Science.gov

Sample records for mer mission results

  1. WATER ON MARS: EVIDENCE FROM MER MISSION RESULTS

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2006-01-01

    The Mars Exploration Rover (MER) mission landed two rovers on Mars, equipped with a highly-capable suite of science instruments. The Spirit rover landed on the inside Gusev Crater on January 5, 2004, and the Opportunity rover three weeks later on Meridiani Planum. This paper summarizes some of the findings from the MER rovers related to the NASA science strategy of investigating past and present water on Mars.

  2. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  3. Water on Mars: Evidence from MER Mission Results

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer, or "duricrust". Elemental analyzes at five sites on Mars show that these soils have sulfur content and chlorine content consistent with the presence of sulfates and halides as mineral cements. The soil is highly enriched in the salt-forming elements compared with rock. Analysis of the soil cementation indicates some features which may be evidence of liquid water. At both MER sites, duricrust textures revealed by the Microscopic Imager show features including the presence of fine sand-sized grains, some of which may be aggregates of fine silt and clay, surrounded by a pervasive light colored material that is associated with microtubular structures and networks of microfractures. Stereo views of undisturbed duricrust surfaces reveal rugged microrelief between 2-3 mm and minimal loose material. Comparisons of microscopic images of duricrust soils obtain before and after placement of the Mossbauer spectrometer indicate differing degrees of compaction and cementation. Two models of a transient water hypothesis are offered, a "top down" hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a "bottom up" alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water. The viability of both of these models ultimately hinges on the availability of seasonally transient liquid water for brief periods.

  4. Science Activity Planner for the MER Mission

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Crockett, Thomas M.; Fox, Jason M.; Joswig, Joseph C.; Powell, Mark W.; Shams, Khawaja S.; Torres, Recaredo J.; Wallick, Michael N.; Mittman, David S.

    2008-01-01

    The Maestro Science Activity Planner is a computer program that assists human users in planning operations of the Mars Explorer Rover (MER) mission and visualizing scientific data returned from the MER rovers. Relative to its predecessors, this program is more powerful and easier to use. This program is built on the Java Eclipse open-source platform around a Web-browser-based user-interface paradigm to provide an intuitive user interface to Mars rovers and landers. This program affords a combination of advanced display and simulation capabilities. For example, a map view of terrain can be generated from images acquired by the High Resolution Imaging Science Explorer instrument aboard the Mars Reconnaissance Orbiter spacecraft and overlaid with images from a navigation camera (more precisely, a stereoscopic pair of cameras) aboard a rover, and an interactive, annotated rover traverse path can be incorporated into the overlay. It is also possible to construct an overhead perspective mosaic image of terrain from navigation-camera images. This program can be adapted to similar use on other outer-space missions and is potentially adaptable to numerous terrestrial applications involving analysis of data, operations of robots, and planning of such operations for acquisition of scientific data.

  5. MGS and Odyssey - relay satellites for the MER mission

    NASA Technical Reports Server (NTRS)

    Esposito, Pasquale B.; Bhat, R.; Demeak, S.; Ardalan, S.; Breeden, J.; Helfrich, C.; Jefferson, D.; Stauch, J.

    2004-01-01

    Both Mars Global Surveyor (MGS) and Odyssey are currently in low altitude, nearly circular and highly inclined orbits about Mars. Thus, they are available adn compartible to serve as relay satellites for the Mars Exploration Rovers (MER) mission. Consequently, the MER project developed requirements for MGS to be overhead for MER-A (Spirit) at Gusev crater, at maximum elevation, mudway between lander separation and initial touchdown; in time, this was specified as 01/04/04. 04:24:55 UTC/SCET with a 30 sec tolerance.

  6. The Ballerina Experiment on the Rømer Mission

    NASA Astrophysics Data System (ADS)

    Brandt, Soren

    The Rømer mission has recently been approved as the next mission within the Danish Small Satellite Program. The scientific payload will consist of two separate experiments, the MONS and the Ballerina payloads. The primary objective of Ballerina is to provide accurate, real-time positions relayed to ground for ~ 70 Gamma Ray Bursts (GRBs) per year, and to study the temporal and spectral evolution of the early GRB X-ray afterglow. As an additional goal, Ballerina will detect and study bright X-ray transients, in particular X-ray novae and micro-quasar systems. R{\\o}mer is currently scheduled for launch in late 2003.

  7. Planning Mars Memory: Learning from the Mer Mission

    NASA Technical Reports Server (NTRS)

    Linde, Charlotte

    2004-01-01

    Knowledge management for space exploration is part of a multi-generational effort at recognizing, preserving and transmitting learning. Each mission should be built on the learning, of both successes and failures, derived from previous missions. Knowledge management begins with learning, and the recognition that this learning has produced knowledge. The Mars Exploration Rover mission provides us with an opportunity to track how learning occurs, how it is recorded, and whether the representations of this learning will be optimally useful for subsequent missions. This paper focuses on the MER science and engineering teams during Rover operations. A NASA team conducted an observational study of the ongoing work and learning of the these teams. Learning occurred in a wide variety of areas: how to run two teams on Mars time for three months; how to use the instruments within the constraints of the martian environment, the deep space network and the mission requirements; how to plan science strategy; how best to use the available software tools. This learning is preserved in many ways. Primarily it resides in peoples memories, to be carried on to the next mission. It is also encoded in stones, in programming sequences, in published reports, and in lessons learned activities, Studying learning and knowledge development as it happens allows us to suggest proactive ways of capturing and using it across multiple missions and generations.

  8. Multi-Agent Modeling and Simulation Approach for Design and Analysis of MER Mission Operations

    NASA Technical Reports Server (NTRS)

    Seah, Chin; Sierhuis, Maarten; Clancey, William J.

    2005-01-01

    A space mission operations system is a complex network of human organizations, information and deep-space network systems and spacecraft hardware. As in other organizations, one of the problems in mission operations is managing the relationship of the mission information systems related to how people actually work (practices). Brahms, a multi-agent modeling and simulation tool, was used to model and simulate NASA's Mars Exploration Rover (MER) mission work practice. The objective was to investigate the value of work practice modeling for mission operations design. From spring 2002 until winter 2003, a Brahms modeler participated in mission systems design sessions and operations testing for the MER mission held at Jet Propulsion Laboratory (JPL). He observed how designers interacted with the Brahms tool. This paper discussed mission system designers' reactions to the simulation output during model validation and the presentation of generated work procedures. This project spurred JPL's interest in the Brahms model, but it was never included as part of the formal mission design process. We discuss why this occurred. Subsequently, we used the MER model to develop a future mission operations concept. Team members were reluctant to use the MER model, even though it appeared to be highly relevant to their effort. We describe some of the tool issues we encountered.

  9. From Prime to Extended Mission: Evolution of the MER Tactical Uplink Process

    NASA Technical Reports Server (NTRS)

    Michkin, Andrew H.; Laubach, Sharon

    2006-01-01

    To support a 90-day surface mission for two robotic rovers, the Mars Exploration Rover mission designed and implemented an intensive tactical operations process, enabling daily commanding of each rover. Using a combination of new processes, custom software tools, a Mars-time staffing schedule, and seven-day-a-week operations, the MER team was able to compress the traditional weeks-long command-turnaround for a deep space robotic mission to about 18 hours. However, there was never an intention of maintaining the pace of this process indefinitely. Even before the end of the three-month prime mission, MER operations began evolving towards greater sustainability. A combination of continued software tool development, increasing team experience, and availability of reusable sequences first reduced the mean process duration to approximately 11 hours. The number of workshifts required to perform the process dropped, and the team returned to a modified 'Earth-time' schedule. Additional process and tool adaptation eventually provided the option of planning multiple Martian days of activity within a single workshift, making 5- day-a-week operations possible. The vast majority of the science team returned to their home institutions, continuing to participate fully in the tactical operations process remotely. MER has continued to operate for over two Earth-years as many of its key personnel have moved on to other projects, the operations team and budget have shrunk, and the rovers have begun to exhibit symptoms of aging.

  10. Application of State Analysis and Goal-Based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, J. Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the behavior of states and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  11. Application of State Analysis and Goal-based Operations to a MER Mission Scenario

    NASA Technical Reports Server (NTRS)

    Morris, John Richard; Ingham, Michel D.; Mishkin, Andrew H.; Rasmussen, Robert D.; Starbird, Thomas W.

    2006-01-01

    State Analysis is a model-based systems engineering methodology employing a rigorous discovery process which articulates operations concepts and operability needs as an integrated part of system design. The process produces requirements on system and software design in the form of explicit models which describe the system behavior in terms of state variables and the relationships among them. By applying State Analysis to an actual MER flight mission scenario, this study addresses the specific real world challenges of complex space operations and explores technologies that can be brought to bear on future missions. The paper first describes the tools currently used on a daily basis for MER operations planning and provides an in-depth description of the planning process, in the context of a Martian day's worth of rover engineering activities, resource modeling, flight rules, science observations, and more. It then describes how State Analysis allows for the specification of a corresponding goal-based sequence that accomplishes the same objectives, with several important additional benefits.

  12. The Amorphous Component in Martian Basaltic Soil in Global Perspective from MSL and MER Missions

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Ming, D. W.; Blake, D. F.; Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Downs, R. T.; Gellert, R.; Treiman, A. H.; Yen, A. S.; Achilles, C. N.; Anderson, R. C.; Bristow, T. F.; Crisp, J. A.; Des Marais, D. J.; Farmer, J. D.; Grotzinger, J. P.; Leshin, L. A.; McAdam, A. C.; Morookian, J. M.; Morrison, S. M.; Rampe, E. B.; Sarrazin, P. C.; Spanovich, N.; Stolper, E. M.

    2013-01-01

    The mineralogy instrument CheMin onboard the MSL rover Curiosity analyzed by transmission XRD [1] the <150 microns size fraction of putative global basaltic martian soil from scoops 4 and 5 of the Rocknest aeolian bedform (sol 81-120). Here, we combine chemical (APXS) and mineralogical (Mossbauer; MB) results from the MER rovers with chemical (APXS) and mineralogical (CheMin) results from Curiosity to constrain the relative proportions of amorphous and crystalline components, the bulk chemical composition of those components, and the

  13. MER Field Geologic Traverse in Gusev Crater, Mars: Initial Results From the Perspective of Spirit

    NASA Technical Reports Server (NTRS)

    Crumpler, L.; Cabrol, N.; desMarais, D.; Farmer, J.; Golmbek, M.; Grant, J.; Greely, R.; Grotzinger, J.; Haskin, L.; Arvidson, R.

    2004-01-01

    This report casts the initial results of the traverse and science investigations by the Mars Exploration Rover (MER) Spirit at Gusev crater [1] in terms of data sets commonly used in field geologic investigations: Local mapping of geologic features, analyses of selected samples, and their location within the local map, and the regional context of the field traverse in terms of the larger geologic and physiographic region. These elements of the field method are represented in the MER characterization of the Gusev traverse by perspective-based geologic/morphologic maps, the placement of the results from Mossbauer, APXS, Microscopic Imager, Mini-TES and Pancam multispectral studies in context within this geologic/ morphologic map, and the placement of the overall traverse in the context of narrow-angle MOC (Mars Orbiter Camera) and descent images. A major campaign over a significance fraction of the mission will be the first robotic traverse of the ejecta from a Martian impact crater along an approximate radial from the crater center. The Mars Exploration Rovers have been conceptually described as 'robotic field geologists', that is, a suite of instruments with mobility that enables far-field traverses to multiple sites located within a regional map/image base at which in situ analyses may be done. Initial results from MER, where the field geologic method has been used throughout the initial course of the investigation, confirm that this field geologic model is applicable for remote planetary surface exploration. The field geologic method makes use of near-field geologic characteristics ('outcrops') to develop an understanding of the larger geologic context through continuous loop of rational steps focused on real-time hypothesis identification and testing. This poster equates 'outcrops' with the locations of in situ investigations and 'regional context' with the geology over distance of several kilometers. Using this fundamental field geologic method, we have

  14. Using Mars and the Mer Mission to Teach Science: A Curriculum Designed for Teachers and Their Students

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2006-12-01

    Learning opportunities can be exceptionally successful when linked to national, newsworthy events. Planetary missions are particularly exciting in engaging teachers, and their students, because they combine the human "stories" of scientists and engineers with cutting-edge technology and new science. Planetary suface missions, such as the Mars Exploration Rover (MER) mission, return beautiful and human-scale images that can virtually transport the viewer to another world. The MER mission allows children and adults to participate in the exploration of one of our nearest neighbors in space. New discoveries in the natural history of Mars have been used as the basis of a new integrated curriculum created by Museum and class-room educators designed to serve informal (family learning) and formal (classroom) audiences. The curriculum uses Mars and the MER mission as a "hook" to teach a wide range of topics that relate to all of the sciences, mathematics, social studies (history and exploration), science and society, career readiness, language and literacy, and visual arts. The curriculum, entitled "Making Tracks on Mars: Teacher Resource and Activity Guide," includes the following key features that have contributed to its success and usefulness: (1) basic information about Mars, Mars missions, and the MER mission providing teachers with the knowledge they may lack; (2) activities that follow a standardized format and include necessary information, pre-lesson preparation and post-lesson closure and extensions, and all information and/or images needed; (3) activities that cross the curriculum and can be used to address many different standards; (4) relevant state and national standards listed for each activity; (5) annotated MER image file and PowerPoint presentation for easy classroom use; (6) lists of additional Mars-related resources; (7) emphasis on local connections to the mission to enable teachers and students to feel personally connected; (8) elementary through high

  15. The Martian Soil as a Geochemical Sink for Hydrothermally Altered Crustal Rocks and Mobile Elements: Implications of Early MER Results

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Draper, D. S.

    2005-01-01

    Hydrothermal and aqueous alteration can explain some of the exciting results from the MER team s analyses of the martian soil, including the major elements, mobile elements, and the nickel enrichment. Published results from the five lander missions lead to the following conclusions: 1) The soil appears to be globally mixed and basaltic with only small local variations in chemistry. Relative to martian basaltic meteorites and Gusev rocks the soils are depleted in the fluid-mobile element calcium, but only slightly enriched to somewhat depleted in iron oxide. 2) The presence of olivine in the soils based on M ssbauer data argues that the soil is only partly weathered and is more akin to a lunar regolith than a terrestrial soil. 3) The presence of bromine along with sulfur and chlorine in the soils is consistent with addition of a mobile element component to the soil.

  16. The Planck Mission: Early Results

    SciTech Connect

    Marco Bersanelli

    2012-03-07

    The ESA Planck space mission, launched on May 14, 2009, is dedicated to high precision measurements of the cosmic microwave background (CMB), the first light of the universe, both in temperature and polarization. The satellite observes the full sky from a far-Earth orbit with two cryogenic instruments in the 30-850 GHz range at the focal plane of a 1.5-meter telescope. The primary objective of Planck is to measure with unprecedented precision the key cosmological parameters and to provide accurate tests of physics in the early universe. Planck has recently completed the fifth full-sky survey. The data analysis is underway. The first cosmology results are expected in early 2013 while a number of astrophysical results have been recently delivered to the community, including galactic and extragalactic astrophysics and a rich catalogue of radio and infrared sources. These results demonstrate the excellent in-orbit performance of the instruments and give excellent prospects for the forthcoming cosmological results.

  17. Results from Automated Cloud and Dust Devil Detection Onboard the MER

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark

    2008-01-01

    We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.

  18. MER SPICE Interface

    NASA Technical Reports Server (NTRS)

    Sayfi, Elias

    2004-01-01

    MER SPICE Interface is a software module for use in conjunction with the Mars Exploration Rover (MER) mission and the SPICE software system of the Navigation and Ancillary Information Facility (NAIF) at NASA's Jet Propulsion Laboratory. (SPICE is used to acquire, record, and disseminate engineering, navigational, and other ancillary data describing circumstances under which data were acquired by spaceborne scientific instruments.) Given a Spacecraft Clock value, MER SPICE Interface extracts MER-specific data from SPICE kernels (essentially, raw data files) and calculates values for Planet Day Number, Local Solar Longitude, Local Solar Elevation, Local Solar Azimuth, and Local Solar Time (UTC). MER SPICE Interface was adapted from a subroutine, denoted m98SpiceIF written by Payam Zamani, that was intended to calculate SPICE values for the Mars Polar Lander. The main difference between MER SPICE Interface and m98SpiceIf is that MER SPICE Interface does not explicitly call CHRONOS, a time-conversion program that is part of a library of utility subprograms within SPICE. Instead, MER SPICE Interface mimics some portions of the CHRONOS code, the advantage being that it executes much faster and can efficiently be called from a pipeline of events in a parallel processing environment.

  19. Intratracheal exposure of common marmosets to MERS-CoV Jordan-n3/2012 or MERS-CoV EMC/2012 isolates does not result in lethal disease.

    PubMed

    Johnson, Reed F; Via, Laura E; Kumar, Mia R; Cornish, Joseph P; Yellayi, Srikanth; Huzella, Louis; Postnikova, Elena; Oberlander, Nicholas; Bartos, Christopher; Ork, Britini L; Mazur, Steven; Allan, Cindy; Holbrook, Michael R; Solomon, Jeffrey; Johnson, Joshua C; Pickel, James; Hensley, Lisa E; Jahrling, Peter B

    2015-11-01

    Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT), with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication.

  20. SpinSat Mission Preliminary Results

    NASA Astrophysics Data System (ADS)

    Nicholas, A.; Sawka, W.; Finne, T.; Thomas, L.; Healey, L.; Galysh, I.; Barjatya, A.; Cowardin, H.; Ransdell, J.; Williams, S.

    2014-09-01

    The SpinSat flight is a small satellite mission proposed by the Naval Research Laboratory and Digital Solid State Propulsion (DSSP) LLC to demonstrate and characterize the on-orbit performance of electrically controlled solid propellant technology in space. Launch is expected in summer of 2014. This is an enabling technology for the small satellite community that will allow small satellites to perform maneuvers. The mission consists of a spherical spacecraft fitted with Electrically Controlled Solid Propellant thrusters and retro-reflectors for satellite laser ranging (SLR). The spacecraft will be deployed from the International Space Station. This paper presents a mission overview, ground truth characterization, preliminary results and unique SSA observation opportunities of the mission.

  1. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.

    2011-01-01

    Kepler is NASA`s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  2. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, J.; Duren, R.; Frerking, M.

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earth-size planets orbiting in the habitable zone of stars other than the Sun. Kepler comprises a space telescope designed to continuously monitor the brightnesses of more than 100,000 target stars, and a ground segment to analyze the measured stellar light curves and detect the signatures of orbiting planets. In order to detect Earth-size planets orbiting Sun-like stars Kepler was designed to provide unprecedented photometric sensitivity and stability. This paper addresses some of the technical challenges encountered during the development of the Kepler mission and the measures taken to overcome them. Early scientific results are summarized.

  3. The MAVEN Mission to Mars: Results from the nominal mission

    NASA Astrophysics Data System (ADS)

    Brain, David; Jakosky, Bruce; Luhmann, Janet; Grebowsky, Joe

    2016-04-01

    The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft has been making measurements relevant to the loss of Martian atmospheric particles to space since September 2014. Now in its first extended mission, MAVEN observations are teaching us about the chain of events that lead to atmospheric escape - including the drivers of escape from the Sun and solar wind, the atmospheric particle reservoirs for escape, and the escape processes and rates. These measurements are made using nine science instruments on a spacecraft with an elliptical precessing orbit that dips below the Martian exobase every 4.5 hours. During certain 'Deep Dip' periods the spacecraft periapsis is lowered further to near the top of the homopause, and the main peak of the ionosphere. Here we summarize the key results from MAVEN through the nominal mission and beyond. We emphasize new discoveries (e.g. diffuse aurora, a dusty upper atmosphere, metallic atmospheric ions) as well as coordinated measurements that allow us to evaluate atmospheric escape and climate evolution in unprecedented ways. We then highlight plans for continued observations of the Martian upper atmosphere and escape.

  4. MER Telemetry Processor

    NASA Technical Reports Server (NTRS)

    Lee, Hyun H.

    2012-01-01

    MERTELEMPROC processes telemetered data in data product format and generates Experiment Data Records (EDRs) for many instruments (HAZCAM, NAVCAM, PANCAM, microscopic imager, Moessbauer spectrometer, APXS, RAT, and EDLCAM) on the Mars Exploration Rover (MER). If the data is compressed, then MERTELEMPROC decompresses the data with an appropriate decompression algorithm. There are two compression algorithms (ICER and LOCO) used in MER. This program fulfills a MER specific need to generate Level 1 products within a 60-second time requirement. EDRs generated by this program are used by merinverter, marscahv, marsrad, and marsjplstereo to generate higher-level products for the mission operations. MERTELEPROC was the first GDS program to process the data product. Metadata of the data product is in XML format. The software allows user-configurable input parameters, per-product processing (not streambased processing), and fail-over is allowed if the leading image header is corrupted. It is used within the MER automated pipeline. MERTELEMPROC is part of the OPGS (Operational Product Generation Subsystem) automated pipeline, which analyzes images returned by in situ spacecraft and creates level 1 products to assist in operations, science, and outreach.

  5. Landsat-7 Mission and Early Results

    NASA Technical Reports Server (NTRS)

    Dolan, S. Kenneth; Sabelhaus, Phillip A.; Williams, Darrel L.; Irons, James R.; Barker, John L.; Markham, Brian L.; Bolek, Joseph T.; Scott, Steven S.; Thompson, R. J.; Rapp, Jeffrey J.

    1999-01-01

    The Landsat-7 mission has the goal of acquiring annual data sets of reflective band digital imagery of the landmass of the Earth at a spatial resolution of 30 meters for a period of five years using the Enhanced Thematic Mapper Plus (ETM+) imager on the Landsat-7 satellite. The satellite was launched on April 15, 1999. The mission builds on the 27-year continuous archive of thematic images of the Earth from previous Landsat satellites. This paper will describe the ETM+ instrument, the spacecraft, and the ground processing system in place to accomplish the mission. Results from the first few months in orbit will be given, with emphasis on performance parameters that affect image quality, quantity, and availability. There will also be a discussion of the Landsat Data Policy and the user interface designed to make contents of the archive readily available, expedite ordering, and distribute the data quickly. Landsat-7, established by a Presidential Directive and a Public Law, is a joint program of the National Aeronautics and Space Administration (NASA) Earth Science Enterprise and the United States Geological Survey (USGS) Earth Resources Observing System (EROS) Data Center.

  6. First Results of the SMOS mission

    NASA Astrophysics Data System (ADS)

    Kerr, Yann; Font, Jordi; Neira, Manuel Martin; Delwart, Steven; Hahne, Achim; Mecklenburg, Susanne; Bermudo, François

    2010-05-01

    acquiring data and undergoing the commissioning phase. The data quality exceeds what was expected, showing very good sensitivity and stability. The data is however very much impaired by man made emission in the protected band, ruining the measurements in several areas including parts of Europe and of China. However, many different international teams are now addressing cal val activities in various parts of the world, with notably large field campaigns either on the long time scale or over specific targets to address the specific issues. This paper thus gives an overview of the science goals of the SMOS mission, a description of its main elements, and a taste of the first results including performances at brightness temperature as well as at geophysical parameters levels.

  7. Analyzing MER Uplink Reports

    NASA Technical Reports Server (NTRS)

    Savin, Stephen C.

    2005-01-01

    The MER project includes two rovers working simultaneously on opposite sides of Mars each receiving commands only once a day. Creating this uplink is critical, since a failed uplink means a lost day and a waste of money. Examining the process of creating this uplink, I tracked the use of the system developed for requesting observations as well as the development, from stage to stage, in forming an activity plan. I found the system for requesting observations was commonly misused, if used at all. There are half a dozen reports to document the creation of the uplink plan and often there are discrepancies among them. Despite this, the uplink process worked very well and MER has been one of the most successful missions for NASA in recent memory. Still it is clear there is room for improvement.

  8. Human Centered Design and Development for NASA's MerBoard

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  9. The Mars Pathfinder Mission and Science Results

    NASA Astrophysics Data System (ADS)

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  10. Atmospheric results from the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Smith, Peter

    The Phoenix Mission operated in the northern plains of Mars for 5 months starting May 25, 2008 spanning solar longitudes from 78 to 143 (summer). Throughout this period a diverse set of atmospheric measurements were taken and analyzed. The data sets provide information on the diurnal temperatures at 2 m above the surface, diurnal pressure, wind vectors, cloud properties, dust devils, the boundary layer, and humidity. In addition, coordinated observations were obtained with orbital instruments from Mars Reconnaissance Orbiter, Odyssey, and Mars Express. The measurements have been compared with predictions from Global Climate Models and found to agree in most regards. Taken as a whole this represents a unique description of the summer weather in a heretofore unexplored region of Mars. The Canadian LIDAR experiment gives us the first direct measurement of the boundary layer height. The first 90 sols of the mission were conducted under dusty conditions and the height of the dust layer was determined as 4-5 km above the surface. After 90 sols, the dust dispersed and water ice clouds were seen at ever lower altitudes and the boundary layer dropped to as low as 3 km. Snowfall was observed and frost imaged on the surface. Winds swirled around the lander completing a full circle each sol; typical wind speeds were 5-10 m/s. From near surface humidity measurements, a diurnal cycle sublimates ice and adsorbed water from the surface soil as the Sun heats it forming water ice clouds at the boundary layer. As temperatures cool in the night the water is returned as snow and frost to the soil. Temperatures ranged from -30 C to -90 C, but never exceed the melting point; even though atmospheric pressures are always above the triple point, liquid water is not allowed at this time. The lack of dune forms and the presence of dust devils suggest that wind erosion is a strong force despite the constant dust fall observed on the spacecraft deck. Local dust storms are often seen by the

  11. Results from the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.

    1986-01-01

    The major results from SMM (Solar Max Mission) are presented as they relate to the understanding of the energy release and particle transportation processes that led to the high energy X-ray aspects of solar flares. Evidence is reviewed for a 152- to 158-day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photo number spectrum. A flare classification scheme is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SSM data are presented for examples of Type B and Type C events. New results are presented showing coincident hard X rays, O V, and UV continuum observations in Type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of Type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of Type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.

  12. Initial Results from the MER Athena Science Investigation at Gusev Crater and Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Squyres, S.

    2004-05-01

    of orbital data. Mini-TES data have confirmed the presence of this hematite in the soil. The soil within the crater has several components. Microscopic images of undisturbed surface soil show that one component is fine (~100 micron) sand. Mössbauer spectra of the sand show two ferrous doublets (one of them due to olivine), a ferric doublet, and a weak magnetic sextet. APXS and Mini-TES data on this sand are consistent with a composition dominated by basalt. Another component of the soil consists of coarse (several mm) granules. These range in shape from subangular to rounded to remarkably spherical. In some locations, granules have been pressed down into the soil by the impact of the landers airbags. At those locations the concentration of hematite as determined by Mini-TES is sharply reduced, suggesting that at least some of the granules are hematite-bearing. The bedrock outcrop is finely laminated, with typical layer thicknesses of only a few mm. The texture of the outcrop as viewed in miroscopic images suggests that it is fine-grained, with well-expressed structure that is revealed by varying degrees of mechanical abrasion of layers of varying induration. Initial APXS results on this fine-grained matrix indicate sulfur concentrations significantly higher than any observed elsewhere on Mars. Embedded within the outcrop and weathering out of it are highly spherical granules with diameters of several mm. The visible to near-IR spectral properties of these embedded spherical granules, as determined by Pancam, are distinctly different from those of the matrix in which they are embedded.

  13. Preliminary Results from the NEOWISE Mission

    NASA Astrophysics Data System (ADS)

    Sonnett, S.; Mainzer, A.; Bauer, J.; Grav, T.; Masiero, J.; Stevenson, R.; Nugent, C.

    2014-04-01

    NASA's Wide-field Infrared Survey Explorer (WISE) spacecraft was restarted in December 2013. Now renamed NEOWISE, the mission has resumed surveying the infrared sky. The spacecraft's 32 months of hibernation had no significant impact on its performance. The primary science goals of NEOWISE are to detect and characterize near-Earth Objects (NEOs) and other small bodies. Over its three-year mission, NEOWISE will determine radiometrically-derived diameters and albedos of ~ 2000 NEOs and tens of thousands of Main Belt asteroids. NEOWISE is currently detecting ~ 0.5 - 1.0 NEOs per day, and as of April 2014, 11 NEOs have been discovered by NEOWISE, most of them larger and darker than those typically discovered by ground-based optical facilities. The NEOWISE team is engaged in diverse small body research that makes use of the NEOWISE data, including thermophysical modeling of NEOs, thermally characterizing comets, and determining rotation properties of Jovian Trojans and Hildas.

  14. Kepler Mission Development Challenges and Early Results

    NASA Technical Reports Server (NTRS)

    Fanson, James; Frerking, Margaret; Duren, Riley

    2011-01-01

    Kepler is NASA s first mission capable of detecting Earthsize planets orbiting in Habitable Zone of Sun-like stars. Objective is to measure how frequently planets of various sizes and orbits form around stars in the Milky Way. Kepler detects planets by measuring drop in brightness of star due to "transit" of a planet Earth-size planet transiting Sunlike star causes drop in brightness of only 84 parts per million

  15. Objectives and results of the BIRD mission

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Briess, Klaus; Halle, Winfried; Oertel, Dieter; Skrbek, Wolfgang; Zhukov, Boris

    2003-11-01

    The DLR small satellite BIRD (Bi- spectral Infrared Detection) is successfully operating in space since October 2001. The main payload is dedicated to the observation of high temperature events and consists mainly of a Bi-Spectral Infrared Push Broom Scanner (3.4-4.2μm and 8.5-9.3μm), a Push Broom Imager for the Visible and Near Infrared and a neural network classification signal processor. The BIRD mission answers topical technological and scientific questions related to the operation of a compact infra-red push-broom sensor on board of a micro satellite. A powerful Payload Data Handling System (PDH) is responsible for all payload real time operation, control and on-board science data handling. The IR cameras are equipped with an advanced real time data processing allowing an autonomously adaptation of the dynamic range to different scenarios. The BIRD mission control, the data reception and the data processing is conducted by the DLR ground stations in Weilheim and Neustrelitz (Germany; is experimentally performed by a low cost ground station implemented at DLR Berlin-Adlershof. The BIRD on ground data processing chain delivers radiometric and geometric corrected data products, which will be also described in this paper. The BIRD mission is an exemplary demonstrator for small satellite projects dedicated to the hazard detection and monitoring.

  16. Mapping Hydration with the Mars Exploration Rover (MER) Pancam Instruments: Recent Results from Opportunity at Endeavour Crater

    NASA Astrophysics Data System (ADS)

    Rice, Melissa S.; Bell, James F., III; Arvidson, Raymond E.; Farrand, William H.; Johnson, Jeffrey R.; Rice, James W.; Ruff, Steven W.; Squyres, Steven W.; Wang, Alian

    2013-04-01

    Using the Mars Exploration Rover (MER) Panoramic Camera (Pancam) instruments, we have developed a "hydration signature" for mapping H2O- and/or OH-bearing materials at Mars landing sites with multispectral visible to near-infrared (Vis-NIR) images. Pancam's 13 narrowband geology filters cover 11 unique wavelengths in the visible and near infrared (434 to 1009 nm) [1-2]. The hydration signature is based on a negative slope from 934 to 1009 nm [3] that characterizes the spectra of hydrated silica-rich rocks and soils observed by MER Spirit; this feature is likely due to the 2ν1 + ν3 H2O combination band and/or the 3νOH overtone centered near ~1000 nm, whose positions vary slightly depending on bonding to nearest-neighbor atoms [4]. The hydration signature is sensitive to many - but not all - hydrated minerals, including silica, gypsum and water ice. At Gusev Crater, the hydration signature is widespread along Spirit's traverse in the Columbia Hills, which adds to the growing body of evidence that aqueous alteration has played a significant role in the complex geologic history of this site [4]. At Meridiani Planum, the hydration signature is associated with a specific stratigraphic layer ("Smith") exposed within the walls of Victoria Crater [5], in addition to light-toned veins composed of calcium sulfate at Cape York on the rim of Endeavour Crater [6]. Recently, Opportunity has completed a traverse loop at Matijevic Hill at the southern end of Cape York and has encountered numerous small, light-toned, fracture-filling veins that may be indicative of fluid flow. Spectra of these veins are also consistent with hydrated materials, as are spectra of "Whitewater Lake" outcrops at Matijevic Hill, which may contain phyllosilicate minerals [7-8]. Here we also discuss limitations to the use of the hydration signature, which can give false detections under specific viewing geometries. For example, the Pancam calibration model assumes that the calibration target behaves as a

  17. First Results from the THEMIS Mission

    NASA Astrophysics Data System (ADS)

    Angelopoulos, V.; Sibeck, D.; Carlson, C. W.; McFadden, J. P.; Larson, D.; Lin, R. P.; Bonnell, J. W.; Mozer, F. S.; Ergun, R.; Cully, C.; Glassmeier, K. H.; Auster, U.; Roux, A.; Lecontel, O.; Frey, S.; Phan, T.; Mende, S.; Frey, H.; Donovan, E.; Russell, C. T.; Strangeway, R.; Liu, J.; Mann, I.; Rae, J.; Raeder, J.; Li, X.; Liu, W.; Singer, H. J.; Sergeev, V. A.; Apatenkov, S.; Parks, G.; Fillingim, M.; Sigwarth, J.

    2008-12-01

    THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 RE along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.

  18. Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding.

    PubMed

    Adney, Danielle R; Brown, Vienna R; Porter, Stephanie M; Bielefeldt-Ohmann, Helle; Hartwig, Airn E; Bowen, Richard A

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals. In order to understand if these animals could be infected, we challenged young goats and horses and adult sheep with MERS-CoV by intranasal inoculation. Minimal or no virus shedding was detected in all of the animals. During the four weeks following inoculation, neutralizing antibodies were detected in the young goats, but not in sheep or horses. PMID:27548203

  19. Inoculation of Goats, Sheep, and Horses with MERS-CoV Does Not Result in Productive Viral Shedding

    PubMed Central

    Adney, Danielle R.; Brown, Vienna R.; Porter, Stephanie M.; Bielefeldt-Ohmann, Helle; Hartwig, Airn E.; Bowen, Richard A.

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was first recognized in 2012 and can cause severe disease in infected humans. Dromedary camels are the reservoir for the virus, although, other than nasal discharge, these animals do not display any overt clinical disease. Data from in vitro experiments suggest that other livestock such as sheep, goats, and horses might also contribute to viral transmission, although field data has not identified any seropositive animals. In order to understand if these animals could be infected, we challenged young goats and horses and adult sheep with MERS-CoV by intranasal inoculation. Minimal or no virus shedding was detected in all of the animals. During the four weeks following inoculation, neutralizing antibodies were detected in the young goats, but not in sheep or horses. PMID:27548203

  20. Working on Mars: Understanding How Scientists, Engineers and Rovers Interacted Across Space and Time during the Mars Exploration Rover (MER) Mission

    NASA Technical Reports Server (NTRS)

    Wales, Roxana C.

    2005-01-01

    This viewgraph presentation summarizes the scheduling and planning difficulties inherent in operating the Mars Exploration Rovers (MER) during the overlapping terrestrial day and Martian sol. The presentation gives special empahsis to communication between the teams controlling the rovers from Earth, and keeping track of time on the two planets.

  1. The Extreme Ultraviolet Explorer mission - Overview and initial results

    NASA Technical Reports Server (NTRS)

    Haisch, B.; Bowyer, S.; Malina, R. F.

    1993-01-01

    The history of extreme ultraviolet (EUV) astronomy is briefly reviewed, and an overview of the Extreme Ultraviolet Explorer mission, launched into a near-earth (550 km) orbit on June 7, 1992, is presented. First, the principal objective of the mission are summarized. The instrumentation and operation of the mission are then described, with particular attention given to the sky survey instruments, the deep survey instrument, and the spectrometers. The discussion also covers the current view of the interstellar medium, early results from the mission, and future prospects for EUV astronomy.

  2. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Mission

    NASA Technical Reports Server (NTRS)

    Keller, John W.; Vondrak, Richard; Chin, Gordon; Petro, Noah; Gavin, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, this phase of the mission began on September 15, 2009, completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission is scheduled for 2 years and will be completed in 2012 with an opportunity for an extended mission beyond 2012. Under SMD, the mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having marked the two year anniversary will review here the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including a proposed 2-year extended mission. These objectives include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5) measuring the Lunar atmosphere and radiation environment.

  3. SUNRISE: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS

    SciTech Connect

    Solanki, S. K.; Barthol, P.; Danilovic, S.; Feller, A.; Gandorfer, A.; Hirzberger, J.; Riethmueller, T. L.; Schuessler, M.; Bonet, J. A.; Pillet, V. MartInez; Domingo, V.; Palacios, J.; Knoelker, M.; Gonzalez, N. Bello; Berkefeld, T.; Franz, M.; Schmidt, W.; Title, A. M.

    2010-11-10

    The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.

  4. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  5. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R.; Keller, J. W.; Chin, G.; Garvin, J.; Petro, N.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18,2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  6. Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Mission

    NASA Astrophysics Data System (ADS)

    Keller, J. W.; Vondrak, R. R.; Petro, N. E.; Chin, G.; Garvin, J.

    2012-12-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and the measurement of the lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and was completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September of 2012. Under SMD, the Science Mission focused on a new set of goals related to understanding the history of the Moon, its current state, and what it can tell us about the evolution of the Solar System. Having recently marked the completion of the two-year Science Mission, we will review here the major results from the LRO for both exploration and science and discuss plans and objectives for the Extended Science that will last until September, 2014. Some results from the LRO mission are: the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the daytime and nighttime temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs; evidence for recent tectonic activity on the Moon; and high resolution maps of the illumination conditions at the poles.

  7. The Neurolab Spacelab Mission: Neuroscience Research in Space: Results from the STS-90, Neurolab Spacelab Mission

    NASA Technical Reports Server (NTRS)

    Buckey, Jay C., Jr. (Editor); Homick, Jerry L. (Editor)

    2003-01-01

    Neurolab (STS-90) represents a major scientific achievement that built upon the knowledge and capabilities developed during the preceding 15 successful Spacelab module missions. NASA proposed a dedicated neuroscience research flight in response to a Presidential declaration that the 1990's be the Decade of the Brain. Criteria were established for selecting research proposals in partnership with the National Institutes of Health (NM), the National Science Foundation, the Department of Defense, and a number of the International Space Agencies. The resulting Announcement of Opportunity for Neurolab in 1993 resulted in 172 proposals from scientists worldwide. After an NIH-managed peer review, NASA ultimately selected 26 proposals for flight on the Neurolab mission.

  8. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper describes the underlying dynamics of formation flying in a high-eccentricity orbit such as that of the Magnetospheric Multiscale mission. The GPS-based results used for MMS navigation is summarized, as well as the procedures that are used to design the maneuvers used to place the spacecraft into a tetrahedron formation and then maintain it. The details of how to carry out these maneuvers are then discussed. Finally, the numerical results that have been obtained concerning formation flying for the MMS mission to date (e.g. tetrahedron sizes flown, maneuver execution error, fuel usage, etc.) are presented in detail.

  9. Evaluation of flat-Earth approximation results for geopotential missions.

    NASA Astrophysics Data System (ADS)

    Tapley, M. B.

    1997-04-01

    Simplified calculations can approximate the formal uncertainties in estimates of the spherical harmonic coefficients representing the Earth's gravitational potential. The calculations model the Earth locally as a plane, producing errors negligible for wavelengths shorter than the radius of the Earth. Information derived from observations of low altitude polar orbiting satellites is considered. With some constraints, the final model uncertainties derive from a priori gravitational field information, specific orbital elements, and parameters describing instrumentation characteristics. The author demonstrates how to refine the technique to accept inputs from the currently operational Navstar Global Positioning System (GPS) constellation and how to use information from partial tensor gravitational gradiometers. This approach is beneficial when evaluating prospective satellite geodesy missions because the covariance analyses for various mission scenarios can be made efficiently and expeditiously. The author demonstrates the utility of the flat Earth approach by comparing results with those of more elaborate and time consuming calculations performed for the European Space Agency ARISTOTELES proposed geopotential mapping mission, the NASA Gravity Probe B Relativity mission, and the NASA/Center National d'Etudes Spatiales Topographic Ocean Experiment Satellite (TOPEX)/Poseidon mission.

  10. Early Results from the Juno Mission at Jupiter

    NASA Astrophysics Data System (ADS)

    Bolton, Scott; Juno Science Team

    2016-10-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrived at Jupiter July 4, 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. Early results from the mission will be presented as well as an overview of planned observations.

  11. A Comet on Earth: Results from the Stardust Mission

    SciTech Connect

    Brennan, Sean

    2006-08-29

    The Stardust mission returned from a 6-year voyage in January of 2006. During the mission it swept through the tail of comet Wild 2 (pronounced Vilt), collecting the microscopic particles streaming from it. These particles were collected in a very low density material called aerogel. The satellite then took 2 years to return to Earth. The payload, jettisoned from the satellite, re-entered the atmosphere and gently landed in the Utah desert. Since January researchers have started the process of extracting the particles from the aerogel and using an extensive array of techniques to measure such things as elemental and isotopic abundance, mineralogy and petrology. We at SLAC have been using an X-ray Microprobe to determine the amount of different elements that are present in these particles. Please join us for a preliminary look at the results of the Stardust mission.

  12. Distinguishing Na, K, and H3O+ Jarosite and Alunite on Mars using VNIR, Emittance and Mossbauer Spectroscopy on the MER and Mars Express/OMEGA Missions

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.; Rothstein, Y.; Dyar, M. D.; Lane, M. D.; Klima, R. L.; Brophy, G. P.

    2005-12-01

    Jarosite has been identified in layered outcrops in Meridiani by the MER Mossbauer spectrometer [Klingelhofer, et al., 2004] and may be present elsewhere on Mars. We are studying VNIR, emittance and Mossbauer spectroscopy of a suite of synthetic and natural samples of jarosite and alunite from the Brophy collection [e.g. Brophy and Sheridan, 1965]. The characteristic NIR overtones and combination bands in this group differ not only depending on the trivalent cation (e.g. Al for alunite and Fe for jarosite), but also depending on the type of monovalent cation (typically K, Na and/or H3O). The VNIR spectrum of K-jarosite exhibits an OH stretching band at 1.47 um, an OH stretch + 2 bend combination doublet at 1.849 and 1.864 um, plus an OH stretch + bend combination triplet at 2.215, 2.265, and 2.300 um and additional OH and SO4 combination features near 2.40, 2.46, 2.50, 2.60 and 2.62 um. H3O- and Na-jarosite spectra exhibit broader features and the doublet is less resolvable. The spectrum of Na-jarosite contains a band at 1.48 um, a broad asymmetric band near 1.85 um and a triplet near 2.235, 2.275, and 2.310 um, plus additional features near 2.42, 2.47, 2.52, 2.62 and 2.64 um. Band assignments for jarosite and alunite spectra are from Bishop and Murad [2005]. We are in the process of comparing these spectra with the mid-IR and Mossbauer spectra of this jarosite group sample suite in order to perform coordinated analyses for this sulfate group on Mars using the MER and Mars Express datasets. References: Bishop, J. L., and E. Murad (2005), The visible and infrared spectral properties of jarosite and alunite, Am. Miner., 90, 1100-1107. Brophy, G. P., and M. F. Sheridan (1965), Sulfate studies IV: The jarosite-natrojarosite-hydronium jarosite solid solution series, Am. Miner., 50, 1595-1607. Klingelhofer, G., et al. (2004), Jarosite and hematite at Meridiani Planum from Opportunity's Mossbauer spectrometer, Science, 306, 1740-1745.

  13. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies

    PubMed Central

    Yan, Jianyun; Sultana, Nishat; Zhang, Lu; Park, David S; Shekhar, Akshay; Hu, Jun; Bu, Lei; Cai, Chen-Leng

    2015-01-01

    Summary Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2MerCreMer/+) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2MerCreMer/+ mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2MerCreMer/+ mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury. PMID:26010701

  14. Preliminary Results From The Neowise Post-cryogenic Mission

    NASA Astrophysics Data System (ADS)

    Mainzer, Amanda K.; Bauer, J.; Grav, T.; Masiero, J.; Cutri, R. M.; McMillan, R. S.; Walker, R.; Dailey, J.; Nugent, C. R.; Conrow, T.; Wright, E.

    2012-10-01

    NASA's Wide-field Infrared Survey Explorer mission surveyed the entire sky in four infrared wavelengths: 3.4, 4.6, 12 and 22 um (denoted W1, W2, W3, and W4 respectively). Images were collected in all four bands simultaneously using beamsplitters; cooling for all four detectors was provided by dual solid hydrogen tanks. Survey operations began on 14 January, 2010, and the first pass on the entire sky was completed six months later. However, coverage of the solar system was incomplete owing to the long synodic periods of near-Earth objects (NEOs) and many Main Belt asteroids. The hydrogen tank that provided cooling to the W3 and W4 Si:As detectors was exhausted on 5 August, 2010, resulting in the near-immediate loss of the 22 um channel that same day. As the remaining hydrogen in the second tank sublimed away, both the detectors and the telescope temperature rose. During this period, the 12 um channel continued to operate (albeit with reduced sensitivity) until 29 September, 2010. On that day, the secondary tank's hydrogen supply was finally exhausted, and the telescope temperature rose. Immediately thereafter, NASA's Planetary Science Directorate funded a four month extension of the mission, the NEOWISE Post-Cryogenic Mission, to search for new asteroids and to fill in the gap in coverage of the solar system. The telescope temperature stabilized at 73.5 K, cold enough to allow observations in the two shortest wavelengths. The W1 and W2 arrays operated with minimal performance degradation. Survey operations concluded on 1 February, 2011. We present the preliminary results from the NEOWISE Post-Cryogenic Mission on NEOs.

  15. Development of FIAT-based Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concep

    NASA Technical Reports Server (NTRS)

    Sepka, Steven Andrew; Zarchi, Kerry Agnes; Maddock, Robert W.; Samareh, Jamshid A.

    2011-01-01

    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.

  16. Development Of FIAT-Based Thermal Protection System Mass Estimating Relationships For NASA's Multi-Mission Earth Entry Concept

    NASA Technical Reports Server (NTRS)

    Sepka, Steven; Trumble, Kerry A.; Maddock, Robert W.; Samareh, Jamshid

    2012-01-01

    Mass Estimating Relationships (MERs) have been developed for use in the Program to Optimize Simulated Trajectories II (POST2) as part of NASA's multi-mission Earth Entry Vehicle (MMEEV) concept. MERs have been developed for the thermal protection systems of PICA and of Carbon Phenolic atop Advanced Carbon-Carbon on the forebody and for SIRCA and Acusil II on the backshell. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed herein.

  17. Auroral Spatial Structures Probe Sub-Orbital Mission Preliminary Results

    NASA Astrophysics Data System (ADS)

    Pratt, J.; Swenson, C.; Martineau, R. J.; Fish, C. S.; Conde, M.; Hampton, D.; Crowley, G.

    2015-12-01

    The NASA Auroral Spatial Structures Probe, 49.002, was launched January 28, 2015 from the Poker Flat Research Range into active aurora over the northern coast of Alaska. The primary objective of this mission was to determine the contribution of small spatial and temporal scale fluctuations of the electric fields to the larger-scale energy deposition processes associated with the aurora. The Auroral Spatial Structures Probe Sub-Orbital Mission consisted of a formation of 7 spacecraft (a main payload with 6 deployable sub-payloads) designed for multiple temporally spaced co-located measurements of electric and magnetic fields in the earth's ionosphere. The mission was able to make observations at a short time scale and small spatial scale convergence that is unobservable by either satellite or ground-based observations. The payloads included magnetometers, electric field double probes, and Langmuir probes as well as a sweeping impedance probe on the main payload. We present here preliminary results from the measurements taken that hint at the underlying spatial structure of the currents and energy deposition in the aurora. The Poynting flux derived from the observations is shown and implications are discussed in terms of the contribution of small spatial scale, rapid temporal scale fluctuations in the currents that deposit energy in the auroral region. Funding provided by NASA Grants NNX11AE23G and NNX13AN20A.

  18. Sensitivity of simulated Martian atmospheric temperature to prescribed dust opacity distribution: Comparison of model results with reconstructed data from Mars Exploration Rover missions

    NASA Astrophysics Data System (ADS)

    Natarajan, Murali; Dwyer Cianciolo, Alicia; Fairlie, T. Duncan; Richardson, Mark I.; McConnochie, Timothy H.

    2015-11-01

    We use the Mars Weather Research and Forecasting (MarsWRF) general circulation model to simulate the atmospheric structure corresponding to the landing location and time of the Mars Exploration Rovers (MER) Spirit (A) and Opportunity (B) in 2004. The multiscale capability of MarsWRF facilitates high-resolution nested model runs centered near the landing site of each of the rovers. Dust opacity distributions based on measurements by Thermal Emission Spectrometer (TES) aboard the Mars Global Surveyor spacecraft, and those from an old version of the Mars Climate Database (MCD v3.1 released in 2001) are used to study the sensitivity of the model temperature profile to variations in the dust prescription. The reconstructed entry, descent, and landing (EDL) data from the rover missions are used for comparisons. We show that the model using dust opacity from TES limb and nadir data for the year of MER EDL, Mars Year 26 (MY26), yields temperature profiles in closer agreement with the reconstructed data than the prelaunch EDL simulations and models using other dust opacity specifications. The temperature at 100 Pa from the model (MY26) and the reconstruction are within 5°K. These results highlight the role of vertical dust opacity distribution in determining the atmospheric thermal structure. Similar studies involving data from past missions and models will be useful in understanding the extent to which atmospheric variability is captured by the models and in developing realistic preflight characterization required for future lander missions to Mars.

  19. Future NASA Missions and Technology Needs Results to Date

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1999-01-01

    An overview of future NASA missions, technologies needed for mission success, accomplishments in space mechanisms to date, a government/industry survey and survey responses, significant programmatic and technology issues, and technology implementation needs are presented.

  20. Middle East Respiratory Syndrome (MERS).

    PubMed

    Rasmussen, Sonja A; Watson, Amelia K; Swerdlow, David L

    2016-06-01

    Since the identification of the first patients with Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, over 1,600 cases have been reported as of February 2016. Most cases have occurred in Saudi Arabia or in other countries on or near the Arabian Peninsula, but travel-associated cases have also been seen in countries outside the Arabian Peninsula. MERS-CoV causes a severe respiratory illness in many patients, with a case fatality rate as high as 40%, although when contacts are investigated, a significant proportion of patients are asymptomatic or only have mild symptoms. At this time, no vaccines or treatments are available. Epidemiological and other data suggest that the source of most primary cases is exposure to camels. Person-to-person transmission occurs in household and health care settings, although sustained and efficient person-to-person transmission has not been observed. Strict adherence to infection control recommendations has been associated with control of previous outbreaks. Vigilance is needed because genomic changes in MERS-CoV could result in increased transmissibility, similar to what was seen in severe acute respiratory syndrome coronavirus (SARS-CoV). PMID:27337460

  1. Middle East Respiratory Syndrome (MERS)

    MedlinePlus

    Middle East Respiratory Syndrome Coronavirus; MERS-CoV; Novel coronavirus; nCoV ... Centers for Disease Control and Prevention. Middle East Respiratory Syndrome (MERS): Frequently Asked Questions and Answers. Updated ...

  2. First results on GlioLab/GlioSat Precursors Missions

    NASA Astrophysics Data System (ADS)

    Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo

    2012-07-01

    Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.

  3. Virtual Mission First Results Supporting the WATER HM Satellite Concept

    NASA Astrophysics Data System (ADS)

    Alsdorf, D.; Andreadis, K.; Lettenmaier, D.; Moller, D.; Rodriguez, E.; Bates, P.; Mognard, N.; Participants, W.

    2007-12-01

    Surface fresh water is essential for life, yet we have surprisingly poor knowledge of its variability in space and time. Similarly, ocean circulation and ocean-atmosphere interactions fundamentally drive weather and climate variability, yet the global ocean current and eddy field (e.g., the Gulf Stream) that affects ocean circulation is poorly known. The Water And Terrestrial Elevation Recovery Hydrosphere Mapper satellite mission concept (WATER HM or SWOT per the NRC Decadal Survey) is a swath-based interferometric-altimeter designed to acquire elevations of ocean and terrestrial water surfaces at unprecedented spatial and temporal resolutions. WATER HM will have tremendous implications for estimation of the global water cycle, water management, ocean and coastal circulation, and assessment of many water-related impacts from climate change (e.g., sea level rise, carbon evasion, etc.). We describe a hydrological "virtual mission" (VM) for WATER HM which consists of: (a) A hydrodynamic-instrument simulation model that maps variations in water levels along river channels and across floodplains. These are then assimilated to estimate discharge and to determine trade-offs between resolutions and mission costs. (b) Measurements from satellites to determine feasibility of existing platforms for measuring storage changes and estimating discharge. First results demonstrate that: (1) Ensemble Kalman filtering of VM simulations recover water depth and discharge, reducing the discharge RMSE from 23.2% to 10.0% over an 84- day simulation period, relative to a simulation without assimilation. The filter also shows that an 8-day overpass frequency produces discharge relative errors of 10.0%, while 16-day and 32-day frequencies result in errors of 12.1% and 16.9%, respectively. (2) SRTM measurements of water surfaces along the Mississippi, Missouri, Ohio, and Amazon rivers, as well as smaller tributaries, show height standard deviations of 5 meters or greater (SRTM is the

  4. The ESA Scientific Exploitation of Operational Missions element, first results

    NASA Astrophysics Data System (ADS)

    Desnos, Yves-Louis; Regner, Peter; Delwart, Steven; Benveniste, Jerome; Engdahl, Marcus; Mathieu, Pierre-Philippe; Gascon, Ferran; Donlon, Craig; Davidson, Malcolm; Pinnock, Simon; Foumelis, Michael; Ramoino, Fabrizio

    2016-04-01

    SEOM is a program element within the fourth period (2013-2017) of ESA's Earth Observation Envelope Programme (http://seom.esa.int/). The prime objective is to federate, support and expand the international research community that the ERS, ENVISAT and the Envelope programmes have built up over the last 25 years. It aims to further strengthen the leadership of the European Earth Observation research community by enabling them to extensively exploit future European operational EO missions. SEOM will enable the science community to address new scientific research that are opened by free and open access to data from operational EO missions. Based on community-wide recommendations for actions on key research issues, gathered through a series of international thematic workshops and scientific user consultation meetings, a work plan is established and is approved every year by ESA Members States. During 2015 SEOM, Science users consultation workshops have been organized for Sentinel1/3/5P ( Fringe, S3 Symposium and Atmospheric science respectively) , new R&D studies for scientific exploitation of the Sentinels have been launched ( S3 for Science SAR Altimetry and Ocean Color , S2 for Science,) , open-source multi-mission scientific toolboxes have been launched (in particular the SNAP/S1-2-3 Toolbox). In addition two advanced international training courses have been organized in Europe to exploit the new S1-A and S2-A data for Land and Ocean remote sensing (over 120 participants from 25 countries) as well as activities for promoting the first scientific results ( e.g. Chili Earthquake) . In addition the First EO Open Science 2.0 was organised at ESA in October 2015 with 225 participants from 31 countries bringing together young EO scientists and data scientists. During the conference precursor activities in EO Open Science and Innovation were presented, while developing a Roadmap preparing for future ESA scientific exploitation activities. Within the conference, the first

  5. SMART-1 & recent missions: results from combining data

    NASA Astrophysics Data System (ADS)

    Foing, B. H.

    2013-09-01

    We highlight some results from combined data analysis using SMART-1 archive with other recent lunar missions. We discuss in particular impact craters, volcanic, photometry and studies of ILEWG sites.. SMART-1 demonstrated the use of Solar Electric Propulsion for deep space, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12] until impact on 3 September 2006. To date 75 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS & SMART-1 website sci.esa.int/smart-1 or www.esa.int/smart-1). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13] http://www.rssd.esa.int/psa

  6. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis.

    PubMed

    Law, Ah-Lai; Parinot, Célia; Chatagnon, Jonathan; Gravez, Basile; Sahel, José-Alain; Bhattacharya, Shomi S; Nandrot, Emeline F

    2015-02-20

    Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface.

  7. Apollo-Soyuz US-USSR joint mission results

    NASA Technical Reports Server (NTRS)

    Bean, A. L.; Evans, R. E.

    1975-01-01

    The technical and nontechnical objectives of the Apollo-Soyuz mission are briefly considered. The mission demonstrated that Americans and Russians can work together to perform a very complex operation, including rendezvous in space, docking, and the conduction of joint experiments. Certain difficulties which had to be overcome were partly related to differences concerning the role of the astronaut in the basic alignment and docking procedures for space vehicles. Attention is also given to the experiments conducted during the mission and the approach used to overcome the language barrier.

  8. The Magnetospheric Multiscale (MMS) Mission development and initial results (Hannes Alfvén Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Fuselier, Stephen

    2016-04-01

    The MMS mission is a 4 spacecraft NASA mission designed to unlock the mysteries of magnetic reconnection. The spacecraft measure the ion and electron distributions and the electric and magnetic fields inside the electron and ion diffusion regions in the Earth's magnetosphere. In many ways, this mission is a natural follow-on to the highly successful European Space Agency Cluster mission. This talk focuses on the development of the MMS mission concept with emphasis on the connections to the Cluster mission. Preliminary results from the first phase of the MMS mission will be presented.

  9. Flight results of the COMPASS-1 picosatellite mission

    NASA Astrophysics Data System (ADS)

    Scholz, A.; Ley, W.; Dachwald, B.; Miau, J. J.; Juang, J. C.

    2010-11-01

    The mission of the COMPASS-1 picosatellite is to take pictures of the earth, to validate a space-borne GPS receiver developed by the German Aerospace Center, and to verify the proper operation of the magnetic attitude control system in orbit. The spacecraft was launched on April 28, 2008 from the Indian space port Sriharikota, as part of the PSLV-C9 world record launch that simultaneously brought ten satellites into orbit. The mission operations were carried out from the ground stations in Aachen and Tainan. Arising difficulties in the communication link were overcome with the support of individuals from the amateur radio community. After several months of mission operation, abundant housekeeping and mission data has been commanded, received and analyzed and is presented in this paper.

  10. Preliminary results of centroiding experiment for the STEP mission

    NASA Astrophysics Data System (ADS)

    Li, Haitao; Li, Baoquan; Cao, Yang; Chen, Ding; Li, Ligang

    2015-08-01

    Search for Terrestrial Exo-Planet (STEP)[1] was originally proposed in 2013 by the National Space Science Center, Chinese Academy of Sciences, which is currently being under background engineering study phase in China. The STEP mission is a space astrometry telescope working at visible light wavelengths. The STEP aims at the nearby terrestrial planets detection through micro-arcsecond-level astrometry. Determination of the separation between star images on a detector with high precision is very important for astrometric exoplanets detection through the observation of star wobbles due to planets. The requirement of centroiding accuracy for STEP is 1e-5 pixel. A centroiding experiment have been carried out on a metrology testbed in open laboratory. In this paper, we present the preliminary results of determining the separations between star images. Without calibration of pixel positions and intra-pixel response, we have demonstrated that the standard deviation of differential centroiding is below 7.4e-3 pixel by the algorithm of linear corrected photon weighted means(LCPWM)[2,3]. For comparison, the photon weighted means(PWM) and Gauss fitting are also used in the data reduction. These results pave the way for the geometrical calibration and the intra-pixel quantum efficiency(QE) calibration of detector array equipment for micro-pixel accuracy centroiding.

  11. Results of edge scatter testing for a starshade mission

    NASA Astrophysics Data System (ADS)

    Casement, Suzanne; Warwick, Steve; Smith, Daniel; Ellis, Scott; Stover, John

    2016-07-01

    In the field of exoplanet detection and characterization, the use of a starshade, an external occulter in front of a telescope at large separations, has been identified as one of the highly promising methods to achieve the necessary high contrast imagery. Control of scattered sunlight from the edges of the starshade into the telescope has been identified as one of the key technology development areas in order to make the starshade feasible. Modeling of the scattered light has resulted in very different results so a campaign of experimentation with edge samples was undertaken to attempt to understand the discrepancies. Here, we present our results from the measurement of select samples of materials which would be suitable for manufacturing the starshade edge, and related models. We have focused on coating metallic samples for ease of fabrication: Titanium, Aluminum, and a Beryllium Copper alloy. Using standard machine shop methods, we fabricated samples which had sharp edges with radius of curvature (RoC) between 15 and 20 μm. We then had these samples coated by two suppliers to evaluate how well these coating types would conform to the edge and provide scatter suppression. The results of scatter measurements of these coated edge samples are presented. These scatter results have been incorporated into a new geometrical model in FRED which includes the details of the starshade mechanical model. This model predicts both the magnitude and distribution of the scattered sunlight in the image plane of a nominal telescope. We present these results, including a first effort at modeling the Solar System at 10 pc as seen by this mission architecture.

  12. Results of the Constellation-X Mission Architecture Study

    NASA Astrophysics Data System (ADS)

    Skinner, M. A.; Stober, J. J.; Miller, C. D.

    1999-09-01

    The Constellation X-ray Mission is a proposed high throughput X-ray spectroscopy mission, scheduled to be planned, designed, constructed, launched, and operated in the coming decade. Constellation-X will provide a factor of nearly 100 increase in sensitivity over current high resolution X-ray spectroscopy missions and, in so doing, will obtain high quality spectra for all classes of X-ray sources over a wide range of luminosity and redshift. Cooperatively with the NASA Goddard Space Flight Center and the Smithsonian Astrophysical Observatory, we have carried out a mission architecture study, consisting of a series of preliminary configuration trades, that considered the mission and payload requirements, launch vehicle capabilities, candidate orbits, costs, and instrument accommodation abilities. We generated a small number of concepts that meet the Constellation-X requirements, and have ranked them based on risk and cost considerations. Our concept for the mission architecture design includes a suite of hard and soft X-ray telescopes, to be launched aboard two Evolved Expendable Launch Vehicles (EELV). A fixed optical bench, fixed solar array, and fixed sunshade accommodate the required telescope focal length, and provide for the cryogenic microcalorimeter detectors, as well as the other X-ray instruments. An L2 orbit provides for the thermal requirements of the detectors, and offers other advantages. Below, we illuminate these and other considerations, with an emphasis on the accommodation of the instruments in the observatory.

