Science.gov

Sample records for mercuric ion reductase

  1. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607

    NASA Astrophysics Data System (ADS)

    Schiering, N.; Kabsch, W.; Moore, M. J.; Distefano, M. D.; Walsh, C. T.; Pai, E. F.

    1991-07-01

    SEVERAL hundred million tons of toxic mercurials are dispersed in the biosphere1. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase2 and mercuric ion reductase (MerA) 3-5. The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases6, catalyses the reaction NADPH + Hg(II) --> NADP+ + H+Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase7,8 serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure9 and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), pI258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved10,11. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn5Ol and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon11. These domains can be proteolytically cleaved off without changing the catalytic efficiency3. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  2. Structure of the detoxification catalyst mercuric ion reductase from Bacillus sp. strain RC607.

    PubMed

    Schiering, N; Kabsch, W; Moore, M J; Distefano, M D; Walsh, C T; Pai, E F

    1991-07-11

    Several hundred million tons of toxic mercurials are dispersed in the biosphere. Microbes can detoxify organo-mercurials and mercury salts through sequential action of two enzymes, organomercury lyase and mercuric ion reductase (MerA). The latter, a homodimer with homology to the FAD-dependent disulphide oxidoreductases, catalyses the reaction NADPH + Hg(II)----NADP+ + H+ + Hg(0), one of the very rare enzymic reactions with metal substrates. Human glutathione reductase serves as a reference molecule for FAD-dependent disulphide reductases and between its primary structure and that of MerA from Tn501 (Pseudomonas), Tn21 (Shigella), p1258 (Staphylococcus) and Bacillus, 25-30% of the residues have been conserved. All MerAs have a C-terminal extension about 15 residues long but have very varied N termini. Although the enzyme from Streptomyces lividans has no addition, from Pseudomonas aeruginosa Tn501 and Bacillus sp. strain RC607 it has one and two copies respectively of a domain of 80-85 residues, highly homologous to MerP, the periplasmic component of proteins encoded by the mer operon. These domains can be proteolytically cleaved off without changing the catalytic efficiency. We report here the crystal structure of MerA from the Gram-positive bacterium Bacillus sp. strain RC607. Analysis of its complexes with nicotinamide dinucleotide substrates and the inhibitor Cd(II) reveals how limited structural changes enable an enzyme to accept as substrate what used to be a dangerous inhibitor. Knowledge of the mode of mercury ligation is a prerequisite for understanding this unique detoxification mechanism.

  3. Structure/Function Analysis of Protein-Protein Interactions and Role of Dynamic Motions in Mercuric Ion Reductase

    SciTech Connect

    Miller, Susan M.

    2005-05-18

    This report summarizes the activities and findings of our structure/function studies of the bacterial detoxification enzyme mercuric ion reductase. The objectives of the work were to obtain crystal structure information for the catalytic core of this enzyme, use the information to investigate the importance of specific parts of the enzyme to its function, and investigate the role of one domain of the enzyme in its function within cells. We describe the accomplishments towards these goals including many structures of the wild type and mutant forms of the enzyme that highlight its interactions with its Hg(II) substrate, elucidation of the role of the N-terminal domain in vitro and in vivo, and elucidation of the roles of at two conserved residues in the core in the mechanism of catalysis.

  4. Mutagenesis of the redox-active disulfide in mercuric ion reductase: Catalysis by mutant enzymes restricted to flavin redox chemistry

    SciTech Connect

    Distefano, M.D.; Au, K.G.; Walsh, C.T. )

    1989-02-07

    Mercuric reductase, a flavoenzyme that possesses a redox-active cystine, Cys{sub 135}Cys{sub 140}, catalyzes the reduction of Hg(II) to Hg(0) by NADPH. As a probe of mechanism, the authors have constructed mutants lacking a redox-active disulfide by eliminating Cys{sub 135} (Ala{sub 135}Cys{sub 140}), Cys{sub 14} (Cys{sub 135}Ala{sub 140}), or both (Ala{sub 135}Ala{sub 140}). Additionally, they have made double mutants that lack Cys{sub 135} (Ala{sub 135}Cys{sub 139}Cys{sub 140}) or Cys{sub 140} (Cys{sub 135}Cys{sub 139}Ala{sub 140}) but introduce a new Cys in place of Gly{sub 139} with the aim of constructing dithiol pairs in the active site that do not form a redox-active disulfide. The resulting mutant enzymes all lack redox-active disulfides and are hence restricted to FAD/FADH{sub 2} redox chemistry. Each mutant enzyme possesses unique physical and spectroscopic properties that reflect subtle differences in the FAD microenvironment. Preliminary evidence for the Ala{sub 135}Cys{sub 139}Cys{sub 14} mutant enzyme suggests that this protein forms a disulfide between the two adjacent Cys residues. Hg(II) titration experiments that correlate the extent of charge-transfer quenching with Hg(II) binding indicate that the Ala{sub 135}Cys{sub 140} protein binds Hg(II) with substantially less avidity than does the wild-type enzyme. All mutant mercuric reductases catalyze transhydrogenation and oxygen reduction reactions through obligatory reduced flavin intermediates at rates comparable to or greater than that of the wild-type enzyme. In multiple-turnover assays which monitored the production of Hg(0), two of the mutant enzymes were observed to proceed through at least 30 turnovers at rates ca. 1000-fold slower than that of wild-type mercuric reductase. They conclude that the Cys{sub 135} and Cys{sub 140} thiols serve as Hg(II) ligands that orient the Hg(II) for subsequent reduction by a reduced flavin intermediate.

  5. A conservative region of the mercuric reductase gene (mera) as a molecular marker of bacterial mercury resistance

    PubMed Central

    Sotero-Martins, Adriana; de Jesus, Michele Silva; Lacerda, Michele; Moreira, Josino Costa; Filgueiras, Ana Luzia Lauria; Barrocas, Paulo Rubens Guimarães

    2008-01-01

    The most common bacterial mercury resistance mechanism is based on the reduction of Hg(II) to Hg0, which is dependent of the mercuric reductase enzyme (MerA) activity. The use of a 431 bp fragment of a conservative region of the mercuric reductase (merA) gene was applied as a molecular marker of this mechanism, allowing the identification of mercury resistant bacterial strains. PMID:24031221

  6. Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase.

    PubMed

    Simbahan, Jessica; Kurth, Elizabeth; Schelert, James; Dillman, Amanda; Moriyama, Etsuko; Jovanovich, Stevan; Blum, Paul

    2005-12-01

    Mercury is a redox-active heavy metal that reacts with active thiols and depletes cellular antioxidants. Active resistance to the mercuric ion is a widely distributed trait among bacteria and results from the action of mercuric reductase (MerA). Protein phylogenetic analysis of MerA in bacteria indicated the occurrence of a second distinctive form of MerA among the archaea, which lacked an N-terminal metal recruitment domain and a C-terminal active tyrosine. To assess the distribution of the forms of MerA in an interacting community comprising members of both prokaryotic domains, studies were conducted at a naturally occurring mercury-rich geothermal environment. Geochemical analyses of Coso Hot Springs indicated that mercury ore (cinnabar) was present at concentrations of parts per thousand. Under high-temperature and acid conditions, cinnabar may be oxidized to the toxic form Hg2+, necessitating mercury resistance in resident prokaryotes. Culture-independent analysis combined with culture-based methods indicated the presence of thermophilic crenarchaeal and gram-positive bacterial taxa. Fluorescence in situ hybridization analysis provided quantitative data for community composition. DNA sequence analysis of archaeal and bacterial merA sequences derived from cultured pool isolates and from community DNA supported the hypothesis that both forms of MerA were present. Competition experiments were performed to assess the role of archaeal merA in biological fitness. An essential role for this protein was evident during growth in a mercury-contaminated environment. Despite environmental selection for mercury resistance and the proximity of community members, MerA retains the two distinct prokaryotic forms and avoids genetic homogenization.

  7. Mercury (II) removal by resistant bacterial isolates and mercuric (II) reductase activity in a new strain of Pseudomonas sp. B50A.

    PubMed

    Giovanella, Patricia; Cabral, Lucélia; Bento, Fátima Menezes; Gianello, Clesio; Camargo, Flávio Anastácio Oliveira

    2016-01-25

    This study aimed to isolate mercury resistant bacteria, determine the minimum inhibitory concentration for Hg, estimate mercury removal by selected isolates, explore the mer genes, and detect and characterize the activity of the enzyme mercuric (II) reductase produced by a new strain of Pseudomonas sp. B50A. The Hg removal capacity of the isolates was determined by incubating the isolates in Luria Bertani broth and the remaining mercury quantified by atomic absorption spectrophotometry. A PCR reaction was carried out to detect the merA gene and the mercury (II) reductase activity was determined in a spectrophotometer at 340 nm. Eight Gram-negative bacterial isolates were resistant to high mercury concentrations and capable of removing mercury, and of these, five were positive for the gene merA. The isolate Pseudomonas sp. B50A removed 86% of the mercury present in the culture medium and was chosen for further analysis of its enzyme activity. Mercuric (II) reductase activity was detected in the crude extract of this strain. This enzyme showed optimal activity at pH 8 and at temperatures between 37 °C and 45 °C. The ions NH4(+), Ba(2+), Sn(2+), Ni(2+) and Cd(2+) neither inhibited nor stimulated the enzyme activity but it decreased in the presence of the ions Ca(2+), Cu(+) and K(+). The isolate and the enzyme detected were effective in reducing Hg(II) to Hg(0), showing the potential to develop bioremediation technologies and processes to clean-up the environment and waste contaminated with mercury.

  8. Placental and Fetal Disposition of Mercuric Ions in Rats Exposed to Methylmercury: Role of Mrp2

    PubMed Central

    Bridges, Christy C.; Joshee, Lucy; Zalups, Rudolfs K.

    2012-01-01

    Methylmercury is a prevalent environmental toxicant that can have deleterious effects on a developing fetus. Previous studies indicate that the multidrug resistance-associated protein 2 (Mrp2) is involved in renal and hepatic export of mercuric ions. Therefore, we hypothesize that Mrp2 is also involved in export of mercuric ions from placental trophoblasts and fetal tissues. To test this hypothesis, we assessed the disposition of mercuric ions in pregnant Wistar and TR– (Mrp2-deficient) rats exposed to a single dose of methylmercury. The amount of mercury in renal tissues (cortex and outer stripe of outer medulla), liver, blood, amniotic fluid, uterus, placentas and fetuses was significantly greater in TR– rats than in Wistar rats. Urinary and fecal elimination of mercury was greater in Wistar dams than in TR– dams. Thus, our findings suggest that Mrp2 may be involved in the export of mercuric ions from maternal and fetal organs following exposure to methylmercury. PMID:23059061

  9. Mechanisms involved in the transport of mercuric ions in target tissues.

    PubMed

    Bridges, Christy C; Zalups, Rudolfs K

    2017-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.

  10. Mercuric reductase activity and evidence of broad-spectrum mercury resistance among clinical isolates of rapidly growing mycobacteria

    SciTech Connect

    Steingrube, V.A.; Wallace, R.J. Jr.; Steele, L.C.; Pang, Y.J. )

    1991-05-01

    Resistance to mercury was evaluated in 356 rapidly growing mycobacteria belonging to eight taxonomic groups. Resistance to inorganic Hg2+ ranged from 0% among the unnamed third biovariant complex of Mycobacterium fortuitum to 83% among M. chelonae-like organisms. With cell extracts and 203Hg(NO3)2 as the substrate, mercuric reductase (HgRe) activity was demonstrable in six of eight taxonomic groups. HgRe activity was inducible and required NADPH or NADH and a thiol donor for optimai activity. Species with HgRe activity were also resistant to organomercurial compounds, including phenylmercuric acetate. Attempts at intraspecies and intragenus transfer of HgRe activity by conjugation or transformation were unsuccessful. Mercury resistance is common in rapidly growing mycobacteria and appears to function via the same inducible enzyme systems already defined in other bacterial species. This system offers potential as a strain marker for epidemiologic investigations and for studying genetic systems in rapidly growing mycobacteria.

  11. Evidence for the participation of Cys sub 558 and Cys sub 559 at the active site of mercuric reductase

    SciTech Connect

    Miller, S.M.; Moore, M.J.; Massey, V.; Williams, C.H. Jr.; Distefano, M.D.; Ballou, D.P.; Walsh, C.T. )

    1989-02-07

    Mercuric reductase, with FAD and a reducible disulfide at the active site, catalyzes the two-electron reduction of Hg(II) by NADPH. Addition of reducing equivalents rapidly produces a spectrally distinct EH{sub 2} form of the enzyme containing oxidized FAD and reduced active site thiols. Formation of EH{sub 2} has previously been reported to require only 2 electrons for reduction of the active site disulfide. The authors present results of anaerobic titrations of mercuric reductase with NADPH and dithionite showing that the equilibrium conversion of oxidized enzyme to EH{sub 2} actually requires 2 equiv of reducing agent or 4 electrons. Kinetic studies conducted both at 4{degree}C and at 25{degree}C indicate that reduction of the active site occurs rapidly, as previously reported; this is followed by a slower reduction of another redox group via reaction with the active site. ({sup 14}C)Iodoacetamide labeling experiments demonstrate that the C-terminal residues, Cys{sub 558} and Cys{sub 559}, are involved in this disulfide. The fluorescence, but not the absorbance, of the enzyme-bound FAD was found to be highly dependent on the redox state of the C-terminal thiols. Thus, E{sub ox} with Cys{sub 558} and Cys{sub 559} as thiols exhibits less than 50% of the fluorescence of E{sub ox} where these residues are present as a disulfide, indicating that the thiols remain intimately associated with the active site. Initial velocity measurements show that the auxiliary disulfide must be reduced before catalytic Hg(II) reduction can occur, consistent with the report of a preactivation phenomenon with NADPH or cysteine. A modified minimal catalytic mechanism is proposed as well as several chemical mechanisms for the Hg(II) reduction step.

  12. Effect of mercuric ion on attraction to light of artemia sp nauplii.

    PubMed

    Saunders, J P; Trieff, N M; Kalmaz, E E; Uchida, T

    1985-02-01

    Living organisms exhibit a phototactic response which can be altered by certain environmental toxic chemical species. The analysis of photobehavior can help in elucidating environmental factors that influence photomotility reactions of the organisms. A method has been developed that measures the phototactic response of Artemia nauplii under the influence of mercuric ion (Hg2+) in synthetic seawater. The phototactic response of Artemia nauplii was manifested by movement of the organisms from a darkened half to lighted half of an experimental vessel containing synthetic seawater. The density as a function of time of Artemia nauplii is determined by removing aliquots from both light and dark sides and then plating on agar for counting under the dissecting microscope. Measurements consistently show a significant movement of nauplii to the lighted side within 45 min of the start of the experiments. The present investigation demonstrated that at concentrations as low as 0.010 mg HgCl2/liter there is an enhancement of phototactic effect on Artemia nauplii by mercuric ion as compared with control. The phototactic response of Artema nauplii is altered by mercuric ion in a dose-related manner, but the mechanism of this effect is presently unknown.

  13. Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine.

    PubMed

    Møller, Annette K; Barkay, Tamar; Hansen, Martin A; Norman, Anders; Hansen, Lars H; Sørensen, Søren J; Boyd, Eric S; Kroer, Niels

    2014-01-01

    Bacterial reduction in Hg(2+) to Hg(0) , mediated by the mercuric reductase (MerA), is important in the biogeochemical cycling of Hg in temperate environments. Little is known about the occurrence and diversity of merA in the Arctic. Seven merA determinants were identified among bacterial isolates from High Arctic snow, freshwater and sea-ice brine. Three determinants in Bacteriodetes, Firmicutes and Actinobacteria showed < 92% (amino acid) sequence similarity to known merA, while one merA homologue in Alphaproteobacteria and 3 homologues from Betaproteobacteria and Gammaproteobacteria were > 99% similar to known merA's. Phylogenetic analysis showed the Bacteroidetes merA to be part of an early lineage in the mer phylogeny, whereas the Betaproteobacteria and Gammaproteobacteria merA appeared to have evolved recently. Several isolates, in which merA was not detected, were able to reduce Hg(2+) , suggesting presence of unidentified merA genes. About 25% of the isolates contained plasmids, two of which encoded mer operons. One plasmid was a broad host-range IncP-α plasmid. No known incompatibility group could be assigned to the others. The presence of conjugative plasmids, and an incongruent distribution of merA within the taxonomic groups, suggests horizontal transfer of merA as a likely mechanism for High Arctic microbial communities to adapt to changing mercury concentration.

