysteamine (Cys) and graphene oxide (GO), which contain different functional groups with high metal affinity, were applied as bridging agents between CuNPs and membrane surface via covalent bonding. The functionalization of Cys and GO linkers on membrane was confirmed by XPS and SEM analysis. By applying the linkers, the loading quantity of copper, in particular on Cys-modified membrane, was significantly improved and the particle size of CuNPs appeared smaller and had more uniform distribution. The GO medium increased the hydrophilicity of CuNP-decorated membranes, leading to an increase in water permeation with minor impact on membrane's salt rejection. Bacterial inactivation of the Cys-Cu- and GO-Cu-functionalized membranes was over 25% higher than that of the bare CuNP-coated surface, indicating enhanced bacterial inactivation benefiting from the application of linkers. After a CuNPs' release test, the membranes modified with Cys and GO retained larger quantities of CuNPs and showed better antimicrobial performance than that of bare CuNP-modified membranes. The successful regeneration of CuNPs after their depletion demonstrated the modified membranes' potential for long-term application. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport.

    PubMed

    Garcia-Pichel, Ferran; Ramírez-Reinat, Edgardo; Gao, Qunjie

    2010-12-14

    Some microbes, among them a few species of cyanobacteria, are able to excavate carbonate minerals, from limestone to biogenic carbonates, including coral reefs, in a bioerosive activity that directly links biological and geological parts of the global carbon cycle. The physiological mechanisms that enable such endolithic cyanobacteria to bore, however, remain unknown. In fact, their boring constitutes a geochemical paradox, in that photoautotrophic metabolism will tend to precipitate carbonates, not dissolve them. We developed a stable microbe/mineral boring system based on a cyanobacterial isolate, strain BC008, with which to study the process of microbial excavation directly in the laboratory. Measurements of boring into calcite under different light regimes, and an analysis of photopigment content and photosynthetic rates along boring filaments, helped us reject mechanisms based on the spatial or temporal separation of alkali versus Acid-generating metabolism (i.e., photosynthesis and respiration). Instead, extracellular Ca(2+) imaging of boring cultures in vivo showed that BC008 was able to take up Ca(2+) at the excavation front, decreasing the local extracellular ion activity product of calcium carbonate enough to promote spontaneous dissolution there. Intracellular Ca(2+) was then transported away along the multicellular cyanobacterial trichomes and excreted at the distal borehole opening into the external medium. Inhibition assays and gene expression analyses indicate that the uptake and transport was driven by P-type Ca(2+)-ATPases. We believe such a chemically simple and biologically sophisticated mechanism for boring to be unparalleled among bacteria.

  7. Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport

    PubMed Central

    Garcia-Pichel, Ferran; Ramírez-Reinat, Edgardo; Gao, Qunjie

    2010-01-01

    Some microbes, among them a few species of cyanobacteria, are able to excavate carbonate minerals, from limestone to biogenic carbonates, including coral reefs, in a bioerosive activity that directly links biological and geological parts of the global carbon cycle. The physiological mechanisms that enable such endolithic cyanobacteria to bore, however, remain unknown. In fact, their boring constitutes a geochemical paradox, in that photoautotrophic metabolism will tend to precipitate carbonates, not dissolve them. We developed a stable microbe/mineral boring system based on a cyanobacterial isolate, strain BC008, with which to study the process of microbial excavation directly in the laboratory. Measurements of boring into calcite under different light regimes, and an analysis of photopigment content and photosynthetic rates along boring filaments, helped us reject mechanisms based on the spatial or temporal separation of alkali versus Acid-generating metabolism (i.e., photosynthesis and respiration). Instead, extracellular Ca2+ imaging of boring cultures in vivo showed that BC008 was able to take up Ca2+ at the excavation front, decreasing the local extracellular ion activity product of calcium carbonate enough to promote spontaneous dissolution there. Intracellular Ca2+ was then transported away along the multicellular cyanobacterial trichomes and excreted at the distal borehole opening into the external medium. Inhibition assays and gene expression analyses indicate that the uptake and transport was driven by P-type Ca2+-ATPases. We believe such a chemically simple and biologically sophisticated mechanism for boring to be unparalleled among bacteria. PMID:21115827

  8. Segmented K-mer and its application on similarity analysis of mitochondrial genome sequences.

    PubMed

    Yu, Hong-Jie

    2013-04-15

    K-mer-based approach has been widely used in similarity analyses so as to discover similarity/dissimilarity among different biological sequences. In this study, we have improved the traditional K-mer method, and introduce a segmented K-mer approach (s-K-mer). After each primary sequence is divided into several segments, we simultaneously transform all these segments into corresponding K-mer-based vectors. In this approach, it is vital how to determine the optimal combination of distance metric with the number of K and the number of segments, i.e., (K(⁎), s(⁎), and d(⁎)). Based on the cascaded feature vectors transformed from s(⁎) segmented sequences, we analyze 34 mammalian genome sequences using the proposed s-K-mer approach. Meanwhile, we compare the results of s-K-mer with those of traditional K-mer. The contrastive analysis results demonstrate that s-K-mer approach outperforms the traditionally K-mer method on similarity analysis among different species.

  9. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis)

    PubMed Central

    Munster, Vincent J.; Adney, Danielle R.; van Doremalen, Neeltje; Brown, Vienna R.; Miazgowicz, Kerri L.; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A.

    2016-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV. PMID:26899616

  10. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis).

    PubMed

    Munster, Vincent J; Adney, Danielle R; van Doremalen, Neeltje; Brown, Vienna R; Miazgowicz, Kerri L; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A

    2016-02-22

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV.

  11. Reliable typing of MERS-CoV variants with a small genome fragment.

    PubMed

    Smits, Saskia L; Raj, V Stalin; Pas, Suzan D; Reusken, Chantal B E M; Mohran, Khaled; Farag, Elmoubasher A B A; Al-Romaihi, Hamad E; AlHajri, Mohd M; Haagmans, Bart L; Koopmans, Marion P

    2015-03-01

    Middle East Respiratory Syndrome coronavirus (MERS-CoV) is an emerging pathogen that causes lower respiratory tract infection in humans. Camels are the likely animal source for zoonotic infection, although exact transmission modes remain to be determined. Human-to-human transmission occurs sporadically. The wide geographic distribution of MERS-CoV among dromedary camels and ongoing transmissions to humans provides concern for the evolution of a MERS-CoV variant with efficient human-to-human transmission capabilities. Phylogenetic analysis of MERS-CoV has occurred by analysis of full-length genomes or multiple concatenated genome fragments, which is time-consuming, costly and limited to high viral load samples. To develop a simple, reliable MERS-CoV variant typing assay to facilitate monitoring of MERS-CoV diversity in animals and humans. Phylogenetic analysis of presently known full-length MERS-CoV genomes was performed to identify genomic regions with sufficient phylogenetic content to allow reliable MERS-CoV variant typing. RT-PCR assays targeting these regions were designed and optimized. A reverse-transcription PCR assay for MERS-CoV targeting a 615 bp spike fragment provides a phylogenetic clustering of MERS-CoV variants comparable to that of full-length genomes. The detection limit corresponds to a cycle treshold value of ∼ 35 with standard upE real time PCR assays on RNA isolated from MERS-CoV EMC. Nasal swabs from RT-PCR positive camels (Ct values 12.9-32.2) yielded reliable sequence information in 14 samples. We developed a simple, reliable MERS-CoV variant typing assay which is crucial in monitoring MERS-CoV circulation in real time with relatively little investment on location. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect

    Carl Richardson

    2008-09-30

    This report is submitted to the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) as part of Cooperative Agreement DE-FC26-03NT41993, 'Evaluation of EPRI's MerCAP{trademark} Technology for Power Plant Mercury Control'. This project has investigated the mercury removal performance of EPRI's Mercury Capture by Amalgamation Process (MerCAP{trademark}) technology. Test programs were conducted to evaluate gold-based MerCAP{trademark} at Great River Energy's Stanton Station Unit 10 (Site 1), which fired both North Dakota lignite (NDL) and Power River Basin (PRB) coal during the testing period, and at Georgia Power's Plant Yates Unit 1 (Site 2) [Georgia Power is a subsidiary of The Southern Company] which fires a low sulfur Eastern bituminous coal. Additional tests were carried out at Alabama Power's Plant Miller, which fires Powder River Basin Coal, to evaluate a carbon-based MerCAP{trademark} process for removing mercury from flue gas downstream of an electrostatic precipitator [Alabama Power is a subsidiary of The Southern Company]. A full-scale gold-based sorbent array was installed in the clean-air plenum of a single baghouse compartment at GRE's Stanton Station Unit 10, thereby treating 1/10th of the unit's exhaust gas flow. The substrates that were installed were electroplated gold screens oriented parallel to the flue gas flow. The sorbent array was initially installed in late August of 2004, operating continuously until its removal in July 2006, after nearly 23 months. The initial 4 months of operation were conducted while the host unit was burning North Dakota lignite (NDL). In November 2004, the host unit switched fuel to burn Powder River Basin (PRB) subbituminous coal and continued to burn the PRB fuel for the final 19 months of this program. Tests were conducted at Site 1 to evaluate the impacts of flue gas flow rate, sorbent plate spacing, sorbent pre-cleaning and regeneration, and spray dryer operation on Mer

  13. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation.

    PubMed

    Ujor, Victor; Agu, Chidozie Victor; Gopalan, Venkat; Ezeji, Thaddeus Chukwuemeka

    2015-04-01

    In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.

  14. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion.

    PubMed

    Nemati, M; Jenneman, G E; Voordouw, G

    2001-01-01

    The effect of microbial control of souring on the extent of corrosion was studied in a model system consisting of pure cultures of the nitrate-reducing, sulfide-oxidizing bacterium (NR-SOB) Thiomicrospira sp. strain CVO and the sulfate-reducing bacterium (SRB) Desulfovibrio sp. strain Lac6, as well as in an SRB consortium enriched from produced water from a Canadian oil reservoir. The average corrosion rate induced by the SRB consortium (1.4 g x m(-2) x day(-1)) was faster than that observed in the presence of strain Lac6 (0.2 g x m(-2) x day(-1)). Examination of the metallic coupons at the end of the tests indicated a uniform corrosion in both cases. Addition of CVO and 10 mM nitrate to a fully grown culture of Lac6 or the SRB consortium led to complete removal of sulfide from the system and a significant increase in the population of CVO, as determined by reverse sample genome probing. In the case of the SRB consortium addition of just nitrate (10 mM) had a similar effect. When grown in the absence of nitrate, the consortium was dominated by Desulfovibrio sp. strains Lac15 and Lac29, while growth in the presence of nitrate led to dominance of Desulfovibrio sp. strain Lac3. The addition of CVO and nitrate to the Lac6 culture or nitrate to the SRB consortium accelerated the average corrosion rate to 1.5 and 2.9 g x m(-2) x day(-1), respectively. Localized corrosion and the occurrence of pitting were apparent in both cases. Although the sulfide concentration (0.5-7 mM) had little effect on corrosion rates, a clear increase of the corrosion rate with increasing nitrate concentration was observed in experiments conducted with consortia enriched from produced water.

  15. Do secondary compounds inhibit microbial- and insect-mediated leaf breakdown in a tropical rainforest stream, Costa Rica?

    PubMed

    Ardón, Marcelo; Pringle, Catherine M

    2008-03-01

    We examined the hypothesis that high concentrations of secondary compounds in leaf litter of some tropical riparian tree species decrease leaf breakdown by inhibiting microbial and insect colonization. We measured leaf breakdown rates, chemical changes, bacterial, fungal, and insect biomass on litterbags of eight species of common riparian trees incubated in a lowland stream in Costa Rica. The eight species spanned a wide range of litter quality due to varying concentrations of nutrients, structural and secondary compounds. Leaf breakdown rates were fast, ranging from 0.198 d(-1 )(Trema integerrima) to 0.011 d(-1) (Zygia longifolia). Processing of individual chemical constituents was also rapid: cellulose was processed threefold faster and hemicellulose was processed fourfold faster compared to similar studies in temperate streams. Leaf toughness (r = -0.86, P = 0.01) and cellulose (r = -0.78, P = 0.02) were the physicochemical parameters most strongly correlated with breakdown rate. Contrary to our initial hypothesis, secondary compounds were rapidly leached (threefold faster than in temperate studies), with all species losing all secondary compounds within the first week of incubation. Cellulose was more important than secondary compounds in inhibiting breakdown. Levels of fungal and bacterial biomass were strongly correlated with breakdown rate (fungi r = 0.64, P = 0.05; bacteria r = 0.93, P < 0.001) and changes in structural compounds (lignin r = -0.55, P = 0.01). Collector-gatherers were the dominant functional group of insects colonizing litterbags, in contrast to temperate studies where insect shredders dominate. Insect biomass was negatively correlated with breakdown rate (r = -0.70, P = 0.02), suggesting that insects did not play an important role in breakdown. Despite a wide range of initial concentrations of secondary compounds among the eight species used, we found that secondary compounds were rapidly leached and were less important than structural

  16. Predictors of MERS-CoV infection: A large case control study of patients presenting with ILI at a MERS-CoV referral hospital in Saudi Arabia.

    PubMed

    Mohd, Hamzah A; Memish, Ziad A; Alfaraj, Sarah H; McClish, Donna; Altuwaijri, Talal; Alanazi, Marzouqah S; Aloqiel, Saleh A; Alenzi, Ahmed M; Bafaqeeh, Fahad; Mohamed, Amal M; Aldosari, Kamel; Ghazal, Sameeh

    A case control study to better characterize the clinical features, laboratory, and radiological abnormalities associated with MERS-CoV infection in order to help with early identification of this syndrome from other respiratory infections. Eighty patients admitted to a hospital in Riyadh, diagnosed with MERS-CoV infection based on RT-PCR were matched on age, sex, and the presence of a co-morbid condition on a basis of 1:2 to other patients admitted with respiratory symptoms and tested negative for MERS-CoV on RT-PCR. None of the reported MERS-CoV presenting symptoms was significantly associated with being infected with MERS-CoV. On the other hand, WBC count was significantly lower in patients with confirmed MERS-CoV infection (median 5.7 vs 9.3, P: 0.0004). Neutrophil count was as well significantly lower in MERS-CoV patients (median 3.7 vs 6.7, P: 0.0001). Both AST, and ALT values were significantly higher in MERS-CoV infected group (AST median 42 vs 36, P: 0.03, and ALT median 33 vs 28, P: 0.003). Overall our MERS-CoV mortality rate was (10%) below the national figure of (40%). None of the presenting symptoms are specific for MERS-CoV infection. And out of all the investigations WBC, neutrophil counts, AST and ALT values have some predictive utility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of Red Bean (Vigna angularis) Protein Isolates on Rheological Properties of Microbial Transglutaminase Mediated Pork Myofibrillar Protein Gels as Affected by Fractioning and Preheat Treatment

    PubMed Central

    Lee, Hong Chul

    2016-01-01

    Fractioning and/or preheating treatment on the rheological properties of myofibrillar protein (MP) gels induced by microbial transglutaminase (MTG) has been reported that they may improve the functional properties. However, the optimum condition was varied depending on the experimental factors. This study was to evaluate the effect of red bean protein isolate (RBPI) on the rheological properties of MP gels mediated by MTG as affected by modifications (fractioning: 7S-globulin of RBPI and/or preheat treatment (pre-heating; 95℃/30 min): pre-heating RBPI or pre-heating/7S-globulin). Cooking yields (CY, %) of MP gels was increased with RBPI (p<0.05), while 7S-globulin decreased the effect of RBPI (p<0.05); however, preheating treatments did not affect the CY (p>0.05). Gel strength of MP was decreased when RBPI or 7S-globulin added, while preheat treatments compensated for the negative effects of those in MP. This effect was entirely reversed by MTG treatment. Although the major band of RBPI disappeared, the preheated 7S globulin band was remained. In scanning electron microscopic (SEM) technique, the appearance of more cross-linked structures were observed when RBPI was prepared with preheating at 95℃ to improve the protein-protein interaction during gel setting of MP mixtures. Thus, the effects of RBPI and 7S-globulin as a substrate, and water and meat binder for MTG-mediated MP gels were confirmed to improve the rheological properties. However, preheat treatment of RBPI should be optimized. PMID:27857544

  18. Stable iron isotopes and microbial mediation in red pigmentation of the Rosso Ammonitico (mid-late Jurassic, Verona area, Italy).

    PubMed

    Préat, Alain R; de Jong, Jeroen T M; Mamet, Bernard L; Mattielli, Nadine

    2008-08-01

    The iron (Fe) isotopic composition of 17 Jurassic limestones from the Rosso Ammonitico of Verona (Italy) have been analyzed by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). Such analysis allowed for the recognition of a clear iron isotopic fractionation (mean -0.8 per thousand, ranging between -1.52 to -0.06 per thousand) on a millimeter-centimeter scale between the red and grey facies of the studied formation. After gentle acid leaching, measurements of the Fe isotopic compositions gave delta(56)Fe values that were systematically lower in the red facies residues (median: -0.84 per thousand, range: -1.46 to +0.26 per thousand) compared to the grey facies residues (median: -0.08 per thousand, range: -0.34 to +0.23 per thousand). In addition, the red facies residues were characterized by a lighter delta(56)Fe signal relative to their corresponding leachates. These Fe isotopic fractionations could be a sensitive fingerprint of a biotic process; systematic isotopic differences between the red and grey facies residues, which consist of hematite and X-ray amorphous iron hydroxides, respectively, are hypothesized to have resulted from the oxidizing activity of iron bacteria and fungi in the red facies. The grey Fe isotopic data match the Fe isotopic signature of the terrestrial baseline established for igneous rocks and low-C(org) clastic sedimentary rocks. The Fe isotopic compositions of the grey laminations are consistent with the influx of detrital iron minerals and lack of microbial redox processes at the water-interface during deposition. Total Fe concentration measurements were performed by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) (confirmed by concentration estimations obtained by MC-ICP-MS analyses of microdrilled samples) on five samples, and resultant values range between 0.30% (mean) in the grey facies and 1.31% (mean) in the red facies. No correlation was observed between bulk Fe content and pigmentation

  19. Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate

    NASA Astrophysics Data System (ADS)

    Loyd, Sean J.; Berelson, William M.; Lyons, Timothy W.; Hammond, Douglas E.; Corsetti, Frank A.