  13. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    NASA Technical Reports Server (NTRS)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  14. Results from the Deep Space 1 Technology Validation Mission

    NASA Astrophysics Data System (ADS)

    Rayman, Marc D.; Varghese, Philip; Lehman, David H.; Livesay, Leslie L.

    2000-07-01

    Launched on October 24, 1998, Deep Space 1 (DS1) is the first mission of NASA's New Millennium program, chartered to validate in space high-risk, new technologies important for future space and Earth science programs. The advanced technology payload that was tested on DS1 comprises solar electric propulsion, solar concentrator arrays, autonomous on-board navigation and other autonomous systems, several telecommunications and microelectronics devices, and two low-mass integrated science instrument packages. The technologies were rigorously exercised so that subsequent flight projects would not have to incur the cost and risk of being the first users of these new capabilities. The performances of the technologies are described as are the general execution of the mission and plans for future operations, including a possible extended mission that would be devoted to science.

  15. Geolab Results from Three Years of Analog Mission Tests

    NASA Technical Reports Server (NTRS)

    Evans, Cindy A.; Bell, M. S.; Calaway, M. J.

    2013-01-01

    GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.

  16. Two Years Onboard the MER Opportunity Rover

    NASA Technical Reports Server (NTRS)

    Estlin, Tara; Anderson, Robert C.; Bornstein, Benjamin; Burl, Michael; Castano, Rebecca; Gaines, Daniel; Judd, Michele; Thompson, David R.

    2012-01-01

    The Autonomous Exploration for Gathering Increased Science (AEGIS) system provides automated data collection for planetary rovers. AEGIS is currently being used onboard the Mars Exploration Rover (MER) mission's Opportunity to provide autonomous targeting of the MER Panoramic camera. Prior to AEGIS, targeted data was collected in a manual fashion where targets were manually identified in images transmitted to Earth and the rover had to remain in the same location for one to several communication cycles. AEGIS enables targeted data to be rapidly acquired with no delays for ground communication. Targets are selected by AEGIS through the use of onboard data analysis techniques that are guided by scientist-specified objectives. This paper provides an overview of the how AEGIS has been used on the Opportunity rover, focusing on usage that occurred during a 21 kilometer historic trek to the Mars Endeavour crater.

  17. Initial Satellite Formation Flight Results from the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Ottenstein, Neil; Palmer, Eric; Farahmand, Mitra

    2016-01-01

    This paper will describe the results that have been obtained to date concerning MMS formation flying. The MMS spacecraft spin at a rate of 3.1 RPM, with spin axis roughly aligned with Ecliptic North. Several booms are used to deploy instruments: two 5 m magnetometer booms in the spin plane, two rigid booms of length 12.5 m along the positive and negative spin axes, and four flexible wire booms of length 60 m in the spin plane. Minimizing flexible motion of the wire booms requires that reorientation of the spacecraft spin axis be kept to a minimum: this is limited to attitude maneuvers to counteract the effects of gravity-gradient and apparent solar motion. Orbital maneuvers must therefore be carried out in essentially the nominal science attitude. These burns make use of a set of monopropellant hydrazine thrusters: two (of thrust 4.5 N) along the spin axis in each direction, and eight (of thrust 18 N) in the spin plane; the latter are pulsed at the spin rate to produce a net delta-v. An on-board accelerometer-based controller is used to accurately generate a commanded delta-v. Navigation makes use of a weak-signal GPS-based system: this allows signals to be received even when MMS is flying above the GPS orbits, producing a highly accurate determination of the four MMS orbits. This data is downlinked to the MMS Mission Operations Center (MOC) and used by the MOC Flight Dynamics Operations Area (FDOA) for maneuver design. These commands are then uplinked to the spacecraft and executed autonomously using the controller, with the ground monitoring the burns in real time.

  18. Mars Science Laboratory: Mission, Landing Site, and Initial Results

    NASA Astrophysics Data System (ADS)

    Grotzinger, John; Blake, D.; Crisp, J.; Edgett, K.; Gellert, R.; Gomez-Elvira, J.; Hassler, D.; Mahaffy, P.; Malin, M.; Meyer, M.; Mitrofanov, I.; Vasavada, A.; Wiens, R.

    2012-10-01

    Scheduled to land on August 5, 2012, the Mars Science Laboratory rover, Curiosity, will conduct an investigation of modern and ancient environments. Recent mission results will be discussed. Curiosity has a lifetime of at least one Mars year ( 23 months), and drive capability of at least 20 km. The MSL science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere; an x-ray diffractometer that will determine mineralogical diversity; focusable cameras that can image landscapes and rock/regolith textures in natural color; an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry; a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals; an active neutron spectrometer designed to search for water in rocks/regolith; a weather station to measure modern-day environmental variables; and a sensor designed for continuous monitoring of background solar and cosmic radiation. The 155-km diameter Gale Crater was chosen as Curiosity’s field site based on several attributes: an interior mound of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mound show a progression with relative age from clay-bearing to sulfate-bearing strata, separated by an unconformity from overlying likely anhydrous strata; the landing ellipse is characterized by a mixture of alluvial fan and high thermal inertia/high albedo stratified deposits; and a number of stratigraphically/geomorphically distinct fluvial features. Gale’s regional context and strong evidence for a progression through multiple potentially habitable environments, represented by a stratigraphic record of extraordinary extent, insure preservation of a rich record of the environmental history of early Mars.

  19. Science Results from the Mars Exploration Rover Mission

    SciTech Connect

    Squyres, Steven

    2007-10-05

    One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments.

  20. Science Results from the Mars Exploration Rover Mission

    ScienceCinema

    Squyres, Steven [Cornell University, Ithaca, New York, United States

    2016-07-12

    One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments.

  1. Deployer Performance Results for the TSS-1 Mission

    NASA Technical Reports Server (NTRS)

    Marshall, Leland S.; Geiger, Ronald V.

    1995-01-01

    Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the

  2. Gravity Recovery and Interior Laboratory (GRAIL) Mission: Mission Status and Initial Science Results

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) Mission is a component of the NASA Discovery Program. GRAIL is a twin-spacecraft lunar gravity mission that has two primary objectives: to determine the structure of the lunar interior, from crust to core; and to advance understanding of the thermal evolution of the Moon. GRAIL launched successfully from the Cape Canaveral Air Force Station on September 10, 2011, executed a low-energy trajectory to the Moon, and inserted the twin spacecraft into lunar orbit on December 31, 2011 and January 1, 2012. A series of maneuvers brought both spacecraft into low-altitude (55-km), near-circular, polar lunar orbits, from which they perform high-precision satellite-to-satellite ranging using a Ka-band payload along with an S-band link for time synchronization. Precise measurements of distance changes between the spacecraft are used to map the lunar gravity field. GRAIL completed its primary mapping mission on May 29, 2012, collecting and transmitting to Earth >99.99% of the possible data. Spacecraft and instrument performance were nominal and has led to the production of a high-resolution and high-accuracy global gravity field, improved over all previous models by two orders of magnitude on the nearside and nearly three orders of magnitude over the farside. The field is being used to understand the thickness, density and porosity of the lunar crust, the mechanics of formation and compensation states of lunar impact basins, and the structure of the mantle and core. GRAIL s three month-long-extended mission will initiate on August 30, 2012 and will consist of global gravity field mapping from an average altitude of 22 km.

  3. Aquarius Satellite Salinity Measurement Mission Status, and Science Results from the initial 3-Year Prime Mission

    NASA Astrophysics Data System (ADS)

    Lagerloef, G. S. E.; Kao, H. Y.

    2014-12-01

    The Aquarius satellite microwave sensor, launched June 2011, as part of the US-Argentina joint Aquarius/SAC-D mission, and commenced observations on 25 Aug2011, and completed three years of ocean surface salinity measurements in late August 2014. The Aquarius measurement objectives are to describe unknown features in the sea surface salinity (SSS) field, and document seasonal and interannual variations on regional and basin scales. This presentation will first describe the structure of the mean annual global salinity field compared with the previous in situ climatology and contemporary in situ measurements , including small persistent biases of opposite sign in high latitudes versus low latitudes, currently under intense investigation, as well as global and regional error statistics. Then we summarize highlights of various studies and papers submitted to the JGR-Oceans special section on satellite salinity (2014). The most prominent seasonal variations, most notably the extant and variability of the SSS signature of the Atlantic and Pacific inter-tropical convergence zones, Amazon-Orinoco and other major rivers, and other important regional patterns of seasonal variability. Lastly we will examine the trends observed during the three Sep-Aug measurement years beginning Sep2011, Sep2012 and Sep2013, respectively, in relation to ENSO and other climate indices, as the first step in analyzing interannual SSS variability. An outline for extended mission operations beyond the initial three-year prime mission will be presented.

  4. Cassini Orbit Determination Results: January 2006 - End of Prime Mission

    NASA Technical Reports Server (NTRS)

    Antreasian, P. G.; Ardalan, S. M.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jacobson, R. A.; Jones, J. B.; Mackenzie, R. A.; Parcher, D. W.; Pelletier, F. J.; Roth, D. C.; Thompson, P. F.; Vaughan, A. T.

    2008-01-01

    After the forty-fifth flyby of Titan, the Cassini spacecraft has successfully completed the planned four-year prime mission tour of the Saturnian system. This paper reports on the orbit determination performance of the Cassini spacecraft over two years spanning 2006 - 2008. In this time span, Cassini's orbit progressed through the magnetotail and pi-transfer phases of the mission. Thirty-four accurate close encounters of Titan, one close flyby of Iapetus and one 50 km flyby of Enceladus were performed during this period. The Iapetus and Enceladus flybys were especially challenging and so the orbit determination supporting these encounters will be discussed in more detail. This paper will show that in most cases orbit determination has exceeded the navigation requirements for targeting flybys and predicting science instrument pointing during these encounters.

  5. Some Preliminary Scientific Results of Chang'E-3 Mission

    NASA Astrophysics Data System (ADS)

    Zou, Y.; Li, W.; Zheng, Y.; Li, H.

    2015-12-01

    Chang'E-3 mission is the main task of Phase two of China Lunar Exploration Program (CLEP), and also is Chinese first probe of landing, working and roving on the moon. Chang'E-3 craft composed of a lander and a rover, and each of them carry four scientific payloads respectively. The landing site of Chang'E-3 was located at 44.12 degrees north latitude and 19.51 degrees west longitude, where is in the northern part of Imbrium Which the distance in its west direction from the landing site of former Soviet probe Luna-17 is about 400 km, and about 780km far from the landing site of Appolo-17 in its southeast direction. Unfortunately, after a series of scientific tests and exploration on the surface of the moon, the motor controller communication of the rover emerged a breakdown on January 16, 2014, which leaded the four payloads onboard the rover can't obtain data anymore. However, we have received some interesting scientific data which have been studied by Chinese scientists. During the landing process of Chang'E-3, the Landing camera got total 4673 images with the Resolution in millimeters to meters, and the lander and rover took pictures for each other at different point with Topography camera and Panoramic camera. We can find characteristic changes in celestial brightness with time by analyzing image data from Lunar-based Ultraviolet Telescope (LUT) and an unprecedented constraint on water content in the sunlit lunar exosphere seen by LUT). The figure observed by EUV camera (EUVC) shows that there is a transient weak area of the Earth's plasma sphere; This event took place about three hours. The scientists think that it might be related to the change of the particle density of mid-latitude ionosphere. The preliminary spectral and mineralogical results from the landing site are derived according to the data of Visible and Near-infrared Imaging Spectrometer (VNIS). Seven major elements including Mg, Al, Si, K, Ca, Ti and Fe have been identified by the Active Particle

  6. Science Results from the Mars Exploration Rover Mission

    SciTech Connect

    Squyres, Steven

    2007-10-05

    NASA launched two Mars Exploration Rovers, on June 10 and July 7, 2003, primarily to probe the history of water on the red planet. After landing on Mars in January 2004, the robots began to explore the planet. One of the most important scientific goals of the mission was to find and identify a variety of rocks and soils that provide evidence of the past presence of water on the planet. To obtain this information, Squyres is studying the data obtained on Mars by several sophisticated scientific instruments. In his talk, he will discuss his conclusions about water on Mars and other observations about the nature of the planet.

  7. MRO Context Camera (CTX) Investigation Primary Mission Results

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Malin, M. C.; Science; Operations Teams, M.

    2008-12-01

    The Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) acquires panchromatic images of Mars at ~6 m/pixel; the majority cover areas 30 km wide by 43 to 313 km long. As of 31 August 2008, 36% of Mars was imaged at 6 m/pixel and 10.8% was covered more than once. Areas imaged multiple times include stereopairs and locations covered repeatedly to monitor dust-raising events, seasonal frost patterns, or landforms and albedo features known or anticipated to change. CTX provides context for data acquired by other MRO science instruments, as well. Using our knowledge of imaging performance as a function of seasonal atmospheric, frost, and insolation conditions from the 4 Mars-year Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) investigation, we undertook several time-dependent campaigns to create 6 m/pixel mosaics of regions such as Hellas Planitia, the south polar residual cap (covered in spring and in summer), and the north polar region. In addition, we obtained 6 m/pixel mosaics of the Valles Marineris, Sinus Meridiani, Marte Valles, Athabasca Valles, portions of the northern plains, fretted terrain and chaotic terrain, large volcanoes, yardang-forming materials in Amazonis and Aeolis, the small volcanoes and platy flows south of Cerberus, and many other regions. We monitored thousands of mid-latitude gullies, and we used our MOC experience to target dust-raising events that repeat every year at the same locations. Retreat of cliffs formed in layers of CO2 ice in the south polar cap was observed for the 5th southern summer since 1999. Dozens of new impact craters and crater clusters were observed; all formed since 1999 and some formed during the MRO Primary Mission. We routinely re-targeted the new impact sites to see how they change and alert other MRO instrument teams so they could observe them. CTX images of the cratered highlands emphasize the view that the upper crust of Mars is layered with interbedded filled and buried valleys, fluvial channels, and

  8. Middle East respiratory syndrome (MERS)

    PubMed Central

    Cunha, Cheston B; Opal, Steven M

    2014-01-01

    Coronaviruses have traditionally been associated with mild upper respiratory tract infections throughout the world. In the fall of 2002, a new coronavirus emerged in in Asia causing severe viral pneumonia, i.e., severe acute respiratory syndrome (SARS). Nearly a decade following the SARS epidemic, a new coronavirus causing severe viral pneumonia has emerged, i.e., middle east respiratory syndrome (MERS). Since the initial case of MERS-CoV occurred in June of 2012 in Saudi Arabia there have been 688 confirmed cases and 282 deaths in 20 countries.   Although both SARS and MERS are caused by coronaviruses, SARS was characterized by efficient human transmission and relatively low mortality rate. In contrast, MERS is relatively inefficiently transmitted to humans but has a high mortality rate. Given the potential overlap in presentation and manifestation, it is important to understand the clinical and epidemiologic differences between MERS, SARS and influenza. PMID:25089913

  9. Kepler Planet Detection Mission: Introduction and First Results

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Lissauer, Jack J.; Morrison, David; Rowe, Jason; Bryson, Stephen T.; Dotson, Jessie; Haas,Michael; Gautier, Thomas N.

    2010-01-01

    The Kepler Mission is designed to determine the frequency of Earth-size and rocky planets in and near the habitable zone (HZ) of solar-like stars. The HZ is defined to be the region of space where a rocky planet could maintain liquid water on its surface. Kepler is the 10th competitively-selected Discovery Mission and was launched on March 6, 2009. Since completing its commissioning, Kepler has observed over 156,000 stars simultaneously and near continuously to search for planets that periodically pass in front of their host star (transit). The photometric precision is approximately 23 ppm for 50% of the 12th magnitude dwarf stars for an integration period of 6.5 hours. During the first 3 months of operation the photometer detected transit-like signatures from more than 200 stars. Careful examination shows that many of these events are false-positives such as small stars orbiting large stars or blends of target stars with eclipsing binary stars. Ground-based follow-up observations confirm the discovery of five new exoplanets with sizes between 0.37 andl.6 Jupiter radii (R(sub J)) and orbital periods ranging from 3.2 to 4.9 days. Ground-based observations with the Keck 1, Hobby-Ebberly, Hale, WIYN, MMT, Tillinghast, Shane, and Nordic Optical Telescopes are used to vet the planetary candidates and measure the masses of the putative planets. Observations of occultations and phase variations of hot, short-period planets such as HT-P-7b provide a probe of atmospheric properties. Asteroseismic analysis already shows the presence of p-mode oscillations in several stars. Such observations will be used to measure the mean stellar density and infer the stellar size and age. For stars too dim to permit asteroseismology, observations of the centroid motion of target stars will be used to measure the parallax and be combined with photometric measurements to estimate stellar sizes. Four open clusters are being observed to determine stellar rotation rates as a function of age and

  10. Star tracker constraint violations digital capability description and analysis results. Mission planning, mission analysis, and software formulation

    NASA Technical Reports Server (NTRS)

    Poston, P. L.

    1975-01-01

    Results of star tracker constraint violation analyses performed with the digital computer program Shuttle Attitude and Pointing Time Line Processor (SAPT) are presented. Results are typical of those utilized to provide the information required to update Baseline Reference Mission Attitude and Pointing Time Lines. Descriptions of SAPT modifications implemented to perform these analyses are also presented.

  11. Results of PRISMA/FFIORD extended mission and applicability to future formation flying and active debris removal missions

    NASA Astrophysics Data System (ADS)

    Delpech, Michel; Berges, Jean-Claude; Karlsson, Thomas; Malbet, Fabien

    2013-07-01

    CNES performed several experiments during the extended PRISMA mission which started in August 2011. A first session in October 2011 addressed two objectives: 1) demonstrate angles-only navigation to rendezvous with a non-cooperative object; 2) exercise transitions between RF-based and vision-based control during final formation acquisition. A complementary experiment in September 2012 mimicked some future astrometry mission and implemented the manoeuvres required to point the two satellite axis to a celestial target and maintain it fixed during some observation period. In the first sections, the paper presents the experiment motivations, describes its main design features including the guidance and control algorithms evolutions and provides a synthesis of the most significant results along with a discussion of the lessons learned. In the last part, the paper evokes the applicability of these experiment results to some active debris removal mission concept that is currently being studied.

  12. Kepler Planet-Detection Mission: Introduction and First Results

    SciTech Connect

    Borucki, William J.; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jorgen; Cochran, William D.; DeVore, Edna; Dunham, Edward W.; /Lowell Observ. /Harvard-Smithsonian Ctr. Astrophys.

    2010-01-01

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets ({approx}0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  13. Results of the REFLEX (Return Flux Experiment) Flight Mission

    NASA Technical Reports Server (NTRS)

    Pepin, R. O. (Compiler); Mauersberger, Konrad; Johnson, Bradford W.; Manning, Heidi K.

    1997-01-01

    The numerous problems occurring in this first flight of the REFLEX experiment, both in the spacecraft and with the instrument package, seriously constrained the acquisition and analysis of data and severely limited the interpretation of the data that were obtained. Of these, the ambient helium measurements appear to be the most promising. They are summarized and discussed in Appendix A. Further analyses could be attempted to establish the correct values for the energy centers as they varied during the mission. In addition, an extensive laboratory recalibration on a high-speed beam system could in principle provide corrections to be used in analyzing and interpreting the returned data set. The unknown malfunction which generated the energy drift needs to be understood and corrected before the REFLEX experiment is reflown; some hardware modification, or at least retuning, is likely to be required.

  14. Kepler planet-detection mission: introduction and first results.

    PubMed

    Borucki, William J; Koch, David; Basri, Gibor; Batalha, Natalie; Brown, Timothy; Caldwell, Douglas; Caldwell, John; Christensen-Dalsgaard, Jørgen; Cochran, William D; DeVore, Edna; Dunham, Edward W; Dupree, Andrea K; Gautier, Thomas N; Geary, John C; Gilliland, Ronald; Gould, Alan; Howell, Steve B; Jenkins, Jon M; Kondo, Yoji; Latham, David W; Marcy, Geoffrey W; Meibom, Søren; Kjeldsen, Hans; Lissauer, Jack J; Monet, David G; Morrison, David; Sasselov, Dimitar; Tarter, Jill; Boss, Alan; Brownlee, Don; Owen, Toby; Buzasi, Derek; Charbonneau, David; Doyle, Laurance; Fortney, Jonathan; Ford, Eric B; Holman, Matthew J; Seager, Sara; Steffen, Jason H; Welsh, William F; Rowe, Jason; Anderson, Howard; Buchhave, Lars; Ciardi, David; Walkowicz, Lucianne; Sherry, William; Horch, Elliott; Isaacson, Howard; Everett, Mark E; Fischer, Debra; Torres, Guillermo; Johnson, John Asher; Endl, Michael; MacQueen, Phillip; Bryson, Stephen T; Dotson, Jessie; Haas, Michael; Kolodziejczak, Jeffrey; Van Cleve, Jeffrey; Chandrasekaran, Hema; Twicken, Joseph D; Quintana, Elisa V; Clarke, Bruce D; Allen, Christopher; Li, Jie; Wu, Haley; Tenenbaum, Peter; Verner, Ekaterina; Bruhweiler, Frederick; Barnes, Jason; Prsa, Andrej

    2010-02-19

    The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet's surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (approximately 0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

  15. Preliminary Results on Lunar Interior Properties from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, H. Jay; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; Wieczorek, Mark A.; Zuber, Maria T.; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Matsuyama, Isamu; McGovern, Patrick J.; Nimmo, Francis; Weber, Renee C.; Boggs, D. H.; Goossens, Sander J.; Kruizinga, Gerhard L.; Mazarico, Erwan; Park, Ryan S.; Yuan, Dah-Ning

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k2. Lunar structure includes a thin crust, a deep mantle, a fluid core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future GRAIL will search for evidence of tidal dissipation and a solid inner core.

  16. Mars atmosphere during the Mariner 9 extended mission: Television results

    NASA Technical Reports Server (NTRS)

    Leovy, C. B.; Briggs, G. A.; Smith, B. A.

    1973-01-01

    Data from the Mariner 9 extended mission provide a record of seasonally varying processes from mid-spring to early summer in the Northern Hemisphere of Mars. Atmospheric phenomena observed by the television cameras during this period are: (1) A faint shelf of brightness near 20 km in height; (2) condensate clouds over Hellas in the early morning, (3) wave clouds over the south polar region indicating strong west to east winds; (4) faint wave clouds over the north polar cap indicating northeast to southwest flow off the cap; and (5) clouds over the major vocanos and Tithonius Lacus which show remarkable repeatability, strong topographic control, and, in some cases, evidence for convective structure.

  17. Engineering MerR for Sequestration and MerA for Reduction of Toxic Metals and Radionuclides

    SciTech Connect

    Anne O. Summers

    2008-12-15

    The objectives of this project were (1) to alter a metalloregulatory protein (MerR) so that it would bind other toxic metals or radionuclides with similar affinity so that the engineered protein itself and/or bacteria expressing it could be deployed in the environment to specifically sequester such metals and (2) to alter the mercuric reductase, MerA, to reduce radionuclides and render them less mobile. Both projects had a basic science component. In the first case, such information about MerR illuminates how proteins discriminate very similar metals/elements. In the second case, information about MerA reveals the criteria for transmission of reducing equivalents from NADPH to redox-active metals. The work involved genetic engineering of all or parts of both proteins and examination of their resultant properties both in vivo and in vitro, the latter with biochemical and biophysical tools including equilibrium and non-equilibrium dialysis, XAFS, NMR, x-ray crystallography, and titration calorimetry. We defined the basis for metal specificity in MerR, devised a bacterial strain that sequesters Hg while growing, characterized gold reduction by MerA and the role of the metallochaperone domain of MerA, and determined the 3-D structure of MerB, the organomercurial lyase.

  18. Skylab experiment M-092: results of the first manned mission.

    PubMed

    Johnson, R L; Hoffler, G W; Nicogossian, A; Bergman, S A

    1975-01-01

    Blood pressure at 30-sec intervals, heart rate, and percentage increase in leg volume continuously were recorded during a 25-min protocol in the M092 Inflight Lower Body Negative Pressure (LBNP) experiment carried out in the first manned Skylab mission. These data were collected during six tests on each crewman over a 5-month preflight period. The protocol consisted of a 5-min resting control period, 1 min at -8, 1 min at -16, 3 min at -30, 5 min at -40, and 5 min at -50 mm Hg LBNP. A 5-min recovery period followed. Inflight tests were performed at approximately 3-day intervals through the 28-day mission. Individual variations in cardiovascular responses to LBNP during the preflight period continued to be demonstrated in the inflight tests. Measurements of the calf indicated that a large volume of fluid was shifted out of the legs early in the flight and that a slower decrease in leg volume, presumably due to loss of muscle tissue, continued throughout the flight. Resting heart rates tended to be low early in the flight and to increase slightly as the flight progressed. Resting blood pressure varied but usually was characterized by slightly elevated systolic blood pressure, lower diastolic pressure, and higher pulse pressures than during preflight examinations. During LBNP inflight a much greater increase in leg volume occurred than in preflight tests. Large increases occurred even at the smallest levels of negative pressure, suggesting that the veins of the legs were relatively empty at the beginning of the LBNP. The greater volume of blood pooled in the legs was associated with greater increases of heart rate and diastolic pressure and larger falls of systolic and pulse pressure than seen in preflight tests. The LBNP protocol represented a greater stress inflight, and on three occasions it was necessary to stop the test early because of impending syncopal reactions. LBNP responses inflight appeared to predict the degree of postflight orthostatic intolerance

  19. Initial Results of Radio Science in Akatsuki mission

    NASA Astrophysics Data System (ADS)

    Imamura, Takeshi; Ando, Hiroki; Akatsuki Radio Science Team

    2016-10-01

    The Radio Science experiment (RS) in the Akatsuki mission of JAXA aims to determine the vertical structure of the Venus atmosphere, thereby complementing the imaging observations by onboard instruments. The physical quantities to be retrieved are the vertical distributions of the atmospheric temperature, the electron density, the sulfuric acid vapor density, and small-scale density fluctuations. The uniqueness of Akatsuki RS is quasi-simultaneous observations with multi-band cameras dedicated to meteorological study; the cameras can observe the locations probed by RS a short time before or after the occultations. An ultra-stable oscillator (USO) provides a stable reference frequency, which is used for the X-band downlink signal. The signal traverses the Venusian atmosphere near the limb and reaches the ground station, where it is sampled using an open-loop recording system. In the first radio occultation season of March-July, 2016, we plan 8 Venus occultation experiments in total (6 experiments have been done successfully till June). The temperature profiles cover the altitude region of 40-90 km, which enables studies of vertical coupling among different altitude levels and studies of the cloud system. Another target of Akatsuki RS is solar corona. During solar conjunction periods, the downlink signal that traverses the solar corona is recorded at the ground station. The data yields information on the solar wind velocity, plasma density fluctuations, and magnetic field fluctuations from Faraday rotation measurement. In the solar conjunction period of May-June, 2016, 11 occultation experiments were conducted.

  20. MOD-RTG multicouple test results and mission readiness

    SciTech Connect

    Hartman, R.F.; Kelly, C.E. )

    1993-01-10

    MOD-RTG represents the design configuration for the next generation of Radioisotope Thermoelectric Generators (RTG), aimed at improving specific power and efficiency over current General Purpose Heat Source Radioisotope Thermoelectric Generators (GPHS-RTGs). The modular RTG reference design has been described in previous papers (Hartman 1988). The multicouple is a key element required for the successful development of the modular RTG. The multicouple is a high voltage, thermoelectric device employing a close packed, glass bonded thermopile array of twenty thermoelectric couples, connected in a series circuit. The multicouple is designed to operate at a 1270 K hot junction temperature and a 570 K cold junction temperature, yielding a power output of approximately 2.1 watts at 3.5 volts at beginning of life. The objectives of the MOD-RTG program are focused on establishing a multicouple life test data base and life prediction capability which will permit, with reasonable margin, a projected multicouple life of greater than eight (8) years. This paper summarizes the current status of multicouple life testing and performance modeling and the level of technology readiness needed to demonstrate mission readiness for MOD-RTG.

  1. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.

    PubMed

    Benison, Gregory C; Di Lello, Paola; Shokes, Jacob E; Cosper, Nathaniel J; Scott, Robert A; Legault, Pascale; Omichinski, James G

    2004-07-01

    Bacteria isolated from organic mercury-contaminated sites have developed a system of two enzymes that allows them to efficiently convert both ionic and organic mercury compounds to the less toxic elemental mercury. Both enzymes are encoded on the mer operon and require sulfhydryl-bound substrates. The first enzyme is an organomercurial lyase (MerB), and the second enzyme is a mercuric ion reductase (MerA). MerB catalyzes the protonolysis of the carbon-mercury bond, resulting in the formation of a reduced carbon compound and inorganic ionic mercury. Of several mercury-containing MerB complexes that we attempted to prepare, the most stable was a complex consisting of the organomercurial lyase (MerB), a mercuric ion, and a molecule of the MerB inhibitor dithiothreitol (DTT). Nuclear magnetic resonance (NMR) spectroscopy and extended X-ray absorption fine structure spectroscopy of the MerB/Hg/DTT complex have shown that the ligands to the mercuric ion in the complex consist of both sulfurs from the DTT molecule and one cysteine ligand, C96, from the protein. The stability of the MerB/Hg/DTT complex, even in the presence of a large excess of competing cysteine, has been demonstrated by NMR and dialysis. We used an enzyme buffering test to determine that the MerB/Hg/DTT complex acts as a substrate for the mercuric reductase MerA. The observed MerA activity is higher than the expected activity assuming free diffusion of the mercuric ion from MerB to MerA. This suggests that the mercuric ion can be transferred between the two enzymes by a direct transfer mechanism. PMID:15222746

  2. Recombination spot identification Based on gapped k-mers.

    PubMed

    Wang, Rong; Xu, Yong; Liu, Bin

    2016-01-01

    Recombination is crucial for biological evolution, which provides many new combinations of genetic diversity. Accurate identification of recombination spots is useful for DNA function study. To improve the prediction accuracy, researchers have proposed several computational methods for recombination spot identification. The k-mer feature is one of the most useful features for modeling the properties and function of DNA sequences. However, it suffers from the inherent limitation. If the value of word length k is large, the occurrences of k-mers are closed to a binary variable, with a few k-mers present once and most k-mers are absent. This usually causes the sparse problem and reduces the classification accuracy. To solve this problem, we add gaps into k-mer and introduce a new feature called gapped k-mer (GKM) for identification of recombination spots. By using this feature, we present a new predictor called SVM-GKM, which combines the gapped k-mers and Support Vector Machine (SVM) for recombination spot identification. Experimental results on a widely used benchmark dataset show that SVM-GKM outperforms other highly related predictors. Therefore, SVM-GKM would be a powerful predictor for computational genomics. PMID:27030570

  3. The Planck Mission: Recent Results, Cosmological and Fundamental Physics Perspectives

    NASA Astrophysics Data System (ADS)

    Mandolesi, Nazzareno; Burigana, Carlo; Gruppuso, Alessandro; Natoli, Paolo

    2015-01-01

    We provide a description of the latest status and performance of the Planck satellite, focusing on the final predicted sensitivity of Planck. The optimization of the observational strategy for the additional surveys following the nominal fifteen months of integration (about two surveys) originally allocated and the limitation represented by astrophysical foreground emissions are presented. An outline of early and intermediate astrophysical results from the Planck Collaboration is provided. A concise view of some fundamental cosmological results that will be achieved by exploiting Planck's full set of temperature and polarization data is presented. Finally, the perspectives opened by Planck in answering some key questions in fundamental physics, with particular attention to Parity symmetry analyses, are described.

  4. Initial results from the MAVEN mission to Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Grebowsky, Joseph M.; Luhmann, Janet G.; Brain, David A.

    2015-11-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars orbiter has been gathering information on the Mars upper atmosphere, ionosphere, and solar and solar wind interactions since its orbit insertion in September 2014. MAVEN's science goals are to understand processes driving the escape of atmospheric gases to space at the present epoch, and their variations with solar and local heliospheric conditions together with geographical and seasonal influences. This introduction and the accompanying articles provide a selection of key results obtained up to the time of writing, including measurements of the overall geometry and variability of the Martian magnetosphere, upper atmosphere, and ionosphere and their responses to interplanetary coronal mass ejections and solar energetic particle influxes. The ultimate goal is to use these results to determine the integrated loss to space through time and its role in overall Mars atmosphere evolution.

  5. The Ames MER Microscopic Imager Toolkit

    NASA Technical Reports Server (NTRS)

    Sargent, Randy; Deans, Matthew; Kunz, Clayton; Sims, Michael; Herkenhoff, Ken

    2005-01-01

    The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a plus or minus mm depth of field and a 3lx31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser. This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission.

  6. The Ames MER microscopic imager toolkit

    USGS Publications Warehouse

    Sargent, R.; Deans, Matthew; Kunz, C.; Sims, M.; Herkenhoff, K.

    2005-01-01

    12The Mars Exploration Rovers, Spirit and Opportunity, have spent several successful months on Mars, returning gigabytes of images and spectral data to scientists on Earth. One of the instruments on the MER rovers, the Athena Microscopic Imager (MI), is a fixed focus, megapixel camera providing a ??3mm depth of field and a 31??31mm field of view at a working distance of 63 mm from the lens to the object being imaged. In order to maximize the science return from this instrument, we developed the Ames MI Toolkit and supported its use during the primary mission. The MI Toolkit is a set of programs that operate on collections of MI images, with the goal of making the data more understandable to the scientists on the ground. Because of the limited depth of field of the camera, and the often highly variable topography of the terrain being imaged, MI images of a given rock are often taken as a stack, with the Instrument Deployment Device (IDD) moving along a computed normal vector, pausing every few millimeters for the MI to acquire an image. The MI Toolkit provides image registration and focal section merging, which combine these images to form a single, maximally in-focus image, while compensating for changes in lighting as well as parallax due to the motion of the camera. The MI Toolkit also provides a 3-D reconstruction of the surface being imaged using stereo and can embed 2-D MI images as texture maps into 3-D meshes produced by other imagers on board the rover to provide context. The 2-D images and 3-D meshes output from the Toolkit are easily viewed by scientists using other mission tools, such as Viz or the MI Browser.This paper describes the MI Toolkit in detail, as well as our experience using it with scientists at JPL during the primary MER mission. ?? 2005 IEEE.

  7. IXV avionics architecture: Design, qualification and mission results

    NASA Astrophysics Data System (ADS)

    Succa, Massimo; Boscolo, Ilario; Drocco, Alessandro; Malucchi, Giovanni; Dussy, Stephane

    2016-07-01

    The paper details the IXV avionics presenting the architecture and the constituting subsystems and equipment. It focuses on the novelties introduced, such as the Ethernet-based protocol for the experiment data acquisition system, and on the synergy with Ariane 5 and Vega equipment, pursued in order to comply with the design-to-cost requirement for the avionics system development. Emphasis is given to the adopted model philosophy in relation to OTS/COTS items heritage and identified activities necessary to extend the qualification level to be compliant with the IXV environment. Associated lessons learned are identified. Then, the paper provides the first results and interpretation from the flight recorders telemetry, covering the behavior of the Data Handling System, the quality of telemetry recording and real-time/delayed transmission, the performance of the batteries and the Power Protection and Distribution Unit, the ground segment coverage during visibility windows and the performance of the GNC sensors (IMU and GPS) and actuators. Finally, some preliminary tracks of the IXV follow on are given, introducing the objectives of the Innovative Space Vehicle and the necessary improvements to be developed in the frame of PRIDE.

  8. Highlights of the Zeno Results from the USMP-2 Mission

    NASA Technical Reports Server (NTRS)

    Gammon, Robert W.; Shaumeyer, J. N.; Briggs, Matthew E.; Boukari, Hacene; Gent, David A.; Wilkinson, R. Allen

    1995-01-01

    The Zeno instrument, a High-precision, light-scattering spectrometer, was built to measure the decay rates of density fluctuations in xenon near its liquid-vapor critical point in the low-gravity environment of the U.S. Space Shuttle. Eliminating the severe density gradients created in a critical fluid by Earth's gravity, we were able to make measurements to within 100 microKelvin of the critical point. The instrument flew for fourteen days in March, 1994 on the Space Shuttle Columbia, STS-62 flight, as part of the very successful USMP-2 payload. We describe the instrument and document its performance on orbit, showing that it comfortably reached the desired 3 microKelvin temperature control of the sample. Locating the critical temperature of the sample on orbit was a scientific challenge; we discuss the advantages and short-comings of the two techniques we used. Finally we discuss problems encountered with making measurements of the turbidity of the sample, and close with the results of the measurement of the decay rates of the critical-point fluctuations.

  9. Gamma Ray Bursts: Selected Results From The Swift Mission

    NASA Astrophysics Data System (ADS)

    Hurkett, Cheryl

    2008-12-01

    Gamma Ray Bursts (GRBs) are short, energetic events that mark the most violent explosions in the Universe. Current hypotheses associate them with the births of stellar-sized black holes or rapidly spinning, highly magnetized stars. The introduction to this work places GRBs in their historical and theoretical context and provides a description of the current models describing them. This study makes use of data from the Swift satellite. Chapter two is a multi-wavelength study of the high redshift GRB 050505, which indicates that this burst has properties consistent with the general lower z GRB sample. Furthermore there is evidence for a 'jet-break' in the X-ray light curve; a phenomena rarely seen in Swift era bursts. The next two chapters investigate the presence of X-ray emission lines in GRB spectra. Chapter three provides a discussion of the pre-Swift observations and a comparison of three methods already extant in the literature for assessing the significance of such s! pectral features. The detection limits for each method were determined for emission line strengths in bursts with spectral parameters typical of the Swift era sample. Chapter four applies these methods to a sampel of 40 Swift bursts; no strong evidence was found for emission lines in early time X-ray spectra once host galaxy absorption was accurately modelled. Chapter five investigates the phenomena of 'precursors' and 'quiescent intervals', indicating a common origin for events normally ascribed to 'prompt emission' and 'flares', in line with previous studies, and extending it to cover 'precursor' emission. Evidence was also found to reinforce (anti-)correlations seen between pulse temporal and energetic properties also seen in previous studies. The final chapter summarises the important results for each section and proposes future studies that could be conducted in each field.

  10. Recent Results from the Lunar Reconnaissance Orbiter Mission and Plans for the Extended Science Phase

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard; Keller, John W.; Chin, Gordon; Petro, Noah; Garvin, James B.; Rice, James W.

    2012-01-01

    The Lunar Reconnaissance Orbiter spacecraft (LRO), launched on June 18, 2009, began with the goal of seeking safe landing sites for future robotic missions or the return of humans to the Moon as part of NASA's Exploration Systems Mission Directorate (ESMD). In addition, LRO's objectives included the search for surface resources and to investigate the Lunar radiation environment. After spacecraft commissioning, the ESMD phase of the mission began on September 15, 2009 and completed on September 15, 2010 when operational responsibility for LRO was transferred to NASA's Science Mission Directorate (SMD). The SMD mission was scheduled for 2 years and completed in September, 2012. The LRO mission has been extended for two years under SMD. The extended mission focuses on a new set of goals related to understanding the geologic history of the Moon, its current state, and what it can tell us about the evolution Of the Solar System. Here we will review the major results from the LRO mission for both exploration and science and discuss plans and objectives going forward including plans for the extended science phase out to 2014. Results from the LRO mission include but are not limited to the development of comprehensive high resolution maps and digital terrain models of the lunar surface; discoveries on the nature of hydrogen distribution, and by extension water, at the lunar poles; measurement of the day and night time temperature of the lunar surface including temperature down below 30 K in permanently shadowed regions (PSRs); direct measurement of Hg, H2, and CO deposits in the PSRs, evidence for recent tectonic activity on the Moon, and high resolution maps of the illumination conditions as the poles. The objectives for the second and extended science phases of the mission under SMD include: 1) understanding the bombardment history of the Moon, 2) interpreting Lunar geologic processes, 3) mapping the global Lunar regolith, 4) identifying volatiles on the Moon, and 5

  11. Meter-scale slopes of candidate MER landing sites from point photoclinometry

    USGS Publications Warehouse

    Beyer, R.A.; McEwen, A.S.; Kirk, R.L.

    2003-01-01

    Photoclinometry was used to analyze the small-scale roughness of areas that fall within the proposed Mars Exploration Rover (MER) 2003 landing ellipses. The landing ellipses presented in this study were those in Athabasca Valles, Elysium Planitia, Eos Chasma, Gusev Crater, Isidis Planitia, Melas Chasma, and Meridiani Planum. We were able to constrain surface slopes on length scales comparable to the image resolution (1.5 to 12 m/pixel). The MER 2003 mission has various engineering constraints that each candidate landing ellipse must satisfy. These constraints indicate that the statistical slope values at 5 m baselines are an important criterion. We used our technique to constrain maximum surface slopes across large swaths of each image, and built up slope statistics for the images in each landing ellipse. We are confident that all MER 2003 landing site ellipses in this study, with the exception of the Melas Chasma ellipse, are within the small-scale roughness constraints. Our results have provided input into the landing hazard assessment process. In addition to evaluating the safety of the landing sites, our mapping of small-scale roughnesses can also be used to better define and map morphologic units. The morphology of a surface is characterized by the slope distribution and magnitude of slopes. In looking at how slopes are distributed, we can better define landforms and determine the boundaries of morphologic units. Copyright 2003 by the American Geophysical Union.

  12. SeaWinds on QuikSCAT Mission and Early Science Results

    NASA Technical Reports Server (NTRS)

    Tsai, Wu-Yang; Graf, James E.

    2000-01-01

    SeaWinds on QuikSCAT (QSCAT) is a dedicated satellite remote sensing mission for measuring ocean surface wind speed and direction, using a spinning, pencil-beam Ku-band scatterometer. It is a replacement mission for NASA Scatterometer (NSCAT), which was launched on board of the Japan's Advanced Earth Observation System (ADEOS-1) in August 1996 and returned 10 months of high quality data before the mission was terminated in June, 1997 due to the failure of the ADEOS-1 spacecraft. Since the next NASA scatterometer mission, SeaWinds on ADEOS-2 (SeaWinds), will not be launched until November 2000, NASA decided to fill the data gap by launching the QSCAT mission. Furthermore, after year 2000. the potential exists for using both the QSCAT and SeaWinds to provide approximately 6 hours global coverage of the marine winds. QSCAT is currently scheduled for launch in April, 1999 from Vandenberg Air Force Base, using Titan-II launch vehicle. The purpose of this paper is to first present the mission objectives, the spacecraft and instrument design, ground receiving systems, the science data processing system, and the data products. We will then present the post-launch calibration and verification results of the QSCAT end-to-end sensor system. Finally, we present some of the key results obtained from the first two months of the mission, which include ocean surface wind measurements, ice detection and classification, global snow cover detection, and flood detection.

  13. Preventing cleavage of Mer promotes efferocytosis and suppresses acute lung injury in bleomycin treated mice

    SciTech Connect

    Lee, Ye-Ji; Lee, Seung-Hae; Youn, Young-So; Choi, Ji-Yeon; Song, Keung-Sub; Cho, Min-Sun; Kang, Jihee Lee

    2012-08-15

    Mer receptor tyrosine kinase (Mer) regulates macrophage activation and promotes apoptotic cell clearance. Mer activation is regulated through proteolytic cleavage of the extracellular domain. To determine if membrane-bound Mer is cleaved during bleomycin-induced lung injury, and, if so, how preventing the cleavage of Mer enhances apoptotic cell uptake and down-regulates pulmonary immune responses. During bleomycin-induced acute lung injury in mice, membrane-bound Mer expression decreased, but production of soluble Mer and activity as well as expression of disintegrin and metalloproteinase 17 (ADAM17) were enhanced . Treatment with the ADAM inhibitor TAPI-0 restored Mer expression and diminished soluble Mer production. Furthermore, TAPI-0 increased Mer activation in alveolar macrophages and lung tissue resulting in enhanced apoptotic cell clearance in vivo and ex vivo by alveolar macrophages. Suppression of bleomycin-induced pro-inflammatory mediators, but enhancement of hepatocyte growth factor induction were seen after TAPI-0 treatment. Additional bleomycin-induced inflammatory responses reduced by TAPI-0 treatment included inflammatory cell recruitment into the lungs, levels of total protein and lactate dehydrogenase activity in bronchoalveolar lavage fluid, as well as caspase-3 and caspase-9 activity and alveolar epithelial cell apoptosis in lung tissue. Importantly, the effects of TAPI-0 on bleomycin-induced inflammation and apoptosis were reversed by coadministration of specific Mer-neutralizing antibodies. These findings suggest that restored membrane-bound Mer expression by TAPI-0 treatment may help resolve lung inflammation and apoptosis after bleomycin treatment. -- Highlights: ►Mer expression is restored by TAPI-0 treatment in bleomycin-stimulated lung. ►Mer signaling is enhanced by TAPI-0 treatment in bleomycin-stimulated lung. ►TAPI-0 enhances efferocytosis and promotes resolution of lung injury.

  14. Orbit determination strategy and results for the Pioneer 10 Jupiter mission

    NASA Technical Reports Server (NTRS)

    Wong, S. K.; Lubeley, A. J.

    1974-01-01

    Pioneer 10 is the first earth-based vehicle to encounter Jupiter and occult its moon, Io. In contributing to the success of the mission, the Orbit Determination Group evaluated the effects of the dominant error sources on the spacecraft's computed orbit and devised an encounter strategy minimizing the effects of these error sources. The encounter results indicated that: (1) errors in the satellite model played a very important role in the accuracy of the computed orbit, (2) encounter strategy was sound, (3) all mission objectives were met, and (4) Jupiter-Saturn mission for Pioneer 11 is within the navigation capability.

  15. ESA SMART-1 mission: results and lessons for future lunar exploration

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    We review ESA’s SMART-1 highlights and legacy 10 years after launch. We discuss lessons for future lunar exploration and upcoming missions. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang’ E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to application geostationary missions and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of

  16. Tubby regulates microglial phagocytosis through MerTK.

    PubMed

    Caberoy, Nora B; Alvarado, Gabriela; Li, Wei

    2012-11-15

    Immunologically-silent microglial phagocytosis of apoptotic cells and cellular debris is critical for CNS homeostasis and innate immune balance. The beneficial and detrimental effects of microglial phagocytosis on neurons remain controversial. Phagocytosis ligands are the key to selecting extracellular cargos, initiating the engulfment process, defining phagocyte functional roles and regulating phagocyte activities with therapeutic potentials. Here we characterized tubby as a new ligand to regulate microglial phagocytosis through MerTK receptor, which is well known for its immunosuppressive signaling. Tubby at 0.1nM significantly induced microglial phagocytosis of apoptotic cells with a maximal activity at 10nM. Tubby activated MerTK with receptor autophosphorylation in a similar dose range. Excessive soluble MerTK extracellular domain blocked tubby-mediated microglial phagocytosis of plasma membrane vesicles as cellular debris. Immunocytochemistry revealed that the ingested cargos were co-localized with MerTK-dependent non-muscle myosin II, whose rearrangement is necessary for cargo engulfment. Phagosome biomarker Rab7 was colocalized with cargos, suggesting that internalized cargos were targeted to phagocytic pathway. Tubby stimulated phagocytosis by neonatal and aged microglia with similar activities, but not by MerTK(-/-) microglia. These results suggest that tubby is a ligand to facilitate microglial phagocytosis through MerTK for the maintenance of CNS homeostasis.

  17. Development of FIAT-Based Parametric Thermal Protection System Mass Estimating Relationships for NASA's Multi-Mission Earth Entry Concept

    NASA Technical Reports Server (NTRS)

    Sepka, Steven A.; Zarchi, Kerry; Maddock, Robert W.; Samareh, Jamshid A.

    2013-01-01

    Part of NASAs In-Space Propulsion Technology (ISPT) program is the development of the tradespace to support the design of a family of multi-mission Earth Entry Vehicles (MMEEV) to meet a wide range of mission requirements. An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing or M-SAPE tool is being developed as part of Entry Vehicle Technology project under In-Space Technology program. The analysis and design of an Earth Entry Vehicle (EEV) is multidisciplinary in nature, requiring the application many disciplines. Part of M-SAPE's application required the development of parametric mass estimating relationships (MERs) to determine the vehicle's required Thermal Protection System (TPS) for safe Earth entry. For this analysis, the heat shield was assumed to be made of a constant thickness TPS. This resulting MERs will then e used to determine the pre-flight mass of the TPS. Two Mers have been developed for the vehicle forebaody. One MER was developed for PICA and the other consisting of Carbon Phenolic atop an Advanced Carbon-Carbon composition. For the the backshell, MERs have been developed for SIRCA, Acusil II, and LI-900. How these MERs were developed, the resulting equations, model limitations, and model accuracy are discussed in this poster.

  18. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 42 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements. The verification results indicate that all the measurement objectives have been met...

  19. Protein crystal growth results from the United States Microgravity Laboratory-1 mission

    NASA Technical Reports Server (NTRS)

    Delucas, Lawrence J.; Moore, K. M.; Vanderwoerd, M.; Bray, T. L.; Smith, C.; Carson, M.; Narayana, S. V. L.; Rosenblum, W. M.; Carter, D.; Clark, A. D, Jr.

    1994-01-01

    Protein crystal growth experiments have been performed by this laboratory on 18 Space Shuttle missions since April, 1985. In addition, a number of microgravity experiments also have been performed and reported by other investigators. These Space Shuttle missions have been used to grow crystals of a variety of proteins using vapor diffusion, liquid diffusion, and temperature-induced crystallization techniques. The United States Microgravity Laboratory - 1 mission (USML-1, June 25 - July 9, 1992) was a Spacelab mission dedicated to experiments involved in materials processing. New protein crystal growth hardware was developed to allow in orbit examination of initial crystal growth results, the knowledge from which was used on subsequent days to prepare new crystal growth experiments. In addition, new seeding hardware and techniques were tested as well as techniques that would prepare crystals for analysis by x-ray diffraction, a capability projected for the planned Space Station. Hardware that was specifically developed for the USML-1 mission will be discussed along with the experimental results from this mission.

  20. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis)

    PubMed Central

    Munster, Vincent J.; Adney, Danielle R.; van Doremalen, Neeltje; Brown, Vienna R.; Miazgowicz, Kerri L.; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A.

    2016-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV. PMID:26899616

  1. MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2.

    PubMed

    Yeung, Man-Lung; Yao, Yanfeng; Jia, Lilong; Chan, Jasper F W; Chan, Kwok-Hung; Cheung, Kwok-Fan; Chen, Honglin; Poon, Vincent K M; Tsang, Alan K L; To, Kelvin K W; Yiu, Ming-Kwong; Teng, Jade L L; Chu, Hin; Zhou, Jie; Zhang, Qing; Deng, Wei; Lau, Susanna K P; Lau, Johnson Y N; Woo, Patrick C Y; Chan, Tak-Mao; Yung, Susan; Zheng, Bo-Jian; Jin, Dong-Yan; Mathieson, Peter W; Qin, Chuan; Yuen, Kwok-Yung

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes sporadic zoonotic disease and healthcare-associated outbreaks in human. MERS is often complicated by acute respiratory distress syndrome (ARDS) and multi-organ failure(1,2). The high incidence of renal failure in MERS is a unique clinical feature not often found in other human coronavirus infections(3,4). Whether MERS-CoV infects the kidney and how it triggers renal failure are not understood(5,6). Here, we demonstrated renal infection and apoptotic induction by MERS-CoV in human ex vivo organ culture and a nonhuman primate model. High-throughput analysis revealed that the cellular genes most significantly perturbed by MERS-CoV have previously been implicated in renal diseases. Furthermore, MERS-CoV induced apoptosis through upregulation of Smad7 and fibroblast growth factor 2 (FGF2) expression in both kidney and lung cells. Conversely, knockdown of Smad7 effectively inhibited MERS-CoV replication and protected cells from virus-induced cytopathic effects. We further demonstrated that hyperexpression of Smad7 or FGF2 induced a strong apoptotic response in kidney cells. Common marmosets infected by MERS-CoV developed ARDS and disseminated infection in kidneys and other organs. Smad7 and FGF2 expression were elevated in the lungs and kidneys of the infected animals. Our results provide insights into the pathogenesis of MERS-CoV and host targets for treatment. PMID:27572168

  2. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis).

    PubMed

    Munster, Vincent J; Adney, Danielle R; van Doremalen, Neeltje; Brown, Vienna R; Miazgowicz, Kerri L; Milne-Price, Shauna; Bushmaker, Trenton; Rosenke, Rebecca; Scott, Dana; Hawkinson, Ann; de Wit, Emmie; Schountz, Tony; Bowen, Richard A

    2016-01-01

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) highlights the zoonotic potential of Betacoronaviruses. Investigations into the origin of MERS-CoV have focused on two potential reservoirs: bats and camels. Here, we investigated the role of bats as a potential reservoir for MERS-CoV. In vitro, the MERS-CoV spike glycoprotein interacted with Jamaican fruit bat (Artibeus jamaicensis) dipeptidyl peptidase 4 (DPP4) receptor and MERS-CoV replicated efficiently in Jamaican fruit bat cells, suggesting there is no restriction at the receptor or cellular level for MERS-CoV. To shed light on the intrinsic host-virus relationship, we inoculated 10 Jamaican fruit bats with MERS-CoV. Although all bats showed evidence of infection, none of the bats showed clinical signs of disease. Virus shedding was detected in the respiratory and intestinal tract for up to 9 days. MERS-CoV replicated transiently in the respiratory and, to a lesser extent, the intestinal tracts and internal organs; with limited histopathological changes observed only in the lungs. Analysis of the innate gene expression in the lungs showed a moderate, transient induction of expression. Our results indicate that MERS-CoV maintains the ability to replicate in bats without clinical signs of disease, supporting the general hypothesis of bats as ancestral reservoirs for MERS-CoV. PMID:26899616

  3. The Miniaturized Moessbauer Spectrometers MIMOS II on MER: Four Years of Operation - A Summary

    NASA Technical Reports Server (NTRS)

    Fleischer, I.; Klingelhoefer, G.; Morris, R. V.; Rodionov, D.; Blumers, M.; Bernhardt, B.; Schroeder, C.; Ming, D. W.; Yen, A. S.; Cohen, B. A.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M. E.; Girones Lopez, J.; Studlek, G.; Brueckner, J.; Gellert, R.; d'Uston, C.

    2008-01-01

    The two Miniaturized Moessbauer Spectrometers (MIMOS II) on board the two Mars Exploration Rovers Spirit and Opportunity have now been collecting important scientific data for more than four years. The spectrometers provide information about Fe-bearing mineral phases and determine Fe oxidation states. The total amount of targets analized exceeds 600, the total integration time exceeds 260 days for both rovers. Since landing, more than five half-lives of the Co-57 MB sources have past (intensity at the time of landing approx. 150 mCi). Current integration times are about 50 hours in order to achieve reasonable statistics as opposed to 8 hours at the beginning of the mission. In total, 13 different mineral phases were detected: Olivine, pyroxene, hematite, magnetite and nanophase ferric oxide were detected at both landing sites. At Gusev, ilmenite, goethite, a ferric sulfate phase and a yet unassigned phase (in the rock Fuzzy Smith) were detected. At Meridiani, jarosite, metallic iron in meteoritic samples (kamacite), troilite, and an unassigned ferric phase were detected. Jarosite and goethite are of special interest, as these minerals are indicators for water activity. In this abstract, an overview of Moessbauer results will be given, with a focus on data obtained since the last martian winter. The MER mission has proven that Moessbauer spectroscopy is a valuable tool for the in situ exploration of extraterrestrial bodies and for the study of Febearing samples. The experience gained through the MER mission makes MIMOS II a obvious choice for future missions to Mars and other targets. Currently, MIMOS II is on the scientific payload of two approved future missions: Phobos Grunt (Russian Space Agency; 2009) and ExoMars (European Space Agency; 2013).

  4. Results from the NASA Spacecraft Fault Management Workshop: Cost Drivers for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; McDougal, John; Barley, Bryan; Stephens Karen; Fesq, Lorraine M.

    2010-01-01

    Fault Management, the detection of and response to in-flight anomalies, is a critical aspect of deep-space missions. Fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for five missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that four out of the five missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, and academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and tools that have not kept pace with the increasing complexity of mission requirements and spacecraft systems. This paper summarizes the

  5. [Infections with the MERS coronavirus--for the present no threat to Europe].

    PubMed

    Stock, Ingo

    2015-12-01

    In Saudi Arabia, a novel coronavirus named Middle East respiratory syndrome coronavirus (MERS-CoV) was isolated in 2012 from patients with severe respiratory symptoms. Up to now, more than 1600 MERS cases have been registered mainly in the Arabian Peninsula. MERS is usually accompanied with fever, cough, and shortness of breath. In many cases, pneumonia is observed. However, clinical features of MERS range from mild disease to acute respiratory distress syndrome and multiorgan failure resulting in death, especially in individuals with underlying comorbidities. To date, about one in three people died as a result of MERS. In Europe, MERS cases have only been registered in isolated travelers entering from the Middle East.

  6. ESA SMART-1 mission: review of results and legacy 10 years after launch

    NASA Astrophysics Data System (ADS)

    Foing, Bernard

    2014-05-01

    We review ESA's SMART-1 highlights and legacy 10 years after launch. The SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone with demonstration for future deep space missions such as BepiColombo; 3) most fuel effective mission (60 litres of Xenon) and longest travel (13 month) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer ; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the ILEWG/COSPAR International Lunar Exploration Working Group in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang'E1-2-3 and near-future landers, sample return and human lunar missions. The SMART-1 technology legacy is applicable to geostationary satellites and deep space missions using solar electric propulsion. The SMART-1 archive observations have been used to support scientific research and prepare subsequent lunar missions and exploration. Most recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) observations and science from the Moon, 5) support to

  7. Exploration-Related Research on ISS: Connecting Science Results to Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.

    2005-01-01

    In January, 2004, the U.S. President announced The Vision for Space Exploration, and charged the National Aeronautics and Space Administration (NASA) with using the International Space Station (ISS) for research and technology targeted at supporting U.S. space exploration goals. This paper describes: What we have learned from the first four years of research on ISS relative to the exploration mission; The on-going research being conducted in this regard; and Our current understanding of the major exploration mission risks that the ISS can be used to address. Specifically, we discuss research carried out on the ISS to determine the mechanisms by which human health is affected on long-duration missions, and to develop countermeasures to protect humans from the space environment. These bioastronautics experiments are key enablers of future long duration human exploration missions. We also discuss how targeted technological developments can enable mission design trade studies. We discuss the relationship between the ultimate number of human test subjects available on the ISS to the quality and quantity of scientific insight that can be used to reduce health risks to future explorers. We discuss the results of NASA's efforts over the past year to realign the ISS research programs to support a product-driven portfolio that is directed towards reducing the major risks of exploration missions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration relevant research must do more than be conceptually connected to design decisions - it must become a part of the mission design process.

  8. K-mer natural vector and its application to the phylogenetic analysis of genetic sequences

    PubMed Central

    Wen, Jia; Chan, Raymond H.; Yau, Shek-Chung; He, Rong L.; Yau, Stephen S. T.

    2014-01-01

    Based on the well-known k-mer model, we propose a k-mer natural vector model for representing a genetic sequence based on the numbers and distributions of k-mers in the sequence. We show that there exists a one-to-one correspondence between a genetic sequence and its associated k-mer natural vector. The k-mer natural vector method can be easily and quickly used to perform phylogenetic analysis of genetic sequences without requiring evolutionary models or human intervention. Whole or partial genomes can be handled more effective with our proposed method. It is applied to the phylogenetic analysis of genetic sequences, and the obtaining results fully demonstrate that the k-mer natural vector method is a very powerful tool for analysing and annotating genetic sequences and determining evolutionary relationships both in terms of accuracy and efficiency. PMID:24858075

  9. Lunar and Planetary Science XXXV: Special Session: Mars Missions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Special Session: Mars Missions" contained the following reports:Initial Results from the MER Athena Science Investigation at Gusev Crater and Meridiani Planum; Geomorphology of the Mars Exploration Rover (MER-A) Landing Site from Observations by the Spirit Rover; Geology of Meridiani Planum as Inferred from Mars Exploration Rover: Observations;Preliminary Mineralogy and Geochemistry Results at the MER-A Landing Site in Gusev; A First Look at the Mineralogy and Geochemistry of the MER-B Landing Site in Meridiani Planum; Mini-TES Observations of the Gusev and Meridiani Landing Sites; Preliminary Results of the Magnetic Properties Experiments on the Mars Exploration Rovers, Spirit and Opportunity; Pancam Imaging of the Mars Exploration Rover Landing Sites in Gusev Crater and Meridiani Planum; Atmospheric Science with the Mars Exploration Rovers: Things are Looking Up; The Mars Express Mission:Initial Scientific Results from Orbit; The HRSC Experiment in Mars Orbit: First Results; The OMEGA/Mars Express First Results; and SPICAM on Mars Express: First Results and First Observations of Water Ice at South.

  10. FireBird - a small satellite fire monitoring mission: Status and first results

    NASA Astrophysics Data System (ADS)

    Lorenz, Eckehard; Rücker, Gernot; Terzibaschian, Thomas; Klein, Doris; Tiemann, Joachim

    2014-05-01

    The scientific mission FireBird is operated by the German Aerospace Center (DLR) and consists of two small satellites. The first satellite - TET-1 - was successfully launched from Baikonur, Russia in July 2012. Its first year in orbit was dedicated to a number of experiments within the framework of the DLR On Orbit Verification (OOV) program which is dedicated to technology testing in space. After successful completion of its OOV phase, TET-1 was handed over to the DLR FireBird mission and is now a dedicated Earth Observation mission. Its primary goal is sensing of hot phenomena such as wildfires, volcanoes, gas flares and industrial hotspots. The second satellite, BiROS is scheduled for launch in the second or third quarter of 2015. The satellite builds on the heritage of the DLR BIRD (BIspectral Infrared Detection) mission and delivers quantitative information (such as Fire Radiative Power, FRP) at a spatial resolution of 350 m, superior to any current fire enabled satellite system such as NPP VIIRS, MODIS or Meteosat SEVIRI. The satellite is undergoing a four month validation phase during which satellite operations are adapted to the new mission goals of FireBIRD and processing capacities are established to guarantee swift processing and delivery of high quality data. The validation phase started with an informal Operational Readiness Review and will be completed with a formal review, covering all aspects of the space and ground segments. The satellite is equipped with a camera with a 42 m ground pixel size in the red, green and near infrared spectral range, and a 370 m ground pixel size camera in the mid and thermal infrared with a swath of 185 km. The satellite can be pointed towards a target in order to enhance observation frequency. First results of the FireBird mission include a ground validation experiment and acquisitions over fires across the world. Once the validation phase is finished the data will be made available to a wide scientific community.