  14. High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA).

    PubMed

    Oregaard, Gunnar; Sørensen, Søren J

    2007-09-01

    DNA was extracted from different depth soils (0-5, 45-55 and 90-100 cm below surface) sampled at Lower East Fork Poplar Creek floodplain (LEFPCF), Oak Ridge (TN, USA). The presence of merA genes, encoding the mercuric reductase, the key enzyme in detoxification of mercury in bacteria, was examined by PCR targeting Actinobacteria, Firmicutes or beta/gamma-Proteobacteria. beta/gamma-Proteobacteria merA genes were successfully amplified from all soils, whereas Actinobacteria were amplified only from surface soil. merA clone libraries were constructed and sequenced. beta/gamma-Proteobacteria sequences revealed high diversity in all soils, but limited vertical similarity. Less than 20% of the operational taxonomic units (OTU) (DNA sequences > or = 95% identical) were shared between the different soils. Only one of the 62 OTU was > or = 95% identical to a GenBank sequence, highlighting that cultivated bacteria are not representative of what is found in nature. Fewer merA sequences were obtained from the Actinobacteria, but these were also diverse, and all were different from GenBank sequences. A single clone was most closely related to merA of alpha-Proteobacteria. An alignment of putative merA genes of genome sequenced mainly marine alpha-Proteobacteria was used for design of merA primers. PCR amplification of soil alpha-Proteobacteria isolates and sequencing revealed that they were very different from the genome-sequenced bacteria (only 62%-66% identical at the amino-acid level), although internally similar. In light of the high functional diversity of mercury resistance genes and the limited vertical distribution of shared OTU, we discuss the role of horizontal gene transfer as a mechanism of bacterial adaptation to mercury.

  15. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions

    NASA Astrophysics Data System (ADS)

    Zhang, Jia; Yu, Shu-Hong

    2014-03-01

    Hydrothermal treatment of 3-aminopropyltrimethoxysilane (APTMS) in the presence of sodium citrate generates a suspension of highly fluorescent silicon nanocrystals that fluoresces blue under UV irradiation. The photoluminescent quantum yield of the as-prepared silicon nanocrystals was calculated to be 21.6%, with quinine sulfate as the standard reference. Only mercuric ions (Hg2+) can readily prevent the fluorescence of the silicon nanocrystals, indicating a remarkably high selectivity towards Hg2+ over other metal ions. The optimized sensor system shows a sensitive detection range from 50 nM to 1 μM and a detection limit of 50 nM. The quenching mechanism was explained in terms of optical absorption spectra and time-resolved fluorescence decay spectra. Due to the strong interaction of Hg2+ with the thiol group, the fluorescence can be fully recovered by biothiols such as cysteine and glutathione, therefore, a regenerative strategy has been proposed and successfully applied to detect Hg2+ by the same sensor for at least five cycles. Endowed with relatively high sensitivity and selectivity, the present sensor holds the potential to be applied for mercuric assay in water.Hydrothermal treatment of 3-aminopropyltrimethoxysilane (APTMS) in the presence of sodium citrate generates a suspension of highly fluorescent silicon nanocrystals that fluoresces blue under UV irradiation. The photoluminescent quantum yield of the as-prepared silicon nanocrystals was calculated to be 21.6%, with quinine sulfate as the standard reference. Only mercuric ions (Hg2+) can readily prevent the fluorescence of the silicon nanocrystals, indicating a remarkably high selectivity towards Hg2+ over other metal ions. The optimized sensor system shows a sensitive detection range from 50 nM to 1 μM and a detection limit of 50 nM. The quenching mechanism was explained in terms of optical absorption spectra and time-resolved fluorescence decay spectra. Due to the strong interaction of Hg2+ with the

  16. A rapid electrochemical procedure for the detection of Hg(0) produced by mercuric-reductase: application for monitoring Hg-resistant bacteria activity.

    PubMed

    Battistel, Dario; Baldi, Franco; Marchetto, Davide; Gallo, Michele; Daniele, Salvatore

    2012-10-02

    In this work, gold microelectrodes are employed as traps for the detection of volatilized metallic mercury produced by mercuric reductase (MerA) extracted from an Hg-resistant Pseudomonas putida strain FB1. The enzymatic reduction of Hg (II) to Hg (0) was induced by NADPH cofactor added to the samples. The amount of Hg(0) accumulated on the gold microelectrode surface was determined by anodic stripping voltammetry (ASV) after transferring the gold microelectrode in an aqueous solution containing 0.1 M HNO(3) + 1 M KNO(3). Electrochemical measurements were combined with spectrofluorometric assays of NADPH consumption to derive an analytical expression for the detection of a relative MerA activity of different samples with respect to that of P. putida. The method developed here was employed for the rapid determination of MerA produced by bacteria harbored in soft tissues of clams (Ruditapes philippinarum), collected in high Hg polluted sediments of Northern Adriatic Sea in Italy.

  17. Femtomolar detection of mercuric ions using polypyrrole, pectin and graphene nanocomposites modified electrode.

    PubMed

    Arulraj, Abraham Daniel; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Vasantha, Vairathevar Sivasamy; Wang, Sea-Fue

    2016-12-01

    Several nanomaterials and techniques for the detection of mercuric ions (Hg(2+)) have been developed in the past decade. However, simple, low-cost and rapid sensor for the detection of heavy metal ions yet remains an important task. Herein, we present a highly sensitive electrochemical sensor for the femtomolar detection of Hg(2+) based on polypyrrole, pectin, and graphene (PPy/Pct/GR) which was prepared by one step electrochemical potentiodyanamic method. The effect of concentration of pectin, polypyrrole and graphene were studied for the detection of Hg(2+). The influence of experimental parameters including effect of pH, accumulation time and accumulation potential were also studied. Different pulse anodic stripping voltammetry was chosen to detect Hg(2+) at PPy/Pct/GR/GCE modified electrode. The fabricated sensor achieved an excellent performance towards Hg(2+) detection such as higher sensitivity of 28.64μAμM(-1) and very low detection limit (LOD) of 4 fM at the signal to noise ratio of 3. The LOD of our sensor offered nearly 6 orders of magnitude lower than that of recommended concentration of Hg(2+) in drinking water by United States Environmental Protection Agency and World Health Organization. Compared to all previously reported electrochemical sensors towards Hg(2+) detection, our newly fabricated sensor attained a very LOD in the detection of Hg(2+). The practicality of our proposed sensor for the detection of Hg(2+) was successfully demonstrated in untreated tap water.

  18. Intermingled modulatory and neurotoxic effects of thimerosal and mercuric ions on electrophysiological responses to GABA and NMDA in hippocampal neurons.

    PubMed

    Wyrembek, P; Szczuraszek, K; Majewska, M D; Mozrzymas, J W

    2010-12-01

    The organomercurial, thimerosal, is at the center of medical controversy as a suspected factor contributing to neurodevelopmental disorders in children. Many neurotoxic effects of thimerosal have been described, but its interaction with principal excitatory and inhibitory neurotransmiter systems is not known. We examined, using electrophysiological recordings, thimerosal effects on GABA and NMDA-evoked currents in cultured hippocampal neurons. After brief (3 to 10 min) exposure to thimerosal at concentrations up to 100 μM, there was no significant effect on GABA or NMDA-evoked currents. However, following exposure for 60-90 min to 1 or 10 μM thimerosal, there was a significant decrease in NMDA-induced currents (p<0.05) and GABAergic currents (p<0.05). Thimerosal was also neurotoxic, damaging a significant proportion of neurons after 60-90 min exposure; recordings were always conducted in the healthiest looking neurons. Mercuric chloride, at concentrations 1 μM and above, was even more toxic, killing a large proportion of cells after just a few minutes of exposure. Recordings from a few sturdy cells revealed that micromolar mercuric chloride markedly potentiated the GABAergic currents (p<0.05), but reduced NMDA-evoked currents (p<0.05). The results reveal complex interactions of thimerosal and mercuric ions with the GABA(A) and NMDA receptors. Mercuric chloride act rapidly, decreasing electrophysiological responses to NMDA but enhancing responses to GABA, while thimerosal works slowly, reducing both NMDA and GABA responses. The neurotoxic effects of both mercurials are interwoven with their modulatory actions on GABA(A) and NMDA receptors, which most likely involve binding to these macromolecules.

  19. MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury

    SciTech Connect

    Bridges, Christy C. Joshee, Lucy; Zalups, Rudolfs K.

    2011-02-15

    Mercuric ions accumulate preferentially in renal tubular epithelial cells and bond with intracellular thiols. Certain metal-complexing agents have been shown to promote extraction of mercuric ions via the multidrug resistance-associated protein 2 (MRP2). Following exposure to a non-toxic dose of inorganic mercury (Hg{sup 2+}), in the absence of complexing agents, tubular cells are capable of exporting a small fraction of intracellular Hg{sup 2+} through one or more undetermined mechanisms. We hypothesize that MRP2 plays a role in this export. To test this hypothesis, Wistar (control) and TR{sup -} rats were injected intravenously with a non-nephrotoxic dose of HgCl{sub 2} (0.5 {mu}mol/kg) or CH{sub 3}HgCl (5 mg/kg), containing [{sup 203}Hg], in the presence or absence of cysteine (Cys; 1.25 {mu}mol/kg or 12.5 mg/kg, respectively). Animals were sacrificed 24 h after exposure to mercury and the content of [{sup 203}Hg] in blood, kidneys, liver, urine and feces was determined. In addition, uptake of Cys-S-conjugates of Hg{sup 2+} and methylmercury (CH{sub 3}Hg{sup +}) was measured in inside-out membrane vesicles prepared from either control Sf9 cells or Sf9 cells transfected with human MRP2. The amount of mercury in the total renal mass and liver was significantly greater in TR{sup -} rats than in controls. In contrast, the amount of mercury in urine and feces was significantly lower in TR{sup -} rats than in controls. Data from membrane vesicles indicate that Cys-S-conjugates of Hg{sup 2+} and CH{sub 3}Hg{sup +} are transportable substrates of MRP2. Collectively, these data indicate that MRP2 plays a role in the physiological handling and elimination of mercuric ions from the kidney.

  20. Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 of Pseudomonas alcaligenes.

    PubMed

    Yeo, C C; Tham, J M; Kwong, S M; Yiin, S; Poh, C L

    1998-08-15

    Sequence analysis of pRA2, an endogenous 33-kb plasmid from Pseudomonas alcaligenes NCIB 9867 (strain P25X), revealed the presence of a 6256-bp transposon of the Tn3 family, designated Tn5563. Tn5563, which is flanked by two 39-bp inverted repeats, encodes a transposase, a resolvase, and two open reading frames which share amino acid sequence similarities with the mercuric ion transport proteins MerT and MerP encoded by several mer operons. However, no other mer operon genes were found on Tn5563. Sequencing of a RP4::XIn hybrid plasmid indicates possible interactions between pRA2 and the P25X chromosome mediated by Tn5563.

  1. Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells

    SciTech Connect

    Bridges, Christy C. Zalups, Rudolfs K.; Joshee, Lucy

    2015-06-01

    Secretion of inorganic mercury (Hg{sup 2+}) from proximal tubular cells into the tubular lumen has been shown to involve the multidrug resistance-associated protein 2 (Mrp2). Considering similarities in localization and substrate specificity between Mrp2 and the breast cancer resistance protein (Bcrp), we hypothesize that Bcrp may also play a role in the proximal tubular secretion of mercuric species. In order to test this hypothesis, the uptake of Hg{sup 2+} was examined initially using inside-out membrane vesicles containing Bcrp. The results of these studies suggest that Bcrp may be capable of transporting certain conjugates of Hg{sup 2+}. To further characterize the role of Bcrp in the handling of mercuric ions and in the induction of Hg{sup 2+}-induced nephropathy, Sprague–Dawley and Bcrp knockout (bcrp{sup −/−}) rats were exposed intravenously to a non-nephrotoxic (0.5 μmol·kg{sup −1}), a moderately nephrotoxic (1.5 μmol·kg{sup −1}) or a significantly nephrotoxic (2.0 μmol·kg{sup −1}) dose of HgCl{sub 2}. In general, the accumulation of Hg{sup 2+} was greater in organs of bcrp{sup −/−} rats than in Sprague–Dawley rats, suggesting that Bcrp may play a role in the export of Hg{sup 2+} from target cells. Within the kidney, cellular injury and necrosis was more severe in bcrp{sup −/−} rats than in controls. The pattern of necrosis, which was localized in the inner cortex and the outer stripe of the outer medulla, was significantly different from that observed in Mrp2-deficient animals. These findings suggest that Bcrp may be involved in the cellular export of select mercuric species and that its role in this export may differ from that of Mrp2. - Highlights: • Bcrp may mediate transport of mercury out of proximal tubular cells. • Hg-induced nephropathy was more severe in Bcrp knockout rats. • Bcrp and Mrp2 may differ in their ability to transport Hg.

  2. Effect of ambient conditions on simultaneous growth and bioaccumulation of mercuric ion by genetically engineered E. coli JM109.

    PubMed

    Deng, Xu; Zheng, Yangchun; Li, Qingbiao

    2006-08-21

    Genetically engineered E. coli JM109, namely M1, which expressed both Hg(2+) transport system and metallothionein, was tested for its capability of simultaneous growth and bioaccumulation of Hg(2+) under low nutritional circumstances. The influential factors of ambient conditions, e.g. initial concentrations of mercuric ion, ionic strength, the presence of metal chelators and other coexisting metal ions were investigated. Hg(2+) bioaccumulation behavior of M1 proved to be well coupled with its growth. NaCl was essential to the growth of M1. Of all tested NaCl concentrations, 0.04 mol/L was optimal. The presence of 0.1 mol/L CaCl(2) or MgCl(2) could promote the growth of M1 and keep the Hg(2+) removal ratio high, but the growth of M1 was inhibited seriously as the concentration of CaCl(2) or MgCl(2) reached 0.3 mol/L. Chelator EDTA had a significant influence on M1 growth and Hg(2+) bioaccumulation, while the effect of citration was little. The presence of other coexisting metal ions inhibited the growth of M1. The influential order was as follows: Cd(2+)>Zn(2+)> or =Cu(2+)>Pb(2+)>Ni(2+). However, only Cd(2+) and Cu(2+) posed obviously adverse effects on Hg(2+) bioaccumulation during the SG&B process.

  3. Mercuric chloride poisoning

    MedlinePlus

    ... Mercuric chloride is a very poisonous form of mercury. It is a type of mercury salt. There are different types of mercury poisonings . This article discusses poisoning from swallowing mercuric ...

  4. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    SciTech Connect

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg{sup 2+} ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn{sup 2+}); and (3) by inducing reactive oxygen species (ROS). Hg{sup 2+} causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn{sup 2+} release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn{sup 2+} or Hg{sup 2+}. Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg{sup 2+}-induced oxidation, because phosphatase activity is inhibited at concentrations of Hg{sup 2+} that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  5. X-ray Structure of a Hg2+ Complex of Mercuric Reductase (MerA) and Quantum Mechanical/Molecular Mechanical Study of Hg2+ Transfer between the C-Terminal and Buried Catalytic Site Cysteine Pairs

    PubMed Central

    2015-01-01

    Mercuric reductase, MerA, is a key enzyme in bacterial mercury resistance. This homodimeric enzyme captures and reduces toxic Hg2+ to Hg0, which is relatively unreactive and can exit the cell passively. Prior to reduction, the Hg2+ is transferred from a pair of cysteines (C558′ and C559′ using Tn501 numbering) at the C-terminus of one monomer to another pair of cysteines (C136 and C141) in the catalytic site of the other monomer. Here, we present the X-ray structure of the C-terminal Hg2+ complex of the C136A/C141A double mutant of the Tn501 MerA catalytic core and explore the molecular mechanism of this Hg transfer with quantum mechanical/molecular mechanical (QM/MM) calculations. The transfer is found to be nearly thermoneutral and to pass through a stable tricoordinated intermediate that is marginally less stable than the two end states. For the overall process, Hg2+ is always paired with at least two thiolates and thus is present at both the C-terminal and catalytic binding sites as a neutral complex. Prior to Hg2+ transfer, C141 is negatively charged. As Hg2+ is transferred into the catalytic site, a proton is transferred from C136 to C559′ while C558′ becomes negatively charged, resulting in the net transfer of a negative charge over a distance of ∼7.5 Å. Thus, the transport of this soft divalent cation is made energetically feasible by pairing a competition between multiple Cys thiols and/or thiolates for Hg2+ with a competition between the Hg2+ and protons for the thiolates. PMID:25343681

  6. Mercuric ion-resistance operons of plasmid R100 and transposon Tn501: the beginning of the operon including the regulatory region and the first two structural genes.

    PubMed Central

    Misra, T K; Brown, N L; Fritzinger, D C; Pridmore, R D; Barnes, W M; Haberstroh, L; Silver, S

    1984-01-01

    The mercuric ion-resistance operons of plasmid R100 (originally from Shigella) and transposon Tn501 (originally from a plasmid isolated in Pseudomonas) have been compared by DNA sequence analysis. The sequences for the first 1340 base pairs of Tn501 are given with the best alignment with the comparable 1319 base pairs of R100. The homology between the two sequences starts at base 58 after the end of the insertion sequence IS-1 of R100. The sequences include the transcriptional regulatory region, and the homology is particularly strong in regions just upstream from potential transcriptional initiation sites. The trans-acting regulatory gene merR consists of 180 base pairs in both cases and codes for a highly basic polypeptide of 60 amino acids, which is also rich in serine. The Tn501 and R100 merR genes differ in 25 of the 180 base positions, and the resulting polypeptides differ in seven amino acids. The regulatory region before the major transcription initiation site contains potential -35 and -10 sequences and dyad symmetrical sequences, which may be the merR binding sites for transcriptional regulation. The first structural gene, merT, encodes a highly hydrophobic polypeptide of 116 amino acids. The R100 and Tn501 merT genes differ in 17% of their positions, leading to 14 (12%) amino acid changes. This region had previously been shown to encode a protein governing membrane transport of mercuric ions. The second structural gene, merC, would give a 91 amino acid polypeptide with a hydrophobic amino-terminal segment. The Tn501 and R100 merC genes differ at 37 base positions, leading to 10 amino acid changes. PMID:6091128

  7. One-step synthesis of graphitic carbon nitride nanosheets with the help of melamine and its application for fluorescence detection of mercuric ions.