    2012-02-01

    Carbonate concretions can form as a result of organic matter degradation within sediments. However, the ability to determine specific processes and timing relationships to particular concretions has remained elusive. Previously employed proxies (e.g., carbon and oxygen isotopes) cannot uniquely distinguish among diagenetic alkalinity sources generated by microbial oxidation of organic matter using oxygen, nitrate, metal oxides, and sulfate as electron acceptors, in addition to degradation by thermal decarboxylation. Here, we employ concentrations of carbonate-associated sulfate (CAS) and δ 34S CAS (along with more traditional approaches) to determine the specific nature of concretion authigenesis within the Miocene Monterey Formation. Integrated geochemical analyses reveal that at least three specific organo-diagenetic reaction pathways can be tied to concretion formation and that these reactions are largely sample-site specific. One calcitic concretion from the Phosphatic Shale Member at Naples Beach yields δ 34S CAS values near Miocene seawater sulfate (˜+22‰ VCDT), abundant CAS (ca. 1000 ppm), depleted δ 13C carb (˜-11‰ VPDB), and very low concentrations of Fe (ca. 700 ppm) and Mn (ca. 15 ppm)—characteristics most consistent with shallow formation in association with organic matter degradation by nitrate, iron-oxides and/or minor sulfate reduction. Cemented concretionary layers of the Phosphatic Shale Member at Shell Beach display elevated δ 34S CAS (up to ˜+37‰), CAS concentrations of ˜600 ppm, mildly depleted δ 13C carb (˜-6‰), moderate amounts of Mn (ca. 250 ppm), and relatively low Fe (ca. 1700 ppm), indicative of formation in sediments dominated by sulfate reduction. Finally, concretions within a siliceous host at Montaña de Oro and Naples Beach show minimal CAS concentrations, positive δ 13C values, and the highest concentrations of Fe (ca. 11,300 ppm) and Mn (ca. 440 ppm), consistent with formation in sediments experiencing

  20. Biodegradation of isopropanol and acetone under denitrifying conditions by Thauera sp. TK001 for nitrate-mediated microbially enhanced oil recovery.

    PubMed

    Fida, Tekle Tafese; Gassara, Fatma; Voordouw, Gerrit

    2017-07-15

    Amendment of reservoir fluid with injected substrates can enhance the growth and activity of microbes. The present study used isopropyl alcohol (IPA) or acetone to enhance the indigenous anaerobic nitrate-reducing bacterium Thauera sp. TK001. The strain was able to grow on IPA or acetone and nitrate. To monitor effects of strain TK001 on oil recovery, sand-packed columns containing heavy oil were flooded with minimal medium at atmospheric or high (400psi) pressure. Bioreactors were then inoculated with 0.5 pore volume (PV) of minimal medium containing Thauera sp. TK001 with 25mM of acetone or 22.2mM of IPA with or without 80mM nitrate. Incubation without flow for two weeks and subsequent injection with minimal medium gave an additional 17.0±6.7% of residual oil in place (ROIP) from low-pressure bioreactors and an additional 18.3% of ROIP from the high-pressure bioreactors. These results indicate that acetone or IPA, which are commonly used organic solvents, are good substrates for nitrate-mediated microbial enhanced oil recovery (MEOR), comparable to glucose, acetate or molasses, tested previously. This technology may be used for coupling biodegradation of IPA and/or acetone in waste streams to MEOR where these waste streams are generated in close proximity to an oil field. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. AQDS immobilized solid-phase redox mediators and their role during bioelectricity generation and RR2 decolorization in air-cathode single-chamber microbial fuel cells.

    PubMed

    Martinez, Claudia M; Zhu, Xiuping; Logan, Bruce E

    2017-12-01

    The application of immobilized redox mediators (RMs) in microbial fuel cells (MFCs) is an emerging technology for electricity generation with simultaneous azo dye decolorization due to facilitated electrons transfer from bacteria to anodes and azo dyes. The use of immobilized RMs avoids the requirement of their continuous dosing in MFCs, which has been the main limitation for practical applications. Two strategies of anthraquinones-2,6-disulphonic salt (AQDS) immobilization, AQDS immobilized with polyvinyl alcohol particles and AQDS immobilized on anodes by electropolymerization, were evaluated and compared to achieve simultaneous reactive red 2 (RR2) dye reduction and bioelectricity generation. The AQDS immobilized by electropolymerization showed the highest power density (816±2mW/m(2)) and extent of RR2 decolorization (89±0.6%). This power density is one of the highest values yet achieved in the presence of a recalcitrant pollutant, suggesting that immobilization was important for enabling current generation in the presence of RR2. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell.

    PubMed

    Ali, Naeem; Yousaf, Sameen; Anam, Maira; Bangash, Zain; Maleeha, Sehrish

    2016-11-01

    A microbial fuel cell (MFC) is an emerging environment-friendly technology to recover the useful energy available in waste by using microorganisms as catalyst. In this study, double chamber mediator-less MFCs separated by proton exchange membrane (PEM; Nafion) were constructed to determine the efficiency of mixed culture in using complex substrates (molasses and black liquor). It was found that activated sludge can serve as efficient source of electricigens for biofilm development on an anode. Power density of 2.425 W/m² was generated from molasses with chemical oxygen demand (COD) removal efficiency of 67% as compared to power density of 3.55 W/m² produced from black liquor along with COD removal efficiency of 78%. Moreover, it was demonstrated that surface area of PEM has a significant effect on power generation. An almost 5- to 8-fold increase in voltage was observed as the size of PEM was increased from 6.5 to 25 cm².

  3. Substrate concentration dependence of voltage and power production characteristics in two-chambered mediator-less microbial fuel cells with acetate and peptone substrates.

    PubMed

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté

    2017-03-01

    Power production characteristics and substrate concentration dependence of voltage have been investigated together with the determination of kinetic constants in two-chambered mediator-less microbial fuel cells (MFC) for acetate and peptone substrates. At 500 mg DOC l(-1) (dissolved organic carbon), power densities normalized to the anode surface of 112 mW m(-2) with acetate and 114 mW m(-2) with peptone as electron donor were attained by applying cathodes with a Pt catalyst layer. Related anode surface specific substrate removal rate was 44 g DOC m(-2) h(-1) for acetate and 52 g DOC m(-2) h(-1) for peptone. Substrate concentration dependency of the voltage suggests Monod-like kinetics with extremely low, <1 mg DOC l(-1), half saturation constants and with final DOC concentrations of 6-10 mg l(-1). Acetate and peptone are equivalent substrates for the exoelectrogenic bacteria both from the point of view of biodegradation kinetics and power production characteristics.

  4. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    PubMed Central

    Wrensch, Florian; Winkler, Michael; Pöhlmann, Stefan

    2014-01-01

    The interferon-inducible transmembrane (IFITM) proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs. PMID:25256397

  5. [Infections with the MERS coronavirus--for the present no threat to Europe].

    PubMed

    Stock, Ingo

    2015-12-01

    In Saudi Arabia, a novel coronavirus named Middle East respiratory syndrome coronavirus (MERS-CoV) was isolated in 2012 from patients with severe respiratory symptoms. Up to now, more than 1600 MERS cases have been registered mainly in the Arabian Peninsula. MERS is usually accompanied with fever, cough, and shortness of breath. In many cases, pneumonia is observed. However, clinical features of MERS range from mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. To date, about one in three people died as a result of MERS. In Europe, MERS cases have only been registered in isolated travelers entering from the Middle East.

  6. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences

    PubMed Central

    Wen, Jia; Chan, Raymond H.; Yau, Shek-Chung; He, Rong L.; Yau, Stephen S. T.

    2014-01-01

    Based on the well-known k-mer model, we propose a k-mer natural vector model for representing a genetic sequence based on the numbers and distributions of k-mers in the sequence. We show that there exists a one-to-one correspondence between a genetic sequence and its associated k-mer natural vector. The k-mer natural vector method can be easily and quickly used to perform phylogenetic analysis of genetic sequences without requiring evolutionary models or human intervention. Whole or partial genomes can be handled more effective with our proposed method. It is applied to the phylogenetic analysis of genetic sequences, and the obtaining results fully demonstrate that the k-mer natural vector method is a very powerful tool for analysing and annotating genetic sequences and determining evolutionary relationships both in terms of accuracy and efficiency. PMID:24858075

  7. Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE.

    PubMed

    Thanh, Vu Nguyen; Mai, Le Thuy; Tuan, Duong Anh

    2008-12-10

    The diversity of fungi and bacteria associated with traditional Vietnamese alcohol fermentation starters (banh men) was investigated by PCR-mediated DGGE. From 52 starter samples, 13 species of fungi (including yeasts) and 23 species of bacteria were identified. The fungal composition of the starters was consistent with little variation among samples. It consisted of amylase producers (Rhizopus oryzae, R. microsporus, Absidia corymbifera, Amylomyces sp., Saccharomycopsis fibuligera), ethanol producers (Saccharomyces cerevisiae, Issatchenkia sp., Pichia anomala, Candida tropicalis, P. ranongensis, Clavispora lusitaniae), and (opportunistic) contaminants (Xeromyces bisporus, Botryobasidium subcoronatum). The bacterial microflora of starters was highly variable in species composition and dominated by lactic acid bacteria (LAB). The most frequent LAB were Pediococcus pentosaceus, Lactobacillus plantarum, L. brevis, Weissella confusa, and W. paramesenteroides. Species of amylase-producing Bacillus (Bacillus subtilis, B. circulans, B. amyloliquefaciens, B. sporothermodurans), acetic acid bacteria (Acetobacter orientalis, A. pasteurianus), and plant pathogens/environment contaminants (Burkholderia ubonensis, Ralstonia solanacearum, Pelomonas puraquae) were also detected. Fungal DGGE was found to be useful for evaluating starter type and starter quality. Moreover, in view of the high biological diversity of these substrates, bacterial DGGE may be useful in determining the identity of a starter. The constant occurrence of opportunistic contaminants highlights the need for careful examination of the role of individual components in starters.

  8. Characterization of Martian Rock Shape for MER Airbag Drop Tests

    NASA Astrophysics Data System (ADS)

    Dimaggio, E. N.; Schroeder, R.; Castle, N.; Golombek, M.

    2002-12-01

    Rock distributions for the final platforms used in airbag drop tests are currently being designed for the Mars Exploration Rovers (MER) scheduled to launch in 2003. Like Mars Pathfinder (MPF), launched in 1996, MER will use a series of airbags to cushion its landing on the surface of Mars. Previous MER airbag drop tests have shown that sharp, angular (triangular) rocks >20 cm high may be hazardous. To aid in defining the rock distributions for the final airbag tests, images from the Viking Landers 1 and 2 and MPF were used to identify rocks that are >20 cm high, and characterize them as triangular, square or round. Approximately 33% of all rocks analyzed are triangular. Of the rocks analyzed that are ~20-60 cm high, ~14% are triangular. Most of these triangular rocks are small, ~20-30 cm high. Rock distributions of previous airbag platforms were similarly classified and show a greater percentage of triangular and square rocks that are ~20-60 cm high than at the landing sites. The burial of a rock (perched, partially buried or buried) was also considered because perched rocks may pose less of a threat to the airbags than those buried because perched rocks can be dislodged and roll during impact. Approximately 19% of all rocks analyzed, and ~19% of rocks that are ~20-60 cm high, are triangular and partially buried or buried. These data suggest that the platform rock distributions appropriately represented the risks to the airbags associated with triangular rocks. A similar percentage of >20 cm high triangular rocks will be added to the drop test platforms to represent landing site rock distributions.

  9. Debate on MERS-CoV respiratory precautions: surgical mask or N95 respirators?

    PubMed Central

    Chung, Jasmine Shimin; Ling, Moi Lin; Seto, Wing Hong; Ang, Brenda Sze Peng; Tambyah, Paul Anantharajah

    2014-01-01

    Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in mid-2012, there has been controversy over the respiratory precaution recommendations in different guidelines from various international bodies. Our understanding of MERS-CoV is still evolving. Current recommendations on infection control practices are heavily influenced by the lessons learnt from severe acute respiratory syndrome. A debate on respiratory precautions for MERS-CoV was organised by Infection Control Association (Singapore) and the Society of Infectious Disease (Singapore). We herein discuss and present the evidence for surgical masks for the protection of healthcare workers from MERS-CoV. PMID:25017402

  10. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome.

    PubMed

    Cockrell, Adam S; Yount, Boyd L; Scobey, Trevor; Jensen, Kara; Douglas, Madeline; Beall, Anne; Tang, Xian-Chun; Marasco, Wayne A; Heise, Mark T; Baric, Ralph S

    2016-11-28

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel virus that emerged in 2012, causing acute respiratory distress syndrome (ARDS), severe pneumonia-like symptoms and multi-organ failure, with a case fatality rate of ∼36%. Limited clinical studies indicate that humans infected with MERS-CoV exhibit pathology consistent with the late stages of ARDS, which is reminiscent of the disease observed in patients infected with severe acute respiratory syndrome coronavirus. Models of MERS-CoV-induced severe respiratory disease have been difficult to achieve, and small-animal models traditionally used to investigate viral pathogenesis (mouse, hamster, guinea-pig and ferret) are naturally resistant to MERS-CoV. Therefore, we used CRISPR-Cas9 gene editing to modify the mouse genome to encode two amino acids (positions 288 and 330) that match the human sequence in the dipeptidyl peptidase 4 receptor, making mice susceptible to MERS-CoV infection and replication. Serial MERS-CoV passage in these engineered mice was then used to generate a mouse-adapted virus that replicated efficiently within the lungs and evoked symptoms indicative of severe ARDS, including decreased survival, extreme weight loss, decreased pulmonary function, pulmonary haemorrhage and pathological signs indicative of end-stage lung disease. Importantly, therapeutic countermeasures comprising MERS-CoV neutralizing antibody treatment or a MERS-CoV spike protein vaccine protected the engineered mice against MERS-CoV-induced ARDS.

  11. Improving Bloom Filter Performance on Sequence Data Using k-mer Bloom Filters.

    PubMed

    Pellow, David; Filippova, Darya; Kingsford, Carl

    2016-11-09

    Using a sequence's k-mer content rather than the full sequence directly has enabled significant performance improvements in several sequencing applications, such as metagenomic species identification, estimation of transcript abundances, and alignment-free comparison of sequencing data. As k-mer sets often reach hundreds of millions of elements, traditional data structures are often impractical for k-mer set storage, and Bloom filters (BFs) and their variants are used instead. BFs reduce the memory footprint required to store millions of k-mers while allowing for fast set containment queries, at the cost of a low false positive rate (FPR). We show that, because k-mers are derived from sequencing reads, the information about k-mer overlap in the original sequence can be used to reduce the FPR up to 30 × with little or no additional memory and with set containment queries that are only 1.3 - 1.6 times slower. Alternatively, we can leverage k-mer overlap information to store k-mer sets in about half the space while maintaining the original FPR. We consider several variants of such k-mer Bloom filters (kBFs), derive theoretical upper bounds for their FPR, and discuss their range of applications and limitations.

  12. Indexing Arbitrary-Length k-Mers in Sequencing Reads.

    PubMed

    Kowalski, Tomasz; Grabowski, Szymon; Deorowicz, Sebastian

    2015-01-01

    We propose a lightweight data structure for indexing and querying collections of NGS reads data in main memory. The data structure supports the interface proposed in the pioneering work by Philippe et al. for counting and locating k-mers in sequencing reads. Our solution, PgSA (pseudogenome suffix array), based on finding overlapping reads, is competitive to the existing algorithms in the space use, query times, or both. The main applications of our index include variant calling, error correction and analysis of reads from RNA-seq experiments.

  13. Indexing Arbitrary-Length k-Mers in Sequencing Reads

    PubMed Central

    Kowalski, Tomasz; Grabowski, Szymon; Deorowicz, Sebastian

    2015-01-01

    We propose a lightweight data structure for indexing and querying collections of NGS reads data in main memory. The data structure supports the interface proposed in the pioneering work by Philippe et al. for counting and locating k-mers in sequencing reads. Our solution, PgSA (pseudogenome suffix array), based on finding overlapping reads, is competitive to the existing algorithms in the space use, query times, or both. The main applications of our index include variant calling, error correction and analysis of reads from RNA-seq experiments. PMID:26182400

  14. Selective inhibition of the gliadin-specific, cell-mediated immune response by transamidation with microbial transglutaminase.

    PubMed

    Lombardi, Emanuela; Bergamo, Paolo; Maurano, Francesco; Bozzella, Giuseppina; Luongo, Diomira; Mazzarella, Giuseppe; Rotondi Aufiero, Vera; Iaquinto, Gaetano; Rossi, Mauro

    2013-04-01

    CD is an immune-mediated enteropathy caused by the ingestion of wheat gluten. The modification of gluten by intestinal tTGase plays a crucial role in CD pathogenesis. In this study, we observed that extensive transamidation of wheat flour with K-C2H5 by mTGase yielded spf and K-gliadins fractions. By Western blot, we found that these modifications were associated with strongly reduced immune cross-reactivity. With the use of DQ8 tg mice as a model of gluten sensitivity, we observed a dramatic reduction in IFNγ production in gliadin-specific spleen cells challenged with spf and K-gliadins in vitro (n=12; median values: 813 vs. 29 and 99; control vs. spf and K-gliadins, P=0.012 for spf, and P=0.003 for K-gliadins). For spf, we also observed an increase in the IL-10/IFNγ protein ratio (n=12; median values: 0.3 vs. 4.7; control vs. spf, P=0.005). In intestinal biopsies from CD patients challenged in vitro with gliadins (n=10), we demonstrated further that K-gliadins dramatically reduced the levels of antigen-specific IFNγ mRNA in all specimens responsive to native gliadins (four of 10; P<0.05). As cytotoxic effects have been described for gliadins, we also studied GST and caspase-3 activities using the enterocytic Caco-2 cell line. We found that neither activities were modified by flour transamidation. Our results indicate that K-C2H5 cross-linking via mTGase specifically affects gliadin immunogenicity, reversing the inducible inflammatory response in models of gluten sensitivity without affecting other aspects of the biological activity of gliadins.