  11. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Natchimuthuk

    2011-01-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using approximately 55 kg of Xenon) and hydrazine (approximately 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025. The mission can be readily extended for another solar cycle to get a solar-cycle worth of data on Earth

  12. Direct Imaging of Stellar Surfaces: Results from the Stellar Imager (SI) Vision Mission Study

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus; Karovska, Margarita

    2006-01-01

    The Stellar Imager (SI) is a UV-Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and stellar interiors (via asteroseismology) and of the Universe in general. SI is identified as a "Flagship and Landmark Discovery Mission'' in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory'' in the Exploration of the Universe Division (EUD) Roadmap (May, 2005). The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes: The 0.1 mas resolution of this deep-space telescope will transform point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. In this paper we will discuss the results of the SI Vision Mission Study, elaborating on the science goals of the SI Mission and a mission architecture that could meet those goals.

  13. Conduct and results of the Interagency Nuclear Safety Review Panel's evaluation of the Ulysses space mission

    SciTech Connect

    Sholtis, J.A. Jr. ); Gray, L.B. ); Huff, D.A. ); Klug, N.P. ); Winchester, R.O. )

    1991-01-01

    The recent 6 October 1990 launch and deployment of the nuclear-powered Ulysses spacecraft from the Space Shuttle {ital Discovery} culminated an extensive safety review and evaluation effort by the Interagency Nuclear Safety Review Panel (INSRP). After more than a year of detailed independent review, study, and analysis, the INSRP prepared a Safety Evaluation Report (SER) on the Ulysses mission, in accordance with Presidential Directive-National Security Council memorandum 25. The SER, which included a review of the Ulysses Final Safety Analysis Report (FSAR) and an independent characterization of the mission risks, was used by the National Aeronautics and Space Administration (NASA) in its decision to request launch approval as well as by the Executive Office of the President in arriving at a launch decision based on risk-benefit considerations. This paper provides an overview of the Ulysses mission and the conduct as well as the results of the INSRP evaluation. While the mission risk determined by the INSRP in the SER was higher than that characterized by the Ulysses project in the FSAR, both reports indicated that the radiological risks were relatively small. In the final analysis, the SER proved to be supportive of a positive launch decision. The INSRP evaluation process has demonstrated its effectiveness numerous times since the 1960s. In every case, it has provided the essential ingredients and perspective to permit an informed launch decision at the highest level of our Government.

  14. First results from the Mojave Volatiles Prospector (MVP) Field Campaign, a Lunar Polar Rover Mission Analog

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cook, A.; Deans, M. C.; Elphic, R. C.; Lim, D. S. S.; Skok, J. R.

    2014-12-01

    The Mojave Volatiles Prospector (MVP) project is a science-driven field program with the goal to produce critical knowledge for conducting robotic exploration of the Moon. MVP will feed science, payload, and operational lessons learned to the development of a real-time, short-duration lunar polar volatiles prospecting mission. MVP achieves these goals through a simulated lunar rover mission to investigate the composition and distribution of surface and subsurface volatiles in a natural and a priori unknown environment within the Mojave Desert, improving our understanding of how to find, characterize, and access volatiles on the Moon. The MVP field site is the Mojave Desert, selected for its low, naturally occurring water abundance. The Mojave typically has on the order of 2-6% water, making it a suitable lunar analog for this field test. MVP uses the Near Infrared and Visible Spectrometer Subsystem (NIRVSS), Neutron Spectrometer Subsystem (NSS), and a downward facing GroundCam camera on the KREX-2 rover to investigate the relationship between the distribution of volatiles and soil crust variation. Through this investigation, we mature robotic in situ instruments and concepts of instrument operations, improve ground software tools for real time science, and carry out publishable research on the water cycle and its connection to geomorphology and mineralogy in desert environments. A lunar polar rover mission is unlike prior space missions and requires a new concept of operations. The rover must navigate 3-5 km of terrain and examine multiple sites in in just ~6 days. Operational decisions must be made in real time, requiring constant situational awareness, data analysis and rapid turnaround decision support tools. This presentation will focus on the first science results and operational architecture findings from the MVP field deployment relevant to a lunar polar rover mission.

  15. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  16. The Mission Accessible Near-Earth Objects Survey (MANOS): photometric results

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, Nicholas; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca; Person, Michael J.; Polishook, David; Thomas, Cristina; Trilling, David E.; Willman, Mark; Hinkle, Mary L.; Burt, Brian; Avner, Dan

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near-Earth Objects (NEOs) to provide physical data for several hundred mission accessible NEOs across visible and near-infrared wavelengths. Using a variety of 1-m to 8-m class telescopes, we observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties and taxonomic class.Rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present results of the MANOS photometric survey for more than 200 NEOs. We report lightcurves from our first three years of observing and show objects with rotational periods from a couple of hours down to a few seconds. MANOS found the three fastest rotators known to date with rotational periods below 20s. A physical interpretation of these ultra-rapid rotators is that they are bound through a combination of cohesive and/or tensile strength rather than gravity. Therefore, these objects are important to understand the internal structure of NEOs. Rotational properties are used for statistical study to constrain overall properties of the NEO population. We also study rotational properties according to size, and dynamical class. Finally, we report a sample of NEOs that are fully characterized (lightcurve and visible spectra) as the most suitable candidates for a future robotic or human mission. Viable mission targets are objects with a rotational period >1h, and a delta-v lower than 12 km/s. Assuming the MANOS rate of object characterization, and the current NEO population estimates by Tricarico (2016), and by Harris and D'Abramo (2015), 10,000 to 1,000,000 NEOs with diameters between 10m and 1km are expected to be mission accessible. We acknowledge funding support from NASA NEOO grant number NNX14AN82G, and NOAO survey program.

  17. Early Mission Orbit Determination Error Analysis Results for Low-Earth Orbiting Missions using TDRSS Differenced One-way Doppler Tracking Data

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    Differencing multiple, simultaneous Tracking and Data Relay Satellite System (TDRSS) one-way Doppler passes can yield metric tracking data usable for orbit determination for (low-cost) spacecraft which do not have TDRSS transponders or local oscillators stable enough to allow the one-way TDRSS Doppler tracking data to be used for early mission orbit determination. Orbit determination error analysis results are provided for low Earth orbiting spacecraft for various early mission tracking scenarios.

  18. UAS Integration into the NAS: HSI Full Mission Simulation Preliminary Results

    NASA Technical Reports Server (NTRS)

    Shively, Jay; Fern, Lisa; Rorie, Conrad

    2014-01-01

    The goal of the Full Mission Sim was to examine the effects of different command and control interfaces on UAS pilots' ability to respond to ATC commands and traffic advisories. Results suggest that higher levels of automation (i.e., waypoint-to-waypoint control interfaces) lead to longer initial response times and longer edit times. The findings demonstrate the importance of providing pilots with interfaces that facilitate their ability to get back "in the loop."

  19. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    NASA Technical Reports Server (NTRS)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar

  20. General Human Health Issues For Moon And Mars Missions: Results From The HUMEX Study

    NASA Astrophysics Data System (ADS)

    Horneck, G.; Comet, B.

    Human exploratory missions, such as the establishment of a permanently inhabited lunar base and/or human visits to Mars will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity lev-els, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues. Besides spaceflight specific risks, such as radiation health, gravity related effects and psy-chological issues, general health issues need to be considered. These individual risks of illness, injury or death are based on general human health statistics. The duration of the mission is the main factor in these considerations. These risk estimations are the base which have to supplemented by the risks related specifically to the nature of the expedition under consideration. Crew health and performance have to be secured during transfer flights, during lunar or Mars surface exploration, including EVAs, and upon return to Earth, as defined within the constraints of safety objectives and mass restrictions of the mission. Within the ESA Study on the Survivability and Adaptation of Humans to Long-Duration Interplanetary and Planetary Environments (so called HUMEX study), we have critically assessed the human responses, limits and needs with regard to the environments of interplanetary and planetary missions. Based on various scenarios, the crew health risks have been evaluated. The main results are as follows: (i) The state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed. (ii) The control of human physical capacity impairment under weightlessness shall be optimized. (iii) Based of the probability of occurrence of diseases and injuries and on the con-straints imposed by exploratory mission scenarios, the crew shall

  1. Inflatable re-Entry and Descent Technology - Results of the IRDT-2 Mission and Future Applications

    NASA Astrophysics Data System (ADS)

    Walther, S.

    2002-01-01

    This paper will present the results of the second IRDT flight, a mission which is planned for May 2002. The first testflight successfully demonstrated its performance in 2000. The Inflatable Re-entry and Descent Technology (IRDT), an innovative lightweight return technology, is designed to provide significant mass and cost savings compared to conventionally fixed heat shield and parachute systems for returning elements from space. This technology is highly attractive for a broad range of applications, e.g. return of small capsules, larger objects like ATV or launcher elements from an Earth orbit and may also be used for planetary missions. IRDT can be adapted to existing vehicles or be used as baseline for new vehicles. Potential future application scenarios, e.g. a Download System to return payload from the ISS, will also be described.

  2. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  3. Lunar scout missions: Galileo encounter results and application to scientific problems and exploration requirements

    NASA Technical Reports Server (NTRS)

    Head, J. W.; Belton, M.; Greeley, R.; Pieters, C.; Mcewen, A.; Neukum, G.; Mccord, T.

    1993-01-01

    The Lunar Scout Missions (payload: x-ray fluorescence spectrometer, high-resolution stereocamera, neutron spectrometer, gamma-ray spectrometer, imaging spectrometer, gravity experiment) will provide a global data set for the chemistry, mineralogy, geology, topography, and gravity of the Moon. These data will in turn provide an important baseline for the further scientific exploration of the Moon by all-purpose landers and micro-rovers, and sample return missions from sites shown to be of primary interest from the global orbital data. These data would clearly provide the basis for intelligent selection of sites for the establishment of lunar base sites for long-term scientific and resource exploration and engineering studies. The two recent Galileo encounters with the Moon (December, 1990 and December, 1992) illustrate how modern technology can be applied to significant lunar problems. We emphasize the regional results of the Galileo SSI to show the promise of geologic unit definition and characterization as an example of what can be done with the global coverage to be obtained by the Lunar Scout Missions.

  4. Evolutionary Dynamics of MERS-CoV: Potential Recombination, Positive Selection and Transmission

    PubMed Central

    Zhang, Zhao; Shen, Libing; Gu, Xun

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) belongs to beta group of coronavirus and was first discovered in 2012. MERS-CoV can infect multiple host species and cause severe diseases in human. We conducted a series of phylogenetic and bioinformatic analyses to study the evolution dynamics of MERS-CoV among different host species with genomic data. Our analyses show: 1) 28 potential recombinant sequences were detected and they can be classified into seven potential recombinant types; 2) The spike (S) protein of MERS-CoV was under strong positive selection when MERS-CoV transmitted from their natural host to human; 3) Six out of nine positive selection sites detected in spike (S) protein are located in its receptor-binding domain which is in direct contact with host cells; 4) MERS-CoV frequently transmitted back and forth between human and camel after it had acquired the human-camel infection capability. Together, these results suggest that potential recombination events might have happened frequently during MERS-CoV’s evolutionary history and the positive selection sites in MERS-CoV’s S protein might enable it to infect human. PMID:27142087

  5. Knowledge and Apprehension of Dental Patients about MERS-A Questionnaire Survey

    PubMed Central

    Ashok, Nipun; Rodrigues, Jean Clare; Azouni, Khalid; Darwish, Shorouk; Abuderman, Abdulwahab; Alkaabba, Abdul Aziz Fahad

    2016-01-01

    Introduction Middle East Respiratory Syndrome (MERS) is a disease caused by beta corona virus. From April 11th to 9th June 2014, World Health Organization (WHO) reported a total of 402 laboratory confirmed cases of MERS from KSA, out of which 132 cases were reported from Riyadh alone. Aim The aim of this study was to assess the knowledge and apprehension of patients about MERS visiting Al Farabi College of Dentistry, Riyadh, Saudi Arabia. Materials and Methods A cross-sectional questionnaire based survey was conducted which consisted of 10 self-prepared questions. A total of 404 patients participated in this study. Results Three hundred and forty patients had heard about MERS. Nearly a quarter of the patients (25.74%) were apprehensive about undergoing dental treatment because of MERS. A little more than half of the patients (50.99%) knew that camel was a source of Middle East Respiratory Syndrome-Corona virus. Most of the patients (80.72%) were aware of the infection control measures to be followed by dentist and 138 patients claimed they took some precaution when present inside the dental college. Conclusion Majority of the patients had heard about MERS and was aware of the infection control measures. However, some patients were apprehensive about undergoing dental treatment because of MERS. Further steps need to be taken to educate the patient’s about transmission of MERS and infection control measures in a dental hospital. PMID:27437361

  6. The 1999 Marsokhod rover mission simulation at Silver Lake, California: Mission overview, data sets, and summary of results

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.; Bishop, J.; Chapman, M.; Clifford, S.; Cockell, C.; Crumpler, L.; Craddock, R.; De Hon, R.; Foster, T.; Gulick, V.; Grin, E.; Horton, K.; Hovde, G.; Johnson, J. R.; Lee, P. C.; Lemmon, M. T.; Marshall, J.; Newsom, H. E.; Ori, G. G.; Reagan, M.; Rice, J. W.; Ruff, S. W.; Schreiner, J.; Sims, M.; Smith, P. H.; Tanaka, K.; Thomas, H. J.; Thomas, G.; Yingst, R. A.

    2001-04-01

    We report on a field experiment held near Silver Lake playa in the Mojave Desert in February 1999 with the Marsokhod rover. The payload (Descent Imager, PanCam, Mini-TES, and Robotic Arm Camera), data volumes, and data transmission/receipt windows simulated those planned for the Mars Surveyor mission selected for 2001. A central mast with a pan and tilt platform at 150 cm height carried a high-resolution color stereo imager to simulate the PanCam and a visible/near-infrared fiberoptic spectrometer (operating range 0.35-2.5 μm). Monochrome stereo navigation cameras were mounted on the mast and the front and rear of the rover near the wheels. A field portable infrared spectroradiometer (operating range 8-14 μm) simulated the Mini-TES. A Robotic Arm Camera, capable of close-up color imaging at 23 μm/pixel resolution, was used in conjunction with the excavation of a trench into the subsurface. The science team was also provided with simulated images from the Mars Descent Imager and orbital panchromatic and multispectral imaging of the site obtained with the French SPOT, airborne Thermal Infrared Mapping Spectrometer, and Landsat Thematic Mapper instruments. Commands sequences were programmed and sent daily to the rover, and data returned were limited to 40 Mbits per communication cycle. During the simulated mission, 12 commands were uplinked to the rover, it traversed ~90 m, six sites were analyzed, 11 samples were collected for laboratory analysis, and over 5 Gbits of data were collected. Twenty-two scientists, unfamiliar with the location of the field site, participated in the science mission from a variety of locations, accessing data via the World Wide Web. Remote science interpretations were compared with ground truth from the field and laboratory analysis of collected samples. Using this payload and mission approach, the science team synergistically interpreted orbital imaging and infrared spectroscopy, descent imaging, rover-based imaging, infrared

  7. Free space optical communication flight mission: simulations and experimental results on ground level demonstrator

    NASA Astrophysics Data System (ADS)

    Mata Calvo, Ramon; Ferrero, Valter; Camatel, Stefano; Catalano, Valeria; Bonino, Luciana; Toselli, Italo

    2009-05-01

    In the context of the increasing demand in high-speed data link for scientific, planetary exploration and earth observation missions, the Italian Space Agency (ASI), involving Thales Alenia Space as prime, the Polytechnic of Turin and other Italian partners, is developing a program for feasibility demonstration of optical communication system with the goal of a prototype flight mission in the next future. We have designed and analyzed a ground level bidirectional Free Space Optical Communication (FSOC) Breadboard at 2.5Gbit/s working at 1550nm as an emulator of slant path link. The breadboard is full-working and we tested it back-toback, at 500m and 2.3km during one month. The distances were chosen in order to get an equivalent slant path cumulative turbulence in a ground level link. The measurements campaign was done during the day and the night time and under several weather conditions, from sunny, rainy or windy. So we could work under very different turbulence conditions from weak to strong turbulence. We measured the scintillation both, on-axis and off-axis by introducing known misalignments at the terminals, transmission losses at both path lengths and BER at both receivers. We present simulations results considering slant and ground level links, where we took into account the atmospheric effects; scintillation, beam spread, beam wander and fade probability, and comparing them with the ground level experimental results, we find a good agreement between them. Finally we discuss the results obtained in the experimentation and in the flight mission simulations in order to apply our experimental results in the next project phases.

  8. The Mars Methane Analogue Mission (M3): Results of the 2011 Field Deployment

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Whyte, L.; Qadi, A.; Bell, J. F.; Berard, G.; Boivin, A.; Ellery, A.; Haddad, E.; Jamroz, W.; Kruzelecky, R.; Mann, P.; Olsen, K.; Perrot, M.; Popa, D.; Rhind, T.; Samson, C.; Sharma, R.; Stromberg, J.; Strong, K.; Tremblay, A.; Wilhelm, R.; Wing, B.; Wong, B.

    2012-03-01

    The M3 mission simulated a rover mission to Mars to search for sources of methane. The 2011 campaign found that methane plumes from serpentinite are very localized and target selection based on imagery is preferred over direct methane detection.

  9. DNA sequence analysis by hybridization with oligonucleotide microchips : MALDI mass spectrometry identification of 5mers contiguously stacked to microchip oligonucleotides.

    SciTech Connect

    Stomakhin, A. A.; Vasiliskov, V. A.; Timofeev, E.; Schulga, D.; Cotter, R. J.; Mirzabekov, A. D.; Biochip Technology Center; Engelhardt Inst. of Molecular Biology; Moscow Inst. of Physics and Technology; Middle Atlantic Mass Spectrometry Lab.; Johns Hopkins Univ. School of Medicine

    2000-01-01

    Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) has been applied to increase the informational output from DNA sequence analysis. It has been used to analyze DNA by hybridization with microarrays of gel-immobilized oligonucleotides extended with stacked 5mers. In model experiments, a 28 nt long DNA fragment was hybridized with 10 immobilized, overlapping 8mers. Then, in a second round of hybridization DNA-8mer duplexes were hybridized with a mixture of 10 5mers. The stability of the 5mer complex with DNA was increased to raise the melting temperature of the duplex by 10-15{sup o}C as a result of stacking interaction with 8mers. Contiguous 13 bp duplexes containing an internal break were formed. MALDI MS identified one or, in some cases, two 5mers contiguously stacked to each DNA-8mer duplex formed on the microchip. Incorporating a mass label into 5mers optimized MALDI MS monitoring. This procedure enabled us to reconstitute the sequence of a model DNA fragment and identify polymorphic nucleotides. The application of MALDI MS identification of contiguously stacked 5mers to increase the length of DNA for sequence analysis is discussed.

  10. Automated Recognition of Geologically Significant Shapes in MER PANCAM and MI Images

    NASA Technical Reports Server (NTRS)

    Morris, Robert; Shipman, Mark; Roush, Ted L.

    2004-01-01

    Autonomous recognition of scientifically important information provides the capability of: 1) Prioritizing data return; 2) Intelligent data compression; 3) Reactive behavior onboard robotic vehicles. Such capabilities are desirable as mission scenarios include longer durations with decreasing interaction from mission control. To address such issues, we have implemented several computer algorithms, intended to autonomously recognize morphological shapes of scientific interest within a software architecture envisioned for future rover missions. Mars Exploration Rovers (MER) instrument payloads include a Panoramic Camera (PANCAM) and Microscopic Imager (MI). These provide a unique opportunity to evaluate our algorithms when applied to data obtained from the surface of Mars. Early in the mission we applied our algorithms to images available at the mission web site (http://marsrovers.jpl.nasa.gov/gallery/images.html), even though these are not at full resolution. Some algorithms would normally use ancillary information, e.g. camera pointing and position of the sun, but these data were not readily available. The initial results of applying our algorithms to the PANCAM and MI images are encouraging. The horizon is recognized in all images containing it; such information could be used to eliminate unwanted areas from the image prior to data transmission to Earth. Additionally, several rocks were identified that represent targets for the mini-thermal emission spectrometer. Our algorithms also recognize the layers, identified by mission scientists. Such information could be used to prioritize data return or in a decision-making process regarding future rover activities. The spherules seen in MI images were also autonomously recognized. Our results indicate that reliable recognition of scientifically relevant morphologies in images is feasible.

  11. The results of the critical design of the mission instruments of GOSAT-2

    NASA Astrophysics Data System (ADS)

    Yajima, Yukie; Suto, Hiroshi; Yotsumoto, Kazuhiko; Miyakawa, Takehiro; Hashimoto, Makiko; Shiomi, Kei; Nakajima, Masakatsu; Hirabayashi, Takeshi

    2016-04-01

    The GOSAT-2 is the successor satellite to the GOSAT which is the satellite dedicated to the measurements of the greenhouse gases such as carbon dioxide and methane. GOSAT was launched in January of 2009 and has been operated for about seven years. The development of the GOSAT-2 has been continued for two years, and through the preliminary and critical design phase the detail of the design of the mission instruments were fixed as well as the bus system design. The mission instruments of the GOSAT-2 are TANSO-FTS-2 and TANSO-CAI-2. TANSO-FTS-2 is the Fourier Transform Spectrometer observing greenhouse gases such as Carbon Dioxide and Methane and TANSO-CAI-2 is the imager observing the aerosols and clouds to compensate the TANSO-FTS-2 data and to grasp the movements of the aerosols such as PM2.5. The mission instruments will adopt the same kinds of instruments as GOSAT. But some improvements will be carried. Based on the results of the preliminary design, the design had been refined in the critical design phase and the results of the design meets all of the requirements on the mission instruments derived from the mission requirements to understand CO2 and CH4 sources and sinks and carbon cycle precisely. To improve the measurement accuracy, the signal to noise ratio will be increased by the extension of the aperture size from 64mm to 73mm and cooling the after optics as well as the thermal detectors. And to increase the number of the useful data, GOSAT-2 will equip the function to avoid the clouds during the observation using the images obtained by the monitor camera in FTS. To observe the carbon monoxide, the 2.3μm observation channel will be added. This function will be realized by the extension of the 2.0μm observation band to 2.3μm. The pointing angle in the along track direction will be extend from 20 degrees of GOSAT to 40 degrees to expand the observation area over the ocean where the sun glint is observed. This will make it possible to increase the number

  12. The successful conclusion of the Deep Space 1 Mission: important results without a flashy title

    NASA Technical Reports Server (NTRS)

    Rayman, M. D.

    2002-01-01

    In September 2001, Deep Space 1 (DS1) completed a high-risk and flawless encounter with comet 19P/Borrelly. Its data provide a detailed view of this comet and offere surprising and exciting insights. With this successful conclusion of its extended mission, DS1 undertook a hyperextended mission. Following this period of extremely agressive testing, with no further technology or science objectives, the mission was terminated on December 18, 2001, with the powering off of the spacecraft's trnasmitter, although the receiver was left on. By the end of its mission, DS1 had returned a wealth of important science data and engineering data for future missions.

  13. First Look at Landsat-7 Mission Performance: Technical and Operational Results to Date

    NASA Technical Reports Server (NTRS)

    Williams, Darrel L.; Irons, James R.; Barker, John L.; Markham, Brian; Pedelty, Jeffrey A.

    1999-01-01

    A primary goal of the current Landsat-7 mission, launched on April 15, 1999, is to acquire and refresh on a seasonal basis, calibrated ata sets of multispectral digital imagery of the landmass of the Earth The Enhanced Thematic Mapper Plus (ETM+) imager flown on Landsat-7 provides ground spatial resolutions in the panchromatic, reflective and emissive bands of 15, 30 and 60 meters, respectively, for a nominal scene 183 km wide by 170 km long. This mission not only builds on the invaluable 27-year continuous archive of thematic images of the Earth provided by previous Landsat satellites, it also inaugurates a new era of robust data acquisition with an emphasis on global change science. The newly developed Long Term Acquisition Plan (LTAP) is being used to optimize the systematic collection of data from all parts of the globe, populating the U.S.-held archive at the USGS EROS Data Center (EDC) with over 90,000 Landsat scene per year . An additional 73,000 Images are expected to be acquired each year by several international ground stations, for a total downlink of Landsat7 data in excess of 100 terabytes per year. Nearly 20,000 scan of Landsat-7 ETM+ data have already been acquired in the first 100 days of the mission. Early results derived from assessments of the ETM+ instrument, the spacecraft, and the ground processing systems indicate that the image quality is outstanding, clearly the best ever provided by any Landsat mission. Sensor radiometric background stability after the first 100 days in orbit is approximately 0.1 percent. Stability of the Full Aperture Solar Calibrator is approximately 0.3 percent, and mid-scale per pixel noise is approximately 0.6 percent. A ground processing system has been implemented at EDC which is capable of capturing, processing and archiving 250 Landsat scenes 9 per day, and delivering 100 scene products to seems each day. The cost of a systematically-processed Level 1 product has been dropped dramatically to $600, end there is no

  14. The Mission Accessible Near-Earth Object Survey (MANOS) — First Results

    NASA Astrophysics Data System (ADS)

    Moskovitz, Nicholas; Avner, Louis; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Schottland, Robert; Siu, Hosea; Thirouin, Audrey; Thomas, Cristina; Trilling, David; Wasserman, Lawrence; Willman, Mark

    2015-11-01

    The Mission Accessible Near-Earth Object Survey (MANOS) began in August 2013 as a multi-year physical characterization survey that was awarded survey status by NOAO and has since expanded operations to include facilities at Lowell Observatory and the University of Hawaii. MANOS will target several hundred mission-accessible NEOs across visible and near-infrared wavelengths, providing a comprehensive catalog of physical properties (astrometry, light curves, spectra). Particular focus is paid to sub-km NEOs, where little data currently exists. These small bodies are essential to understanding the link between meteorites and asteroids, pose the most immediate impact hazard to the Earth, and are highly relevant to a variety of planetary mission scenarios. Observing these targets is enabled through a combination of classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in both the northern and southern hemispheres. The MANOS observing strategy enables the characterization of roughly 10% of newly discovered NEOs before they fade beyond observational limits.To date MANOS has obtained data on over 200 sub-km NEOs and will ultimately provide major advances in our understanding of the NEO population as a whole and for specific objects of interest. Here we present first results from the survey including: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for small objects with high Earth-encounter probabilities, (3) progress in developing a new set of online tools at asteroid.lowell.edu that will help to facilitate observational planning for the small body observer community, and (4) physical properties derived from rotational light curves.MANOS is supported through telescope allocations from NOAO, Lowell Observatory and the University of Hawaii. We acknowledge funding support from NASA NEOO grant number NNX14AN82G and an NSF Astronomy and

  15. The Mission Accessible Near-Earth Objects Survey (MANOS): spectroscopy results

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Moskovitz, Nicholas; Hinkle, Mary L.; Mommert, Michael; Polishook, David; Thirouin, Audrey; Binzel, Richard; Christensen, Eric J.; DeMeo, Francesca E.; Person, Michael J.; Trilling, David E.; Willman, Mark; Burt, Brian

    2016-10-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is an ongoing physical characterization survey to build a large, uniform catalog of physical properties including lightcurves and visible wavelength spectroscopy. We will use this catalog to investigate the global properties of the small NEO population and identify individual objects that can be targets of interest for future exploration. To accomplish our goals, MANOS uses a wide variety of telescopes (1-8m) in both the northern and southern hemispheres. We focus on targets that have been recently discovered and operate on a regular cadence of remote and queue observations to enable rapid characterization of small NEOs. Targets for MANOS are selected based on three criteria: mission accessibility, size, and observability. With our resources, we observe 5-10 newly discovered sub-km NEOs per month. MANOS has been operating for three years and we have observed over 500 near-Earth objects in that time.We will present results from the spectroscopy component of the MANOS program. Visible wavelength spectra are obtained using DeVeny on the Discovery Channel Telescope (DCT), Goodman on the Southern Astrophysical Research (SOAR) telescope, and GMOS on Gemini North and South. Over 300 NEO spectra have been obtained during our program. We will present preliminary results from our spectral sample. We will discuss the compositional diversity of the small NEO population and how the observed NEOs compare to the meteorite population.MANOS is funded by the NASA Near-Earth Object Observations program.

  16. Preliminary Mission Results and Project Evaluation of the Delfi-C3 Nano-satellite

    NASA Astrophysics Data System (ADS)

    Bouwmeester, J.; Aalbers, G. T.; Ubbels, W. J.

    2008-08-01

    This paper discusses preliminary mission results of Delfi-C3 up till the early operations phase. The first section will discuss the design philosophy of Delfi-C3. To reduce operational risks, Delfi-C3 followed the KISS principle and is designed to be Single-Point-of-Failure- free. A balance is made between adoption of professional space engineering customs and standards on one hand and the limitations of small satellites, financial budgets and limited human resources on the other hand. The second section of the paper discusses the project planning and management of Delfi-C3. Addressed are reasonable timelines for the development of a nano-satellite, how to deal with a launch slip and the occasional conflicts between the interest of the students and the interest of the project. The third section of the paper will present the results of the early operations of Delfi-C3. Discussed are the performance of the payloads, the bus and the ground network of the satellite. Finally, an early statement of the mission success will be given.

  17. Computational needs survey of NASA automation and robotics missions. Volume 1: Survey and results

    NASA Technical Reports Server (NTRS)

    Davis, Gloria J.

    1991-01-01

    NASA's operational use of advanced processor technology in space systems lags behind its commercial development by more than eight years. One of the factors contributing to this is that mission computing requirements are frequently unknown, unstated, misrepresented, or simply not available in a timely manner. NASA must provide clear common requirements to make better use of available technology, to cut development lead time on deployable architectures, and to increase the utilization of new technology. A preliminary set of advanced mission computational processing requirements of automation and robotics (A&R) systems are provided for use by NASA, industry, and academic communities. These results were obtained in an assessment of the computational needs of current projects throughout NASA. The high percent of responses indicated a general need for enhanced computational capabilities beyond the currently available 80386 and 68020 processor technology. Because of the need for faster processors and more memory, 90 percent of the polled automation projects have reduced or will reduce the scope of their implementation capabilities. The requirements are presented with respect to their targeted environment, identifying the applications required, system performance levels necessary to support them, and the degree to which they are met with typical programmatic constraints. Volume one includes the survey and results. Volume two contains the appendixes.

  18. A Revised Calibration Function and Results for the Phoenix Mission TECP Relative Humidity Sensor

    NASA Astrophysics Data System (ADS)

    Zent, A.

    2014-12-01

    The original calibration function of the RH sensor on the Phoenix Thermal and Electrical Conductivity Sensor (TECP) has been revised in order to extend the range of the valid calibration, and to improve accuracy. The original function returned non-physical RH values at the lowest temperatures. To resolve this, and because the original calibration was performed against a pair of hygrometers that measured frost point (Tf), the revised calibration equation is also cast in terms of frost point. Because of the complexity of maintaining very low temperatures and high RH in the laboratory, no calibration data exists at T < 203K. However, sensor response duringf the mission was smooth and continuous down to 181 K. Therefore we have opted to include flight data in the calibration data set; selection was limited to data acquired during periods when the atmosphere is known to have been saturated. Tf remained below 210 K throughout the mission(P < 0.75 Pa). RH, conversely, ranged from 1 to well under 0.01 diurnally, due to ~50 K temperature variations. To first order, both vapor pressure and its variance are greater during daylight hours. Variance in overnight humidity is almost entirely explained by temperature, while atmospheric turbulence contributes substantial variance to daytime humidity. Likewise, data gathered with the TECP aloft reflect higher H2O abundances than at the surface, as well as greater variance. There is evidence for saturation of the atmosphere overnight throughout much of the mission. In virtually every overnight observation, once the atmosphere cooled to Tf, water vapor begins to decrease, and tracks air temperature. There is no evidence for substantial decreases in water vapor prior to saturation, as expected for adsorptive exchange. Likewise, there is no evidence of local control of vapor by phases such as perchlorate hydrates hydrated minerals. The daytime average H2O pressure does not change substantially over the course of the mission, although the

  19. A Revised Calibration Function and Results for the Phoenix Mission TECP Relative Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Zent, Aaron

    2014-01-01

    pressure does not change substantially over the course of the mission, although the H2O column abundance varies by a factor of 2. Column abundances calculated from TECP data are lower than orbital measurements if one assumes that H2O is uniformly mixed through a single scale height. These results argue that the vertical distribution of H2O begins to change well in advance of surface concentrations as northern autumn approaches.

  20. Space Environment Survivability of Live Organisms: Results From a NASA Astrobiology Nanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Santos, Orlando; Ehrenfreund, Pascale; Mancinelli, Rocco; Nicholson, Wayne; Ricco, Antonio

    NASA's Organism/Organic Exposure to Orbital Stresses, or O/OREOS, nanosatellite is a sci-ence demonstration mission that showcases achievements in using hardware from a technology development program led by the Small Spacecraft Division at NASA's Ames Research Center, Moffett Field, California. Continuing Ames' development of triple-cube nanosatellite tech-nology and flight systems, which includes the successful GeneSat-1 and PharmaSat missions, O/OREOS is constructed from off-the-shelf commercial and NASA-designed parts to create a fully self-contained, automated, stable, light-weight space science laboratory with innovative environment and power control techniques; sensors to monitor the levels of pressure, temper-ature, humidity, radiation and acceleration; and a communications system able to regularly accept commands from the ground and transmit data back to Earth for scientific analysis. The overall goal of the O/OREOS mission is to demonstrate the capability to do low-cost sci-ence experiments on autonomous nanosatellites in space in support of the Astrobiology Small Payloads program under the Planetary Science Division of the Science Mission Directorate at NASA Headquarters. The spacecraft houses two science payloads: the Space Environment Viability of Organics (SEVO) experiment will monitor the stability and changes in four classes of organic matter (results presented at another COSPAR session); and the Space Environment Survivability of Live Organisms (SESLO) experiment (presented here). SESLO will charac-terize the growth, activity, health, and ability of microorganisms to adapt to the stresses of the space environment. The experiment is sealed in a vessel at one atmosphere and contains two types of microbes commonly found in salt ponds and soil, in a dried and dormant state: Halorubrum chaoviator and Bacillus subtilis. After it reaches orbit, the experiment will initiate and begin to rehydrate and grow three sets of the microbes at three different times

  1. The MER Mossbauer Spectrometers: 40 Months of Operation on the Martian Surface

    NASA Technical Reports Server (NTRS)

    Fleischer, Iris; Rodionov, D.; Schroeder, C.; Morris, R.; Yen, A.; Ming, D.; McCoy, T.; Mittlefehldt, D.; Gellert, R.; Cohen, B.; Schmidt, M.; Klingelhoefer, Goestar

    2007-01-01

    The primary MER objectives have been successfully completed. The total integration time of all MB measurements exceeds the duration of the primary 90-sols-mission for Spirit's MB spectrometer, and approaches this value for Opportunity's MB spectrometer. Both MB spectrometers continue to accumulate valuable scientific data after three years of operation (data is available for download [13]) The identification of aqueous minerals such as goethite in Gusev crater and jarosite at Meridiani Planum by the MER Mossbauer spectrometers is strong evidence for past water activity at the two landing sites.

  2. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; Rowland, D. E.; Jones, S.; Heinselman, C. J.

    2011-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  3. Current Closure in the Auroral Ionosphere: Results from the Auroral Current and Electrodynamics Structure Rocket Mission

    NASA Technical Reports Server (NTRS)

    Kaeppler, S. R.; Kletzing, C. A.; Bounds, S. R.; Gjerloev, J. W.; Anderson, B. J.; Korth, H.; LaBelle, J. W.; Dombrowski, M. P.; Lessard, M.; Pfaff, R. F.; Rowland D. E.; Jones, S.; Heinselman, C. J.

    2012-01-01

    The Auroral Current and Electrodynamics Structure (ACES) mission consisted of two sounding rockets launched nearly simultaneously from Poker Flat Research Range, AK on January 29, 2009 into a dynamic multiple-arc aurora. The ACES rocket mission was designed to observe electrodynamic and plasma parameters above and within the current closure region of the auroral ionosphere. Two well instrumented payloads were flown along very similar magnetic field footprints, at different altitudes, with small temporal separation between both payloads. The higher altitude payload (apogee 360 km), obtained in-situ measurements of electrodynamic and plasma parameters above the current closure region to determine the input signature. The low altitude payload (apogee 130 km), made similar observations within the current closure region. Results are presented comparing observations of the electric fields, magnetic components, and the differential electron energy flux at magnetic footpoints common to both payloads. In situ data is compared to the ground based all-sky imager data, which presents the evolution of the auroral event as the payloads traversed through magnetically similar regions. Current measurements derived from the magnetometers on the high altitude payload observed upward and downward field-aligned currents. The effect of collisions with the neutral atmosphere is investigated to determine if it is a significant mechanism to explain discrepancies in the low energy electron flux. The high altitude payload also observed time-dispersed arrivals in the electron flux and perturbations in the electric and magnetic field components, which are indicative of Alfven waves.

  4. Flight data results of estimate fusion for spacecraft rendezvous navigation from shuttle mission STS-69

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Bishop, Robert H.

    1996-01-01

    A recently developed rendezvous navigation fusion filter that optimally exploits existing distributed filters for rendezvous and GPS navigation to achieve the relative and inertial state accuracies of both in a global solution is utilized here to process actual flight data. Space Shuttle Mission STS-69 was the first mission to date which gathered data from both the rendezvous and Global Positioning System filters allowing, for the first time, a test of the fusion algorithm with real flight data. Furthermore, a precise best estimate of trajectory is available for portions of STS-69, making possible a check on the performance of the fusion filter. In order to successfully carry out this experiment with flight data, two extensions to the existing scheme were necessary: a fusion edit test based on differences between the filter state vectors, and an underweighting scheme to accommodate the suboptimal perfect target assumption made by the Shuttle rendezvous filter. With these innovations, the flight data was successfully fused from playbacks of downlinked and/or recorded measurement data through ground analysis versions of the Shuttle rendezvous filter and a GPS filter developed for another experiment. The fusion results agree with the best estimate of trajectory at approximately the levels of uncertainty expected from the fusion filter's covariance matrix.

  5. An orthopoxvirus-based vaccine reduces virus excretion after MERS-CoV infection in dromedary camels.

    PubMed

    Haagmans, Bart L; van den Brand, Judith M A; Raj, V Stalin; Volz, Asisa; Wohlsein, Peter; Smits, Saskia L; Schipper, Debby; Bestebroer, Theo M; Okba, Nisreen; Fux, Robert; Bensaid, Albert; Solanes Foz, David; Kuiken, Thijs; Baumgärtner, Wolfgang; Segalés, Joaquim; Sutter, Gerd; Osterhaus, Albert D M E

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) infections have led to an ongoing outbreak in humans, which was fueled by multiple zoonotic MERS-CoV introductions from dromedary camels. In addition to the implementation of hygiene measures to limit further camel-to-human and human-to-human transmissions, vaccine-mediated reduction of MERS-CoV spread from the animal reservoir may be envisaged. Here we show that a modified vaccinia virus Ankara (MVA) vaccine expressing the MERS-CoV spike protein confers mucosal immunity in dromedary camels. Compared with results for control animals, we observed a significant reduction of excreted infectious virus and viral RNA transcripts in vaccinated animals upon MERS-CoV challenge. Protection correlated with the presence of serum neutralizing antibodies to MERS-CoV. Induction of MVA-specific antibodies that cross-neutralize camelpox virus would also provide protection against camelpox.

  6. MERS coronavirus: diagnostics, epidemiology and transmission.

    PubMed

    Mackay, Ian M; Arden, Katherine E

    2015-01-01

    The first known cases of Middle East respiratory syndrome (MERS), associated with infection by a novel coronavirus (CoV), occurred in 2012 in Jordan but were reported retrospectively. The case first to be publicly reported was from Jeddah, in the Kingdom of Saudi Arabia (KSA). Since then, MERS-CoV sequences have been found in a bat and in many dromedary camels (DC). MERS-CoV is enzootic in DC across the Arabian Peninsula and in parts of Africa, causing mild upper respiratory tract illness in its camel reservoir and sporadic, but relatively rare human infections. Precisely how virus transmits to humans remains unknown but close and lengthy exposure appears to be a requirement. The KSA is the focal point of MERS, with the majority of human cases. In humans, MERS is mostly known as a lower respiratory tract (LRT) disease involving fever, cough, breathing difficulties and pneumonia that may progress to acute respiratory distress syndrome, multiorgan failure and death in 20% to 40% of those infected. However, MERS-CoV has also been detected in mild and influenza-like illnesses and in those with no signs or symptoms. Older males most obviously suffer severe disease and MERS patients often have comorbidities. Compared to severe acute respiratory syndrome (SARS), another sometimes- fatal zoonotic coronavirus disease that has since disappeared, MERS progresses more rapidly to respiratory failure and acute kidney injury (it also has an affinity for growth in kidney cells under laboratory conditions), is more frequently reported in patients with underlying disease and is more often fatal. Most human cases of MERS have been linked to lapses in infection prevention and control (IPC) in healthcare settings, with approximately 20% of all virus detections reported among healthcare workers (HCWs) and higher exposures in those with occupations that bring them into close contact with camels. Sero-surveys have found widespread evidence of past infection in adult camels and limited

  7. Early Science Results From the NASA Van Allen Probes Mission RBSP-ECT Instrument Suite

    NASA Astrophysics Data System (ADS)

    Spence, Harlan; Reeves, Geoff; Rbspect Team

    2013-04-01

    The NASA Van Allen Probes mission includes an instrument suite known as the Radiation Belt Storm Probes (RBSP) - Energetic Particle, Composition, and Thermal Plasma (ECT) suite. RBSP-ECT contains a well-proven complement of particle instruments to ensure the highest quality measurements ever made in the radiation belts and the inner magnetosphere. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state of-the-art theory and modeling, provide new understanding on the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Helium Oxygen Proton Electron (HOPE) spectrometer, the Magnetic Electron Ion Spectrometer (MagEIS), and the Relativistic Electron Proton Telescope (REPT). Collectively these three instrument types cover comprehensively the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts, then optimized to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. In this presentation, we summarize overall ECT science goals and then show early scientific results derived from the ECT suite on the dual Van Allen Probes spacecraft. Mission operations began only in late October 2012, but we have already achieved significant early results. Results presented here will include substantial progress toward resolving primary Van Allen Probes science targets, such as: the relative role of localized acceleration versus transport-generated particle

  8. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets.

  9. Rare k-mer DNA: Identification of sequence motifs and prediction of CpG island and promoter.

    PubMed

    Mohamed Hashim, Ezzeddin Kamil; Abdullah, Rosni

    2015-12-21

    Empirical analysis on k-mer DNA has been proven as an effective tool in finding unique patterns in DNA sequences which can lead to the discovery of potential sequence motifs. In an extensive study of empirical k-mer DNA on hundreds of organisms, the researchers found unique multi-modal k-mer spectra occur in the genomes of organisms from the tetrapod clade only which includes all mammals. The multi-modality is caused by the formation of the two lowest modes where k-mers under them are referred as the rare k-mers. The suppression of the two lowest modes (or the rare k-mers) can be attributed to the CG dinucleotide inclusions in them. Apart from that, the rare k-mers are selectively distributed in certain genomic features of CpG Island (CGI), promoter, 5' UTR, and exon. We correlated the rare k-mers with hundreds of annotated features using several bioinformatic tools, performed further intrinsic rare k-mer analyses within the correlated features, and modeled the elucidated rare k-mer clustering feature into a classifier to predict the correlated CGI and promoter features. Our correlation results show that rare k-mers are highly associated with several annotated features of CGI, promoter, 5' UTR, and open chromatin regions. Our intrinsic results show that rare k-mers have several unique topological, compositional, and clustering properties in CGI and promoter features. Finally, the performances of our RWC (rare-word clustering) method in predicting the CGI and promoter features are ranked among the top three, in eight of the CGI and promoter evaluations, among eight of the benchmarked datasets. PMID:26427337

  10. The Polar Stratosphere in a Changing Climate (POLSTRACC): Mission overview and first results

    NASA Astrophysics Data System (ADS)

    Oelhaf, Hermann; Sinnhuber, Björn-Martin; Woiwode, Wolfgang; Rapp, Markus; Dörnbrack, Andreas; Engel, Andreas; Bönisch, Harald

    2016-04-01

    Oberpfaffenhofen). The activities from Kiruna will be split into two intensive phases, with a focus on gravity wave observations in January 2016. Mission and flight planning is supported by a variety of model tools. The airborne field observations will be complemented by ground-based activities (e.g. lidars, radars and radio soundings) and satellite observations (e.g. CALIPSO, MLS and ACE-FTS). The first phase was concluded by Dec. 21 with two long flights, one dedicated to SALSA objectives towards the Atlantic sea, the other, designed as early winter survey, went from Oberpfaffenhofen northwards, around Spitsbergen at 81°N, and back over Scandinavia. With both flights the very unusual dynamical situation in Dec 2015 could be addressed. This Arctic stratospheric winter started to be exceptionally cold and the early winter measurements from our flights provide an excellent reference for the upcoming observations planned during the Kiruna phases. The presentation is intended to give a brief overview of the scientific objectives, the payload, and the mission, along with first results.

  11. Pluto Revealed: First Results from the Historic 1st Fly-By Space Mission

    NASA Technical Reports Server (NTRS)

    Smith, Kimberly Ennico

    2015-01-01

    On July 14, 2015, after a 9.5 year trek across the solar system, NASAs New Horizons spacecraft successfully flew by the dwarf planet Pluto and its system of moons, taking imagery, spectra and in-situ particle data. Data obtained by New Horizons will address numerous outstanding questions on the geology and composition of Pluto and Charon, plus measurements of Plutos atmosphere, and provide revised understanding of the formation and evolution of Pluto and Charon and its smaller moons. This data set is an invaluable glimpse into the outer Third Zone of the Solar System. Data from the intense July 14th fly-by sequence will be downlinked to Earth over a period of 16 months, the duration set by the large data set (over 60 GBits), tempered by limited transmission bandwidth rates (1-2 kbps) and sharing the three 70m DSN assets. This presentation summarizes the New Horizons mission and early science results.

  12. Results of the mission profile life test. [for J-series mercury ion engines

    NASA Technical Reports Server (NTRS)

    Bechtel, R. T.; Trump, G. E.; James, E. L.

    1982-01-01

    Seven J series 30-cm diameter thrusters have been tested in segments of up to 5,070 hr, for 14,541 hr in the Mission Profile Life Test facility. Test results have indicated the basic thruster design to be consistent with the lifetime goal of 15,000 hr at 2-A beam. The only areas of concern identified which appear to require additional verification testing involve contamination of mercury propellant isolators, which may be due to facility constituents, and the ability of specially covered surfaces to contain sputtered material and prevent flake formation. The ability of the SCR, series resonant inverter power processor to operate the J series thruster and autonomous computer control of the thruster/processor system were demonstrated.

  13. Design and Performance of the MER (Mars Exploration Rovers) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Ewell, Richard C.; Hoskin, Julie J.

    2005-01-01

    The Mars Exploration Rovers (MER) program posed a significant engineering and technology challenge. Now that the Rovers have operated beyond their original design life of three months by nearly a factor of four it is clear that the challenge was met and far exceeded. A key to the success of MER has been the enhanced power provided by the cruise and Rover solar arrays. Benefiting from a nearly 50% improvement in cell efficiency compared to the single junction GaAs cells used on Pathfinder, the MER designs were subject to many constraints both in design and in operation. These constraints included limited available panel area, changing illumination levels and temperatures, and variable shadowing, atmospheric conditions and dust accumulation for the rovers. This paper will discuss those constraints and their impact on the design. In addition, flight data will be provided to assess the performance achieved during the mission.

  14. Towards Regional Lunar Gravity Fields Using Lunar Prospector Extended Mission Data - Simulations and Results

    NASA Astrophysics Data System (ADS)

    Goossens, S.; Visser, P.; Floberghagen, R.; Koop, R.; Ambrosius, B.

    2002-12-01

    Until this date, the lunar gravimetric inverse problem has mainly been posed as a global problem, solving for gravity fields over the whole of the Moon. The asymmetric sampling of the force field requires that some sort of regularisation be applied in order to have a meaningful global solution that does not provide spurious information on the far side. On one hand these global solutions work very well in terms of overall orbit quality and consistency, despite the fact that roughly one half of the surface lacks sampling. On the other hand, excellently sampled regions cannot be determined at maximum spatial resolution without affecting too much the solution on the far side, which in itself is highly unstable. Since the Lunar Prospector mission, there are many of such excellently sampled regions on the near side of the Moon. In order to exhaust the information present in the tracking data of this satellite, regional methods for solving the gravity field of well-sampled areas become interesting. We present a method to extract regional gravity information from Doppler and Range tracking of the Lunar Prospector spacecraft. The method incorporates the GEODYN II software package for tracking data processing and orbit determination, and a software package to analyse the residuals from the orbit determination process, and to transform these residuals into gravity anomalies on the lunar surface by means of a Stokes method. Simulations will show how well a gravity signal in the residuals can be recovered. Results from orbit determination using 20 days of Lunar Prospector Extended Mission data will be shown, to demonstrate the readiness of the method to process real-life satellite data. With missions in the future such as SELENE, which will provide the first global tracking data set of the Moon ever, global and regional methods to solve for gravity field products will remain equally of interest, since they both can give complementary insight into the low and high resolution

  15. Expected scientific results on ballistic spacecraft missions to comet Encke during the 1980 apparition

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1976-01-01

    Summarized are three proposed ballistic spacecraft missions to intercept P/Encke during the 1980 apparition. A baseline physical activity model for P/Encke is established and the performances of the neutral mass spectrometer and of the imaging experiment on each intercept mission are assessed.

  16. Cosmological results from the Planck space mission and their comparison with data from the WMAP and BICEP2 experiments

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.

    2016-01-01

    We review basic results from the European Space Agency's Planck space mission, which are of crucial significance to understanding the origin and evolution of the Universe. The main stages of astrophysical and cosmological data processing pipelines are considered. The Planck results are compared with the data from the NASA WMAP (Wilkinson Microwave Anisotropy Probe) space mission and the BICEP2 (Background Imaging of Cosmic Extragalactic Polarization 2) experiment.

  17. Results from Navigator GPS Flight Testing for the Magnetospheric MultiScale Mission

    NASA Technical Reports Server (NTRS)

    Lulich, Tyler D.; Bamford, William A.; Wintermitz, Luke M. B.; Price, Samuel R.

    2012-01-01

    The recent delivery of the first Goddard Space Flight Center (GSFC) Navigator Global Positioning System (GPS) receivers to the Magnetospheric MultiScale (MMS) mission spacecraft is a high water mark crowning a decade of research and development in high-altitude space-based GPS. Preceding MMS delivery, the engineering team had developed receivers to support multiple missions and mission studies, such as Low Earth Orbit (LEO) navigation for the Global Precipitation Mission (GPM), above the constellation navigation for the Geostationary Operational Environmental Satellite (GOES) proof-of-concept studies, cis-Lunar navigation with rapid re-acquisition during re-entry for the Orion Project and an orbital demonstration on the Space Shuttle during the Hubble Servicing Mission (HSM-4).

  18. Translating MAPGEN to ASPEN for MER

    NASA Technical Reports Server (NTRS)

    Rabideau, Gregg R.; Knight, Russell L.; Lenda, Matthew; Maldague, Pierre F.

    2013-01-01

    This software translates MAPGEN (Europa and APGEN) domains to ASPEN, and the resulting domain can be used to perform planning for the Mars Exploration Rover (MER). In other words, this is a conversion of two distinct planning languages (both declarative and procedural) to a third (declarative) planning language in order to solve the problem of faithful translation from mixed-domain representations into the ASPEN Modeling Language. The MAPGEN planning system is an example of a hybrid procedural/declarative system where the advantages of each are leveraged to produce an effective planner/scheduler for MER tactical planning. The adaptation of the planning system (ASPEN) was investigated, and, with some translation, much of the procedural knowledge encoding is amenable to declarative knowledge encoding. The approach was to compose translators from the core languages used for adapting MAGPEN, which consists of Europa and APGEN. Europa is a constraint- based planner/scheduler where domains are encoded using a declarative model. APGEN is also constraint-based, in that it tracks constraints on resources and states and other variables. Domains are encoded in both constraints and code snippets that execute according to a forward sweep through the plan. Europa and APGEN communicate to each other using proxy activities in APGEN that represent constraints and/or tokens in Europa. The composition of a translator from Europa to ASPEN was fairly straightforward, as ASPEN is also a declarative planning system, and the specific uses of Europa for the MER domain matched ASPEN s native encoding fairly closely. On the other hand, translating from APGEN to ASPEN was considerably more involved. On the surface, the types of activities and resources one encodes in APGEN appear to match oneto- one to the activities, state variables, and resources in ASPEN. But, when looking into the definitions of how resources are profiled and activities are expanded, one sees code snippets that access

  19. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  20. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.

  1. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Ashley, J. W.; Bell, J. F.; Chojnacki, M.; Cohen, J.; Economou, T. E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, R.; Golombek, M. P.; Grotzinger, J. P.; Guinness, E. A.; Haberle, R. M.; Herkenhoff, K. E.; Herman, J. A.; Iagnemma, K. D.; Jolliff, B. L.; Johnson, J. R.; Klingelhöfer, G.; Knoll, A. H.; Knudson, A. T.; Li, R.; McLennan, S. M.; Mittlefehldt, D. W.; Morris, R. V.; Parker, T. J.; Rice, M. S.; Schröder, C.; Soderblom, L. A.; Squyres, S. W.; Sullivan, R. J.; Wolff, M. J.

    2011-02-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date.

  2. First results from experiments performed with the ESA Anthrorack during the D-2 spacelab mission

    NASA Astrophysics Data System (ADS)

    Kuipers, A.

    1996-06-01

    In 1993 four astronauts performed physiological experiments on the payload "Anthrorack" during the second German Spacelab mission D-2. The Anthrorack set-up is a Spacelab double rack developed under the management of the European Space Agency. It consists of an ECHO machine, a respiratory monitoring system (gas analyzer with flow meter), a blood centrifuge, an ergometer, a finger blood pressure device, ECG, body impedance measurement device and a respiratory inductance plethysmograph. Experiment-specific equipment was used as well. Nineteen investigators performed experiments in the cardiovascular, pulmonary, fluid-renal and nutritional physiology area. Results on central venous pressure, ocular pressure, vascular resistance, cardiac output, tissue thickness and orthostatic intolerance are presented in the cardiovascular area. In the pulmonary area first results are mentioned on O 2 transport perfusion and ventilation distribution and breathing pattern. From the fluid-renal experiments, data from diuresis, sodium excretion and hormonal determinations are given. Finally results from glucose metabolism and nitrogen turnover experiments are presented.

  3. Saturn's icy satellites investigated by Cassini-VIMS. II. Results at the end of nominal mission

    USGS Publications Warehouse

    Filacchione, G.; Capaccioni, F.; Clark, R.N.; Cuzzi, J.N.; Cruikshank, D.P.; Coradini, A.; Cerroni, P.; Nicholson, P.D.; McCord, T.B.; Brown, R.H.; Buratti, B.J.; Tosi, F.; Nelson, R.M.; Jaumann, R.; Stephan, K.

    2010-01-01

    We report the detailed analysis of the spectrophotometric properties of Saturn's icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini's nominal mission (June 1st 2008), while a previous paper (Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259-290, hereby referred to as Paper I) reported the preliminary results of this study. During the four years of nominal mission, VIMS has observed the entire population of Saturn's icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/F continua at 0.55 ??m, 1.822 ??m and 3.547 ??m, visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to "contaminants" abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn's system. We introduce a polar representation of the spectrophotometric

  4. OGO program summary, supplement 1. [updated bibliography for all OGO missions and scientific results from OGO 5 and 6 missions

    NASA Technical Reports Server (NTRS)

    Jackson, J. E.

    1978-01-01

    Scientific results from OGO-5 and OGO-6 experiments are summarized and approximately 200 citations are included to update the 1975 OGO bibliography. Personal author, subject, and corporate source indexes are included. The supplement follows the same format as that of the OGO Program Summary; it does not repeat the finalized information in the original publication, which should be consulted for indexes of experiments, experimenters, institutions, and the glossary of abbreviations and acronyms.

  5. Observing Global Ocean Circulation From Space: The First Year's Results From the TOPEX/POSEIDON Mission

    NASA Technical Reports Server (NTRS)

    Fu, L. -L.

    1993-01-01

    The joint U.S./France TOPEX/Poseidon satellite was launched on August 10, 1992, and became operational 43 days later. The major goal of the mission is to use a radar altimeter system for making precise measurements of the height of the sea surface for the study of the dynamics of large-scale ocean circulation, which is a key to understanding global climate change. Additionally, the data are used for studying ocean tides and marine geophysics. The radar altimeter also measures wave height and wind speed. The mission is being conducted to optimize the sea surface height measurements for a minimum of three years. The primary objective of the first six months of the mission was to calibrate and validate the mission's measurements...

  6. Automatic robotic arm operations and sampling in near zero gravity environment - functional tests results from Phobos-Grunt mission

    NASA Astrophysics Data System (ADS)

    Kozlova, Tatiana; Karol Seweryn, D..; Grygorczuk, Jerzy; Kozlov, Oleg

    The sample return missions have made a very significant progress to understanding of geology, the extra-terrestrial materials, processes occurring on surface and subsurface level, as well as of interactions between such materials and mechanisms operating there. The various sample return missions in the past (e.g. Apollo missions, Luna missions, Hayabusa mission) have provided scientists with samples of extra-terrestrial materials allowing to discover answers to critical scientific questions concerning the origin and evolution of the Solar System. Several new missions are currently planned: sample return missions, e.g Russian Luna-28, ESA Phootprint and MarcoPolo-R as well as both robotic and manned exploration missions to the Moon and Mars. One of the key challenges in such missions is the reliable sampling process which can be achieved by using many different techniques, e.g. static excavating technique (scoop), core drilling, sampling using dynamic mechanisms (penetrators), brushes and pneumatic systems. The effectiveness of any sampling strategy depends on many factors, including the required sample size, the mechanical and chemical soil properties (cohesive, hard or porous regolith, stones), the environment conditions (gravity, temperature, pressure, radiation). Many sampling mechanism have been studied, designed and built in the past, two techniques to collect regolith samples were chosen for the Phobos-Grunt mission. The proposed system consisted of a robotic arm with a 1,2m reach beyond the lander (IKI RAN); a tubular sampling device designed for collecting both regolith and small rock fragments (IKI RAN); the CHOMIK device (CBK PAN) - the low velocity penetrator with a single-sample container for collecting samples from the rocky surface. The functional tests were essential step in robotic arm, sampling device and CHOMIK device development process in the frame of Phobos-Grunt mission. Three major results were achieved: (i) operation scenario for autonomous

  7. Recent Results From The Nasa Earth Science Terra Mission and Future Possibilities

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    2000-01-01

    The NASA Earth Sciences Enterprise has made some remarkable strides in recent times in using developing, implementing, and utilizing spaceborne observations to better understand how the Earth works as a coupled, interactive system of the land, ocean, and atmosphere. Notable examples include the Upper Atmosphere Research (UARS) Satellite, the Topology Ocean Experiment (TOPEX) mission, Landsat-7, SeaWiFS, the Tropical Rainfall Monitoring Mission (TRMM), Quickscatt, the Shuttle Radar Topography Mission (SRTM), and, quite recently, the Terra'/Earth Observing System-1 mission. The Terra mission, for example, represents a major step forward in providing sensors that offer considerable advantages and progress over heritage instruments. The Moderate Resolution Imaging Spectrometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Measurements of Pollution in the Troposphere (MOPITT), the Advanced Spaceborne Thermal Emissions and Reflections (ASTER) radiometer, and the Clouds and Earth's Radiant Energy System (CERES) radiometer are the instruments involved. Early indications in March indicate that each of these instruments are working well and will be augmenting data bases from heritage instruments as well as producing new, unprecedented observations of land, ocean, and atmosphere features. Several missions will follow the Terra mission as the Earth Observing mission systems complete development and go into operation. These missions include EOS PM-1/'Aqua', Icesat, Vegetation Canopy Lidar (VCL), Jason/TOPEX Follow-on, the Chemistry mission, etc. As the Earth Observing systems completes its first phase in about 2004 a wealth of data enabling better understanding of the Earth and the management of its resources will have been provided. Considerable thought is beginning to be placed on what advances in technology can be implemented that will enable further advances in the early part of the 21st century; e.g., in the time from of 2020. Concepts such as

  8. The mission events graphic generator software: A small tool with big results

    NASA Technical Reports Server (NTRS)

    Lupisella, Mark; Leibee, Jack; Scaffidi, Charles

    1993-01-01

    Utilization of graphics has long been a useful methodology for many aspects of spacecraft operations. A personal computer based software tool that implements straight-forward graphics and greatly enhances spacecraft operations is presented. This unique software tool is the Mission Events Graphic Generator (MEGG) software which is used in support of the Hubble Space Telescope (HST) Project. MEGG reads the HST mission schedule and generates a graphical timeline.

  9. The Mission Accessible Near-Earth Object Survey (MANOS): first photometric results.

    NASA Astrophysics Data System (ADS)

    Thirouin, Audrey; Moskovitz, N.; Binzel, R.; Christensen, E.; DeMeo, F.; Person, M.; Polishook, D.; Thomas, C.; Trilling, D.; Willman, M.; Burt, B.; Hinkle, M.; Mommert, Michael

    2015-08-01

    The Mission Accessible Near-Earth Object Survey (MANOS) is a physical characterization survey of Near Earth Objects (NEOs) that was originally awarded multi-year survey status by NOAO and recently has employed additional facilities available to Lowell Observatory and the University of Hawaii. Our main goal is to provide physical data, such as rotational properties and composition, for several hundred mission accessible NEOs across visible and near-infrared wavelengths.As of February 2015, 12,287 NEOs have been discovered. Despite this impressive number, physical information for the majority of these objects remains limited. Typical NEOs fade in a matter of days or weeks after their discovery, thus their characterization requires a challenging set of rapid response observations.Using a variety of 1-m to 4-m class telescopes, we aim to observe 5 to 10 newly discovered sub-km NEOs per month in order to derive their rotational properties. Such rotational data can provide useful information about physical properties, like shape, surface heterogeneity/homogeneity, density, internal structure, and internal cohesion. Here, we present early results of the MANOS photometric survey for more than 50 NEOs. One of the goals of this survey is to increase the number of sub-km NEOs whose short-term variability has been studied and to compile a high quality homogeneous database which may be used to perform statistical analyses.We report light curves from our first two years of observing and show objects with rotational periods from a couple of hours down to few seconds. We consider the spin rate distributions of several sub-samples according to their size and other physical parameters. Our results were merged with rotational parameters of other asteroids in the literature to build a larger sample. This allows us to identify correlations of rotational properties with orbital parameters. In particular, we want to study MOID vs. rotation period/morphology/elongation/amplitude, rotation

  10. The NASA Soil Moisture Active Passive (SMAP) Mission Status and Early Results

    NASA Astrophysics Data System (ADS)

    Entekhabi, D.; Yueh, S. H.; O'Neill, P. E.; Entin, J. K.; Njoku, E. G.; Kellogg, K.