    PubMed

    Zhuang, Qianfen; Sun, Liming; Ni, Yongnian

    2017-03-01

    A facile, simple, and relatively environment-friendly hydrothermal approach was developed for one-step synthesis of graphitic carbon nitride nanosheets (GCNNs) using melamine and sodium citrate as the precursors. The prepared GCNNs emit strong fluorescence with a high quantum yield of 48.3%. The GCNNs were then characterized by various techniques including transmission electron microscopy, atomic force microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis absorption spectroscopy. In addition, the fluorescence quenching behavior of the GCNNS by mercuric ions (Hg(2+)) was exploited to fabricate a label-free fluorescence quenching sensor for sensitive and selective detection of Hg(2+). The results showed that there existed a linear relationship between the fluorescence intensity and the concentration of Hg(2+) from 0.001 to 1.0μM with a detection limit of 0.3nM. Finally, the sensor was successfully used to detection of Hg(2+) in water and milk samples.

  8. Enzymatic detection of mercuric ions in ground-water from vegetable wastes by immobilizing pumpkin (Cucumis melo) urease in calcium alginate beads.

    PubMed

    Prakash, Om; Talat, Mahe; Hasan, Syed Hadi; Pandey, Rajesh K

    2008-07-01

    Present report describes a quick and simple test based on enzyme inhibition for the detection of mercury in aqueous medium by urease immobilized in alginate beads. Urease was extracted from the discarded seeds of pumpkin (Cucumis melo) and was purified to apparent homogeneity (5.2-fold) by heat treatment at 48+/-0.1 degrees C and gel filtration through Sephadex G-200. The homogeneous enzyme preparation (Sp activity 353 U/mg protein, A(280)/A(260)=1.12) was immobilized in 3.5% alginate leading to 86% immobilization. Effect of mercuric ion on the activity of soluble as well as immobilized enzyme was investigated. Hg(2+) exhibited a concentration-dependent inhibition both in the presence and absence of the substrate. The alginate immobilized enzyme showed less inhibition. There was no leaching of the enzyme over a period of 15 days at 4 degrees C. The inhibition was non-competitive and the K(i) was found to be 1.26x10(-1)microM. Time-dependent interaction of urease with Hg(2+) exhibited a biphasic inhibition behavior in which approximately half of the initial activity was lost rapidly (within 10 min) and reminder in a slow phase. Binding of Hg(2+) with the enzyme was largely irreversible, as the activity could not be restored by dialysis. The significance of the observations is discussed.

  9. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions.

    PubMed

    Bothra, Shilpa; Upadhyay, Yachana; Kumar, Rajender; Ashok Kumar, S K; Sahoo, Suban K

    2017-04-15

    One-pot approach was adopted for the synthesis of highly luminescent near-infrared (NIR)-emitting gold nanoclusters (AuNCs) using bovine serum albumin (BSA) as a protecting agent. The vitamin B6 cofactor pyridoxal was conjugated with the luminescent BSA-AuNCs through the free amines of BSA and then employed for the nanomolar detection of Hg(2+) in aqueous medium via selective fluorescence quenching of AuNCs. This nano-assembly was successfully applied for the real sample analysis of Hg(2+) in fish, tap water and river water. The study also presents chemically-modified cellulosic paper strips with the pyridoxal conjugated BSA-AuNCs for detecting Hg(2+) ion up to 1nM.

  10. Branchial and renal pathology in the fish exposed chronically to methoxy ethyl mercuric chloride

    SciTech Connect

    Gill, T.S.; Pant, J.C.; Tewari, H.

    1988-08-01

    Pathological manifestations causally related to pesticide poisoning have been described in both surficial and internal tissues of the fishes. Among the various organomercurials are phenyl mercuric acetate, methyl mercuric dicyanidiamide, methoxy ethyl mercuric chloride, methoxy ethyl mercuric silicate etc. Of these, the methoxy ethyl mercuric chloride (MEMC) is used in agriculture as an antifungal seed dressing, and its toxicity is primarily manifest in the Hg/sup 2 +/ ion. This report describes pathogenesis of branchial and renal lesions in the common freshwater fish, Puntius conchonius exposed chronically to sublethal levels of MEMC. Prior to this, alterations in the peripheral blood and metabolite levels in response to experimental MEMC poisoning have been demonstrated in this species.

  11. Mercuric iodide light detector and related method

    DOEpatents

    Iwanczyk, Jan S.; Barton, Jeff B.; Dabrowski, Andrzej J.; Schnepple, Wayne F.

    1986-01-01

    Apparatus and method for detecting light involve applying a substantially uniform electrical potential difference between first and second spaced surfaces of a body of mercuric iodide, exposing the first surface to light and measuring an electrical current passed through the body in response to the light. The mercuric iodide may be substantially monocrystalline and the potential may be applied between a substantially transparent conductive layer at the first surface and a second conductive layer at the second surface. In a preferred embodiment, the detector is coupled to a scintillator for passage of light to the mercuric iodide in response to ionizing radiation incident on the scintillator.

  12. Large area mercuric iodide photodetectors

    SciTech Connect

    Iwanczyk, J.S.; Dabrowski, A.J.; Markakis, J.M.; Ortale, C.; Schnepple, W.F.

    1984-02-01

    Results of an investigation of large area mercuric iodide (HgI/sub 2/) photodetectors are reported. Different entrance contacts were studied, including semitransparent metallic films and conductive liquids. Theoretical calculations of electronic noise of these photodetectors were compared with experimental results. HgI/sub 2/ photodetectors with active area up to 4 cm/sup 2/ were matched with NaI(Tl) and CsI(Tl) scintillation crystals and were evaluated as gamma-radiation spectrometers. Energy resolution of 9.3% for gamma radiation of 511 keV with a CsI(Tl) scintillator and energy resolution of 9.0% for gamma radiation of 622 keV with a NaI(Tl) scintillator have been obtained.

  13. Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin

    SciTech Connect

    Lin, Y.W.; Robinson, H.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Tian, S.; Lu, Y.

    2010-05-11

    A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

  14. Roles of Glutamates and Metal ions in a Rationally Designed Nitric Oxide Reductase Based on Myoglobin

    SciTech Connect

    Y Lin; N Yeung; Y Gao; K Miner; S Tian; H Robinson; Y Lu

    2011-12-31

    A structural and functional model of bacterial nitric oxide reductase (NOR) has been designed by introducing two glutamates (Glu) and three histidines (His) in sperm whale myoglobin. X-ray structural data indicate that the three His and one Glu (V68E) residues bind iron, mimicking the putative FeB site in NOR, while the second Glu (I107E) interacts with a water molecule and forms a hydrogen bonding network in the designed protein. Unlike the first Glu (V68E), which lowered the heme reduction potential by {approx}110 mV, the second Glu has little effect on the heme potential, suggesting that the negatively charged Glu has a different role in redox tuning. More importantly, introducing the second Glu resulted in a {approx}100% increase in NOR activity, suggesting the importance of a hydrogen bonding network in facilitating proton delivery during NOR reactivity. In addition, EPR and X-ray structural studies indicate that the designed protein binds iron, copper, or zinc in the FeB site, each with different effects on the structures and NOR activities, suggesting that both redox activity and an intermediate five-coordinate heme-NO species are important for high NOR activity. The designed protein offers an excellent model for NOR and demonstrates the power of using designed proteins as a simpler and more well-defined system to address important chemical and biological issues.

  15. Three spinach leaf nitrate reductase-3-hydroxy-3-methylglutaryl-CoA reductase kinases that are required by reversible phosphorylation and/or Ca2+ ions.

    PubMed Central

    Douglas, P; Pigaglio, E; Ferrer, A; Halfords, N G; MacKintosh, C

    1997-01-01

    In spinach (Spinacea oleracea L.) leaf extracts, three protein kinases (PKI, PKII and PKIII) were identified each of which phosphorylated spinach nitrate reductase on serine-543, and inactivated the enzyme in the presence of nitrate reductase inhibitor, 14-3-3. PKIII was also very active in phosphorylating and inactivating Arabidopsis (Landsberg erecta) 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 (HMGR1). PKI and PKII phosphorylated HMGR1 more slowly than PKIII, compared with their relative rates of phosphorylation of nitrate reductase. HMGR1 identical with those that are seen after phosphorylation of serine-577 by the sucrose non-fermenting (SNF1)-like PK, 3-hydroxy-3-methylglutaryl-Co A reductase kinase A (HRK-A), from cauliflower [Dale, Arró, Becerra, Morrice, Boronat, Hardie and Ferrer (1995) Eur. J. Biochem. 233, 506-513]. PKI was Ca2+-dependent when prepared in the absence of protein phosphatase (PP) inhibitors, and largely Ca2+-dependent when prepared in the presence of PP inhibitors (NaF and EGTA). The Ca2+-independent portion of PKI was inactivated by either PP2A or PP2C, while the Ca2+-dependent portion of PKI became increasingly activated during storage, which we presume was mimicking the effect of an unidentified PP. These findings indicate that PK1 is regulated by two functionally distinct phosphorylations. PKI had a molecular mass of 45 kDa on gel filtration and was active towards substrate peptides that terminated at the +2 residue from the phosphorylation site, whereas PKIII was inactive towards these peptides. PKII was Ca2+-stimulated under all conditions tested. PKIII was Ca2+-indepdented, inactivated by PP2A or PP2C, had a requirement for a hydrophobic residue in the +4 position of peptide substrates, had a molecular mass by gel filtration of approximately 140 kDa, and an antibody against the rye SNF1-related PK (RKIN1) recognized a 58 kDa subunit in fractions containing PKIII. These properties of PKIII are identical with those reported

  16. Energy resolution enhancement of mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Finger, M.; Prince, T. A.; Padgett, L.; Prickett, B.; Schnepple, W.

    1984-01-01

    A pulse processing technique has been developed which improves the gamma-ray energy resolution of mercuric iodide detectors. The technique employs a fast (100 ns) and a slow (6.4 microsec) pulse height analysis to correct for signal variations due to variations in charge trapping. The capabilities of the technique for energy resolution enhancement are discussed as well as the utility of the technique for examining the trapping characteristics of individual detectors. An energy resolution of 2.6 percent FWHM at 662 keV was achieved with an acceptance efficiency of 100 percent from a mercuric iodide detector which gives 8.3 percent FWHM using standard techniques.

  17. Inhibitory effects of calmodulin antagonists on urinary enzyme excretion in rats after nephrotoxic doses of mercuric chloride

    SciTech Connect

    Harrison, S.D. Jr.; Cox, J.L.; Giles, R.C. Jr.

    1985-03-01

    Prochlorperazine, a phenothiazine antiemetic, has been reported to protect rats against mercuric chloride (HgCl/sub 2/)-induced nephrotoxicity. Mercuric ion and 12 other divalent metal ions of toxicologic importance inhibit the activity of calmodulin, a ubiquitous intracellular calcium receptor and regulatory protein, at physiologically relevant concentrations. Phenothiazines, including prochlorperazine, are reversible calmodulin antagonists, and as such they interact with divalent calcium at the level of calmodulin. It was of interest therefore to evaluate the comparative effects of several phenothiazines on HgCl/sub 2/-induced nephrotoxicity in rats.

  18. Mercuric chloride (HgCl2)

    Integrated Risk Information System (IRIS)

    Mercuric chloride ( HgCl2 ) ; CASRN 7487 - 94 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  19. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  20. Mercuric iodide X-ray camera

    NASA Astrophysics Data System (ADS)

    Patt, B. E.; del Duca, A.; Dolin, R.; Ortale, C.

    1986-02-01

    A prototype X-ray camera utilizing a 1.5- by 1.5-in., 1024-element, thin mercuric iodide detector array has been tested and evaluated. The microprocessor-based camera is portable and operates at room temperature. Events can be localized within 1-2 mm at energies below 60 keV and within 5-6 mm at energies on the order of 600 keV.

  1. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  2. 34. August, 1971. PHOTOCOPY: GENERAL VIEW OF CITY OF MERCUR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. August, 1971. PHOTOCOPY: GENERAL VIEW OF CITY OF MERCUR CA. 1910 (THIS HISTORIC VIEW IS TAKEN FROM A PUBLICATION BY UTAH POWER & LIGHT CO. CREDIT REQUESTED TO COMPANY.). (SEE UT-10-2 FOR PRESENT DAY VIEW). - DeLamar Mercur Mines Company, Golden Gate Mill, Ophir, Tooele County, UT

  3. Synthesis of α-Diketones from Alkylaryl- and Diarylalkynes Using Mercuric Salts

    PubMed Central

    2015-01-01

    Both alkylarylalkynes and diarylalkynes 1 are converted into the α-diketones 2 in good yield by the use of mercuric salts, e.g., mercuric nitrate hydrate or mercuric triflate, in the presence of water. Other mercuric salts, e.g., sulfate, chloride, acetate, or trifluoroacetate, do not provide the diketone product. A possible mechanism is proposed. PMID:24684513

  4. Synthetic and structural investigations of mercurous and mercuric organophosphonates and phenylarsonates

    NASA Astrophysics Data System (ADS)

    Padalwar, Nitin Balkrushna; Vidyasagar, Kanamaluru

    2016-11-01

    The following twelve mercurous and mercuric organophosphomates, bis/diphosphonates and phenylarsonates have been isolated and structurally characterized by single crystal X-ray diffraction, 13C-and 31P NMR, infrared and Raman spectroscopic methods: Hg2(HO3PC6H5)2(1), Hg2(HO3P(C6H4)PO3H)(2), Hg2(HO3P(C6H4)2PO3H)(3), Hg2(HO3P(CH2)4PO3H)(4), Hg2(O3PC6H5)·H2O(5), (Hg2)2(O3P(CH2)2PO3)(6), (Hg2)2(O3P(CH2)3PO3)(7), Hg(O3PC6H5)·H2O(8), Hg(O3PCH2C6H5)·H2O(9), Hg(O3AsC6H5)·H2O(10), Hg3(O3AsC6H5)2(HO3AsC6H5)2(11) and (Hg2)Hg3(O3P(C6H4)PO3)2·2H2O(12). Compounds 1-7 are the first examples of mercurous phosphonates and di/bisphosphonates. They contain Hg2O6 units, which consist of Hg22+ cations with Hg-Hg bond of 2.5 Å length. Phenylphosphonates 1 and 5 are layered compounds, whereas bis/diphosphonates 2, 3, 4, 6 and 7 have pillared-layered and three-dimensional structures. Compounds 8-11 are layered mercuric phosphonates and phenylarsonates. Compound 12 is a three-dimensional mixed-valent mercury phenylenebisphosphonate.

  5. A new strategy for strain improvement of Aurantiochytrium sp. based on heavy-ions mutagenesis and synergistic effects of cold stress and inhibitors of enoyl-ACP reductase.

    PubMed

    Cheng, Yu-Rong; Sun, Zhi-Jie; Cui, Gu-Zhen; Song, Xiaojin; Cui, Qiu

    2016-11-01

    Developing a strain with high docosahexaenoic acid (DHA) yield and stable fermenting-performance is an imperative way to improve DHA production using Aurantiochytrium sp., a microorganism with two fatty acid synthesis pathways: polyketide synthase (PKS) pathway and Type I fatty acid synthase (FAS) pathway. This study investigated the growth and metabolism response of Aurantiochytrium sp. CGMCC 6208 to two inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan), and proposed a method of screening high DHA yield Aurantiochytrium sp. strains with heavy ion mutagenesis and pre-selection by synergistic usage of cold stress (4°C) and FAS inhibitors (triclosan and isoniazid). Results showed that (1) isoniazid and triclosan have positive effects on improving DHA level of cells; (2) mutants from irradiation dosage of 120Gy yielded more DHA compared with cells from 40Gy, 80Gy treatment and wild type; (3) DHA contents of mutants pre-selected by inhibitors of enoyl-ACP reductase of Type II FAS pathway (isoniazid and triclosan)at 4°C, were significantly higher than that of wild type; (4) compared to the wild type, the DHA productivity and yield of a mutant (T-99) obtained from Aurantiochytrium sp. CGMCC 6208 by the proposed method increased by 50% from 0.18 to 0.27g/Lh and 30% from 21 to 27g/L, respectively. In conclusion, this study developed a feasible method to screen Aurantiochytrium sp. with high DHA yield by a combination of heavy-ion mutagenesis and mutant-preselection by FAS inhibitors and cold stress.

  6. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  7. Near-infrared to near-infrared upconverting NaYF4:Yb3+,Tm3+ nanoparticles-aptamer-Au nanorods light resonance energy transfer system for the detection of mercuric(II) ions in solution.