  15. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  16. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction

    PubMed Central

    Omrani, Ali S.; Al-Tawfiq, Jaffar A.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  17. Electrochemical Characterization of a Novel Exoelectrogenic Bacterium Strain SCS5, Isolated from a Mediator-Less Microbial Fuel Cell and Phylogenetically Related to Aeromonas jandaei

    PubMed Central

    Sharma, Subed Chandra Dev; Feng, Cuijie; Li, Jiangwei; Hu, Anyi; Wang, Han; Qin, Dan; Yu, Chang-Ping

    2016-01-01

    A facultative anaerobic bacterium, designated as strain SCS5, was isolated from the anodic biofilm of a mediator-less microbial fuel cell using acetate as the electron donor and α-FeOOH as the electron acceptor. The isolate was Gram-negative, motile, and shaped as short rods (0.9–1.3 μm in length and 0.4–0.5 μm in width). A phylogenetic analysis of the 16S rRNA, gyrB, and rpoD genes suggested that strain SCS5 belonged to the Aeromonas genus in the Aeromonadaceae family and exhibited the highest 16S rRNA gene sequence similarity (99.45%) with Aeromonas jandaei ATCC 49568. However, phenotypic, cellular fatty acid profile, and DNA G+C content analyses revealed that there were some distinctions between strain SCS5 and the type strain A. jandaei ATCC 49568. The optimum growth temperature, pH, and NaCl (%) for strain SCS5 were 35°C, 7.0, and 0.5% respectively. The DNA G+C content of strain SCS5 was 59.18%. The isolate SCS5 was capable of reducing insoluble iron oxide (α-FeOOH) and transferring electrons to extracellular material (the carbon electrode). The electrochemical activity of strain SCS5 was corroborated by cyclic voltammetry and a Raman spectroscopic analysis. The cyclic voltammogram of strain SCS5 revealed two pairs of oxidation-reduction peaks under anaerobic and aerobic conditions. In contrast, no redox pair was observed for A. jandaei ATCC 49568. Thus, isolated strain SCS5 is a novel exoelectrogenic bacterium phylogenetically related to A. jandaei, but shows distinct electrochemical activity from its close relative A. jandaei ATCC 49568. PMID:27396922

  18. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium.

    PubMed

    Gao, Guanyue; Qian, Jun; Fang, Deyu; Yu, Yuan; Zhi, Jinfang

    2016-06-14

    Since most risk assessment for toxicants is based on individual single-species test, the deduction of such results to ecosystem evaluation is afflicted with uncertainties. Herein, we successfully developed a p-benzoquinone mediated whole-cell electrochemical biosensor for multi-pollutants toxicological analysis by co-immobilizing mixed strains of microorganism, including Escherichia coli (gram-negative bacteria), Bacillus subtilis (gram-positive bacteria) and Saccharomyces cerevisiae (fungus). The individual and combined toxicities of heavy metal ions (Cu(2+), Cd(2+)), phenol (3,5-dichlorophenol) and pesticides (Ametryn, Acephate) were examined. The experimental results showed that the order of toxicity for individual toxicant was ranked as Cu(2+) > 3,5-dichlorophenol (DCP) > Ametryn > Cd(2+) > Acephate. Then the toxic unit (TU) model was applied to determine the nature of toxicological interaction of the toxicants which can be classified as concentration additive (IC50mix = 1TU), synergistic (IC50mix < 1TU) and antagonistic (IC50mix > 1TU) responses. The binary combination of Cu(2+) + Cd(2+), Cu(2+) + DCP, Cu(2+) + Acephate, DCP + Acephate, Acephate + Ametryn were analyzed and the three kind of joint toxicity effects (i.e. additive, synergistic and antagonistic) mentioned above were observed according to the dose-response relationship. The results indicate that the whole-cell electrochemical biosensor based on mixed microbial consortium is more reasonable to reflect the joint biotoxicity of multi-pollutants existing in real wastewater, and combined effects of toxicants is extremely necessary to be taken into account in ecological risk assessment. Thus, present study has provided a promising approach to the quality assessment of wastewater and a reliable way for early risk warning of acute biotoxicity.

  19. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  20. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    PubMed

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming.

  1. Time Course of MERS-CoV Infection and Immunity in Dromedary Camels

    PubMed Central

    Meyer, Benjamin; Juhasz, Judit; Barua, Rajib; Das Gupta, Aungshuman; Hakimuddin, Fatima; Corman, Victor M.; Müller, Marcel A.; Wernery, Ulrich; Nagy, Peter

    2016-01-01

    Knowledge about immunity to Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels is essential for infection control and vaccination. A longitudinal study of 11 dam–calf pairs showed that calves lose maternal MERS-CoV antibodies 5–6 months postparturition and are left susceptible to infection, indicating a short window of opportunity for vaccination. PMID:27224315

  2. Exportations of Symptomatic Cases of MERS-CoV Infection to Countries outside the Middle East.

    PubMed

    Carias, Cristina; O'Hagan, Justin J; Jewett, Amy; Gambhir, Manoj; Cohen, Nicole J; Haber, Yoni; Pesik, Nicki; Swerdlow, David L

    2016-04-01

    In 2012, an outbreak of infection with Middle East respiratory syndrome coronavirus (MERS-CoV), was detected in the Arabian Peninsula. Modeling can produce estimates of the expected annual number of symptomatic cases of MERS-CoV infection exported and the likelihood of exportation from source countries in the Middle East to countries outside the region.

  3. Nordic Winter and Cold: Their Correspondence with Tomas Tranströmer's Poetry

    ERIC Educational Resources Information Center

    Hosian, Mohammad Akbar

    2015-01-01

    The Nobel Prize winning poet Tomas Tranströmer was born and bred in Sweden, a remarkably Scandinavian country. Topographically, Scandinavian countries are locations of extreme cold and snowing. This distinguishing climatic condition has had a dominant influence and impact on almost all Scandinavian art and literature, including Tomas Tranströmer's…

  4. Knowledge and Apprehension of Dental Patients about MERS-A Questionnaire Survey

    PubMed Central

    Ashok, Nipun; Rodrigues, Jean Clare; Azouni, Khalid; Darwish, Shorouk; Abuderman, Abdulwahab; Alkaabba, Abdul Aziz Fahad

    2016-01-01

    Introduction Middle East Respiratory Syndrome (MERS) is a disease caused by beta corona virus. From April 11th to 9th June 2014, World Health Organization (WHO) reported a total of 402 laboratory confirmed cases of MERS from KSA, out of which 132 cases were reported from Riyadh alone. Aim The aim of this study was to assess the knowledge and apprehension of patients about MERS visiting Al Farabi College of Dentistry, Riyadh, Saudi Arabia. Materials and Methods A cross-sectional questionnaire based survey was conducted which consisted of 10 self-prepared questions. A total of 404 patients participated in this study. Results Three hundred and forty patients had heard about MERS. Nearly a quarter of the patients (25.74%) were apprehensive about undergoing dental treatment because of MERS. A little more than half of the patients (50.99%) knew that camel was a source of Middle East Respiratory Syndrome-Corona virus. Most of the patients (80.72%) were aware of the infection control measures to be followed by dentist and 138 patients claimed they took some precaution when present inside the dental college. Conclusion Majority of the patients had heard about MERS and was aware of the infection control measures. However, some patients were apprehensive about undergoing dental treatment because of MERS. Further steps need to be taken to educate the patient’s about transmission of MERS and infection control measures in a dental hospital. PMID:27437361

  5. Exportations of Symptomatic Cases of MERS-CoV Infection to Countries outside the Middle East

    PubMed Central

    O’Hagan, Justin J.; Jewett, Amy; Gambhir, Manoj; Cohen, Nicole J.; Haber, Yoni; Pesik, Nicki; Swerdlow, David L.

    2016-01-01

    In 2012, an outbreak of infection with Middle East respiratory syndrome coronavirus (MERS-CoV), was detected in the Arabian Peninsula. Modeling can produce estimates of the expected annual number of symptomatic cases of MERS-CoV infection exported and the likelihood of exportation from source countries in the Middle East to countries outside the region. PMID:27358972

  6. Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission

    PubMed Central

    Zhang, Zhao; Shen, Libing; Gu, Xun

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to beta group of coronavirus and was first discovered in 2012. MERS-CoV can infect multiple host species and cause severe diseases in human. We conducted a series of phylogenetic and bioinformatic analyses to study the evolution dynamics of MERS-CoV among different host species with genomic data. Our analyses show: 1) 28 potential recombinant sequences were detected and they can be classified into seven potential recombinant types; 2) The spike (S) protein of MERS-CoV was under strong positive selection when MERS-CoV transmitted from their natural host to human; 3) Six out of nine positive selection sites detected in spike (S) protein are located in its receptor-binding domain which is in direct contact with host cells; 4) MERS-CoV frequently transmitted back and forth between human and camel after it had acquired the human-camel infection capability. Together, these results suggest that potential recombination events might have happened frequently during MERS-CoV’s evolutionary history and the positive selection sites in MERS-CoV’s S protein might enable it to infect human. PMID:27142087

  7. Serologic Evidence for MERS-CoV Infection in Dromedary Camels, Punjab, Pakistan, 2012–2015

    PubMed Central

    Saqib, Muhammad; Sieberg, Andrea; Hussain, Muhammad Hammad; Mansoor, Muhammad Khalid; Zohaib, Ali; Lattwein, Erik; Müller, Marcel Alexander; Corman, Victor Max

    2017-01-01

    Dromedary camels from Africa and Arabia are an established source for zoonotic Middle East respiratory syndrome coronavirus (MERS-CoV) infection among humans. In Pakistan, we found specific neutralizing antibodies in samples from 39.5% of 565 dromedaries, documenting significant expansion of the enzootic range of MERS-CoV to Asia. PMID:28221127

  8. Proteomic Stable Isotope Probing Reveals Biosynthesis Dynamics of Slow Growing Methane Based Microbial Communities

    SciTech Connect

    Marlow, Jeffery; Skennerton, Connor T.; Li, Zhou; Chourey, Karuna; Hettich, Robert L.; Pan, Chongle; Orphan, V.

    2016-04-29

    Marine methane seep habitats represent an important control on the global flux of methane between the subsurface and water column reservoirs. Meta-omics studies have begun to outline community-wide metabolic potential, but expression patterns of proteins that enact sulfate-mediated anaerobic methane oxidation in seeps are poorly characterized. Proteomic stable isotope probing (proteomic SIP) offers an additional layer of information for characterizing phylogenetically specific, functionally relevant activity in mixed microbial communities. Here we applied proteomic SIP to 15NH4+ and CH4 amended seep sediment microcosms in an attempt to track the protein synthesis of slow-growing, low-energy microbial systems. Across all samples, 3495 proteins were identified, 21% of which were 15N-labeled. We observed active synthesis (15N enrichment) of all proteins believed to be involved in sulfate reduction and reverse methanogenesis including methylenetetrahydromethanopterin reductase (Mer). The abundance and phylogenetic range of methyl-coenzyme M reductase (Mcr) orthologs produced during incubation experiments suggests that seeps provide sufficient niches for multiple organisms performing analogous metabolisms. Twenty-eight previously unreported post-translational modifications of McrA were measured, indicating dynamic enzymatic machinery and offering a dimension of functional diversity beyond gene-dictated sequence. RNA polymerase associated with putative sulfur-oxidizing Epsilonproteobacteria and aerobic Gammaproteobacteria were more abundant among pre-incubation proteins, suggesting diminished metabolic activity in long-term anoxic, sulfidic experimental incubations. Twenty-six proteins of unknown function were detected in all proteomic experiments and actively expressed in labeled experiments, suggesting that they play important roles in methane seep ecosystems. The addition of stable isotope probing to environmental proteomics experiments provides a mechanism to begin

  9. Discovery of Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    2012-01-01

    Ectopic Mer expression promotes pro-survival signaling and contributes to leukemogenesis and chemoresistance in childhood acute lymphoblastic leukemia (ALL). Consequently, Mer kinase inhibitors may promote leukemic cell death and further act as chemosensitizers increasing efficacy and reducing toxicities of current ALL regimens. We have applied a structure-based design approach to discover novel small molecule Mer kinase inhibitors. Several pyrazolopyrimidine derivatives effectively inhibit Mer kinase activity at subnanomolar concentrations. Furthermore, the lead compound shows a promising selectivity profile against a panel of 72 kinases and has excellent pharmacokinetic properties. We also describe the crystal structure of the complex between the lead compound and Mer, opening new opportunities for further optimization and new template design. PMID:22662287

  10. Discovery of Novel Small Molecule Mer Kinase Inhibitors for the Treatment of Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Liu, Jing; Yang, Chao; Simpson, Catherine; Deryckere, Deborah; Van Deusen, Amy; Miley, Michael J; Kireev, Dmitri; Norris-Drouin, Jacqueline; Sather, Susan; Hunter, Debra; Korboukh, Victoria K; Patel, Hari S; Janzen, William P; Machius, Mischa; Johnson, Gary L; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2012-02-09

    Ectopic Mer expression promotes pro-survival signaling and contributes to leukemogenesis and chemoresistance in childhood acute lymphoblastic leukemia (ALL). Consequently, Mer kinase inhibitors may promote leukemic cell death and further act as chemosensitizers increasing efficacy and reducing toxicities of current ALL regimens. We have applied a structure-based design approach to discover novel small molecule Mer kinase inhibitors. Several pyrazolopyrimidine derivatives effectively inhibit Mer kinase activity at sub-nanomolar concentrations. Furthermore, the lead compound shows a promising selectivity profile against a panel of 72 kinases and has excellent pharmacokinetic properties. We also describe the crystal structure of the complex between the lead compound and Mer, opening new opportunities for further optimization and new template design.

  11. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  12. Dust Accumulation and Cleaning of the MER Opportunity Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J.

    2015-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Opportunity was expected to accumulate a sufficient quantity of dust after ninety Martian days (sols) such that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Opportunity continues to operate on the Martian surface for over 4000 sols (over six Mars years). During this time period, the rover experienced six Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a method to scientifically estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Meridiani Planum over the course of the entire mission to date.

  13. Dust Accumulation and Cleaning of the MER Spirit Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Johnson, J. R.; Cantor, B. A.; Stella, P. M.; Chin, K. B.; Wood, E. G.

    2012-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Spirit was expected to accumulate so much dust after ninety Martian days (sols) that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Spirit carried out surface operations for over 2200 sols (over three Mars years). During this time period, the rover experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to quantitatively estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Gusev Crater over the course of the entire mission.

  14. Molecular identification of Lodoicea maldivica (coco de mer) seeds

    PubMed Central

    2011-01-01

    Background The edible endosperm of Lodoicea maldivica with the common name of coco de mer is used in Chinese medicine for treating cough. Native to Seychelles, Lodoicea maldivica seeds have commanded high prices for centuries due to its scarcity. This study aims to develop a molecular identification method for the authentication of Lodoicea maldivica seeds. Methods DNA was extracted from the sample. Two polymerase chain reaction (PCR) systems were developed to amplify a region of the chloroplast DNA and the nuclear phosphoribulokinase (PRK) region specific to Lodoicea maldivica respectively. DNA sequence of a sample was determined and compared with that of the Lodoicea maldivica reference material. Results The PRK gene of Lodoicea maldivica was successfully amplified and sequenced for identification. Conclusion A new molecular method for the identification of Lodoicea maldivica seeds in fresh, frozen or dried forms was developed. PMID:21961930

  15. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next?

    PubMed

    Reperant, Leslie A; Osterhaus, Albert D M E

    2017-08-16

    Emerging infections have threatened humanity since times immemorial. The dramatic anthropogenic, behavioral and social changes that have affected humanity and the environment in the past century have accelerated the intrusion of novel pathogens into the global human population, sometimes with devastating consequences. The AIDS and influenza pandemics have claimed and will continue to claim millions of lives. The recent SARS and Ebola epidemics have threatened populations across borders. The emergence of MERS may well be warning signals of a nascent pandemic threat, while the potential for geographical spread of vector-borne diseases, such as Zika, but also Dengue and Chikungunya is unprecedented. Novel technologies and innovative approaches have multiplied to address and improve response preparedness towards the increasing yet unpredictable threat posed by emerging pathogens. Copyright © 2017. Published by Elsevier Ltd.

  16. Delta II Heavy launch of "Opportunity" MER-B Rover

    NASA Image and Video Library

    2003-07-07

    On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  17. Delta II Heavy MER-B - MST Rollback

    NASA Image and Video Library

    2003-07-07

    The Mobile Service Tower is ready to be rolled back at Launch Complex 17-B, Cape Canaveral Air Force Station, to launch the Delta II Heavy launch vehicle carrying the rover "Opportunity" on the second Mars Exploration Rover mission. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  18. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  19. Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report.

    PubMed

    Shalhoub, Sarah; AlZahrani, Abdulwahab; Simhairi, Raed; Mushtaq, Adnan

    2015-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS CoV) may cause severe pneumonia with significant morbidity and mortality, particularly in patients with multiple comorbid condition. MERS CoV pneumonia has not been previously reported in patients with Human Immunodeficiency Virus (HIV). Herein, we report a case of MERS CoV pneumonia with a successful outcome in a patient recently diagnosed with HIV.

  20. Expansion of quiescent lung adenocarcinoma CD8+ T cells by MUC1-8-mer peptide-T2 cell-β2 microglobulin complexes

    PubMed Central

    ATZIN-MÉNDEZ, J.A.; LÓPEZ-GONZÁLEZ, J.S.; BÁEZ, R.; ARENAS-DEL ANGEL, M.C.; MONTAÑO, L.F.; SILVA-ADAYA, D.; LASCURAIN, R.; GOROCICA, P.