    2015-12-01

    NASA's Soil Moisture Active Passive (SMAP) mission was launched on January 31, 2015. SMAP provides high-resolution, frequent revisit global mapping of soil moisture and freeze/thaw state based on coincident L-band radiometer and L-band radar measurements. The primary science goal of SMAP is to provide new perspectives on how the three fundamental cycles of the Earth system, the water, energy and carbon cycles, are linked together over land. Soil moisture is the key variable that links the three cycles and makes their co-variations synchronous in time. Soil moisture products with varying resolution and coverage are produced from the radiometer alone, radar alone, radiometer-radar combination and data assimilation. In this session the status of the SMAP observatory and early results based on the science data products will be included. The science data acquisition began in May 2015 following several weeks of observatory and instrument commissioning. An intense calibration and validation period followed. Preliminary science products on instrument measurements, soil moisture, landscape frozen or thawed status, and net ecosystem exchange are available at publicly-accessible data archives. The presentation will include early and summary results on the validation of these products. The instrument measurements can also be used to map sea-ice coverage, ocean surface winds and sea surface salinity. Examples of these global retrievals are also presented.

  11. Results from VIRTIS on board Venus Express after the end of the mission operations

    NASA Astrophysics Data System (ADS)

    Piccioni, G.; Drossart, P.; VIRTIS Venus Express team

    After more than 8 years since the orbit insertion, the Venus Express mission is now at its end of mission operations. VIRTIS aboard the Venus Express spacecraft has addressed a significant amount of scientific results from the surface up to the upper atmosphere, in terms of mapping, composition, structure and dynamics. The VIRTIS instrument consists of two channels: VIRTIS-M, an imaging spectrometer with moderate spectral resolution in the range from 0.25 to 5.2 mu m and VIRTIS-H, a high spectral resolution spectrometer in the range from 2 to 5 mu m co-aligned with the field of view of –M \\citep{Piccioni2007a,Drossart2007a}. The resolution of VIRTIS-M is 2 nm from 0.25 to 1 mu m, and 10 nm from 1 to 5.2 mu m. The resolution of VIRTIS-H is about 2 nm. The atmosphere above the clouds has been observed both on day and night sides, in solar reflection and thermal emission in nadir geometry \\citep{Ignatiev2009, Cottini2012, Peralta2012, Peralta2009}. Limb observations provided O2\\citep{Piccioni2009, Garcia2009a, Gerard2013, Migliorini2013a, Gerard2008, Gerard2009}, OH \\citep{Piccioni2008,Gerard2010,Soret2010,Soret2012}, NO \\citep{Garcia2009b}, CO2 \\citep{Drossart2007b,Lopez-Valverde2011} and CO \\citep{Gilli2009,Gilli2015,Gilli2011} emissions, through nightglow and fluorescence observations. Spectroscopy of the 4-5 mu m range gave access to the cloud structure in the 60-95 km altitude levels \\citep{Irwin2008a,Grassi2014, Grassi2008,Grassi2010,Luz2011}. The deeper atmospheric windows, limited by CO2 and H2O bands were accessible only in thermal emission on the night side. The sounded levels at 1.7 and 2.3 mu m were limited respectively to 30-20 km altitude \\citep{Barstow2012,Bezard2009,Marcq2008a,Satoh2009,Tsang2009, Tsang2010,Tsang2008,Wilson2008,Wilson2009}, while at shorter wavelengths (1.18, 1.10, 1.01, 0.9 and 0.85 mu m), the hot surface of Venus was seen through the scattering clouds \\citep{Mueller2009,Helbert2008,Arnold2008a,Smrekar2010,Mueller2012

  12. MERS: emergence of a novel human coronavirus

    PubMed Central

    Raj, V. Stalin; Osterhaus, Albert D.M.E.; Fouchier, Ron A.M.; Haagmans, Bart L.

    2014-01-01

    A novel coronavirus (CoV) that causes a severe lower respiratory tract infection in humans, emerged in the Middle East region in 2012. This virus, named Middle East respiratory syndrome (MERS)-CoV, is phylogenetically related to bat CoVs, but other animal species like dromedary camels may potentially act as intermediate hosts by spreading the virus to humans. Although human to human transmission has been demonstrated, analysis of human MERS clusters indicated that chains of transmission were not self-sustaining, especially when infection control was implemented. Thus, timely identification of new MERS cases followed by their quarantine, combined with measures to limit spread of the virus from the (intermediate) host to humans, may be crucial in controlling the outbreak of this emerging CoV. PMID:24584035

  13. The Mars Science Laboratory Mission: Early Results from Gale Crater Landing Site

    NASA Astrophysics Data System (ADS)

    Flatow, I.; Grotzinger, J. P.; Blake, D.; Crisp, J. A.; Edgett, K. S.; Gellert, R.; Gomez-Elvira, J.; Hassler, D. M.; Mahaffy, P. R.; Malin, M. C.; Meyer, M. A.; Mitrofanov, I.; Vasavada, A. R.; Wiens, R. C.

    2012-12-01

    background solar and cosmic radiation (RAD; Cruise measurements began on December 6, 2011). The MARDI descent camera is being evaluated for use in the surface mission. The Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem is responsible for the acquisition of rock and soil samples from the Martian surface and the processing of these samples into fine particles that are then distributed to the analytical science instruments (CheMin and SAM). The SA/SPaH subsystem is also responsible for the placement of the two contact instruments (APXS, MAHLI) on rock and soil targets. SA/SPaH consists of a robotic arm and turret-mounted devices on the end of the arm, which include a drill, brush, soil scoop, sample processing device, and the mechanical and electrical interfaces to the two contact science instruments. SA/SPaH also includes two spare drill bits, five organic check material samples, and an observation tray, which are all mounted on the front of the rover, and inlet cover mechanisms that are placed over the SAM and CheMin solid sample inlet tubes on the rover top deck. Recent mission results will be discussed. The first month or two of the mission is designed as a Commissioning Activity Period (CAP) in which each science instrument and rover subsystem is tested in sequence, but done in a fashion that insures science measurements also are obtained.

  14. Results from a Si(Li) gamma ray detector stack for future Mars missions

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Keller, Robert G.; Wercinski, Paul F.; Walton, John T.; Vierinen, Kari

    1992-01-01

    We present Monte Carlo analysis and experimental data from a novel lithium-drifted silicon detector stack for gamma ray spectroscopy instrumentation in future Mars surface landers and other planetary missions. The Monte Carlo analysis shows full energy photopeaks even in the range of about 100 keV to 2 MeV where, in Si, Compton scattering dominates the absorption processes. Laboratory data is shown for an experimental detector stack of four planar Si(Li) devices, each 5 mm thick with an active area 2 cm in diameter. All the experimental data were collected with maximum temperature of the stack at 175 K. Background reduction is achieved by using the detector of the stack closest to the source in anticoincidence. We present a comparison of experimental data from the stack with the Monte Carlo model for Cs-137 (662 keV). Agreement is shown to be good, with a full energy photopeak clearly seen (FWHM about 10 keV). Experimental stack data is also shown for multiple peaks at 511 keV (Na-22) and 662 keV (Cs-137). The peaks are clearly resolved (FWHM 10 keV), and are compared with the results obtained using a 8 percent resolution, 3 in. x 3 in. NaI(TI) device (FWHM about 50 keV).

  15. Flight test results from a supercritical mission adaptive wing with smooth variable camber

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Webb, Lannie D.; Friend, Edward L.; Lokos, William A.

    1992-01-01

    The mission adaptive wing (MAW) consisted of leading- and trailing-edge variable-camber surfaces that could be deflected in flight to provide a near-ideal wing camber shape for any flight condition. These surfaces featured smooth, flexible upper surfaces and fully enclosed lower surfaces, distinguishing them from conventional flaps that have discontinuous surfaces and exposed or semiexposed mechanisms. Camber shape was controlled by either a manual or automatic flight control system. The wing and aircraft were extensively instrumented to evaluate the local flow characteristics and the total aircraft performance. This paper discusses the interrelationships between the wing pressure, buffet, boundary-layer and flight deflection measurement system analyses and describes the flight maneuvers used to obtain the data. The results are for a wing sweep of 26 deg, a Mach number of 0.85, leading and trailing-edge cambers (delta(sub LE/TE)) of 0/2 and 5/10, and angles of attack from 3.0 deg to 14.0 deg. For the well-behaved flow of the delta(sub LE/TE) = 0/2 camber, a typical cruise camber shape, the local and global data are in good agreement with respect to the flow properties of the wing. For the delta(sub LE/TE) = 5/10 camber, a maneuvering camber shape, the local and global data have similar trends and conclusions, but not the clear-cut agreement observed for cruise camber.

  16. Earth-Affecting Solar Causes Observatory (EASCO): Results of the Mission Concept Study

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; EASCO Team

    2011-05-01

    Coronal mass ejections (CMEs) corotating interaction regions (CIRs) are two large-scale structures that originate from the Sun and affect the heliosphere in general and Earth in particular. While CIRs are generally detected by in-situ plasma signatures, CMEs are remote-sensed when they are still close to the Sun. The current understanding of CMEs primarily come from the SOHO and STEREO missions. In spite of the enormous progress made, there are some serious deficiencies in these missions. For example, these missions did not carry all the necessary instruments (STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer). From the Sun-Earth line, SOHO was not well-suited for observing Earth-directed CMEs because of the occulting disk. STEREO's angle with the Sun-Earth line is changing constantly, so only a limited number of Earth-directed CMEs were observed in profile. In order to overcome these difficulties, we proposed a news L5 mission concept known as the Earth-Affecting Solar Causes Observatory (EASCO). The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center. The aim of the MDL study was to see how the scientific payload consisting of ten instruments can be accommodated in the spacecraft bus, what propulsion system can transfer the payload to the Sun-Earth L5, and what launch vehicles are appropriate. The study found that all the ten instruments can be readily accommodated and can be launched using an intermediate size vehicle such as Taurus II with enhanced faring. The study also found that a hybrid propulsion system consisting of an ion thruster (using 55 kg of Xenon) and hydrazine ( 10 kg) is adequate to place the payload at L5. The transfer will take about 2 years and the science mission will last for 4 years around the next solar maximum in 2025.

  17. Solar and Solar-Wind Composition Results from the Genesis Mission

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Burnett, D. S.; Hohenberg, C. M.; Meshik, A.; Heber, V.; Grimberg, A.; Wieler, R.; Reisenfeld, D. B.

    The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.

  18. Solar and Solar-Wind Composition Results from the Genesis Mission

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Burnett, D. S.; Hohenberg, C. M.; Meshik, A.; Heber, V.; Grimberg, A.; Wieler, R.; Reisenfeld, D. B.

    2007-06-01

    The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being measured.

  19. Opportunity Mars Rover mission: Overview and selected results from Purgatory ripple to traverses to Endeavour crater

    USGS Publications Warehouse

    Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Chojnacki, M.; Cohen, J.; Economou, T.E.; Farrand, W. H.; Fergason, R.; Fleischer, I.; Geissler, P.; Gellert, Ralf; Golombek, M.P.; Grotzinger, J.P.; Guinness, E.A.; Haberle, R.M.; Herkenhoff, K. E.; Herman, J.A.; Iagnemma, K.D.; Jolliff, B.L.; Johnson, J. R.; Klingelhofer, G.; Knoll, A.H.; Knudson, A.T.; Li, R.; McLennan, S.M.; Mittlefehldt, D. W.; Morris, R.V.; Parker, T.J.; Rice, M.S.; Schroder, C.; Soderblom, L.A.; Squyres, S. W.; Sullivan, R.J.; Wolff, M.J.

    2011-01-01

    Opportunity has been traversing the Meridiani plains since 25 January 2004 (sol 1), acquiring numerous observations of the atmosphere, soils, and rocks. This paper provides an overview of key discoveries between sols 511 and 2300, complementing earlier papers covering results from the initial phases of the mission. Key new results include (1) atmospheric argon measurements that demonstrate the importance of atmospheric transport to and from the winter carbon dioxide polar ice caps; (2) observations showing that aeolian ripples covering the plains were generated by easterly winds during an epoch with enhanced Hadley cell circulation; (3) the discovery and characterization of cobbles and boulders that include iron and stony-iron meteorites and Martian impact ejecta; (4) measurements of wall rock strata within Erebus and Victoria craters that provide compelling evidence of formation by aeolian sand deposition, with local reworking within ephemeral lakes; (5) determination that the stratigraphy exposed in the walls of Victoria and Endurance craters show an enrichment of chlorine and depletion of magnesium and sulfur with increasing depth. This result implies that regional-scale aqueous alteration took place before formation of these craters. Most recently, Opportunity has been traversing toward the ancient Endeavour crater. Orbital data show that clay minerals are exposed on its rim. Hydrated sulfate minerals are exposed in plains rocks adjacent to the rim, unlike the surfaces of plains outcrops observed thus far by Opportunity. With continued mechanical health, Opportunity will reach terrains on and around Endeavour's rim that will be markedly different from anything examined to date. Copyright 2011 by the American Geophysical Union.

  20. Computational Performance Assessment of k-mer Counting Algorithms.

    PubMed

    Pérez, Nelson; Gutierrez, Miguel; Vera, Nelson

    2016-04-01

    This article is about the assessment of several tools for k-mer counting, with the purpose to create a reference framework for bioinformatics researchers to identify computational requirements, parallelizing, advantages, disadvantages, and bottlenecks of each of the algorithms proposed in the tools. The k-mer counters evaluated in this article were BFCounter, DSK, Jellyfish, KAnalyze, KHMer, KMC2, MSPKmerCounter, Tallymer, and Turtle. Measured parameters were the following: RAM occupied space, processing time, parallelization, and read and write disk access. A dataset consisting of 36,504,800 reads was used corresponding to the 14th human chromosome. The assessment was performed for two k-mer lengths: 31 and 55. Obtained results were the following: pure Bloom filter-based tools and disk-partitioning techniques showed a lesser RAM use. The tools that took less execution time were the ones that used disk-partitioning techniques. The techniques that made the major parallelization were the ones that used disk partitioning, hash tables with lock-free approach, or multiple hash tables.

  1. Computational Performance Assessment of k-mer Counting Algorithms.

    PubMed

    Pérez, Nelson; Gutierrez, Miguel; Vera, Nelson

    2016-04-01

    This article is about the assessment of several tools for k-mer counting, with the purpose to create a reference framework for bioinformatics researchers to identify computational requirements, parallelizing, advantages, disadvantages, and bottlenecks of each of the algorithms proposed in the tools. The k-mer counters evaluated in this article were BFCounter, DSK, Jellyfish, KAnalyze, KHMer, KMC2, MSPKmerCounter, Tallymer, and Turtle. Measured parameters were the following: RAM occupied space, processing time, parallelization, and read and write disk access. A dataset consisting of 36,504,800 reads was used corresponding to the 14th human chromosome. The assessment was performed for two k-mer lengths: 31 and 55. Obtained results were the following: pure Bloom filter-based tools and disk-partitioning techniques showed a lesser RAM use. The tools that took less execution time were the ones that used disk-partitioning techniques. The techniques that made the major parallelization were the ones that used disk partitioning, hash tables with lock-free approach, or multiple hash tables. PMID:26982880

  2. Dust Accumulation and Cleaning of the MER Opportunity Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J.

    2015-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Opportunity was expected to accumulate a sufficient quantity of dust after ninety Martian days (sols) such that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Opportunity continues to operate on the Martian surface for over 4000 sols (over six Mars years). During this time period, the rover experienced six Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a method to scientifically estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Meridiani Planum over the course of the entire mission to date.

  3. Dust Accumulation and Cleaning of the MER Spirit Solar Array

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Johnson, J. R.; Cantor, B. A.; Stella, P. M.; Chin, K. B.; Wood, E. G.

    2012-12-01

    The solar array of the NASA Mars Exploration Rover (MER) Spirit was expected to accumulate so much dust after ninety Martian days (sols) that it could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, Spirit carried out surface operations for over 2200 sols (over three Mars years). During this time period, the rover experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to quantitatively estimate the loading and aeolian removal of dust from the solar array each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement at Gusev Crater over the course of the entire mission.

  4. Solar and solar-wind composition results from the genesis mission

    SciTech Connect

    Wiens, Roger C.; Burnett, D. S.; Hohenberg, C. M.; Meshik, A.; Heber, V.; Grimberg, A.; Wieler, R.; Reisenfeld, D. B.

    2007-02-20

    The Genesis mission returned samples of solar wind to Earth in September, 2004 for ground-based analyses of solar-wind composition, particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal hole, interstream, and coronal mass ejection material were obtained. While many of the substrates were broken upon landing due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives will likely be met. These include noble gas (He, Ne, Ar, Kr, and Xe) isotope ratios in the bulk solar wind and in different solarwind regimes, and the nitrogen and oxygen isotope ( 18O/17O/16O) ratios to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind and separate solar-wind regime samples have been analyzed to date. The regime compositions are so far ambiguous on the occurrence of the type of isotopic fractionation expected from Coulomb drag acceleration. Neon results from closed system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which in lunar samples have for years deceptively suggested the presence of a separate solar component. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are still in the process of being measured.

  5. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013.

    PubMed

    Meyer, Benjamin; Müller, Marcel A; Corman, Victor M; Reusken, Chantal B E M; Ritz, Daniel; Godeke, Gert-Jan; Lattwein, Erik; Kallies, Stephan; Siemens, Artem; van Beek, Janko; Drexler, Jan F; Muth, Doreen; Bosch, Berend-Jan; Wernery, Ulrich; Koopmans, Marion P G; Wernery, Renate; Drosten, Christian

    2014-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused an ongoing outbreak of severe acute respiratory tract infection in humans in the Arabian Peninsula since 2012. Dromedary camels have been implicated as possible viral reservoirs. We used serologic assays to analyze 651 dromedary camel serum samples from the United Arab Emirates; 151 of 651 samples were obtained in 2003, well before onset of the current epidemic, and 500 serum samples were obtained in 2013. Recombinant spike protein-specific immunofluorescence and virus neutralization tests enabled clear discrimination between MERS-CoV and bovine CoV infections. Most (632/651, 97.1%) camels had antibodies against MERS-CoV. This result included all 151 serum samples obtained in 2003. Most (389/651, 59.8%) serum samples had MERS-CoV-neutralizing antibody titers >1,280. Dromedary camels from the United Arab Emirates were infected at high rates with MERS-CoV or a closely related, probably conspecific, virus long before the first human MERS cases.

  6. Mer receptor tyrosine kinase mediates both tethering and phagocytosis of apoptotic cells

    PubMed Central

    Dransfield, I; Zagórska, A; Lew, E D; Michail, K; Lemke, G

    2015-01-01

    Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization. PMID:25695599

  7. Microgravity and the organisms. Results of the spacelab mission D1

    NASA Astrophysics Data System (ADS)

    Volkmann, D.

    During the Spacelab mission D1 different organisms were investigated at the unicellular and multicellular level respectively. Microgravity affects growth and development of the organisms in a different manner, some processes are enhanced, others are inhibited. On the other hand, there are a lot of parameters, e.g. circadian rhythm or cell and organ polarity, which seem to be exclusively under genetical control.

  8. Redefining Tactical Operations for MER Using Cloud Computing

    NASA Technical Reports Server (NTRS)

    Joswig, Joseph C.; Shams, Khawaja S.

    2011-01-01

    The Mars Exploration Rover Mission (MER) includes the twin rovers, Spirit and Opportunity, which have been performing geological research and surface exploration since early 2004. The rovers' durability well beyond their original prime mission (90 sols or Martian days) has allowed them to be a valuable platform for scientific research for well over 2000 sols, but as a by-product it has produced new challenges in providing efficient and cost-effective tactical operational planning. An early stage process adaptation was the move to distributed operations as mission scientists returned to their places of work in the summer of 2004, but they would still came together via teleconference and connected software to plan rover activities a few times a week. This distributed model has worked well since, but it requires the purchase, operation, and maintenance of a dedicated infrastructure at the Jet Propulsion Laboratory. This server infrastructure is costly to operate and the periodic nature of its usage (typically heavy usage for 8 hours every 2 days) has made moving to a cloud based tactical infrastructure an extremely tempting proposition. In this paper we will review both past and current implementations of the tactical planning application focusing on remote plan saving and discuss the unique challenges present with long-latency, distributed operations. We then detail the motivations behind our move to cloud based computing services and as well as our system design and implementation. We will discuss security and reliability concerns and how they were addressed

  9. Inhibition of Mer and Axl receptor tyrosine kinases leads to increased apoptosis and improved chemosensitivity in human neuroblastoma.

    PubMed

    Li, Yixin; Wang, Xiqian; Bi, Shaojie; Zhao, Kun; Yu, Chao

    2015-02-13

    Ectopic expression of Mer and Axl receptor tyrosine kinases (RTKs) are frequently found in various cancers as known to promote oncogenesis by activating antiapoptotic signaling pathways. However, the roles of these receptors in neuroblastoma remain unclear. We found Mer and Axl was co-expressed in neuroblastoma patient samples and cell lines. Ligand-dependent Mer or Axl activation led to an increase in phosphorylated ERK1/2, AKT and FAK indicating roles for these RTKs in multiple oncogenic processes. Furthermore, Mer and Axl knockdown led to apoptosis and inhibition of migration as well as a significant increase in chemosensitivity in response to cisplatin and vincristine treatment. Taken together, our results demonstrated that inhibition of Mer and Axl improved apoptotic response and chemosensitivity in neuroblastoma, providing new insights into development of novel therapeutic strategies by targeting these oncogenes.

  10. Short communication: Measuring the angiotensin-converting enzyme inhibitory activity of an 8-amino acid (8mer) fragment of the C12 antihypertensive peptide.

    PubMed

    Paul, Moushumi; Phillips, John G; Renye, John A

    2016-05-01

    An 8-AA (8mer) fragment (PFPEVFGK) of a known antihypertensive peptide derived from bovine αS1-casein (C12 antihypertensive peptide) was synthesized by microwave-assisted solid-phase peptide synthesis and purified by reverse phase HPLC. Its ability to inhibit angiotensin-converting enzyme (ACE) was assessed and compared with that of the parent 12mer peptide (FFVAPFPEVFGK) to determine the effect of truncating the sequence on overall hypotensive activity. The activity of the truncated 8mer peptide was found to be almost 1.5 times less active than that of the 12mer, with ACE-inhibiting IC50 (half-maximal inhibitory concentration) values of 108 and 69μM, for the 8mer and 12mer, respectively. Although the 8mer peptide is less active than the original 12mer peptide, its overall activity is comparable to activities reported for other small proteins that elicit physiological responses within humans. These results suggest that microbial degradation of the 12mer peptide would not result in a complete loss of antihypertensive activity if used to supplement fermented foods and that the stable 8mer peptide could have potential as a blood pressure-lowering agent for use in functional foods.

  11. Recent Results from the MicroMAS Global Environmental MonitoringNanosatellite Mission

    NASA Astrophysics Data System (ADS)

    Blackwell, W. J.; Cahoy, K.

    2014-12-01

    The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a dual-spinning 3U CubeSat equipped with apassive microwave radiometer that observes in nine channels near the 118.75-GHz oxygen absorption line.MicroMAS is designed to observe convective thunderstorms, tropical cyclones, and hurricanes from a midinclinationorbit. The MicroMAS flight unit was developed by MIT Lincoln Laboratory and the MIT Space SystemsLaboratory and was launched to the International Space Station on July 13, 2014, and scheduled for an earlySeptember deployment for a ~90-day mission. The payload is housed in the "lower" 1U of the dual-spinning 3UCubeSat and mechanically rotated approximately once per second as the spacecraft orbits the Earth, resulting in across-track scanned beam with a full-width half-max (FWHM) beamwidth of 2.4 degrees and an approximately 17-km diameter footprint at nadir incidence from a nominal altitude of 400 km. The relatively low cost of MicroMASenables the deployment of a constellation of sensors, spaced equally around several orbit planes. A small fleet ofMicroMAS systems could yield high-resolution global temperature and water vapor profiles, as well as cloudmicrophysical and precipitation parameters.Significant advancements were made in the Assembly, Integration, and Test phase of the project developmentlifecycle. The flight software and communications architecture was refined and tested in relevant lab facilities. Thepower subsystem was modified to include additional required inhibits for the ISS launch. Hardware in the loop testsas well as simulations of the attitude determination and control system (ADCS) were performed to validate theunique dual-spinning, local vertical, local horizontal (LVLH) stabilized flight design. ADCS algorithms were testedon a 3-axis air bearing and custom rig inside a 3-axis programmable Helmholtz cage. Finally, the integratedspacecraft underwent a series of environmental tests in order to verify the results of thermal modeling

  12. Hurricane and Severe Storm Sentinel (HS3): Mission Summary and Initial Result

    NASA Astrophysics Data System (ADS)

    Braun, S. A.; Newman, P. A.

    2014-12-01

    The HS3 objectives are:• To obtain measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems, Saharan air masses, African Easterly Waves and their embedded critical layers. • To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives were addressed using two Global Hawk (GH) Unmanned Airborne Systems (UASs) with separate comprehensive environmental and over-storm payloads. The GH flight altitudes (>17 km) allow overflights of most convection and sampling of upper-tropospheric winds. Deployments from Goddard's Wallops Flight Facility and ~26-hour flight durations provided coverage of the entire Atlantic Ocean basin, and on-station times up to 6-20 h depending on storm location. Deployments were in September of 2012 and late-August to late-September 2013-2014. Measurements from the Environmental GH Payload• Continuous sampling of temperature and relative humidity in the clear-air environment from the scanning High-resolution Interferometer Sounder (S-HIS). • Full tropospheric wind, temperature, and humidity profiles from the Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system, which is capable of releasing up to 89 dropsondes in a single flight. • Aerosol and cloud layer vertical structure from the Cloud Physics Lidar (CPL). Measurements from the Over-Storm GH Payload• Three-dimensional wind and precipitation fields from the High-altitude Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar. • Surface winds and rainfall from the Hurricane Imaging Radiometer (HIRAD) multi-frequency interferometric radiometer. • Temperature, water vapor, and liquid water profiles, rain rates, and vertical precipitation profiles from the High-Altitude MMIC Sounding Radiometer (HAMSR). The talk will discuss the flights that were

  13. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting <15 d, but has not been measured following long-duration missions. The purpose of this study is to measure VO2max and maximum work rate (WRmax) data from astronauts following ISS flights (91 to 188 d). Methods: Five astronauts [3 M, 2 F: 47+/-6 yr, 174+/-6 cm, 71.9+/-10.9 kg (mean +/- SD)] have participated in the study. Subjects performed upright cycle exercise tests to symptom-limited maximum. An initial test was done approx.270 d before flight to establish work rates for subsequent tests. Subsequent tests, conducted approx.45 d before flight and repeated on the first or second day (R+1/2) and at approx.10 d (R+10) following landing, consisted of 3 5 min stages designed to elicit 25%, 50%, and 75% of preflight VO2max, followed by 25 W(dot)/min increases. VO2, WR, and heart rate (HR) were measured using the ISS Portable Pulmonary Function System [Damec, Odense, DK]. Descriptive statistics are reported. Results: On R+1/2 mean VO2max decreased compared to preflight (Pre: 2.98+/-0.99, R+1/2: 2.63+/-0.56 L(dot)/min); 4 of 5 subjects demonstrated a loss of > 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  14. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system.

    PubMed

    Di Lello, Paola; Benison, Gregory C; Valafar, Homayoun; Pitts, Keith E; Summers, Anne O; Legault, Pascale; Omichinski, James G

    2004-07-01

    Mercury resistant bacteria have developed a system of two enzymes (MerA and MerB), which allows them to efficiently detoxify both ionic and organomercurial compounds. The organomercurial lyase (MerB) catalyzes the protonolysis of the carbon-mercury bond resulting in the formation of ionic mercury and a reduced hydrocarbon. The ionic mercury [Hg(II)] is subsequently reduced to the less reactive elemental mercury [Hg(0)] by a specific mercuric reductase (MerA). To better understand MerB's unique enzymatic activity, we used nuclear magnetic resonance (NMR) spectroscopy to determine the structure of the free enzyme. MerB is characterized by a novel protein fold consisting of three noninteracting antiparallel beta-sheets surrounded by six alpha-helices. By comparing the NMR data of free MerB and the MerB/Hg/DTT complex, we identified a set of residues that likely define a Hg/DTT binding site. These residues cluster around two cysteines (C(96) and C(159)) that are crucial to MerB's catalytic activity. A detailed analysis of the structure revealed the presence of an extensive hydrophobic groove adjacent to this Hg/DTT binding site. This extensive hydrophobic groove has the potential to interact with the hydrocarbon moiety of a wide variety of substrates and may explain the broad substrate specificity of MerB. PMID:15222745

  15. NASA Intelligent Systems Project: Results, Accomplishments and Impact on Science Missions

    NASA Technical Reports Server (NTRS)

    Coughlan, Joseph C.

    2005-01-01

    The Intelligent Systems Project was responsible for much of NASA's programmatic investment in artificial intelligence and advanced information technologies. IS has completed three major project milestones which demonstrated increased capabilities in autonomy, human centered computing, and intelligent data understanding. Autonomy involves the ability of a robot to place an instrument on a remote surface with a single command cycle. Human centered computing supported a collaborative, mission centric data and planning system for the Mars Exploration Rovers and data understanding has produced key components of a terrestrial satellite observation system with automated modeling and data analysis capabilities. This paper summarizes the technology demonstrations and metrics which quantify and summarize these new technologies which are now available for future Nasa missions.

  16. Spaceflight and the Mouse Eye: Results from Experiments on Shuttle Missions STS-133 and STS-135

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Theriot, Corey A.; Ponce, Claudia Prospero; Chevez-Barrios, Patricia

    2013-01-01

    Vision alterations associated with globe flattening, chorodial folds and papilledema, shown in some crew members returning from long duration missions. Hypothesis: Ocular neuroanatomical changes observed in the VIIP syndrome are accompanied by retinal changes at the molecular and cellular level that may affect retinal health and physiology. Objective: Investigate evidence of ocular (retinal) changes associated with spaceflight: (1) histological markers of cellular death and damage (2) molecular markers of oxidative stress (3) gene expression markers of stress

  17. Deuterium Abundance toward G191-B2B: Results from the FUSE Mission

    NASA Astrophysics Data System (ADS)

    Lemoine, M.; Vidal-Madjar, A.; Hébrard, G.; Désert, J.-M.; Ferlet, R.; Lecavelier des Étangs, A.; Howk, J. C.; André, M.; Blair, W. P.; Friedman, S. D.; Kruk, J. W.; Lacour, S.; Moos, H. W.; Sembach, K.; Chayer, P.; Jenkins, E. B.; Koester, D.; Linsky, J. L.; Wood, B. E.; Oegerle, W. R.; Sonneborn, G.; York, D. G.

    2002-05-01

    High-resolution spectra of the hot white dwarf G191-B2B, covering the wavelength region 905-1187 Å, were obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). These data were used in conjunction with existing high-resolution Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) observations to evaluate the total H I, D I, O I, and N I column densities along the line of sight. Previous determinations of N(D I) based upon GHRS and STIS observations were controversial as a result of the saturated strength of the D I Lyα line. In the present analysis the column density of D I has been measured using only the unsaturated Lyβ and Lyγ lines observed by FUSE. A careful inspection of possible systematic uncertainties tied to the modeling of the stellar continuum or to the uncertainties in the FUSE instrumental characteristics has been performed. The column densities derived are logN(DI)=13.40+/-0.07, logN(OI)=14.86+/-0.07, and logN(NI)=13.87+/-0.07, quoted with 2 σ uncertainties. The measurement of the H I column density by profile fitting of the Lyα line has been found to be uncertain. If additional weak, hot interstellar components are added to the three detected clouds along the line of sight, the H I column density can be reduced quite significantly, even though the signal-to-noise ratio and spectral resolution at Lyα are excellent. The new estimate of N(H I) toward G191-B2B reads logN(HI)=18.18+/-0.18 (2 σ), so that the average D/H ratio on the line of sight is D/H=(1.66+0.9-0.6)×10-5 (2 σ). This work is based on data obtained for the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by Johns Hopkins University.

  18. Curiosity explores the base of Aeolis Mons, Gale crater, Mars: Recent Geological and Geochemical Mission Results

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev; Vasavada, Ashwin; Crisp, Joy; Grotzinger, John

    2016-04-01

    The Mars Science Laboratory (MSL) Curiosity rover has been exploring sedimentary rocks at the foothills of Aolis Mons since August 2014. Here, an array of fluvial, lacustrine and aeolian strata that show a complex pattern of post-depositional alteration are present. This presentation will summarize the most recent geological and geochemical findings of the MSL mission. Basal outcrops that form the lowest stratigraphic unit of Aeolis Mons, the Murray formation, are characterized predominantly by mudstones with minor intercalated sandstones. The mudstone facies, originally identified at the Pahrump Hills field site, show abundant fine-scale planar laminations throughout the Murray formation succession and is interpreted to record deposition in an ancient lacustrine system in Gale crater. Interbedded cross-stratified sandstones are considered to record fluvio-deltaic incursions into the lake. The lacustrine deposits of the Murray formation are unconformably overlain by much younger sandstones of the Stimson formation. Orbital mapping and in situ observations indicate that the basal strata of the Stimson formation show complex onlap relationships with the underlying Murray formation strata signifying that there was metre-scale palaeotopographic relief on the unconformity surface upon which the Stimson accumulated. The Stimson formation itself is characterized by cross-bedded sandstones with cross-bed sets tens of centimetres in thickness. Sedimentological observations suggest that the Stimson dominantly records deposition by aeolian dunes. Curiosity has made detailed measurements of the geochemistry of the Murray and Stimson formations and associated diagenetic features. Perhaps most surprising has been the discovery of extensive silica enrichment both within mudstones of the Murray formation, perhaps of primary sedimentary or later diagenetic origin, also in as fracture-related diagenetic halos within the Stimson formation. We will describe the nature of this silica

  19. EuroGeoMars mission and techniques: First results for geology and geochemistry

    NASA Astrophysics Data System (ADS)

    Peters, S. T. M.; Borst, A.; Wendt, L.; Gross, C.; Stoker, C.; Zhavaleta, J.; Sarrazin, P.; Slob, E.; Pletser, V.; Foing, B.

    2009-04-01

    The EuroGeoMars expedition forms part of the European Space Agency's ExoGeoLab research project and is a test campaign at the MDRS (Mars Desert Research Station), which is operated by the Mars Society, in the Utah desert, US. MDRS has yet been used by research groups of various interest as an analogue site to the Martian environment. The goal of this expedition is to simulate the employment of various instruments and sample return under Martian conditions, while carrying out several geological and biological investigations. In this paper we present our methods and first results for the geological and geochemistry investigations. Two main geological investigations have been carried out, of which one includes mapping of the sequence stratigraphy and internal structure of Quaternary alluvial fan deposits, 5 km South-West of the MDRS. Alluvial fans are formed when a stream gradient decreases over a relatively small area and therefore coarse-grained sediments are being deposited. Alluvial fans on Mars are of particular interest because they may have formed, as they do on Earth, a niche for life at deposition time. If any was present, the sediments may contain detritus that was transported by the river from the hinterland. Furthermore, the internal structure and lithology represent the depositional environment, water activity, and climatological perturbations. These three factors provide main implications for the conditions and possibilities of maintaining life. Mineralogical variations represent changes in the source area of the sediments and hence possible tectonic activity. The fan that we investigated measures 1.5 x 1.5 km and is made up of several stratigraphic sequences that we defined by classic geological methods. We followed the sedimentary sequences laterally using a Ground Penetrating Radar system (GPR) and taking samples for ground truth by drilling. All samples were analyzed on mineral content using Raman spectroscopy and XRF (X-Ray Fluorescence) for

  20. Results from the Ultraviolet Imaging Telescope on the Astro-2 Mission

    NASA Astrophysics Data System (ADS)

    Stecher, T. P.; Bohlin, R. C.; Neff, S. G.; O'Connell, R. W.; Roberts, M. R.; Smith, A. M.

    1995-03-01

    The solar-blind UIT camera with a CsI cathode obtained 722 frames with a cumulative exposure time of 260705 seconds during the March 1995 Astro-2 mission of Space Shuttle Endeavour. Filters were used to isolate selected bandpasses in the range 1200-1800 Angstroms, over the 40 arcmin field of view. Spatial resolution on most of the images is about 3 arcsec. Calibrated data, converted to machine-readable form, are under analysis and several posters on these investigations are presented in the Astro-2 poster session at this meeting (a first look at the UIT observations of Omega Cen, M31, and the Cygnus Loop is further elaborated here). UIT imagery of 20 spiral galaxies was obtained as part of a Guest Investigator program (Wendy Freedman et al.). UV imaging suppresses the red stellar population as expected and enhances the appearance of tracers of recent star formation. Known \\hii regions in these galaxies are made apparent through the scattering of stellar ultraviolet light by interstellar dust; typically their shapes differ from those seen in \\ha. A radial color gradient investigation will be delayed until ground observations can be made as the long-wavelength camera failed on launch and only the 1520 Angstroms and 1620 Angstroms images were made. The far-UV (1520 Angstroms) features are detected well beyond the Holmberg radius. UV/visible color-magnitude diagrams will be made as they were for the data from Astro-1. Our deepest images of the Magellanic Clouds reveal a rich field of luminous clusters and stars that are being searched for UV counterparts of the known x-ray sources in the photographed areas. The observed stars in the Clouds will be used to determine the current mass function. The respective contributions of nebular and stellar UV light in reflection nebulae are will be studied as several nebulae were observed with differing geometries and will provide interesting results on the far-UV albedo and phase function of nebular dust. A dozen globular and

  1. The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results.

    NASA Astrophysics Data System (ADS)

    Burrows, John P.; Weber, Mark; Buchwitz, Michael; Rozanov, Vladimir; Ladstätter-Weißenmayer, Annette; Richter, Andreas; Debeek, Rüdiger; Hoogen, Ricarda; Bramstedt, Klaus; Eichmann, Kai-Uwe; Eisinger, Michael; Perner, Dieter

    1999-01-01

    The Global Ozone Monitoring Experiment (GOME) is a new instrument aboard the European Space Agency's (ESA) Second European Remote Sensing Satellite (ERS-2), which was launched in April 1995. The main scientific objective of the GOME mission is to determine the global distribution of ozone and several other trace gases, which play an important role in the ozone chemistry of the earth's stratosphere and troposphere. GOME measures the sunlight scattered from the earth's atmosphere and/or reflected by the surface in nadir viewing mode in the spectral region 240-790 nm at a moderate spectral resolution of between 0.2 and 0.4 nm. Using the maximum 960-km across-track swath width, the spatial resolution of a GOME ground pixel is 40 × 320 km2 for the majority of the orbit and global coverage is achieved in three days after 43 orbits.Operational data products of GOME as generated by DLR-DFD, the German Data Processing and Archiving Facility (D-PAF) for GOME, comprise absolute radiometrically calibrated earthshine radiance and solar irradiance spectra (level 1 products) and global distributions of total column amounts of ozone and NO2 (level 2 products), which are derived using the DOAS approach (Differential Optical Absorption Spectroscopy). (Under certain conditions and some restrictions, the operational data products are publically available from the European Space Agency via the ERS Helpdesk.)In addition to the operational data products, GOME has delivered important information about other minor trace gases such as OClO, volcanic SO2, H2CO from biomass burning, and tropospheric BrO. Using an iterative optimal estimation retrieval scheme, ozone vertical profiles can be derived from the inversion of the UV/VIS spectra. This paper reports on the GOME instrument, its operation mode, and the retrieval techniques, the latter with particular emphasis on DOAS (total column retrieval) and advanced optimal estimation (ozone profile retrieval).Observation of ozone depletion in the

  2. A Reliable Service-Oriented Architecture for NASA's Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Mak, Ronald; Walton, Joan; Keely, Leslie; Hehner, Dennis; Chan, Louise

    2005-01-01

    The Collaborative Information Portal (CIP) was enterprise software developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory (JPL) for NASA's highly successful Mars Exploration Rover (MER) mission. Both MER and CIP have performed far beyond their original expectations. Mission managers and engineers ran CIP inside the mission control room at JPL, and the scientists ran CIP in their laboratories, homes, and offices. All the users connected securely over the Internet. Since the mission ran on Mars time, CIP displayed the current time in various Mars and Earth time zones, and it presented staffing and event schedules with Martian time scales. Users could send and receive broadcast messages, and they could view and download data and image files generated by the rovers' instruments. CIP had a three-tiered, service-oriented architecture (SOA) based on industry standards, including J2EE and web services, and it integrated commercial off-the-shelf software. A user's interactions with the graphical interface of the CIP client application generated web services requests to the CIP middleware. The middleware accessed the back-end data repositories if necessary and returned results for these requests. The client application could make multiple service requests for a single user action and then present a composition of the results. This happened transparently, and many users did not even realize that they were connecting to a server. CIP performed well and was extremely reliable; it attained better than 99% uptime during the course of the mission. In this paper, we present overviews of the MER mission and of CIP. We show how CIP helped to fulfill some of the mission needs and how people used it. We discuss the criteria for choosing its architecture, and we describe how the developers made the software so reliable. CIP's reliability did not come about by chance, but was the result of several key design decisions. We conclude with some of the important

  3. Evaluation of MerCAP for Power Plant Mercury Control

    SciTech Connect

    Carl Richardson

    2008-09-30

    CAP{trademark} performance. At Site 2, a pilot-scale array was installed in a horizontal reactor chamber designed to treat approximately 2800 acfm of flue gas obtained from downstream of the plant's flue gas desulfurization (FGD) system. The initial MerCAP{trademark} array was installed at Plant Yates in January 2004, operating continuously for several weeks before a catastrophic system failure resulting from a failed flue gas fan. A second MerCAP{trademark} array was installed in July 2006 and operated for one month before being shut down for a reasons pertaining to system performance and host site scheduling. A longer-term continuous-operation test was then conducted during the summer and fall of 2007. Tests were conducted to evaluate the impacts of flue gas flow rate, sorbent space velocity, and sorbent rinsing frequency on mercury removal performance. Detailed characterization of treated sorbent plates was carried out in an attempt to understand the nature of reactions leading to excessive corrosion of the substrate surfaces.

  4. Prophylaxis With a Middle East Respiratory Syndrome Coronavirus (MERS-CoV)-Specific Human Monoclonal Antibody Protects Rabbits From MERS-CoV Infection.

    PubMed

    Houser, Katherine V; Gretebeck, Lisa; Ying, Tianlei; Wang, Yanping; Vogel, Leatrice; Lamirande, Elaine W; Bock, Kevin W; Moore, Ian N; Dimitrov, Dimiter S; Subbarao, Kanta

    2016-05-15

    With >1600 documented human infections with Middle East respiratory syndrome coronavirus (MERS-CoV) and a case fatality rate of approximately 36%, medical countermeasures are needed to prevent and limit the disease. We examined the in vivo efficacy of the human monoclonal antibody m336, which has high neutralizing activity against MERS-CoV in vitro. m336 was administered to rabbits intravenously or intranasally before infection with MERS-CoV. Prophylaxis with m336 resulted in a reduction of pulmonary viral RNA titers by 40-9000-fold, compared with an irrelevant control antibody with little to no inflammation or viral antigen detected. This protection in rabbits supports further clinical development of m336.

  5. Percolation and jamming of linear k -mers on a square lattice with defects: Effect of anisotropy

    NASA Astrophysics Data System (ADS)

    Tarasevich, Yuri Yu.; Burmistrov, Andrei S.; Shinyaeva, Taisiya S.; Laptev, Valeri V.; Vygornitskii, Nikolai V.; Lebovka, Nikolai I.

    2015-12-01

    Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear k -mers on a square lattice that contains defects. The point defects with a concentration d are placed randomly and uniformly on the substrate before deposition of the k -mers. The general case of unequal probabilities for orientation of depositing of k -mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA) model, the deposition of k -mers is distributed over different sites on the substrate. In the single-cluster relaxation (RSC) model, the single cluster grows by the random accumulation of k -mers on the boundary of the cluster (Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical concentration of defects dc is observed. In the zero-defect lattices, the jamming concentration pj (RRSA model) and the density of single clusters ps (RSC model) decrease with increasing length k -mers and with a decrease in the order parameter. For the RRSA model, the value of dc decreases for short k -mers (k <16 ) as the value of s increases. For k =16 and 32, the value of dc is almost independent of s . Moreover, for short k -mers, the percolation threshold is almost insensitive to the defect concentration for all values of s . For the RSC model, the growth of clusters with ellipselike shapes is observed for nonzero values of s . The density of the clusters ps at the critical concentration of defects dc depends in a complex manner on the values of s and k . An interesting finding for disordered systems (s =0 ) is that the value of ps tends towards zero in the limits of the very long k -mers, k →∞ , and very small critical concentrations dc→0 . In this case, the introduction of defects results in a suppression of k -mer stacking and in the formation of empty or loose

  6. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro)

    PubMed Central

    Tomar, Sakshi; Johnston, Melanie L.; St. John, Sarah E.; Osswald, Heather L.; Nyalapatla, Prasanth R.; Paul, Lake N.; Ghosh, Arun K.; Denison, Mark R.; Mesecar, Andrew D.

    2015-01-01

    All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the β-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CLpro) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CLpro from other β-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CLpro is less efficient at processing a peptide substrate due to MERS-CoV 3CLpro being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CLpro enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CLpro is a weakly associated dimer (Kd ∼52 μm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CLpro were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CLpro undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CLpro from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CLpro dimerization. Activation of MERS-CoV 3CLpro through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CLpro inhibitors as antiviral agents. PMID:26055715

  7. Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Carey, Lawerence D.; Gatlin, Patrick N.; Wingo, Matthew; Tokay, Ali; Wolff, David B.; Bringi, V. N.

    2011-01-01

    Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different

  8. Preliminary results of the water-mist fire auppression experiment from the STS-107 mission

    NASA Astrophysics Data System (ADS)

    Abbud-Madrid, A.; McKinnon, J.; Gokoglu, S.

    A discussion of the preliminary results of the Water-Mist Fire Suppression experiment (Mist) from the STS-107 mission of the Space Shuttle is presented. The overall objective of the project is to study the feasibility of developing fine-water- mist systems as the next generation of fire suppressants that may replace the currently used halon-based systems. Halons (fluoro-bromo -carbons) are so effective at fire suppression that in the past it was not necessary to evaluate other options. However, as is well known now, halons are powerful ozone-depleting agents in the stratosphere. The realization of this attribute led to the ban of the manufacture of halons in the industrialized world by the Montreal Protocols starting in 1995. The Mist experiment studies the influence of water mists on premixed flames propagating in a cylindrical tube under low-gravity conditions and evaluates the role of thermal, physical, and chemical mechanisms in the water-mist/flame interaction. Prior to the orbital flight, a numerical simulation of this interaction was developed and reduced- gravity ground experiments were conducted to obtain the preliminary data necessary to define the scientific objectives and technical issues of the spacecraft experiments. The effects of droplet size and water concentration on the laminar flame speed and flame shape are used as the measure of fire suppression efficacy. A simplified numerical simulation of the flame/mist interaction shows the effect of water mist on flame speed and evaluates the relative importance of the latent and sensible heats of water droplets on fire suppression. The microgravity tests of the Mist experiment are performed in the Combustion Module (CM-2) facility in the Space Shuttle. These tests explore the efficacy of three droplet sizes and three water concentrations on the propagation of lean, stoichiometric, and rich premixed propane-air flames. The long duration and quality of microgravity in the spaceflight provide the required

  9. Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.

    2015-01-01

    The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.

  10. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  11. Barrier properties of k-mer packings

    NASA Astrophysics Data System (ADS)

    Lebovka, N.; Khrapatiy, S.; Vygornitskyi; Pivovarova, N.

    2014-08-01

    This work discusses numerical studies of the barrier properties of k-mer packings by the Monte Carlo method. The studied variants of regular and non-regular arrangements on a square lattice included models of random sequential adsorption (RSA) and random deposition (RD). The discrete problem of diffusion through the bonds of a square lattice was considered. The k-mers were perfectly oriented perpendicular to the diffusion direction and blocked certain fraction of bonds fb against diffusion. The barrier efficiency was estimated by calculation of the ratio D/Do where D is diffusion coefficient in direction perpendicular to the orientation of k-mers and Do is the same value for diffusion on the square lattice without blocked bonds, i.e., at fb=0. The value of k varied from 1 to 512 and different lattice sizes up to L=8192 lattice units were used. For dense packings (p=1), the obtained D/Do versus fb dependences deviated from the theoretical prediction of effective medium (EM) theory and deviation was the most obvious for the regular non-staggered arrangement. For loose RSA and RD packings, the percolation like-behavior of D/Do with threshold at fb=p∞ was observed and the data evidenced that their barrier properties at large values of k may be more effective than those of some dense packings. Such anomalous behavior can reflect the details of k-mer spatial organization (aggregation) and structure of pores in RD and RSA packings. The contradictions between simulation data and predictions of EM theory were also discussed.

  12. HST image restoration: A comparison of pre- and post-servicing mission results

    NASA Technical Reports Server (NTRS)

    Hanisch, R. J.; Mo, J.

    1992-01-01

    A variety of image restoration techniques (e.g., Wiener filter, Lucy-Richardson, MEM) have been applied quite successfully to the aberrated HST images. The HST servicing mission (scheduled for late 1993 or early 1994) will install a corrective optics system (COSTAR) for the Faint Object Camera and spectrographs and replace the Wide Field/Planetary Camera with a second generation instrument (WF/PC-II) having its own corrective elements. The image quality is expected to be improved substantially with these new instruments. What then is the role of image restoration for the HST in the long term? Through a series of numerical experiments using model point-spread functions for both aberrated and unaberrated optics, we find that substantial improvements in image resolution can be obtained for post-servicing mission data using the same or similar algorithms as being employed now to correct aberrated images. Included in our investigations are studies of the photometric integrity of the restoration algorithms and explicit models for HST pointing errors (spacecraft jitter).

  13. Towards the next HST: Fine Guiding Results from the BRRISON Mission

    NASA Astrophysics Data System (ADS)

    Young, E. F.; Osterman, S. N.; Cheng, A. F.; Hibbitts, C.; Bernasconi, P. N.

    2013-12-01

    The Balloon Rapid Response for ISON (BRRISON) mission is expected to make observations from altitudes near 125,000 ft (35 km, above 99.5% of the atmosphere) for several hours. Previous balloon missions have provided quantitative evidence that wavefront errors are negligible from this altitude. In order to take advantage of the space-like seeing conditions in the stratosphere, a balloon-borne telescope should be stabilized at a level that is comparable to the telescope's diffraction limit. The stabilization problem consists of two separate tasks: measuring the time-varying pointing error signal and correcting those pointing errors. BRRISON is equiped with coarse and fine pointing systems: a pair of star trackers and an IMU to control the elevation and azimuth pointing of the telescope and a high-speed sCMOS guide camera and a fine steering mirror to compensate for finer image motion. We will report on the precision and bandwidth of the pointing error signal and of the fine steering mirror's corrections. Expected targets include Jupiter and Comets Encke and ISON, in filters inherited from the Hale-Bopp campaign to isolate OH (310 nm) and CN (385 nm) features.

  14. Medical experiment M-171 - Results from the second manned Skylab mission

    NASA Technical Reports Server (NTRS)

    Rummel, J. A.; Nichel, E. L.; Sawin, C. F.; Buderer, M. C.

    1976-01-01

    Preflight, inflight, and postflight exercise response tests were conducted on the astronauts of the second Skylab mission as part of an evaluation of physiological adaptation to long-term weightlessness. The flight phase of this mission was 59 days in duration. An exercise protocol was designed around a bicycle ergometer which was used to apply work loads approximating 25, 50, and 75% of each crewman's measured maximum aerobic capacity. Respiratory gas exchange, heart rate, and blood pressure were measured during all tests; cardiac output was measured at selected times during preflight and postflight tests. Data obtained both at rest and during exercise in flight showed no consistent changes which would indicate a degraded physical work capacity. In fact, heart rate during exercise actually decreased for all crewmen in flight. This response indicated improved physical fitness in flight relative to preflight. The postflight period of readaptation to 1 G was characterized by a marked tachycardia, during which time stroke volume was decreased. This response returned to normal within 5-day postflight.

  15. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    NASA Astrophysics Data System (ADS)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  16. Afm Measrurements of Martian Soil Particles Using Mems Technology - Results from the PHOENIX Mission

    NASA Astrophysics Data System (ADS)

    Gautsch, S.; Parrat, D.; de Rooij, N. F.; Staufer, U.; Morookian, J. M.; Hecht, M. H.; Vijendran, S.; Sykulska, H.; Pike, W. T.

    2011-12-01

    Light scattering experiments conducted on Mars indicated that soil particles have dimensions around 1 μm. Particles in that range play an important role in the gas exchange between sub-surface water ice and the atmosphere. Their shape can help tracing the geological history and may indicate past presence of liquid water. NASA's Phoenix mission therefore decided to analyze soil and dust particles in the sub-micrometer to a few micrometer range using an atomic force microscope (AFM) for the first time on another planet. The co-axially mounted AFM was capable of resolving particles with 10nm lateral resolution. A MEMS approach combined with mechatronic concepts for the scanner was selected for implementing the AFM. For redundancy, the sensor chip featured eight silicon cantilevers each with a 7 to 8 μm high tip. The cantilevers could be cleaved off if contaminated. During NASA's Phoenix Mission, which operated on the red planet from May to October 2008, we could demonstrate successful AFM operations. The instrument has executed 85 experiments of which 26 were needed for calibration. Of the remaining experiments about half (28) returned images where signatures of particles could be discerned.

  17. Extrapolating the Results of DICE to Constellation CubeSat Missions for Space Science

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Fish, C. S.; Crowley, G.; Gunther, J.

    2012-12-01

    One of the most promising observation strategies still to be developed to advance space science is the capability to conduct simultaneous multipoint observations of the Earth system from space. These types of observations are required to understand the "big picture" of coupling between disparate regions: solar-wind, magnetosphere, ionosphere, thermosphere, mesosphere, atmosphere, land, ocean on a planetary scale. Affordable large constellations of scientific "space-buoys" can only be achieved through miniature spacecraft such as CubeSats due to the high cost of launching larger spacecraft. What has not yet been explored is how constellations of such satellites can be made effective for multipoint scientific studies. To be effective the architecture must: 1) Allow large amounts, Gigabits of data per day, of scientific data to be retrieved from the constellation and, 2) Address the orbital configuration and control of the constellation. The communications architecture, in which a constellation of "space-buoys" that are size, weight and power constrained addresses these needs, is lacking. The "Dynamic Ionosphere CubeSat Experiment" or "DICE" mission was selected and funded by the National Science Foundation in October 2009 in response to a cooperative proposal from ASTRA LLC, Utah State University's Space Dynamics Laboratory (USU/SDL), and Embry Riddle University. DICE consists of two identical "CubeSats" launched on October 27, 2011 as secondary payloads from a Delta II rocket and released into an 809 to 457 km at 102° inclination with one satellite chasing the other. The DICE mission is not using traditional CubeSat communications systems, but is instead using government radio bands and high speed downlink rates that are consistent with a NSF funded mission. A half-duplex UHF modem developed for DICE provides a 3 Mbit/s downlink and a 19.2 kbit/s uplink. The ground stations are located at Wallops Island on the east coast and/or at SRI on the west coast. In this

  18. Seismology on a small body: expected results for the BASiX Discovery Mission proposal

    NASA Astrophysics Data System (ADS)

    Robert, O.; Lognonne, P.; Scheeres, D. J.; Goujon, N.; Le Feuvre, M.; Izzet, A.; Blitz, C.; Bowman, L.

    2010-12-01

    Small bodies like asteroids and comets are affected by the seismic waves generated by impacts, as the maximum acceleration of these waves exceed their local gravity. This seismic shaking is not understood however, as no space mission to date has deployed seismometers on a small body and as their detailed internal structure and seismic properties is not well know. The BASiX Discovery Mission proposal, if selected by NASA, will be the first to seismically explore a small body. It is targeted to binary asteroid 65803 Didymos whose primary is slightly less than 800 m in diameter. It will deploy several surface modules: the first will be Explosive BPods, each with about 5 kg of explosive and the second will be seismic GPods, equipped with 3 axis geophones and a UHF system for data transmission. We present the expected amplitudes of seismic waves generated by the BPod explosion. The simulations use 20 Hz Spectral Element, taking into account the 3D shape of the asteroid and very low regolith layers in its subsurface. Normal mode summation at higher frequencies are used too. These simulations show that the internal structure can be retrieved by using cross-correlation from seismograms of 2 GPods recording both the signal generated by the explosion of one BPod. We then estimate the amplitude of seismic waves generated by natural impacts, by performing simulation of these impacts over a full Sun orbit of Dydimos and show the variability of this source of seismic energy as a function of the distance to the Sun. We finally speculate on the amplitude of possible thermal quakes, comparable to those detected by the Apollo seismometer close to Sun set/rise on the Moon. The two technical challenges are to design sensitive and light sensors and to deploy the latter in a way allowing pertinent seismic measurements of the surface vibrations. Instead of a design based on seismic coupling by harpoon or spike (which are difficult given the unknown strength properties of asteroid

  19. Low Cost Micro-Mini-Satellite Remote Sensing Capabilities: in-Orbit Results &Imminent Missions

    NASA Astrophysics Data System (ADS)

    Stephens, Paul; Sun, Wei; Sweeting, Martin, , Sir

    Micro- and mini-satellites are in the process or revolutionising the economics of Earth observation. This will jointly affect the space super-powers who have, since the dawn of the space age, enjoyed an effective monopoly of Earth observation from the high vantage-point of space and also the commercial provision of EO data to value added information producers. The monopoly has been due to the enormous cost hitherto required to build, launch and operate EO satellites. SSTL (UK) has pioneered the development of successful micro and mini-satellites which have demonstrated highly capable Earth Observation functions at a mission cost at least an order of magnitude less than conventional such missions. This dramatic development has brought independent ownership of Earth observation satellites within the affordable reach of every developing nation and even medium-sized commercial concerns. Indeed, the performance of these tiny satellites now exceeds the capability of many of the civil EO satellites in operation only 5 years ago. In 2002, SSTL will launch the first satellite in a constellation that will deliver the first routine 24-hour revisit EO data released into the commercial marketplace. This paper describes the in-orbit EO image data produced by typical micro and minisatellites including the latest imagery from the UoSAT-12 mini satellite launched in April 1999 which carries a 32-metre ground sampling distance multispectral imager and a 10-metre GSD panchromatic camera. In addition, data is presented from the TiungSat-1 and Tsinghua-1 microsatellites launched in 2000, and AlSat-1 (launch scheduled in September 2002). AlSat-1 carries a unique imaging system designed as part of the innovative Disaster Monitoring Constellation providing 32-metre GSD multispectral images with a 600km swath width - together with its five companion microsatellites, the Disaster Monitoring Constellation can provide daily revisit imaging world-wide from orbit. The paper also describes the

  20. Results of the Huygens VLBI experiment and outlook for VLBI support for future missions to outer planets

    NASA Astrophysics Data System (ADS)

    Gurvits, Leonid; Pogrebenko, S. V.; Avruch, I. M.; Huygens VLBI Team

    Very Long Baseline Interferomtery (VLBI), a radio astronomy technique that offers the highest angular resolution and sensitivity, has progressed rapidly over the last years. It offers now a sub-kilometre-scale accuracy of position determination for weak transmitters at the distance of up to ten AU with minimal requirements for the composition of on-board instrumentation. Being combined with other advanced tracking techniques (such as DeltaDOR and two-way Doppler measurements), it brings about a possibility to conduct a variety of planetary science experiments with unprecedented accuracy. The VLBI technique was demonstrated for the Huygens Probe during its descent in the atmosphere and on the surface of Titan. Results of this experiment - the Probe descent trajectory reconstruction and diagnostics of the parachute motion - will be presented. Similar experiments are being considered for a number of prospective planetary missions under the ESA Cosmic Vision 2015-2025 Programme. In this review presentation we will discuss the basic principles of VLBI tracking of planetary missions and major specifications for the on-board and Earth-based segments of VLBI tracking experiments. We will also describe several potential applications of this technique for various experiments in the interest of atmosphere physics, geodynamics and other planetary science disciplines. Another attractive potential of the technique links it with the general mission support as an efficient diagnostic and navigation tool. In addition, Earth-based radio astronomy arrays might be considered as a receiving element for Direct-to-Earth transmission of mission-critical information from low-power planetary mission transmitters.

  1. Photolysis frequency measurements using actinic flux spectroradiometry during the PEM-Tropics mission: Instrumentation description and some results

    NASA Astrophysics Data System (ADS)

    Shetter, Richard E.; Müller, Martin

    1999-03-01

    The in situ photolysis frequencies for 11 molecules were determined using new actinic flux spectroradiometer systems mounted on the NASA DC-8 research aircraft during the Pacific Exploratory Mission (PEM)-Tropics mission. Photolysis frequencies for O3, NO2, HONO, CH2O, H2O2, CH3OOH, HNO3, PAN, CH3NO3, CH3CH2NO3, and acetone were calculated from the 30 s averaged actinic flux measurements. The accuracy of the actinic flux measurements was approximately ±11.5% in the UV-B range and 8% in the UV-A range. Uncertainties of the reported photolysis frequencies vary between ±15% and ±20% dependent on the quality of the molecular absorption cross section and quantum yield data. Approximately 139 hours of data were taken during 17 flights over the Pacific Ocean, and photolysis frequencies have been reported to the mission archive. During the mission, latitudes range from 45°N to 72.5°S, the longitude ranges from 10°W to 173°E, and the altitude ranges from sea level to 11.9 km. The geographical extents covered, combined with local times from sunrise to sunset, encompass solar zenith angles between 1° and >90° resulting in a broad range of photolysis frequencies. Persistent scattered clouds created photolysis frequency enhancements of approximately a factor of 2 over clear-sky values and reductions of greater than 90% of clear-sky values for portions of the mission.