    PubMed

    Chen, Hong-Qi; Yuan, Fei; Wang, Shao-Zhen; Xu, Juan; Zhang, Yi-Yan; Wang, Lun

    2013-04-21

    A new luminescence resonant energy transfer (LRET) system has been designed that utilizes near-infrared (NIR)-to-NIR upconversion lanthanide nanophosphors (UCNPs) as the donor, and Au nanorods (Au NRs) as the acceptor. The UCNPs were excited by a near-infrared (980 nm) wavelength and also emitted at a near-infrared wavelength (804 nm) using an inexpensive infrared continuous wave laser diode. The Au NRs showed a high absorption band around 806 nm, which provided large spectral overlap between the donor and the acceptor. Hg(2+) ions were added to an aqueous solution containing the UCNPs and Au NRs that were modified with a Hg(2+) aptamer. Then, a sandwich-type LRET system was developed for the detection of Hg(2+) ions that had high sensitivity and selectivity in the NIR region. The method was successfully applied to the sensing of Hg(2+) ions in water and human serum samples.

  8. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  9. The Role of Nitrate and Ammonium Ions and Light on the Induction of Nitrate Reductase in Maize Leaves 1

    PubMed Central

    Oaks, Ann; Poulle, Michel; Goodfellow, Valerie J.; Cass, Leslie A.; Deising, Holger

    1988-01-01

    Corn seedlings (Zea mays cv W64A × W182E) were grown hydroponically, in the presence or absence of NO3−, with or without light and with NH4Cl as the only N source. In agreement with earlier results nitrate reductase (NR) activity was found only in plants treated with both light and NO3−. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer of the proteins to nitrocellulose paper and reaction with antibodies prepared against a pure NR showed that crude extracts prepared from light-grown plants had a polypeptide of approximately 116 kilodaltons (the subunit size for NR) when NO3− was present in the growth medium. Crude extracts from plants grown in the dark did not have the 116 kilodalton polypeptide, although smaller polypeptides, which reacted with NR-immunoglobulin G, were sometimes found at the gel front. When seedlings were grown on Kimpack paper or well washed sand, NR activity was again found only when the seedlings were exposed to light and NO3−. Under these conditions, however, a protein of about 116 kilodaltons, which reacted with the NR antibody was present in light-grown plants whether NO3− was added to the system or not. The NR antibody cross-reacting protein was also seen in hydroponically grown plants when NH4Cl− was the only added form of nitrogen. These results indicate that the induction of an inactive NR-protein precursor in corn is mediated either by extremely low levels of NO3− or by some other unidentified factor, and that higher levels of NO3− are necessary for converting the inactive NR cross-reacting protein to a form of the enzyme capable of reducing NO3− to NO2−. Images Fig. 1 Fig. 2 Fig. 3 PMID:16666423

  10. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Dabrowski, A.; Iwanczyk, J.; Ortale, C.; Schnepple, W.

    1985-02-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..mthick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cmdiam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  11. Mercuric iodide photodetectors for scintillation spectroscopy

    SciTech Connect

    Markakis, J.; Ortale, C.; Schnepple, W.; Iwanczyk, J.; Dabrowski, A.

    1984-01-01

    We have measured the responses to /sup 137/Cs (662 keV) of both a 1-inch-diam by 2-inch-thick NaI(Tl) scintillator optically coupled to a 1-inch-diam by 800-..mu..m-thick mercuric iodide (HgI/sub 2/) photodetector, and a 1-cm-diam by 1-cm-thick CaWO/sub 4/ scintillator coupled to a 1.3-cm-diam by 600-..mu..m-thick HgI/sub 2/ photodetector. Best spectral resolution to /sup 137/Cs was 7.8% FWHM for the NaI(Tl)-HgI/sub 2/ and 12.5% FWHM for the CaWO/sub 4/-HgI/sub 2/ detectors; peak-to-valley ratios were 26:1 and 16:1, respectively. HgI/sub 2/ detectors operate at room temperature and their use in scintillation spectroscopy presents the ultimate miniaturization of scintillation detectors, limited mainly by the size of the scintillation crystal.

  12. Defects and impurities in mercuric iodine processing

    SciTech Connect

    van Scyoc, J.M.; James, R.B.; Schlesinger, T.E.; Gilbert, T.S.

    1996-03-01

    In the fabrication of mercuric iodide HgI{sub 2} room temperature radiation detectors, as in any semiconductor process, the quality of the final device is very sensitive to the impurities and defects present. Each process step can change the effects of existing defects, reduce the number of defects, or introduce new defects. In HgI{sub 2} detectors these defects act as trapping and recombination centers, thereby degrading immediate performance and leading to unstable devices. In this work we characterized some of the defects believed to strongly affect detector operation. Specifically, we studied impurities that are known to be present in typical HgI{sub 2} materials. Leakage current measurements were used to study the introduction and characteristics of these impurities, as such experiments reveal the mobile nature of these defects. In particular, we found that copper, which acts as a hole trap, introduces a positively charged center that diffuses and drifts readily in typical device environments. These measurements suggest that Cu, and related impurities like silver, may be one of the leading causes of HgI{sub 2} detector failures.

  13. Development of a mercuric iodide solid state spectrometer for X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Vallerga, J.

    1983-01-01

    Mercuric iodide detectors, experimental development for astronomical use, X ray observations of the 1980 Cygnus X-1 High State, astronomical had X ray detectors in current use, detector development, balloon flight of large area (1500 sq cm) Phoswich detectors, had X ray telescope design, shielded mercuric iodide background measurement, Monte Carlo analysis, measurements with a shielded mercuric iodide detector are discussed.

  14. Introduction of extrinsic defects into mercuric iodide during processing

    SciTech Connect

    Hung, C.; Bao, X.J.; Schlesinger, T.E. ); James, R.B. ); Cheng, A.Y.; Ortale, C.; van den Berg, L. )

    1993-05-01

    Low temperature (4.2 K) photoluminescence spectroscopy (PL) measurements were performed on mercuric iodide (HgI[sub 2]) crystals which were intentionally doped with copper or silver during KI etching. PL spectra obtained after these doping experiments show specific Cu and Ag features similar to those previously observed after deposition of Cu or Ag contacts on mercuric iodide crystals. The in-diffusion of Cu or Ag into bulk HgI[sub 2] has also been confirmed a few days after doping. This diffusion introduces new recombination centers in the material. This work suggests that the processing steps used to fabricate mercuric iodide nuclear detectors can lead to the introduction of new defects which are detrimental to detector performance.

  15. Evidence That the [beta] Subunit of Chlamydia trachomatis Ribonucleotide Reductase Is Active with the Manganese Ion of Its Manganese(IV)/Iron(III) Cofactor in Site 1

    SciTech Connect

    Dassama, Laura M.K.; Boal, Amie K.; Krebs, Carsten; Rosenzweig, Amy C.; Bollinger, Jr., J. Martin

    2014-10-02

    The reaction of a class I ribonucleotide reductase (RNR) begins when a cofactor in the {beta} subunit oxidizes a cysteine residue {approx}35 {angstrom} away in the {alpha} subunit, generating a thiyl radical. In the class Ic enzyme from Chlamydia trachomatis (Ct), the cysteine oxidant is the Mn{sup IV} ion of a Mn{sup IV}/Fe{sup III} cluster, which assembles in a reaction between O{sub 2} and the Mn{sup II}/Fe{sup II} complex of {beta}. The heterodinuclear nature of the cofactor raises the question of which site, 1 or 2, contains the Mn{sup IV} ion. Because site 1 is closer to the conserved location of the cysteine-oxidizing tyrosyl radical of class Ia and Ib RNRs, we suggested that the Mn{sup IV} ion most likely resides in this site (i.e., {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}), but a subsequent computational study favored its occupation of site 2 ({sup 1}Fe{sup III}/{sup 2}Mn{sup IV}). In this work, we have sought to resolve the location of the Mn{sup IV} ion in Ct RNR-{beta} by correlating X-ray crystallographic anomalous scattering intensities with catalytic activity for samples of the protein reconstituted in vitro by two different procedures. In samples containing primarily Mn{sup IV}/Fe{sup III} clusters, Mn preferentially occupies site 1, but some anomalous scattering from site 2 is observed, implying that both {sup 1}Mn{sup II}/{sup 2}Fe{sup II} and {sup 1}Fe{sup II}/{sup 2}Mn{sup II} complexes are competent to react with O{sub 2} to produce the corresponding oxidized states. However, with diminished Mn{sup II} loading in the reconstitution, there is no evidence for Mn occupancy of site 2, and the greater activity of these 'low-Mn' samples on a per-Mn basis implies that the {sup 1}Mn{sup IV}/{sup 2}Fe{sup III}-{beta} is at least the more active of the two oxidized forms and may be the only active form.

  16. Chronic effects of mercuric chloride ingestion on rat adrenocortical function

    SciTech Connect

    Agrawal, R.; Chansouria, J.P.N. )

    1989-09-01

    Mercurial contamination of environment has increased. Mercury accumulates in various organs and adversely affects their functions. Some of the most prominent toxic effects of inorganic mercury compounds include neurotoxicity, hepatotoxicity and nephrotoxicity. Besides this, mercury has also been reported to affect various endocrine glands like pituitary, thyroid, gonadal and adrenal glands. There have been no reports on the toxic effects of chronic oral administration of varying doses of mercuric chloride on adrenocortical function in albino rats. The present work was undertaken to study the adrenocortical response to chronic oral administration of mercuric chloride of varying dose and duration in albino rats.

  17. Thermodynamic reactivity, growth and characterization of mercurous halide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Singh, M.; Glicksman, M. E.; Paradies, C.

    1992-01-01

    Thermodynamic calculations were carried out for the Hg-X-O system (X = Cl, Br, I) to identify the potential sources of contamination and relative stability of oxides and oxy-halide phases. The effect of excess mercury vapor pressure on the optical quality of mercurous halide crystal was studied by growing several mercurous chloride crystals from mercury-rich composition. The optical quality of crystals was examined by birefringence interferometry and laser scattering studies. Crystals grown in slightly mercury-rich composition showed improved optical quality relative to stoichiometric crystals.

  18. Large-area mercuric iodide x-ray imager

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry D.; Pavlyuchkova, Raisa; Virshup, Gary F.; Zuck, Asaf; Melekhov, Leonid; Dagan, O.; Vilensky, Alexander I.; Gilboa, Haim

    2002-05-01

    Single crystals of mercuric iodide have been studied for many years for nuclear detectors. We have investigated the use of x-ray photoconductive polycrystalline mercuric iodide coatings on amorphous silicon flat panel thin film transistor (TFT) arrays as x-ray detectors for radiographic and fluoroscopic applications in medical imaging. The mercuric iodide coatings were vacuum deposited by Physical Vapor Deposition (PVD). This coating technology is capable of being scaled up to sizes required in common medical imaging applications. Coatings were deposited on 4 inches X 4 inches TFT arrays for imaging performance evaluation and also on conductive-coated glass substrates for measurements of x-ray sensitivity, dark current and image lag. The TFT arrays used included pixel pitch dimensions of both 100 and 139 microns. Coating thickness between 150 microns and 250 microns were tested in the 25 kVp-100 kVp x-ray energy range utilizing exposures typical for both fluoroscopic, and radiographic imaging. X-ray sensitivities measured for the mercuric iodide samples and coated TFT detectors were superior to any published results for competitive materials (up to 7100 ke/mR/pixel for 100 micron pixels). It is believed that this higher sensitivity, can result in fluoroscopic imaging signal levels high enough to overshadow electronic noise. Image lag characteristics appear adequate for fluoroscopic rates. Resolution tests on resolution target phantoms showed that resolution is limited to the Nyquist frequency for the 139 micron pixel detectors. The ability to operate at low voltages gives adequate dark currents for most applications and allows low voltage electronics designs. Mercuric Iodide coated TFT arrays were found to be outstanding candidates for direct digital radiographic detectors for both static and dynamic (fluoroscopic) applications. Their high x-ray sensitivity, high resolution, low dark current, low voltage operation, and good lag characteristics provide a unique

  19. Sodium selenite and vitamin E in preventing mercuric chloride induced renal toxicity in rats.

    PubMed

    Aslanturk, Ayse; Uzunhisarcikli, Meltem; Kalender, Suna; Demir, Filiz

    2014-08-01

    This study aims to investigate improving effects of sodium selenite and/or vitamin E on mercuric chloride-induced kidney impairments in rats. Wistar male rats were exposed either to sodium selenite (0.25mg/kgday), vitamin E (100mg/kgday), sodium selenite+vitamin E, mercuric chloride (1mg/kgday), sodium selenite+mercuric chloride, vitamin E+mercuric chloride and sodium selenite+vitamin E+mercuric chloride for 4weeks. Mercuric chloride exposure resulted in an increase in the uric acid, creatinine, blood urea nitrogen and malondialdehyde (MDA) levels and a decrease in the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. Histopathological changes were detected in kidney tissues in mercuric chloride-treated groups. A significant decrease in the uric acid, creatinine, blood urea nitrogen and MDA levels and a significant increase in the SOD, CAT and GPx activities were observed in the supplementation of sodium selenite and/or vitamin E to mercuric chloride-treated groups. Conclusively, sodium selenite, vitamin E and vitamin E+sodium selenite significantly reduce mercuric chloride induced nephrotoxicity in rats, but not protect completely.

  20. Direct vapor/solid synthesis of mercuric iodide using compounds of mercury and iodine

    DOEpatents

    Skinner, Nathan L.

    1990-01-01

    A process is disclosed for producing high purity mercuric iodide by passing a gaseous source of a mercuric compound through a particulate bed of a low vapor pressure iodide compound which is maintained at an elevated temperature which is the lower of either: (a) just below the melting or volatilization temperature of the iodide compound (which ever is lower); or (b) just below the volatilization point of the other reaction product formed during the reaction; to cause the mercuric compound to react with the iodide compound to form mercuric iodide which then passes as a vapor out of the bed into a cooler condensation region.

  1. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  2. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1993-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels.

  3. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S. . Santa Barbara Operations); Mroz, E.; Olivares, J.A. )

    1993-01-01

    A method has been developed to analyze mercuric iodide (HgI[sub 2]) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper will discuss the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI[sub 2], as well as preliminary correlations between HgI[sub 2] detector performance and elemental contamination levels.

  4. Growth of mercuric iodide single crystals from dimethylsulfoxide

    DOEpatents

    Carlston, Richard C.

    1976-07-13

    Dimethylsulfoxide is used as a solvent for the growth of red mercuric iodide (HgI.sub.2) crystals for use in radiation detectors. The hygroscopic property of the solvent allows controlled amounts of water to enter into the solvent phase and diminish the large solubility of HgI.sub.2 so that the precipitating solid collects as well-defined euhedral crystals which grow into a volume of several cc.

  5. Phonon dispersion in red mercuric iodide

    SciTech Connect

    Sim, H.; Chang, Y. ); James, R.B. )

    1994-02-15

    We present theoretical studies of phonon modes of undoped HgI[sub 2] in its red tetragonal form. A rigid-ion model including the Coulomb interaction is used which gives the best fit to the neutron scattering, infrared reflectivity, and Raman scattering data. The calculated sound velocities are also in accord with experiment.

  6. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    SciTech Connect

    McGregor, Douglas S.; Ariesanti, Elsa; Corcoran, Bridget

    2004-04-30

    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  7. Application of Mercuric Iodide Detectors to the Monitoring and Evaluation of Stored Special Nuclear Materials

    DTIC Science & Technology

    2001-01-01

    Application of Mercuric Iodide Detectors to the Monitoring and Evaluation of Stored Special Nuclear Materials L. van den Berg, A.E. Proctor and K.R...2001 to 00-00-2001 4. TITLE AND SUBTITLE Application of Mercuric Iodide Detectors to the Monitoring and Evaluation of Stored Special Nuclear

  8. Mercuric iodate precipitation from radioiodine-containing off-gas scrubber solution

    DOEpatents

    Partridge, Jerry A.; Bosuego, Gail P.

    1982-01-01

    Mercuric nitrate-nitric acid scrub solutions containing radioiodine may be reduced in volume without excessive loss of volatile iodine. The use of concentrated nitric acid during an evaporation process oxidizes the mercury-iodide complex to a less volatile mercuric iodate precipitate.

  9. Ameliorative stroke of selenium against toxicological effects of mercuric chloride in liver of freshwater catfish Heteropneustes fossilis (Bloch).

    PubMed

    Kothari, Suresh; Choughule, Neha

    2015-07-08

    Mercury, a prevalent and unrelenting toxin, occurs in a variety of forms in freshwater as well as, in marine life. Mercury is an important inducer of oxidative stress in fish leading to formation of reactive oxygen species. Selenium is an essential micronutrient for animals and has antagonistic effect against mercuric toxicity in fishes. Present study has been made to evaluate toxic effect of HgCl2 (0.15 mg/L) on liver of freshwater catfish Heteropneustes fossilis (Bl.). Protective ability of selenium has been investigated by simultaneous exposure of fish with sodium selenite (0.15 mg/L) along with mercuric chloride. For present study Fishes were divided into three groups of ten fishes each the first group served as control, while the second group fish were exposed to HgCl2 . Animals of third group were treated with HgCl2 and Na2 SeO3 . Results reveal that mercury induced lipid peroxidation and in response to this, antioxidants reduced glutathione (GSH) and Catalase (CAT) were reduced whereas, Glutathione reductase (GR) level was enhanced. These antioxidants scavenge the reactive oxygen radicals. Hg induced histopathological damage and elevation in alkaline phosphatase (ALP) and transaminases and reduction in protein and glucose contents were evidently seen in catfish liver. Intriguingly, results indicate that under stress of mercury, the fish actively generate oxidative stress and antioxidant responses, which can be used as biomarkers of pollution. Simultaneous exposure to Selenium along with Hg suppressed Hg uptake and lipid peroxidation. Histological architecture and all biochemical parameters were maintained near normal in the presence of selenium in liver of the catfish.