    2016-01-01

    Adoptive immunotherapy requires the isolation of CD8+ T cells specific for tumor-associated antigens, their expansion in vitro and their transfusion to the patient to mediate a therapeutic effect. MUC1 is an important adenocarcinoma antigen immunogenic for T cells. The MUC1-derived SAPDTRPA (MUC1-8-mer) peptide is a potent epitope recognized by CD8+ T cells in murine models. Likewise, the T2 cell line has been used as an antigen-presenting cell to activate CD8+ T cells, but so far MUC1 has not been assessed in this context. We evaluated whether the MUC1-8-mer peptide can be presented by T2 cells to expand CD25+CD8+ T cells isolated from HLA-A2+ lung adenocarcinoma patients with stage III or IV tumors. The results showed that MUC1-8-mer peptide-loaded T2 cells activated CD8+ T cells from cancer HLA-A2+ patients when anti-CD2, anti-CD28 antibodies and IL-2 were added. The percentage of CD25+CD8+ T cells was 3-fold higher than those in the non-stimulated cells (P=0.018). HLA-A2+ patient cells showed a significant difference (2.3-fold higher) in activation status than HLA-A2+ healthy control cells (P=0.04). Moreover, 77.6% of MUC1-8-mer peptide-specific CD8+ T cells proliferated following a second stimulation with MUC1-8-mer peptide-loaded T2 cells after 10 days of cell culture. There were significant differences in the percentage of basal CD25+CD8+ T cells in relation to the cancer stage; this difference disappeared after MUC1-8-mer peptide stimulation. In conclusion, expansion of CD25+CD8+ T cells by MUC1-8 peptide-loaded T2 cells plus costimulatory signals via CD2, CD28 and IL-2 can be useful in adoptive immunotherapy. PMID:26498650

  1. MERS and the dromedary camel trade between Africa and the Middle East.

    PubMed

    Younan, M; Bornstein, S; Gluecks, I V

    2016-08-01

    Dromedary camels are the most likely source for the coronavirus that sporadically causes Middle East respiratory syndrome (MERS) in humans. Serological results from archived camel sera provide evidence for circulation of MERS coronavirus (MERS-CoV) among dromedary camels in the Greater Horn of Africa as far back as 1983 and in Saudi Arabia as far back as 1992. High seroprevalences of MERS-CoV antibodies and the high virus prevalence in Saudi Arabian dromedary camels indicate an endemicity of the virus in the Arabian Peninsula, which predates the 2012 human MERS index case. Saudi Arabian dromedary camels show significantly higher MERS-CoV carrier rates than dromedary camels imported from Africa. Two MERS-CoV lineages identified in Nigerian camels were found to be genetically distinct from those found in camels and humans in the Middle East. This supports the hypothesis that camel imports from Africa are not of significance for circulation of the virus in camel populations of the Arabian Peninsula.

  2. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    PubMed

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  3. Improvement in Engine Generator Characteristics by Using a Series Compensator Named MERS

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Kouhei; Isobe, Takanori; Shimada, Ryuichi

    Terminal voltage of a synchronous generator drops with an increase in the generator current because of the large inductance in the generator, called synchronous reactance. This paper proposes the use of an active series compensation device named magnetic energy recovery switch (MERS) for improving engine generator performance. The MERS can compensate for the voltage drop caused by the synchronous reactance and it can control the load voltage more quickly than the auto voltage regulator can control the excitation current. Thus, the MERS can improve the generator efficiency and transient over power characteristics.

  4. Bacteriophage T4Dam DNA-(adenine-N(6))-methyltransferase. Comparison of pre-steady state and single turnover methylation of 40-mer duplexes containing two (un)modified target sites.

    PubMed

    Malygin, Ernst G; Sclavi, Bianca; Zinoviev, Victor V; Evdokimov, Alexey A; Hattman, Stanley; Buckle, Malcolm

    2004-11-26

    We analyzed pre-steady state and single turnover kinetics of bacteriophage T4Dam DNA-(adenine-N(6))-methyltransferase-mediated methyl group transfer from S-adenosyl-l-methionine (AdoMet) to 40-mer duplexes containing native recognition sites (5'-GATC/5'-GATC) or some modified variant(s). The results extend a model from studies with single-site 20-mer duplexes. Under pre-steady state conditions, monomeric T4Dam methyltransferase-AdoMet complexes were capable of rapid methylation of adenine residues in 40-mer duplexes containing two sites. During processive movement of T4Dam to the next site, the rate-limiting step was the exchange of the product S-adenosyl-l-homocysteine (AdoHcy) for AdoMet without T4Dam dissociating from the duplex. Consequently, instead of a single exponential rate dependence, complex methylation curves were obtained with at least two pre-steady state steps. With 40-mer duplexes containing a single target site, the kinetics were simpler, fitting a single exponential followed by a linear steady state phase. Single turnover methylation of 40-mer duplexes also proceeded in two stages. First, two dimeric T4Dam-AdoMet molecules bound, and each catalyzed a two-step methylation. Instead of processive movement of T4Dam, a conformational adaptation occurred. We propose that following methyl transfer to one strand, dimeric (T4Dam-AdoMet)-(T4Dam-AdoHcy) was capable of rapidly reorienting itself and catalyzing methyl transfer to the target adenine on the complementary, unmethylated strand. This second stage methyl transfer occurred at a rate about 25-fold slower than in the first step; it was rate-limited by Dam-AdoHcy dissociation or its clearance from the methylated complementary strand. Under single turnover conditions, there was complete methylation of all target adenine residues with each of the two-site 40-mer duplexes.

  5. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study.

    PubMed

    Chowell, Gerardo; Abdirizak, Fatima; Lee, Sunmi; Lee, Jonggul; Jung, Eunok; Nishiura, Hiroshi; Viboud, Cécile

    2015-09-03

    The Middle East respiratory syndrome (MERS) coronavirus has caused recurrent outbreaks in the Arabian Peninsula since 2012. Although MERS has low overall human-to-human transmission potential, there is occasional amplification in the healthcare setting, a pattern reminiscent of the dynamics of the severe acute respiratory syndrome (SARS) outbreaks in 2003. Here we provide a head-to-head comparison of exposure patterns and transmission dynamics of large hospital clusters of MERS and SARS, including the most recent South Korean outbreak of MERS in 2015. To assess the unexpected nature of the recent South Korean nosocomial outbreak of MERS and estimate the probability of future large hospital clusters, we compared exposure and transmission patterns for previously reported hospital clusters of MERS and SARS, based on individual-level data and transmission tree information. We carried out simulations of nosocomial outbreaks of MERS and SARS using branching process models rooted in transmission tree data, and inferred the probability and characteristics of large outbreaks. A significant fraction of MERS cases were linked to the healthcare setting, ranging from 43.5 % for the nosocomial outbreak in Jeddah, Saudi Arabia, in 2014 to 100 % for both the outbreak in Al-Hasa, Saudi Arabia, in 2013 and the outbreak in South Korea in 2015. Both MERS and SARS nosocomial outbreaks are characterized by early nosocomial super-spreading events, with the reproduction number dropping below 1 within three to five disease generations. There was a systematic difference in the exposure patterns of MERS and SARS: a majority of MERS cases occurred among patients who sought care in the same facilities as the index case, whereas there was a greater concentration of SARS cases among healthcare workers throughout the outbreak. Exposure patterns differed slightly by disease generation, however, especially for SARS. Moreover, the distributions of secondary cases per single primary case varied

  6. UNC2025, a Potent and Orally Bioavailable MER/FLT3 Dual Inhibitor

    PubMed Central

    2015-01-01

    We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined. PMID:25068800

  7. UNC2025, a potent and orally bioavailable MER/FLT3 dual inhibitor.

    PubMed

    Zhang, Weihe; DeRyckere, Deborah; Hunter, Debra; Liu, Jing; Stashko, Michael A; Minson, Katherine A; Cummings, Christopher T; Lee, Minjung; Glaros, Trevor G; Newton, Dianne L; Sather, Susan; Zhang, Dehui; Kireev, Dmitri; Janzen, William P; Earp, H Shelton; Graham, Douglas K; Frye, Stephen V; Wang, Xiaodong

    2014-08-28

    We previously reported a potent small molecule Mer tyrosine kinase inhibitor UNC1062. However, its poor PK properties prevented further assessment in vivo. We report here the sequential modification of UNC1062 to address DMPK properties and yield a new potent and highly orally bioavailable Mer inhibitor, 11, capable of inhibiting Mer phosphorylation in vivo, following oral dosing as demonstrated by pharmaco-dynamic (PD) studies examining phospho-Mer in leukemic blasts from mouse bone marrow. Kinome profiling versus more than 300 kinases in vitro and cellular selectivity assessments demonstrate that 11 has similar subnanomolar activity against Flt3, an additional important target in acute myelogenous leukemia (AML), with pharmacologically useful selectivity versus other kinases examined.

  8. Planning Mars Memory: Learning from the Mer Mission

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2004-01-01

    Knowledge management for space exploration is part of a multi-generational effort at recognizing, preserving and transmitting learning. Each mission should be built on the learning, of both successes and failures, derived from previous missions. Knowledge management begins with learning, and the recognition that this learning has produced knowledge. The Mars Exploration Rover mission provides us with an opportunity to track how learning occurs, how it is recorded, and whether the representations of this learning will be optimally useful for subsequent missions. This paper focuses on the MER science and engineering teams during Rover operations. A NASA team conducted an observational study of the ongoing work and learning of the these teams. Learning occurred in a wide variety of areas: how to run two teams on Mars time for three months; how to use the instruments within the constraints of the martian environment, the deep space network and the mission requirements; how to plan science strategy; how best to use the available software tools. This learning is preserved in many ways. Primarily it resides in peoples memories, to be carried on to the next mission. It is also encoded in stones, in programming sequences, in published reports, and in lessons learned activities, Studying learning and knowledge development as it happens allows us to suggest proactive ways of capturing and using it across multiple missions and generations.

  9. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  10. Water on Mars: Evidence from MER Mission Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.

  11. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  12. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  13. Redefining Tactical Operations for MER Using Cloud Computing

    NASA Technical Reports Server (NTRS)

    Joswig, Joseph C.; Shams, Khawaja S.

    2011-01-01

    The Mars Exploration Rover Mission (MER) includes the twin rovers, Spirit and Opportunity, which have been performing geological research and surface exploration since early 2004. The rovers' durability well beyond their original prime mission (90 sols or Martian days) has allowed them to be a valuable platform for scientific research for well over 2000 sols, but as a by-product it has produced new challenges in providing efficient and cost-effective tactical operational planning. An early stage process adaptation was the move to distributed operations as mission scientists returned to their places of work in the summer of 2004, but they would still came together via teleconference and connected software to plan rover activities a few times a week. This distributed model has worked well since, but it requires the purchase, operation, and maintenance of a dedicated infrastructure at the Jet Propulsion Laboratory. This server infrastructure is costly to operate and the periodic nature of its usage (typically heavy usage for 8 hours every 2 days) has made moving to a cloud based tactical infrastructure an extremely tempting proposition. In this paper we will review both past and current implementations of the tactical planning application focusing on remote plan saving and discuss the unique challenges present with long-latency, distributed operations. We then detail the motivations behind our move to cloud based computing services and as well as our system design and implementation. We will discuss security and reliability concerns and how they were addressed

  14. Water on Mars: Evidence from MER Mission Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.

  15. Redefining Tactical Operations for MER Using Cloud Computing

    NASA Technical Reports Server (NTRS)

    Joswig, Joseph C.; Shams, Khawaja S.

    2011-01-01

    The Mars Exploration Rover Mission (MER) includes the twin rovers, Spirit and Opportunity, which have been performing geological research and surface exploration since early 2004. The rovers' durability well beyond their original prime mission (90 sols or Martian days) has allowed them to be a valuable platform for scientific research for well over 2000 sols, but as a by-product it has produced new challenges in providing efficient and cost-effective tactical operational planning. An early stage process adaptation was the move to distributed operations as mission scientists returned to their places of work in the summer of 2004, but they would still came together via teleconference and connected software to plan rover activities a few times a week. This distributed model has worked well since, but it requires the purchase, operation, and maintenance of a dedicated infrastructure at the Jet Propulsion Laboratory. This server infrastructure is costly to operate and the periodic nature of its usage (typically heavy usage for 8 hours every 2 days) has made moving to a cloud based tactical infrastructure an extremely tempting proposition. In this paper we will review both past and current implementations of the tactical planning application focusing on remote plan saving and discuss the unique challenges present with long-latency, distributed operations. We then detail the motivations behind our move to cloud based computing services and as well as our system design and implementation. We will discuss security and reliability concerns and how they were addressed

  16. Planning Mars Memory: Learning from the Mer Mission

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2004-01-01

    Knowledge management for space exploration is part of a multi-generational effort at recognizing, preserving and transmitting learning. Each mission should be built on the learning, of both successes and failures, derived from previous missions. Knowledge management begins with learning, and the recognition that this learning has produced knowledge. The Mars Exploration Rover mission provides us with an opportunity to track how learning occurs, how it is recorded, and whether the representations of this learning will be optimally useful for subsequent missions. This paper focuses on the MER science and engineering teams during Rover operations. A NASA team conducted an observational study of the ongoing work and learning of the these teams. Learning occurred in a wide variety of areas: how to run two teams on Mars time for three months; how to use the instruments within the constraints of the martian environment, the deep space network and the mission requirements; how to plan science strategy; how best to use the available software tools. This learning is preserved in many ways. Primarily it resides in peoples memories, to be carried on to the next mission. It is also encoded in stones, in programming sequences, in published reports, and in lessons learned activities, Studying learning and knowledge development as it happens allows us to suggest proactive ways of capturing and using it across multiple missions and generations.

  17. Determining geographical spread pattern of MERS-CoV by distance method using Kimura model

    NASA Astrophysics Data System (ADS)

    Amiroch, Siti; Rohmatullah, Arif

    2017-03-01

    MERS-CoV or generally called as Middle East Respiratory Syndrome Coronavirus, a respiratory disease syndrome caused by a corona virus that attacks the respiratory tract ranging from mild to severe acute indication of fever, cough and shortness of breath. The cases happened relate to the countries in the Arabian Peninsula (Middle East) and there were 356 deaths have been reported due to the spread of the epidemic MERS. The data used in the case of MERS are the data DNA sequences taken from Genbank, the online database of the United States that stores the results of molecular biological experiments from all over the world (http://www.ncbi.nlm.nih.gov). In this case, bioinformatics plays an important role of reading sequences of DNA and genetic information by using the main device in the form of software that is supported by the availability of the Internet, while the analysis there in made and proven with mathematical methods. In similar research conducted by molecular biologists and physicians, the process of DNA sequencing is done with software that is already available like BLAST. In order to determine the MERS geographical distribution patterns in the Arabian Peninsula is done with program Clustal W, Bayesian, Phylip, etc. In this study, the writer use the Matlab simulation for all processes starting sequence alignment, counting the number of transitions and transversion substitutions for each sequence and its location up to the process of forming a phylogenetic tree that figures out the pattern of spread of the epidemic MERS. Mathematical analysis performed on a decline in the formula is to find Kimura evolutionary models and the process of forming a phylogenetic tree (the pattern of the epidemic MERS distribution) with neighbor joining algorithm. Finally it was obtained the pattern of geographical spread with 6 groups epidemic of MERS which ultimately turns out that all the MERS viruses that were spread in the Arabian Peninsula everything are almost the same as

  18. Unanswered questions about the Middle East respiratory syndrome coronavirus (MERS-CoV)

    PubMed Central

    2014-01-01

    Background The Middle East respiratory syndrome coronavirus (MERS-CoV) represents a current threat to the Arabian Peninsula, and potential pandemic disease. As of June 3, 2014, MERS CoV has reportedly infected 688 people and killed 282. We briefly summarize the state of the outbreak, and highlight unanswered questions and various explanations for the observed epidemiology. Findings The continuing but infrequent cases of MERS-CoV reported over the past two years have been puzzling and difficult to explain. The epidemiology of MERS-CoV, with many sporadic cases and a few hospital outbreaks, yet no sustained epidemic, suggests a low reproductive number. Furthermore, a clear source of infection to humans remains unknown. Also puzzling is the fact that MERS-CoV has been present in Saudi Arabia over several mass gatherings, including the 2012 and 2013 Hajj and Umrah pilgrimages, which predispose to epidemics, without an epidemic arising. Conclusions The observed epidemiology of MERS-CoV is quite distinct and does not clearly fit either a sporadic or epidemic pattern. Possible explanations of the unusual features of the epidemiology of MERS-CoV include sporadic ongoing infections from a non-human source; human to human transmission with a large proportion of undetected cases; or a combination of both. The virus has been identified in camels; however the mode of transmission of the virus to humans remains unknown, and many cases have no history of animal contact. In order to gain a better understanding of the epidemiology of MERS CoV, further investigation is warranted. PMID:24920393

  19. MERS coronavirus neutralizing antibodies in camels, Eastern Africa, 1983-1997.

    PubMed

    Müller, Marcel A; Corman, Victor Max; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Bosch, Berend-Jan; Lattwein, Erik; Hilali, Mosaad; Musa, Bakri E; Bornstein, Set; Drosten, Christian

    2014-12-01

    To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)-seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main camel-exporting countries, Sudan and Somalia, suggesting long-term virus circulation in these animals.

  20. MERS Coronavirus Neutralizing Antibodies in Camels, Eastern Africa, 1983–1997

    PubMed Central

    Corman, Victor Max; Jores, Joerg; Meyer, Benjamin; Younan, Mario; Liljander, Anne; Bosch, Berend-Jan; Lattwein, Erik; Hilali, Mosaad; Musa, Bakri E.; Bornstein, Set; Drosten, Christian

    2014-01-01

    To analyze the distribution of Middle East respiratory syndrome coronavirus (MERS-CoV)–seropositive dromedary camels in eastern Africa, we tested 189 archived serum samples accumulated during the past 30 years. We identified MERS-CoV neutralizing antibodies in 81.0% of samples from the main camel-exporting countries, Sudan and Somalia, suggesting long-term virus circulation in these animals. PMID:25425139

  1. A truncated receptor-binding domain of MERS-CoV spike protein potently inhibits MERS-CoV infection and induces strong neutralizing antibody responses: implication for developing therapeutics and vaccines.

    PubMed

    Du, Lanying; Kou, Zhihua; Ma, Cuiqing; Tao, Xinrong; Wang, Lili; Zhao, Guangyu; Chen, Yaoqing; Yu, Fei; Tseng, Chien-Te K; Zhou, Yusen; Jiang, Shibo

    2013-01-01

    An emerging respiratory infectious disease with high mortality, Middle East respiratory syndrome (MERS), is caused by a novel coronavirus (MERS-CoV). It was first reported in 2012 in Saudi Arabia and has now spread to eight countries. Development of effective therapeutics and vaccines is crucial to save lives and halt the spread of MERS-CoV. Here, we show that a recombinant protein containing a 212-amino acid fragment (residues 377-588) in the truncated receptor-binding domain (RBD: residues 367-606) of MERS-CoV spike (S) protein fused with human IgG Fc fragment (S377-588-Fc) is highly expressed in the culture supernatant of transfected 293T cells. The purified S377-588-Fc protein efficiently binds to dipeptidyl peptidase 4 (DPP4), the receptor of MERS-CoV, and potently inhibited MERS-CoV infection, suggesting its potential to be further developed as a therapeutic modality for treating MERS-CoV infection and saving the patients' lives. The recombinant S377-588-Fc is able to induce in the vaccinated mice strong MERS-CoV S-specific antibodies, which blocks the binding of RBD to DPP4 receptor and effectively neutralizes MERS-CoV infection. These findings indicate that this truncated RBD protein shows promise for further development as an effective and safe vaccine for the prevention of MERS-CoV infection.