  2. Properties of the Lunar Interior: Preliminary Results from the GRAIL Mission

    NASA Technical Reports Server (NTRS)

    Williams, James G.; Konopliv, Alexander S.; Asmar, Sami W.; Lemoine, Frank G.; Melosh, H. Jay; Neumann, Gregory A.; Phillips, Roger J.; Smith, David E.; Solomon, Sean C.; Watkins, Michael M.; Wieczorek, Mark A.; Zuber, Maria T.; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; McGovern, Patrick J.; Nimmo, Francis; Taylor, G. Jeffrey; Weber, Renee C.; Boggs, D. H.; Goossens, Sander J.; Kruizinga, Gerhard L.; Mazarico, Erwan; Park, Ryan S.; Yuan, Dah-Ning

    2013-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission [1] has provided lunar gravity with unprecedented accuracy and resolution. GRAIL has produced a high-resolution map of the lunar gravity field [2,3] while also determining tidal response. We present the latest gravity field solution and its preliminary implications for the Moon's interior structure, exploring properties such as the mean density, moment of inertia of the solid Moon, and tidal potential Love number k(sub 2). Lunar structure includes a thin crust, a thick mantle layer, a fluid outer core, and a suspected solid inner core. An accurate Love number mainly improves knowledge of the fluid core and deep mantle. In the future, we will search for evidence of tidal dissipation and a solid inner core using GRAIL data.

  3. Overview and early results of the Global Lightning and Sprite Measurements mission

    NASA Astrophysics Data System (ADS)

    Sato, M.; Ushio, T.; Morimoto, T.; Kikuchi, M.; Kikuchi, H.; Adachi, T.; Suzuki, M.; Yamazaki, A.; Takahashi, Y.; Inan, U.; Linscott, I.; Ishida, R.; Sakamoto, Y.; Yoshida, K.; Hobara, Y.; Sano, T.; Abe, T.; Nakamura, M.; Oda, H.; Kawasaki, Z.-I.

    2015-05-01

    Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) is a space mission to conduct the nadir observations of lightning discharges and transient luminous events (TLEs). The main objectives of this mission are to identify the horizontal distribution of TLEs and to solve the occurrence conditions determining the spatial distribution. JEM-GLIMS was successfully launched and started continuous nadir observations in 2012. The global distribution of the detected lightning events shows that most of the events occurred over continental regions in the local summer hemisphere. In some events, strong far-ultraviolet emissions have been simultaneously detected with N2 1P and 2P emissions by the spectrophotometers, which strongly suggest the occurrence of TLEs. Especially, in some of these events, no significant optical emission was measured by the narrowband filter camera, which suggests the occurrence of elves, not sprites. The VLF receiver also succeeded in detecting lightning whistlers, which show clear falling-tone frequency dispersion. Based on the optical data, the time delay from the detected lightning emission to the whistlers was identified as ˜10 ms, which can be reasonably explained by the wave propagation with the group velocity of whistlers. The VHF interferometer conducted the spaceborne interferometric observations and succeeded in detecting VHF pulses. We observed that the VHF pulses are likely to be excited by the lightning discharge possibly related with in-cloud discharges and measured with the JEM-GLIMS optical instruments. Thus, JEM-GLIMS provides the first full set of optical and electromagnetic data of lightning and TLEs obtained by nadir observations from space.

  4. Mass Movement and Landform Degradation on the Icy Galilean Satellites: Results of the Galileo Nominal Mission

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Asphaug, Erik; Morrison, David; Spencer, John R.; Chapman, Clark R.; Bierhaus, Beau; Sullivan, Robert J.; Chuang, Frank C.; Klemaszewski, James E.; Greeley, Ronald

    1999-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on the icy Galilean satellites of Jupiter. Weakening of surface materials coupled with mass movement reduces the topographic relief of landforms by moving surface materials down-slope. Throughout the Galileo orbiter nominal mission we have studied all known forms of mass movement and landform degradation of the icy galilean satellites, of which Callisto, by far, displays the most degraded surface. Callisto exhibits discrete mass movements that are larger and apparently more common than seen elsewhere. Most degradation on Ganymede appears consistent with sliding or slumping, impact erosion, and regolith evolution. Sliding or slumping is also observed at very small (100 m) scale on Europa. Sputter ablation, while probably playing some role in the evolution of Ganymede's and Callisto's debris layers, appears to be less important than other processes. Sputter ablation might play a significant role on Europa only if that satellite's surface is significantly older than 10(exp 8) years, far older than crater statistics indicate. Impact erosion and regolith formation on Europa are probably minimal, as implied by the low density of small craters there. Impact erosion and regolith formation may be important on the dark terrains of Ganymede, though some surfaces on this satellite may be modified by sublimation-degradation. While impact erosion and regolith formation are expected to operate with the same vigor on Callisto as on Ganymede, most of the areas examined at high resolution on Callisto have an appearance that implies that some additional process is at work, most likely sublimation-driven landform modification and mass wasting. The extent of surface degradation ascribed to sublimation on the outer two Galilean satellites implies that an ice more volatile than H2O is probably involved.

  5. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  6. Latest Results from and Plans for the New Horizons Pluto-Kuiper Belt Mission

    NASA Astrophysics Data System (ADS)

    Weaver, Harold; Stern, Alan

    2016-07-01

    spacecraft remains healthy and was targeted toward the flyby of a small (~30-40 km) KBO in late-2015, enabling the study of an object (2014 MU69) in a completely different dynamical class (cold classical) than Pluto, if NASA approves an Extended Mission phase. In addition to the flyby of 2014 MU69 on 2019-Jan-01, the proposed Extended Mission would also include observations of more than 20 other KBOs at resolutions and geometries not feasible from Earth, and studies of the heliospheric plasma, neutral H and He, and the dust environment out to 50 AU from the Sun.

  7. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  8. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  9. Comparison of De Novo Transcriptome Assemblers and k-mer Strategies Using the Killifish, Fundulus heteroclitus

    PubMed Central

    Rana, Satshil B.; Zadlock, Frank J.; Zhang, Ziping; Murphy, Wyatt R.; Bentivegna, Carolyn S.

    2016-01-01

    Background De novo assembly of non-model organism’s transcriptomes has recently been on the rise in concert with the number of de novo transcriptome assembly software programs. There is a knowledge gap as to what assembler software or k-mer strategy is best for construction of an optimal de novo assembly. Additionally, there is a lack of consensus on which evaluation metrics should be used to assess the quality of de novo transcriptome assemblies. Result Six different assembly strategies were evaluated from four different assemblers. The Trinity assembly was used in its default 25 single k-mer value while Bridger, Oases, and SOAPdenovo-Trans were performed with multiple k-mer strategies. Bridger, Oases, and SOAPdenovo-Trans used a small multiple k-mer (SMK) strategy consisting of the k-mer lengths of 21, 25, 27, 29, 31, and 33. Additionally, Oases and SOAPdenovo-Trans were performed using a large multiple k-mer (LMK) strategy consisting of k-mer lengths of 25, 35, 45, 55, 65, 75, and 85. Eleven metrics were used to evaluate each assembly strategy including three genome related evaluation metrics (contig number, N50 length, Contigs >1 kb, reads) and eight transcriptome evaluation metrics (mapped back to transcripts (RMBT), number of full length transcripts, number of open reading frames, Detonate RSEM-EVAL score, and percent alignment to the southern platyfish, Amazon molly, BUSCO and CEGMA databases). The assembly strategy that performed the best, that is it was within the top three of each evaluation metric, was the Bridger assembly (10 of 11) followed by the Oases SMK assembly (8 of 11), the Oases LMK assembly (6 of 11), the Trinity assembly (4 of 11), the SOAP LMK assembly (4 of 11), and the SOAP SMK assembly (3 of 11). Conclusion This study provides an in-depth multi k-mer strategy investigation concluding that the assembler itself had a greater impact than k-mer size regardless of the strategy employed. Additionally, the comprehensive performance

  10. Pumping test results for wells within Potrero Canyon, Morongo Band of Mission Indians Reservation, California

    USGS Publications Warehouse

    Pimentel, M. Isabel; Christensen, Allen H.

    2003-01-01

    Wells in Potrero Canyon are the main source of water for the Morongo Band of Mission Indians, located near Banning, California. A series of pumping tests were completed on four water-supply wells in the Canyon during February 27 to March 2, 2001. The purpose of the tests was to determine the productivity of each well and the interference (drawdown or water-level decline) each pumped well produced in surrounding wells. During each pumping test, a well was pumped at a fairly constant rate for several hours and drawdown was measured in the pumping well; nearby production wells (mostly idle) were used as observation wells. Productivity of the pumping well, specific capacity in gallons per minute per foot of drawdown (gal/min/ft), was determined from time-drawdown data in the pumping well. The range of specific capacities from these tests were 29.9 gal/min/ft, measured in well 24P3 (2S/1E-24P3) to 12.8 gal/min/ft in well 25H1. A specific capacity of 34.4 gal/min/ft was reported (Constant Flow Test notes by McCalla Bros.) for well 24N1. The amount of the drawdown in the observation wells during each pumping test was used to determine the interference between wells.

  11. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  12. ICESat Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis: A Summary of Early Mission Results

    NASA Technical Reports Server (NTRS)

    Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities

  13. The oxygen isotopic composition of captured solar wind: first results from the Genesis mission

    NASA Astrophysics Data System (ADS)

    McKeegan, K. D.; Coath, C. D.; Heber, V.; Jarzebinski, G.; Kallio, A.; Kunihiro, T.; Mao, P. H.; Burnett, D.

    2008-12-01

    Oxygen is the major constituent of rocky planets and the third most abundant element comprising the Sun, yet the solar oxygen isotopic composition has remained essentially unknown. One reason is that the usual appeal to primitive meteorites does not work because oxygen is isotopically distinct in all different classes of meteorites. The cause of this premier "isotopic anomaly" (first discovered in 1973) has been variously ascribed to nucleosynthetic input, e.g. from a nearby supernova, or to exotic isotope-selective chemistry in the solar nebula, e.g. based on molecular symmetry or UV photolysis. Knowledge of the average starting composition of the solar system, which is preserved in the Sun, would provide a baseline from which one could interpret the oxygen isotopic compositions of planetary materials. To this end, NASA flew the Genesis Mission to capture samples of the solar wind (SW) in ultra-pure target materials and return them to Earth for laboratory analysis. At UCLA, we have designed and constructed a hybrid secondary ion and accelerator mass spectrometer (SIMS/AMS), called the "MegaSIMS", specifically to tackle the unique analytical challenges posed by the Genesis samples: dilute elemental concentrations, limited sample material, and close proximity of likely surface contamination to the implanted solar wind ions. Three years after the crash- landing of the sample return capsule in the Utah desert, we have succeeded in making oxygen isotopic measurements on SW captured in a SiC target from the Genesis SW concentrator. Our preliminary data indicate that the Sun is enriched in 16O by at least 5% relative to Earth and meteorites. Implications for planetary science will be discussed.

  14. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor

    NASA Astrophysics Data System (ADS)

    Zent, A. P.; Hecht, M. H.; Hudson, T. L.; Wood, S. E.; Chevrier, V. F.

    2016-04-01

    A new calibration function for the humidity sensor in the Thermal and Electrical Conductivity Probe (TECP) on the Phoenix (PHX) Mars mission has been developed. Two changes are incorporated: (1) it is now cast in terms of frost point (Tf) rather than relative humidity (RH), and (2) flight data, taken when the atmosphere is independently known to be saturated, are included in the calibration data set. Daytime (6:00 h-19:00 h) frost points ranged from 194 K to 209 K; the nighttime frost point ranged from 179 K to 206 K. The response of the sensor was smooth and continuous throughout. Daytime humidity exhibited large, high-frequency variance driven by turbulence, whereas nighttime humidity varied smoothly with the temperature of the atmosphere. Nighttime saturation of the atmosphere begins at Ls 101°, (Martian solar day (sol) 55), which is earlier than reported by either Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) or solid-state imager (SSI). Early mornings are the most humid part of the sol after Ls 113° (sol 80), due to sublimation of surface ice that precipitates overnight. H2O is removed from the atmosphere into the regolith, mostly during the late afternoon, although this continues into the evening. The ground ice exposed by Phoenix operations masks the naturally occurring process in the early evening and may cause the atmosphere immediately around the lander to saturate somewhat earlier in the evening than it otherwise would have. The average H2O vapor density is close to the summertime value expected for equilibrium with ground ice. A discrepancy between the H2O column calculated from TECP data and the column measured by CRISM and SSI is likely due to comparable timescales between turbulent mixing through the planetary boundary layer and adsorptive drawdown of H2O. We find that RH is mostly < 5% (daytime) or > 95% (nighttime), and the transition between the two extremes is extremely rapid.

  15. Phobos-Grunt Mission: Planetary Protection Issues and how to Solve Them (the Approaches Based on the Exobiological Experiments Results)

    NASA Astrophysics Data System (ADS)

    Novikova, Nataliya; Orlov, Oleg; Deshevaya, Elena; Sychev, Vladimir; Khamidullina, N.; Aleksashkin, Sergey; Martynov, Maxim

    The launch of a Russian spaceship to Phobos is being planned in 2011 as a part of the project "Phobos-Soil". Major goals of the mission are: -Landing of the orbital vehicle (transport module) on the Phobos surface, collecting soil samples for delivery to Earth in a sealed inde-structible container; -Some experiments, including exobiological experiment aimed to evaluate viability of dormant organisms-representatives of a variety of taxonomic groups after extended interplanetary trip. According to COSPAR classification the orbital Mars spaceship flight is related to the category III and the mission of Phobos soil delivery to the Earth in a capsule on a descent vehicle is related to the category V to which any missions of return to the Earth are related. In order to supply Mars and Earth protection a number of actions is worked out: -The probability of space craft destruction and its falling down on the Mars surface is limited, and that is proved by the calculations; -The proposals to break the "chain of contact" with Earth of equipment used on the Phobos surface; -Preservation of tightness of the containers with Phobos soil and biological samples should be provided at all the stages of the mission up to the landing onto the Earth; -Phobos soil and biological samples delivery to specialized organiza-tion licensed to carry out works with highly dangerous microorganisms should be organized. So severe measures of the planet protection are based not only on the COSPAR demands, but also on the results of the Russian exobiological experiments, which proved that ability of survival in outer space was shown experimentally not only for spores of bacteria and microscopic fungi, but also for resting stages of higher organisms.

  16. Tests Results of the Electrostatic Accelerometer Flight Models for Gravity Recovery and Climate Experiment Follow-On Mission (GRACE FO)

    NASA Astrophysics Data System (ADS)

    Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.

    2015-12-01

    The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The

  17. Enhanced Regulatory Sequence Prediction Using Gapped k-mer Features

    PubMed Central

    Mohammad-Noori, Morteza; Beer, Michael A.

    2014-01-01

    Abstract Oligomers of length k, or k-mers, are convenient and widely used features for modeling the properties and functions of DNA and protein sequences. However, k-mers suffer from the inherent limitation that if the parameter k is increased to resolve longer features, the probability of observing any specific k-mer becomes very small, and k-mer counts approach a binary variable, with most k-mers absent and a few present once. Thus, any statistical learning approach using k-mers as features becomes susceptible to noisy training set k-mer frequencies once k becomes large. To address this problem, we introduce alternative feature sets using gapped k-mers, a new classifier, gkm-SVM, and a general method for robust estimation of k-mer frequencies. To make the method applicable to large-scale genome wide applications, we develop an efficient tree data structure for computing the kernel matrix. We show that compared to our original kmer-SVM and alternative approaches, our gkm-SVM predicts functional genomic regulatory elements and tissue specific enhancers with significantly improved accuracy, increasing the precision by up to a factor of two. We then show that gkm-SVM consistently outperforms kmer-SVM on human ENCODE ChIP-seq datasets, and further demonstrate the general utility of our method using a Naïve-Bayes classifier. Although developed for regulatory sequence analysis, these methods can be applied to any sequence classification problem. PMID:25033408

  18. Local Surface Reconstruction from MER images using Stereo Workstation

    NASA Astrophysics Data System (ADS)

    Shin, Dongjoe; Muller, Jan-Peter

    2010-05-01

    The authors present a semi-automatic workflow that reconstructs the 3D shape of the martian surface from local stereo images delivered by PnCam or NavCam on systems such as the NASA Mars Exploration Rover (MER) Mission and in the future the ESA-NASA ExoMars rover PanCam. The process is initiated with manually selected tiepoints on a stereo workstation which is then followed by a tiepoint refinement, stereo-matching using region growing and Levenberg-Marquardt Algorithm (LMA)-based bundle adjustment processing. The stereo workstation, which is being developed by UCL in collaboration with colleagues at the Jet Propulsion Laboratory (JPL) within the EU FP7 ProVisG project, includes a set of practical GUI-based tools that enable an operator to define a visually correct tiepoint via a stereo display. To achieve platform and graphic hardware independence, the stereo application has been implemented using JPL's JADIS graphic library which is written in JAVA and the remaining processing blocks used in the reconstruction workflow have also been developed as a JAVA package to increase the code re-usability, portability and compatibility. Although initial tiepoints from the stereo workstation are reasonably acceptable as true correspondences, it is often required to employ an optional validity check and/or quality enhancing process. To meet this requirement, the workflow has been designed to include a tiepoint refinement process based on the Adaptive Least Square Correlation (ALSC) matching algorithm so that the initial tiepoints can be further enhanced to sub-pixel precision or rejected if they fail to pass the ALSC matching threshold. Apart from the accuracy of reconstruction, it is obvious that the other criterion to assess the quality of reconstruction is the density (or completeness) of reconstruction, which is not attained in the refinement process. Thus, we re-implemented a stereo region growing process, which is a core matching algorithm within the UCL

  19. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  20. Space Shuttle Missions Summary

    NASA Technical Reports Server (NTRS)

    Bennett, Floyd V.; Legler, Robert D.

    2011-01-01

    This document has been produced and updated over a 21-year period. It is intended to be a handy reference document, basically one page per flight, and care has been exercised to make it as error-free as possible. This document is basically "as flown" data and has been compiled from many sources including flight logs, flight rules, flight anomaly logs, mod flight descent summary, post flight analysis of mps propellants, FDRD, FRD, SODB, and the MER shuttle flight data and inflight anomaly list. Orbit distance traveled is taken from the PAO mission statistics.

  1. Compact representation of k-mer de Bruijn graphs for genome read assembly

    PubMed Central

    2013-01-01

    Background Processing of reads from high throughput sequencing is often done in terms of edges in the de Bruijn graph representing all k-mers from the reads. The memory requirements for storing all k-mers in a lookup table can be demanding, even after removal of read errors, but can be alleviated by using a memory efficient data structure. Results The FM-index, which is based on the Burrows–Wheeler transform, provides an efficient data structure providing a searchable index of all substrings from a set of strings, and is used to compactly represent full genomes for use in mapping reads to a genome: the memory required to store this is in the same order of magnitude as the strings themselves. However, reads from high throughput sequences mostly have high coverage and so contain the same substrings multiple times from different reads. I here present a modification of the FM-index, which I call the kFM-index, for indexing the set of k-mers from the reads. For DNA sequences, this requires 5 bit of information for each vertex of the corresponding de Bruijn subgraph, i.e. for each different k−1-mer, plus some additional overhead, typically 0.5 to 1 bit per vertex, for storing the equivalent of the FM-index for walking the underlying de Bruijn graph and reproducing the actual k-mers efficiently. Conclusions The kFM-index could replace more memory demanding data structures for storing the de Bruijn k-mer graph representation of sequence reads. A Java implementation with additional technical documentation is provided which demonstrates the applicability of the data structure (http://folk.uio.no/einarro/Projects/KFM-index/). PMID:24152242

  2. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL. PMID:26820485

  3. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  4. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M.

    2003-01-01

    We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ???0.22 pixel matching errors (typically a few meters), and slope errors of 1-3??. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ???3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10-20% relative uncertainty in the amplitude of topography and slopes after "calibrating" photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of "hazard units" mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.

  5. Middle East respiratory syndrome (MERS): a new zoonotic viral pneumonia.

    PubMed

    Cunha, Cheston B; Opal, Steven M

    2014-08-15

    Coronaviruses have traditionally been associated with mild upper respiratory tract infections throughout the world. In the fall of 2002, a new coronavirus emerged in in Asia causing severe viral pneumonia, i.e., severe acute respiratory syndrome (SARS). Nearly a decade following the SARS epidemic, a new coronavirus causing severe viral pneumonia has emerged, i.e., middle east respiratory syndrome (MERS). Since the initial case of MERS-CoV occurred in June of 2012 in Saudi Arabia there have been 688 confirmed cases and 282 deaths in 20 countries. Although both SARS and MERS are caused by coronaviruses, SARS was characterized by efficient human transmission and relatively low mortality rate. In contrast, MERS is relatively inefficiently transmitted to humans but has a high mortality rate. Given the potential overlap in presentation and manifestation, it is important to understand the clinical and epidemiologic differences between MERS, SARS and influenza.

  6. [Small molecular agents against MERS-CoV infection].

    PubMed

    Zeng, Xiao-yun; Lu, Lu; Jiang, Shi-bo; Liu, Shu-wen

    2015-12-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has caused outbreaks of SARS-like disease with 35% case-fatality rate, mainly in the Middle East. A more severe outbreak of MERS occurred recently in the Republic of Korea, where 186 people contracted the infections, causing great concern worldwide. So far, there has been no clinically available drug for the treatment of MERS-CoV infection. The potential drugs against MERS-CoV mainly consist of monoclonal antibodies, peptides and small molecular agents. Small molecular agents have an advantage of easier synthesis, lower cost in production and relatively higher stability. There is better chance for those candidates to gain a quick development. This article reviews the progress of developing small molecular MERS-CoV agents. PMID:27169271

  7. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution

    PubMed Central

    Tang, Xian-Chun; Agnihothram, Sudhakar S.; Jiao, Yongjun; Stanhope, Jeremy; Graham, Rachel L.; Peterson, Eric C.; Avnir, Yuval; Tallarico, Aimee St. Clair; Sheehan, Jared; Zhu, Quan; Baric, Ralph S.; Marasco, Wayne A.

    2014-01-01

    The newly emerging Middle East Respiratory Syndrome coronavirus (MERS-CoV) causes a Severe Acute Respiratory Syndrome-like disease with ∼43% mortality. Given the recent detection of virus in dromedary camels, zoonotic transfer of MERS-CoV to humans is suspected. In addition, little is known about the role of human neutralizing Ab (nAb) pressure as a driving force in MERS-CoV adaptive evolution. Here, we used a well-characterized nonimmune human Ab-phage library and a panning strategy with proteoliposomes and cells to identify seven human nAbs against the receptor-binding domain (RBD) of the MERS-CoV Spike protein. These nAbs bind to three different epitopes in the RBD and human dipeptidyl peptidase 4 (hDPP4) interface with subnanomolar/nanomolar binding affinities and block the binding of MERS-CoV Spike protein with its hDPP4 receptor. Escape mutant assays identified five amino acid residues that are critical for neutralization escape. Despite the close proximity of the three epitopes on the RBD interface, escape from one epitope did not have a major impact on neutralization with Abs directed to a different epitope. Importantly, the majority of escape mutations had negative impacts on hDPP4 receptor binding and viral fitness. To our knowledge, these results provide the first report on human nAbs against MERS-CoV that may contribute to MERS-CoV clearance and evolution. Moreover, in the absence of a licensed vaccine or antiviral for MERS, this panel of nAbs offers the possibility of developing human mAb-based immunotherapy, especially for health-care workers. PMID:24778221

  8. The role of man in flight experiment payload missions. Volume 1: Results

    NASA Technical Reports Server (NTRS)

    Malone, T. B.

    1973-01-01

    It is pointed out that a controversy exists concerning the required role of man, and his attendant skills and levels of skills, for Sortie Lab operations. As a result, a study was conducted to generate a taxonomy of candidate crew roles which would: (1) be applicable across all experiments, and (2) be usable for Sortie scientists and engineers in determination of level of skill as well as type of skill. Nine basic roles were identified in the study, and the tasks associated with each were developed from a functional description of a generalized in-flight experiment. The functional analysis comprised the baseline for establishment of crew roles, with roles being defined as combinations of tasks, associated skills, and knowledges. A role classification scheme was developed in which the functions and tasks identified were allocated to each of the nine role types. This classification scheme is presented together with the significant results of the study.

  9. Survey of Experimental Results in High-Contrast Imaging for Future Exoplanet Missions

    NASA Technical Reports Server (NTRS)

    Lawson, P. R.; Belikov, R.; Cash, W.; Clampin, M.; Glassman, T.; Guyon, O.; Kasdin, N. J.; Kern, B. D.; Lyon, R.; Mawet, D.; Moody, D.; Samuele, R.; Serabyn, E.; Sirbu, D.; Trauger, J.

    2013-01-01

    We present and compare experimental results in high contrast imaging representing the state of the art in coronagraph and starshade technology. These experiments have been undertaken with the goal of demonstrating the capability of detecting Earth-like planets around nearby Sun-like stars. The contrast of an Earth seen in reflected light around a Sun-like star would be about 1.2 x 10(exp -10). Several of the current candidate technologies now yield raw contrasts of 1.0 x 10(exp -9) or better, and so should enable the detection of Earths, assuming a gain in sensitivity in post-processing of a factor of 10. We present results of coronagraph and starshade experiments conducted at visible and infrared wavelengths. Cross-sections of dark fields are directly compared as a function of field angle and bandwidth. The strength and differences of the techniques are compared.

  10. The Water-Mist Fire Suppression Experiment (Mist): Preliminary Results From The STS-107 Mission

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; McKinnon, J. Thomas; Amon, Francine; Gokoglu, Suleyman

    2003-01-01

    An investigation of the effect of water mists on premixed flame propagation has been conducted onboard the Space Shuttle to take advantage of the prolonged microgravity environment to study the effect of uniformly distributed clouds of polydisperse water mists on the speed and shape of propagating propane-air premixed flames. The suspension of a quiescent and uniform water mist cloud was confirmed during the microgravity tests. Preliminary results show good agreement with trends obtained by the numerical predictions of a computational model that uses a hybrid Eulerian-Lagrangian formulation to simulate the two-phase, flame/mist interaction. Effective flame suppression is observed at progressively higher water loadings and smaller water droplet sizes. Other unusual flame behavior, such as flame front breakup and pulsating flames, is still under investigation. The promising results from the microgravity tests will be used to assess the feasibility of using water mists as fire suppressants on Earth and on spacecraft.

  11. mer [Römer, Roemer], Ole [Olaf] Christensen (1644-1710)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Aarhus, Denmark, studied at the University of Copenhagen under Thomas and Erasmus Bartholin, who gave him TYCHO BRAHE's manuscripts to edit and his own daughter to wed. Rømer accompanied Bartholin and JEAN PICARD to Hven to measure the position of Tycho's observatory, the better to reduce Tycho's observations. He went on to the Paris Observatory where he made and used instruments for the ...

  12. Suppression of Transient Events by Levitation (STABLE): Results From the USML-2 Mission. Experiment 38

    NASA Technical Reports Server (NTRS)

    Nurre, Gerald S.; Edberg, Donald L.

    1998-01-01

    Microgravity science payloads can be extremely sensitive to vibrations from machinery, acoustics, ventilation, and crew activity. Suppression of Transient Acceleration by Levitation (STABLE) is an active vibration isolation system designed to protect payloads from these disturbances. This paper gives an account of results from the flight demonstration of the STABLE microgravity isolation system, which was developed and successfully flight tested in orbit during USML-2, with the participation of Astronaut Fred Leslie. Following a very brief description of the operational principles, the hardware and software design, and performance criteria, results of the analysis of measured flight data are presented to provide an evaluation of system performance parameters, including acceleration attenuation, assessment of sway space, system power consumption, and other factors critical to the performance of an isolation system. Lessons learned and potential design improvements and evolutions are discussed. Data reduction by Robert Boucher of McDonnell Douglas Aerospace (MDA) was substantially assisted by Kenneth Hrovat of Tal-Cut, Inc., under support from National Aeronautics and Space Administration/Lewis Research Center (LeRC), Cleveland, OH.

  13. Understanding cross sample talk as a result of triboelectric charging on future mars missions

    NASA Astrophysics Data System (ADS)

    Beegle, L. W.; Anderson, R. C.; Fleming, G.

    2009-12-01

    Proper scientific analysis requires the material that is collected and analyzed by in-situ instruments be as close as possible (chemically and mineralogically) to the initial, unaltered surface material prior to its collection and delivery. However this is not always possible for automated robotic in situ analysis. Therefore it is vital to understanding how the sample has been changed/altered prior to analysis so that analysis can be put in the proper context. We have examined the transport of fines when transferred under ambient martian conditions in hardware analogous to that being developed for the Mars Science Laboratory (MSL) sample acquisition flight hardware. We will discuss the amount of cross sample contamination when different mineralogy’s are transferred under Martian environmental conditions. Similar issues have been identified as problems within the terrestrial mining, textile, and pharmaceutical research communities that may alter/change the chemical and mineralogical compositions of samples before they are delivered to the MSL Chemistry and Mineralogy (CheMin) and the Sample Analysis at Mars (SAM) analytical instruments. These cross-sample contamination will affect the overall quality of the science results and each of these processes need to be examined and understood prior to MSL landing on the surface of Mars. There are two forms of triboelectric charging that have been observed to occur on Earth and they are 1) when dissimilar material comes in contact (one material charges positive and the other negative depending on their relative positions on the triboelectric series and the work function of the material) and 2) when two similar materials come in contact, the larger particles can transfer one of their high energy electrons to a smaller particle. During the collisions, the transferred electron tends to lose energy and the charge tends not to move from the smaller particle back to the larger particle in further collisions. This transfer effect

  14. Dual Electron Spectrometer for Magnetospheric Multiscale Mission: Results of the Comprehensive Tests of the Engineering Test Unit

    NASA Technical Reports Server (NTRS)

    Avanov, Levon A.; Gliese, Ulrik; Mariano, Albert; Tucker, Corey; Barrie, Alexander; Chornay, Dennis J.; Pollock, Craig James; Kujawski, Joseph T.; Collinson, Glyn A.; Nguyen, Quang T.; Auletti, Craig R.; Rosnack, Traci P.; Zeuch, Michael A.; Christian, Kent; Bigio, Victor L.; Tull, Kimathi N.; Rucker, Alan M.; Cao, Nga T.; Smith, Darrell L.; Lobbel, James V.; Jacques, Arthus D.

    2011-01-01

    The Magnetospheric Multiscale mission (MMS) is designed to study fundamental phenomena in space plasma physics such as a magnetic reconnection. The mission consists of four spacecraft, equipped with identical scientific payloads, allowing for the first measurements of fast dynamics in the critical electron diffusion region where magnetic reconnection occurs and charged particles are demagnetized. The MMS orbit is optimized to ensure the spacecraft spend extended periods of time in locations where reconnection is known to occur: at the dayside magnetopause and in the magnetotail. In order to resolve fine structures of the three dimensional electron distributions in the diffusion region (reconnection site), the Fast Plasma Investigation's (FPI) Dual Electron Spectrometer (DES) is designed to measure three dimensional electron velocity distributions with an extremely high time resolution of 30 ms. In order to achieve this unprecedented sampling rate, four dual spectrometers, each sampling 180 x 45 degree sections of the sky, are installed on each spacecraft. We present results of the comprehensive tests performed on the DES Engineering & Test Unit (ETU). This includes main parameters of the spectrometer such as energy resolution, angular acceptance, and geometric factor along with their variations over the 16 pixels spanning the 180-degree tophat Electro Static Analyzer (ESA) field of view and over the energy of the test beam. A newly developed method for precisely defining the operational space of the instrument is presented as well. This allows optimization of the trade-off between pixel to pixel crosstalk and uniformity of the main spectrometer parameters.

  15. Deuterium and Oxygen Toward Feige 110: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Friedman, S. D.; Howk, J. C.; Chayer, P.; Tripp, T. M.; Hebrard, G.; Andre, M.; Oliveira, C.; Jenkins, E. B.; Moos, H. W.; Oegerle, William R.

    2001-01-01

    We present measurements of the column densities of interstellar D I and O I made with the Far Ultraviolet Spectroscopic Explorer (FUSE), and of H I made with the International Ultraviolet Explorer (IUE) toward the sdOB star Feige 110 [(l,b) = (74.09 deg., - 59.07 deg.); d = 179(sup +265, sub -67) pc; Z = -154(sup +57, Sub -227 pc). Our determination of the D I column density made use of curve of growth fitting and profile fitting analyses, while our O I column density determination used only curve of growth techniques. The H I column density was estimated by fitting the damping wings of the interstellar Ly(lpha) profile. We find log N(D I) = 15.47 +/- 0.06, log N(O I) = 16.73 +/- 0.10, and log N(H I) = 20.14(sup +0.13, sub -0.20) (all errors 2(sigma)). This implies D/H = (2.14 +/- 0.82) x 10(esp -5), D/O = (5.50(sup + 1.64, sub -133)) x 10(exp -2), and O/H = (3.89 +/- 1.67) x 10(exp -4). Taken with the FUSE results reported in companion papers and previous measurements of the local interstellar medium, this suggests the possibility of spatial variability in D/H for sight lines exceeding approx. 100 pc. This result may constrain models which characterize the mixing time and length scales of material in the local interstellar medium.

  16. Prevalence of Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels in Abu Dhabi Emirate, United Arab Emirates.

    PubMed

    Yusof, Mohammed F; Eltahir, Yassir M; Serhan, Wissam S; Hashem, Farouk M; Elsayed, Elsaeid A; Marzoug, Bahaaeldin A; Abdelazim, Assem Si; Bensalah, Oum Keltoum A; Al Muhairi, Salama S

    2015-06-01

    High seroprevalence of Middle East respiratory syndrome corona virus (MERS-CoV) in dromedary camels has been previously reported in United Arab Emirates (UAE). However, the molecular detection of the virus has never been reported before in UAE. Of the 7,803 nasal swabs tested in the epidemiological survey, MERS-CoV nucleic acid was detected by real-time PCR in a total of 126 (1.6 %) camels. Positive camels were detected at the borders with Saudi Arabia and Oman and in camels' slaughter houses. MERS-CoV partial sequences obtained from UAE camels were clustering with human- and camel-derived MERS-CoV sequences in the same geographic area. Results provide further evidence of MERS-CoV zoonosis.

  17. Deuterium Abundance Toward WD2211-495: Results from the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission

    NASA Technical Reports Server (NTRS)

    Hebrard, G.; Lemoine, M.; Vidal-Madjar, A.; Desert, J. M.; LecavelierdesEtangs, A.; Ferlet, R.; Wood, B. E.; Linsky, J. L.; Kruk, J. W.; Chayer, P.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We present a deuterium abundance analysis of the line of sight toward the white dwarf WD 2211-495 observed with the Far Ultraviolet Spectroscopic Explorer (FUSE). Numerous interstellar lines are detected on the continuum of the stellar spectrum. A thorough analysis was performed through the simultaneous fit of interstellar absorption lines detected in the four FUSE channels of multiple observations with different slits. We excluded all saturated lines in order to reduce possible systematic errors on the column density measurements. We report the determination of the average interstellar D/O and D/N ratios along this line of sight at the 95% confidence level: D/O = 4.0 (+/-1.2) x 10(exp -2); D/N = 4.4 (+/-1.3) x 10(exp -1). In conjunction with FUSE observations of other nearby sight lines, the results of this study will allow a deeper understanding of the present-day abundance of deuterium in the local interstellar medium and its evolution with time.

  18. The MARIA Helicon Plasma Experiment at UW Madison: Upgrade, Initial Scientific Goals Mission and First Results

    NASA Astrophysics Data System (ADS)

    Winters, Victoria; Green, Jonathan; Hershkowitz, Noah; Schmitz, Oliver; Severn, Greg

    2015-11-01

    The versatile helicon plasma device, MARIA (Magnetized AnisotRopic Ion-distribution Apparatus), was upgraded with stronger magnetic field B <= 1200G. The main focus is to understand the neutral particle dynamics and ionization mechanism with helicon waves to establish a high-density plasma (10 ∧ 20/m ∧ 3) at substantial electron (Te ~5-15eV) and ion (Ti ~1-3eV) temperature. To achieve this, installation of higher RF Power <= 15kW is planned as well as design of an ion cyclotron-heating antenna. To quantify the plasma characteristics, diagnostics including a Triple Langmuir Probe, Emissive Probe, and Laser Induced Fluorescence were established. We show first results from characterization of the device. The coupling of the helicon mode in the electron temperature and density parameter space in Argon was mapped out with regard to neutral pressure, B-field and RF power. In addition, validity of the Bohm Criterion and of the Chodura model starting in the weakly collisional regime is tested. A key goal in all efforts is to develop methods of quantitative spectroscopy based on cutting-edge models and active laser spectroscopy. This work was funded by Startup funds of the Department of Engineering Physics at UW Madison, the NSF CAREER award PHY-1455210 and NSF grant PHY-1206421.

  19. NASADEM Overview and First Results: Shuttle Radar Topography Mission (SRTM) Reprocessing and Improvements

    NASA Astrophysics Data System (ADS)

    Buckley, S.; Agram, P. S.; Belz, J. E.; Crippen, R. E.; Gurrola, E. M.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J. M.; Neumann, M.; Nguyen, Q.; Rosen, P. A.; Shimada, J.; Simard, M.; Tung, W.

    2015-12-01

    NASADEM is a significant modernization of SRTM digital elevation model (DEM) data supported by the NASA MEaSUREs program. We are reprocessing the raw radar signal data using improved algorithms and incorporating ICESat and ASTER-derived DEM data unavailable during the original processing. The NASADEM products will be freely-available through the Land Processes Distributed Active Archive Center (LPDAAC) at 1-arcsecond spacing. The most significant processing improvements involve void reduction through improved phase unwrapping and using ICESat data for control. The updated unwrapping strategy now includes the use of SNAPHU for data processing patches where the unwrapped coverage from the original residue-based unwrapper falls below a coverage threshold. In North America continental processing, first experiments show the strip void area is reduced by more than 50% and the number of strip void patches is reduced by 40%. Patch boundary voids are mitigated by reprocessing with a different starting burst and merging the unwrapping results. We also updated a low-resolution elevation database to aid with unwrapping bootstrapping, retaining isolated component of unwrapped phase, and assessing the quality of the strip DEMs. We introduce a height ripple error correction to reduce artifacts in the strip elevation data. These ripples are a few meters in size with along-track spatial scales of tens of kilometers and are due to uncompensated mast motion most pronounced after Shuttle roll angle adjustment maneuvers. We developed an along-track filter utilizing differences between the SRTM heights and ICESat lidar elevation data. For a test using all data over North America, the algorithm reduced the ICESat-SRTM bias from 80 cm to 3 cm and the RMS from 5m to 4m. After merging and regridding the SRTM strip DEMs into 1x1-degree tiles, remaining voids are primarily filled with the ASTER-derived Global DEM. We use a Delta Surface Fill method to rubbersheet fill data across the void for

  20. Smooth pond-like deposits on asteroid 4 Vesta: First results from the Dawn mission.

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Ruesch, O.; Jaumann, R.; Nathues, A.; Raymond, C. A.; Russell, C. T.

    2012-04-01

    components (<100 µm). Sierks et al. [4] argued that along the terminator, particularly strong electric fields can develop between the sun-lit and shaded areas, e.g., within craters, resulting in particle motion from sun-lit to dark regions. Dust levitation and transport was also discussed for asteroid 25143 Itokawa [3]. [1] Russell et al., (2007), Earth Moon Planets, 101; [2] Robinson et al., (2002), Met. Planet. Sci., 37; [3] Yano et al., (2006), Science, 312; [4] Sierks et al., (2011), Space Sci. Rev., doi:10.1007/s11214-011-9745-4. This research has been supported by the German Space Agency (DLR) and NASA. We would like to thank the Dawn Operations Team for their success-ful planning and acquisition of high-quality Vesta data.

  1. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon

    PubMed Central

    Kane, Aunica L.; Al-Shayeb, Basem; Holec, Patrick V.; Rajan, Srijay; Le Mieux, Nicholas E.; Heinsch, Stephen C.; Psarska, Sona; Aukema, Kelly G.; Sarkar, Casim A.; Nater, Edward A.; Gralnick, Jeffrey A.

    2016-01-01

    Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation. PMID:26761437

  2. Toward Bioremediation of Methylmercury Using Silica Encapsulated Escherichia coli Harboring the mer Operon.

    PubMed

    Kane, Aunica L; Al-Shayeb, Basem; Holec, Patrick V; Rajan, Srijay; Le Mieux, Nicholas E; Heinsch, Stephen C; Psarska, Sona; Aukema, Kelly G; Sarkar, Casim A; Nater, Edward A; Gralnick, Jeffrey A

    2016-01-01

    Mercury is a highly toxic heavy metal and the ability of the neurotoxin methylmercury to biomagnify in the food chain is a serious concern for both public and environmental health globally. Because thousands of tons of mercury are released into the environment each year, remediation strategies are urgently needed and prompted this study. To facilitate remediation of both organic and inorganic forms of mercury, Escherichia coli was engineered to harbor a subset of genes (merRTPAB) from the mercury resistance operon. Protein products of the mer operon enable transport of mercury into the cell, cleavage of organic C-Hg bonds, and subsequent reduction of ionic mercury to the less toxic elemental form, Hg(0). E. coli containing merRTPAB was then encapsulated in silica beads resulting in a biological-based filtration material. Performing encapsulation in aerated mineral oil yielded silica beads that were smooth, spherical, and similar in diameter. Following encapsulation, E. coli containing merRTPAB retained the ability to degrade methylmercury and performed similarly to non-encapsulated cells. Due to the versatility of both the engineered mercury resistant strain and silica bead technology, this study provides a strong foundation for use of the resulting biological-based filtration material for methylmercury remediation. PMID:26761437

  3. MER-DIMES : a planetary landing application of computer vision

    NASA Technical Reports Server (NTRS)

    Cheng, Yang; Johnson, Andrew; Matthies, Larry

    2005-01-01

    During the Mars Exploration Rovers (MER) landings, the Descent Image Motion Estimation System (DIMES) was used for horizontal velocity estimation. The DIMES algorithm combines measurements from a descent camera, a radar altimeter and an inertial measurement unit. To deal with large changes in scale and orientation between descent images, the algorithm uses altitude and attitude measurements to rectify image data to level ground plane. Feature selection and tracking is employed in the rectified data to compute the horizontal motion between images. Differences of motion estimates are then compared to inertial measurements to verify correct feature tracking. DIMES combines sensor data from multiple sources in a novel way to create a low-cost, robust and computationally efficient velocity estimation solution, and DIMES is the first use of computer vision to control a spacecraft during planetary landing. In this paper, the detailed implementation of the DIMES algorithm and the results from the two landings on Mars are presented.

  4. Qualification of Engineering Camera for Long-Duration Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni; Maki, Justin N.; Pourangi, Ali M.; Lee, Steven W.

    2012-01-01

    Qualification and verification of advanced electronic packaging and interconnect technologies, and various other types of hardware elements for the Mars Exploration Rover s Spirit and Opportunity (MER)/Mars Science Laboratory (MSL) flight projects, has been performed to enhance the mission assurance. The qualification of hardware (engineering camera) under extreme cold temperatures has been performed with reference to various Mars-related project requirements. The flight-like packages, sensors, and subassemblies have been selected for the study to survive three times the total number of expected diurnal temperature cycles resulting from all environmental and operational exposures occurring over the life of the flight hardware, including all relevant manufacturing, ground operations, and mission phases. Qualification has been performed by subjecting above flight-like hardware to the environmental temperature extremes, and assessing any structural failures or degradation in electrical performance due to either overstress or thermal cycle fatigue. Engineering camera packaging designs, charge-coupled devices (CCDs), and temperature sensors were successfully qualified for MER and MSL per JPL design principles. Package failures were observed during qualification processes and the package redesigns were then made to enhance the reliability and subsequent mission assurance. These results show the technology certainly is promising for MSL, and especially for longterm extreme temperature missions to the extreme temperature conditions. The engineering camera has been completely qualified for the MSL project, with the proven ability to survive on Mars for 2010 sols, or 670 sols times three. Finally, the camera continued to be functional, even after 2010 thermal cycles.

  5. Inferences of Strength of Soil Deposits Along MER Rover Traverses

    NASA Astrophysics Data System (ADS)

    Richter, L. O.

    2005-12-01

    As the two Mars Exploration Rovers 'Spirit' and 'Opportunity' traverse terrains within Gusev crater and at Meridiani Planum, respectively, they leave behind wheel tracks that are routinely imaged by the different sets of cameras as part of the MER Athena instrument suite. Stereo observations of these tracks reveal wheel rut depths which are diagnostic of the strength of the soil-like deposits crossed by the vehicles. This contribution will discuss results of systematic analyses of MER-A and -B wheel sinkage measurements with regard to solutions for soil bearing strength, cohesion, and friction angle, occurring in the context of a suite of physical properties studies that are part of the Athena science investigation. Sinkage data are analyzed with wheel-soil theory calibrated to the shape of the MER wheel while accounting for wheel slip and by consulting comparisons with terrestrial soils. Results are applicable to the top ~20 to 30 cm of the soil deposits 'sampled' by normal stresses incurred from the wheels. The large number of wheel track observations per distance travelled enables investigations of variations of soil physical properties as a function of spatial scale, type of surface feature encountered, and local topography. Exploiting relationships between soil strength and degree of soil consolidation known from lunar regolith and dry terrestrial soils allows one to relate inferred soil strengths to bulk density which in turn is related to dielectric properties and to fine-component thermal inertia, both of which have been constrained for the two MER landing sites by remote sensing with comparatively coarse spatial resolution. In the context of the Athena science investigation, physical properties studies contribute to an overall understanding of the geology at the landing sites as they i) allow comparisons to be made between physical and compositional properties, ii) support attempts to correlate materials with geologic units, iii) help identify

  6. Preliminary results of the search for possible Martian landing sites to be considered for future European exploration missions

    NASA Astrophysics Data System (ADS)

    Martin, P.

    2007-08-01

    The recently adopted European Space Policy aims at expanding and coordinating the role and activities of Europe's space actors with the purpose of increasing both scientific knowledge in selected space domains and the European presence in the Solar System, as well as optimising the relevant societal benefits. With our Moon and in particular Mars as primary targets of exploration goals for the Solar System, and following a number of very successful orbital missions performing detailed remote sensing and mapping of these planetary bodies, probe landings on the surface of the Moon and Mars represent the next stepping stone of the exploration of our close planetary environment. Along with developing the hardware capabilities required for Europe to reach such ambitious goals, it therefore becomes increasingly important to pinpoint with precision a number of landing sites well suited for the safety and scientific success of future robotic missions. Focusing on Mars, and although a number of candidate landing sites and associated catalogs with available scientific justification already exist, the results being obtained by orbiters such as Mars Express and Mars Reconnaissance Orbiter are fundamentally transforming our knowledge of the planet's surface, which in turns highlights the need to review, update and revise the candidate sites for future landing missions on Mars. Detailed investigations of possible future Martian landing sites for European missions are ongoing, based on the wealth of scientific data and high-resolution mapping products available. In order to support the identification of suitable sites, various mapping products (geological, hyperspectral and compositional) can be consolidated, and various areas of Mars identified in the recent scientific literature as primary targets for landing can be taken into account for further, refined assessment of their suitability for landing. Seasonal and climatic effects potentially influencing landing shall also be

  7. An Overview of Early Results from the Magnetospheric Multiscale Mission: Acceleration and Heating at Electron Diffusion Regions

    NASA Astrophysics Data System (ADS)

    Torbert, Roy; Burch, James

    2016-07-01

    The NASA Magnetospheric Multiscale (MMS) mission was launched on March 13, 2015 UT to investigate magnetic reconnection in near-Earth space. During the first dayside phase ( 1A ), the four MMS spacecraft were deployed in a tetrahedral configuration with separations ranging from 400 km down to 10 km, a scale close to that of electron reconnection diffusion regions. Data is available from very high time resolution 3D plasma measurements (<30 keV, with a cadence of 30 ms and 150 ms for electrons and ions, respectively), 3D magnetic and electric fields (greater than with 1 ms time resolution) and waves (<6 kHz), 3D energetic particles with composition up to 500 keV, and plasma ion composition (< 30 keV/q). This talk with review the results of the first dayside encounters with electron diffusion regions and the acceleration observed during these encounters, where the dissipation during reconnection appears to be significant.

  8. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    NASA Technical Reports Server (NTRS)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  9. Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia

    PubMed Central

    Hajeer, Ali H.; Luke, Thomas; Raviprakash, Kanakatte; Balkhy, Hanan; Johani, Sameera; Al-Dawood, Abdulaziz; Al-Qahtani, Saad; Al-Omari, Awad; Al-Hameed, Fahad; Hayden, Frederick G.; Fowler, Robert; Bouchama, Abderrezak; Shindo, Nahoko; Al-Khairy, Khalid; Carson, Gail; Taha, Yusri; Sadat, Musharaf; Alahmadi, Mashail

    2016-01-01

    We explored the feasibility of collecting convalescent plasma for passive immunotherapy of Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using ELISA to screen serum samples from 443 potential plasma donors: 196 patients with suspected or laboratory-confirmed MERS-CoV infection, 230 healthcare workers, and 17 household contacts exposed to MERS-CoV. ELISA-reactive samples were further tested by indirect fluorescent antibody and microneutralization assays. Of the 443 tested samples, 12 (2.7%) had a reactive ELISA result, and 9 of the 12 had reactive indirect fluorescent antibody and microneutralization assay titers. Undertaking clinical trials of convalescent plasma for passive immunotherapy of MERS-CoV infection may be feasible, but such trials would be challenging because of the small pool of potential donors with sufficiently high antibody titers. Alternative strategies to identify convalescent plasma donors with adequate antibody titers should be explored, including the sampling of serum from patients with more severe disease and sampling at earlier points during illness. PMID:27532807

  10. Feasibility of Using Convalescent Plasma Immunotherapy for MERS-CoV Infection, Saudi Arabia.

    PubMed

    Arabi, Yaseen M; Hajeer, Ali H; Luke, Thomas; Raviprakash, Kanakatte; Balkhy, Hanan; Johani, Sameera; Al-Dawood, Abdulaziz; Al-Qahtani, Saad; Al-Omari, Awad; Al-Hameed, Fahad; Hayden, Frederick G; Fowler, Robert; Bouchama, Abderrezak; Shindo, Nahoko; Al-Khairy, Khalid; Carson, Gail; Taha, Yusri; Sadat, Musharaf; Alahmadi, Mashail

    2016-09-01

    We explored the feasibility of collecting convalescent plasma for passive immunotherapy of Middle East respiratory syndrome coronavirus (MERS-CoV) infection by using ELISA to screen serum samples from 443 potential plasma donors: 196 patients with suspected or laboratory-confirmed MERS-CoV infection, 230 healthcare workers, and 17 household contacts exposed to MERS-CoV. ELISA-reactive samples were further tested by indirect fluorescent antibody and microneutralization assays. Of the 443 tested samples, 12 (2.7%) had a reactive ELISA result, and 9 of the 12 had reactive indirect fluorescent antibody and microneutralization assay titers. Undertaking clinical trials of convalescent plasma for passive immunotherapy of MERS-CoV infection may be feasible, but such trials would be challenging because of the small pool of potential donors with sufficiently high antibody titers. Alternative strategies to identify convalescent plasma donors with adequate antibody titers should be explored, including the sampling of serum from patients with more severe disease and sampling at earlier points during illness. PMID:27532807

  11. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Astrophysics Data System (ADS)

    Graham, L. D.; Morris, R. V.; Graff, T. G.; Yingst, R. A.; ten Kate, I. L.; Glavin, D. P.; Hedlund, M.; Malespin, C. A.; Mumm, E.

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “ Apollo Valley.”

  12. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    NASA Technical Reports Server (NTRS)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  13. Monoclonal Antibody Shows Promise as Potential Therapeutic for MERS | Poster

    Cancer.gov

    A monoclonal antibody has proven effective in preventing Middle Eastern Respiratory Syndrome (MERS) in lab animals, suggesting further development as a potential intervention for the deadly disease in humans, according to new research. MERS is a newly emerged coronavirus first detected in humans in 2012. Most cases have occurred in the Middle East, but the disease has appeared elsewhere. In all, MERS has infected more than 1,700 individuals and killed more than 600, according to the World Health Organization. No vaccines or antiviral therapies currently exist. Several candidate vaccines are being developed, and some have been tested in animal models, a prerequisite to human clinical trials.

  14. Percolation and jamming of linear k-mers on a square lattice with defects: Effect of anisotropy.

    PubMed

    Tarasevich, Yuri Yu; Burmistrov, Andrei S; Shinyaeva, Taisiya S; Laptev, Valeri V; Vygornitskii, Nikolai V; Lebovka, Nikolai I

    2015-12-01

    Using the Monte Carlo simulation, we study the percolation and jamming of oriented linear k-mers on a square lattice that contains defects. The point defects with a concentration d are placed randomly and uniformly on the substrate before deposition of the k-mers. The general case of unequal probabilities for orientation of depositing of k-mers along different directions of the lattice is analyzed. Two different relaxation models of deposition that preserve the predetermined order parameter s are used. In the relaxation random sequential adsorption (RRSA) model, the deposition of k-mers is distributed over different sites on the substrate. In the single-cluster relaxation (RSC) model, the single cluster grows by the random accumulation of k-mers on the boundary of the cluster (Eden-like model). For both models, a suppression of growth of the infinite (percolation) cluster at some critical concentration of defects d(c) is observed. In the zero-defect lattices, the jamming concentration p(j) (RRSA model) and the density of single clusters p(s) (RSC model) decrease with increasing length k-mers and with a decrease in the order parameter. For the RRSA model, the value of d(c) decreases for short k-mers (k<16) as the value of s increases. For k=16 and 32, the value of d(c) is almost independent of s. Moreover, for short k-mers, the percolation threshold is almost insensitive to the defect concentration for all values of s. For the RSC model, the growth of clusters with ellipselike shapes is observed for nonzero values of s. The density of the clusters p(s) at the critical concentration of defects d(c) depends in a complex manner on the values of s and k. An interesting finding for disordered systems (s=0) is that the value of p(s) tends towards zero in the limits of the very long k-mers, k→∞, and very small critical concentrations d(c)→0. In this case, the introduction of defects results in a suppression of k-mer stacking and in the formation of empty or loose

  15. In-situ observation of Martian neutral exosphere: Results from MENCA aboard Indian Mars Orbiter Mission (MOM)

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Anil; Pratim Das, Tirtha; Dhanya, M. B.; Thampi, Smitha V.

    2016-07-01

    Till very recently, the only in situ measurements of the Martian upper atmospheric composition was from the mass spectrometer experiments aboard the two Viking landers, which covered the altitude region from 120 to 200 km. Hence, the exploration by the Mars Exospheric Neutral Composition Analyser (MENCA) aboard the Mars Orbiter Mission (MOM) spacecraft of ISRO and the Neutral Gas and Ion Mass Spectrometer (NGIMS) experiment aboard the Mars Atmosphere and Volatile ENvironment (MAVEN) mission of NASA are significant steps to further understand the Martian neutral exosphere and its variability. MENCA is a quadrupole based neutral mass spectrometer which observes the radial distribution of the Martian neutral exosphere. The analysis of the data from MENCA has revealed unambiguous detection of the three major constituents, which are amu 44 (CO2), amu 28 (contributions from CO and N2) and amu 16 (atomic O), as well as a few minor species. Since MOM is in a highly elliptical orbit, the MENCA observations pertain to different local times, in the low-latitude region. Examples of such observations would be presented, and compared with NGIMS results. Emphasis would be given to the observations pertaining to high solar zenith angles and close to perihelion period. During the evening hours, the transition from CO2 to O dominated region is observed near 270 km, which is significantly different from the previous observations corresponding to sub-solar point and SZA of ~45°. The mean evening time exospheric temperature derived using these observations is 271±5 K. These are the first observations corresponding to the Martian evening hours, which would help to provide constraints to the thermal escape models.

  16. Overview on calibration and validation activities and first results for ESA's Soil Moisture and Ocean Salinity Mission

    NASA Astrophysics Data System (ADS)

    Mecklenburg, Susanne; Bouzinac, Catherine; Delwart, Steven; Lopez-Baeza, Ernesto

    The Soil Moisture and Ocean Salinity (SMOS) mission, launched on 2 November 2009, is the European Space Agency's (ESA) second Earth Explorer Opportunity mission. The scientific objectives of the SMOS mission directly respond to the current lack of global observations of soil moisture and ocean salinity, two key variables used in predictive hydrological, oceanographic and atmospheric models. SMOS observations will also provide information on the characteri-sation of ice and snow covered surfaces and the sea ice effect on ocean-atmosphere heat fluxes and dynamics, which affects large-scale processes of the Earth's climate system. A major undertaking in any environmental science related satellite mission are the calibration and validation activities. Calibration is an important prerequisite to the performance verifica-tion, which demonstrates that the instrument meets its requirements. It is also important for the validation of geophysical parameters, such as soil moisture and sea surface salinity. The validation of the data will be handled through a combination of ESA led activities and national efforts. The SMOS Validation and Retrieval Team (SVRT) comprises the scientific contributions that will be made by the projects selected in response to the SMOS calibration and validation Announcement of Opportunity in 2005 as well as the two level 2 Expert Support Laboratories being involved in the development of the soil moisture and sea surface salinity data products. For the validation of the soil moisture data products ESA's activities will focus on two main sites, the Valencia Anchor Station, located in the East of Spain, and the Upper Danube Catchment, located in the South of Germany. In preparation to the SMOS commissioning phase, airborne rehearsal campaigns were conducted in spring 2008 over both aforementioned key sites and will be repeated, in collaboration with the French Space Agency CNES, in spring 2010. These will be coupled with a SMOS matchup generation

  17. RPS strategies to enable NASA's next decade robotic Mars missions

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Jordan, James F.

    2007-06-01

    NASA's proposed roadmap for robotic Mars exploration over the next decade is influenced by science goals, technology needs and budgetary considerations. These requirements could introduce potential changes to the succession of missions, resulting in both technology feed forward and heritage. For long duration robotic surface missions at locations, where solar power generation is not feasible or limited, Radioisotope Power Systems (RPS) could be considered. Thus, RPSs could provide enabling power technologies for some of these missions, covering a power range from 10s of milliwatts to potentially a kilowatt or even higher. Currently, NASA and DoE with their industry partners are developing two RPSs, both generating about 110 W(e) at BOL. These systems will be made available as early as 2009. The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG)—with static power conversion—was down-selected as a potential power source for the MSL mission. Development of small-RPSs is in a planning stage by NASA and DoE; potentially targeting both the 10s of milliwatts and 10s of watts power ranges. If developed, Radioisotope Heat Unit (RHU) based systems—generating 10s to 100s of milliwatts—could power small adjunct elements on larger missions, while the GPHS module-based systems—each generating 10s of watts—could be stacked to provide the required power levels on MER class surface assets. MMRTGs and Stirling Radioisotope Generators (SRGs) could power MSL class or larger missions. Advanced Radioisotope Power Systems (ARPS) with higher specific powers and increased power conversion efficiencies could enhance or even enable missions towards the second half of the next decade. This study examines the available power system options and power selection strategies in line with the proposed mission lineup, and identifies the benefits and utility of the various options for each of the next decade launch opportunities.

  18. Mission Evaluation Room Intelligent Diagnostic and Analysis System (MIDAS)

    NASA Technical Reports Server (NTRS)

    Pack, Ginger L.; Falgout, Jane; Barcio, Joseph; Shnurer, Steve; Wadsworth, David; Flores, Louis

    1994-01-01

    The role of Mission Evaluation Room (MER) engineers is to provide engineering support during Space Shuttle missions, for Space Shuttle systems. These engineers are concerned with ensuring that the systems for which they are responsible function reliably, and as intended. The MER is a central facility from which engineers may work, in fulfilling this obligation. Engineers participate in real-time monitoring of shuttle telemetry data and provide a variety of analyses associated with the operation of the shuttle. The Johnson Space Center's Automation and Robotics Division is working to transfer advances in intelligent systems technology to NASA's operational environment. Specifically, the MER Intelligent Diagnostic and Analysis System (MIDAS) project provides MER engineers with software to assist them with monitoring, filtering and analyzing Shuttle telemetry data, during and after Shuttle missions. MIDAS off-loads to computers and software, the tasks of data gathering, filtering, and analysis, and provides the engineers with information which is in a more concise and usable form needed to support decision making and engineering evaluation. Engineers are then able to concentrate on more difficult problems as they arise. This paper describes some, but not all of the applications that have been developed for MER engineers, under the MIDAS Project. The sampling described herewith was selected to show the range of tasks that engineers must perform for mission support, and to show the various levels of automation that have been applied to assist their efforts.

  19. Phase coexistence and spatial correlations in reconstituting k -mer models

    NASA Astrophysics Data System (ADS)

    Chatterjee, Amit Kumar; Daga, Bijoy; Mohanty, P. K.

    2016-07-01

    In reconstituting k -mer models, extended objects that occupy several sites on a one-dimensional lattice undergo directed or undirected diffusion, and reconstitute—when in contact—by transferring a single monomer unit from one k -mer to the other; the rates depend on the size of participating k -mers. This polydispersed system has two conserved quantities, the number of k -mers and the packing fraction. We provide a matrix product method to write the steady state of this model and to calculate the spatial correlation functions analytically. We show that for a constant reconstitution rate, the spatial correlation exhibits damped oscillations in some density regions separated, from other regions with exponential decay, by a disorder surface. In a specific limit, this constant-rate reconstitution model is equivalent to a single dimer model and exhibits a phase coexistence similar to the one observed earlier in totally asymmetric simple exclusion process on a ring with a defect.

  20. [Development of peptidic MERS-CoV entry inhibitors].