  10. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  11. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    SciTech Connect

    James, R.B. ); Bao, X.J. ); Schlesinger, T.E.; Markakis, J.M.; Cheng, A.Y.; Ortale, C.

    1989-09-15

    Mercuric-iodide (HgI{sub 2} ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI{sub 2} interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  12. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  13. The tyrosyl free radical in ribonucleotide reductase.

    PubMed Central

    Gräslund, A; Sahlin, M; Sjöberg, B M

    1985-01-01

    The enzyme, ribonucleotide reductase, catalyses the formation of deoxyribonucleotides from ribonucleotides, a reaction essential for DNA synthesis in all living cells. The Escherichia coli ribonucleotide reductase, which is the prototype of all known eukaryotic and virus-coded enzymes, consists of two nonidentical subunits, proteins B1 and B2. The B2 subunit contains an antiferromagnetically coupled pair of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of ferric ions and a stable tyrosyl free radical. EPR studies show that the tyrosyl radical, formed by loss of an electron, has its unpaired spin density delocalized in the aromatic ring of tyrosine. Effects of iron-radical interaction indicate a relatively close proximity between the iron center and the radical. The EPR signal of the radical can be studied directly in frozen packed cells of E. coli or mammalian origin, if the cells are made to overproduce ribonucleotide reductase. The hypothetic role of the tyrosyl free radical in the enzymatic reaction is not yet elucidated, except in the reaction with the inhibiting substrate analogue 2'-azido-CDP. In this case, the normal tyrosyl radical is destroyed with concomitant appearance of a 2'-azido-CDP-localized radical intermediate. Attempts at spin trapping of radical reaction intermediates have turned out negative. In E. coli the activity of ribonucleotide reductase may be regulated by enzymatic activities that interconvert a nonradical containing form and the fully active protein B2. In synchronized mammalian cells, however, the cell cycle variation of ribonucleotide reductase, studied by EPR, was shown to be due to de novo protein synthesis. Inhibitors of ribonucleotide reductase are of medical interest because of their ability to control DNA synthesis. One example is hydroxyurea, used in cancer therapy, which selectively destroys the tyrosyl free radical. PMID:3007085

  14. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  15. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    NASA Astrophysics Data System (ADS)

    Ugucioni, J. C.; Ghilardi Netto, T.; Mulato, M.

    2010-04-01

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 °C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  16. Elemental impurity analysis of mercuric iodide by ICP/MS

    SciTech Connect

    Cross, E.S.; Mroz, E.; Olivares, J.A.

    1994-06-01

    A method has been developed to analyze mercuric iodide (HgI{sub 2}) for elemental contamination using Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). This paper discusses the ICP/MS method, the effectiveness of purification schemes for removing impurities from HgI{sub 2}, as well as preliminary correlations between HgI{sub 2} detector performance and elemental contamination levels. The purified HgI{sub 2} is grown into a single crystal by physical vapor transport. The crystal are cut into slices and they are fabricated into room temperature radiation detectors and photocells. Crystals that produce good resolution gamma detector do not necessarily make good resolution photocells or x-ray detectors. Many factors other than elemental impurities may contribute to these differences in performance.

  17. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-01-01

    During the past four years the yield of high resolution mercuric iodide (HgI[sub 2]) gamma ray spectrometers produced at EG G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI[sub 2] synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI[sub 2] spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI[sub 2] surface, probably due to surface states formed prior to contact deposition.

  18. Electronic characterization of mercuric iodide gamma ray spectrometers

    SciTech Connect

    Gerrish, V.M.

    1993-06-01

    During the past four years the yield of high resolution mercuric iodide (HgI{sub 2}) gamma ray spectrometers produced at EG&G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI{sub 2} synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI{sub 2} spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI{sub 2} surface, probably due to surface states formed prior to contact deposition.

  19. Incorporation of defects during processing of mercuric iodide detectors

    SciTech Connect

    Bao, X.J.; Schlesinger, T.E. ); James, R.B.; Stulen, R.H. ); Ortale, C.; Cheng, A.Y. )

    1990-07-01

    The effects of chemical etching in KI solution, heating, and vacuum exposures of HgI{sub 2} were individually studied by low-temperature photoluminescence (PL) spectroscopy. Each of these processing steps is important in the manufacturing of mercuric iodide detectors and may be responsible for the incorporation of carrier traps both in the near-surface region and in the bulk. The results of etching experiments showed that the near-surface region has a different defect structure than the bulk, which appears to result from iodine deficiency. Bulk heating at 100 {degree}C also modifies the defect structure of the crystal. Vacuum exposure has an effect similar to chemical etching, but it does not cause significant degradation of the stoichiometry for recently KI-etched specimens. These studies suggest that some features in the PL spectra of HgI{sub 2} are associated with stoichiometry of the specimens.

  20. Investigation of copper electrodes for mercuric iodide detector applications

    SciTech Connect

    Bao, X.J.; Schlesinger, T.E. ); James, R.B.; Stulen, R.H. ); Ortale, C.; van den Berg, L. )

    1990-06-15

    Copper diffusion in mercuric iodide was studied by low-temperature photoluminescence (PL) spectroscopy and Auger electron spectroscopy. A broad radiative emission band at a wavelength of about 6720 A in the PL spectra was found to be related to Cu incorporation in the crystal. PL spectra obtained from surface doping experiments indicate that Cu is a rapid diffuser in HgI{sub 2} bulk material. Auger electron spectroscopy performed as a function of depth from the crystal surface confirms the rapid bulk diffusion process of Cu in HgI{sub 2}. Fabrication of HgI{sub 2} nuclear detectors with Cu electrodes indicates that Cu is not acceptable as an electrode material, which is consistent with the fact that it diffuses easily into the bulk crystal and introduces new radiative recombination centers.

  1. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    SciTech Connect

    Marschall, J.; Milstein, F. . Dept. of Materials California Univ., Santa Barbara, CA . Dept. of Mechanical Engineering); Georgeson, G. ); Gerrish, V. . Santa Barbara Operations)

    1991-01-01

    The effects of bulk plastic deformation of mercuric iodide (HgI{sub 2}), upon some of the electronic properties relevant to the performance of HgI{sub 2} as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 % and 25 %, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens. 16 refs., 4 figs., 1 tab.

  2. Mercuric Iodide Photocell Technology for Room Temperature Readout of Scintillators

    SciTech Connect

    Warnick Kernan et al.

    2007-08-31

    Mercuric iodide (HgI2) is a well known material for the direct detection of gamma rays; however, the largest volume achievable is limited by thickness of the detector, which needs to be a small fraction of the average trapping length for electrons. We are reporting here preliminary results in using HgI2 crystals to fabricate photocells used in the readout of various scintillators. The optical spectral response and efficiency of these photocells were measured and will be reported. Preliminary nuclear response from a HgI2 photocell that was optically matched to a Ce3+ :LaBr3 scintillator will also be presented and discussed. Further improvements will be sought by optimizing the transparent contact technology.

  3. Electrical and photomechanical effects of plastic deformation of mercuric iodide

    NASA Astrophysics Data System (ADS)

    Marschall, J.; Milstein, F.; Georgeson, G.; Gerrish, V.

    The effects of bulk plastic deformation of mercuric iodide (HgI2), upon some of the electronic properties relevant to the performance of HgI2 as a radiation detector were examined experimentally. Hole lifetimes, as well as hole and electron mobilities, were measured at various stages of sample deformation. Hole lifetimes were found to decrease by a factor of 2 under strains of several percent; carrier mobilities varied within experimental error, except during creep loading where electron and hole mobilities decreased by about 65 percent and 25 percent, respectively. Additionally, dark current measurements were made on specimens with varying degrees of accumulated plastic damage caused by c plane shear. Dark current values did not strongly reflect the extent of bulk plastic damage in deformed specimens.

  4. Comparison of transparent conducting electrodes on mercuric iodide photocells

    NASA Astrophysics Data System (ADS)

    Cheng, A. Y.; Markakis, J. M.

    Three materials have been developed and tested which are suitable as transparent conducting electrodes on mercuric iodide; aqueous ionic contacts of NaCl and LiCl, polyvinyl alcohol/phosphoric acid, and indium--tin--oxide (ITO). Polyvinyl alcohol/phosphoric acid is a conducting polymer and ITO is a wide band gap semiconductor. Photocell dimensions were in the range of 0.5 to 3.8 cm diam by about 1 mm thick. Photocells with these electrodes were evaluated for their spectral response in the range of 300 to 650 nm, response uniformity over the electrode activities area, leakage current and reliability. All units showed better than 75 percent quantum efficiency in the range 350 to 550 nm. Photodetector leakage currents ranged from 25 to 200 pA and have shown long term stability up to 1 year.

  5. Comparison of transparent conducting electrodes on mercuric iodide photocells

    NASA Astrophysics Data System (ADS)

    Markakis, J. M.; Cheng, A. Y.

    1989-11-01

    Three materials have been developed and tested which are suitable as transparent conducting electrodes on mercuric iodide: aqueous ionic contacts of NaCl and LiCl, polyvinyl alcohol/phosphoric acid, and indium-tin-oxide (ITO). Polyvinyl alcohol/phosphoric acid is a conducting polymer and ITO is a wide band gap semiconductor. Photocell dimensions were in the range of 0.5 to 3.8 cm diameter by about 1 mm thick. Photocells with these electrodes were evaluated for their spectral response in the range of 300 to 650 nm, response uniformity over the electrode active area and reliability. All units showed better than 75% quantum efficiency in the range of 350 to 550 nm. Photodetector leakage currents ranged from 25 to 200 pA and have shown long-term stability up to one year.

  6. Destructive and regenerative changes in the albino rat kidney during mercuric chloride necrotizing nephrosis

    SciTech Connect

    Andreev, V.P.

    1985-08-01

    This paper describes the results of a morphological analysis of destructive and regenerative changes observed during a study of serial semithin sections of the kidneys of albino rats with mercuric chloride necrotizing nephrosis. The results of this investigation indicate that injury to the epithelium of the urinary tubules by mercuric chloride is heterogenous in depth, and this has a substantial influence on the viability of the animals and on the subsequent process of repair of the damage.

  7. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.

    PubMed

    Si, Lin; Ariya, Parisa A

    2015-01-01

    Mercury (Hg) is a key toxic global pollutant. Studies in aquatic environment have suggested that thiols could be important for mercury speciation. Thioglycolic acid has been detected in various natural water systems and used as a model compound to study the complicated interaction between mercury and polyfunctional dissolved organic matter (DOM). We herein presented the first evidence for mercury particle formation during kinetic and product studies on the photochemistry of divalent mercury (Hg(2+)) with thioglycolic acid at near environmental conditions. Mercuric sulfide (HgS) particles formed upon photolysis were identified by high-resolution transmission electron microscopy coupled with energy dispersive spectrometry and select area electron diffraction. Kinetic data were obtained using UV-visible spectrophotometry and cold vapour atomic fluorescent spectrometry. The apparent first-order reaction rate constant under our experimental conditions was calculated to be (2.3±0.4)×10(-5) s(-1) at T=296±2 K and pH 4.0. It was found that (89±3)% of the reactants undergo photoreduction to generate elemental mercury (Hg(0)). The effects of ionic strengths, pH and potassium ion were also investigated. The formation of HgS particles pointed to the possible involvement of heterogeneous processes. Our kinetic results indicated the importance of weak binding sites on DOM to Hg in photoreduction of Hg(2+) to Hg(0). The potential implications of our data on environmental mercury transformation were discussed.

  8. Reduction of Flavodoxin by Electron Bifurcation and Sodium Ion-dependent Reoxidation by NAD+ Catalyzed by Ferredoxin-NAD+ Reductase (Rnf).

    PubMed

    Chowdhury, Nilanjan Pal; Klomann, Katharina; Seubert, Andreas; Buckel, Wolfgang

    2016-06-03

    Electron-transferring flavoprotein (Etf) and butyryl-CoA dehydrogenase (Bcd) from Acidaminococcus fermentans catalyze the endergonic reduction of ferredoxin by NADH, which is also driven by the concomitant reduction of crotonyl-CoA by NADH, a process called electron bifurcation. Here we show that recombinant flavodoxin from A. fermentans produced in Escherichia coli can replace ferredoxin with almost equal efficiency. After complete reduction of the yellow quinone to the blue semiquinone, a second 1.4 times faster electron transfer affords the colorless hydroquinone. Mediated by a hydrogenase, protons reoxidize the fully reduced flavodoxin or ferredoxin to the semi-reduced species. In this hydrogen-generating system, both electron carriers act catalytically with apparent Km = 0.26 μm ferredoxin or 0.42 μm flavodoxin. Membrane preparations of A. fermentans contain a highly active ferredoxin/flavodoxin-NAD(+) reductase (Rnf) that catalyzes the irreversible reduction of flavodoxin by NADH to the blue semiquinone. Using flavodoxin hydroquinone or reduced ferredoxin obtained by electron bifurcation, Rnf can be measured in the forward direction, whereby one NADH is recycled, resulting in the simple equation: crotonyl-CoA + NADH + H(+) = butyryl-CoA + NAD(+) with Km = 1.4 μm ferredoxin or 2.0 μm flavodoxin. This reaction requires Na(+) (Km = 0.12 mm) or Li(+) (Km = 0.25 mm) for activity, indicating that Rnf acts as a Na(+) pump. The redox potential of the quinone/semiquinone couple of flavodoxin (Fld) is much higher than that of the semiquinone/hydroquinone couple. With free riboflavin, the opposite is the case. Based on this behavior, we refine our previous mechanism of electron bifurcation.

  9. Complexation of mercury(I) and mercury(II) by 18-crown-6: hydrothermal synthesis of the mercuric nitrite complex.

    PubMed

    Williams, Neil J; Hancock, Robert D; Riebenspies, Joseph H; Fernandes, Manuel; de Sousa, Alvaro S

    2009-12-21

    A dimercury(I) 18-crown-6 complex is isolated, and its possible role in the hydrothermal preparation of the mercuric nitrite complex is discussed. The reported structures are of [Hg(2)(18-crown-6)(2)(H(2)O)(2)](ClO(4))(2) (1), monoclinic, C2/c, a = 21.0345(9), b = 12.1565(5), c = 16.8010(7) A, beta = 113.2000(10) degrees , V = 3948.7(3) A(3), Z = 16, R = 0.0230; [Hg(18-crown-6)](NO(2))(2) (2), monoclinic, P2(1)/c, a = 8.027(5), b = 14.437(9), c = 7.827(5) A, beta = 95.165(11) degrees , V = 905.6(10) A(3), Z = 2, R = 0.0175. The complex cation in compound 1 consists of a mercurous dimer exhibiting a Hg-Hg bond length of 2.524(2) A. Non-bonding interactions between adjacent crown ether macrocycles across the Hg-Hg bond result in large variations in mercury to oxygen distances within equatorial coordination sites. At low pH compound 1 is proposed to be preferentially formed under hydrothermal conditions affording compound 2 upon disproportionation. Nitrite ions ligate via a unidentate nitrito (cis to metal) coordination mode as interpreted using vibrational (infrared) spectroscopy. The conformation adopted by 18-crown-6 in compounds 1 and 2 is closely related to a D(3d) conformation as evidenced by X-ray crystallography. Band splitting readily observed in vibrational spectra of the metal free crown ether, attributed to vibrational modes of oxyethylene fragments, is absent in spectra of 1 and 2 confirming a regular D(3d) macrocyclic orientation. Short Hg-O bonds observed for axially coordinated water molecules in 1 and coordinated nitrite ligands in 2, illustrate the prevalence of relativistic effects commonly observed in mercury complexes.

  10. Pulsed laser photofragment emission for detection of mercuric chloride

    NASA Astrophysics Data System (ADS)

    Hoops, Alexandra A.; Reichardt, Thomas A.

    2006-08-01

    The viability of pulsed laser photofragment emission (PFE) is evaluated for the in situ measurement of vapor-phase mercuric chloride (HgCl2) concentration in combustion flue gas. Dispersed emissions from both the Hg (63P1) and HgCl (B2Σ+) photoproducts are presented, and the dependence of the HgCl2 PFE signal originating from Hg (63P1) on the collisional environment is examined for buffer-gas mixtures of N2, O2, and CO2. Integrated PFE intensity measurements as a function of buffer gas pressure support the assumption that the primary effect of the relevant flue gas constituents is to quench emission from Hg (63P1). The quenching rate constants for PFE from HgCl2 were measured to be 1.37 (±0.16)×105 Torr-1 s-1 for N2, 9.35 (±0.25)×106 Torr-1 s-1 for O2, and 1.49 (±0.29)×106 Torr-1 s-1 for CO2. These values are in good accord with literature values for the quenching of Hg (63P1). The emission cross section for Hg (63P1) generated by photodissociation of HgCl2 in 760 Torr N2 is found to be 1.0 (±0.2)×10-25 m2 by comparing the PFE signal to N2 Raman scattering.