  2. Mice lacking Axl and Mer tyrosine kinase receptors are susceptible to experimental autoimmune orchitis induction.

    PubMed

    Li, Nan; Liu, Zhenghui; Zhang, Yue; Chen, Qiaoyuan; Liu, Peng; Cheng, C Yan; Lee, Will M; Chen, Yongmei; Han, Daishu

    2015-03-01

    The mammalian testis is an immunoprivileged organ where male germ cell autoantigens are immunologically ignored. Both systemic immune tolerance to autoantigens and local immunosuppressive milieu contribute to the testicular immune privilege. Testicular immunosuppression has been intensively studied, but information on systemic immune tolerance to autoantigens is lacking. In the present study, we aimed to determine the role of Axl and Mer receptor tyrosine kinases in maintaining the systemic tolerance to male germ cell antigens using the experimental autoimmune orchitis (EAO) model. Axl and Mer double-knockout (Axl(-/-)Mer(-/-)) mice developed evident EAO after a single immunization with germ cell homogenates emulsified with complete Freund's adjuvant. EAO was characterized by the accumulation of macrophages and T lymphocytes in the testis. Damage to the seminiferous epithelium was also observed. EAO induction was associated with pro-inflammatory cytokine upregulation in the testes, impaired permeability of the blood-testis barrier and generation of autoantibodies against germ cell antigens in Axl(-/-)Mer(-/-) mice. Immunization also induced mild EAO in Axl or Mer single-gene-knockout mice. By contrast, a single immunization failed to induce EAO in wild-type mice. The results indicate that Axl and Mer receptors cooperatively regulate the systemic immune tolerance to male germ cell antigens.

  3. Structural and functional characterization of MERS coronavirus papain-like protease.

    PubMed

    Lin, Min-Han; Chuang, Shang-Ju; Chen, Chiao-Che; Cheng, Shu-Chun; Cheng, Kai-Wen; Lin, Chao-Hsiung; Sun, Chiao-Yin; Chou, Chi-Yuan

    2014-06-04

    A new highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and Saudi Arabia and quickly spread to some European countries since September 2012. Until 15 May 2014, it has infected at least 572 people with a fatality rate of about 30% globally. Studies to understand the virus and to develop antiviral drugs or therapy are necessary and urgent. In the present study, MERS-CoV papain-like protease (PLpro) is expressed, and its structural and functional consequences are elucidated. Circular dichroism and Tyr/Trp fluorescence analyses indicated that the secondary and tertiary structure of MERS-CoV PLpro is well organized and folded. Analytical ultracentrifugation analyses demonstrated that MERS-CoV PLpro is a monomer in solution. The steady-state kinetic and deubiquitination activity assays indicated that MERS-CoV PLpro exhibits potent deubiquitination activity but lower proteolytic activity, compared with SARS-CoV PLpro. A natural mutation, Leu105, is the major reason for this difference. Overall, MERS-CoV PLpro bound by an endogenous metal ion shows a folded structure and potent proteolytic and deubiquitination activity. These findings provide important insights into the structural and functional properties of coronaviral PLpro family, which is applicable to develop strategies inhibiting PLpro against highly pathogenic coronaviruses.

  4. Phy-Mer: a novel alignment-free and reference-independent mitochondrial haplogroup classifier.

    PubMed

    Navarro-Gomez, Daniel; Leipzig, Jeremy; Shen, Lishuang; Lott, Marie; Stassen, Alphons P M; Wallace, Douglas C; Wiggs, Janey L; Falk, Marni J; van Oven, Mannis; Gai, Xiaowu

    2015-04-15

    All current mitochondrial haplogroup classification tools require variants to be detected from an alignment with the reference sequence and to be properly named according to the canonical nomenclature standards for describing mitochondrial variants, before they can be compared with the haplogroup determining polymorphisms. With the emergence of high-throughput sequencing technologies and hence greater availability of mitochondrial genome sequences, there is a strong need for an automated haplogroup classification tool that is alignment-free and agnostic to reference sequence. We have developed a novel mitochondrial genome haplogroup-defining algorithm using a k-mer approach namely Phy-Mer. Phy-Mer performs equally well as the leading haplogroup classifier, HaploGrep, while avoiding the errors that may occur when preparing variants to required formats and notations. We have further expanded Phy-Mer functionality such that next-generation sequencing data can be used directly as input. Phy-Mer is publicly available under the GNU Affero General Public License v3.0 on GitHub (https://github.com/danielnavarrogomez/phy-mer). Xiaowu_Gai@meei.harvard.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    PubMed

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  6. Challenges presented by MERS corona virus, and SARS corona virus to global health.

    PubMed

    Al-Hazmi, Ali

    2016-07-01

    Numerous viral infections have arisen and affected global healthcare facilities. Millions of people are at severe risk of acquiring several evolving viral infections through several factors. In the present article we have described about risk factors, chance of infection, and prevention methods of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), human coronaviruses (CoVs) frequently cause a normal cold which is mild and self-restricting. Zoonotic transmission of CoVs such as the newly discovered MERS-CoV and SARS-CoV, may be associated with severe lower respiratory tract infection. The present review provides the recent clinical and pathological information on MERS and SARS. The task is to transform these discoveries about MERS and SARS pathogenesis and to develop intervention methods that will eventually allow the effective control of these recently arising severe viral infections. Global health sector has learnt many lessons through the recent outbreak of MERS and SARS, but the need for identifying new antiviral treatment was not learned. In the present article we have reviewed the literature on the several facets like transmission, precautions and effectiveness of treatments used in patients with MERS-CoV and SARS infections.

  7. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    PubMed

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. Copyright © 2015. Published by Elsevier Inc.

  8. MERS-CoV recombination: implications about the reservoir and potential for adaptation

    PubMed Central

    Dudas, Gytis; Rambaut, Andrew

    2016-01-01

    Recombination is a process that unlinks neighboring loci allowing for independent evolutionary trajectories within genomes of many organisms. If not properly accounted for, recombination can compromise many evolutionary analyses. In addition, when dealing with organisms that are not obligately sexually reproducing, recombination gives insight into the rate at which distinct genetic lineages come into contact. Since June 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 1,106 laboratory-confirmed infections, with 421 MERS-CoV-associated deaths as of 16 April 2015. Although bats are considered as the likely ultimate source of zoonotic betacoronaviruses, dromedary camels have been consistently implicated as the source of current human infections in the Middle East. In this article, we use phylogenetic methods and simulations to show that MERS-CoV genome has likely undergone numerous recombinations recently. Recombination in MERS-CoV implies frequent co-infection with distinct lineages of MERS-CoV, probably in camels given the current understanding of MERS-CoV epidemiology. PMID:27774293

  9. Histopathology of Middle East respiratory syndrome coronovirus (MERS-CoV) infection - clinicopathological and ultrastructural study.

    PubMed

    Alsaad, Khaled O; Hajeer, Ali H; Al Balwi, Mohammed; Al Moaiqel, Mohammed; Al Oudah, Nourah; Al Ajlan, Abdulaziz; AlJohani, Sameera; Alsolamy, Sami; Gmati, Giamal E; Balkhy, Hanan; Al-Jahdali, Hamdan H; Baharoon, Salim A; Arabi, Yaseen M

    2017-08-31

    The pathogenesis, viral localization and histopathological features of Middle East Respiratory Syndrome - Coronavirus (MERS-CoV) in human are not sufficiently described. The aims of this study were to explore and define the spectrum of histological and ultrastructural pathological changes affecting various organs in a patient with MERS-CoV infection and represent a base of MERS-CoV histopathology. We analyzed the postmortem histopathological findings and investigated viral particles localization in the pulmonary and extra-pulmonary tissue by transmission electron microscopic examination in a 33-year-old male patient of T-cell lymphoma, who acquired MERS-CoV infection. Tissue needle biopsies were obtained from brain, heart, lung, liver, kidney and skeletal muscle. All samples were collected within 45 minutes from death to reduce tissue decomposition and artefact. Histopathological examination showed necrotizing pneumonia, pulmonary diffuse alveolar damage, acute kidney injury, portal and lobular hepatitis and myositis with muscle atrophic changes. The brain and heart were histologically unremarkable. Ultrastructurally, viral particles were localized in the pneumocytes, pulmonary macrophages, renal proximal tubular epithelial cells and macrophages infiltrating the skeletal muscles. The results highlight the pulmonary and extra-pulmonary pathological changes of MERS-CoV infection and provide the first evidence of the viral presence in human renal tissue, which suggests tissue tropism for MERS-CoV in kidney. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Antibodies against MERS Coronavirus in Dromedary Camels, United Arab Emirates, 2003 and 2013

    PubMed Central

    Meyer, Benjamin; Müller, Marcel A.; Corman, Victor M.; Reusken, Chantal B.E.M.; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F.; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P.G.; Wernery, Renate

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein–specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV–neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases. PMID:24655412

  11. Gerbil: a fast and memory-efficient k-mer counter with GPU-support.

    PubMed

    Erbert, Marius; Rechner, Steffen; Müller-Hannemann, Matthias

    2017-01-01

    A basic task in bioinformatics is the counting of k-mers in genome sequences. Existing k-mer counting tools are most often optimized for small k < 32 and suffer from excessive memory resource consumption or degrading performance for large k. However, given the technology trend towards long reads of next-generation sequencers, support for large k becomes increasingly important. We present the open source k-mer counting software Gerbil that has been designed for the efficient counting of k-mers for k ≥ 32. Our software is the result of an intensive process of algorithm engineering. It implements a two-step approach. In the first step, genome reads are loaded from disk and redistributed to temporary files. In a second step, the k-mers of each temporary file are counted via a hash table approach. In addition to its basic functionality, Gerbil can optionally use GPUs to accelerate the counting step. In a set of experiments with real-world genome data sets, we show that Gerbil is able to efficiently support both small and large k. While Gerbil's performance is comparable to existing state-of-the-art open source k-mer counting tools for small k < 32, it vastly outperforms its competitors for large k, thereby enabling new applications which require large values of k.

  12. Microbially-mediated Destabilization Of Sedimentary Organic Carbon: Isotopic Tracking of Carbon Movement in Laboratory Incubations of Glucose-amended Aquifer Sediment to Determine Priming Effects

    NASA Astrophysics Data System (ADS)

    Pracht, L. E.; Polizzotto, M.; Neumann, R. B.

    2016-12-01

    Arsenic-contaminated groundwater is a worldwide concern; the result of both geogenic and anthropogenic sources. In naturally-contaminated systems, organic carbon fueling reductive dissolution is considered to be the primary mechanism of mobilization of arsenic off sediment into groundwater. Previous laboratory incubations of aquifer sediment and groundwater collected from a contaminated subsurface system in Bangladesh revealed a pool of biologically available organic carbon mobilized from the sandy sediment. Results indicated that sediments can contain chemically labile organic carbon that is physically protected or otherwise inaccessible to microbial communities. Disturbance of the aquifer matrix could destabilize this pool of sedimentary organic carbon and fuel microbial reactions that mobilize contaminants such as arsenic. Here we present results from laboratory incubations conducted to test the "priming" hypothesis, that an influx of bioavailable surface-derived organic carbon can fuel microbial reactions that target the solid phase and destabilize sedimentary organic carbon, fueling further reactions. Waters containing a range of glucose concentrations were mixed with sediment collected from a Cambodian aquifer, and concentrations and isotopic signatures of carbon were tracked over time in each material phase. The aquifer sediment contained arsenic-bearing oxide minerals, and thus, dissolved concentrations of arsenic, iron, and manganese concentrations were also measured. Results conceptually demonstrate how both surface and sedimentary derived organic carbon can interact to fuel microbial reactions that mobilize arsenic and impact groundwater quality.

  13. Microbially mediated clinoptilolite regeneration in a multifunctional permeable reactive barrier used to remove ammonium from landfill leachate contamination: laboratory column evaluation.

    PubMed

    Nooten, Thomas Van; Diels, Ludo; Bastiaens, Leen

    2010-05-01

    This study focuses on multifunctional permeable reactive barrier (multibarrier) technology, combining microbial degradation and abiotic ion exchange processes for removal of ammonium from landfill leachate contamination. The sequential multibarrier concept relies on the use of a clinoptilolite-filled buffer compartment to ensure a robust ammonium removal in case of temporary insufficient microbial activities. An innovative strategy was developed to allow in situ clinoptilolite regeneration. Laboratory-scale clinoptilolite-filled columns were first saturated with ammonium, using real landfill leachate as well as synthetic leachates as feed media. Other inorganic metal cations, typically present in landfill leachate, had a detrimental influence on the ammonium removal capacity by competing for clinoptilolite exchange sites. On the other hand, the metals had a highly favorable impact on regeneration of the saturated material. Feeding the columns with leachate deprived from ammonium (e.g., by microbial nitrification in an upgradient compartment), resulted in a complete release of the previously sorbed ammonium from the clinoptilolite, due to exchange with metal cations present in the leachate. The released ammonium is then available for microbial consumption in a downgradient compartment. The regeneration process resulted in a slightly increased ammonium exchange capacity afterward. The described strategy throws a new light on sustainable use of sorption materials for in situ groundwater remediation, by avoiding the need for material replacement and the use of external chemical regenerants.

  14. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (∆ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus

  15. DNA sequence analysis by hybridization with oligonucleotide microchips : MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides.

    SciTech Connect

    Stomakhin, A. A.; Vasiliskov, V. A.; Timofeev, E.; Schulga, D.; Cotter, R. J.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Moscow Inst. of Physics and Technology; Middle Atlantic Mass Spectrometry Lab.; Johns Hopkins Univ. School of Medicine

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15{sup o}C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.

  16. DNA sequence analysis by hybridization with oligonucleotide microchips: MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides

    PubMed Central

    Stomakhin, Andrey A.; Vasiliskov, Vadim A.; Timofeev, Edward; Schulga, Dennis; Cotter, Richard J.; Mirzabekov, Andrei D.

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA–8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10–15°C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA–8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed. PMID:10666462

  17. Biological Effects of c-Mer Receptor Tyrosine Kinase in Hematopoietic Cells Depend on the Grb2 Binding Site in the Receptor and Activation of NF-κB

    PubMed Central

    Georgescu, Maria-Magdalena; Kirsch, Kathrin H.; Shishido, Tomoyuki; Zong, Chen; Hanafusa, Hidesaburo

    1999-01-01

    The c-Mer receptor tyrosine kinase (RTK) is most closely related to chicken c-Eyk and belongs to the Axl RTK subfamily. Although not detected in normal lymphocytes, c-Mer is expressed in B- and T-cell leukemia cell lines, suggesting an association with lymphoid malignancies. To gain an understanding of the role of this receptor in lymphoid cells, we expressed in murine interleukin-3 (IL-3)-dependent Ba/F3 pro-B-lymphocyte cells a constitutively active receptor, CDMer, formed from the CD8 extracellular domain and the c-Mer intracellular domain. Cells transfected with a plasmid encoding the CDMer receptor became IL-3 independent. When tyrosine (Y)-to-phenylalanine (F) mutations were introduced into c-Mer, only the Y867 change significantly reduced the IL-3-independent cell proliferation. The Y867 residue in the CDMer receptor mediated the binding of Grb2, which recruited the p85 phosphatidylinositol 3-kinase (PI 3-kinase). Despite the difference in promotion of proliferation, both the CDMer and mutant F867 receptors activated Erk in transfected cells. On the other hand, we found that both transcriptional activation of NF-κB and activation of PI 3-kinase were significantly suppressed with the F867 mutant receptor, suggesting that the activation of antiapoptotic pathways is the major mechanism for the observed phenotypic difference. Consistent with this notion, apoptosis induced by IL-3 withdrawal was strongly prevented by CDMer but not by the F867 mutant receptor. PMID:9891051

  18. Microbial pesticides

    Treesearch

    Michael L. McManus

    1991-01-01

    Interest in the use of microbial pesticides has intensified because of public concern about the safety of chemical pesticides and their impact in the environment. Characteristics of the five groups of entomopathogens that have potential as microbial pesticides are briefly discussed and an update is provided on research and development activities underway to enhance the...

  19. Microbial pathways for the mobilization of mercury as Hg(O) in anoxic subsurface environments

    SciTech Connect

    Barkay, Tamar

    2005-06-01

    The goal of our project which was initiated in June 2005 is focused on the presence of merA in microbial communities of anoxic environments and the effect of anaerobic respiratory pathways on MR expression and activities. The following progress has been made to date: PCR primers were designed to span the known phylogenetic range of merA genes of Gram-negative bacteria. In control experiments, these primers successfully amplified a 288 bp region at the 3? end of previously characterized merA genes from Shewanella putrefaciens pMERPH, Acidithiobacillus ferrooxidans, Pseudomonas stutzeri pPB, Tn5041, Pseudomonas sp. K-62, and Serratia marcescens pDU1358.

  20. Worry experienced during the 2015 Middle East Respiratory Syndrome (MERS) pandemic in Korea

    PubMed Central

    Ro, Jun-Soo; Lee, Jin-Seok; Kang, Sung-Chan; Jung, Hye-Min

    2017-01-01

    Background Korea failed in its risk communication during the early stage of the Middle East Respiratory Syndrome (MERS) outbreak; consequently, it faced difficulties in managing MERS, while disease-related worry increased. Disease-related worry can help disease prevention and management, but can also have a detrimental effect. This study measured the overall level of disease-related worry during the MERS outbreak period in Korea and the influencing factors and levels of disease-related worry during key outbreak periods. Methods The cross-sectional survey included 1,000 adults who resided in Korea. An ordinal logistic regression was performed for the overall level of MERS-related worry, and influencing factors of worry were analyzed. A reliability test was performed on the levels of MERS-related worry during key outbreak periods. Results The overall level of MERS-related worry was 2.44. Multivariate analysis revealed that women and respondents w very poor subjective health status had higher levels of worry. Respondents with very high stress in daily life had higher levels of worry than those who reported having little stress. The reliability test results on MERS-related worry scores during key outbreak periods showed consistent scores during each period. Conclusion Level of worry increased in cases having higher perceived susceptibility and greater trust in informal information, while initial stage of outbreak was closely associated with that at later stages. These findings suggest the importance of managing the level of worry by providing timely and accurate disease-related information during the initial stage of disease outbreak. PMID:28273131

  1. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study.