    PubMed

    Xia, Shuai; Wang, Qian; Liu, Shu-wen; Lu, Lu; Jiang, Shi-bo

    2015-12-01

    In 2012, a new SARS-like coronavirus emerged in the Middle East, namely the Middle East respiratory syndrome coronavirus (MERS-CoV). It has caused outbreaks with high mortality. During infection of target cell, MERS-CoV S protein S1 subunit binds to the cellular receptor (DPP4), and its S2 subunit HR1 and HR2 regions intact with each other to form a stable six-helix bundle to mediate the fusion between virus and target cell membranes. Hence, blocking the process of six-helix bundle formation can effectively inhibit MERS-CoV entry into the target cells. This review focuses on the recent advance in the development of peptidic entry inhibitors targeting the MERS-CoV S2 subunit. PMID:27169270

  1. Self-assembly of 33-mer gliadin peptide oligomers.

    PubMed

    Herrera, M G; Benedini, L A; Lonez, C; Schilardi, P L; Hellweg, T; Ruysschaert, J-M; Dodero, V I

    2015-11-28

    The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer

  2. The disposition of impact ejecta resulting from the AIDA-DART mission to binary asteroid 65803 Didymos: an independent investigation

    NASA Astrophysics Data System (ADS)

    Richardson, James E.; O'Brien, David P.

    2016-10-01

    If all goes as planned, in the year 2020 a joint ESA and NASA mission will be launched that will rendezvous with the near-Earth binary asteroid system 65803 Didymos in the fall of 2022. The European component, the Asteroid Impact & Deflection Assessment (AIDA) spacecraft will arrive first and characterize the system, which consists of a ~800 m diameter primary and a ~160 m diameter secondary, orbiting a common center of mass at a semi-major axis distance of ~1200 m with a orbital period of 11.9 hr. Following system characterization, the AIDA spacecraft will remove to a safe distance while the NASA component, the 300 kg Double Asteroid Redirection Test (DART) spacecraft collides with the trailing edge of the secondary body (with respect to the binary's retrograde mutual orbit). Meanwhile, the AIDA spacecraft will conduct observations of this impact and its aftermath, specifically looking for changes made to the primary, the secondary, and their mutual orbit as a result of the DART collision. Of particular interest is the ballistic flight and final disposition of the ejecta produced by the impact cratering process, not just from the standpoint of scientific study, but also from the standpoint of AIDA spacecraft safety.In this study, we investigate a series of hypothetical DART impacts utilizing a semi-empirical, numerical impact ejecta plume model originally developed for the Deep Impact mission and designed specifically with impacts on small bodies in mind. The resulting excavated mass is discretized into 7200 individual tracer particles, each representing a unique combination of speed, mass, and ejected direction. The trajectory of each tracer is computed numerically under the gravitational influence of both primary and secondary, along with the effects of solar radiation pressure. Each tracer is followed until it either impacts a body or escapes the system, whereupon tracking is continued in the heliocentric frame using an N-body integrator. Various impact

  3. Saturn’s icy satellites investigated by Cassini-VIMS. II. Results at the end of nominal mission

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Clark, R. N.; Cuzzi, J. N.; Cruikshank, D. P.; Coradini, A.; Cerroni, P.; Nicholson, P. D.; McCord, T. B.; Brown, R. H.; Buratti, B. J.; Tosi, F.; Nelson, R. M.; Jaumann, R.; Stephan, K.

    2010-04-01

    We report the detailed analysis of the spectrophotometric properties of Saturn's icy satellites as derived by full-disk observations obtained by visual and infrared mapping spectrometer (VIMS) experiment aboard Cassini. In this paper, we have extended the coverage until the end of the Cassini's nominal mission (June 1st 2008), while a previous paper ( Filacchione, G., and 28 colleagues [2007]. Icarus 186, 259-290, hereby referred to as Paper I) reported the preliminary results of this study. During the four years of nominal mission, VIMS has observed the entire population of Saturn's icy satellites allowing us to make a comparative analysis of the VIS-NIR spectral properties of the major satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus) and irregular moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso, Phoebe). The results we discuss here are derived from the entire dataset available at June 2008 which consists of 1417 full-disk observations acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage. The most important spectrophotometric indicators (as defined in Paper I: I/ F continua at 0.55 μm, 1.822 μm and 3.547 μm, visible spectral slopes, water and carbon dioxide bands depths and positions) are calculated for each observation in order to investigate the disk-integrated composition of the satellites, the distribution of water ice respect to "contaminants" abundances and typical regolith grain properties. These quantities vary from the almost pure water ice surfaces of Enceladus and Calypso to the organic and carbon dioxide rich Hyperion, Iapetus and Phoebe. Janus visible colors are intermediate between these two classes having a slightly positive spectral slope. These results could help to decipher the origins and evolutionary history of the minor moons of the Saturn's system. We introduce a polar representation of the spectrophotometric

  4. Protection of rat liver against hepatic ischemia-reperfusion injury by a novel selenocysteine-containing 7-mer peptide

    PubMed Central

    Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui

    2016-01-01

    Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7-mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7-mer peptide which has a lower molecular weight, and improved water-solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I-R injury of the liver was assessed in rats. The 7-mer peptide significantly inhibited the increase in serum hepatic amino-transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I-R tissue. Following treatment with the 7-mer peptide, the expression of B-cell CLL/lymphoma-2 (Bcl-2) was significantly upregulated at the mRNA and protein level compared with the I-R group, as determined by reverse transcription-polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl-2 associated X protein (Bax) was downregulated by the 7-mer peptide compared the I-R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7-mer peptide protected the liver against hepatic I-R injury via suppression of oxygen-derived free radicals and regulation of Bcl-2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272

  5. Circulating levels of soluble MER in lupus reflect M2c activation of monocytes/macrophages, autoantibody specificities and disease activity

    PubMed Central

    2013-01-01

    Introduction Systemic lupus erythematosus (SLE) is characterized by impaired efferocytosis and aberrant activation of innate immunity. We asked if shedding of MER receptor tyrosine kinase (MerTK) and AXL into soluble (s) ectodomains was related to immunological and clinical aspects of SLE. Methods Levels of sMER and sAXL in the plasma of 107 SLE patients and 45 matched controls were measured by ELISA. In 40 consecutive SLE patients, we examined potential correlations between either sMER or sAXL and plasma levels of sCD163, a marker of M2 activation. All three soluble receptors were measured in supernatants of monocytes/macrophages cultured in various immunological conditions. Membrane expression of MerTK, AXL and CD163 was assessed by flow cytometry. Results Both sMER and sAXL were associated with anti-chromatin and anti-phospholipid autoantibodies, and with hematological and renal involvement. However, sMER and sAXL did not significantly correlate with each other; sAXL correlated with growth arrest-specific 6 (Gas6), whereas sMER correlated with reduced free protein S (PROS) levels. Only sMER showed significant associations with lupus-specific anti-dsDNA, anti-Sm, anti-ribonucleoprotein (anti-RNP) and anti-Ro60 autoantibodies. Strong correlations with disease activity indices (Systemic Lupus Erythematosus Disease Activity Index (SLEDAI), complement reduction, titer of circulating anti-dsDNA) were found for sMER, not for sAXL. Patients with active SLEDAI, nephritis, anti-dsDNA and anti-Ro60 positivity showed higher levels of sMER compared to controls. Levels of sMER, not sAXL, correlated with sCD163 levels, and these correlated with SLEDAI. Production of sMER and sCD163 occurred under “M2c” polarizing conditions, whereas sAXL was released upon type-I IFN exposure. Conclusions Alterations in homeostasis of anti-inflammatory and efferocytic “M2c” monocytes/macrophages may have a role in immunopathogenesis of SLE. PMID:24325951

  6. Standards Supporting Cooperation on Mission Planning, Data Analysis and Correlation of Results Within a Broad-Based Mars Exploration Program

    NASA Technical Reports Server (NTRS)

    Acton, Charles H.

    1999-01-01

    This poster is an invitation for participation in the specification and implementation of engineering and ancillary data standards, and allied software tools needed to conceptualize, designs, operate and analyze the data returned from Mars and other solar system exploration missions

  7. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant.

    PubMed Central

    Kusano, T; Sugawara, K; Inoue, C; Takeshima, T; Numata, M; Shiratori, T

    1992-01-01

    The mer operon from a strain of Thiobacillus ferrooxidans (C. Inoue, K. Sugawara, and T. Kusano, Mol. Microbiol. 5:2707-2718, 1991) consists of the regulatory gene merR and an operator-promoter region followed by merC and merA structural genes and differs from other known gram-negative mer operons. We have constructed four potential shuttle plasmids composed of a T. ferrooxidans-borne cryptic plasmid, a pUC18 plasmid, and the above-mentioned mer determinant as a selectable marker. Mercury ion-sensitive T. ferrooxidans strains were electroporated with constructed plasmids, and one strain, Y4-3 (of 30 independent strains tested), was found to have a transformation efficiency of 120 to 200 mercury-resistant colonies per microgram of plasmid DNA. This recipient strain was confirmed to be T. ferrooxidans by physiological, morphological, and chemotaxonomical data. The transformants carried a plasmid with no physical rearrangements through 25 passages under no selective pressure. Cell extracts showed mercury ion-dependent NADPH oxidation activity. Images PMID:1400213

  8. First Results from The PACA_Rosetta67P Group in Support of ESA/Rosetta Mission

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, Padma A.

    2016-10-01

    The PACA_Rosetta67P Facebook group is the amateur observing program, complementary to the ground-based professional observations, in support of ESA/Rosetta mission to the comet 67P/Churyumovs-Gerasimenko (CG). The amateur campaign has followed the ESA/Rosetta's escort of 67P from August 2014 to present. Although 67P/CG is faint in its current apparition (it is a Jupiter Family comet, with a period of 6.45 years and is on its seventh passage of the inner solar system), the comet is known to brighten from about a month before perihelion and post perihelion. The comet behaved as expected. With the vast amount of data collected by the global amateur network, we are now able to (i) archive the data to allow it to be crowdsourced by the professionals; (ii) mine the data to determine various trends such as the variation of magnitude with respect to heliospheric distance; map the changes in Afrho (the dust activity parameter) and a long baseline of observations that show features similar to the features seen in the ground-based observations of the professionals. We will highlight the campaign and the results now possible to determine and compare with other observations taken at the same time. We will highlight the first results of the campaign, with the challenges and lessons learned to apply when developing other amateur observing programs.

  9. End-to-end simulation of high-contrast imaging systems: methods and results for the PICTURE mission family

    NASA Astrophysics Data System (ADS)

    Douglas, Ewan S.; Hewasawam, Kuravi; Mendillo, Christopher B.; Cahoy, Kerri L.; Cook, Timothy A.; Finn, Susanna C.; Howe, Glenn A.; Kuchner, Marc J.; Lewis, Nikole K.; Marinan, Anne D.; Mawet, Dimitri; Chakrabarti, Supriya

    2015-09-01

    We describe a set of numerical approaches to modeling the performance of space flight high-contrast imaging payloads. Mission design for high-contrast imaging requires numerical wavefront error propagation to ensure accurate component specifications. For constructed instruments, wavelength and angle-dependent throughput and contrast models allow detailed simulations of science observations, allowing mission planners to select the most productive science targets. The PICTURE family of missions seek to quantify the optical brightness of scattered light from extrasolar debris disks via several high-contrast imaging techniques: sounding rocket (the Planet Imaging Concept Testbed Using a Rocket Experiment) and balloon flights of a visible nulling coronagraph, as well as a balloon flight of a vector vortex coronagraph (the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph, PICTURE-C). The rocket mission employs an on-axis 0.5m Gregorian telescope, while the balloon flights will share an unobstructed off-axis 0.6m Gregorian. This work details the flexible approach to polychromatic, end-to-end physical optics simulations used for both the balloon vector vortex coronagraph and rocket visible nulling coronagraph missions. We show the preliminary PICTURE-C telescope and vector vortex coronagraph design will achieve 10-8 contrast without post-processing as limited by realistic optics, but not considering polarization or low-order errors. Simulated science observations of the predicted warm ring around Epsilon Eridani illustrate the performance of both missions.

  10. Transport and Chemical Evolution over the Pacific (TRACE-P)Aircraft Mission: Design, Execution, and First Results

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-01-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 plus or minus 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to

  11. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    NASA Astrophysics Data System (ADS)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  12. Results of time-resolved radiation exposure measurements made during U.S. Shuttle missions with a tissue equivalent proportional counter.

    PubMed

    Golightly, M J; Hardy, A C; Hardy, K

    1994-10-01

    Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.

  13. Mars Rover Missions and Science Education: A Decade of Education and Public Outreach Using the Mars Exploration Rover Mission at the New Mexico Museum of Natural History and Science

    NASA Astrophysics Data System (ADS)

    Aubele, J. C.; Crumpler, L. S.

    2014-07-01

    New Mexico Museum of Natural History & Science exhibits and educational programming related to the MER mission reached over two million museum visitors through exhibits and over 15,000 participants in targeted educational programs.

  14. 2015 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) nosocomial outbreak in South Korea: insights from modeling.

    PubMed

    Hsieh, Ying-Hen

    2015-01-01

    Background. Since the emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012, more than 1,300 laboratory confirmed cases of MERS-CoV infections have been reported in Asia, North Africa, and Europe by July 2015. The recent MERS-CoV nosocomial outbreak in South Korea quickly became the second largest such outbreak with 186 total cases and 36 deaths in a little more than one month, second only to Saudi Arabia in country-specific number of reported cases. Methods. We use a simple mathematical model, the Richards model, to trace the temporal course of the South Korea MERS-CoV outbreak. We pinpoint its outbreak turning point and its transmissibility via basic reproduction number R 0 in order to ascertain the occurrence of this nosocomial outbreak and how it was quickly brought under control. Results. The estimated outbreak turning point of ti = 23.3 days (95% CI [22.6-24.0]), or 23-24 days after the onset date of the index case on May 11, pinpoints June 3-4 as the time of the turning point or the peak incidence for this outbreak by onset date. R 0 is estimated to range between 7.0 and 19.3. Discussion and Conclusion. The turning point of the South Korea MERS-CoV outbreak occurred around May 27-29, when control measures were quickly implemented after laboratory confirmation of the first cluster of nosocomial infections by the index patient. Furthermore, transmissibility of MERS-CoV in the South Korea outbreak was significantly higher than those reported from past MERS-CoV outbreaks in the Middle East, which is attributable to the nosocomial nature of this outbreak. Our estimate of R 0 for the South Korea MERS-CoV nosocomial outbreak further highlights the importance and the risk involved in cluster infections and superspreading events in crowded settings such as hospitals. Similar to the 2003 SARS epidemic, outbreaks of infectious diseases with low community transmissibility like MERS-CoV could still occur initially with large clusters of nosocomial

  15. Conceptual Design and Architecture of Mars Exploration Rover (MER) for Seismic Experiments Over Martian Surfaces

    NASA Astrophysics Data System (ADS)

    Garg, Akshay; Singh, Amit

    2012-07-01

    Keywords: MER, Mars, Rover, Seismometer Mars has been a subject of human interest for exploration missions for quite some time now. Both rover as well as orbiter missions have been employed to suit mission objectives. Rovers have been preferentially deployed for close range reconnaissance and detailed experimentation with highest accuracy. However, it is essential to strike a balance between the chosen science objectives and the rover operations as a whole. The objective of this proposed mechanism is to design a vehicle (MER) to carry out seismic studies over Martian surface. The conceptual design consists of three units i.e. Mother Rover as a Surrogate (Carrier) and Baby Rovers (two) as seeders for several MEMS-based accelerometer / seismometer units (Nodes). Mother Rover can carry these Baby Rovers, having individual power supply with solar cells and with individual data transmission capabilities, to suitable sites such as Chasma associated with Valles Marineris, Craters or Sand Dunes. Mother rover deploys these rovers in two opposite direction and these rovers follow a triangulation pattern to study shock waves generated through firing tungsten carbide shells into the ground. Till the time of active experiments Mother Rover would act as a guiding unit to control spatial spread of detection instruments. After active shock experimentation, the babies can still act as passive seismometer units to study and record passive shocks from thermal quakes, impact cratering & landslides. Further other experiments / payloads (XPS / GAP / APXS) can also be carried by Mother Rover. Secondary power system consisting of batteries can also be utilized for carrying out further experiments over shallow valley surfaces. The whole arrangement is conceptually expected to increase the accuracy of measurements (through concurrent readings) and prolong life cycle of overall experimentation. The proposed rover can be customised according to the associated scientific objectives and further

  16. Evaluation of candidate vaccine approaches for MERS-CoV

    SciTech Connect

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; Modjarrad, Kayvon; Zhang, Yi; Leung, Kwanyee; Lees, Christopher R.; Zhou, Tongqing; Yassine, Hadi M.; Kanekiyo, Masaru; Yang, Zhi-yong; Chen, Xuejun; Becker, Michelle M.; Freeman, Megan; Vogel, Leatrice; Johnson, Joshua C.; Olinger, Gene; Todd, John P.; Bagci, Ulas; Solomon, Jeffrey; Mollura, Daniel J.; Hensley, Lisa; Jahrling, Peter; Denison, Mark R.; Rao, Srinivas S.; Subbarao, Kanta; Kwong, Peter D.; Mascola, John R.; Kong, Wing-Pui; Graham, Barney S.

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanisms were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.

  17. Evaluation of candidate vaccine approaches for MERS-CoV

    DOE PAGESBeta

    Wang, Lingshu; Shi, Wei; Joyce, M. Gordon; Modjarrad, Kayvon; Zhang, Yi; Leung, Kwanyee; Lees, Christopher R.; Zhou, Tongqing; Yassine, Hadi M.; Kanekiyo, Masaru; et al

    2015-07-28

    The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) as a cause of severe respiratory disease highlights the need for effective approaches to CoV vaccine development. Efforts focused solely on the receptor-binding domain (RBD) of the viral Spike (S) glycoprotein may not optimize neutralizing antibody (NAb) responses. Here we show that immunogens based on full-length S DNA and S1 subunit protein elicit robust serum-neutralizing activity against several MERS-CoV strains in mice and non-human primates. Serological analysis and isolation of murine monoclonal antibodies revealed that immunization elicits NAbs to RBD and, non-RBD portions of S1 and S2 subunit. Multiple neutralization mechanismsmore » were demonstrated by solving the atomic structure of a NAb-RBD complex, through sequencing of neutralization escape viruses and by constructing MERS-CoV S variants for serological assays. Immunization of rhesus macaques confers protection against MERS-CoV-induced radiographic pneumonia, as assessed using computerized tomography, supporting this strategy as a promising approach for MERS-CoV vaccine development.« less

  18. Searching for Life in the Martian Subsurface: Results from the MARTE Astrobiological Drilling Experiment and Implications for Future Missions

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2007-07-01

    Drilling for subsurface life should be a goal of future Mars missions. The approach is illustrated by MARTE: A search for subsurface life in Rio Tinto, Spain explored a biosphere using reduced iron and sulfur minerals and demonstrated automated drilling, sample handling, and life detection.

  19. Mission and Research Scientists in NASA EPO and STEM Education: The Results of 15 Years of EPO

    NASA Astrophysics Data System (ADS)

    Lebofsky, L. A.; McCarthy, D. W.; Higgins, M. L.; Mueller, B.; Lebofsky, N. R.

    2014-07-01

    Exploration of the Solar System and beyond is a team effort, from research programs to space missions. The same is true for science education. James Webb Space Telescope's Near InfraRed Camera EPO Team has been teamed with Girl Scouts of Southern Arizona for nearly a decade. We now have collaborations throughout Arizona and across the nation.

  20. Equation of state for two-dimensional fluids with hard cyclic n-mer molecules

    NASA Astrophysics Data System (ADS)

    Maeso, M. J.; Solana, J. R.

    1995-12-01

    The procedure previously developed to obtain the equation of state of two-dimensional fluids of hard linear molecules is modified for application to cyclic molecules. The resulting equation of state of two-dimensional hard cyclic n-mer fluids is related to the equation of state of the hard disc fluid and reproduces simulation data within their uncertainty for all the molecular geometries considered.

  1. Overview of preparedness and response for Middle East respiratory syndrome coronavirus (MERS-CoV) in Oman.

    PubMed

    Al-Abaidani, I S; Al-Maani, A S; Al-Kindi, H S; Al-Jardani, A K; Abdel-Hady, D M; Zayed, B E; Al-Harthy, K S; Al-Shaqsi, K H; Al-Abri, S S

    2014-12-01

    Several countries in the Middle East and around 22 countries worldwide have reported cases of human infection with the Middle East respiratory syndrome coronavirus (MERS-CoV). The exceptionally high fatality rate resulting from MERS-CoV infection in conjunction with the paucity of knowledge about this emerging virus has led to major public and international concern. Within the framework of the national acute respiratory illness surveillance, the Ministry of Health in the Sultanate of Oman has announced two confirmed cases of MERS-CoV to date. The aim of this report is to describe the epidemiological aspects of these two cases and to highlight the importance of public health preparedness and response. The absence of secondary cases among contacts of the reported cases can be seen as evidence of the effectiveness of infection prevention and control precautions as an important pillar of the national preparedness and response plan applied in the health care institutions in Oman. PMID:25447719

  2. Planetary missions

    NASA Technical Reports Server (NTRS)

    Mclaughlin, William I.

    1989-01-01

    The scientific and engineering aspects of near-term missions for planetary exploration are outlined. The missions include the Voyager Neptune flyby, the Magellan survey of Venus, the Ocean Topography Experiment, the Mars Observer mission, the Galileo Jupiter Orbiter and Probe, the Comet Rendezvous Asteroid Flyby mission, the Mars Rover Sample Return mission, the Cassini mission to Saturn and Titan, and the Daedalus probe to Barnard's star. The spacecraft, scientific goals, and instruments for these missions are noted.

  3. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  4. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals. PMID:27273193

  5. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  6. Critical Assessment of the Important Residues Involved in the Dimerization and Catalysis of MERS Coronavirus Main Protease

    PubMed Central

    Ho, Bo-Lin; Cheng, Shu-Chun; Shi, Lin; Wang, Ting-Yun; Ho, Kuan-I; Chou, Chi-Yuan

    2015-01-01

    Background A highly pathogenic human coronavirus (CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in Jeddah and other places in Saudi Arabia, and has quickly spread to European and Asian countries since September 2012. Up to the 1st October 2015 it has infected at least 1593 people with a global fatality rate of about 35%. Studies to understand the virus are necessary and urgent. In the present study, MERS-CoV main protease (Mpro) is expressed; the dimerization of the protein and its relationship to catalysis are investigated. Methods and Results The crystal structure of MERS-CoV Mpro indicates that it shares a similar scaffold to that of other coronaviral Mpro and consists of chymotrypsin-like domains I and II and a helical domain III of five helices. Analytical ultracentrifugation analysis demonstrated that MERS-CoV Mpro undergoes a monomer to dimer conversion in the presence of a peptide substrate. Glu169 is a key residue and plays a dual role in both dimerization and catalysis. The mutagenesis of other residues found on the dimerization interface indicate that dimerization of MERS-CoV Mpro is required for its catalytic activity. One mutation, M298R, resulted in a stable dimer with a higher level of proteolytic activity than the wild-type enzyme. Conclusions MERS-CoV Mpro shows substrate-induced dimerization and potent proteolytic activity. A critical assessment of the residues important to these processes provides insights into the correlation between dimerization and catalysis within the coronaviral Mpro family. PMID:26658006

  7. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -First Mission Results from the Active DOSTEL Instruments

    NASA Astrophysics Data System (ADS)

    Burmeister, Soenke; Berger, Thomas; Beaujean, Rudolf; Boehme, Matthias; Haumann, Lutz; Kortmann, Onno; Labrenz, Johannes; Reitz, Guenther

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. For the investigation of the spatial and temporal distribution of the radiation field inside the European COLUMBUS module the DLR experiment DOSIS (Dose Distribution Inside the ISS) was launched on July 15th 2009 with STS-127 to the ISS. The experimental package was transferred from the Space Shuttle into COLUMBUS on July 18th. It consists in a first part of a combination of passive detector packages (PDP) distributed at 11 locations inside the European Columbus Laboratory. The second part are two active radiation detectors (DOSTELs) with a DDPU (DOSIS Data and Power Unit) in a nomex pouch (DOSIS MAIN BOX) mounted at a fixed location beneath the European Physiology Module (EPM) inside COLUMBUS. After the successful installation the active part has been activated on the 18th July 2009. Each of the DOSTEL units consists of two 6.93 cm PIPS silicon detectors forming a telescope with an opening angle of 120. The two DOSTELs are mounted with their telescope axis perpendicular to each other to investigate anisotropies of the radiation field inside the COLUMBUS module especially during the passes through the South Atlantic Anomaly (SAA) and during Solar Particle Events (SPEs). The data from the DOSTEL units are transferred to ground via the EPM rack which is activated

  8. 3D Data Products and Web-GIS for Mars Rover Mission for Seamless Visualisation from Orbit to Ground-level

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Willner, K.; Morley, J.; Sprinks, J.; Traxler, C.; Paar, G.

    2014-04-01

    This paper presents a wide range of research and processing results in the area of multi-resolution orbital data co-registration, multiresolution ground 3D reconstruction, and orbit-to-ground data fusion, achieved within the EU-FP7 PRoVisG and PRoViDE project. We focus on three NASA rover missions, MER-A, MER-B, and MSL, to provide examples of automated methods for producing coregistered, multi-resolution 3D products. We highlight the mis-registration discovered between current HiRISE to HRSC datasets, CTX to HRSC and HiRISE to CTX co- results, wide baseline stereo reconstruction results of rover imagery, ground-to-orbit coregistration, i.e. reconstructed wide baseline ground ORI and HiRISE ORI co-registration, and extensive exploitation of the coregistered datasets in visualisation and interactive web-GIS.

  9. Identification of residues on human receptor DPP4 critical for MERS-CoV binding and entry

    SciTech Connect

    Song, Wenfei; Wang, Ying; Wang, Nianshuang; Wang, Dongli; Guo, Jianying; Fu, Lili; Shi, Xuanling

    2014-12-15

    Middle East respiratory syndrome coronavirus (MERS-CoV) infects host cells through binding the receptor binding domain (RBD) on its spike glycoprotein to human receptor dipeptidyl peptidase 4 (hDPP4). Here, we report identification of critical residues on hDPP4 for RBD binding and virus entry through analysis of a panel of hDPP4 mutants. Based on the RBD–hDPP4 crystal structure we reported, the mutated residues were located at the interface between RBD and hDPP4, which potentially changed the polarity, hydrophobic or hydrophilic properties of hDPP4, thereby interfering or disrupting their interaction with RBD. Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues in hDPP4–RBD binding interface were important on hDPP4–RBD binding and viral entry. These results provide atomic insights into the features of interactions between hDPP4 and MERS-CoV RBD, and also provide potential explanation for cellular and species tropism of MERS-CoV infection. - Highlights: • It has been demonstrated that MERS-CoV infects host cells through binding its envelope spike (S) glycoprotein to the host cellular receptor dipeptidyl peptidase 4 (DPP4). • To identify the critical residues on hDPP4 for RBD binding and virus entry, we constructed a panel of hDPP4 mutants based on structure-guided mutagenesis. • Using surface plasmon resonance (SPR) binding analysis and pseudovirus infection assay, we showed that several residues on hDPP4 had significant impacts on virus/receptor interactions and viral entry. • Our study has provided new insights into the features of interactions between hDPP4 and MERS-CoV RBD, and provides potential explanation for cellular and species tropism of MERS-CoV infection.

  10. Some results of exploration of comet 67P/Churyumov-Gerasimenko - the main target of the Rosetta space mission

    NASA Astrophysics Data System (ADS)

    Churyumov, K. I.

    The short period comet 67P/Churyumov-Gerasimenko from the Jupiter comet family is selected as main target of the European space mission Rosetta. In September 1969 the three collaborators of expedition of Kyiv Shevchenko University went to the Alma-Ata Astrophysical Institute to conduct a survey of short period and new comets. The main result of the expedition was the discovery of the new short period comet 67P on Oct. 22 ,1969 on the five plates obtained by Klim Churyumov and Svetlana Gerasimenko Sept. 9, 11 and 21, 1969 with the help of 50-cm f/2.4 Maksutov telescope in Alam-Ata. The astronomer Nikolay Belyaev from Saint-Petersbourg showed the comet followed an elliptical orbit. The fact that the comet had a close encounter with Jupiter in 1959 very important because only after this encounter comet 67P could be discovered in 1969 with the help of terrestrial telescopes. The comparison of comet 67P/Churyumov-Gerasimenko's light curve in its 1982-1983 apparition and the curve of the solar activity indices changes that are reduced to the comet`s center shows that the variations of the comet's brightness rather well correlate with the changes of the solar indices. On the basis of photometric processing of the two photographic images of comet 67P obtained in Nizhny Arkhyz with the help of the 6- BTA reflector of SAO of RAS some physical parameters of the comet plasma tail (coefficients of diffusion D?? , Dbot and induction of magnetic field B) were determined. (Jan. 12.105, 1983 UT: D??=5.07× 1014div 1.21× 1015 cm2/s, Dbot =5.73× 1013div 1.37× 1014 cm2/s, B=46div 111 nT; Jan. 13.124, 1983 UT: D??=4.67× 1014div 1.14× 1015 cm2/s, Dbot =4.30× 1013div 1.05× 1014 cm2/s, B=55div 134 nT). The obtained upper estimates of induction of the magnetic field B≅ 111 nT for Jan. 12,1983 and B≅ 134 nT for Jan. 13,1983 probably surpass real values of B in the cometary plasma tail. I think that this peculiarity of magnetic fields in plasma tail of comet 67P is tight connected

  11. Signal transduction in primary human T lymphocytes in altered gravity – results of the MASER-12 suborbital space flight mission

    PubMed Central

    2013-01-01

    We investigated the influence of altered gravity on key proteins of T cell activation during the MASER-12 ballistic suborbital rocket mission of the European Space Agency (ESA) and the Swedish Space Cooperation (SSC) at ESRANGE Space Center (Kiruna, Sweden). We quantified components of the T cell receptor, the membrane proximal signaling, MAPK-signaling, IL-2R, histone modifications and the cytoskeleton in non-activated and in ConA/CD28-activated primary human T lymphocytes. The hypergravity phase during the launch resulted in a downregulation of the IL-2 and CD3 receptor and reduction of tyrosine phosphorylation, p44/42-MAPK phosphorylation and histone H3 acetylation, whereas LAT phosphorylation was increased. Compared to the baseline situation at the point of entry into the microgravity phase, CD3 and IL-2 receptor expression at the surface of non-activated T cells were reduced after 6 min microgravity. Importantly, p44/42-MAPK-phosphorylation was also reduced after 6 min microgravity compared to the 1g ground controls, but also in direct comparison between the in-flight μg and the 1g group. In activated T cells, the reduced CD3 and IL-2 receptor expression at the baseline situation recovered significantly during in-flight 1g conditions, but not during microgravity conditions. Beta-tubulin increased significantly after onset of microgravity until the end of the microgravity phase, but not in the in-flight 1g condition. This study suggests that key proteins of T cell signal modules are not severely disturbed in microgravity. Instead, it can be supposed that the strong T cell inhibiting signal occurs downstream from membrane proximal signaling, such as at the transcriptional level as described recently. However, the MASER-12 experiment could identify signal molecules, which are sensitive to altered gravity, and indicates that gravity is obviously not only a requirement for transcriptional processes as described before, but also for specific phosphorylation

  12. Opportunity Mars Rover Mission: Overview and Selected Results from Leaving Purgatory Ripple to Traverses Toward Endeavour Crater

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Athena Team

    2010-12-01

    Opportunity has been traversing the plains of Meridiani since January 25, 2004, acquiring remote sensing and in-situ observations of soils, cobbles, and bedrock, together with atmospheric observations. This paper provides an overview of discoveries between sols 511 (July 1, 2005) and 2300 (July 13, 2010), complementing a similar paper by Squyres et al., [2006] covering results from the initial phase of the mission. Use of the Alpha Particle X-Ray Spectrometer to measure atmospheric argon shows the importance of the southern seasonal ice cap in controlling atmospheric dynamics, with inter-annual variations evident over the three Mars years of observations. The plains are partially covered by aeolian ripples produced by easterly winds during a previous epoch with enhanced Hadley cell circulation. During the current climatic regime, fine-grained particles continue to be reworked locally and trapped. Ripple surfaces are composed of basaltic sand mixed with varying amounts of dust and hematitic concretions. Cobbles examined by Opportunity include iron and stony iron meteorites and both sedimentary and basaltic impact ejecta. Hematite-rich deposits in fractures within ejecta from Concepcion crater, together with iron oxide deposits on meteorites, imply on-going aqueous alteration at low rates. Measurements of sulfate-rich rock strata within the walls of Erebus and Victoria craters provide compelling evidence of sand deposition by wind, with local reworking within ephemeral lakes. We continue to search for the lacustrine facies that would confirm or refute the hypothesis that the sands were produced in an acid-sulfate evaporitic environment. Rocks examined in the upper walls of Victoria and Endurance craters also show enrichment of Cl and a decrease in Mg and S with increasing depth. This pattern implies that regional-scale aqueous alteration took place before formation of these craters. Opportunity has been traversing toward the rim of the 20 km wide Endeavour crater

  13. Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

    NASA Astrophysics Data System (ADS)

    Arvidson, R. E.; Ruff, S. W.; Morris, R. V.; Ming, D. W.; Crumpler, L. S.; Yen, A. S.; Squyres, S. W.; Sullivan, R. J.; Bell, J. F.; Cabrol, N. A.; Clark, B. C.; Farrand, W. H.; Gellert, R.; Greenberger, R.; Grant, J. A.; Guinness, E. A.; Herkenhoff, K. E.; Hurowitz, J. A.; Johnson, J. R.; Klingelhöfer, G.; Lewis, K. W.; Li, R.; McCoy, T. J.; Moersch, J.; McSween, H. Y.; Murchie, S. L.; Schmidt, M.; Schröder, C.; Wang, A.; Wiseman, S.; Madsen, M. B.; Goetz, W.; McLennan, S. M.

    2008-11-01

    This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirit's data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiter's Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4-4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirit's data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirit's data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.

  14. Cassini, Rømer, and the velocity of light

    NASA Astrophysics Data System (ADS)

    Bobis, Laurence; Lequeux, James

    2008-07-01

    The discovery of the finite nature of the velocity of light is usually attributed to Rømer. However, a text at the Paris Observatory confirms the minority opinion according to which Cassini was first to propose the ‘successive motion’ of light, while giving a rather correct order of magnitude for the duration of its propagation from the Sun to the Earth. We examine this question, and discuss why, in spite of the criticisms of Halley, Cassini abandoned this hypothesis while leaving Rømer free to publish it.

  15. Successful Mars remote sensors, MO THEMIS and MER Mini-TES

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Christensen, Phil

    2003-11-01

    This paper describes results of the calibration of the Miniature Thermal Emission Spectrometer (Mini-TES) and the Thermal Emission Imaging System (THEMIS) built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman, et al., 2003) for mission description and instrument designs (Schueler, et al., 2003). A major goal of the Mars Exploration Program is to help determine whether life ever existed on Mars via detailed in situ studies and surface sample return. It is essential to identify landing sites with the highest probability of containing samples indicative of early pre-biotic or biotic environments. Of particular interest are aqueous and/or hydrothermal environments in which life could have existed, or regions of current near-surface water or heat sources. The search requires detailed geologic mapping and accurate interpretations of site composition and history in a global context. THEMIS and Mini-TES were designed to do this and builds upon a wealth of data from previous experiments. Previous experiments include the Mariner 6/7 Mars Infrared Radiometer (MIR) and Infrared Spectrometer, the Mariner 9 Infrared Interferometer Spectrometer (IRIS), the Viking Infrared Thermal Mapper (IRTM), the Phobos Termoscan, and the continuing Mars Global Surveyor (MGS) mission using the Mars Orbiter Camera (MOC) and MGS Thermal Emission Spectrometer (TES). TES has collected hyperspectral images (up to 286 spectral bands from 6-50 μm) of the entire martian surface, providing an initial global reconnaissance of mineralogy and thermophysical properties. By covering the key 6.3 to 15.0 μm region in both TES and THEMIS, it is possible to combine TES fine spectral resolution with THEMIS fine spatial resolution to achieve a global mineralogic inventory at the spatial scales necessary for detailed geologic studies within the Odyssey data resources. Mini-TES is a single detector

  16. First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; Ergun, R. E.; Plaschke, F.; Glassmeier, K. H.

    2011-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  17. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    NASA Technical Reports Server (NTRS)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; Ergun, R. E.; Plaschke, F.; Glassmeier, K. H.

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  18. An Overview of Scientific and Space Weather Results from the Communication/Navigation Outage Forecasting System (C/NOFS) Mission

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; de la Beaujardiere, O.; Hunton, D.; Heelis, R.; Earle, G.; Strauss, P.; Bernhardt, P.

    2012-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) Mission of the Air Force Research Laboratory is described. C/NOFS science objectives may be organized into three categories: (1) to understand physical processes active in the background ionosphere and thermosphere in which plasma instabilities grow; (2) to identify mechanisms that trigger or quench the plasma irregularities responsible for signal degradation; and (3) to determine how the plasma irregularities affect the propagation of electromagnetic waves. The satellite was launched in April, 2008 into a low inclination (13 deg), elliptical (400 x 850 km) orbit. The satellite sensors measure the following parameters in situ: ambient and fluctuating electron densities, AC and DC electric and magnetic fields, ion drifts and large scale ion composition, ion and electron temperatures, and neutral winds. C/NOFS is also equipped with a GPS occultation receiver and a radio beacon. In addition to the satellite sensors, complementary ground-based measurements, theory, and advanced modeling techniques are also important parts of the mission. We report scientific and space weather highlights of the mission after nearly four years in orbit

  19. Readaptation of fish to 1g after long-term microgravity: behavioural results from the STS 89 mission.

    PubMed

    Anken, R H; Hilbig, R; Ibsch, M; Rahmann, H

    2000-01-01

    The swimming behaviour of adult and neonate swordtail fish Xiphophorus helleri was qualitatively analysed from video recordings taken throughout the STS 89 spaceshuttle mission from launch to landing and thereafter. After the flight, the swimming behaviour of neonate samples was quantitatively assessed in the course of the readaptation to 1g earth gravity at days 0, 1 and 4 after recovery. Regarding the swimming behaviour during the mission, the adult fish swam thigmotactically (i.e., responding to tactile stimuli) along the walls of their aquarium, but like the neonates, they did not show any aberrant behavioural patterns. This indicates that they could easily adapt themselves to microgravity. On mission day 9, however, looping responses (most probably initiated by mechanical disturbances) occurred indicating a continuously performed "C-start" escape response (the respective body bend looks like the letter "C"). Immediately after landing (observed in videos recorded onboard the space shuttle), the adults performed a head-up swimming beating heavily with the caudal and pectoral fins; this aberrant behaviour gradually decreased during the first hours after recovery.

  20. Overview of the Mars Exploration Rover Mission

    NASA Astrophysics Data System (ADS)

    Adler, M.

    2002-12-01

    The Mars Exploration Rover (MER) Project is an ambitious mission to land two highly capable rovers at different sites in the equatorial region of Mars. The two vehicles are launched separately in May through July of 2003. Mars surface operations begin on January 4, 2004 with the first landing, followed by the second landing three weeks later on January 25. The useful surface lifetime of each rover will be at least 90 sols. The science objectives of exploring multiple locations within each of two widely separated and scientifically distinct landing sites will be accomplished along with the demonstration of key surface exploration technologies for future missions. The two MER spacecraft are planned to be identical. The rovers are landed using the Mars Pathfinder approach of a heatshield and parachute to slow the vehicle relative to the atmosphere, solid rockets to slow the lander near the surface, and airbags to cushion the surface impacts. During entry, descent, and landing, the vehicles will transmit coded tones directly to Earth, and in the terminal descent phase will also transmit telemetry to the MGS orbiter to indicate progress through the critical events. Once the lander rolls to a stop, a tetrahedral structure opens to right the lander and to reveal the folded rover, which then deploys and later by command will roll off of the lander to begin its exploration. Each six-wheeled rover carries a suite of instruments to collect contextual information about the landing site using visible and thermal infrared remote sensing, and to collect in situ information on the composition, mineralogy, and texture of selected Martian soils and rocks using an arm-mounted microscopic imager, rock abrasion tool, and spectrometers. During their surface missions, the rovers will communicate with Earth directly through the Deep Space Network as well as indirectly through the Odyssey and MGS orbiters. The solar-powered rovers will be commanded in the morning of each Sol, with the

  1. MERS-CoV at the Animal–Human Interface: Inputs on Exposure Pathways from an Expert-Opinion Elicitation

    PubMed Central

    Funk, Anna L.; Goutard, Flavie Luce; Miguel, Eve; Bourgarel, Mathieu; Chevalier, Veronique; Faye, Bernard; Peiris, J. S. Malik; Van Kerkhove, Maria D.; Roger, Francois Louis

    2016-01-01

    incidence risks of at least 22 and 13% for direct and indirect contact, respectively. The results of our study are consistent with available, yet very limited, published data regarding the potential pathways of transmission of MERS-CoV at the animal–human interface. These results identify key knowledge gaps and highlight the need for more comprehensive, yet focused research to be conducted to better understand transmission between dromedaries and humans. PMID:27761437

  2. MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells.

    PubMed

    Healy, Luke M; Perron, Gabrielle; Won, So-Yoon; Michell-Robinson, Mackenzie A; Rezk, Ayman; Ludwin, Samuel K; Moore, Craig S; Hall, Jeffery A; Bar-Or, Amit; Antel, Jack P

    2016-04-15

    Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-β compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-β-treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-β-treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair. PMID:26962228

  3. MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells.

    PubMed

    Healy, Luke M; Perron, Gabrielle; Won, So-Yoon; Michell-Robinson, Mackenzie A; Rezk, Ayman; Ludwin, Samuel K; Moore, Craig S; Hall, Jeffery A; Bar-Or, Amit; Antel, Jack P

    2016-04-15

    Multifocal inflammatory lesions featuring destruction of lipid-rich myelin are pathologic hallmarks of multiple sclerosis. Lesion activity is assessed by the extent and composition of myelin uptake by myeloid cells present in such lesions. In the inflamed CNS, myeloid cells are comprised of brain-resident microglia, an endogenous cell population, and monocyte-derived macrophages, which infiltrate from the systemic compartment. Using microglia isolated from the adult human brain, we demonstrate that myelin phagocytosis is dependent on the polarization state of the cells. Myelin ingestion is significantly enhanced in cells exposed to TGF-β compared with resting basal conditions and markedly reduced in classically activated polarized cells. Transcriptional analysis indicated that TGF-β-treated microglia closely resembled M0 cells. The tyrosine kinase phagocytic receptor MerTK was one of the most upregulated among a select number of differentially expressed genes in TGF-β-treated microglia. In contrast, MerTK and its known ligands, growth arrest-specific 6 and Protein S, were downregulated in classically activated cells. MerTK expression and myelin phagocytosis were higher in CNS-derived microglia than observed in monocyte-derived macrophages, both basally and under all tested polarization conditions. Specific MerTK inhibitors reduced myelin phagocytosis and the resultant anti-inflammatory biased cytokine responses for both cell types. Defining and modulating the mechanisms that regulate myelin phagocytosis has the potential to impact lesion and disease evolution in multiple sclerosis. Relevant effects would include enhancing myelin clearance, increasing anti-inflammatory molecule production by myeloid cells, and thereby permitting subsequent tissue repair.

  4. Avoiding student infection during a Middle East respiratory syndrome (MERS) outbreak: a single medical school experience

    PubMed Central

    2016-01-01

    Purpose: In outbreaks of infectious disease, medical students are easily overlooked in the management of healthcare personnel protection although they serve in clinical clerkships in hospitals. In the early summer of 2015, Middle East respiratory syndrome (MERS) struck South Korea, and students of Sungkyunkwan University School of Medicine (SKKUSOM) were at risk of contracting the disease. The purpose of this report is to share SKKUSOM’s experience against the MERS outbreak and provide suggestions for medical schools to consider in the face of similar challenges. Methods: Through a process of reflection-on-action, we examined SKKUSOM’s efforts to avoid student infection during the MERS outbreak and derived a few practical guidelines that medical schools can adopt to ensure student safety in outbreaks of infectious disease. Results: The school leadership conducted ongoing risk assessment and developed contingency plans to balance student safety and continuity in medical education. They rearranged the clerkships to another hospital and offered distant lectures and tutorials. Five suggestions are extracted for medical schools to consider in infection outbreaks: instant cessation of clinical clerkships; rational decision making on a school closure; use of information technology; constant communication with hospitals; and open communication with faculty, staff, and students. Conclusion: Medical schools need to take the initiative and actively seek countermeasures against student infection. It is essential that medical schools keep constant communication with their index hospitals and the involved personnel. In order to assure student learning, medical schools may consider offering distant education with online technology. PMID:27240893

  5. Probing high-affinity 11-mer DNA aptamer against Lup an 1 (β-conglutin).

    PubMed

    Nadal, P; Svobodova, M; Mairal, T; O'Sullivan, C K

    2013-11-01

    Aptamers are synthetic nucleic acids with great potential as analytical tools. However, the length of selected aptamers (typically 60-100 bases) can affect affinity, due to the presence of bases not required for interaction with the target, and therefore, the truncation of these selected sequences and identification of binding domains is a critical step to produce potent aptamers with higher affinities and specificities and lowered production costs. In this paper we report the truncation of an aptamer that specifically binds to β-conglutin (Lup an 1), an anaphylactic allergen. Through comparing the predicted secondary structures of the aptamers, a hairpin structure with a G-rich loop was determined to be the binding motif. The highest affinity was observed with a truncation resulting in an 11-mer sequence that had an apparent equilibrium dissociation constant (K D) of 1.7 × 10(-9) M. This 11-mer sequence was demonstrated to have high specificity for β-conglutin and showed no cross-reactivity to other lupin conglutins (α-, δ-, γ-conglutins) and closely related proteins such as gliadin. Finally, the structure of the truncated 11-mer aptamer was preliminarily elucidated, and the GQRS Mapper strongly predicted the presence of a G-quadruplex, which was subsequently corroborated using one-dimensional NMR, thus highlighting the stability of the truncated structure. PMID:24126837

  6. Space missions to comets

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor); Yeomans, D. K. (Editor); Brandt, J. C. (Editor); Hobbs, R. W. (Editor)

    1979-01-01

    The broad impact of a cometary mission is assessed with particular emphasis on scientific interest in a fly-by mission to Halley's comet and a rendezvous with Tempel 2. Scientific results, speculations, and future plans are discussed.

  7. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  8. Results from the EPOXI and StardustNExT Missions - A Changing View of Comet Volatiles and Activity

    NASA Astrophysics Data System (ADS)

    Meech, Karen; A'Hearn, Michael F.; Veverka, Joseph

    2015-03-01

    Within a period of ~3 months there were two extended mission flybys of comets. Both encounters have provided an exciting new view of comet activity and volatile composition that is changing our paradigm of these small early solar system remnants. The EPOXI mission flew past the nucleus of comet 103P/Hartley 2 on 4 Nov. 2010. This small nucleus was known to be exceptionally active prior to the encounter, by virtue of a very large water production rate relative to its surface area. Both the encounter and ground-based data showed that comet Hartley 2fs perihelion activity was dominated by sub-surface CO2 outgassing rather than by water, suggesting our classic comet formation picture is not correct. The gas flow carried large grains (up to >10 cm in diameter) from the nucleus, and the icy grains contributed to the large observed water production. The CO2 abundance relative to water varies with rotation between 10-20% between the two lobes of the nucleus. The bi-lobed nucleus is rotating in an excited state, with a period that varied rapidly from ~16.5 hrs to longer than 18.5 hrs over 3 months. The nucleus morphology was different from that of other nuclei visited by space craft, with some regions of rough topography in which surface ice was visible. On 2011 Feb. 14 the Stardust-NExT spacecraft flew past the nucleus of comet 9P/Tempel 1, the target of the Deep Impact (DI) experiment in July 2005. The mission goal was to look at the nucleus after and intervening perihelion passage, extending the surface area imaged during the DI encounter and also image the 2005 impact site. The layering seen during the DI flyby was exhibited over the areas newly imaged in the NExT flyby, and it was found that 30% of the nucleus was covered by smooth deposits that were likely caused by eruption of subsurface materials. Although it has long been known that comets lose on average ~ a meter of their surface per perihelion passage, it was surprising to see that in the regions imaged by both

  9. Impact of Recent Voyager, IBEX, and Cassini Results on Science and Strategy for an Interstellar Probe Mission

    NASA Astrophysics Data System (ADS)

    McNutt, R. L.; Gruntman, M.; Krimigis, S. M.; Roelof, E. C.; Wimmer-Schweingruber, R. F.; Gold, R. E.

    2010-12-01

    The ongoing Voyager Interstellar Mission (VIM) and recent observations from the Interstellar Boundary Explorer (IBEX) and Cassini missions have revealed the interaction of the heliosphere with the very local interstellar medium (VLISM) to be much more complex than heretofore assumed by our present day concepts. These discoveries call for a major revision of the strategy for the Interstellar Probe mission. With new observations have come significant new puzzles for describing the interaction physics. Direct measurements of the shocked, solar-wind flow speed obtained from Voyager 2 show the flow remains supersonic. Other in situ instruments on Voyager 1 and Voyager 2 continue to reveal significant fluxes of energetic particles in the heliosheath while pointing to a more remote location for the modulation region and source of the anomalous cosmic rays (ACRs). This evidence supports the idea that the bulk of the energy density in the plasma resides in a non-thermal component that extends to very high energies. There are both quantitative and qualitative implications for the overall heliospheric structure. Remote observations by IBEX and the Ion and Neutral Camera (INCA) on Cassini of energetic neutral atoms (ENAs) originating from the interaction region(s) of the solar wind and the VLISM show unexpected structure on a variety of scales. In addition to the general “glow” of the sky in ENAs, IBEX data show a relatively narrow “ribbon” of atomic hydrogen emission from ~200 eV to ~6 keV, roughly circular, but asymmetric in intensity, which may be ordered by the interstellar magnetic field. It passes through, rather than being centered on, the “nose” from which the local, neutral interstellar wind enters the heliosphere, suggesting that the flow is not the primary driver of the system as has been thought. The neutrals from both the glow and ribbon are also characterized by non-thermal distribution functions. INCA on Cassini sees a “belt” of emission in ENAs

  10. Current advancements and potential strategies in the development of MERS-CoV vaccines

    PubMed Central

    Zhang, Naru; Jiang, Shibo; Du, Lanying

    2014-01-01

    Middle East respiratory syndrome (MERS) is a newly emerging infectious disease caused by a novel coronavirus, MERS-coronavirus (MERS-CoV), a new member in the lineage C of β-coronavirus (β-CoV). The increased human cases and high mortality rate of MERS-CoV infection make it essential to develop safe and effective vaccines. In this review, the current advancements and potential strategies in the development of MERS vaccines, particularly subunit vaccines based on MERS-CoV spike (S) protein and its receptor-binding domain (RBD), are discussed. How to improve the efficacy of subunit vaccines through novel adjuvant formulations and routes of administration as well as currently available animal models for evaluating the in vivo efficacy of MERS-CoV vaccines are also addressed. Overall, these strategies may have important implications for the development of effective and safe vaccines for MERS-CoV in the future. PMID:24766432

  11. CD26/DPP4 Cell-Surface Expression in Bat Cells Correlates with Bat Cell Susceptibility to Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Infection and Evolution of Persistent Infection

    PubMed Central

    Caì, Yíngyún; Yú, Shuǐqìng; Postnikova, Elena N.; Mazur, Steven; Bernbaum, John G.; Burk, Robin; Zhāng, Téngfēi; Radoshitzky, Sheli R.; Müller, Marcel A.; Jordan, Ingo; Bollinger, Laura; Hensley, Lisa E.; Jahrling, Peter B.; Kuhn, Jens H.

    2014-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) is a recently isolated betacoronavirus identified as the etiologic agent of a frequently fatal disease in Western Asia, Middle East respiratory syndrome. Attempts to identify the natural reservoirs of MERS-CoV have focused in part on dromedaries. Bats are also suspected to be reservoirs based on frequent detection of other betacoronaviruses in these mammals. For this study, ten distinct cell lines derived from bats of divergent species were exposed to MERS-CoV. Plaque assays, immunofluorescence assays, and transmission electron microscopy confirmed that six bat cell lines can be productively infected. We found that the susceptibility or resistance of these bat cell lines directly correlates with the presence or absence of cell surface-expressed CD26/DPP4, the functional human receptor for MERS-CoV. Human anti-CD26/DPP4 antibodies inhibited infection of susceptible bat cells in a dose-dependent manner. Overexpression of human CD26/DPP4 receptor conferred MERS-CoV susceptibility to resistant bat cell lines. Finally, sequential passage of MERS-CoV in permissive bat cells established persistent infection with concomitant downregulation of CD26/DPP4 surface expression. Together, these results imply that bats indeed could be among the MERS-CoV host spectrum, and that cellular restriction of MERS-CoV is determined by CD26/DPP4 expression rather than by downstream restriction factors. PMID:25409519

  12. Results of the Simulation and Assimilation of Doppler Wind Lidar Observations in Preparation for European Space Agency's Aeolus Mission

    NASA Technical Reports Server (NTRS)

    McCarty, Will

    2011-01-01

    With the launch of the European Space Agency's Aeolus Mission in 2013, direct spaceborne measurements of vertical wind profiles are imminent via Doppler wind lidar technology. Part of the preparedness for such missions is the development of the proper data assimilation methodology for handling such observations. Since no heritage measurements exist in space, the Joint Observing System Simulation Experiment (Joint OSSE) framework has been utilized to generate a realistic proxy dataset as a precursor to flight. These data are being used for the development of the Gridpoint Statistical Interpolation (GSI) data assimilation system utilized at a number of centers through the United States including the Global Modeling and Assimilation Office (GMAO) at NASA/Goddard Space Flight Center and at the National Centers for Environmental Prediction (NOAA/NWS/NCEP) as an activity through the Joint Center for Satellite Data Assimilation. An update of this ongoing effort will be presented, including the methodology of proxy data generation, the limitations of the proxy data, the handling of line-of-sight wind measurements within the GSI, and the impact on both analyses and forecasts with the addition of the new data type.

  13. Unraveling the drivers of MERS-CoV transmission

    PubMed Central

    Cauchemez, Simon; Nouvellet, Pierre; Cori, Anne; Jombart, Thibaut; Clapham, Hannah; Moore, Sean; Mills, Harriet Linden; Salje, Henrik; Collins, Caitlin; Rodriquez-Barraquer, Isabel; Riley, Steven; Truelove, Shaun; Algarni, Homoud; Alhakeem, Rafat; AlHarbi, Khalid; Turkistani, Abdulhafiz; Aguas, Ricardo J.; Cummings, Derek A. T.; Van Kerkhove, Maria D.; Donnelly, Christl A.; Lessler, Justin; Fraser, Christophe; Al-Barrak, Ali; Ferguson, Neil M.

    2016-01-01

    With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain. PMID:27457935

  14. Unraveling the drivers of MERS-CoV transmission.

    PubMed

    Cauchemez, Simon; Nouvellet, Pierre; Cori, Anne; Jombart, Thibaut; Garske, Tini; Clapham, Hannah; Moore, Sean; Mills, Harriet Linden; Salje, Henrik; Collins, Caitlin; Rodriquez-Barraquer, Isabel; Riley, Steven; Truelove, Shaun; Algarni, Homoud; Alhakeem, Rafat; AlHarbi, Khalid; Turkistani, Abdulhafiz; Aguas, Ricardo J; Cummings, Derek A T; Van Kerkhove, Maria D; Donnelly, Christl A; Lessler, Justin; Fraser, Christophe; Al-Barrak, Ali; Ferguson, Neil M

    2016-08-01

    With more than 1,700 laboratory-confirmed infections, Middle East respiratory syndrome coronavirus (MERS-CoV) remains a significant threat for public health. However, the lack of detailed data on modes of transmission from the animal reservoir and between humans means that the drivers of MERS-CoV epidemics remain poorly characterized. Here, we develop a statistical framework to provide a comprehensive analysis of the transmission patterns underlying the 681 MERS-CoV cases detected in the Kingdom of Saudi Arabia (KSA) between January 2013 and July 2014. We assess how infections from the animal reservoir, the different levels of mixing, and heterogeneities in transmission have contributed to the buildup of MERS-CoV epidemics in KSA. We estimate that 12% [95% credible interval (CI): 9%, 15%] of cases were infected from the reservoir, the rest via human-to-human transmission in clusters (60%; CI: 57%, 63%), within (23%; CI: 20%, 27%), or between (5%; CI: 2%, 8%) regions. The reproduction number at the start of a cluster was 0.45 (CI: 0.33, 0.58) on average, but with large SD (0.53; CI: 0.35, 0.78). It was >1 in 12% (CI: 6%, 18%) of clusters but fell by approximately one-half (47% CI: 34%, 63%) its original value after 10 cases on average. The ongoing exposure of humans to MERS-CoV from the reservoir is of major concern, given the continued risk of substantial outbreaks in health care systems. The approach we present allows the study of infectious disease transmission when data linking cases to each other remain limited and uncertain. PMID:27457935

  15. MERS-CoV Antibodies in Humans, Africa, 2013–2014

    PubMed Central

    Liljander, Anne; Meyer, Benjamin; Jores, Joerg; Müller, Marcel A.; Lattwein, Erik; Njeru, Ian; Bett, Bernard; Corman, Victor Max

    2016-01-01

    Dromedaries in Africa and elsewhere carry the Middle East respiratory syndrome coronavirus (MERS-CoV). To search for evidence of autochthonous MERS-CoV infection in humans, we tested archived serum from livestock handlers in Kenya for MERS-CoV antibodies. Serologic evidence of infection was confirmed for 2 persons sampled in 2013 and 2014. PMID:27071076

  16. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  17. Analysis of the global free infra-gravity wave climate for the SWOT mission, and preliminary results of numerical modelling

    NASA Astrophysics Data System (ADS)

    Rawat, A.; Aucan, J.; Ardhuin, F.

    2012-12-01

    All sea level variations of the order of 1 cm at scales under 30 km are of great interest for the future Surface Water Ocean Topography (SWOT) satellite mission. That satellite should provide high-resolution maps of the sea surface height for analysis of meso to sub-mesoscale currents, but that will require a filtering of all gravity wave motions in the data. Free infragravity waves (FIGWs) are generated and radiate offshore when swells and/or wind seas and their associated bound infragravity waves impact exposed coastlines. Free infragravity waves have dominant periods comprised between 1 and 10 minutes and horizontal wavelengths of up to tens of kilometers. Given the length scales of the infragravity waves wavelength and amplitude, the infragravity wave field will can a significant fraction the signal measured by the future SWOT mission. In this study, we analyze the data from recovered bottom pressure recorders of the Deep-ocean Assessment and Reporting of Tsunami (DART) program. This analysis includes data spanning several years between 2006 and 2010, from stations at different latitudes in the North and South Pacific, the North Atlantic, the Gulf of Mexico and the Caribbean Sea. We present and discuss the following conclusions: (1) The amplitude of free infragravity waves can reach several centimeters, higher than the precision sought for the SWOT mission. (2) The free infragravity signal is higher in the Eastern North Pacific than in the Western North Pacific, possibly due to smaller incident swell and seas impacting the nearby coastlines. (3) Free infragravity waves are higher in the North Pacific than in the North Atlantic, possibly owing to different average continental shelves configurations in the two basins. (4) There is a clear seasonal cycle at the high latitudes North Atlantic and Pacific stations that is much less pronounced or absent at the tropical stations, consistent with the generation mechanism of free infragravity waves. Our numerical model

  18. Cubesat Gravity Field Mission

    NASA Astrophysics Data System (ADS)

    Burla, Santoshkumar; Mueller, Vitali; Flury, Jakob; Jovanovic, Nemanja

    2016-04-01

    CHAMP, GRACE and GOCE missions have been successful in the field of satellite geodesy (especially to improve Earth's gravity field models) and have established the necessity towards the next generation gravity field missions. Especially, GRACE has shown its capabilities beyond any other gravity field missions. GRACE Follow-On mission is going to continue GRACE's legacy which is almost identical to GRACE mission with addition of laser interferometry. But these missions are not only quite expensive but also takes quite an effort to plan and to execute. Still there are few drawbacks such as under-sampling and incapability of exploring new ideas within a single mission (ex: to perform different orbit configurations with multi satellite mission(s) at different altitudes). The budget is the major limiting factor to build multi satellite mission(s). Here, we offer a solution to overcome these drawbacks using cubesat/ nanosatellite mission. Cubesats are widely used in research because they are cheaper, smaller in size and building them is easy and faster than bigger satellites. Here, we design a 3D model of GRACE like mission with available sensors and explain how the Attitude and Orbit Control System (AOCS) works. The expected accuracies on final results of gravity field are also explained here.

  19. [Radiation risk of malignant tumors in cosmonauts over life time as a result of participation in interplanetary and orbital missions].

    PubMed

    Shafirkin, A V; Venediktova, V P

    2000-01-01

    The paper considers model concepts of cell blast-transformation and oncogenesis in humans consequent to ionizing irradiation with varying dose rates and lengths of exposure. Presented are data of epidemiologic studies of oncologic risks for different organs and body tissues at different ages in a year since exposure calculated per a unit of absorbed dose (1 cGy). Probability of tumor development in males of different age due to chronic irradiation of various lengths was determined per a dose unit. Based on these data and with regard for possible dose loads on interplanetary and orbital crews, oncologic risk for cosmonauts was calculated in terms of life time. The dependence of radiation-induced oncologic risks on type and duration of space mission, shielding thickness, and solar cycle was analyzed. The authors compare values of the total radiation risk and oncologic risk for cosmonauts launched at various ages. PMID:10732188

  20. Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Calle, C. I.; Mantovani, J. G.; Buehler, M. G.; Nowicki, A. W.; Ritz, M.

    2004-01-01

    The success of the recent rover missions to Mars has stressed the importance of acquiring the maximum amount of geological information with the least amount of data possible. We have designed, tested and implemented special sensors mounted on a rover s wheel capable of detecting minute changes in surface topology thus eliminating the need for specially- made science platforms. These sensors, based on the previously designed, flight qualified Mars Environmental Compatibility Assessment (MECA) Electrometer, measure the static electricity (triboelectricity) generated between polymer materials and the Martian regolith during rover transverses. The sensors are capable of detecting physical changes in the soil that may not be detectable by other means, such as texture, size and moisture content. Although triboelectricity is a surface phenomenon, the weight of a rover will undoubtedly protrude the sensors below the dust covered layers, exposing underlying regolith whose properties may not be detectable through other means.