  11. Polycrystalline Mercuric Iodide Films on CMOS Readout Arrays

    PubMed Central

    Hartsough, Neal E.; Iwanczyk, Jan S.; Nygard, Einar; Malakhov, Nail; Barber, William C.; Gandhi, Thulasidharan

    2009-01-01

    We have created high-resolution x-ray imaging devices using polycrystalline mercuric iodide (HgI2) films grown directly onto CMOS readout chips using a thermal vapor transport process. Images from prototype 400×400 pixel HgI2-coated CMOS readout chips are presented, where the pixel grid is 30 μm × 30 μm. The devices exhibited sensitivity of 6.2 μC/Rcm2 with corresponding dark current of ∼2.7 nA/cm2, and a 80 μm FWHM planar image response to a 50 μm slit aperture. X-ray CT images demonstrate a point spread function sufficient to obtain a 50 μm spatial resolution in reconstructed CT images at a substantially reduced dose compared to phosphor-coated readouts. The use of CMOS technology allows for small pixels (30 μm), fast readout speeds (8 fps for a 3200×3200 pixel array), and future design flexibility due to the use of well-developed fabrication processes. PMID:20161098

  12. Optical anisotropic-dielectric response of mercuric iodide

    SciTech Connect

    Yao, H.; Johs, B.; James, R.B.

    1997-10-01

    Anisotropic optical properties of mercuric iodide (HgI{sub 2}) were studied by variable-angle spectroscopic ellipsometry (VASE). Angular-dependent polarized reflectance and transmittance at three special optical-axis configurations, concerning the uniaxial anisotropic nature of the crystal, were derived to facilitate the VASE analysis. Two surface orientations of this tetragonal crystal were selected, i.e., an a-plane and a c-plane sample. Room-temperature multiple-angle spectroscopic ellipsometry measurements from both samples with three different optical configurations along with polarized transmission measurements were jointly analyzed by the VASE analysis through multiple-sample, multiple-model methods. Anisotropic dielectric functions of single-crystal HgI{sub 2}, {var_epsilon}{sub {perpendicular}}({omega}) and {var_epsilon}{sub {parallel}}({omega}), for optical electric-field vector oriented perpendicular and parallel to the c axis, respectively, were obtained in the range 1.24{endash}5.1 eV. Different absorption energy-band edges, at room temperature, were observed from the ordinary and extraordinary dielectric responses at 2.25 and 2.43 eV, respectively. This is consistent with the results related to the optical transitions between the conduction band and the heavy- and light-hole valence band indicated by theoretical studies. A surface model related to the surface roughness and defects of HgI{sub 2} was established and characterized by the VASE analysis. {copyright} {ital 1997} {ital The American Physical Society}

  13. Fabrication and performance of mercuric iodide pixellated detectors

    NASA Astrophysics Data System (ADS)

    van den Berg, Lodewijk; Bastian, Lloyd F.; Zhang, Feng; Lenos, Howard; Capote, M. Albert

    2007-09-01

    The radiation detection efficiency and spectral resolution of mercuric iodide detectors can be improved significantly by increasing the volume of the detectors and by using a pixellated anode structure. Detector bodies with a thickness of nominally 10 mm and an active area of approximately 14 mm x 14 mm have been used for these experiments. The detectors were cut from single crystals grown by the physical vapor transport method. The cut surfaces were polished and etched using a string saw and potassium iodide solutions. The Palladium contacts were deposited by magnetron sputtering through stainless steel masks. The cathode contact is continuous; the anode contacts consist of an array of 11 x 11 pixels surrounded by a guard ring. The resistance between a pixel and its surrounding contacts should be larger than 0.25 Gohm. The detector is mounted on a substrate that makes it possible to connect the anode pixels to an ASIC, and is conditioned so that it is stable for all pixels at a bias of -3000 Volts. Under these conditions the spectral resolution for Cs-137 gamma rays (662 keV) is approximately 5% FWHM. When depth sensing correction methods are applied, the resolution improves to about 2% FWHM or better. It is expected that the performance of the devices can be improved by the careful selection of crystal parts that are free of structural defects. Details of the fabrication technologies will be described. The effects of material inhomogeneities and transport properties of the charge carriers will be discussed.

  14. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions.

    PubMed

    Silver, Simon; Phung, Le T

    2005-12-01

    Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite.

  15. Plasmid profiles of mercuric chloride tolerant rhizobia from horse gram (Macrotyloma uniflorum).

    PubMed

    Edulamudi, Prabhavati; Johnson, Antony A M; Divi, Venkata Ramana Sai Gopal; Konada, Veera Mallaiah

    2012-03-01

    Thirty two rhizobia were isolated from the fresh healthy root nodules of horse gram. They were found to be highly salt tolerant. They were identified as rhizobia by cultural, biochemical and 16S rRNA sequence. The sequences of the four selected isolates were deposited in the NCBI GenBank. The obtained accession numbers were GQ483457, GQ483458, GQ483459 and GQ483460. All the rhizobia were able to grow at 10 ppm mercuric chloride concentration. Four isolates HGR-11, 16, 30 and 31 were used to study the effect of different concentrations of mercuric chloride on the growth of rhizobia. These isolates were able to grow at 30 ppm concentration also. In these isolates, HGR-11 and HGR-30 showed maximum growth at 20 ppm than at control. These isolates contained one mega plasmid (-22 kb) at 20 ppm mercuric chloride concentration.

  16. Mesozoic hydrothermal alteration associated with gold mineralization in the Mercur district, Utah

    SciTech Connect

    Wilson, P.N.; Parry, W.T. )

    1990-09-01

    K/Ar dates and chemical data show that a Mesozoic gold-bearing hydrothermal system altered black shales of the Mississippian Great Blue Limestone throughout an area encompassing the Mercur gold district, Utah. K/Ar dates of illite veins and illite-rich, clay-sized separates of altered shales that are enriched in Au, As, Hg, Sc, and other heavy metals indicate that hydrothermal activity occurred from 193 to 122 Ma. Several ages from within the Mercur district cluster near 160 Ma and may date the minimum age of gold mineralization.

  17. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch).

    PubMed

    Pandey, Sanjay; Kumar, Ravindra; Sharma, Shilpi; Nagpure, N S; Srivastava, Satish K; Verma, M S

    2005-05-01

    Acute toxicity tests (96 h) were conducted in flow-through systems to determine the lethal toxicity of a heavy metal compound, mercuric chloride, and an organophosphorus pesticide, malathion, to air-breathing teleost fish, Channa punctatus (Bloch) and to study their behavior. The 96-h LC50 values were determined, as well as safe levels. The results indicate that mercuric chloride is more toxic than malathion to the fish species under study. Dose- and dose-time-dependent increases in mortality rate were also observed in response to both test chemicals.

  18. Vapor growth of mercuric iodide tetragonal prismatic crystals

    NASA Astrophysics Data System (ADS)

    Ariesanti, Elsa

    The effect of polyethylene addition on the growth of mercuric iodide (HgI2) tetragonal prismatic crystals is examined. Three types of polyethylene powder are utilized: low molecular weight (Mw ˜ 4 x 103), ultra high molecular weight (Mw ˜ 3-6 x 1066), and spectrophotometric grade polyethylenes. Among these types of polyethylene, the low molecular weight polyethylene produces the most significant change in HgI2 morphology, with {110} being the most prominent crystal faces. Thermal desorption - gas chromatography/ mass spectroscopy (TD-GC/MS) studies show that thermal desorption of the low molecular weight polyethylene at 100°C and 150°C produce isomers of alkynes, odd nalkanes, and methyl (even-n) alkyl ketones. HgI2 growth runs with n-alkanes, with either neicosane, n-tetracosane, or n-hexatriacontane, cannot replicate the crystal shapes produced during growth with the low molecular weight polyethylene, whereas HgI2 growth runs with ketones, with either 3-hexadecanone or 14-heptacosanone, produce HgI2 tetragonal prismatic crystals, similar to the crystals grown with the low molecular weight polyethylene. C-O double bond contained in any ketone is a polar bond and this polar bond may be attracted to the mercury atoms on the top-most layer of the {110} faces through dipoledipole interaction. As a result, the growth of the {110} faces is impeded, with the crystals elongated in the [001] direction and bounded by the {001} faces along with large, prismatic {110} faces.

  19. Defects in red mercuric iodide related to device applications

    SciTech Connect

    Bao Xue Jun.

    1991-01-01

    Red mercuric iodide ({alpha}-HgI{sub 2}) is very promising material for fabrication of X-ray and {gamma}-ray detectors. Compared with conventional semiconductor nuclear detectors such as Si(Li), Ge(Li) and HPGe, HgI{sub 2} has a wider band gap (2.1 eV at room temperature), and higher atomic numbers. The advantages of HgI{sub 2} nuclear detectors as a consequence of these two properties are room temperature operation and high stopping power of X-ray or {gamma}-ray radiation. One major obstacle in taking full advantage of the potential of this material has been low manufacturing yield of high quality detectors. Both crystal growth and device fabrication are responsible for the introduction of defects in HgI{sub 2} crystals which lower the quality of the detectors. The author has employed several experimental techniques such as low temperature photoluminescence spectroscopy, thermally stimulated current measurements, and photoresponse measurements to study the incorporation of defects in the process of device fabrication. The effects of chemical etching, annealing, exposure to vacuum, surface heating, aging, and treatment with mercury and iodine were separately investigated. Interaction between various contact materials and HgI{sub 2} substrates, impurity identification using features in photoluminescence spectra, and the suitability of contact materials other than those presently being used for detector applications were also investigated. He has also found correlations between features in the photoluminescence spectra and the ability of HgI{sub 2} crystals to produce high quality detectors. With these correlations and understandings obtained by the studies of processing and contact deposition, suggestions were made to improve the fabrication procedures of HgI{sub 2} detectors. Finally, during the course of the study, he has also gained knowledge on the optical properties of HgI{sub 2}, which, at the moment, is very poorly understood.

  20. Discrete scintillator coupled mercuric iodide photodetector arrays for breast imaging

    SciTech Connect

    Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1996-12-31

    Multi-element (4x4) imaging arrays with high resolution collimators, size matched to discrete CsI(Tl) scintillator arrays and mercuric iodide photodetector arrays (HgI{sub 2} PDA) are under development as prototypes for larger 16 x 16 element arrays. The compact nature of the arrays allows detector positioning in proximity to the breast to eliminate activity not in the line-of-sight of the collimator, thus reducing image background. Short collimators, size matched to {le}1.5 x 1.5 mm{sup 2} scintillators show a factor of 2 and 3.4 improvement in spatial resolution and efficiency, respectively, compared to high resolution collimated gamma cameras for the anticipated compressed breast geometries. Monte Carlo simulations, confirmed by measurements, demonstrated that scintillator length played a greater role in efficiency and photofraction for 140 keV gammas than cross sectional area, which affects intrinsic spatial resolution. Simulations also demonstrated that an increase in the ratio of scintillator area to length corresponds to an improvement in light collection. Electronic noise was below 40 e{sup -} RMS indicating that detector resolution was not noise limited. The high quantum efficiency and spectral match of prototype unity gain HgI{sub 2} PDAs coupled to 1 x 1 x 2.5 mm{sup 3} and 2 x 2 x 4 mm{sup 3} CsI(Tl) scintillators demonstrated energy resolutions of 9.4% and 8.8% FWHM at 140 keV, respectively, without the spectral tailing observed in standard high-Z, compound semi-conductor detectors. Line spread function measurements matched the scintillator size and pitch, and small, complex phantoms were easily imaged.

  1. Advanced mercuric iodide detectors for X-ray microanalysis

    SciTech Connect

    Warburton, W.K.; Iwanczyk, J.S.

    1987-01-01

    We first present a brief tutorial on Mercuric Iodide (HgI/sub 2/) detectors and the intimately related topic of near-room temperature ultralow noise preamplifiers. This provides both a physical basis and technological perspective for the topics to follow. We next describe recent advances in HgI/sub 2/ applications to x-ray microanalysis, including a space probe Scanning Electron Microscope (SEM), Synchrotron x-ray detectors, and energy dispersive detector arrays. As a result of this work, individual detectors can now operate stably for long periods in vacuum, detect soft x-rays to the oxygen K edge at 523 eV, or count at rates exceeding 2x10(5)/sec. The detector packages are small, lightweight, and use low power. Preliminary HgI/sub 2/ detector arrays of 10 elements with 500eV resolution have also been constructed and operate stably. Finally, we discuss expected advances in HgI/sub 2/ array technology, including improved resolution, vacuum operation, and the development of soft x-ray transparent encapsulants. Array capabilities include: large active areas, high (parallel) count rate capability and spatial sensitivity. We then consider areas of x-ray microanalysis where the application of such arrays would be advantageous, particularly including elemental microanalysis, via x-ray fluorescence spectroscopy, in both SEMs and in scanning x-ray microscopes. The necessity of high count rate capability as spatial resolution increases is given particular attention in this connection. Finally, we consider the possibility of Extended X-ray Absorption Fine Structure (EXAFS) studies on square micron sized areas, using detector arrays.

  2. Novel semiconductor radiation detector based on mercurous halides

    NASA Astrophysics Data System (ADS)

    Chen, Henry; Kim, Joo-Soo; Amarasinghe, Proyanthi; Palosz, Withold; Jin, Feng; Trivedi, Sudhir; Burger, Arnold; Marsh, Jarrod C.; Litz, Marc S.; Wiejewarnasuriya, Priyalal S.; Gupta, Neelam; Jensen, Janet; Jensen, James

    2015-08-01

    The three most important desirable features in the search for room temperature semiconductor detector (RTSD) candidate as an alternative material to current commercially off-the-shelf (COTS) material for gamma and/or thermal neutron detection are: low cost, high performance and long term stability. This is especially important for pager form application in homeland security. Despite years of research, no RTSD candidate so far can satisfy the above 3 features simultaneously. In this work, we show that mercurous halide materials Hg2X2 (X= I, Cl, Br) is a new class of innovative compound semiconductors that is capable of delivering breakthrough advances to COTS radiation detector materials. These materials are much easier to grow thicker and larger volume crystals. They can detect gamma and potentially neutron radiation making it possible to detect two types of radiation with just one crystal material. The materials have wider bandgaps (compared to COTS) meaning higher resistivity and lower leakage current, making this new technology more compatible with available microelectronics. The materials also have higher atomic number and density leading to higher stopping power and better detector sensitivity/efficiency. They are not hazardous so there are no environmental and health concerns during manufacturing and are more stable making them more practical for commercial deployment. Focus will be on Hg2I2. Material characterization and detector performance will be presented and discussed. Initial results show that an energy resolution better than 2% @ 59.6 keV gamma from Am-241 and near 1% @ 662 keV from Cs-137 source can be achieved at room temperature.

  3. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides

    NASA Astrophysics Data System (ADS)

    Ponpon, J. P.; Amann, M.

    2005-01-01

    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  4. The use of a mercuric iodide detector for X-ray fluorescence analysis in archaeometry

    NASA Astrophysics Data System (ADS)

    Cesareo, R.; Gigante, G. E.; Iwanczyk, J. S.; Dabrowski, A.

    1992-11-01

    For about two decades, energy dispersive X-ray fluorescence (EDXRF) has been employed in Rome for the analysis of works of art. A short history of the applications of EDXRF to paintings and alloys is presented. Finally, the usefulness of mercuric iodide room-temperature semiconductor detectors in this field is shown.

  5. Sexual maturation and productivity of Japanese quail fed graded concentrations of mercuric chloride.

    PubMed

    Hill, E F; Shaffner, C S

    1976-07-01

    Japanese quail (Coturnix c. japonica) were fed 0, 2, 4, 8, 16, and 32 p.p.m. Hg as mercuric chloride (HgCl2) from the time of hatching up to the age of 1 year. None of the birds manifested any gross signs of mercury poisioning. Food consumption, growth rate, and weight maintenance were unaffected. Initial oviposition tended to occur at a younger age as dietary mercuric chloride increased, e.g., the median age at which egg laying began among hens fed 32 p.p.m. Hg was 6 days younger than for controls. The average rate of egg production was positively related to the concentration of mercuric chloride with the most pronounced differences between treatments occurring among young (less than 9-week-old) hens. Beyond 9 weeks of age production was more uniform among the treatments, but even after 1 year hens on 32 p.p.m. Hg were laying an average of 13.5% more eggs than controls. Rate of egg fertilization was generally depressed for all Hg-treatments above 4 p.p.m. Hatchability of fertilized eggs and eggshell thickness appeared unaffected by mercuric chloride.

  6. Sexual maturation and productivity of Japanese quail fed graded concentrations of mercuric chloride

    USGS Publications Warehouse

    Hill, E.F.; Shaffner, C.S.

    1976-01-01

    Japanese quail (Coturnix c. japonica) were fed 0, 2, 4, 8, 16, and 32 p.p.m. Hg as mercuric chloride (HgCl2) from the time of hatching up to the age of 1 year. None of the birds manifested any gross signs of mercury poisioning. Food consumption, growth rate, and weight maintenance were unaffected. Initial oviposition tended to occur at a younger age as dietary mercuric chloride increased, e.g., the median age at which egg laying began among hens fed 32 p.p.m. Hg was 6 days younger than for controls. The average rate of egg production was positively related to the concentration of mercuric chloride with the most pronounced differences between treatments occurring among young (less than 9-week-old) hens. Beyond 9 weeks of age production was more uniform among the treatments, but even after 1 year hens on 32 p.p.m. Hg were laying an average of 13.5% more eggs than controls. Rate of egg fertilization was generally depressed for all Hg-treatments above 4 p.p.m. Hatchability of fertilized eggs and eggshell thickness appeared unaffected by mercuric chloride.