    PubMed

    Ouellet, Marise; Doucet, Jean-Daniel; Voyer, Normand; Auger, Michèle

    2007-06-05

    We have investigated the interaction between a synthetic amphipathic 14-mer peptide and model membranes by solid-state NMR. The 14-mer peptide is composed of leucines and phenylalanines modified by the addition of crown ethers and forms a helical amphipathic structure in solution and bound to lipid membranes. To shed light on its membrane topology, 31P, 2H, 15N solid-state NMR experiments have been performed on the 14-mer peptide in interaction with mechanically oriented bilayers of dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), and dipalmitoylphosphatidylcholine (DPPC). The 31P, 2H, and 15N NMR results indicate that the 14-mer peptide remains at the surface of the DLPC, DMPC, and DPPC bilayers stacked between glass plates and perturbs the lipid orientation relative to the magnetic field direction. Its membrane topology is similar in DLPC and DMPC bilayers, whereas the peptide seems to be more deeply inserted in DPPC bilayers, as revealed by the greater orientational and motional disorder of the DPPC lipid headgroup and acyl chains. 15N{31P} rotational echo double resonance experiments have also been used to measure the intermolecular dipole-dipole interaction between the 14-mer peptide and the phospholipid headgroup of DMPC multilamellar vesicles, and the results indicate that the 14-mer peptide is in contact with the polar region of the DMPC lipids. On the basis of these studies, the mechanism of membrane perturbation of the 14-mer peptide is associated to the induction of a positive curvature strain induced by the peptide lying on the bilayer surface and seems to be independent of the bilayer hydrophobic thickness.

  2. Biomolecular Mechanisms of Mercury Transfers and Transformations by Proteins of the Mer Operon

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Hong, B.; Nauss, R.; Momany, C.; Summers, A. O.; Feng, X.; Harwood, I.; Stroud, R.

    2008-12-01

    Aerobic bacteria exhibiting resistance to the toxic effects of Hg(II) and organomercurials [RHg(I), e.g. MeHg(I)] and are widely found in both pristine and mercury contaminated environments. Resistance, afforded by a plasmid- or transposon-associated mer operon, involves an unusual pathway where Hg(II) and organomercurials [RHg(I)] undergo facilitated entry into the bacterial cytoplasm via an integral membrane transport protein (MerT) and are then "detoxified" by the concerted effort of two enzymes, organomercurial lyase (MerB), which catalyzes dealkylation (i.e., demethylation) of RHg(I) to Hg(II) and a hydrocarbon, and mercuric ion reductase (MerA), which catalyzes reduction of Hg(II) to Hg(0) as the ultimate detoxification for the organism. With a widespread distribution, these bacterial transformations play a significant role in the fate of mercury in the environment. Our focus is on elucidation of the molecular mechanisms for the transport and catalytic transformations of RHg(I) and Hg(II) by these proteins and the factors that influence the overall efficiency of the process. Current efforts are focused primarily on elucidating details of RHg(I) binding and dealkylation by MerB as well as the mechanism for transfer of the Hg(II) product to MerA. Key findings include the demonstration of a non-cysteine residue as essential for the catalytic activity and demonstration that direct transfer of Hg(II) to MerA proceeds more rapidly and more completely than transfer to small MW thiols such as cysteines or glutathione. Reuslts of these studies as well as an overview of our current understanding of the whole system will be presented.

  3. Characterizing the empirical distribution of prokaryotic genome n-mers in the presence of nullomers.

    PubMed

    Tabb, Loni Philip; Zhao, Wei; Huang, Jingyu; Rosen, Gail L

    2014-10-01

    Characterizing the empirical distribution of the frequency of n-mers is a vital step in understanding the entire genome. This will allow for researchers to examine how complex the genome really is, and move beyond simple, traditional modeling frameworks that are often biased in the presence of abundant and/or extremely rare words. We hypothesize that models based on the negative binomial distribution and its zero-inflated counterpart will characterize the n-mer distributions of genomes better than the Poisson. Our study examined the empirical distribution of the frequency of n-mers (6 ≤ n ≤ 11) in 2,199 genomes. We considered four distributions: Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial (ZINB). The number of genomes that have nullomers in 6-, 7-, and 8-mers was 150, 602 and 2,012, respectively, whereas all of the genomes for the 9-, 10-, and 11-mers had nullomers. In each n-mer considered, the negative binomial model performed the best for at least 93% of the 2,199 genomes; however, a small percentage (i.e., <7%) of the genomes did prefer the ZINB. The negative binomial and zero-inflation distributions extend the traditional Poisson setting and are more flexible in handling overdispersion that can be caused by an increase in nullomers. In an effort to characterize the distribution of the frequency of n-mers, researchers should also consider other discrete distributions that are more flexible and adjust for possible overdispersion.

  4. Changes in optical characteristics of surface microlayers hint to photochemically and microbially-mediated DOM turnover in the upwelling region off Peru

    NASA Astrophysics Data System (ADS)

    Galgani, L.; Engel, A.

    2015-12-01

    The coastal upwelling system off Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. During the Meteor (M91) cruise to the Peruvian upwelling system in 2012, we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like Chromophoric Dissolved Organic Matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. In order to understand organic matter cycling in surface films, we analyzed SML and underlying water samples at 38 stations determining DOC concentration, amino acid composition, marine gels, CDOM and bacterial and phytoplankton abundance as indicators of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and Excitation-Emission Matrix fluorescence (EEMs), which allow to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. We identified five fluorescent components of the CDOM pool, of which two had excitation/emission characteristics of protein-like fluorophores and were highly enriched in the SML. CDOM composition and changes in spectral slope properties suggested a local microbial release of HMW DOM directly in the SML as a response to light exposure in this extreme environment. Our results suggest that microbial and photochemical processes play an important role for the production, alteration and loss of optically active substances in the SML.

  5. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Changes in optical characteristics of surface microlayers hint to photochemically and microbially mediated DOM turnover in the upwelling region off the coast of Peru

    NASA Astrophysics Data System (ADS)

    Galgani, Luisa; Engel, Anja

    2016-04-01

    The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4° S, and 82.0 to 77.5° W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15° S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local

  7. Microbial DNA records historical delivery of anthropogenic mercury

    PubMed Central

    Poulain, Alexandre J; Aris-Brosou, Stéphane; Blais, Jules M; Brazeau, Michelle; Keller, Wendel (Bill); Paterson, Andrew M

    2015-01-01

    Mercury (Hg) is an anthropogenic pollutant that is toxic to wildlife and humans, but the response of remote ecosystems to globally distributed Hg is elusive. Here, we use DNA extracted from a dated sediment core to infer the response of microbes to historical Hg delivery. We observe a significant association between the mercuric reductase gene (merA) phylogeny and the timing of Hg deposition. Using relaxed molecular clock models, we show a significant increase in the scaled effective population size of the merA gene beginning ~200 years ago, coinciding with the Industrial Revolution and a coincident strong signal for positive selection acting on residues in the terminal region of the mercuric reductase. This rapid evolutionary response of microbes to changes in the delivery of anthropogenic Hg indicates that microbial genomes record ecosystem response to pollutant deposition in remote regions. PMID:26057844

  8. Serological Evidence of MERS-CoV Antibodies in Dromedary Camels (Camelus dromedaries) in Laikipia County, Kenya.

    PubMed

    Deem, Sharon L; Fèvre, Eric M; Kinnaird, Margaret; Browne, A Springer; Muloi, Dishon; Godeke, Gert-Jan; Koopmans, Marion; Reusken, Chantal B

    2015-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently identified virus causing severe viral respiratory illness in people. Little is known about the reservoir in the Horn of Africa. In Kenya, where no human MERS cases have been reported, our survey of 335 dromedary camels, representing nine herds in Laikipia County, showed a high seroprevalence (46.9%) to MERS-CoV antibodies. Between herd differences were present (14.3%- 82.9%), but was not related to management type or herd isolation. Further research should focus on identifying similarity between MERS-CoV viral isolates in Kenya and clinical isolates from the Middle East and elsewhere.

  9. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus

    PubMed Central

    Rana, Satshil B.; Zadlock, Frank J.; Zhang, Ziping; Murphy, Wyatt R.; Bentivegna, Carolyn S.

    2016-01-01

    Background De novo assembly of non-model organism’s transcriptomes has recently been on the rise in concert with the number of de novo transcriptome assembly software programs. There is a knowledge gap as to what assembler software or k-mer strategy is best for construction of an optimal de novo assembly. Additionally, there is a lack of consensus on which evaluation metrics should be used to assess the quality of de novo transcriptome assemblies. Result Six different assembly strategies were evaluated from four different assemblers. The Trinity assembly was used in its default 25 single k-mer value while Bridger, Oases, and SOAPdenovo-Trans were performed with multiple k-mer strategies. Bridger, Oases, and SOAPdenovo-Trans used a small multiple k-mer (SMK) strategy consisting of the k-mer lengths of 21, 25, 27, 29, 31, and 33. Additionally, Oases and SOAPdenovo-Trans were performed using a large multiple k-mer (LMK) strategy consisting of k-mer lengths of 25, 35, 45, 55, 65, 75, and 85. Eleven metrics were used to evaluate each assembly strategy including three genome related evaluation metrics (contig number, N50 length, Contigs >1 kb, reads) and eight transcriptome evaluation metrics (mapped back to transcripts (RMBT), number of full length transcripts, number of open reading frames, Detonate RSEM-EVAL score, and percent alignment to the southern platyfish, Amazon molly, BUSCO and CEGMA databases). The assembly strategy that performed the best, that is it was within the top three of each evaluation metric, was the Bridger assembly (10 of 11) followed by the Oases SMK assembly (8 of 11), the Oases LMK assembly (6 of 11), the Trinity assembly (4 of 11), the SOAP LMK assembly (4 of 11), and the SOAP SMK assembly (3 of 11). Conclusion This study provides an in-depth multi k-mer strategy investigation concluding that the assembler itself had a greater impact than k-mer size regardless of the strategy employed. Additionally, the comprehensive performance

  10. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus.

    PubMed

    Rana, Satshil B; Zadlock, Frank J; Zhang, Ziping; Murphy, Wyatt R; Bentivegna, Carolyn S

    2016-01-01

    De novo assembly of non-model organism's transcriptomes has recently been on the rise in concert with the number of de novo transcriptome assembly software programs. There is a knowledge gap as to what assembler software or k-mer strategy is best for construction of an optimal de novo assembly. Additionally, there is a lack of consensus on which evaluation metrics should be used to assess the quality of de novo transcriptome assemblies. Six different assembly strategies were evaluated from four different assemblers. The Trinity assembly was used in its default 25 single k-mer value while Bridger, Oases, and SOAPdenovo-Trans were performed with multiple k-mer strategies. Bridger, Oases, and SOAPdenovo-Trans used a small multiple k-mer (SMK) strategy consisting of the k-mer lengths of 21, 25, 27, 29, 31, and 33. Additionally, Oases and SOAPdenovo-Trans were performed using a large multiple k-mer (LMK) strategy consisting of k-mer lengths of 25, 35, 45, 55, 65, 75, and 85. Eleven metrics were used to evaluate each assembly strategy including three genome related evaluation metrics (contig number, N50 length, Contigs >1 kb, reads) and eight transcriptome evaluation metrics (mapped back to transcripts (RMBT), number of full length transcripts, number of open reading frames, Detonate RSEM-EVAL score, and percent alignment to the southern platyfish, Amazon molly, BUSCO and CEGMA databases). The assembly strategy that performed the best, that is it was within the top three of each evaluation metric, was the Bridger assembly (10 of 11) followed by the Oases SMK assembly (8 of 11), the Oases LMK assembly (6 of 11), the Trinity assembly (4 of 11), the SOAP LMK assembly (4 of 11), and the SOAP SMK assembly (3 of 11). This study provides an in-depth multi k-mer strategy investigation concluding that the assembler itself had a greater impact than k-mer size regardless of the strategy employed. Additionally, the comprehensive performance transcriptome evaluation metrics utilized

  11. MER Atmospheric Results: Pancam and Mini-TES

    NASA Astrophysics Data System (ADS)

    Wolff, M. J.

    2004-12-01

    Although at first glance, the Mars Exploration Rover (MER) payload may be perceived as primarily suited to geological investigation, it is in fact quite well-suited to carry out a robust and dynamic program of atmospheric monitoring and characterization with a particular emphasis on the planetary boundary layer. More to the point, it has been doing so at both the Gusev and Meridiani locations for more than 200 days. Ongoing atmospheric observations include (1) periodic thermal infrared spectra of the Martian sky by the Miniature Thermal Emission Spectrometer (Mini-TES). The actual sequences consist of both standard 200-second integrations and long ``stares'' of up to (almost) an hour. These data are highly diagnostic of vertical thermal structure (from 10 meters to 3-5 kilometers), aerosol optical depth along with particle size, and under the right conditions, the water column. (2) direct solar imaging using the Panoramic Camera (Pancam) and 440/880 nm + neutral density (ND5) filters, providing accurate measurement visible optical depths. (3) near-sun and ``sky-arc'' sequences using the full suite of geological filters, intended to capture the forward-diffraction peak and the phase function characteristics of the aerosol particles. (4) carbon dioxide (15 micrometer band) profiling of the Mini-TES surface observations, providing an average near-surface (1 m) air temperature. The above activities have been (and will continue to be) used to characterize diurnal and secular temporal trends and to examine the spatial variability of such trends. In addition, serendipity has provided the unique opportunities of watching the decay of a moderate dust storm from two widely-separated sites as well as of multiple simultaneous orbiter-rover observing ``campaigns.'' The latter includes thus far the Mars Express and Mars Global Surveyor over-flights. During our presentation, we will summarize the atmospheric results obtained and analyzed through the end of the first 200 days of

  12. Reconciling Radar Remote-Sensing with MER Ground Truth

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Golombek, M. P.

    2004-11-01

    The Goldstone Solar System Radar (GSSR) carried out Earth-based delay-Doppler radar observations of Mars with four receiving stations during the oppositions in 2001 and 2003, supporting Mars Exploration Rover landing site selection. This interferometric technique demonstrated radar mapping of Mars with a 5 km to 10 km spatial resolution. The data for both Gusev Crater and Meridiani Planum indicated smooth terrains, consistent with, but somewhat different from, previous lower spatial resolution Earth-based radar data. Now, with quantitative ground-truth roughness measurements by Spirit and Opportunity, along with THEMIS visible camera images, we can begin to reconcile these differing remote-sensing observations. For Gusev crater, older λ =3.5 cm wavelength data did not directly sample the crater but were of nearby terrain of the same map unit as Gusev's floor. The reported Hagfors scattering model parameters were θ rms=4.7±1.6 degrees, and ρ 0=0.04±0.02. These quasi-specular parameters refer to roughness in the range 10 λ to 100 λ . The higher resolution data from 2003, averaged over the whole MER Gusev ellipse were θ rms=1.3+1.0-0.5 degrees and ρ 0=0.02±0.01. The ρ 0 for the 5 km pixel where Spirit landed was like the average, but θ rms=1.6+1.0-0.5. The roughness derived from stereo images from Spirits first 30 sols, available on the PDS, implies near-nadir scattering from 3 m scales is dominant. We examine the spatial coverage of the older data, as well as other radar data to reconcile the differing observations. For Meridiani, GSSR made direct observations at 3.5 cm at both 5 km resolution and at 10×150 km resolution in 2001. We will carry out our comparative analyses once rover navigation data beyond Eagle crater, obtained after Sol 58, are released to the PDS, and expect to have them for presentation at the meeting.

  13. Infection with MERS-CoV causes lethal pneumonia in the common marmoset.

    PubMed

    Falzarano, Darryl; de Wit, Emmie; Feldmann, Friederike; Rasmussen, Angela L; Okumura, Atsushi; Peng, Xinxia; Thomas, Matthew J; van Doremalen, Neeltje; Haddock, Elaine; Nagy, Lee; LaCasse, Rachel; Liu, Tingting; Zhu, Jiang; McLellan, Jason S; Scott, Dana P; Katze, Michael G; Feldmann, Heinz; Munster, Vincent J

    2014-08-01

    The availability of a robust disease model is essential for the development of countermeasures for Middle East respiratory syndrome coronavirus (MERS-CoV). While a rhesus macaque model of MERS-CoV has been established, the lack of uniform, severe disease in this model complicates the analysis of countermeasure studies. Modeling of the interaction between the MERS-CoV spike glycoprotein and its receptor dipeptidyl peptidase 4 predicted comparable interaction energies in common marmosets and humans. The suitability of the marmoset as a MERS-CoV model was tested by inoculation via combined intratracheal, intranasal, oral and ocular routes. Most of the marmosets developed a progressive severe pneumonia leading to euthanasia of some animals. Extensive lesions were evident in the lungs of all animals necropsied at different time points post inoculation. Some animals were also viremic; high viral loads were detected in the lungs of all infected animals, and total RNAseq demonstrated the induction of immune and inflammatory pathways. This is the first description of a severe, partially lethal, disease model of MERS-CoV, and as such will have a major impact on the ability to assess the efficacy of vaccines and treatment strategies as well as allowing more detailed pathogenesis studies.