  1. Mercury's Surface-Bounded Exosphere as Seen from Orbit during the MESSENGER Mission: Mercury Atmospheric and Surface Composition Spectrometer Results

    NASA Astrophysics Data System (ADS)

    McClintock, William E.; Burger, Matthew; Cassidy, Timothy; Killen, Rosemary; Merkel, Aimee; Sarantos, Menelaos; Vervack, Ronald

    2016-04-01

    The Mercury Atmospheric and Surface Composition Spectrometer (MASCS), on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, conducted orbital observations of Mercury's dayside and nightside exosphere from 29 March 2011 to the end of the mission on 30 April 2015. Over slightly more than four Earth-years, MASCS measured emission profiles versus altitude for calcium (Ca), sodium (Na), and magnesium (Mg) at a daily cadence. These species exhibit different spatial distributions, suggesting distinct source processes. MASCS observed seasonal variations in all three species that are remarkably repeatable from one Mercury year to the next, and did so consistently during the entire 17-Mercury-year duration of the orbital phase of the mission. Whereas MASCS has characterized the seasonal variation, it has provided, at best, only weak evidence for the episodic behavior observed in ground-based studies of Na. Joint analyses of MASCS observations and surface precipitation patterns for energetic particles inferred from observations by the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER have not yielded clear correlations. This lack of correlation may be due in part to the MASCS observational geometries. MASCS has conducted a number of searches for other, weakly emitting species. Hydrogen data from the orbital phase are consistent with profiles observed during MESSENGER's flybys of Mercury. Oxygen detections have proven elusive, and the previously reported observation with a brightness of 4 R may only be an upper limit. Recent analysis of weak species data indicates that manganese (Mn), aluminum (Al), and ionized calcium (Ca+) are present in the exosphere.

  2. Rock and Soil Physical Properties at the MER Gusev Crater and Meridiani Planum Landing Sites

    NASA Astrophysics Data System (ADS)

    Richter, L.; Arvidson, R.; Bell, J.; Cabrol, N.; Gorevan, S.; Greeley, R.; Herkenhoff, K.; Ming, D.; Sullivan, R.; Mer Athena Science Team

    Following the successful landings of both Mars Exploration Rover (MER) vehicles at Gusev Crater and Meridiani Planum, respectively, their Athena suite of instruments is being used to study the geologic history of these two very different landing sites on Mars that had been selected on the basis of showing different types of evidence for aqueous processes in the planet's past. Utilizing the on-board instruments as well as the rovers' mobility system, a wide range of physical properties investigations is carried out as well -- the subject of this abstract - that provide additional information on the geology and processes at the sites. Results of the mission in general as well as of the physical properties studies thus far greatly exceed expectations in that observations and measurements by both vehicles show a rich variety in materials and processes: the Gusev site in the vicinity of the lander is remarkably flat and generally devoid of large rocks along traverses up to the time of this writing (˜ Sol 50) and suggestive of a deflated surface with generally only thin veneers of bright dust while exhibiting evidence of a widespread occurrence of a crust from cemented fines that has been observed to fail in the form of blocky clods when disturbed by vehicle rolling action; numerous small and shallow depressions -- presumably created by impacts - are observed at the site which are infilled with bright, fine-grained material that likewise appears indurated and which was studied by a trenching experiment; small ripple bedforms are scattered across the site and were characterized in terms of particle size distributions. At the Meridiani site, studies so far -- up to ˜ Sol 33 -- have focussed on soils and the rock outcrop encountered within the ˜ 20 m diameter crater that the spacecraft came to rest in: from a physical properties point of view, a mantle of dark, well-sorted, apparently basaltic sand with small to moderate cohesion has been of interest -- and has been

  3. ROCK AND SOIL PHYSICAL PROPERTIES AT THE MER GUSEV CRATER AND MERIDIANI PLANUM LANDING SITES

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Richter, L.; Arvidson, R.; Bell, J.; Cabrol, N.; Gorevan, S.; Greeley, R.; Herkenhoff, K.

    2006-01-01

    Following the successful landings of both Mars Exploration Rover (MER) vehicles at Gusev Crater and Meridiani Planum, respectively, their Athena suite of instruments is being used to study the geologic history of these two very different landing sites on Mars that had been selected on the basis of showing different types of evidence for aqueous processes in the planet s past. Utilizing the on-board instruments as well as the rovers mobility system, a wide range of physical properties investigations is carried out as well - the subject of this abstract - that provide additional information on the geology and processes at the sites. Results of the mission in general as well as of the physical properties studies thus far greatly exceed expectations in that observations and measurements by both vehicles show a rich variety in materials and processes: the Gusev site in the vicinity of the lander is remarkably flat and generally devoid of large rocks along traverses up to the time of this writing (approx.Sol 50) and suggestive of a deflated surface with generally only thin veneers of bright dust while exhibiting evidence of a widespread occurrence of a crust from cemented fines that has been observed to fail in the form of blocky clods when disturbed by vehicle rolling action; numerous small and shallow depressions - presumably created by impacts - are observed at the site which are infilled with bright, fine-grained material that likewise appears indurated and which was studied by a trenching experiment; small ripple bedforms are scattered across the site and were characterized in terms of particle size distributions. At the Meridiani site, studies so far - up to approx.Sol 33 - have focussed on soils and the rock outcrop encountered within the approx.20 m diameter crater that the spacecraft came to rest in: from a physical properties point of view, a mantle of dark, well-sorted, apparently basaltic sand with small to moderate cohesion has been of interest - and has

  4. Combined EDL-Mobility Planning for Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kuwata, Yoshiaki; Balaram, Bob

    2011-01-01

    This paper presents an analysis framework for planetary missions that have coupled mobility and EDL (Entry-Descent-Landing) systems. Traditional systems engineering approaches to mobility missions such as MERs (Mars Exploration Rovers) and MSL (Mars Science Laboratory) independently study the EDL system and the mobility system, and does not perform explicit trade-off between them or risk minimization of the overall system. A major challenge is that EDL operation is inherently uncertain and its analysis results such as landing footprint are described using PDF (Probability Density Function). The proposed approach first builds a mobility cost-to-go map that encodes the driving cost of any point on the map to a science target location. The cost could include variety of metrics such as traverse distance, time, wheel rotation on soft soil, and closeness to hazards. It then convolves the mobility cost-to-go map with the landing PDF given by the EDL system, which provides a histogram of driving cost, which can be used to evaluate the overall risk of the mission. By capturing the coupling between EDL and mobility explicitly, this analysis framework enables quantitative tradeoff between EDL and mobility system performance, as well as the characterization of risks in a statistical way. The simulation results are presented with a realistic Mars terrain data

  5. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NASA Astrophysics Data System (ADS)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  6. Hyperfiltration wash water recovery subsystem - Design and test results. [for extended mission spacecraft such as space stations

    NASA Technical Reports Server (NTRS)

    Reysa, R. P.; Price, D. F.; Olcott, T.; Gaddis, J. L.

    1983-01-01

    The Hyperfiltration Wash Water Recovery (HWWR) subsystem, designed to offer low-power high-volume wash water purification for extended mission spacecraft, is discussed in terms of preprototype design and configuration. Heated wash water collected from the shower, hand wash, and laundry flows into a temperature-controlled (374 K) waste storage tank. Two parallel 25 micron absolute filters at the tank outlet remove large particles from the feed stream. A positive displacement feed pump delivers wash water to the hyperfiltration module at a constant flow rate of 0.20 lpm with discharge pressure variations from 4181-7239 Kpa. The hyperfiltration membrane module is a single-pass design including 36 porous stainless steel tubes, and is designed to provide an approximate water recovery rate of 90 percent. Permeate and brine water flows are monitored by flow meters, and removal of urea and ammonia is achieved by adding 15 percent NaOCl solution to the permeate fluid stream. An alternate module design using two diameters of tubing (allowing a smaller pressure drop and a larger membrane area) gave a superior predicted performance over the first module with larger tubing throughout.

  7. Survival of microorganisms in space protected by meteorite material: results of the experiment 'EXOBIOLOGIE' of the PERSEUS mission.

    PubMed

    Rettberg, P; Eschweiler, U; Strauch, K; Reitz, G; Horneck, G; Wanke, H; Brack, A; Barbier, B

    2002-01-01

    During the early evolution of life on Earth, before the formation of a protective ozone layer in the atmosphere, high intensities of solar UV radiation of short wavelengths could reach the surface of the Earth. Today the full spectrum of solar UV radiation is only experienced in space, where other important space parameters influence survival and genetic stability additionally, like vacuum, cosmic radiation, temperature extremes, microgravity. To reach a better understanding of the processes leading to the origin, evolution and distribution of life we have performed space experiments with microorganisms. The ability of resistant life forms like bacterial spores to survive high doses of extraterrestrial solar UV alone or in combination with other space parameters, e.g. vacuum, was investigated. Extraterrestrial solar UV was found to have a thousand times higher biological effectiveness than UV radiation filtered by stratospheric ozone concentrations found today on Earth. The protective effects of anorganic substances like artificial or real meteorites were determined on the MIR station. In the experiment EXOBIOLOGIE of the French PERSEUS mission (1999) it was found that very thin layers of anorganic material did not protect spores against the deleterious effects of energy-rich UV radiation in space to the expected amount, but that layers of UV radiation inactivated spores serve as a UV-shield by themselves, so that a hypothetical interplanetary transfer of life by the transport of microorganisms inside rocks through the solar system cannot be excluded, but requires the shielding of a substantial mass of anorganic substances.

  8. Protection of rat liver against hepatic ischemia-reperfusion injury by a novel selenocysteine-containing 7-mer peptide.

    PubMed

    Jiang, Qianqian; Pan, Yu; Cheng, Yupeng; Li, Huiling; Li, Hui

    2016-09-01

    Hepatic ischemia-reperfusion (I-R) injury causes acute organ damage or dysfunction, and remains a problem for liver transplantation. In the I-R phase, the generation of reactive oxygen species aggravates the injury. In the current study, a novel selenocysteine-containing 7‑mer peptide (H-Arg-Sec-Gly-Arg-Asn-Ala-Gln-OH) was constructed to imitate the active site of an antioxidant enzyme, glutathione peroxidase (GPX). The 7‑mer peptide which has a lower molecular weight, and improved water‑solubility, higher stability and improved cell membrane permeability compared with other GPX mimics. Its GPX activity reached 13 U/µmol, which was 13 times that of ebselen (a representative GPX mimic). The effect of this GPX mimic on I‑R injury of the liver was assessed in rats. The 7‑mer peptide significantly inhibited the increase in serum hepatic amino‑transferases, tissue malondialdehyde, nitric oxide contents, myeloperoxidase activity and decrease of GPX activity compared with I‑R tissue. Following treatment with the 7‑mer peptide, the expression of B‑cell CLL/lymphoma‑2 (Bcl‑2) was significantly upregulated at the mRNA and protein level compared with the I‑R group, as determined by reverse transcription‑polymerase chain reaction and immunohistochemistry, respectively. By contrast, Bcl‑2 associated X protein (Bax) was downregulated by the 7‑mer peptide compared the I‑R group. Histological and ultrastructural changes of the rat liver tissue were also compared among the experimental groups. The results of the current study suggest that the 7‑mer peptide protected the liver against hepatic I‑R injury via suppression of oxygen‑derived free radicals and regulation of Bcl‑2 and Bax expression, which are involved in the apoptosis of liver cells. The findings of the present study will further the investigation of the 7-mer peptide as an effective therapeutic agent in hepatic I-R injury. PMID:27431272

  9. Diminishing return for increased Mappability with longer sequencing reads: implications of the k-mer distributions in the human genome

    PubMed Central

    2014-01-01

    Background The amount of non-unique sequence (non-singletons) in a genome directly affects the difficulty of read alignment to a reference assembly for high throughput-sequencing data. Although a longer read is more likely to be uniquely mapped to the reference genome, a quantitative analysis of the influence of read lengths on mappability has been lacking. To address this question, we evaluate the k-mer distribution of the human reference genome. The k-mer frequency is determined for k ranging from 20 bp to 1000 bp. Results We observe that the proportion of non-singletons k-mers decreases slowly with increasing k, and can be fitted by piecewise power-law functions with different exponents at different ranges of k. A slower decay at greater values for k indicates more limited gains in mappability for read lengths between 200 bp and 1000 bp. The frequency distributions of k-mers exhibit long tails with a power-law-like trend, and rank frequency plots exhibit a concave Zipf’s curve. The most frequent 1000-mers comprise 172 regions, which include four large stretches on chromosomes 1 and X, containing genes of biomedical relevance. Comparison with other databases indicates that the 172 regions can be broadly classified into two types: those containing LINE transposable elements and those containing segmental duplications. Conclusion Read mappability as measured by the proportion of singletons increases steadily up to the length scale around 200 bp. When read length increases above 200 bp, smaller gains in mappability are expected. Moreover, the proportion of non-singletons decreases with read lengths much slower than linear. Even a read length of 1000 bp would not allow the unique alignment of reads for many coding regions of human genes. A mix of techniques will be needed for efficiently producing high-quality data that cover the complete human genome. PMID:24386976

  10. Synthesis and degradation of the mRNA of the Tn21 mer operon.

    PubMed

    Gambill, B D; Summers, A O

    1992-05-20

    The mercury resistance locus encoded by Tn21 on the monocopy IncFII plasmid R100 (merTn21) consists of a metal-responsive activator/repressor, merR, which controls initiation of a polycistronic message that includes genes for the uptake (merTPC) and reduction (merA) of Hg2+ and merD, which may also play a minor regulatory role. Comparison of the relative abundance of the 5' and 3' ends of the merTPCAD transcript revealed a strong transcriptional gradient in the operon, consistent with previous observations of lower relative abundance of the more promoter-distal gene products. In vivo mRNA degradation rates varied only slightly for the different genes: however, the rates of mRNA synthesis varied considerably from the beginning to the end of the operon. Specifically, mRNA corresponding to the promoter-proximal genes, merTPC, achieved a maximum in vivo synthesis rate between 60 and 120 seconds after induction; this rate was maintained for approximately ten minutes. In contrast, the synthesis rates of mRNA corresponding to the promoter-distal genes merA and merD, were initially fivefold lower than the rates of the promoter-proximal genes for the first five minutes after induction, and then rose gradually to approximately 50% of the merTPC synthesis rates. These data suggested that early after induction only 20% of the transcripts initiating at merT proceed beyond merC. At later times after induction approximately 50% of the transcripts proceed beyond merC. Nuclease end mapping did not reveal any discrete termination events in the merPCA region, thus, premature termination may occur at many sites.

  11. These are not the k-mers you are looking for: efficient online k-mer counting using a probabilistic data structure.

    PubMed

    Zhang, Qingpeng; Pell, Jason; Canino-Koning, Rosangela; Howe, Adina Chuang; Brown, C Titus

    2014-01-01

    K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data structures such as hash tables, suffix arrays, and trie structures, khmer relies entirely on a simple probabilistic data structure, a Count-Min Sketch. The Count-Min Sketch permits online updating and retrieval of k-mer counts in memory which is necessary to support online k-mer analysis algorithms. On sparse data sets this data structure is considerably more memory efficient than any exact data structure. In exchange, the use of a Count-Min Sketch introduces a systematic overcount for k-mers; moreover, only the counts, and not the k-mers, are stored. Here we analyze the speed, the memory usage, and the miscount rate of khmer for generating k-mer frequency distributions and retrieving k-mer counts for individual k-mers. We also compare the performance of khmer to several other k-mer counting packages, including Tallymer, Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the effectiveness of profiling sequencing error, k-mer abundance trimming, and digital normalization of reads in the context of high khmer false positive rates. khmer is implemented in C++ wrapped in a Python interface, offers a tested and robust API, and is freely available under the BSD license at github.com/ged-lab/khmer.

  12. Summary of the results from the Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment (LADEE) Mission

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly

    2016-07-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission (9/2013 - 4/2014) discovered a permanently present dust cloud engulfing the Moon. The size, velocity, and density distributions of the dust particles are consistent with ejecta clouds generated from the continual bombardment of the lunar surface by sporadic interplanetary dust particles. Intermittent density enhancements were observed during several of the annual meteoroid streams, especially during the Geminids. LDEX found no evidence of the expected density enhancements over the terminators where electrostatic processes were predicted to efficiently loft small grains. LDEX is an impact ionization dust detector, it captures coincident signals and full waveforms to reliably identify dust impacts. LDEX recorded average impact rates of approximately 1 and 0.1 hits/minute of particles with impact charges of q > 0.5 and q > 5 fC, corresponding to particles with radii of a > 0.3 and a> 0.7~μm, respectively. Several of the yearly meteor showers generated sustained elevated levels of impact rates, especially if their radiant direction intersected the lunar surface near the equatorial plane, greatly enhancing the probability of crossing their ejecta plumes. The characteristic velocities of dust particles in the cloud are on the order of ~100 m/s which we neglect compared to the typical spacecraft speeds of 1.6 km/s. Hence, with the knowledge of the spacecraft orbit and attitude, impact rates can be directly turned into particle densities as functions of time and position. LDEX observations are the first to identify the ejecta clouds around the Moon sustained by the continual bombardment of interplanetary dust particles. Most of the dust particles generated in impacts have insufficient energy to escape and follow ballistic orbits, returning to the surface, 'gardening' the regolith. Similar ejecta clouds are expected to engulf all airless planetary objects, including

  13. The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results

    NASA Astrophysics Data System (ADS)

    Jacob, D. J.; Crawford, J. H.; Maring, H.; Clarke, A. D.; Dibb, J. E.; Emmons, L. K.; Ferrare, R. A.; Hostetler, C. A.; Russell, P. B.; Singh, H. B.; Thompson, A. M.; Shaw, G. E.; McCauley, E.; Pederson, J. R.; Fisher, J. A.

    2010-06-01

    The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The June-July deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5-10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.

  14. Successful Mars remote sensors, MO THEMIS and MER Mini-TES

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Christensen, Phil

    2006-10-01

    This paper describes results of the calibration of the miniature thermal emission spectrometer (Mini-TES) and the thermal emission imaging system (THEMIS) built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman et al., 2003) for mission description and instrument designs (Schueler et al., 2003). A major goal of the Mars exploration program is to help determine whether life ever existed on Mars via detailed in situ studies and surface sample return. It is essential to identify landing sites with the highest probability of containing samples indicative of early pre-biotic or biotic environments. Of particular interest are aqueous and/or hydrothermal environments in which life could have existed, or regions of current near-surface water or heat sources [Exobiology_Working_Group, 1995, An Exobiological Strategy for Mars Exploration, NASA Headquarters]. The search requires detailed geologic mapping and accurate interpretations of site composition and history in a global context. THEMIS and Mini-TES were designed to do this and builds upon a wealth of data from previous experiments. Previous experiments include the Mariner 6/7 Mars infrared radiometer (MIR) and infrared spectrometer [G.C. Pimentel, P.B. Forney, K.C. Herr, Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer, Journal of Geophysical Research 79(11) (1974) 1623 1634], the Mariner 9 infrared interferometer spectrometer (IRIS) [B. Conrath, R. Curran, R. Hanel, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, J. Walker, Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, Journal of Geophysical Research 78 (1973) 4267 4278], the Viking infrared thermal mapper (IRTM) [H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking

  15. Calculation of Operations Efficiency Factors for Mars Surface Missions

    NASA Technical Reports Server (NTRS)

    Laubach, Sharon

    2014-01-01

    The duration of a mission--and subsequently, the minimum spacecraft lifetime--is a key component in designing the capabilities of a spacecraft during mission formulation. However, determining the duration is not simply a function of how long it will take the spacecraft to execute the activities needed to achieve mission objectives. Instead, the effects of the interaction between the spacecraft and ground operators must also be taken into account. This paper describes a method, using "operations efficiency factors", to account for these effects for Mars surface missions. Typically, this level of analysis has not been performed until much later in the mission development cycle, and has not been able to influence mission or spacecraft design. Further, the notion of moving to sustainable operations during Prime Mission--and the effect that change would have on operations productivity and mission objective choices--has not been encountered until the most recent rover missions (MSL, the (now-cancelled) joint NASA-ESA 2018 Mars rover, and the proposed rover for Mars 2020). Since MSL had a single control center and sun-synchronous relay assets (like MER), estimates of productivity derived from MER prime and extended missions were used. However, Mars 2018's anticipated complexity (there would have been control centers in California and Italy, and a non-sun-synchronous relay asset) required the development of an explicit model of operations efficiency that could handle these complexities. In the case of the proposed Mars 2018 mission, the model was employed to assess the mission return of competing operations concepts, and as an input to component lifetime requirements. In this paper we provide examples of how to calculate the operations efficiency factor for a given operational configuration, and how to apply the factors to surface mission scenarios. This model can be applied to future missions to enable early effective trades between operations design, science mission

  16. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli

    SciTech Connect

    Kusano, Tomonobu Akita Prefectural College of Agriculture ); Ji, Guangyong; Silver, S. ); Inoue, Chihiro )

    1990-05-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of {sup 203}Hg{sup 2+}. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disrupted cells. The Thiobacillus merC transport function was compared with transport via the merT-merP system of plasmid pDU1358. Both systems, cloned and expressed in E. coli, governed enhanced uptake of {sup 203}Hg{sup 2+} in a temperature- and concentration-dependent fashion. Uptake via MerT-MerP was greater and conferred greater hypersensitivity to Hg{sup 2+} than did uptake with MerC. Mercury uptake was inhibited by N-ethylmaleimide but not by EDTA. Ag{sup +} salts inhibited mercury uptake by the MerT-MerP system but did not inhibit uptake via MerC. Radioactive mercury accumulated by the MerT-MerP and by the MerC systems was exchangeable with nonradioactive Hg{sup 2+}.

  17. Remote Robotic Geology: Learning from the MER-FIDO Field Test Site

    NASA Astrophysics Data System (ADS)

    Anderson, R. C.; Dohm, J. M.; Haldemann, A. F.; Bass, D. S.; Huntsberger, T. L.

    2002-12-01

    Understanding the geology of a region from a robotic platform can be a challenging and difficult task. In order to prepare the team of investigators and engineers for the upcoming 2003 Mars Exploration Rover (MER) Mission, a "blind" rover field test was performed August 10 - 19, 2002, using the Field Integrated Design and Operations (FIDO) Rover. The field site, which is located near Gray Mountain Arizona (approximately 40 miles north of Flagstaff), was chosen because it: (1) maximizes science return and permits rover trafficability, (2) is easily accessed via a well-maintained mining road, (3) occurs north of Flagstaff, Arizona, where seasonal temperatures are adequate for rover operations and climate records show minimal rainfall, (4) lacks vegetation (a very difficult variable for Earth), and (5) contains diverse geological terrains similar to what might be encountered on Mars, including claystones, siltsones, mudstones, and sandstones of the Shinarump Member of the Chinle Formation. that crop out among fluvially carved drainages, fluvial and eolian deposits that partly blanket the drainage floors, and cobbles and boulders of diverse petrology and geochemistry (e.g., basalt, chert, sandstone, limestone, metamorphic). The goal of the FIDO test was to teach the MER Science Team the techniques involved in conducting a geologic investigation with a remote rover. Inherent disadvantages associated with remote robotic exploration include a limited time-associated visibility to the site. This disadvantage is somewhat offset by the availability of instruments on the rover that might ordinarily be available to a geologist only in a laboratory setting. This talk will further explore the coupling of a remote robotic platform with what is known about the field site to provide insight into future robotic exploration of planetary locales.

  18. Comparing Apollo and Mars Exploration Rover (MER)/phoenix operations paradigms for human exploration during NASA Desert-RATS science operations

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Cohen, B. A.; Ming, D. W.; Eppler, D. B.

    2013-10-01

    The Desert Research and Technology Studies (D-RATS) field tested two models of human-in-the-loop remote field geology: one based on the Apollo science backroom that integrated tactical and strategic decisions, and one that separated tactical and strategic processes as utilized during the Mars Exploration Rovers (MER) and Mars Phoenix Scout missions. The 2010 D-RATS field test was the first attempt at integrating best practices from these two models, to determine how best to maximize science return from future missions. The Apollo model was utilized in 2008 and 2009 as a way to integrate science into field analog studies; the model allowed for real time communications between the crew on the surface and the scientists in the backroom. This model greatly improved efficiency of field operations and scientific return, but did not allow sufficient time for hypotheses to mature to the point where they could inform operations. The MER/Phoenix model, adapted for the 2010 D-RATS test, divided the responsibilities and processes of tactical science and strategic science. This division provided opportunities to discuss science results in greater detail so that the overall planning of science observations could be iterative rather than static. However, because of the nearly complete separation of the two science teams, there was a great deal of repeated effort as the strategic team had no prior knowledge of the tactical process and the observations that led to certain tactical decisions. Lessons learned from 2010 D-RATS science operations include: (1) well-trained geologists on the crew and a science backroom with which that crew can interact are both critical components for maximizing science return; (2) sufficient time or another mechanism that increases time available to be spent on science analysis must be built into the system to allow free rein to the scientific process; (3) data flow must be improved so that time is not wasted in repetitive review of acquired datasets

  19. The Miniaturized Mossbauer Spectrometer MIMOS II for the Asteroid Redirect Mission (ARM): Quantitative Iron Mineralogy and Oxidation States

    NASA Technical Reports Server (NTRS)

    Schroder, Christian; Klingelhofer, Gostar; Morris, Richard V.; Yen, Albert S.; Renz, Franz; Graff, Trevor G.

    2016-01-01

    The miniaturized Mossbauer spectrometer MIMOS II is an off-the-shelf instrument, which has been successfully deployed during NASA's Mars Exploration Rover (MER) mission and was on-board the ESA/UK Beagle 2 Mars lander and the Russian Phobos-Grunt sample return mission. We propose to use a fully-qualified flight-spare MIMOS II instrument available from these missions for in situ asteroid characterization with the Asteroid Redirect Robotic Mission (ARRM).

  20. [Molecular diagnosis and phylogenetic analysis of the first MERS case in Turkey].

    PubMed

    Bayrakdar, Fatma; Altaş, Ayşe Başak; Korukluoğlu, Gülay; Topal, Selmur

    2015-07-01

    Coronaviruses (CoV) are enveloped, spherical, single-stranded positive-sense RNA viruses causing mainly respiratory and intestinal infections in animals and humans. Until recently five types of human coronaviruses (HCoV-OC43, HCoV-HKU1, HCoV-NL63, HCoV-229E, SARS-CoV) have been known, however a novel CoV has been identified in 2012 in Saudi Arabia. This virus, namely MERS-CoV (Middle East Respiratory Syndrome Coronavirus), was classified within Coronaviridae family, Coronavirinae sub-family, Betacoronavirus genus, clade C. It causes acute respiratory infections in humans and transmits via respiratory route and close contact between humans. The aim of this study was to present the first MERS case from Turkey identified by molecular methods and the results of viral sequence analysis. A 42-year-old male Turkish citizen who worked as an employee in Jeddah, Kingdom of Saudi Arabia, admitted to hospital with the complaints of fever and malaise on 25-26 September 2014. Since his symptoms went on and got worse, he returned to Turkey, and hospitalized in a hospital's intensive care unit in Hatay on 6th of October with the symptoms of fever, malaise, sweating, cough and respiratory distress. He transferred to a university hospital on 8th of October and died on 11th October. The tracheal aspirate sample obtained before he died was sent to Virology Unit of Reference Laboratories of the Turkish Public Health Institution. Detection of viral RNA was performed by using a commercial real-time PCR kit (hCoV-EMC Real-Time RT-PCR, Fast Track Diagnostics, Luxembourg) targeting the MERS-CoV E protein (upE), ORF1a and ORF1b gene regions. The reference method Superscript III One Step RT-PCR (Invitrogen, USA) recommended by World Health Organization (WHO) was also applied for confirmation. Both of the methods yielded positive results for MERS-CoV RNA. For the amplification of nucleocapsid (N) and RNA-dependent RNA polymerase (RdRp) genes, hemi-nested PCR (Invitrogen, ABD) was conducted

  1. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  2. Combination chemotherapy-radiotherapy with and without the methanol-extraction residue of bacillus Calmette-Guerin (MER) in small cell carcinoma of the lung: a prospective randomized trial of the Piedmont Oncology Association

    SciTech Connect

    Jackson, D.V.; Paschal, B.R.; Ferree, C.

    1982-07-01

    The effect of addition of the nonspecific immunostimulant, MER, to combined treatment with chemotherapy and radiotherapy in small cell carcinoma of the lung was evaluated in a prospective randomized trial involving 102 evaluable patients. Chemotherapy consisted of cyclophosphamide, Adriamycin, vincristine, methotrexate, and CCNU; and radiotherapy was administered to the primary lesion, mediastinum, supraclavicular areas, and whole brain. Of 47 patients administered MER 400 mcg intradermally every six weeks, 12 (26%) attained complete remission with a median survival of 22.9 months. Complete remission was observed in 17 (31%) of 55 patients who received no MER with a median survival of 20.0 months (p > 0.05). Survival greater than or equal to 2 years has been observed in five patients who received MER and two patients who did not receive MER. The response rate and duration, survival, and toxicity of the two treatment arms were similar with the exception of cutaneous and occasional systemic reaction to MER. MER as used in this study has not influenced the overall results of a combined modality treatment program for patients with small cell carcinoma of the lung.

  3. The Same Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) yet Different Outbreak Patterns and Public Health Impacts on the Far East Expert Opinion from the Rapid Response Team of the Republic of Korea.

    PubMed

    2015-12-01

    A Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) outbreak, the largest outbreak outside the Middle East in 2012, occurred in the Republic of Korea and resulted in a large number of cases, with 186 infected people, including 38 deaths. A Rapid Response Team (RRT) was appointed after a request from the Korean government on June 8, 2015 calling for specialists to manage and control the MERS-CoV outbreak. This report presents the opinion of the RRT who worked to manage this healthcare-associated MERS-CoV outbreak in Korea.

  4. The Same Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) yet Different Outbreak Patterns and Public Health Impacts on the Far East Expert Opinion from the Rapid Response Team of the Republic of Korea

    PubMed Central

    2015-01-01

    A Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) outbreak, the largest outbreak outside the Middle East in 2012, occurred in the Republic of Korea and resulted in a large number of cases, with 186 infected people, including 38 deaths. A Rapid Response Team (RRT) was appointed after a request from the Korean government on June 8, 2015 calling for specialists to manage and control the MERS-CoV outbreak. This report presents the opinion of the RRT who worked to manage this healthcare-associated MERS-CoV outbreak in Korea. PMID:26788408

  5. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  6. Mars Exploration Rover surface mission flight thermal performance

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Phillips, Charles J.; Sunada, Eric T.; Kinsella, Gary M.

    2005-01-01

    NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degree East longitude on January 4, 2004 (Squyres, et al., Dec. 2004)). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., August 2004) Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 4. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160 , Sol 398A).

  7. ÉmerGéantes: a new Global Climate Model to study the dynamics of Saturn's stratosphere - and beyond

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody; Fouchet, Thierry

    2013-04-01

    Recent observational programs, both spatial and ground-based, have revealed the complexity of the middle atmospheres of giant planets. In particular, maps of the temperature and of the distribution of trace species in the Saturn stratosphere have been obtained by the Cassini spacecraft with unprecedented details. These maps exhibit puzzling anomalies, which cannot be explained by current photochemical and radiative models (none of them includes dynamics), and which have been interpreted as the signature of large-scale or seasonal dynamical motions. Yet Saturn's global circulation remains weakly characterized. Furthermore, on Saturn and Jupiter, equatorial oscillations in the zonal wind and temperature field have recently been discovered and are reminiscent of the Earth's Quasi-Biennial Oscillation, a fundamental dynamical phenomenon. These oscillations thus appear to be a common dynamical phenomenon in very different planetary atmospheres. We will present the development of "ÉmerGéantes", a new global climate model for giant planets. This new model is based on the LMDz dynamical core, which has been successfully adapted to terrestrial planets and moons: the Earth, Mars, Venus, Titan, Triton/Pluton. Details on the numerical challenges, the adaptations needed to simulate gas giants, and the optimization of the radiative transfer computations will be presented, along with preliminary results. The aim of this project is study in detail the atmospheric circulation of giant planets by resolving atmospheric circulations in their stratosphere (and, possibly, in the future, the coupling between their troposphere and stratosphere). It will serve as a new tool to address fundamental questions in geophysical fluid dynamics, explore the giant planets circulation patterns, and better interpret current and future observations. This new GCM will first be focused on reproducing Saturn's climate, following the harvest of observations obtained by the Cassini mission. We plan to

  8. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia.

    PubMed

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-11-14

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67-87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32-36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  9. Aberrant Mer receptor tyrosine kinase expression contributes to leukemogenesis in acute myeloid leukemia

    PubMed Central

    Lee-Sherick, A B; Eisenman, K M; Sather, S; McGranahan, A; Armistead, P M; McGary, C S; Hunsucker, S A; Schlegel, J; Martinson, H; Cannon, C; Keating, A K; Earp, H S; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Acute myeloid leukemia (AML) continues to be extremely difficult to treat successfully, and the unacceptably low overall survival rates mandate that we assess new potential therapies to ameliorate poor clinical response to conventional therapy. Abnormal tyrosine kinase activation in AML has been associated with poor prognosis and provides strategic targets for novel therapy development. We found that Mer receptor tyrosine kinase was over-expressed in a majority of pediatric (29/36, 80%) and adult (10/10, 100%) primary AML patient blasts at the time of diagnosis, and 100% of patient samples at the time of relapse. Mer was also found to be expressed in 12 of 14 AML cell lines (86%). In contrast, normal bone marrow myeloid precursors expressed little to no Mer. Following AML cell line stimulation with Gas6, a Mer ligand, we observed activation of prosurvival and proliferative signaling pathways, including phosphorylation of ERK1/2, p38, MSK1, CREB, ATF1, AKT and STAT6. To assess the phenotypic role of Mer in AML, two independent short-hairpin RNA (shRNA) constructs were used to decrease Mer expression in the AML cell lines Nomo-1 and Kasumi-1. Reduction of Mer protein levels significantly increased rates of myeloblast apoptosis two to threefold in response to serum starvation. Furthermore, myeloblasts with knocked-down Mer demonstrated decreased colony formation by 67–87%, relative to control cell lines (P<0.01). NOD-SCID-gamma mice transplanted with Nomo-1 myeloblasts with reduced levels of Mer had a significant prolongation in survival compared with mice transplanted with the parental or control cell lines (median survival 17 days in parental and control cell lines, versus 32–36 days in Mer knockdown cell lines, P<0.0001). These data suggest a role for Mer in acute myeloid leukemogenesis and indicate that targeted inhibition of Mer may be an effective therapeutic strategy in pediatric and adult AML. PMID:23474756

  10. Exploring the GalMer database: bar properties and non-circular motions

    NASA Astrophysics Data System (ADS)

    Randriamampandry, T. H.; Deg, N.; Carignan, C.; Combes, F.; Spekkens, K.

    2016-10-01

    Context. We use Tree-SPH simulations from the GalMer database to characterize and quantify the non-circular motions induced by the presence of bar-like structures on the observed rotation curve of barred galaxies derived from empirical models of their line-of-sight velocity maps. The GalMer database consists of SPH simulations of galaxies spanning a wide range of morphological types and sizes. Aims: The aim is to compare the intrinsic velocities and bar properties from the simulations with those derived from pseudo-observations. This allows us to estimate the amount of non-circularity and to test the various methods used to derive the bar properties and rotation curves. Methods: The intrinsic velocities in the simulations are calculated from the gravitational forces whereas the observed rotation velocities are derived by applying the ROTCUR and DiskFit algorithms to well-resolved observations of intermediate-inclination, strongly barred galaxies. Results: Our results confirm that the tilted ring method implemented in ROTCUR systematically underestimates or overestimates the rotational velocities by up to 40 percent in the inner part of the galaxy when the bar is aligned with one of the symmetry axes for all the models. For the DiskFit analysis, we find that it produces unrealistic values for all the models used in this work when the bar is within approximately ten degrees of the major or minor axis.

  11. A lesson learned from Middle East respiratory syndrome (MERS) in Saudi Arabia.

    PubMed

    Al Shehri, Ali M

    2015-04-01

    Middle East respiratory syndrome (MERS) caused by novel Corona virus hit Kingdom of Saudi Arabia (KSA) and resulted in hundreds of mortality and morbidity, fears and psychosocial stress among population, economic loss and major political change at Ministry of Health (MoH). Although MERS discovered two years ago, confusion still exists about its origin, nature, and consequences. In 2003, similar virus (SARS) hit Canada and resulted in a reform of Canada's public health system and creation of a Canadian Agency for Public Health, similar to the US Centers for Disease Control (CDC). The idea of Saudi CDC is attractive and even "sexy" but it is not the best option. Experience and literature indicate that the best option for KSA is to revitalize national public health systems on the basis of comprehensive, continuing, and integrated primary health care (PHC) and public health (PH). This article proposes three initial, but essential, steps for such revitalization to take place: political will and support, integration of PHC and PH, and on-job professional programs for the workforce. In addition, current academic and training programs for PHC and PH should be revisited in the light of national vision and strategy that aim for high quality products that protect and promote healthy nation. Scientific associations, medical education research chair, and relevant academic bodies should be involved in the revitalization to ensure quality of process and outcomes. PMID:25803593

  12. Debate on MERS-CoV respiratory precautions: surgical mask or N95 respirators?

    PubMed Central

    Chung, Jasmine Shimin; Ling, Moi Lin; Seto, Wing Hong; Ang, Brenda Sze Peng; Tambyah, Paul Anantharajah

    2014-01-01

    Since the emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in mid-2012, there has been controversy over the respiratory precaution recommendations in different guidelines from various international bodies. Our understanding of MERS-CoV is still evolving. Current recommendations on infection control practices are heavily influenced by the lessons learnt from severe acute respiratory syndrome. A debate on respiratory precautions for MERS-CoV was organised by Infection Control Association (Singapore) and the Society of Infectious Disease (Singapore). We herein discuss and present the evidence for surgical masks for the protection of healthcare workers from MERS-CoV. PMID:25017402

  13. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein.

    PubMed

    Xia, Shuai; Liu, Qi; Wang, Qian; Sun, Zhiwu; Su, Shan; Du, Lanying; Ying, Tianlei; Lu, Lu; Jiang, Shibo

    2014-12-19

    The recent outbreak of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) infection has led to more than 800 laboratory-confirmed MERS cases with a high case fatality rate (∼35%), posing a serious threat to global public health and calling for the development of effective and safe therapeutic and prophylactic strategies to treat and prevent MERS-CoV infection. Here we discuss the most recent studies on the structure of the MERS-CoV spike protein and its role in virus binding and entry, and the development of MERS-CoV entry/fusion inhibitors targeting the S1 subunit, particularly the receptor-binding domain (RBD), and the S2 subunit, especially the HR1 region, of the MERS-CoV spike protein. We then look ahead to future applications of these viral entry/fusion inhibitors, either alone or in combination with specific and nonspecific MERS-CoV replication inhibitors, for the treatment and prevention of MERS-CoV infection. PMID:25451066

  14. Results of the joint utilization of laser integrated experiments flown on payload GAS-449 aboard Columbia mission 61-C

    NASA Technical Reports Server (NTRS)

    Muckerheide, M. C.

    1987-01-01

    The high peak power neodymium YAG laser and the HeNe laser aboard GAS-449 have demonstrated the survivability of the devices in the micro-gravity, cosmic radiation, thermal, and shock environment of space. Some pharmaceuticals and other materials flown in both the active and passive status have demonstrated reduction in volume and unusual spectroscopic changes. X-ray detectors have shown cosmic particle hits with accompanying destruction at their interaction points. Some scattering in the plates is in evidence. Some results of both active and passive experiments on board the GAS-449 payload are evaluated.

  15. Monitoring the formation of kernel-based topographic maps in a hybrid SOM-kMER model.

    PubMed

    Teh, Chee Siong; Lim, Chee Peng

    2006-09-01

    A new lattice disentangling monitoring algorithm for a hybrid self-organizing map-kernel-based maximum entropy learning rule (SOM-kMER) model is proposed. It aims to overcome topological defects owing to a rapid decrease of the neighborhood range over the finite running time in topographic map formation. The empirical results demonstrate that the proposed approach is able to accelerate the formation of a topographic map and, at the same time, to simplify the monitoring procedure.

  16. Mars mission science operations facilities design

    NASA Technical Reports Server (NTRS)

    Norris, Jeffrey S.; Wales, Roxana; Powell, Mark W.; Backes, Paul G.; Steinke, Robert C.

    2002-01-01

    A variety of designs for Mars rover and lander science operations centers are discussed in this paper, beginning with a brief description of the Pathfinder science operations facility and its strengths and limitations. Particular attention is then paid to lessons learned in the design and use of operations facilities for a series of mission-like field tests of the FIDO prototype Mars rover. These lessons are then applied to a proposed science operations facilities design for the 2003 Mars Exploration Rover (MER) mission. Issues discussed include equipment selection, facilities layout, collaborative interfaces, scalability, and dual-purpose environments. The paper concludes with a discussion of advanced concepts for future mission operations centers, including collaborative immersive interfaces and distributed operations. This paper's intended audience includes operations facility and situation room designers and the users of these environments.

  17. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.

    PubMed

    Møller, Annette K; Barkay, Tamar; Hansen, Martin A; Norman, Anders; Hansen, Lars H; Sørensen, Søren J; Boyd, Eric S; Kroer, Niels

    2014-01-01

    Bacterial reduction in Hg(2+) to Hg(0) , mediated by the mercuric reductase (MerA), is important in the biogeochemical cycling of Hg in temperate environments. Little is known about the occurrence and diversity of merA in the Arctic. Seven merA determinants were identified among bacterial isolates from High Arctic snow, freshwater and sea-ice brine. Three determinants in Bacteriodetes, Firmicutes and Actinobacteria showed < 92% (amino acid) sequence similarity to known merA, while one merA homologue in Alphaproteobacteria and 3 homologues from Betaproteobacteria and Gammaproteobacteria were > 99% similar to known merA's. Phylogenetic analysis showed the Bacteroidetes merA to be part of an early lineage in the mer phylogeny, whereas the Betaproteobacteria and Gammaproteobacteria merA appeared to have evolved recently. Several isolates, in which merA was not detected, were able to reduce Hg(2+) , suggesting presence of unidentified merA genes. About 25% of the isolates contained plasmids, two of which encoded mer operons. One plasmid was a broad host-range IncP-α plasmid. No known incompatibility group could be assigned to the others. The presence of conjugative plasmids, and an incongruent distribution of merA within the taxonomic groups, suggests horizontal transfer of merA as a likely mechanism for High Arctic microbial communities to adapt to changing mercury concentration.

  18. Structure and assembly of an augmented Sm-like archaeal protein 14-mer.

    PubMed

    Mura, Cameron; Phillips, Martin; Kozhukhovsky, Anna; Eisenberg, David

    2003-04-15

    To better understand the roles of Sm proteins in forming the cores of many RNA-processing ribonucleoproteins, we determined the crystal structure of an atypical Sm-like archaeal protein (SmAP3) in which the conserved Sm domain is augmented by a previously uncharacterized, mixed alpha/beta C-terminal domain. The structure reveals an unexpected SmAP3 14-mer that is perforated by a cylindrical pore and is bound to 14 cadmium (Cd(2+)) ions. Individual heptamers adopt either "apical" or "equatorial" conformations that chelate Cd(2+) differently. SmAP3 forms supraheptameric oligomers (SmAP3)(n = 7,14,28) in solution, and assembly of the asymmetric 14-mer is modulated by differential divalent cation-binding in apical and equatorial subunits. Phylogenetic and sequence analyses substantiate SmAP3s as a unique subset of SmAPs. These results distinguish SmAP3s from other Sm proteins and provide a model for the structure and properties of Sm proteins >100 residues in length, e.g., several human Sm proteins.

  19. Gas6 receptors Axl, Sky and Mer enhance platelet activation and regulate thrombotic responses.

    PubMed

    Gould, W R; Baxi, S M; Schroeder, R; Peng, Y W; Leadley, R J; Peterson, J T; Perrin, L A

    2005-04-01

    Gas6 (encoded by growth arrest-specific gene 6) is a vitamin-K dependent protein highly homologous to coagulation protein S that is secreted from platelet alpha-granules and has recently been demonstrated to participate in platelet thrombus formation. The current study evaluated the contribution of each of the three known Gas6 receptors (Axl, Sky and Mer) in human and mouse platelet function. Flow cytometry analyses confirmed that all three receptors are present on both human and mouse platelets. Pre-incubation of human platelets with either an anti-Gas6 antibody or blocking antibodies to Sky or Mer inhibited platelet aggregation and degranulation responses to both ADP and the PAR-1 activating peptide, SFLLRN, by more than 80%. In contrast, a stimulatory anti-Axl antibody increased activation responses to these agonists, suggesting a potentiating role for Gas6 in platelet activation. Moreover, in a mouse model of thrombosis, administration of Gas6 or Sky blocking antibodies resulted in a decrease in thrombus weight similar to clopidogrel but, unlike clopidogrel, produced no increase in template bleeding. Thus, Gas6 enhances platelet degranulation and aggregation responses through its known receptors, promoting platelet activation and mediating thrombus formation such that its inhibition prevents thrombosis without increasing bleeding. PMID:15733062

  20. MAVEN Primary Mission Results from the Imaging UltraViolet Spectrograph: Aurora, Meteor Showers, Dayglow and Corona

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas

    2016-07-01

    The Imaging Ultraviolet Spectrograph (IUVS) is one of nine science instruments aboard the Mars Atmosphere and Volatile and EvolutioN (MAVEN) spacecraft. Its payload is dedicated to exploring the upper atmosphere of Mars and understanding the magnitude and drivers of Mars' atmospheric escape rate. The instrument is among the most powerful spectrographs sent to another planet, with several key capabilities: (1) separate Far-UV & Mid-UV channels for stray light control, (2) a high resolution echelle mode to resolve deuterium and hydrogen emission, (3) internal instrument pointing and scanning capabilities to allow complete mapping and nearly continuous operation, and (4) optimization for airglow studies. I will present an overview of selected IUVS results, including: • The impact of Comet Siding Spring's tail on Mars' atmosphere; • The discovery of diffuse aurora at Mars, and its contrast with previously detected discrete aurora near crustal fields; • Significant seasonal and short-timescale variability in thermospheric dayglow emissions; • Global ozone maps spanning six months of seasonal evolution; and • Mapping of the Mars H and O coronas, to measure the escape rates of H and O and their variability.

  1. VARIATIONS IN SOLAR WIND FRACTIONATION AS SEEN BY ACE/SWICS AND THE IMPLICATIONS FOR GENESIS MISSION RESULTS

    SciTech Connect

    Pilleri, P.; Wiens, R. C.; Reisenfeld, D. B.; Zurbuchen, T. H.; Lepri, S. T.; Shearer, P.; Gilbert, J. A.; Steiger, R. von

    2015-10-10

    We use Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer (SWICS) elemental composition data to compare the variations in solar wind (SW) fractionation as measured by SWICS during the last solar maximum (1999–2001), the solar minimum (2006–2009), and the period in which the Genesis spacecraft was collecting SW (late 2001—early 2004). We differentiate our analysis in terms of SW regimes (i.e., originating from interstream or coronal hole flows, or coronal mass ejecta). Abundances are normalized to the low-first ionization potential (low-FIP) ion magnesium to uncover correlations that are not apparent when normalizing to high-FIP ions. We find that relative to magnesium, the other low-FIP elements are measurably fractionated, but the degree of fractionation does not vary significantly over the solar cycle. For the high-FIP ions, variation in fractionation over the solar cycle is significant: greatest for Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance ratios are examined as a function of SW speed, we find a strong correlation, with the remarkable observation that the degree of fractionation follows a mass-dependent trend. We discuss the implications for correcting the Genesis sample return results to photospheric abundances.

  2. Food production and nutrition in biosphere 2: results from the first mission September 1991 to September 1993

    NASA Astrophysics Data System (ADS)

    Silverstone, S. E.; Nelson, M.

    The initial test of the Biosphere 2 agricultural system was to provide a nutritionally adequate diet for eight crew members during a two year closure experiment, 1991-1993. The overall results of that trial are presented in this paper. The 2000 m^2 cropping area provided about 80 percent of overall nutritional needs during the two years. Adaptation of the crew to the diet which averaged 2200 calories, 73 g. of protein and 32 g. of fat per person over the course of the two years. The diet was primarily vegetarian, with only small amounts of milk, meat and eggs from the system's domestic animals. The crew experienced 10-20 percent weight loss, most of which occurred in the first six months of the closure reflecting adaptation to the diet and lower caloric intake during that period. Since Biosphere 2 is a tightly sealed system, non-toxic methods of pest and disease control were employed and inedible plant material, domestic animal wastes and human waste-water were processed and nutrients returned to the soil. Crop pests and diseases, especially broad mites and rootknot nematode, reduced yields, and forced the use of alternative crops. Outstanding crops included rice, sweet potato, beets, banana, and papaya. The African pygmy goats were the most productive of the domestic animals. Overall, the agriculture and food processing required some 45% of the crew time.

  3. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  4. Flow cytometry and K-mer analysis estimates of the genome sizes of Bemisia tabaci B and Q (Hemiptera: Aleyrodidae)

    PubMed Central

    Guo, Li T.; Wang, Shao L.; Wu, Qing J.; Zhou, Xu G.; Xie, Wen; Zhang, You J.

    2015-01-01

    The genome sizes of the B- and Q-types of the whitefly Bemisia tabaci (Gennnadius) were estimated using flow cytometry (Drosophila melanogaster as the DNA reference standard and propidium iodide (PI) as the fluorochrome) and k-mer analysis. For flow cytometry, the mean nuclear DNA content was 0.686 pg for B-type males, 1.392 pg for B-type females, 0.680 pg for Q-type males, and 1.306 pg for Q-type females. Based on the relationship between DNA content and genome size (1 pg DNA = 980 Mbp), the haploid genome size of B. tabaci ranged from 640 to 682 Mbp. For k-mer analysis, genome size of B-type by two methods were consistent highly, but the k-mer depth distribution graph of Q-type was not enough perfect and the genome size was estimated about 60 M larger than its flow cytometry result. These results corroborate previous reports of genome size based on karyotype analysis and chromosome counting. However, these estimates differ from previous flow cytometry estimates, probably because of differences in the DNA reference standard and dyeing time, which were superior in the current study. For Q-type genome size difference by two method, some discussion were also stated, and all these results represent a useful foundation for B. tabaci genomics research. PMID:26042041

  5. The First Eighteen Months of NASA's Orbiting Carbon Observatory-2 (OCO-2): Mission Status, Error Characterization, and Preliminary Results

    NASA Astrophysics Data System (ADS)

    O'Dell, Christopher

    2016-04-01

    OCO-2 began taking science data in September 2014 and continues to operate well, returning nearly 1 million observations per day. Approximately 10% of these are sufficiently free of cloud and aerosol contamination to allow for an accurate determination of the column mean carbon dioxide dry air mole fraction, XCO2. The measurements have relatively low noise, of order 0.5-1.0 ppm for most nadir soundings over land and sun-glint geometry soundings over water surfaces. A number of changes have been made to the observing strategy to maintain performance and enhance the science quality of the data: change in glint yaw angle in October 2014, change in nadir glint cycling in July 2015, change to nadir yaw and glint orbit optimization in late 2015, in addition to periodic instrument cyclings. In this presentation, we will summarize the data quality enabled via comparison to a number of validation metrics, discuss the current health and long-term prospects for the instrument, and give an overview of some early science results from the first 18 months of observations. While XCO2 and other products are still being validated to identify and correct biases, OCO-2's XCO2 observations are starting to reveal the most robust features of the atmospheric carbon cycle. At regional scales, fluxes from the eastern U.S. and China are most clear in the fall, when the north-south XCO2 gradient is small. Enhanced XCO2 coincident with biomass burning in the some parts of the tropics, in particular central Africa, is also obvious in the fall. The annual growth rate of CO2 was anomalously high in 2015 according to OCO-2, consistent with NOAA surface measurements and in accord with the warmer annual average surface temperature that year. This was also apparent in the decreased northern hemisphere summer uptake, likely due to anomalously warm boreal temperatures in the northern hemisphere summer of 2015.

  6. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  7. CoMeta: Classification of Metagenomes Using k-mers

    PubMed Central

    Kawulok, Jolanta; Deorowicz, Sebastian

    2015-01-01

    Nowadays, the study of environmental samples has been developing rapidly. Characterization of the environment composition broadens the knowledge about the relationship between species composition and environmental conditions. An important element of extracting the knowledge of the sample composition is to compare the extracted fragments of DNA with sequences derived from known organisms. In the presented paper, we introduce an algorithm called CoMeta (Classification of metagenomes), which assigns a query read (a DNA fragment) into one of the groups previously prepared by the user. Typically, this is one of the taxonomic rank (e.g., phylum, genus), however prepared groups may contain sequences having various functions. In CoMeta, we used the exact method for read classification using short subsequences (k-mers) and fast program for indexing large set of k-mers. In contrast to the most popular methods based on BLAST, where the query is compared with each reference sequence, we begin the classification from the top of the taxonomy tree to reduce the number of comparisons. The presented experimental study confirms that CoMeta outperforms other programs used in this context. CoMeta is available at https://github.com/jkawulok/cometa under a free GNU GPL 2 license. PMID:25884504

  8. mer and fac isomerism in tris chelate diimine metal complexes.

    PubMed

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity. PMID:25600485

  9. Fusion and Visualization of HiRISE Super-Resolution, Shape-from-Shading DTM with MER Stereo 3D Reconstructions

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Paar, G.; Muller, J. P.; Tao, Y.; Tyler, L.; Traxler, C.; Hesina, G.; Huber, B.; Nauschnegg, B.

    2014-12-01

    The FP7-SPACE project PRoViDE has assembled a major portion of the imaging data gathered so far from rover vehicles, landers and probes on extra-terrestrial planetary surfaces into a unique database, bringing them into a common planetary geospatial context and providing access to a complete set of 3D vision products. One major aim of PRoViDE is the fusion between orbiter and rover image products. To close the gap between HiRISE imaging resolution (down to 25cm for the OrthoRectified image (ORI), down to 1m for the DTM) and surface vision products, images from multiple HiRISE acquisitions are combined into a super resolution data set (Tao & Muller, 2014), increasing to 5cm resolution the Ortho images. Furthermore, shape-from-shading is applied to one of the ORIs at its original resolution for refinement of the HiRISE DTM, leading to DTM ground resolutions of up to 25 cm. After texture-based co-registration with these refined orbiter 3D products, MER PanCam and NavCam 3D image products can be smoothly pasted into a multi-resolution 3D data representation. Typical results from the MER mission are presented by a dedicated real-time rendering tool which is fed by a hierarchical 3D data structure that is able to cope with all involved scales from global planetary scale down to close-up reconstructions in the mm range. This allows us to explore and analyze the geological characteristics of rock outcrops, for example the detailed geometry and internal features of sedimentary rock layers, to aid paleoenvironmental interpretation. This integrated approach enables more efficient development of geological models of martian rock outcrops. The rendering tool also provides measurement tools to obtain geospatial data of surface points and distances between them. We report on novel scientific use cases and the added value potential of the resultant high-quality data set and presentation means to support further geologic investigations. The research leading to these results has

  10. Middle East respiratory syndrome coronavirus (MERS-CoV): animal to human interaction.

    PubMed

    Omrani, Ali S; Al-Tawfiq, Jaffar A; Memish, Ziad A

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel enzootic betacoronavirus that was first described in September 2012. The clinical spectrum of MERS-CoV infection in humans ranges from an asymptomatic or mild respiratory illness to severe pneumonia and multi-organ failure; overall mortality is around 35.7%. Bats harbour several betacoronaviruses that are closely related to MERS-CoV but more research is needed to establish the relationship between bats and MERS-CoV. The seroprevalence of MERS-CoV antibodies is very high in dromedary camels in Eastern Africa and the Arabian Peninsula. MERS-CoV RNA and viable virus have been isolated from dromedary camels, including some with respiratory symptoms. Furthermore, near-identical strains of MERS-CoV have been isolated from epidemiologically linked humans and camels, confirming inter-transmission, most probably from camels to humans. Though inter-human spread within health care settings is responsible for the majority of reported MERS-CoV cases, the virus is incapable at present of causing sustained human-to-human transmission. Clusters can be readily controlled with implementation of appropriate infection control procedures. Phylogenetic and sequencing data strongly suggest that MERS-CoV originated from bat ancestors after undergoing a recombination event in the spike protein, possibly in dromedary camels in Africa, before its exportation to the Arabian Peninsula along the camel trading routes. MERS-CoV serosurveys are needed to investigate possible unrecognized human infections in Africa. Amongst the important measures to control MERS-CoV spread are strict regulation of camel movement, regular herd screening and isolation of infected camels, use of personal protective equipment by camel handlers and enforcing rules banning all consumption of unpasteurized camel milk and urine. PMID:26924345

  11. Provocative results during the CWVCS tropical mini-mission in Costa Rica in August 2001 using the NASA WB57F research aircraft

    NASA Astrophysics Data System (ADS)

    Weinstock, E.; Moyer, L.; Smith, J.; Kirk-Davidoff, D.; Pittman, J.; Sayres, D.; Anderson, J.; Thompson, T.

    2003-04-01

    Our current inability to constrain models of stratospheric dehydration results in large part on the lack of sufficient accurate high-resolution tracer data in the tropical tropopause layer (TTL). The mechanistic source of apparent trends in the stratospheric water vapor budget needs to be identified in the context of our changing climate. Toward this end, the Clouds and Water Vapor in the Climate System mission to Costa Rica during August of 2001 was organized as a highly cost-effective mini-mission to gather as much TTL data as possible. Based out of San Jose, Costa Rica from August 4-18, 2001, it included in situ measurements of ozone, water vapor, total water, pressure, temperature, and horizontal winds. During the 2 week period in San Jose there were a total of six flights, typically of about 6 hours duration in regions with local conditions ranging from clear sky to heavy convective activity. The mission provides a significant increase in the body of high-resolution high quality data in the TTL. It also provides data during the summer, with the presence of significant convective activity in a region that is significantly under-sampled. Accordingly, it is of interest to evaluate whether and/or how this data set can be used to validate any of the mechanisms proposed for the control of water in the TTL. While the instrument array here is limited, this does represent the first time that simultaneous measurements of water vapor, total water, and ozone have been made in the TTL. The critical addition of total water allows for the unambiguous determination of clouds and their total water content in the TTL, providing evidence of condensation (but not necessarily dehydration). In this presentation we contrast the results of flights on August 9, during which clear unsaturated air was observed in the tropopause region, and on August 15, during which thin cirrus and supersaturation are observed in the tropopause region, with evidence of hydration above the cirrus. Within

  12. Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars

    USGS Publications Warehouse

    Crumpler, L.S.; Tanaka, K.L.

    2003-01-01

    crustal materials, in the form of rocks within the debris fans, and the weathered condition of the rocky material are potential sources for mineralogical evidence of climatic conditions in earliest Martian geologic history. The absence of alteration within rocks would, on the other hand, support the hypothesis that fluvial runoff during the earliest history of Mars was geologically brief rather than long-term and that long-term saturated groundwater flow was not present. Determination of the presence or absence of alteration would have corresponding implications for hypotheses requiring the long-term presence of aqueous solutions (i.e., complex organic compounds and life). A proposed MER site along the margin addresses realistic field science objectives of the Mars Exploration Rover mission and the current goals of the Mars Exploration Program. In situ measurements may be important in deriving estimates of the longevity and intensity of past wetter climates. Copyright 2003 by the American Geophysical Union.

  13. Seasonal variation of Argon in the martian atmosphere as measured by Spirit and Opportunity MER rovers

    NASA Astrophysics Data System (ADS)

    Economou, Thanasis

    Although there were no meteorological devices on any of the 2 rovers of the MER mission, by using the excellent ability of the Alpha Particle X-ray Spectrometer (APXS) to detect even a small amount of the Ar gas in a predominantly CO2 martian atmosphere, we were able to obtain detailed information on the variability of the atmospheric Ar as a function of seasonal changes. The technique is simple and straightforward. In order to increase the accuracy of the technique by eliminating any interference from target elements and minimizing the background from the backscattered Pu-L X-ray lines, dedicated APXS atmospheric Ar measurements were performed over a period of almost 4 martian years. In that mode the only visible peak in the x-ray spectra is the Ar Kα x-ray line at energy Eα=2.96 keV. Polar condensation of CO2 during winter periods, when the temperature falls below the freezing point of CO2, causes massive movement of air masses from the equatorial regions towards the poles. As the CO2 freezes, the remaining air there is enriched in argon (and nitrogen). The GRS experiment on the Odyssey orbiter around Mars has observed a six-fold in the Ar/CO2 mixing ratio in the southern polar region during the winter period. During the summer season, the opposite occurs: sublimating CO2 increases the atmospheric pressure and creates an atmospheric high that pushes the air mass with an enriched Ar fraction towards the equatorial regions where when arrives it is detected by the APXS on the Opportunity and Spirit landing sites. Our results indicate that the variation of the Ar in the martian atmosphere at both landing sites follows generally the variation of the atmospheric pressure, but it is not in phase with it: there is a phase shift of almost one martian season. The measurement of the Ar mixing ratio at the Spirit and Opportunity landing sites is thus a direct probe of the global circulation between the polar CO2 resource/sink and the equatorial regions. This information is

  14. Beta-arrestin-2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide.

    PubMed

    Campo, Giuseppe M; Avenoso, Angela; D'Ascola, Angela; Scuruchi, Michele; Calatroni, Alberto; Campo, Salvatore

    2015-01-01

    Beta-arrestin-2 is an adaptor protein that terminates G protein activation and seems to be involved in the modulation of the inflammatory response. Small hyaluronan (HA) fragments, such as 4-mer HA oligosaccharides, are known to interact with the toll-like receptor-4 (TLR-4) with consequent activation of the nuclear factor kappaB (NF-kB) that in turn stimulates the inflammation response. NF-kB activation is mediated by different pathways, in particular by the transforming growth factor-activated kinase-1 (TAK-1). Conversely, increased levels of protein kinase A (PKA), induced by cyclic adenosine monophosphate (cAMP), seem to inhibit NF-kB activation. We studied the involvement and role of beta-arrestin-2 in mouse chondrocytes stimulated with 4-mer HA fragments. The exposure of chondrocytes to 4-mer HA produced a significant up-regulation in TLR-4, cAMP, beta-arrestin-2, TAK-1, protein 38 mitogen-activated protein kinase (p38MAPK), and PKA, both in terms of mRNA expression and of the related protein levels. NF-kB was significantly activated, thereby producing the transcription of pro-inflammatory mediators, including tumor necrosis factor alpha, interleukin-6, and interleukin-17. The treatment of 4-mer HA-stimulated chondrocytes with antibodies against beta-arrestin-2 and/or a specific PKA inhibitor, significantly increased the inflammatory response, while the treatment with a specific p38MAPK inhibitor significantly reduced the inflammatory response. Interestingly, the anti-inflammatory action exerted by beta-arrestin-2 appeared to be mediated in part through the direct inhibition of p38MAPK, preventing NF-kB activation, and in part through cAMP and PKA activation primed by G protein signaling, which exerted an inhibitory effect on NF-kB. Taken together, these results could be useful for future anti-inflammatory strategies. PMID:25318610

  15. Beta-arrestin-2 negatively modulates inflammation response in mouse chondrocytes induced by 4-mer hyaluronan oligosaccharide.