  7. Characterization of thyroidal glutathione reductase

    SciTech Connect

    Raasch, R.J.

    1989-01-01

    Glutathione levels were determined in bovine and rat thyroid tissue by enzymatic conjugation with 1-chloro-2,4-dinitrobenzene using glutathione S-transferase. Bovine thyroid tissue contained 1.31 {+-} 0.04 mM reduced glutathione (GSH) and 0.14 {+-} 0.02 mM oxidized glutathione (GSSG). In the rat, the concentration of GSH was 2.50 {+-} 0.05 mM while GSSG was 0.21 {+-} 0.03 mM. Glutathione reductase (GR) was purified from bovine thyroid to electrophoretic homogeneity by ion exchange, affinity and molecular exclusion chromatography. A molecular weight range of 102-109 kDa and subunit size of 55 kDa were determined for GR. Thyroidal GR was shown to be a favoprotein with one FAD per subunit. The Michaelis constants of bovine thyroidal GR were determined to be 21.8 {mu}M for NADPH and 58.8 {mu}M for GSSG. The effect of thyroid stimulating hormone (TSH) and thyroxine (T{sub 4}) on in vivo levels of GR and glucose 6-phosphate dehydrogenase were determined in rat thyroid homogenates. Both enzymes were stimulated by TSH treatment and markedly reduced following T{sub 4} treatment. Lysosomal hydrolysis of ({sup 125}I)-labeled and unlabeled thyroglobulin was examined using size exclusion HPLC.

  8. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  9. Renal accumulation and intrarenal distribution of inorganic mercury in the rabbit: Effect of unilateral nephrectomy and dose of mercuric chloride

    SciTech Connect

    Zalups, R.K. )

    1991-06-01

    The effects of unilateral nephrectomy and dose of mercuric chloride on the short-term renal accumulation and intrarenal distribution of inorganic mercury were studied in the rabbit. The renal accumulation of inorganic mercury, on a per gram basis, was increased in uninephrectomized (NPX) rabbits compared with that in sham-operated (SO) rabbits 24 h after the animals received either a nontoxic 2.0 mumol/kg or nephrotoxic 4.0 mumol/kg dose of mercuric chloride. In the NPX rabbits given the 2.0 mumol/kg dose of mercuric chloride, the increased accumulation of inorganic mercury was due to increased accumulation of mercury in the outer stripe of the outer medulla. In the NPX rabbits given the 4.0 mumol/kg dose of mercuric chloride, the increased renal accumulation of mercury appeared to be due to increased accumulation of mercury in both the renal cortex and outer stripe of the outer medulla. Interestingly, no differences in the renal accumulation of inorganic mercury were found between NPX and SO rabbits given a low nontoxic 0.5 mumol/kg dose of mercuric chloride. As the dose of mercuric chloride was increased from 0.5 to 4.0 mumol/kg, the percent of the administered dose of mercury that accumulated in each gram of renal tissue decreased substantially. The findings in the present study indicate that the renal accumulation of inorganic mercury increases after unilateral nephrectomy when certain nontoxic and nephrotoxic doses of mercuric chloride are administered. In addition, they indicate that the percent of the administered dose of mercury that accumulates in the renal tissue of both NPX and SO rabbits decreases as the dose of mercuric chloride is increased.

  10. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  11. Protein expression of kidney and liver bilitranslocase in rats exposed to mercuric chloride--a potential tissular biomarker of toxicity.

    PubMed

    Trebucobich, Mara Soledad; Hazelhoff, María Herminia; Chevalier, Alberto A; Passamonti, Sabina; Brandoni, Anabel; Torres, Adriana Mónica

    2014-03-03

    Bilitranslocase (BTL) is a plasma membrane carrier that transports organic anions of physiological and pharmacological interest. It is expressed in basolateral plasma membrane of kidney and liver. BTL has been recently described as a marker of transition from normal tissue to its neoplastic transformation in human kidney. Inorganic mercury is a major environmental contaminant that produces many toxic effects. Previous reports have described an interaction between BTL and mercuric ions. This study was designed to evaluate the renal and hepatic expression of BTL in rats exposed to a nephrotoxic and hepatotoxic dose of HgCl2. Male rats were treated with a single injection of HgCl2 at a dose of 4mg/kg body wt, i.p. (HgCl2 group). Control rats received the vehicle alone (Control group). Studies were carried out 18h after injection. Afterwards, the kidneys and livers were excised and processed for histopathological studies or immunoblot (homogenates and crude membranes) techniques. In rats treated with HgCl2, immunoblotting showed a significant decrease in the abundance of BTL in homogenates and plasma membranes from kidney and liver. BTL decrease of expression might reflect the grade of damage in renal tubule cells and in hepatocytes. Thus, BTL might be postulated as a new biomarker of tissue toxicity induced by mercury.

  12. Mercuric chloride-induced testicular toxicity in rats and the protective role of sodium selenite and vitamin E.

    PubMed

    Kalender, Suna; Uzun, Fatma Gokce; Demir, Filiz; Uzunhisarcıklı, Meltem; Aslanturk, Ayse

    2013-05-01

    Mercury has been recognized as an environmental pollutant that adversely affects male reproductive systems of animals. This study examined the effects of mercuric chloride on the antioxidant system and histopathological changes and also evaluated the ameliorating effects of sodium selenite and/or vitamin E in the rat testis tissues. Sexually mature male Wistar rats (weighing 300-320g and each group six animals) were given mercuric chloride (1mg/kg bw) and/or sodium selenite (0.25mg/kg bw)+vitamin E (100mg/kg) daily via gavage for 4weeks. In the present study, mercuric chloride exposure resulted in an increase in the TBARS level and a decrease in the SOD, CAT, GPx activities, with respect to the control. Further, light microscopic investigation revealed that mercury exposure induced histopathological alterations in the testis tissues. Supplementation of sodium selenite and/or vitamin E to mercury-induced groups declined lipid peroxidation, increased SOD, CAT, GPx activities. While some histopathological changes were detected in mercuric chloride treated group, milder histopathological changes were observed in animal co-treated with sodium selenite and/or vitamin E supplementation to mercuric chloride-treated rats. As a result, mercuric chloride induced testicular toxicity is reduced by sodium selenite and/or vitamin E, but not ameliorate completely.

  13. Construction and evaluation of a metal ion biosensor

    SciTech Connect

    Tescione, L.; Belfort, G. . Dept. of Chemical Engineering)

    1993-10-01

    Escherichia coli, genetically engineered with a mercury (II)-sensitive promoter and the lux genes from Vibrio fischeri, were used as microbial bioluminescent sensors for the detection of mercury. Evaluation of this genetic construction was carried out by determining the effects of various parameters on cell suspensions maintained at constant conditions in a small 100-mL vessel. The strongest light intensities and quickest induction times occurred with cells in the midexponential growth phase maintained at 28C, concentrated to 1 [times] 10[sup 9] cells/mL, mixed at very fast speeds, and aerated at 2 vvm during light measurement in the small vessel. The cells were sensitive to the mercuric ion in the range of 20 nM to 4 [mu]M, and the total response time was on the order of 1 hour, depending on the above parameters. The cells exhibited great specificity for mercury. The cells had almost equal specificity for organic and inorganic forms of the mercuric ion and responded more weakly to the mercurous ion. A simple, inexpensive, durable miniature probe was constructed and operated using the optimum parameters found in the small vessel as a guide. The range of sensitivity to the mercuric ion detected in the probe was 10 nM to 4 [mu]M when aeration was provided.

  14. Construction and evaluation of a metal ion biosensor

    NASA Astrophysics Data System (ADS)

    Tescione, Lia; Belfort, Georges

    1993-01-01

    E. coli, genetically engineered with a mercury(II)-sensitive promoter and the lux genes from Vibrio fischeri, were used as microbial sensors for the detection of mercury. Evaluation of this genetic construction was carried out by determining the effects of various parameters on cell suspensions maintained at constant conditions in a small vessel. The strongest light intensities and quickest induction times occurred with cells in the mid-exponential growth phase maintained at 280 C, concentrated to 1 x 10(exp 9) cells/mL, mixed at very fast speeds, and aerated at 2 vvm (volume of air per volume of culture per minute) during light measurement in the small vessel. The sensitivity of these cells to the mercuric ion lied in the range of 0.02-4 micrometer (4-800 ppb) and the total response time was on the order of one hour, depending on the above parameters. The cells exhibited great specificity for mercury. The cells have almost equal specificity for organic and inorganic form of the mercuric ion and responded more weakly to the mercurous ion. A simple, inexpensive, durable miniature probe was constructed and operated using the optimum parameters found in the small vessel as a guide. The range of sensitivity to the mercuric ion detected in the probe was 0.01-4 micrometer when aeration was provided.

  15. Regulation of Nitrate Reductase Activity in Corn (Zea mays L.) Seedlings by Endogenous Metabolites 1

    PubMed Central

    Schrader, L. E.; Hageman, R. H.

    1967-01-01

    Primary and secondary metabolites of inorganic nitrogen metabolism were evaluated as inhibitors of nitrate reductase (EC 1.6.6.1) induction in green leaf tissue of corn seedlings. Nitrite, nitropropionic acid, ammonium ions, and amino acids were not effective as inhibitors of nitrate reductase activity or synthesis. Increasing α-amino nitrogen and protein content of intact corn seedlings by culture techniques significantly enhanced rather than decreased the potential for induction of nitrate reductase activity in excised seedlings. Secondary metabolites, derived from phenylalanine and tyrosine, were tested as inhibitors of induction of nitrate reductase. Of the 9 different phenylpropanoid compounds tested, only coumarin, trans-cinnamic and trans-o-hydroxycinnamic acids inhibited induction of nitrate reductase. While coumarin alone exhibited a relatively greater inhibitory effect on enzyme induction than on general protein synthesis (the latter measured by incorporation of labeled amino acids), this differential effect may have been dependent upon unequal rates of synthesis and accumulation with respect to the initial levels of nitrate reductase and general proteins. Because of the short half-life of nitrate reductase, inhibitors of protein synthesis in general could still achieve differential regulation of nitrogen metabolism. Coumarin did not inhibit nitrate reductase activity when added directly to the assay mixture at 5 mm. Carbamyl phosphate and its chemical derivative, cyanate, were found to be competitive (with nitrate) inhibitors of nitrate reductase. The data suggest that cyanate is the active inhibitor in the carbamyl phosphate preparations. PMID:16656715

  16. Acute effects of mercuric chloride on glycogen and protein content of zebra fish, Danio rerio.

    PubMed

    Vutukuru, S S; Basani, Kalpana

    2013-03-01

    Presence of mercury and other heavy metals above permissible levels in water bodies across the globe is posing a serious threat to aquatic biota and public health. Occurrence of mercury above the permissible limits in the aquatic ecosystem of Hyderabad city is well established. In this context, we carried out static- renewal bioassays on the zebra fish, Danio rerio exposed to different concentrations of mercuric chloride, and the 96-h median lethal concentration (LC50) was found to be 0.077 mgl(-1). Behavioral manifestations like loss of scales, hyper secretion of mucus, surfacing and darting movements, loss of balance, irregular swimming patterns were noticed in the fish exposed to 0.077 mgl(-1). The present study also examined the toxic effects of mercuric chloride on vital biochemical constituent's total glycogen and total protein. Significant decrease (p < 0.001) in glycogen and protein content of fish exposed to 0.077 mgl(-1).

  17. Impairment of mitochondrial energy metabolism of two marine fish by in vitro mercuric chloride exposure.

    PubMed

    Mieiro, C L; Pardal, M; Duarte, A; Pereira, E; Palmeira, C M

    2015-08-15

    The goal of this work was to understand the extent of mercury toxic effects in liver metabolism under an episode of acute contamination. Hence, the effects of in vitro mercuric chloride in liver mitochondria were assessed in two commercial marine fish: Senegalese sole (Solea senegalensis) and gilthead seabream (Sparus aurata). Liver mitochondria were exposed to 0.2mgL(-1) of mercury, the average concentration found in fish inhabiting contaminated areas. Mercuric chloride depressed mitochondrial respiration state 3 and the maximal oxygen consumption in the presence of FCCP indicating inhibitory effects on the oxidative phosphorylation and on the electron transport chain, respectively. The inhibition of F1Fo-ATPase and succinate-dehydrogenase activities also corroborated the ability of mercury to inhibit ADP phosphorylation and the electron transport chain. This study brings new understanding on the mercury levels able to impair fish mitochondrial function, reinforcing the need for further assessing bioenergetics as a proxy for fish health status.

  18. Growth of mercuric iodide (HgI2) for nuclear radiation detectors

    NASA Technical Reports Server (NTRS)

    Vandenberg, L.; Schnepple, W. F.

    1988-01-01

    Mercuric iodide is a material used for the fabrication of the sensing element in solid state X-ray and gamma ray detecting instruments. The operation of the devices is determined to a large degree by the density of structural defects in the single crystalline material used in the sensing element. Since there were strong indications that the quality of the material was degraded by the effects of gravity during the growth process, a research and engineering program was initiated to grow one or more crystals of mercuric iodide in the reduced gravity environment of space. A special furnace assembly was designed which could be accommodated in a Spacelab rack, and at the same time made it possible to use the same growth procedures and controls used when growing a crystal on the ground. The space crystal, after the flight, was subjected to the same evaluation methods used for earth-grown crystals, so that comparisons could be made.

  19. Effects of indium and tin overlayers on the photoluminescence spectrum of mercuric iodide

    SciTech Connect

    James, R.B. ); Bao, X.J.; Schlesinger, T.E. ); Ortale, C.; Cheng, A.Y. )

    1990-03-01

    Mercuric iodide (HgI{sub 2} ) crystals with semitransparent metal overlayers of indium and tin were characterized using low-temperature photoluminescence (PL) spectroscopy. The PL spectra were found to differ for points beneath the thin metal overlayers and points that were masked off during each deposition. The photoluminescence data were compared with PL measurements taken on HgI{sub 2} photodetectors with indium-tin-oxide (ITO) entrance electrodes. The similarities of the spectra for the HgI{sub 2} samples with In, Sn, and ITO conducting overlayers indicate that the regions in the ITO-contacted photodetectors with relatively poor photoresponses are associated with the interaction of indium or tin with the mercuric iodide substrate.

  20. Dose and sex dependent distribution of mercury in rats exposed to mercuric chloride

    SciTech Connect

    Khan, A.T.; Graham, T.C.; Webster, J.E.; Ferguson, J.A.

    1994-12-31

    A 14-day study was conducted in young male and female rats (Sprague-Dawley SDTM) with mercuric chloride at daily oral doses of 0, 1.25, 5.0, and 10.0 mg/kg mercuric chloride to determine the maximum tolerated dose and the distribution of mercury in the target organs. The brains, hearts, kidneys, livers, lungs and spleens of both male and female rats (survived or died during the experiment) were analyzed for mercury content. At all treatments (1.25, 2.5, 5.0, and 10.0 mg/kg) groups, mercury level was higher in the kidneys of both sexes, and followed by the livers, spleen, lungs, hearts, and brains, respectively. The mercury level in target organs of females was higher than those of males. All mercury treated rats also showed a reduction in cumulative body weight gained beginning on the third day of treatment.

  1. Effect of temperature gradient on the optical quality of mercurous chloride crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Davies, D. K.; Gottlieb, M.; Henningsen, T.; Mazelsky, R.

    1989-01-01

    Single crystals of mercurous chloride were grown at temperature gradients of 8, 11 and 17 K/cm by the physical vapor transport method. The optical quality of these crystals was evaluated by measuring bulk scattering and inhomogeneity of refractive index by birefringence interferometry. It was observed that a high temperature gradient at the solid-vapor interface induced thermal stresses and crystals showed higher scattering and irregular fringes.

  2. Mercuric iodide x-ray and gamma-ray detectors for astronomy

    NASA Astrophysics Data System (ADS)

    Van den Berg, Lodewijk; Sandoval, John S.; Vigil, Ronald D.; Richards, John D.; Vaccaro, Fred P.; Hykin, Martin; DeVito, Raymond P.

    2002-01-01

    The recent technological developments and availability of mercuric iodide detectors have made their application for astronomy a realistic prospect. Mercuric iodide, because of its high resistivity and high density, can be used in a variety of astronomy instrumentation where high spectral resolution, low noise levels, stability of performance, resistance to damage by charged particles and overall ruggedness are of critical importance. X-ray detectors with areas of 12 to 100 mm square and 1 mm thickness have absorption efficiencies approaching 100% up to 60 keV. The spectral resolution of these detector's ranges from 400 eV to 600 eV at 5.9 keV, depending on their area, and the electronic noise threshold is less than 1.0 keV. Gamma ray detectors can be fabricated with dimensions of 25 mm x 25 mm x 3 mm. The spectral resolution of these detectors is less than 4% FWHM at energies of 662 keV. Because of the high atomic numbers of the constituent elements of the mercuric iodide, the full energy peak efficiency is higher than for any other available solid-state detector that makes measurements up to 10 MeV a possibility. The operation of gamma ray detectors has been evaluated over a temperature range of -20 through + 55 degrees Celsius, with only a very small shift in full energy peak observed over this temperature range. In combination with Cesium Iodide scintillators, mercuric iodide detectors with 25 mm diameter dimensions can be used as photodetectors to replace bulky and fragile photomultiplier tubes. The spectral resolution of these detectors is less than 7% FWHM at 662 keV and the quantum efficiency is larger than 80 % over the whole area of the detector.