  14. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers

    PubMed Central

    Marçais, Guillaume; Kingsford, Carl

    2011-01-01

    Motivation: Counting the number of occurrences of every k-mer (substring of length k) in a long string is a central subproblem in many applications, including genome assembly, error correction of sequencing reads, fast multiple sequence alignment and repeat detection. Recently, the deep sequence coverage generated by next-generation sequencing technologies has caused the amount of sequence to be processed during a genome project to grow rapidly, and has rendered current k-mer counting tools too slow and memory intensive. At the same time, large multicore computers have become commonplace in research facilities allowing for a new parallel computational paradigm. Results: We propose a new k-mer counting algorithm and associated implementation, called Jellyfish, which is fast and memory efficient. It is based on a multithreaded, lock-free hash table optimized for counting k-mers up to 31 bases in length. Due to their flexibility, suffix arrays have been the data structure of choice for solving many string problems. For the task of k-mer counting, important in many biological applications, Jellyfish offers a much faster and more memory-efficient solution. Availability: The Jellyfish software is written in C++ and is GPL licensed. It is available for download at http://www.cbcb.umd.edu/software/jellyfish. Contact: gmarcais@umd.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21217122

  15. Tomas Tranströmer's stroke of genius: language but no words.

    PubMed

    Iniesta, Iván

    2013-01-01

    In 1990, the widely acclaimed Swedish poet Tomas Tranströmer lost his speech and the ability to use his right hand as a result of a stroke. As if anticipating his own fate, in 1974, he referred in his longest poem Baltics the story of the Russian composer Vissarion Shebalin who suffered the same symptoms as Tranströmer following a brain bleed: "Then, cerebral hemorrhage: paralysis on the right side with aphasia." An amateur pianist himself, Tranströmer carried on playing left-handed piano pieces after the stroke. In spite of a severe nonfluent dysphasia with dysgraphia, Tranströmer kept producing a poetic language of the highest caliber in accordance with his 1979 no less prophetic verse "language but no words." And through music and poetry, overcame the great communication barriers imposed by a large dominant hemispheric stroke. A nonprolific writer before the stroke, after it Tranströmer became disproportionately brief compared to his prestroke production, confining most of his poetry to the agrammatical and telegraphic haiku style.

  16. Evolutionary mechanism and biological functions of 8-mers containing CG dinucleotide in yeast.

    PubMed

    Zheng, Yan; Li, Hong; Wang, Yue; Meng, Hu; Zhang, Qiang; Zhao, Xiaoqing

    2017-02-09

    The rules of k-mer non-random usage and the biological functions are worthy of special attention. Firstly, the article studied human 8-mer spectra and found that only the spectra of cytosine-guanine (CG) dinucleotide classification formed independent unimodal distributions when the 8-mers were classified into three subsets under 16 dinucleotide classifications. Secondly, the distribution rules were reproduced by other seven species including yeast, which showed that the evolution phenomenon had species universality. It followed that we proposed two theoretical conjectures: (1) CG1 motifs (8-mers including 1 CG) are the nucleosome-binding motifs. (2) CG2 motifs (8-mers including two or more than two CG) are the modular units of CpG islands. Our conjectures were confirmed in yeast by the following results: a maximum of average area under the receiver operating characteristic (AUC) resulted from CG1 information during nucleosome core sequences, and linker sequences were distinguished by three CG subsets; there was a one-to-one relationship between abundant CG1 signal regions and histone positions; the sequence changing of squeezed nucleosomes was relevant with the strength of CG1 signals; and the AUC value of 0.986 was based on CG2 information when CpG islands and non-CpG islands were distinguished by the three CG subsets.

  17. KMC 2: fast and resource-frugal k-mer counting.

    PubMed

    Deorowicz, Sebastian; Kokot, Marek; Grabowski, Szymon; Debudaj-Grabysz, Agnieszka

    2015-05-15

    Building the histogram of occurrences of every k-symbol long substring of nucleotide data is a standard step in many bioinformatics applications, known under the name of k-mer counting. Its applications include developing de Bruijn graph genome assemblers, fast multiple sequence alignment and repeat detection. The tremendous amounts of NGS data require fast algorithms for k-mer counting, preferably using moderate amounts of memory. We present a novel method for k-mer counting, on large datasets about twice faster than the strongest competitors (Jellyfish 2, KMC 1), using about 12 GB (or less) of RAM. Our disk-based method bears some resemblance to MSPKmerCounter, yet replacing the original minimizers with signatures (a carefully selected subset of all minimizers) and using (k, x)-mers allows to significantly reduce the I/O and a highly parallel overall architecture allows to achieve unprecedented processing speeds. For example, KMC 2 counts the 28-mers of a human reads collection with 44-fold coverage (106 GB of compressed size) in about 20 min, on a 6-core Intel i7 PC with an solid-state disk. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Recombinant Receptor-Binding Domains of Multiple Middle East Respiratory Syndrome Coronaviruses (MERS-CoVs) Induce Cross-Neutralizing Antibodies against Divergent Human and Camel MERS-CoVs and Antibody Escape Mutants.

    PubMed

    Tai, Wanbo; Wang, Yufei; Fett, Craig A; Zhao, Guangyu; Li, Fang; Perlman, Stanley; Jiang, Shibo; Zhou, Yusen; Du, Lanying

    2017-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) binds to cellular receptor dipeptidyl peptidase 4 (DPP4) via the spike (S) protein receptor-binding domain (RBD). The RBD contains critical neutralizing epitopes and serves as an important vaccine target. Since RBD mutations occur in different MERS-CoV isolates and antibody escape mutants, cross-neutralization of divergent MERS-CoV strains by RBD-induced antibodies remains unknown. Here, we constructed four recombinant RBD (rRBD) proteins with single or multiple mutations detected in representative human MERS-CoV strains from the 2012, 2013, 2014, and 2015 outbreaks, respectively, and one rRBD protein with multiple changes derived from camel MERS-CoV strains. Like the RBD of prototype EMC2012 (EMC-RBD), all five RBDs maintained good antigenicity and functionality, the ability to bind RBD-specific neutralizing monoclonal antibodies (MAbs) and the DPP4 receptor, and high immunogenicity, able to elicit S-specific antibodies. They induced potent neutralizing antibodies cross-neutralizing 17 MERS pseudoviruses expressing S proteins of representative human and camel MERS-CoV strains identified during the 2012-2015 outbreaks, 5 MAb escape MERS-CoV mutants, and 2 live human MERS-CoV strains. We then constructed two RBDs mutated in multiple key residues in the receptor-binding motif (RBM) of RBD and demonstrated their strong cross-reactivity with anti-EMC-RBD antibodies. These RBD mutants with diminished DPP4 binding also led to virus attenuation, suggesting that immunoevasion after RBD immunization is accompanied by loss of viral fitness. Therefore, this study demonstrates that MERS-CoV RBD is an important vaccine target able to induce highly potent and broad-spectrum neutralizing antibodies against infection by divergent circulating human and camel MERS-CoV strains.

  19. An approach to mitigating soil CO2 emission by biochemically inhibiting cellulolytic microbial populations through mediation via the medicinal herb Isatis indigotica

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Sheng; Chen, Su-Yun; Li, Ji; Liu, Dong-Yang; Zhou, Ji; Xu, Ya; Shang, Xiao-Xia; Wei, Dong-yang; Yu, Lu-ji; Fang, Xiao-hang; Li, Shun-yi; Wang, Ke-ke

    2017-06-01

    Greenhouse gases (GHGs, particularly carbon dioxide (CO2)) emissions from soil under wheat production are a significant source of agricultural carbon emissions that have not been mitigated effectively. A field experiment and a static incubation study in a lab were conducted to stimulate wheat growth and investigate its potential to reduce CO2 emissions from soil through intercropping with a traditional Chinese medicinal herb called Isatis indigotica. This work was conducted by adding I. indigotica root exudates based on the quantitative real-time PCR (qPCR) analysis of the DNA copy number of the rhizosphere or bulk soil microbial populations. This addition was performed in relation to the CO2 formation by cellulolytic microorganisms (Penicillium oxalicum, fungi and Ruminococcus albus) to elucidate the microbial ecological basis for the molecular mechanism that decreases CO2 emissions from wheat fields using I. indigotica. The results showed that the panicle weight and full grains per panicle measured through intercropping with I. indigotica (NPKWR) increased by 39% and 28.6%, respectively, compared to that of the CK (NPKW). Intercropping with I. indigotica significantly decreased the CO2 emissions from soil under wheat cultivation. Compared with CK, the total CO2 emission flux during the wheat growth period in the I. indigotica (NPKWR) intercropping treatment decreased by 29.26%. The intensity of CO2 emissions per kg of harvested wheat grain declined from 7.53 kg CO2/kg grain in the NPKW (CK) treatment to 5.55 kg CO2/kg grain in the NPKWR treatment. The qPCR analysis showed that the DNA copy number of the microbial populations of cellulolytic microorganisms (P. oxalicum, fungi and R. albus) in the field rhizosphere around I. indigotica or in the bulk soil under laboratory incubation was significantly lower than that of CK. This finding indicated that root exudates from I. indigotica inhibited the activity and number of cellulolytic microbial populations, which led

  20. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  1. Design and Performance of the MER (Mars Exploration Rovers) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Ewell, Richard C.; Hoskin, Julie J.

    2005-01-01

    The Mars Exploration Rovers (MER) program posed a significant engineering and technology challenge. Now that the Rovers have operated beyond their original design life of three months by nearly a factor of four it is clear that the challenge was met and far exceeded. A key to the success of MER has been the enhanced power provided by the cruise and Rover solar arrays. Benefiting from a nearly 50% improvement in cell efficiency compared to the single junction GaAs cells used on Pathfinder, the MER designs were subject to many constraints both in design and in operation. These constraints included limited available panel area, changing illumination levels and temperatures, and variable shadowing, atmospheric conditions and dust accumulation for the rovers. This paper will discuss those constraints and their impact on the design. In addition, flight data will be provided to assess the performance achieved during the mission.

  2. Dynamical transmission model of MERS-CoV in two areas

    NASA Astrophysics Data System (ADS)

    Yong, Benny; Owen, Livia

    2016-02-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a disease first reported in Saudi Arabia in 2012 and it can be transmitted from human to human. This disease has spread to several other countries, most confirmed cases have displayed symptoms of severe acute respiratory illness and many of these patients have died. This research is aimed to construct a mathematical model for the transmission of MERS-CoV in two areas by separating the human population into two groups; susceptible and infectious groups. The dynamics of the disease is studied by a compartmental model involving ordinary differrential equations. The basic reproductive number of this disease is discussed to control the outbreak of this disease. Sensitivity analysis of this model is performed to determine the relative importance of the model parameters to the MERS-CoV transmission.

  3. Simrank: Rapid and sensitive general-purpose k-mer search tool

    SciTech Connect

    DeSantis, T.Z.; Keller, K.; Karaoz, U.; Alekseyenko, A.V; Singh, N.N.S.; Brodie, E.L; Pei, Z.; Andersen, G.L; Larsen, N.

    2011-04-01

    Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project (http://nihroadmap.nih.gov/hmp). Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity.

  4. Identifying Monoclonal Antibodies that Potently Inhibit MERS-CoV | Center for Cancer Research

    Cancer.gov

    The Middle East respiratory syndrome coronavirus (MERS-CoV), first isolated in September 2012, infects cells lining the human airway, causing severe flu-like symptoms that, in some cases, lead to death. As of July 2, 2014, 824 confirmed cases of MERS-CoV infection, including at least 286 related deaths, have been reported to the World Health Organization. While there are currently no effective therapies against the virus, monoclonal antibodies (MAbs) may be a promising candidate. Having previously developed MAbs against other viruses, including the related severe acute respiratory syndrome coronavirus or SARS-CoV, Dimiter Dimitrov, Ph.D., of CCR’s Laboratory of Experimental Immunology (LEI), and his colleagues decided to pan a library of antigen binding fragments (Fab) for activity against MERS-CoV.

  5. A parasite-derived 68-mer peptide ameliorates autoimmune disease in murine models of Type 1 diabetes and multiple sclerosis

    PubMed Central

    Lund, Maria E.; Greer, Judith; Dixit, Aakanksha; Alvarado, Raquel; McCauley-Winter, Padraig; To, Joyce; Tanaka, Akane; Hutchinson, Andrew T.; Robinson, Mark W.; Simpson, Ann M.; O’Brien, Bronwyn A.; Dalton, John P.; Donnelly, Sheila

    2016-01-01

    Helminth parasites secrete molecules that potently modulate the immune responses of their hosts and, therefore, have potential for the treatment of immune-mediated human diseases. FhHDM-1, a 68-mer peptide secreted by the helminth parasite Fasciola hepatica, ameliorated disease in two different murine models of autoimmunity, type 1 diabetes and relapsing-remitting immune-mediated demyelination. Unexpectedly, FhHDM-1 treatment did not affect the proliferation of auto-antigen specific T cells or their production of cytokines. However, in both conditions, the reduction in clinical symptoms was associated with the absence of immune cell infiltrates in the target organ (islets and the brain tissue). Furthermore, after parenteral administration, the FhHDM-1 peptide interacted with macrophages and reduced their capacity to secrete pro-inflammatory cytokines, such as TNF and IL-6. We propose this inhibition of innate pro-inflammatory immune responses, which are central to the initiation of autoimmunity in both diseases, prevented the trafficking of autoreactive lymphocytes from the periphery to the site of autoimmunity (as opposed to directly modulating their function per se), and thus prevented tissue destruction. The ability of FhHDM-1 to modulate macrophage function, combined with its efficacy in disease prevention in multiple models, suggests that FhHDM-1 has considerable potential as a treatment for autoimmune diseases. PMID:27883079

  6. Value, market preferences and trade of Beche-de-mer from Pacific Island sea cucumbers.

    PubMed

    Purcell, Steven W

    2014-01-01

    Market preferences of natural resources contribute to shape their exploitation and production. Beche-de-mer, the product after gutting, cooking, salting and drying sea cucumbers, is exported worldwide to Asian dried seafood markets. A better understanding of the trade, value and market preferences of Pacific island beche-de-mer could identify critical postharvest processing techniques and management strategies for fisheries and aquaculture. Data were collected on export prices and trade of beche-de-mer from Kiribati, Fiji, Tonga and New Caledonia, and the selling prices, respective sizes and organoleptic properties of the products in stores in China. Export prices varied considerably within and among the four countries and low-value species were the most exported by volume. Most of the beche-de-mer from the four Pacific islands is exported to Hong Kong, where quality products are sold and others are distributed to mainland China. Prices of the beche-de-mer in Chinese stores varied up to ten-fold and were mostly influenced by species, body size and, to a lesser extent, physical damage to the products. Market prices across species (averaging US$15-385 kg-1) appear to have mostly increased six- to twelve-fold over the past decade. The data allude that fisheries for Holothuria scabra, H. lessoni, H. fuscogilva, H. whitmaei and Thelenota ananas should be most carefully managed because they were the highest-value species and under greatest demand. The relationships between size of beche-de-mer and sale price were species specific and highly varied. This study also highlights the need for better regulations and/or enforcement of minimum size limits in sea cucumber fisheries, which can help to maximise economic benefits of wild stocks.

  7. Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During a MERS-CoV Outbreak

    PubMed Central

    Khalid, Imran; Khalid, Tabindeh J.; Qabajah, Mohammed R.; Barnard, Aletta G.; Qushmaq, Ismael A.

    2016-01-01

    Objective Healthcare workers (HCWs) are at high risk of contracting Middle East respiratory syndrome coronavirus (MERS-CoV) during an epidemic. We explored the emotions, perceived stressors, and coping strategies of healthcare workers who worked during a MERS-CoV outbreak in our hospital. Design A cross-sectional descriptive survey design. Setting A tertiary care hospital. Participants HCWs (150) who worked in high risk areas during the April–May 2014 MERS-CoV outbreak that occurred in Jeddah, Saudi Arabia. Methods We developed and administered a “MERS-CoV staff questionnaire” to study participants. The questionnaire consisted of 5 sections with 72 questions. The sections evaluated hospital staffs emotions, perceived stressors, factors that reduced their stress, coping strategies, and motivators to work during future outbreaks. Responses were scored on a scale from 0–3. The varying levels of stress or effectiveness of measures were reported as mean and standard deviation, as appropriate. Results Completed questionnaires were returned by 117 (78%) of the participants. The results had many unique elements. HCWs ethical obligation to their profession pushed them to continue with their jobs. The main sentiments centered upon fear of personal safety and well-being of colleagues and family. Positive attitudes in the workplace, clinical improvement of infected colleagues, and stoppage of disease transmission among HCWs after adopting strict protective measures alleviated their fear and drove them through the epidemic. They appreciated recognition of their efforts by hospital management and expected similar acknowledgment, infection control guidance, and equipment would entice them to work during future epidemics. Conclusion The MERS-CoV outbreak was a distressing time for our staff. Hospitals can enhance HCWs experiences during any future MERS-CoV outbreak by focusing on the above mentioned aspects. PMID:26847480

  8. Value, Market Preferences and Trade of Beche-De-Mer from Pacific Island Sea Cucumbers

    PubMed Central

    Purcell, Steven W.