    PubMed

    Campo, Giuseppe M; Avenoso, Angela; D'Ascola, Angela; Scuruchi, Michele; Calatroni, Alberto; Campo, Salvatore

    2015-01-01

    Beta-arrestin-2 is an adaptor protein that terminates G protein activation and seems to be involved in the modulation of the inflammatory response. Small hyaluronan (HA) fragments, such as 4-mer HA oligosaccharides, are known to interact with the toll-like receptor-4 (TLR-4) with consequent activation of the nuclear factor kappaB (NF-kB) that in turn stimulates the inflammation response. NF-kB activation is mediated by different pathways, in particular by the transforming growth factor-activated kinase-1 (TAK-1). Conversely, increased levels of protein kinase A (PKA), induced by cyclic adenosine monophosphate (cAMP), seem to inhibit NF-kB activation. We studied the involvement and role of beta-arrestin-2 in mouse chondrocytes stimulated with 4-mer HA fragments. The exposure of chondrocytes to 4-mer HA produced a significant up-regulation in TLR-4, cAMP, beta-arrestin-2, TAK-1, protein 38 mitogen-activated protein kinase (p38MAPK), and PKA, both in terms of mRNA expression and of the related protein levels. NF-kB was significantly activated, thereby producing the transcription of pro-inflammatory mediators, including tumor necrosis factor alpha, interleukin-6, and interleukin-17. The treatment of 4-mer HA-stimulated chondrocytes with antibodies against beta-arrestin-2 and/or a specific PKA inhibitor, significantly increased the inflammatory response, while the treatment with a specific p38MAPK inhibitor significantly reduced the inflammatory response. Interestingly, the anti-inflammatory action exerted by beta-arrestin-2 appeared to be mediated in part through the direct inhibition of p38MAPK, preventing NF-kB activation, and in part through cAMP and PKA activation primed by G protein signaling, which exerted an inhibitory effect on NF-kB. Taken together, these results could be useful for future anti-inflammatory strategies.

  16. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs

    PubMed Central

    Shiri, Fereshteh; Pirhadi, Somayeh; Ghasemi, Jahan B.

    2015-01-01

    Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD) and the enhanced replacement method (ERM) were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND) approach. After variable selection, GRIND were correlated with activity values (pIC50) by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap) implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors. PMID:27013913

  17. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR

    PubMed Central

    Chang, Chih-Chiang; Lin, Li-Ying; Zou, Xiao-Wei; Huang, Chieh-Chen; Chan, Nei-Li

    2015-01-01

    The mer operon confers bacterial resistance to inorganic mercury (Hg2+) and organomercurials by encoding proteins involved in sensing, transport and detoxification of these cytotoxic agents. Expression of the mer operon is under tight control by the dual-function transcriptional regulator MerR. The metal-free, apo MerR binds to the mer operator/promoter region as a repressor to block transcription initiation, but is converted into an activator upon Hg2+-binding. To understand how MerR interacts with Hg2+ and how Hg2+-binding modulates MerR function, we report here the crystal structures of apo and Hg2+-bound MerR from Bacillus megaterium, corresponding respectively to the repressor and activator conformation of MerR. To our knowledge, the apo-MerR structure represents the first visualization of a MerR family member in its intact and inducer-free form. And the Hg2+-MerR structure offers the first view of a triligated Hg2+-thiolate center in a metalloprotein, confirming that MerR binds Hg2+ via trigonal planar coordination geometry. Structural comparison revealed the conformational transition of MerR is coupled to the assembly/disassembly of a buried Hg2+ binding site, thereby providing a structural basis for the Hg2+-mediated functional switching of MerR. The pronounced Hg2+-induced repositioning of the MerR DNA-binding domains suggests a plausible mechanism for the transcriptional regulation of the mer operon. PMID:26150423

  18. Montmorillonite Catalysis of 30-50 Mer Oligonucleotides: Laboratory Demonstration of Potential Steps in the Origin of the RNA World

    NASA Astrophysics Data System (ADS)

    Ferris, James P.

    2002-08-01

    Elongation of the primer 32pdA(pdA)8pA proceeds by the reaction of the 5'-phosphorimidazolides of adenosine and uridine in the presence of montmorillonite clay. Daily addition of the activated nucleotides for up to 14 days results in the formation of 40-50 mers using the 5'-phosphorimidazolide of adenosine (ImpA) and 25-30 mers using the 5'-phosphorimidazolide of uridine (ImpU). The limitation on the lengths of the chains formed is not due to the inhibitors formed since the same chain lengths were formed using 2-3 times the amount of montmorillonite catalyst. The shorter oligomers formed by the addition of U monomers is not due to its greater rate of decomposition since it was found that both the A and the U adducts decompose at about the same rates. Alkaline phosphatase hydrolysis studies revealed that some of the oligomers are capped at the 5'-end to form, with ImpA, Ap32pdA(pdA)8pA(pA)n. The extent of capping depends on the reaction time and the purine or pyrimidine base in the activated mononucleotide. Hydrolysis with ribonuclease T2 followed by alkaline phosphatase determined the sites of the 3', 5'- and 2', 5'-phosphodiester bonding to the primer. The potential significance of the mineral catalyzed formation of 50 mer oligonucleotides to the origin of life based on RNA (the RNA world scenario) is discussed.

  19. Implementing Distributed Operations: A Comparison of Two Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Mishkin, Andrew; Larsen, Barbara

    2006-01-01

    Two very different deep space exploration missions--Mars Exploration Rover and Cassini--have made use of distributed operations for their science teams. In the case of MER, the distributed operations capability was implemented only after the prime mission was completed, as the rovers continued to operate well in excess of their expected mission lifetimes; Cassini, designed for a mission of more than ten years, had planned for distributed operations from its inception. The rapid command turnaround timeline of MER, as well as many of the operations features implemented to support it, have proven to be conducive to distributed operations. These features include: a single science team leader during the tactical operations timeline, highly integrated science and engineering teams, processes and file structures designed to permit multiple team members to work in parallel to deliver sequencing products, web-based spacecraft status and planning reports for team-wide access, and near-elimination of paper products from the operations process. Additionally, MER has benefited from the initial co-location of its entire operations team, and from having a single Principal Investigator, while Cassini operations have had to reconcile multiple science teams distributed from before launch. Cassini has faced greater challenges in implementing effective distributed operations. Because extensive early planning is required to capture science opportunities on its tour and because sequence development takes significantly longer than sequence execution, multiple teams are contributing to multiple sequences concurrently. The complexity of integrating inputs from multiple teams is exacerbated by spacecraft operability issues and resource contention among the teams, each of which has their own Principal Investigator. Finally, much of the technology that MER has exploited to facilitate distributed operations was not available when the Cassini ground system was designed, although later adoption

  20. Structural insights into the inhibited states of the Mer receptor tyrosine kinase

    PubMed Central

    Huang, Xudong; Finerty, Patrick; Walker, John R.; Butler-Cole, Christine; Vedadi, Masoud; Schapira, Matthieu; Parker, Sirlester A.; Turk, Benjamin E.; Thompson, Debra A.; Dhe-Paganon, Sirano

    2009-01-01

    The mammalian ortholog of the retroviral oncogene v-Eyk, and a receptor tyrosine kinase upstream of antiapoptotic and transforming signals, Mer (MerTK) is a mediator of the phagocytic process, being involved in retinal and immune cell clearance and platelet aggregation. Mer knockout mice are viable and are protected from epinephrine-induced pulmonary thromboembolism and ferric chloride-induced thrombosis. Mer overexpression, on the other hand, is associated with numerous carcinomas. Although Mer adaptor proteins and signaling pathways have been identified, it remains unclear how Mer initiates phagocytosis. When bound to its nucleotide cofactor, the high-resolution structure of Mer shows an autoinhibited αC-Glu-out conformation with insertion of an activation loop residue into the active site. Mer complexed with compound-52 (C52: 2-(2-hydroxyethylamino)-6-(3-chloroanilino)-9-isopropylpurine), a ligand identified from a focused library, retains its DFG-Asp-in and αC-Glu-out conformation, but acquires other conformational changes. The αC helix and DFGL region is closer to the hinge region and the ethanolamine moiety of C52 binds in the groove formed between Leu593 and Val601 of the P-loop, causing a compression of the active site pocket. These conformational states reveal the mechanisms of autoinhibition, the pathophysiological basis of disease-causing mutations, and a platform for the development of chemical probes. PMID:19028587

  1. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis.

    PubMed

    Caberoy, Nora B; Zhou, Yixiong; Li, Wei

    2010-12-01

    Tubby and tubby-like protein 1 (Tulp1) are newly identified phagocytosis ligands to facilitate retinal pigment epithelium (RPE) and macrophage phagocytosis. Both proteins without classical signal peptide have been demonstrated with unconventional secretion. Here, we characterized them as novel MerTK ligands to facilitate phagocytosis. Tulp1 interacts with Tyro3, Axl and MerTK of the TAM receptor tyrosine kinase subfamily, whereas tubby binds only to MerTK. Excessive soluble MerTK extracellular domain blocked tubby- or Tulp1-mediated phagocytosis. Both ligands induced MerTK activation with receptor phosphorylation and signalling cascade, including non-muscle myosin II redistribution and co-localization with phagosomes. Tubby and Tulp1 are bridging molecules with their N-terminal region as MerTK-binding domain and C-terminal region as phagocytosis prey-binding domain (PPBD). Five minimal phagocytic determinants (MPDs) of K/R(X)(1-2)KKK in Tulp1 N-terminus were defined as essential motifs for MerTK binding, receptor phosphorylation and phagocytosis. PPBD was mapped to the highly conserved 54 amino acids at the C-terminal end of tubby and Tulp1. These data suggest that tubby and Tulp1 are novel bridging molecules to facilitate phagocytosis through MerTK.

  2. Exportations of Symptomatic Cases of MERS-CoV Infection to Countries outside the Middle East

    PubMed Central

    O’Hagan, Justin J.; Jewett, Amy; Gambhir, Manoj; Cohen, Nicole J.; Haber, Yoni; Pesik, Nicki; Swerdlow, David L.

    2016-01-01

    In 2012, an outbreak of infection with Middle East respiratory syndrome coronavirus (MERS-CoV), was detected in the Arabian Peninsula. Modeling can produce estimates of the expected annual number of symptomatic cases of MERS-CoV infection exported and the likelihood of exportation from source countries in the Middle East to countries outside the region. PMID:27358972

  3. Lack of MERS Coronavirus Neutralizing Antibodies in Humans, Eastern Province, Saudi Arabia

    PubMed Central

    Gierer, Stefanie; Hofmann-Winkler, Heike; Albuali, Waleed H.; Bertram, Stephanie; Al-Rubaish, Abdullah M.; Yousef, Abdullah A.; Al-Nafaie, Awatif N.; Al-Ali, Amein K.; Obeid, Obeid E.; Alkharsah, Khaled R.

    2013-01-01

    We used a lentiviral vector bearing the viral spike protein to detect neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) in persons from the Eastern Province of Saudi Arabia. None of the 268 samples tested displayed neutralizing activity, which suggests that MERS-CoV infections in humans are infrequent in this province. PMID:24274664

  4. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  5. Reactive Nitrogen in Asian Continental Outflow over the Western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P)Airborne Mission

    NASA Technical Reports Server (NTRS)

    Talbot, R.; Dibb, J.; Scheuer, E.; Seid, G.; Russo, R.; Sandholm, S.; Tan, D.; Blake, D.; Blake, N.; Singh, H.

    2003-01-01

    We present here results for reactive nitrogen species measured aboard the NASA DC-8 aircraft during the Transport and Chemical Evolution over the Pacific TRACE-P) mission. The large-scale distributions total reactive nitrogen (NO(sub y,sum) = NO + NO2 + HNO3 + PAN + C(sub 1)-C(sub 5) alkyl nitrates) and O3 and CO were better defined in the boundary layer with significant degradation of the relationships as altitude increased. Typically, NO(sub y,sum) was enhanced over background levels of approx.260 pptv by 20-to-30-fold. The ratio C2H2/CO had values of 1-4 at altitudes up to 10 km and as far eastward as 150degE, implying significant vertical mixing of air parcels followed by rapid advection across the Pacific. Analysis air parcels originating from five principal Asian source regions showed that HNO3 and PAN dominated NO(sub y,sum). Correlations of NO(sub y,sum) with C2Cl4 (urban tracer) were not well defined in any of the source regions, and they were only slightly better with CH3Cl (biomass tracer). Air parcels over the western Pacific contained a complex mixture of emission sources that are not easily resolvable as shown by analysis of the Shanghai mega-city plume. It contained an intricate mixture of pollution emissions and exhibited the highest mixing ratios of NO(sub y,sum) species observed during TRACE-P. Comparison of tropospheric chemistry between the earlier PEM-West B mission and the recent TRACE-P data showed that in the boundary layer significant increases in the mixing ratios of NO(sub y,sum)species have occurred, but the middle and upper troposphere seems to have been affected minimally by increasing emissions on the Asian continent over the last 7 years.

  6. Reactive nitrogen in Asian continental outflow over the western Pacific: Results from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission

    NASA Astrophysics Data System (ADS)

    Talbot, R.; Dibb, J.; Scheuer, E.; Seid, G.; Russo, R.; Sandholm, S.; Tan, D.; Singh, H.; Blake, D.; Blake, N.; Atlas, E.; Sachse, G.; Jordan, C.; Avery, M.

    2003-10-01

    We present here results for reactive nitrogen species measured aboard the NASA DC-8 aircraft during the Transport and Chemical Evolution over the Pacific (TRACE-P) mission. The large-scale distributions total reactive nitrogen (NOy,sum = NO + NO2 + HNO3 + PAN + C1-C5 alkyl nitrates) and O3 and CO were better defined in the boundary layer with significant degradation of the relationships as altitude increased. Typically, NOy,sum was enhanced over background levels of ˜260 pptv by 20-to-30-fold. The ratio C2H2/CO had values of 1-4 at altitudes up to 10 km and as far eastward as 150°E, implying significant vertical mixing of air parcels followed by rapid advection across the Pacific. Analysis air parcels originating from five principal Asian source regions showed that HNO3 and PAN dominated NOy,sum. Correlations of NOy,sum with C2Cl4 (urban tracer) were not well defined in any of the source regions, and they were only slightly better with CH3Cl (biomass tracer). Air parcels over the western Pacific contained a complex mixture of emission sources that are not easily resolvable as shown by analysis of the Shanghai mega-city plume. It contained an intricate mixture of pollution emissions and exhibited the highest mixing ratios of NOy,sum species observed during TRACE-P. Comparison of tropospheric chemistry between the earlier PEM-West B mission and the recent TRACE-P data showed that in the boundary layer significant increases in the mixing ratios of NOy,sum species have occurred, but the middle and upper troposphere seems to have been affected minimally by increasing emissions on the Asian continent over the last 7 years.

  7. MERS-CoV spike protein: Targets for vaccines and therapeutics.

    PubMed

    Wang, Qihui; Wong, Gary; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-09-01

    The disease outbreak caused by Middle East respiratory syndrome coronavirus (MERS-CoV) is still ongoing in the Middle East. Over 1700 people have been infected since it was first reported in September 2012. Despite great efforts, licensed vaccines or therapeutics against MERS-CoV remain unavailable. The MERS-CoV spike (S) protein is an important viral antigen known to mediate host-receptor binding and virus entry, as well as induce robust humoral and cell-mediated responses in humans during infection. In this review, we highlight the importance of the S protein in the MERS-CoV life cycle, summarize recent advances in the development of vaccines and therapeutics based on the S protein, and discuss strategies that can be explored to develop new medical countermeasures against MERS-CoV. PMID:27468951

  8. Effect of the antiestrogen ethamoxytriphetol (MER-25) on placental low density lipoprotein uptake and degradation in baboons

    SciTech Connect

    Henson, M.C.; Babischkin, J.S.; Pepe, G.J.; Albrecht, E.D.

    1988-05-01

    The present study determined if the decline in placental progesterone (P4) production that results from administration of the antiestrogen ethamoxytriphetol (MER-25) to pregnant baboons results from a change in placental low density lipoprotein (LDL) uptake and/or degradation. Pregnant baboons (Papio anubis) were untreated (n = 10) or received MER-25 (25 mg/kg BW, orally; n = 10) daily on days 140-170 of gestation (term, 184 days). Placentas were removed by cesarean section on day 170 of gestation, and villous tissue was dispersed with 0.1% collagenase at 37 C for 40 min. Placental cells (10(6)) were incubated in medium 199 (pH 7.2) for 12 h at 37 C with increasing amounts (5-100 micrograms) of (125I)LDL, with or without a 100-fold excess of unlabeled baboon LDL. Mean (+/- SE) peripheral serum P4 concentrations on days 140-170 of gestation were 51% lower (P less than 0.01) in MER-25-treated (5.7 +/- 0.3 ng/ml) than in untreated (11.6 +/- 0.5 ng/ml) baboons. The uptake of LDL was 56% lower (P less than 0.01) in placental cells from antiestrogen-treated (6.3 +/- 1.6 ng/micrograms cell protein) than in those from untreated (14.4 +/- 1.9 ng/micrograms cell protein) baboons. The dissociation constants for placental LDL uptake, as assessed by Scatchard analysis, however, were similar in untreated (0.80 microgram/ml) and MER-25-treated (0.76 microgram/ml) animals. The amount of (125I)LDL concomitantly degraded by cells from baboons that received MER-25 was 54% of that degraded by cells from untreated controls. The relative decline in LDL degradation by cells of antiestrogen-treated baboons was proportionate to the decline in overall LDL uptake. The results indicate, therefore, that antiestrogen treatment decreased the amount of placental LDL uptake, but did not change the affinity for the lipoprotein.

  9. Human Mars Mission Performance Crew Taxi Profile

    NASA Technical Reports Server (NTRS)

    Duaro, Vince A.

    1999-01-01

    Using the results from Integrated Mission Program (IMP), a simulation language and code used to model present and future Earth Moon, or Mars missions, this report presents six different case studies of a manned Mars mission. The mission profiles, timelines, propellant requirements, feasibility and perturbation analysis is presented for two aborted, two delayed rendezvous, and two normal rendezvous cases for a future Mars mission.

  10. The Mars Exploration Rover (MER) Transverse Impulse Rocket System (TIRS)

    NASA Technical Reports Server (NTRS)

    SanMartin, Alejandro Miguel; Bailey, Erik

    2005-01-01

    In a very short period of time the MER project successfully developed and tested a system, TIRS/DIMES, to improve the probability of success in the presence of large Martian winds. The successful development of TIRS/DIMES played a big role in the landing site selection process by enabling the landing of Spirit on Gusev crater, a site of very high scientific interest but with known high wind conditions. The performance of TIRS by Spirit at Gusev Crater was excellent. The velocity prediction error was small and Big TIRS was fired reducing the impact horizontal velocity from approximately 23 meters per second to approximately 11 meters per second, well within the airbag capabilities. The performance of TIRS by Opportunity at Meridiani was good. The velocity prediction error was rather large (approximately 6 meters per second, a less than 2 sigma value, but TIRS did not fire which was the correct action.

  11. MER : from landing to six wheels on Mars ... twice

    NASA Technical Reports Server (NTRS)

    Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris

    2005-01-01

    Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.

  12. Dust Accumulation and Cleaning of the MER Solar Arrays

    NASA Astrophysics Data System (ADS)

    Herman, J. A.; Lemmon, M. T.; Stella, P.; Chin, K. B.; Wood, E. G.

    2010-12-01

    The solar arrays of the two NASA Mars Exploration Rovers (MER), Spirit and Opportunity, were expected to accumulate so much dust after 90 Martian days (sols) that they could no longer provide enough energy to guarantee continued surface operations. Instead, due in part to low dust accumulation rates and numerous dust cleaning events, they have carried out surface operations for over 2200 sols each. During this time period, the rovers experienced four Martian winters and several dust storms. Because the sources of solar energy loss are known, the solar array energy output offers a tool to scientifically estimate the loading and aeolian removal of dust from the solar arrays each sol. We will discuss the accumulation of dust on the solar panels as a proxy for dust movement on the Martian surface over the last 6 years.

  13. Successful recovery of MERS CoV pneumonia in a patient with acquired immunodeficiency syndrome: a case report.

    PubMed

    Shalhoub, Sarah; AlZahrani, Abdulwahab; Simhairi, Raed; Mushtaq, Adnan

    2015-01-01

    Middle East Respiratory Syndrome Coronavirus (MERS CoV) may cause severe pneumonia with significant morbidity and mortality, particularly in patients with multiple comorbid condition. MERS CoV pneumonia has not been previously reported in patients with Human Immunodeficiency Virus (HIV). Herein, we report a case of MERS CoV pneumonia with a successful outcome in a patient recently diagnosed with HIV.

  14. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  15. Real-Time Sequence-Validated Loop-Mediated Isothermal Amplification Assays for Detection of Middle East Respiratory Syndrome Coronavirus (MERS-CoV)

    PubMed Central

    Bhadra, Sanchita; Jiang, Yu Sherry; Kumar, Mia R.; Johnson, Reed F.; Hensley, Lisa E.; Ellington, Andrew D.

    2015-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging human coronavirus, causes severe acute respiratory illness with a 35% mortality rate. In light of the recent surge in reported infections we have developed asymmetric five-primer reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays for detection of MERS-CoV. Isothermal amplification assays will facilitate the development of portable point-of-care diagnostics that are crucial for management of emerging infections. The RT-LAMP assays are designed to amplify MERS-CoV genomic loci located within the open reading frame (ORF)1a and ORF1b genes and upstream of the E gene. Additionally we applied one-step strand displacement probes (OSD) for real-time sequence-specific verification of LAMP amplicons. Asymmetric amplification effected by incorporating a single loop primer in each assay accelerated the time-to-result of the OSD-RT-LAMP assays. The resulting assays could detect 0.02 to 0.2 plaque forming units (PFU) (5 to 50 PFU/ml) of MERS-CoV in infected cell culture supernatants within 30 to 50 min and did not cross-react with common human respiratory pathogens. PMID:25856093

  16. Spacecraft Observations of Atmospheric Temperature and Aerosol Optical Depth Near the Time of the MER Landings

    NASA Astrophysics Data System (ADS)

    Smith, M. D.

    2005-05-01

    Continued atmospheric monitoring by the Mars Global Surveyor TES and Mars Odyssey THEMIS instruments provided daily maps of the regional to global scale variation of atmospheric temperature and aerosol optical depth before, during, and after the time of the two Mars Exploration Rover (MER) landings in January 2005. After landing, the MER Mini-TES instrument provided additional complementary information about the late-summer atmospheric state at the Gusev Crater and Meridiani Planum landing sites. Orbital observations taken before the MER landings documented the initiation, growth, and decay of a large regional dust storm in mid-December 2004, just weeks before the MER Spirit landing. This dust storm caused an increase in atmospheric temperature above nominal seasonal values, and left relatively dusty conditions for the rovers after landing. Atmospheric entry parameters such as the height at which to open the parachute were adjusted considering the daily TES updates in the days before both MER landings. Here we present observations of atmospheric temperatures and aerosol optical depth by TES and THEMIS in the time period near the MER landings. We compare the TES and THEMIS observations against the values predicted from climatology and the observations taken after landing by the MER Mini-TES.

  17. The Biological Oxidant and Life Detection (BOLD) mission: A proposal for a mission to Mars

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, Dirk; Head, James N.; Houtkooper, Joop M.; Knoblauch, Michael; Furfaro, Roberto; Fink, Wolfgang; Fairén, Alberto G.; Vali, Hojatollah; Kelly Sears, S.; Daly, Mike; Deamer, David; Schmidt, Holger; Hawkins, Aaron R.; Sun, Henry J.; Lim, Darlene S. S.; Dohm, James; Irwin, Louis N.; Davila, Alfonso F.; Mendez, Abel; Andersen, Dale

    2012-07-01

    The next step in the exploration of Mars should include a strong and comprehensive life detection component. We propose a mission called BOLD: Biological Oxidant and Life Detection mission. The scientific objectives of the BOLD mission are to characterize habitability of the martian surface and to search for evidence of extinct or extant life. In contrast to the Viking mission, which was designed to detect heterotrophic life on Mars, the BOLD mission incorporates a more comprehensive search for autotrophic microorganisms, as well as detecting a variety of biomarkers and understanding their environment. Six miniature landers are envisioned for BOLD that utilize either an orbital (e.g. Viking) or direct entry (e.g., MER, Phoenix) mission architecture. The number of landers will provide mission redundancy, and each will incorporate a Mars Soil Analyzer, a Multispectral Microscopic Imager, a Nanopore-ARROW that detects biopolymers with single molecule resolution, an Atmospheric Structure and Surface Environment Instrument, a Fluorescent Stain experiment, and a Chirality experiment. A terrain navigation system, coupled with robust propulsion, permits a landing accuracy on the order of meters if required to meet the science objectives. The probes will use existing orbiters for communication relay if the orbiter architecture proves too ambitious.

  18. An In-Situ Rb-Sr Dating & Organics Characterization Instrument For A MER+ Sized Rover

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Whitaker, T.; Nowicki, K.; Zacny, K.; Pierce, J.

    2012-12-01

    We posit that a Mars in-situ geochronology mission that will triage and validate samples for Mars Sample Return (MSR) is technically feasible in the 2018-2022 time frame and addresses the competing scientific, political, and fiscal requirements for flight in this decade.The mission must be responsive to the astrobiological and chronological science goals of the MEPAG, Decadal Survey (DS), and E2E-iSAG, and avoid the MSR appearance of long term political commitment and cost. These requirements can best be accomplished by a rover with a coring drill. JPL has reassessed the MER landing system performance, and determined that the system is capable of significantly higher landed mass (~40-60 kg plus reserve), allowing more sophisticated instruments to be carried. The instrument package is comprised of a time of flight (TOF) mass spectrometer combined with a laser desorption resonance ionization source to sensitively measure isobar free Rb-Sr isotopes for geochronology and organics characterization. The desorption laser is also used with a μRaman/LIBS for mineral characterization, which in combination with the TOF, will additionally provide measurements of K-Ar isotopes for a second form of radiometric dating. The laser desorption resonance ionization mass spectrometry (LDRIMS) technique avoids the interference and mass resolution issues associated with geochronology measurements, and has miniaturization potential. A sample is placed in the TOF mass spectrometer and surface atoms, molecules, and ions are desorbed with a 213 nm laser. Ions are suppressed by an electric field and the plume of expanding particles is present for many μs, during which it is first illuminated with laser light tuned to ionize only Sr, and then 1-3 μs later, for Rb. We have partially miniaturized the instrument, including Sr lasers, ablation laser, and mass spectrometer, and will soon to start using the instrument for field measurements. Our current prototype can measure the isotope ratio of

  19. Mercury (II) sensor based on monitoring dissociation rate of the trans-acting factor MerR from cis-element by surface plasmon resonance.

    PubMed

    Taniguchi, Masaki; Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu

    2015-05-15

    Transcriptional switches regulate gene expression in response to environmental changes surrounding cell. Many studies have focused on two fundamentally different models of transcriptional control by bacterial metalloregulatory protein. Distortion of the DNA fragment including cis-element, to which the trans-acting factor MerR binds, is accepted as the mechanism of gene expression regulation by Hg (II) while, in cases of the other trans-acting factors ArsR and CadC, events of association to and dissociation from cis-element are known to control transcription in response to As (III) and Cd (II), respectively. In this study, interactions between green-fluorescent-protein-tagged trans-acting factor and immobilized cis-element were analyzed on solid surface. Fluorescent measurements and surface plasmon resonance (SPR) responses revealed that although the equilibrium dissociation constant (KD) was much lower in MerR than in ArsR and CadC, the dissociation rate of MerR from DNA increased in response to Hg (II) at concentrations of 5-10(4) µg l(-1). These results firstly demonstrate an increase of KD between MerR and its recognition site in DNA by Hg (II), and possibility of rapid Hg (II) quantification with the low detection limit (5 µg l(-1)) and the high dynamic range (10(1)-10(4) µg l(-1)).

  20. The receptor binding domain of MERS-CoV: the dawn of vaccine and treatment development.

    PubMed

    Zhou, Nan; Zhang, Yun; Zhang, Jin-Chun; Feng, Ling; Bao, Jin-Ku

    2014-03-01

    The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is becoming another "SARS-like" threat to the world. It has an extremely high death rate (∼50%) as there is no vaccine or efficient therapeutics. The identification of the structures of both the MERS-CoV receptor binding domain (RBD) and its complex with dipeptidyl peptidase 4 (DPP4), raises the hope of alleviating this currently severe situation. In this review, we examined the molecular basis of the RBD-receptor interaction to outline why/how could we use MERS-CoV RBD to develop vaccines and antiviral drugs.

  1. NMR assignments of the macro domain from Middle East respiratory syndrome coronavirus (MERS-CoV).

    PubMed

    Huang, Yi-Ping; Cho, Chao-Cheng; Chang, Chi-Fon; Hsu, Chun-Hua

    2016-10-01

    The newly emerging human pathogen, Middle East respiratory syndrome coronavirus (MERS-CoV), contains a macro domain in the highly conserved N-terminal region of non-structural protein 3. Intense research has shown that macro domains bind ADP-ribose and other derivatives, but it still remains intangible about their exact function. In this study we report the preliminary structural analysis through solution NMR spectroscopy of the MERS-CoV macro domain. The near complete NMR assignments of MERS-CoV macro domain provide the basis for subsequent structural and biochemical investigation in the context of protein function.

  2. Mission Possible

    ERIC Educational Resources Information Center

    Kittle, Penny, Ed.

    2009-01-01

    As teachers, our most important mission is to turn our students into readers. It sounds so simple, but it's hard work, and we're all on a deadline. Kittle describes a class in which her own expectations that students would become readers combined with a few impassioned strategies succeeded ... at least with a young man named Alan.

  3. Entry Trajectory and Atmosphere Reconstruction Methodologies for the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2003-01-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  4. STEREO Mission Design

    NASA Technical Reports Server (NTRS)

    Dunham, David W.; Guzman, Jose J.; Sharer, Peter J.; Friessen, Henry D.

    2007-01-01

    STEREO (Solar-TErestrial RElations Observatory) is the third mission in the Solar Terrestrial Probes program (STP) of the National Aeronautics and Space Administration (NASA). STEREO is the first mission to utilize phasing loops and multiple lunar flybys to alter the trajectories of more than one satellite. This paper describes the launch computation methodology, the launch constraints, and the resulting nine launch windows that were prepared for STEREO. More details are provided for the window in late October 2006 that was actually used.

  5. STS-83 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The crew patch for NASA's STS-83 mission depicts the Space Shuttle Columbia launching into space for the first Microgravity Sciences Laboratory 1 (MSL-1) mission. MSL-1 investigated materials science, fluid dynamics, biotechnology, and combustion science in the microgravity environment of space, experiments that were conducted in the Spacelab Module in the Space Shuttle Columbia's cargo bay. The center circle symbolizes a free liquid under microgravity conditions representing various fluid and materials science experiments. Symbolic of the combustion experiments is the surrounding starburst of a blue flame burning in space. The 3-lobed shape of the outermost starburst ring traces the dot pattern of a transmission Laue photograph typical of biotechnology experiments. The numerical designation for the mission is shown at bottom center. As a forerunner to missions involving International Space Station (ISS), STS-83 represented the hope that scientific results and knowledge gained during the flight will be applied to solving problems on Earth for the benefit and advancement of humankind.

  6. Science and Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy

    2011-01-01

    Have you ever wondered about the science goals of various deep space missions? Or why scientists want such seemingly complicated spacecraft and operations scenarios? With a focus on outer planets) this talk will cover the scientific goals and results of several recent and future missions) how scientists approach a requirements flow down) and how the disparate needs of mission engineers and scientists can come together for mission success. It will also touch on several up and coming technologies and how they will change mission architectures in the future.

  7. Extraterrestrial Moessbauer Spectroscopy: More than Three Years of Mars Exploration and Developments for Future Missions

    NASA Technical Reports Server (NTRS)

    Schroeder, Christian; Klingelhoefer, Goestar; Morris, Richard V.; Rodionov, Daniel S.; Fleischer, Iris; Blumers, Mathias

    2007-01-01

    The NASA Mars Exploration Rovers (MER), Spirit and Opportunity, landed on the Red Planet in January 2004. Both rovers are equipped with a miniaturized Moessbauer spectrometer MIMOS II. Designed for a three months mission, both rovers and both Moessbauer instruments are still working after more than three years of exploring the Martian surface. At the beginning of the mission, with a landed intensity of the Moessbauer source of 150 mCi, a 30 minute touch and go measurement produced scientifically valuable data while a good quality Moessbauer spectrum was obtained after approximately eight hours. Now, after about five halflives of the sources have passed, Moessbauer integrations are routinely planned to last approx.48 hours. Because of this and other age-related hardware degradations of the two rover systems, measurements now occur less frequently, but are still of outstanding quality and scientific importance. Summarizing important Moessbauer results, Spirit has traversed the plains from her landing site in Gusev crater and is now, for the greater part of the mission, investigating the stratigraphically older Columbia Hills. Olivine in rocks and soils in the plains suggests that physical rather than chemical processes are currently active.

  8. A review of Spacelab mission management approach

    NASA Technical Reports Server (NTRS)

    Craft, H. G., Jr.

    1979-01-01

    The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.

  9. Verification and Implementation of Operations Safety Controls for Flight Missions

    NASA Technical Reports Server (NTRS)

    Jones, Cheryl L.; Smalls, James R.; Carrier, Alicia S.

    2010-01-01

    Approximately eleven years ago, the International Space Station launched the first module from Russia, the Functional Cargo Block (FGB). Safety and Mission Assurance (S&MA) Operations (Ops) Engineers played an integral part in that endeavor by executing strict flight product verification as well as continued staffing of S&MA's console in the Mission Evaluation Room (MER) for that flight mission. How were these engineers able to conduct such a complicated task? They conducted it based on product verification that consisted of ensuring that safety requirements were adequately contained in all flight products that affected crew safety. S&MA Ops engineers apply both systems engineering and project management principles in order to gain a appropriate level of technical knowledge necessary to perform thorough reviews which cover the subsystem(s) affected. They also ensured that mission priorities were carried out with a great detail and success.

  10. Detecting changes in reflected Global Navigation Satellite System signals over land using a spaceborne receiver: Results from the TechDemoSat Mission

    NASA Astrophysics Data System (ADS)

    Chew, C. C.; Mannucci, A. J.; Zuffada, C.; Shah, R.; Hajj, G. A.

    2015-12-01

    Spaceborne GPS and GNSS receivers can be used to retrieve information about changes on the Earth's surface. Both experimental and modeling efforts have shown that these receivers can detect changes in reflected GNSS signals that are indicative of changes in sea state. Numerous studies using GNSS receivers flown on aircraft have also shown that the reflected signals are sensitive to changes in soil moisture and vegetation cover. However, the only analysis of the detection of GNSS reflected signals over land using spaceborne receivers has been limited to the small amount of data recorded nearly 10 years ago by the UK-DMC satellite. Last year's launch of the TechDemoSat (TDS) satellite, carrying an instrument similar to that planned for NASA's CYGNSS mission, represents an enormous opportunity to investigate the potential of using spaceborne GNSS receivers to sense changes in the land surface, including soil moisture and flood-inundated areas. With a revisit time of only a few hours, the observations from the CYGNSS constellation could provide data with a temporal resolution that would be unmatched by traditional remote sensing satellites. Here, we present data collected over land by the receiver onboard TDS and report its sensitivity to changes in surface roughness, vegetation parameters, and open water (lakes and rivers), as well as standing water beneath vegetation (marshes and wetlands). In particular, we investigate how the normalized peak power of the delay-Doppler maps that are recorded by the receiver is affected by changes in the land surface. Preliminary results indicate that the signal is strongly affected by changes in topography. However, once this effect is removed using digital elevation models, the influence of rivers, lakes, and wetlands on the signal is clearly seen. Examples of large signal changes coming from areas of likely-saturated ground lend credence to the idea that these data could also be sensitive to changes in surface soil moisture.

  11. Human Infection with MERS Coronavirus after Exposure to Infected Camels, Saudi Arabia, 2013

    PubMed Central

    Memish, Ziad A.; Cotten, Matthew; Meyer, Benjamin; Watson, Simon J.; Alsahafi, Abdullah J.; Al Rabeeah, Abdullah A.; Corman, Victor Max; Sieberg, Andrea; Makhdoom, Hatem Q.; Assiri, Abdullah; Al Masri, Malaki; Aldabbagh, Souhaib; Bosch, Berend-Jan; Beer, Martin; Müller, Marcel A.; Kellam, Paul

    2014-01-01

    We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection. PMID:24857749

  12. Middle East respiratory syndrome coronavirus (MERS-CoV): what lessons can we learn?

    PubMed

    Omrani, A S; Shalhoub, S

    2015-11-01

    The Middle East Respiratory Coronavirus (MERS-CoV) was first isolated from a patient who died with severe pneumonia in June 2012. As of 19 June 2015, a total of 1,338 MERS-CoV infections have been notified to the World Health Organization (WHO). Clinical illness associated with MERS-CoV ranges from mild upper respiratory symptoms to rapidly progressive pneumonia and multi-organ failure. A significant proportion of patients present with non-respiratory symptoms such as headache, myalgia, vomiting and diarrhoea. A few potential therapeutic agents have been identified but none have been conclusively shown to be clinically effective. Human to human transmission is well documented, but the epidemic potential of MERS-CoV remains limited at present. Healthcare-associated clusters of MERS-CoV have been responsible for the majority of reported cases. The largest outbreaks have been driven by delayed diagnosis, overcrowding and poor infection control practices. However, chains of MERS-CoV transmission can be readily interrupted with implementation of appropriate control measures. As with any emerging infectious disease, guidelines for MERS-CoV case identification and surveillance evolved as new data became available. Sound clinical judgment is required to identify unusual presentations and trigger appropriate control precautions. Evidence from multiple sources implicates dromedary camels as natural hosts of MERS-CoV. Camel to human transmission has been demonstrated, but the exact mechanism of infection remains uncertain. The ubiquitously available social media have facilitated communication and networking amongst healthcare professionals and eventually proved to be important channels for presenting the public with factual material, timely updates and relevant advice. PMID:26452615

  13. Development of Animal Models Against Emerging Coronaviruses: From SARS to MERS coronavirus

    PubMed Central

    Sutton, Troy C; Subbarao, Kanta

    2016-01-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV. PMID:25791336

  14. Challenges presented by MERS corona virus, and SARS corona virus to global health.

    PubMed

    Al-Hazmi, Ali

    2016-07-01

    Numerous viral infections have arisen and affected global healthcare facilities. Millions of people are at severe risk of acquiring several evolving viral infections through several factors. In the present article we have described about risk factors, chance of infection, and prevention methods of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and severe acute respiratory syndrome (SARS-CoV), human coronaviruses (CoVs) frequently cause a normal cold which is mild and self-restricting. Zoonotic transmission of CoVs such as the newly discovered MERS-CoV and SARS-CoV, may be associated with severe lower respiratory tract infection. The present review provides the recent clinical and pathological information on MERS and SARS. The task is to transform these discoveries about MERS and SARS pathogenesis and to develop intervention methods that will eventually allow the effective control of these recently arising severe viral infections. Global health sector has learnt many lessons through the recent outbreak of MERS and SARS, but the need for identifying new antiviral treatment was not learned. In the present article we have reviewed the literature on the several facets like transmission, precautions and effectiveness of treatments used in patients with MERS-CoV and SARS infections. PMID:27298584

  15. Middle East respiratory syndrome coronavirus "MERS-CoV": current knowledge gaps.

    PubMed

    Banik, G R; Khandaker, G; Rashid, H

    2015-06-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) that causes a severe lower respiratory tract infection in humans is now considered a pandemic threat to the Gulf region. Since its discovery in 2012, MERS-CoV has reached 23 countries affecting about 1100 people, including a dozen children, and claiming over 400 lives. Compared to SARS (severe acute respiratory syndrome), MERS-CoV appears to kill more people (40% versus 10%), more quickly, and is especially more severe in those with pre-existing medical conditions. Most MERS-CoV cases (>85%) reported thus far have a history of residence in, or travel to the Middle East. The current epidemiology is characterised by slow and sustained transmission with occasional sparks. The dromedary camel is the intermediate host of MERS-CoV, but the transmission cycle is not fully understood. In this current review, we have briefly summarised the latest information on the epidemiology, clinical features, diagnosis, treatment and prevention of MERS-CoV especially highlighting the knowledge gaps in its transmission dynamics, diagnosis and preventive strategy. PMID:26002405

  16. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  17. Human exploration mission studies

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1989-01-01

    The Office of Exploration has established a process whereby all NASA field centers and other NASA Headquarters offices participate in the formulation and analysis of a wide range of mission strategies. These strategies were manifested into specific scenarios or candidate case studies. The case studies provided a systematic approach into analyzing each mission element. First, each case study must address several major themes and rationale including: national pride and international prestige, advancement of scientific knowledge, a catalyst for technology, economic benefits, space enterprise, international cooperation, and education and excellence. Second, the set of candidate case studies are formulated to encompass the technology requirement limits in the life sciences, launch capabilities, space transfer, automation, and robotics in space operations, power, and propulsion. The first set of reference case studies identify three major strategies: human expeditions, science outposts, and evolutionary expansion. During the past year, four case studies were examined to explore these strategies. The expeditionary missions include the Human Expedition to Phobos and Human Expedition to Mars case studies. The Lunar Observatory and Lunar Outpost to Early Mars Evolution case studies examined the later two strategies. This set of case studies established the framework to perform detailed mission analysis and system engineering to define a host of concepts and requirements for various space systems and advanced technologies. The details of each mission are described and, specifically, the results affecting the advanced technologies required to accomplish each mission scenario are presented.

  18. Results from the PharmaSat Nanosatellite Mission: Dose Dependence of Growth and Metabolic Parameters for S. cerevisiae Grown in Microgravity and Challenged by Voriconazole

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio; Parra, Macarena; Niesel, David; Ly, Diana; Kudlicki, Andrzej; McGinnis, Michael; Hines, John

    We report cellular growth and metabolic activity results for Saccharomyces cerevisiae grown aboard PharmaSat, a 5.0-kg autonomous, self-contained biological nanosatellite launched as a secondary payload in May of 2009 and presently in Earth orbit at 450 km. The response of S. cerevisiae to three dose levels bracketing the minimum inhibitory concentration (MIC) of the antifungal voriconazole was monitored in microgravity using 3-color absorbance to measure metabolic activity and turbidity (cell number), which were characterized chiefly by two param-eters: (1) the doubling time and (2) the time delay before the onset of rapid growth. Growth was conducted in forty-eight 100-L microwells containing the yeast—one fluidically separate bank of 12 wells for each voriconazole concentration, plus a control bank. Yeast were main-tained in stasis until the satellite had been deployed, the orbit stabilized, the communications links established, and the growth temperature of 27 ° C stabilized. To re-initiate yeast growth, RPMI growth medium was added. The S. cerevisiae were grown for approximately 12 hr, at which time they were challenged with varying concentrations (0, 0.25xMIC, MIC, 4xMIC) of voriconazole; the optical density and the color change of the redox-based viability indicator alamar blue were recorded as growth proceeded for an additional 84 hr. Results telemetered to the ground reveal a 33 percent longer lag time in microgravity and 60 percent longer dou-bling time than identical ground control experiments. Lag and doubling times are essentially unaffected by voriconazole at 0.125 g/mL in either environment; they lengthen similarly at 0.5 g/mL, voriconazole's MIC. At four times MIC, ground controls show no significant growth nor metabolic activity as tracked by alamar blue; in space, while there was also no measurable cellu-lar growth, remarkably, metabolic activity was clearly present (n = 12 wells). Explanations for the differences in metabolic activity and

  19. First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece

    NASA Astrophysics Data System (ADS)

    Mertikas, Stelios P.; Zhou, Xinghua; Qiao, Fangli; Daskalakis, Antonis; Lin, Mingsen; Peng, Hailong; Tziavos, Ilias N.; Vergos, George; Tripolitsiotis, Achilleas; Frantzis, Xenophon

    2016-01-01

    In this work, absolute calibration of the Chinese HY-2 satellite altimetry mission is carried out, employing Pass No. 280 and the calibration facility, CRS1, located in the Southwest end of the island of Crete, Greece. Satellite Pass No. 280 is descending and follows a ground track almost parallel to the west coast of Crete. It comes close to the coast, at a distance of about 9 km from the CRS1 calibration site, and finally goes away south of Crete. The HY-2 sensor geophysical data records (S-GDR) have been incorporated into the calibration procedures and processing has taken place for cycles No. 54-62, at 20 Hz data rate. Some peculiarities in the HY-2 satellite altimeter data, as delivered and depicted in the I-GDR and S-GDR data, have also been noticed. All calibration results have been determined using a regional, precise and detailed geoid, along with a good knowledge of local ocean circulation and site characteristics and a well-defined sea-surface calibration methodology. The first preliminary results for the HY-2 altimeter calibration have shown that the initial cycles, up to No. 51, display an erratic behavior. After those cycles, the altimeter range bias values seem to be stable and reach a value of B = -45.6 cm ± 4.4 cm, when applying the net instrument corrections as provided in the GDR. If the relativistic effects of the satellite clocks are properly applied for the net instrument corrections, then the altimeter range bias goes down to B = -27 cm ± 3 cm. Also, preliminary cross-over analysis with the SARAL/AliKa and Jason-2 satellites show a bias of B = -23 cm, and B = -28.5 cm, respectively. The performance of the HY-2 on-board radiometer has also been examined in terms of the wet troposphere corrections and shows a mean difference of -1 cm ± 0.1 cm with respect to in-situ GNSS-derived corrections. Finally, the ionosphere path corrections of the HY-2 satellite show a difference of +1 cm ± 1.1 cm, when compared against the GNSS-derived ionosphere

  20. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    PubMed Central

    Wrensch, Florian; Winkler, Michael; Pöhlmann, Stefan

    2014-01-01

    The interferon-inducible transmembrane (IFITM) proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs. PMID:25256397

  1. STS-61 mission director's post-mission report

    NASA Technical Reports Server (NTRS)

    Newman, Ronald L.

    1995-01-01

    To ensure the success of the complex Hubble Space Telescope servicing mission, STS-61, NASA established a number of independent review groups to assess management, design, planning, and preparation for the mission. One of the resulting recommendations for mission success was that an overall Mission Director be appointed to coordinate management activities of the Space Shuttle and Hubble programs and to consolidate results of the team reviews and expedite responses to recommendations. This report presents pre-mission events important to the experience base of mission management, with related Mission Director's recommendations following the event(s) to which they apply. All Mission Director's recommendations are presented collectively in an appendix. Other appendixes contain recommendations from the various review groups, including Payload Officers, the JSC Extravehicular Activity (EVA) Section, JSC EVA Management Office, JSC Crew and Thermal Systems Division, and the STS-61 crew itself. This report also lists mission events in chronological order and includes as an appendix a post-mission summary by the lead Payload Deployment and Retrieval System Officer. Recommendations range from those pertaining to specific component use or operating techniques to those for improved management, review, planning, and safety procedures.

  2. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NASA Astrophysics Data System (ADS)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-08-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  3. Data processing for the Active Particle-induced X-ray Spectrometer and initial scientific results from Chang'e-3 mission

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Hui; Li, Chun-Lai; Zhang, Guang-Liang; Zou, Yong-Liao; Liu, Jian-Jun; Ren, Xin; Tan, Xu; Zhang, Xiao-Xia; Zuo, Wei; Wen, Wei-Bin; Peng, Wen-Xi; Cui, Xing-Zhu; Zhang, Cheng-Mo; Wang, Huan-Yu

    2014-12-01

    The Active Particle-induced X-ray Spectrometer (APXS) is an important payload mounted on the Yutu rover, which is part of the Chang'e-3 mission. The scientific objective of APXS is to perform in-situ analysis of the chemical composition of lunar soil and rock samples. The radioactive sources, 55Fe and 109Cd, decay and produce α-particles and X-rays. When X-rays and α-particles interact with atoms in the surface material, they knock electrons out of their orbits, which release energy by emitting X-rays that can be measured by a silicon drift detector (SDD). The elements and their concentrations can be determined by analyzing their peak energies and intensities. APXS has analyzed both the calibration target and lunar soil once during the first lunar day and again during the second lunar day. The total detection time lasted about 266 min and more than 2000 frames of data records have been acquired. APXS has three operating modes: calibration mode, distance sensing mode and detection mode. In detection mode, work distance can be calculated from the X-ray counting rate collected by SDD. Correction for the effect of temperature has been performed to convert the channel number for each spectrum to X-ray energy. Dead time correction is used to eliminate the systematic error in quantifying the activity of an X-ray pulse in a sample and derive the real count rate. We report APXS data and initial results during the first and second lunar days for the Yutu rover. In this study, we analyze the data from the calibration target and lunar soil on the first lunar day. Seven major elements, including Mg, Al, Si, K, Ca, Ti and Fe, have been identified. Comparing the peak areas and ratios of calibration basalt and lunar soil the landing site was found to be depleted in K, and have lower Mg and Al but higher Ca, Ti, and Fe. In the future, we will obtain the elemental concentrations of lunar soil at the Chang'e-3 landing site using APXS data.

  4. Ocean wind and roughness retrieval with spaceborne GNSS-Reflectometry: first results from the UK TechDemoSat-1 mission

    NASA Astrophysics Data System (ADS)

    Gommenginger, C.; Foti, G.

    2015-12-01

    GNSS-Reflectometry (GNSS-R) is a ground breaking ocean remote sensing technique that exploits reflected signals from Global Navigation Satellite Systems (GNSS) to retrieve geophysical information about the ocean surface such as near-surface winds above the ocean. Adopting a bistatic radar configuration, signals emitted by GNSS satellites flying in Medium Earth Orbit (MEO) are received by a GNSS-R receiver on a Low Earth Orbit (LEO) observatory utilizing both a zenith antenna to receive the direct signal from the GNSS and a nadir antenna to acquire the earth-reflected signal. The reflected signal originated from a glistening zone on the ocean surface sited around the Specular Point (SP), the geometrical point on the Earth surface where GNSS signals are forward scattered in the specular direction. The two signals are correlated for different shifts in time (delay) and frequency (Doppler) relative to the specular point (SP) to produce a so-called Delay Doppler Map (DDM) of forward-scattered electromagnetic power over the surface. This paper gives an overview of recent results obtained for wind speed and ocean roughness retrieval with the Low-Earth-Orbiting UK TechDemoSat-1 satellite (TDS-1). Launched in July 2014, TDS-1 provides the first new spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data since the pioneering UK-Disaster Monitoring Mission experiment in 2003. We present examples of onboard-processed delay Doppler Maps, including excellent DDM data quality for winds up to 27.9 m/s. The relationship between observed GNSS-R signals, wind speed and ocean roughness is explored using global collocated matchup datasets with METOP ASCAT scatterometer winds and WaveWatch3 numerical wave model output. Several Geophysical Model Functions are proposed, that make it possible to retrieve wind speed without bias and with a precision of the order of 2 m/s even without calibration. This work demonstrates the capabilities of low-cost, low-mass, low-power GNSS

  5. Proglacial sediment supply and channel evolution of the Arveyron of the Mer de Glace since the early 20th c.

    NASA Astrophysics Data System (ADS)

    Berthet, Johan; Astrade, Laurent; Ravanel, Ludovic; Ployon, Estelle

    2015-04-01

    The Arveyron of the Mer de Glace is the emissary of the most famous and largest French glacier. The latter has dramatically shrunk since the end of the Little Ice Age (LIA), such as every alpine glacier: the front has registered a retreat of 2.7 km since 1820 and a recent modelling showed a likely decrease of an extra km by 2040. The Arveyron and its surroundings are deeply impacted by the retreat. Then, dynamics of proglacial streams and of lateral moraines have been studied at different time and space scales through various methods: airborne and terrestrial Lidar DEM comparisons, mapping from orthophotos, 2D and 3D monoplotting to quantify past events from old terrestrial pictures, etc. By coupling studies on moraines and on stream morphology we wanted to better understand the influence of glacier retreat on sediment supply and transport downstream. Results show the evolution of the stream sediment sources linked to the glacier retreat. Before the middle of the 20th century, till was the main sediment source and was released by major flood events such as GLOFs. Now, geomorphic activity is especially important on the right lateral moraine into the recently deglaciated hanging valley of the Mer de Glace but also in the moraine flanks of the current glacier tongue (many landslides occurred during the Summer 2014). The recent glacier retreat has also formed sediments sinks such as two proglacial lakes which are progressively filling. These lakes work as big sediment traps until they will disappear (around 2017). Fluvial dynamics of the Arveyron depends on the connectivity with potential sediments sources. This is why we crossed upstream studies with the channel evolution on its fan. Arveyron channel has got narrower and incised for at least a century. Such evolution should mean a decreasing sediment yield, but anthropic factors play also an important role on stream morphology. The main anthorpic impact is the complex subglacial harnessing of the Mer de Glace. The

  6. Payload missions integration

    NASA Technical Reports Server (NTRS)

    Mitchell, R. A. K.

    1983-01-01

    Highlights of the Payload Missions Integration Contract (PMIC) are summarized. Spacelab Missions no. 1 to 3, OSTA partial payloads, Astro-1 Mission, premission definition, and mission peculiar equipment support structure are addressed.

  7. Biomolecular Mechanisms of Mercury Transfers and Transformations by Proteins of the Mer Operon

    NASA Astrophysics Data System (ADS)

    Miller, S. M.; Hong, B.; Nauss, R.; Momany, C.; Summers, A. O.; Feng, X.; Harwood, I.; Stroud, R.

    2008-12-01

    Aerobic bacteria exhibiting resistance to the toxic effects of Hg(II) and organomercurials [RHg(I), e.g. MeHg(I)] and are widely found in both pristine and mercury contaminated environments. Resistance, afforded by a plasmid- or transposon-associated mer operon, involves an unusual pathway where Hg(II) and organomercurials [RHg(I)] undergo facilitated entry into the bacterial cytoplasm via an integral membrane transport protein (MerT) and are then "detoxified" by the concerted effort of two enzymes, organomercurial lyase (MerB), which catalyzes dealkylation (i.e., demethylation) of RHg(I) to Hg(II) and a hydrocarbon, and mercuric ion reductase (MerA), which catalyzes reduction of Hg(II) to Hg(0) as the ultimate detoxification for the organism. With a widespread distribution, these bacterial transformations play a significant role in the fate of mercury in the environment. Our focus is on elucidation of the molecular mechanisms for the transport and catalytic transformations of RHg(I) and Hg(II) by these proteins and the factors that influence the overall efficiency of the process. Current efforts are focused primarily on elucidating details of RHg(I) binding and dealkylation by MerB as well as the mechanism for transfer of the Hg(II) product to MerA. Key findings include the demonstration of a non-cysteine residue as essential for the catalytic activity and demonstration that direct transfer of Hg(II) to MerA proceeds more rapidly and more completely than transfer to small MW thiols such as cysteines or glutathione. Reuslts of these studies as well as an overview of our current understanding of the whole system will be presented.

  8. An ensemble distance measure of k-mer and Natural Vector for the phylogenetic analysis of multiple-segmented viruses.

    PubMed

    Huang, Hsin-Hsiung

    2016-06-01

    The Natural Vector combined with Hausdorff distance has been successfully applied for classifying and clustering multiple-segmented viruses. Additionally, k-mer methods also yield promising results for global genome comparison. It is not known whether combining these two approaches can lead to more accurate results. The author proposes a method of combining the Hausdorff distances of the 5-mer counting vectors and natural vectors which achieves the best classification without cutting off any sample. Using the proposed method to predict the taxonomic labels for the 2363 NCBI reference viral genomes dataset, the accuracy rates are 96.95%, 94.37%, 99.41% and 93.82% for the Baltimore, family, subfamily, and genus labels, respectively. We further applied the proposed method to 48 isolates of the influenza A H7N9 viruses which have eight complete segments of nucleotide sequences. The single-linkage clustering trees and the statistical hypothesis testing results all indicate that the proposed ensemble distance measure can cluster viruses well using all of their segments of genome sequences.

  9. Chinese social media reaction to the MERS-CoV and avian influenza A(H7N9) outbreaks

    PubMed Central

    2013-01-01

    Background As internet and social media use have skyrocketed, epidemiologists have begun to use online data such as Google query data and Twitter trends to track the activity levels of influenza and other infectious diseases. In China, Weibo is an extremely popular microblogging site that is equivalent to Twitter. Capitalizing on the wealth of public opinion data contained in posts on Weibo, this study used Weibo as a measure of the Chinese people’s reactions to two different outbreaks: the 2012 Middle East Respiratory Syndrome Coronavirus (MERS-CoV) outbreak, and the 2013 outbreak of human infection of avian influenza A(H7N9) in China. Methods Keyword searches were performed in Weibo data collected by The University of Hong Kong’s Weiboscope project. Baseline values were determined for each keyword and reaction values per million posts in the days after outbreak information was released to the public. Results The results show that the Chinese people reacted significantly to both outbreaks online, where their social media reaction was two orders of magnitude stronger to the H7N9 influenza outbreak that happened in China than the MERS-CoV outbreak that was far away from China. Conclusions These results demonstrate that social media could be a useful measure of public awareness and reaction to disease outbreak information released by health authorities. PMID:24359669

  10. Asteroid Rescue Mission

    NASA Astrophysics Data System (ADS)

    Izon, S.; Kokan, T.; Lee, S.; Miller, J.; Morrell, R.; Richie, D.; Rohrschneider, R.; Rostan, S.; Staton, E.; Olds, J.

    2001-01-01

    This paper is in response to a request for papers from the Lunar and Planetary Institute in Houston, Texas as part of a National University Competition. A human rescue mission to the asteroid 16 Psyche was designed based around a failed Mars mission scenario. The scenario assumed the second human Mars mission, based on the Mars Design Reference Mission 3.0, failed to propulsively capture into Mars orbit, resulting in a higher energy trajectory headed towards the asteroid belt on an intercept trajectory with 16 Psyche. The task was to design a mission that could rescue the astronauts using existing Mars mission hardware prior to the failure of their life support system. Analysis tools were created in the following six disciplines for the design of the mission: trajectory, propulsion, habitat and life support, space rescue vehicle and earth reentry vehicle, space transfer vehicle, and operations. The disciplinary analysis tools were integrated into a computational framework in order to aid the design process. The problem was solved using a traditional fixed-point iteration method with user controlled design variables. Additionally, two other methods of optimization were implemented: design of experiments and collaborative optimization. These were looked at in order to evaluate their ease of implementation and use at solving a complex, multidisciplinary problem. The design of experiments methodology was used to create a central composite design array and a non-linear response surface equation. The response surface equation allows rapid system level optimization. Collaborative optimization is a true multidisciplinary optimization technique which benefits from disciplinary level optimization in conjunction with system level optimization. By reformatting the objective functions of the disciplinary optimizers, collaborative optimization guides the discipline optimizers toward the system optimum.

  11. Future NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2005-01-01

    With the launch of the last Earth Observation System (EOS) Missions, Aura, NASA now has a new fleet of 13+ highly capable remote sensing spacecraft orbiting the earth. Results from these missions are showing us the earth system as never seen before. But, what are the new challenges in understanding the Earth in an era of rapid change? In this talk I will outline some of the exciting results from the EOS missions and pull back the curtain on NASA's future earth science missions.

  12. Finding a human telomere DNA-RNA hybrid G-quadruplex formed by human telomeric 6-mer RNA and 16-mer DNA using click chemistry: a protective structure for telomere end.

    PubMed

    Xu, Yan; Suzuki, Yuta; Ishizuka, Takumi; Xiao, Chao-Da; Liu, Xiao; Hayashi, Tetsuya; Komiyama, Makoto

    2014-08-15

    Telomeric repeat-containing RNA is a non-coding RNA molecule newly found in mammalian cells. The telomere RNA has been found to localize to the telomere DNA, but how the newly discovered RNA molecule interacts with telomere DNA is less known. In this study, using the click chemistry we successfully found that a 6-mer human telomere RNA and 16-mer human telomere DNA sequence can form a DNA-RNA hybrid type G-quadruplex structure. Detection of the click-reaction products directly probes DNA-RNA G-quadruplex structures in a complicated solution, whereas traditional methods such as NMR and crystallography may not be suitable. Importantly, we found that formation of DNA-RNA G-quadruplex induced an exonuclease resistance for telomere DNA, indicating that such structures might be important for protecting telomeric DNA from enzyme digestion to avoid telomere DNA shortening. These results provide the direct evidence for formation of DNA-RNA hybrid G-quadruplex structure by human telomere DNA and RNA sequence, suggesting DNA-RNA hybrid G-quadruplex structure associated between telomere DNA and RNA may respond to chromosome end protection and/or present a valuable target for drug design.

  13. Expansion of quiescent lung adenocarcinoma CD8+ T cells by MUC1-8-mer peptide-T2 cell-β2 microglobulin complexes.

    PubMed

    Atzin-Méndez, J A; López-González, J S; Báez, R; Arenas-Del Angel, M C; Montaño, L F; Silva-Adaya, D; Lascurain, R; Gorocica, P

    2016-01-01

    Adoptive immunotherapy requires the isolation of CD8+ T cells specific for tumor-associated