    2014-01-01

    Market preferences of natural resources contribute to shape their exploitation and production. Beche-de-mer, the product after gutting, cooking, salting and drying sea cucumbers, is exported worldwide to Asian dried seafood markets. A better understanding of the trade, value and market preferences of Pacific island beche-de-mer could identify critical postharvest processing techniques and management strategies for fisheries and aquaculture. Data were collected on export prices and trade of beche-de-mer from Kiribati, Fiji, Tonga and New Caledonia, and the selling prices, respective sizes and organoleptic properties of the products in stores in China. Export prices varied considerably within and among the four countries and low-value species were the most exported by volume. Most of the beche-de-mer from the four Pacific islands is exported to Hong Kong, where quality products are sold and others are distributed to mainland China. Prices of the beche-de-mer in Chinese stores varied up to ten-fold and were mostly influenced by species, body size and, to a lesser extent, physical damage to the products. Market prices across species (averaging US$15–385 kg−1) appear to have mostly increased six- to twelve-fold over the past decade. The data allude that fisheries for Holothuria scabra, H. lessoni, H. fuscogilva, H. whitmaei and Thelenota ananas should be most carefully managed because they were the highest-value species and under greatest demand. The relationships between size of beche-de-mer and sale price were species specific and highly varied. This study also highlights the need for better regulations and/or enforcement of minimum size limits in sea cucumber fisheries, which can help to maximise economic benefits of wild stocks. PMID:24736374

  9. Compact representation of k-mer de Bruijn graphs for genome read assembly

    PubMed Central

    2013-01-01

    Background Processing of reads from high throughput sequencing is often done in terms of edges in the de Bruijn graph representing all k-mers from the reads. The memory requirements for storing all k-mers in a lookup table can be demanding, even after removal of read errors, but can be alleviated by using a memory efficient data structure. Results The FM-index, which is based on the Burrows–Wheeler transform, provides an efficient data structure providing a searchable index of all substrings from a set of strings, and is used to compactly represent full genomes for use in mapping reads to a genome: the memory required to store this is in the same order of magnitude as the strings themselves. However, reads from high throughput sequences mostly have high coverage and so contain the same substrings multiple times from different reads. I here present a modification of the FM-index, which I call the kFM-index, for indexing the set of k-mers from the reads. For DNA sequences, this requires 5 bit of information for each vertex of the corresponding de Bruijn subgraph, i.e. for each different k−1-mer, plus some additional overhead, typically 0.5 to 1 bit per vertex, for storing the equivalent of the FM-index for walking the underlying de Bruijn graph and reproducing the actual k-mers efficiently. Conclusions The kFM-index could replace more memory demanding data structures for storing the de Bruijn k-mer graph representation of sequence reads. A Java implementation with additional technical documentation is provided which demonstrates the applicability of the data structure (http://folk.uio.no/einarro/Projects/KFM-index/). PMID:24152242

  10. Epigenomic k-mer dictionaries: shedding light on how sequence composition influences in vivo nucleosome positioning.

    PubMed

    Giancarlo, Raffaele; Rombo, Simona E; Utro, Filippo

    2015-09-15

    Information-theoretic and compositional analysis of biological sequences, in terms of k-mer dictionaries, has a well established role in genomic and proteomic studies. Much less so in epigenomics, although the role of k-mers in chromatin organization and nucleosome positioning is particularly relevant. Fundamental questions concerning the informational content and compositional structure of nucleosome favouring and disfavoring sequences with respect to their basic building blocks still remain open. We present the first analysis on the role of k-mers in the composition of nucleosome enriched and depleted genomic regions (NER and NDR for short) that is: (i) exhaustive and within the bounds dictated by the information-theoretic content of the sample sets we use and (ii) informative for comparative epigenomics. We analize four different organisms and we propose a paradigmatic formalization of k-mer dictionaries, providing two different and complementary views of the k-mers involved in NER and NDR. The first extends well known studies in this area, its comparative nature being its major merit. The second, very novel, brings to light the rich variety of k-mers involved in influencing nucleosome positioning, for which an initial classification in terms of clusters is also provided. Although such a classification offers many insights, the following deserves to be singled-out: short poly(dA:dT) tracts are reported in the literature as fundamental for nucleosome depletion, however a global quantitative look reveals that their role is much less prominent than one would expect based on previous studies. Dictionaries, clusters and Supplementary Material are available online at http://math.unipa.it/rombo/epigenomics/. simona.rombo@unipa.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Healthcare Workers Emotions, Perceived Stressors and Coping Strategies During a MERS-CoV Outbreak.

    PubMed

    Khalid, Imran; Khalid, Tabindeh J; Qabajah, Mohammed R; Barnard, Aletta G; Qushmaq, Ismael A

    2016-03-01

    Healthcare workers (HCWs) are at high risk of contracting Middle East respiratory syndrome coronavirus (MERS-CoV) during an epidemic. We explored the emotions, perceived stressors, and coping strategies of healthcare workers who worked during a MERS-CoV outbreak in our hospital. A cross-sectional descriptive survey design. A tertiary care hospital. HCWs (150) who worked in high risk areas during the April-May 2014 MERS-CoV outbreak that occurred in Jeddah, Saudi Arabia. We developed and administered a "MERS-CoV staff questionnaire" to study participants. The questionnaire consisted of 5 sections with 72 questions. The sections evaluated hospital staffs emotions, perceived stressors, factors that reduced their stress, coping strategies, and motivators to work during future outbreaks. Responses were scored on a scale from 0-3. The varying levels of stress or effectiveness of measures were reported as mean and standard deviation, as appropriate. Completed questionnaires were returned by 117 (78%) of the participants. The results had many unique elements. HCWs ethical obligation to their profession pushed them to continue with their jobs. The main sentiments centered upon fear of personal safety and well-being of colleagues and family. Positive attitudes in the workplace, clinical improvement of infected colleagues, and stoppage of disease transmission among HCWs after adopting strict protective measures alleviated their fear and drove them through the epidemic. They appreciated recognition of their efforts by hospital management and expected similar acknowledgment, infection control guidance, and equipment would entice them to work during future epidemics. The MERS-CoV outbreak was a distressing time for our staff. Hospitals can enhance HCWs experiences during any future MERS-CoV outbreak by focusing on the above mentioned aspects. © 2016 Marshfield Clinic.

  12. Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease

    SciTech Connect

    Johnson, Reed F.; Via, Laura E.; Kumar, Mia R.; Cornish, Joseph P.; Yellayi, Srikanth; Huzella, Louis; Postnikova, Elena; Oberlander, Nicholas; Bartos, Christopher; Ork, Britini L.; Mazur, Steven; Allan, Cindy; Holbrook, Michael R.; Solomon, Jeffrey; Johnson, Joshua C.; Pickel, James; Hensley, Lisa E.; Jahrling, Peter B.

    2015-11-15

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT), with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication. - Highlights: • Common marmosets infected with MERS-EMC and MERS-JOR did not develop lethal disease. • Infected subjects developed transient signs of clinical disease. • CT indicated few differences between the infected and control groups. • Marmosets do not faithfully replicate human MERS pathogenesis.

  13. 3B11-N, a monoclonal antibody against MERS-CoV, reduces lung pathology in rhesus monkeys following intratracheal inoculation of MERS-CoV Jordan-n3/2012

    SciTech Connect

    Johnson, Reed F.; Bagci, Ulas; Keith, Lauren; Tang, Xianchun; Mollura, Daniel J.; Zeitlin, Larry; Qin, Jing; Huzella, Louis; Bartos, Christopher J.; Bohorova, Natasha; Bohorov, Ognian; Goodman, Charles; Kim, Do H.; Paulty, Michael H.; Velasco, Jesus; Whaley, Kevin J.; Johnson, Joshua C.; Pettitt, James; Ork, Britini L.; Solomon, Jeffrey [Clinical Research Directorate and others

    2016-03-15

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) was identified in 2012 as the causative agent of a severe, lethal respiratory disease occurring across several countries in the Middle East. To date there have been over 1600 laboratory confirmed cases of MERS-CoV in 26 countries with a case fatality rate of 36%. Given the endemic region, it is possible that MERS-CoV could spread during the annual Hajj pilgrimage, necessitating countermeasure development. In this report, we describe the clinical and radiographic changes of rhesus monkeys following infection with 5×10{sup 6} PFU MERS-CoV Jordan-n3/2012. Two groups of NHPs were treated with either a human anti-MERS monoclonal antibody 3B11-N or E410-N, an anti-HIV antibody. MERS-CoV Jordan-n3/2012 infection resulted in quantifiable changes by computed tomography, but limited other clinical signs of disease. 3B11-N treated subjects developed significantly reduced lung pathology when compared to infected, untreated subjects, indicating that this antibody may be a suitable MERS-CoV treatment. - Highlights: • MERS-CoV Jordan-n3/2012 challenge of rhesus monkeys results in a mild disease. • CT can be used to monitor disease progression to aid models of human disease. • Treatment with the human monoclonal antibody 3B11-N resulted in decreased disease.

  14. The MER Mossbauer Spectrometers: 40 Months of Operation on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Fleischer, Iris; Rodionov, D.; Schroeder, C.; Morris, R.; Yen, A.; Ming, D.; McCoy, T.; Mittlefehldt, D.; Gellert, R.; Cohen, B.; Schmidt, M.; Klingelhoefer, Goestar

    2007-01-01

    The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites.

  15. Nitrogen and 15N in the Mer Bleue peatland

    NASA Astrophysics Data System (ADS)

    Moore, Tim

    2017-04-01

    Although much of our attention in peatlands has focussed on carbon, as CO2, CH4 and DOC processing and fluxes, N plays an important role in the functioning of these ecosystems. Here, I present information on the distribution of N and 15N in plant and peat tissues and relate them to the cycling of N. N concentration in foliar tissues, ranged from 0.67 to 1.3% in evergreen shrubs and trees and mosses with little seasonal variation, and with a strong seasonal variation from 0.5 to 3.5% in the deciduous forbs, shrubs and trees, with a strong overall relationship to [chlorophyll]. Although the proportion of shrubs and mosses varied with microtopography the spatial foliar mass of N varied little with water table position, resulting in minor spatial variations in photosynthetic potential. Decomposition of plant tissues through litter to peat resulted in a decrease in the C:N ratio from about 50:1 to about 30:1 at the base of the profile, representing peat about 8000 yr old. This marginally larger loss of N through decomposition (mainly as TDN, 0.4 g N m-2 yr-1) compared to C produced a long-term N accumulation rate of 0.9 g N m-2 yr-1, being smaller in the bog phase, 0.6 N m-2 yr-1, and over past 150 yr, 0.8 g N m-2 yr-1. Although N is 'hard won' through N2 fixation, northern peatlands are significant global sinks of N and have limited N availability. del15N in foliar tissues ranged from -4 to -9 ‰ in evergreen and deciduous shrubs and trees, from -4 to -5 ‰ in mosses and from -1 to +1 ‰ in sedges and forbs. This appears to be a function of the mycorhizzal infection of the shrubs and trees, compared to sedges and forbs and the values for mosses may partially reflect the signature of atmospheric N deposition. There was no strong correlation between foliar [N] and del15N. In peat profiles from bog and fen sections of Mer Bleue, del15N values in peat fell from -5 to -2 ‰ in the top 10 cm to values of -1 to +1 ‰ at a depth of 40 cm and remained close to 0 ‰ below

  16. Mer1p is a modular splicing factor whose function depends on the conserved U2 snRNP protein Snu17p

    PubMed Central

    Spingola, Marc; Armisen, Javier; Ares, Manuel

    2004-01-01

    Mer1p activates the splicing of at least three pre-mRNAs (AMA1, MER2, MER3) during meiosis in the yeast Saccharomyces cerevisiae. We demonstrate that enhancer recognition by Mer1p is separable from Mer1p splicing activation. The C-terminal KH-type RNA-binding domain of Mer1p recognizes introns that contain the Mer1p splicing enhancer, while the N-terminal domain interacts with the spliceosome and activates splicing. Prior studies have implicated the U1 snRNP and recognition of the 5′ splice site as key elements in Mer1p-activated splicing. We provide new evidence that Mer1p may also function at later steps of spliceosome assembly. First, Mer1p can activate splicing of introns that have mutated branch point sequences. Secondly, Mer1p fails to activate splicing in the absence of the non-essential U2 snRNP protein Snu17p. Thirdly, Mer1p interacts with the branch point binding proteins Mud2p and Bbp1p and the U2 snRNP protein Prp11p by two-hybrid assays. We conclude that Mer1p is a modular splicing regulator that can activate splicing at several early steps of spliceosome assembly and depends on the activities of both U1 and U2 snRNP proteins to activate splicing. PMID:14973223

  17. Impact of Fe(III) as an effective electron-shuttle mediator for enhanced Cr(VI) reduction in microbial fuel cells: Reduction of diffusional resistances and cathode overpotentials.

    PubMed

    Wang, Qiang; Huang, Liping; Pan, Yuzhen; Quan, Xie; Li Puma, Gianluca

    2017-01-05

    The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO4(-)) and dichromate (Cr2O7(2-)) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.

  18. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene.

    PubMed Central

    Rugh, C L; Wilde, H D; Stack, N M; Thompson, D M; Summers, A O; Meagher, R B

    1996-01-01

    With global heavy metal contamination increasing, plants that can process heavy metals might provide efficient and ecologically sound approaches to sequestration and removal. Mercuric ion reductase, MerA, converts toxic Hg2+ to the less toxic, relatively inert metallic mercury (Hg0) The bacterial merA sequence is rich in CpG dinucleotides and has a highly skewed codon usage, both of which are particularly unfavorable to efficient expression in plants. We constructed a mutagenized merA sequence, merApe9, modifying the flanking region and 9% of the coding region and placing this sequence under control of plant regulatory elements. Transgenic Arabidopsis thaliana seeds expressing merApe9 germinated, and these seedlings grew, flowered, and set seed on medium containing HgCl2 concentrations of 25-100 microM (5-20 ppm), levels toxic to several controls. Transgenic merApe9 seedlings evolved considerable amounts of Hg0 relative to control plants. The rate of mercury evolution and the level of resistance were proportional to the steady-state mRNA level, confirming that resistance was due to expression of the MerApe9 enzyme. Plants and bacteria expressing merApe9 were also resistant to toxic levels of Au3+. These and other data suggest that there are potentially viable molecular genetic approaches to the phytoremediation of metal ion pollution. Images Fig. 2 Fig. 3 Fig. 4 PMID:8622910

  19. 77 FR 49059 - Requested Administrative Waiver of the Coastwise Trade Laws: Vessel CHAT DE MER; Invitation for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Maritime Administration Requested Administrative Waiver of the Coastwise Trade Laws: Vessel CHAT DE MER... of the vessel CHAT DE MER is: Intended Commercial Use of Vessel: Primarily carrying passengers...

  20. Microbial mediated soil structure formation under wetting and drying cycles along a climate gradient (arid to humid) on hillslopes in Chile

    NASA Astrophysics Data System (ADS)

    Bernhard, Nadine; Moskwa, Lisa-Marie; Kühn, Peter; Mueller, Carsten W.; Wagner, Dirk; Scholten, Thomas

    2017-04-01

    It is well-known that the land surface resistance against erosion is largely controlled by the structure stability of the soil given by its inherent properties. Microbial activity plays a vital role in soil structure development, and thus affecting soil physical parameters. Accordingly the influence of biota shaping the earth's surface has been described through mechanisms such as mineral weathering, formation of ions and biofilms controlling land surface resistance against erosion. However the role of microorganisms for the development of soil stabilizing properties is still unclear and a precise quantitative understanding of the mechanisms under different climate conditions is widely missing. The objectives of our study are to examine to which extend microbiological processes control soil structure formation and stability and whether this is influenced by climate and topographic position. Soil samples were taken along a climate gradient and from different topographic positions of hillslopes in the Chilean Coastal Cordillera in austral autumn 2016. The variables of lithology, human disturbances and relief were held as far as possible constant whereas climate varies along the transect. We implemented 10 wet-dry cycles on air dried and sieved natural and sterile samples to enhance particle aggregation and increase structure stability. Throughout the entire experiment temperature is held constant at 20 °C to avoid changes in microbial activity. Samples are moistened and dried and each kept at the same respective pF-values for the same duration to add the same stress to each sample. Aggregate stability will be measured using wet sieving, ultrasonic dispersion and simulated rainfall. The results will be compared with on-site rainfall simulation experiments on hillslopes in the Chilean Coastal Cordillera to link laboratory results with natural field conditions. The experiment gives first insight into the aggregate formation process over time with and without

  1. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    PubMed

    Le Roux, Xavier; Schmid, Bernhard; Poly, Franck; Barnard, Romain L; Niklaus, Pascal A; Guillaumaud, Nadine; Habekost, Maike; Oelmann, Yvonne; Philippot, Laurent; Salles, Joana Falcao; Schloter, Michael; Steinbeiss, Sibylle; Weigelt, Alexandra

    2013-01-01

    Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas changes

  2. Soil Environmental Conditions and Microbial Build-Up Mediate the Effect of Plant Diversity on Soil Nitrifying and Denitrifying Enzyme Activities in Temperate Grasslands

    PubMed Central

    Le Roux, Xavier; Schmid, Bernhard; Poly, Franck; Barnard, Romain L.; Niklaus, Pascal A.; Guillaumaud, Nadine; Habekost, Maike; Oelmann, Yvonne; Philippot, Laurent; Salles, Joana Falcao; Schloter, Michael; Steinbeiss, Sibylle; Weigelt, Alexandra

    2013-01-01

    Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number – namely richness, presence of particular plant functional groups, or particular combinations of these) and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively), the abundance of nitrifiers (bacterial and archaeal amoA gene number) and denitrifiers (nirK, nirS and nosZ gene number), and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species), though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification, whereas

  3. GenomeTester4: a toolkit for performing basic set operations - union, intersection and complement on k-mer lists.

    PubMed

    Kaplinski, Lauris; Lepamets, Maarja; Remm, Maido

    2015-01-01

    K-mer-based methods of genome analysis have attracted great interest because they do not require genome assembly and can be performed directly on sequencing reads. Many analysis tasks require one to compare k-mer lists from different sequences to find words that are either unique to a specific sequence or common to many sequences. However, no stand-alone k-mer analysis tool currently allows one to perform these algebraic set operations. We have developed the GenomeTester4 toolkit, which contains a novel tool GListCompare for performing union, intersection and complement (difference) set operations on k-mer lists. We provide examples of how these general operations can be combined to solve a variety of biological analysis tasks. GenomeTester4 can be used to simplify k-mer list manipulation for many biological analysis tasks.

  4. DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR

    SciTech Connect

    Frantz, B.; O'Halloran, T.V. )

    1990-05-22

    Transcriptional regulation of the bacterial mercuric ion resistance operon (mer) in response to nanomolar concentrations of mercuric ion is achieved by the allosterically modulated transcriptional activator protein MerR. The authors now show that mercuric ion modification of MerR activates transcription, facilitating the conversion of an RNA polymerase complex with the mer promoter from the closed conformation to the strand-separated, transcriptionally competent open complex. An Hg-MerR-induced structural alteration at the center of the promoter has been detected in the presence or absence of RNA polymerase by use of chemical nucleases sensitive to variations in DNA secondary structure. This hypersensitivity correlates directly with transcriptional activation, lending further support to a previous proposal that a protein-induced distortion in local DNA structure can be the key step in an allosterically modulated transcription activation mechanism.

  5. The receptor tyrosine kinase MerTK activates phospholipase C γ2 during recognition of apoptotic thymocytes by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic leukocytes must be cleared efficiently by macrophages (Mø). Apoptotic cell phagocytosis by Mø requires the receptor tyrosine kinase (RTK) MerTK (also known as c-Mer and Tyro12), the phosphatidylserine receptor (PS-R), and the classical protein kinase C (PKC) isoform βII, which translocates to Mø membrane and cytoskeletal fractions in a PS-R-dependent fashion. How these molecules cooperate to induce phagocytosis is unknown. Because the phosphatidylinositol-specific phospholipase (PI-PLC) PLC γ2 is downstream of RTKs in some cell types and can activate classical PKCs, we hypothesized that Mer