  3. Use of mercuric iodide x-ray detectors with alpha backscattering spectrometers for space applications

    SciTech Connect

    Iwanczyk, J.S.; Wang, Y.J.; Dorri, N.; Dabrowski, A.J. ); Economou, T.E.; Turkevich, A.L. . Enrico Fermi Inst.)

    1991-04-01

    This paper presents x-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI{sub 2}) spectrometer inserted into an Alpha Backscattering Instrument identical to that used in the Soviet Phobos Mission. The results obtained with the HgI{sub 2} ambient temperature detector are compared with those obtained using a Si(Li) cryogenically cooled detector. The authors' efforts to design an optimized instrument for space application are described.

  4. Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction

    SciTech Connect

    Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.; Croft, M.; Kalman, Z.; Mayo, W.

    1995-08-01

    The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experiments have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.

  5. Hematotoxicity and genotoxicity of mercuric chloride following subchronic exposure through drinking water in male rats.

    PubMed

    Boujbiha, Mohamed Ali; Ben Salah, Ghada; Ben Feleh, Abdelraouf; Saoudi, Mongi; Kamoun, Hassen; Bousslema, Ali; Ommezzine, Asma; Said, Khaled; Fakhfakh, Faiza; El Feki, Abdelfattah

    2012-07-01

    Erythrocytes are a convenient model to understand the subsequent oxidative deterioration of biological macromolecules in metal toxicities. The present study examined the variation of hematoxic and genotoxic parameters following subchronic exposure of mercuric chloride via drinking water and their possible association with oxidative stress. Male rats were exposed to 50 ppm (HG1) and 100 ppm (HG2) of mercuric chloride daily for 90 days. A significant dose-dependent decrease was observed in red blood cell count, hemoglobin, hematocrit, and mean cell hemoglobin concentration in treated groups (HG1 and HG2) compared with controls. A significant dose-dependent increase was observed in lipid peroxidation; therefore, a significant variation was found in the antioxidant enzyme activities, such as superoxide dismutase, catalase, and glutathione peroxidase. Interestingly, mercuric chloride treatment showed a significant dose-dependent increase in frequency of total chromosomal aberration and in percentage of aberrant bone marrow metaphase of treated groups (p < 0.01). The oxidative stress induced by mercury treatment may be the major cause for chromosomal aberration as free radicals lead to DNA damage. These data will be useful in screening the antioxidant activities of natural products, which may be specific to the bone marrow tissue.

  6. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  7. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  8. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  9. Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals

    DTIC Science & Technology

    2013-03-01

    crystal grown with low M̄w polyethylene in a horizontal furnace . . 124 5.72 Growth of a (001) plane, 0<c< 12...where the mercury (Hg) atom forms a tetrahedral coordination with the iodine (I) atom [35, 36] (more information on the crystal structure of α-HgI2...3 4 , 1 4 , 3 4 ) and four iodine ions at ( 1 4 , 1 4 ,u), (34 , 3 4 , 1 2−u), ( 3 4 , 3 4 , 1 2 +u), and ( 1 4 , 1 4 ,1−u), where u = 0.1107c [36

  10. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.

    PubMed

    Bando, M; Obazawa, H

    1995-12-01

    Major and minor ascorbate free radical (AFR) reductases, with diaphorase activity, and three other diaphorases were separated from the human lens soluble fraction by DEAE-cellulose ion-exchange column chromatography. They were characterized for adsorptivity to ion-exchange and 5'AMP-Sepharose 4B affinity columns, kinetic properties, and substrate specificity. The latter diaphorases were closely correlated with NADH-cytochrome beta 5 reductase. The major and minor AFR reductases were regarded as a major diaphorase group different from two ubiquitous diaphorases, i.e., NADH-cytochrome beta 5 reductase and DT-diaphorase. A major AFR reductase was partially purified approximately 50 fold over the lens soluble fraction by ion-exchange, affinity, and gel filtration (Sephacryl S-200 HR) column chromatography. From the partially purified enzyme, 2 bands, one sharp and one diffuse, were obtained by native polyacrylamide gel electrophoresis. Two proteins, of 20 and 24 kDa, were identified in the active enzyme bands by SDS-polyacrylamide gel electrophoresis. This suggests that the 20 and/or 24 kDa proteins may be components of the major AFR reductase.

  11. In vitro toxicity of mercuric chloride on rabbit spermatozoa motility and cell membrane integrity.

    PubMed

    Slivkova, Jana; Massanyi, Peter; Pizzi, Flavia; Trandzik, Jozef; Roychoudhury, Shubhadeep; Lukac, Norbert; Dankova, Marianna; Almasiova, Viera

    2010-01-01

    In this in vitro study the effects of mercuric chloride on the motility and structural integrity of rabbit spermatozoa were investigated. The spermatozoa motility was evaluated using CASA method and Annexin analysis was used for detection of structural changes. The concentration of mercury in the medium varied from 5.0 to 83.3 microg HgCl(2)/mL. At Time 0 the highest motility was detected in the control group (67.09 +/- 8.72%). Motility in groups with mercury administration was lower in comparison with control. Significant differences were detected in groups with 50.0-83.3 microg HgCl(2)/mL (P < 0.001) at Time 0. After 60 and 120 minutes of incubation with mercuric chloride the motility significantly decreased almost in all experimental groups. Progressive motility had a decreasing trend in all experimental groups. At time 60 and 120 significant differences were noted in the group receiving 6.25-83.3 microg HgCl(2)/mL. Significant differences were detected in all experimental groups, except the group with the lowest mercuric chloride administration. The concentration-dependent decrease of spermatozoa progressive motility up to 50% of control was detected for groups receiving 50.0 - 83.3 microg HgCl(2)/mL at Time 0, for groups receiving 12.5-83.3 microg HgCl(2)/mL at Time 60 and 120, decreasing from 36.46 +/- 18.73% to 1.03 +/- 2.50%. Detailed evaluation of spermatozoa distance (DAP, DCL, and DSL) and velocity (VAP, VCL, and VSL) parameters as well as straightness (STR), linearity (LIN), wobble (WOB), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) of spermatozoa revealed decrease in groups with the highest mercury concentration in comparison with the control group at all time periods. Detection of spermatozoa with disordered membrane was carried out for groups with higher mercury concentrations and control, using Annexin analysis. Analysis showed higher occurrence of positive spermatozoa in the mercury exposed groups. Some Annexin

  12. Transport phenomena during vapor growth of optoelectronic material - A mercurous chloride system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.

    1990-01-01

    Crystal growth velocity was measured in a mercurous chloride system in a two-zone transparent furnace as a function of the Rayleigh number by varying a/L, where a is the radius of the growth tube and L is the transport length. Growth velocity data showed different trends at low and high aspect ratio, a result that does not support the velocity-aspect ratio trend predicted by theories. The system cannot be scaled on the basis of measurements done at a low aspect ratio. Some change in fluid flow behavior occurs in the growth tube as the aspect ratio increases.

  13. Acute kidney injury and disseminated intravascular coagulation due to mercuric chloride poisoning

    PubMed Central

    Dhanapriya, J.; Gopalakrishnan, N.; Arun, V.; Dineshkumar, T.; Sakthirajan, R.; Balasubramaniyan, T.; Haris, M.

    2016-01-01

    Mercury is a toxic heavy metal and occurs in organic and inorganic forms. Inorganic mercury includes elemental mercury and mercury salts. Mercury salts are usually white powder or crystals, and widely used in indigenous medicines and folk remedies in Asia. Inorganic mercury poisoning causes acute kidney injury (AKI) and gastrointestinal manifestations and can be life-threatening. We describe a case with unknown substance poisoning who developed AKI and disseminated intravascular coagulation (DIC). Renal biopsy showed acute tubular necrosis. Later, the consumed substance was proven to be mercuric chloride. His renal failure improved over time, and his creatinine normalized after 2 months. PMID:27194836

  14. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    SciTech Connect

    Schieber, M.

    1982-01-01

    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI/sub 2/ is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI/sub 2/; recent progress is reported. (WHK)

  15. X-ray fluorescence analysis of alloy and stainless steels using a mercuric iodide detector

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Maddox, W. Gene

    1988-01-01

    A mercuric iodide detector was used for the XRF analysis of a number of NBS standard steels, applying a specially developed correction method for interelemental effects. It is shown that, using this method and a good peak-deconvolution technique, the HgI2 detector is capable of achieving resolutions and count rates needed in the XRF anlysis of multielement samples. The freedom from cryogenic cooling and from power supplies necessary for an electrically cooled device makes this detector a very good candidate for a portable instrument.

  16. A study of the homogeneity and deviations from stoichiometry in mercuric iodide

    SciTech Connect

    Burger, A.; Morgan, S.; He, C.; Silberman, E.; van den Berg, L.; Ortale, C.; Franks, L.; Schieber, M.

    1989-01-01

    We have been able to determine the deviations from stoichiometry of mercuric iodide (HgI/sub 2/) by using Differential Scanning Calorimetry (DSC). Mercury excess or iodine deficiency in mercuric iodide can be evaluated from the eutectic melting of HgI/sub 2/-- Hg/sub 2/I/sub 2/ at 235/degree/C which appears as an additional peak in DSC thermograms. I/sub 2/ excess can be found from the existence of the I/sub 2/--HgI/sub 2/ eutectic melting at 103/degree/C. An additional DSC peak appears in some samples around 112/degree/C that could be explained by the presence of iodine inclusions. Using Resonance Fluorescence Spectroscopy (RFS) we have been able to determine the presence of free I/sub 2/ that is released by samples during the heating at 120/degree/C (crystal growth temperature) thus giving additional support to the above DSC results. 19 refs., 6 figs., 2 tabs.

  17. Excitation and dissociation mechanisms in molecules with application to mercuric halide laser system

    SciTech Connect

    Spence, D.; Wang, R.G.; Dillon, M.A.

    1982-01-01

    Although the mercuric halide laser systems have received intensive study in recent years, being one of only two efficient electronic-transition lasers known, the precise collisional mechanisms leding to HgBr(B), formation and subsequent fluorescence are still imperfectly understood. The initial suggestion that direct collisional excitation of, say, HgBr/sub 2/, by electrons (analogous to photoionization), i.e., HgBr/sub 2/ + e ..-->.. HgBr(b) + Br + e, was the dominant mechanism, was temporarily abandoned when a measurement by Allison and Zare yielded a cross section of only < 1 x 10/sup -20/ cm/sup 2/ for low incident electron energy HgBr(B-x) fluorescence, much too small to explain the observed laser efficiency. Subsequent explanations for HgBr(B) formation included energy transfer from excited N/sub 2/ or rare gases, electronic recombination of HgBr/sub 2//sup +/, or dissociative electron attachment. Though it has recently been demonstrated that electronic energy transfer does play a role in HgBr(B) formation in the presence of N/sub 2/ or X/sub e/ buffers, modeling studies of e-beam sustained discharges have now conclusively shown that direct electron-impact excitation of mercuric halides, is indeed the dominant laser mechanism. The technique of electron-energy-loss spectroscopy was used to obtain pseudo-optical absorption spectra in HgBr/sub 2/ and HgCl/sub 2/. Results are presented and discussed. (WHK)

  18. Growth of high quality mercurous halide single crystals by physical vapor transport method for AOM and radiation detection applications

    NASA Astrophysics Data System (ADS)

    Amarasinghe, Priyanthi M.; Kim, Joo-Soo; Chen, Henry; Trivedi, Sudhir; Qadri, Syed B.; Soos, Jolanta; Diestler, Mark; Zhang, Dajie; Gupta, Neelam; Jensen, Janet L.; Jensen, James

    2016-09-01

    Single crystals of mercurous halide were grown by physical vapor transport method (PVT). The orientation and the crystalline quality of the grown crystals were determined using high resolution x-ray diffraction (HRXRD) technique. The full width at half maximum (FWHM) of the grown mercurous bromide crystals was measured to be 0.13 degrees for (004) reflection, which is the best that has been achieved so far for PVT grown mercurous halide single crystals. The extended defects of the crystals were also analyzed using high resolution x-ray diffraction topography. Preliminary studies were carried out to evaluate the performance of the crystals on acousto-optic modulator (AOM) and gamma-ray detector applications. The results indicate the grown mercurous halide crystals are excellent materials for acousto-optic modulator device fabrication. The diffraction efficiencies of the fabricated AOM device with 1152 and 1523 nm wavelength lasers polarizing parallel to the acoustic wave were found to be 35% and 28%, respectively. The results also indicate the grown crystals are a promising material for gamma-ray detector application with a very high energy resolution of 1.86% FWHM.

  19. ROLE OF SURFACE FUNCTIONAL GROUPS IN THE CAPTURE OF ELEMENTAL MERCURY AND MERCURIC CHLORIDE BY ACTIVATED CARBONS

    EPA Science Inventory

    The paper discusses using a laboratory-scale, fixed bed apparatus to study the role of surface functional groups (SFGs) in the capture of mercuric chloride (HgC12) and elemental mercury (Hgo) in nitrogen (N2) prior to flue gas atmosphere studies. The study focused on two activat...

  20. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  1. Pyrroline-5-Carboxylate Reductase in Chlorella autotrophica and Chlorella saccharophila in Relation to Osmoregulation.

    PubMed

    Laliberté, G; Hellebust, J A

    1989-11-01

    Pyrroline-5-carboxylate (P5C) reductase (EC 1.5.1.2), which catalyzes the reduction of P5C to proline, was partially purified from two Chlorella species; Chlorella autotrophica, a euryhaline marine alga that responds to increases in salinity by accumulating proline and ions, and Chlorella saccharophila, which does not accumulate proline for osmoregulation. From the elution profile of this enzyme from an anion exchange column in Tris-HCl buffer (pH 7.6), containing sorbitol and glycine betaine, it was shown that P5C reductase from C. autotrophica was a neutral protein whereas the enzyme from C. saccharophila was negatively charged. The kinetic mechanisms of the reductase was characteristic of a ping-pong mechanism with double competitive substrate inhibition. Both enzymes showed high specificity for NADH as cofactor. The affinities of the reductases for their substrates did not change when the cells were grown at different salinities. In both algae, the apparent K(m) values of the reductase for P5C and NADH were 0.17 and 0.10 millimolar, respectively. A fourfold increase in maximal velocity of the reductase was observed when C. autotrophica was transferred from 50 to 150% artificial sea water. Even though the reductase was inhibited by NaCl, KCl, and proline, it still showed appreciable activity in the presence of these compounds at molar concentrations. A possible role for the regulation of proline synthesis at the step catalyzed by P5C reductase is discussed in relation to the specificity of P5C reductase for NADH and its responses to salt treatments.

  2. Copper-dependent inhibition and oxidative inactivation with affinity cleavage of yeast glutathione reductase.

    PubMed

    Murakami, Keiko; Tsubouchi, Ryoko; Fukayama, Minoru; Yoshino, Masataka

    2014-06-01

    Effects of copper on the activity and oxidative inactivation of yeast glutathione reductase were analyzed. Glutathione reductase from yeast was inhibited by cupric ion and more potently by cuprous ion. Copper ion inhibited the enzyme noncompetitively with respect to the substrate GSSG and NADPH. The Ki values of the enzyme for Cu(2+) and Cu(+) ion were determined to be 1 and 0.35 μM, respectively. Copper-dependent inactivation of glutathione reductase was also analyzed. Hydrogen peroxide and copper/ascorbate also caused an inactivation with the cleavage of peptide bond of the enzyme. The inactivation/fragmentation of the enzyme was prevented by addition of catalase, suggesting that hydroxyl radical produced through the cuprous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed eight fragments, which were further determined to result from the cleavage of the Met17-Ser18, Asn20-Thr21, Glu251-Gly252, Ser420-Pro421, Pro421-Thr422 bonds of the enzyme by amino-terminal sequencing analysis. Based on the kinetic analysis and no protective effect of the substrates, GSSG and NADPH on the copper-mediated inactivation/fragmentation of the enzyme, copper binds to the sites apart from the substrate-sites, causing the peptide cleavage by hydroxyl radical. Copper-dependent oxidative inactivation/fragmentation of glutathione reductase can explain the prooxidant properties of copper under the in vivo conditions.

  3. Fatty acyl-CoA reductase

    SciTech Connect

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  4. Δ1-Pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate.

    PubMed

    Giberti, Samuele; Funck, Dietmar; Forlani, Giuseppe

    2014-05-01

    Δ(1)-pyrroline-5-carboxylate (P5C) reductase (P5CR) catalyses the final step of proline synthesis in plants. In Arabidopsis thaliana, protein levels are correlated neither to the corresponding mRNA copy numbers, nor to intracellular proline concentrations. The occurrence of post-translational regulatory mechanisms has therefore been hypothesized, but never assessed. The purification of A. thaliana P5CR was achieved through either a six-step protocol from cultured cells, or heterologous expression of AtP5CR in Escherichia coli. The protein was characterized with respect to structural, kinetic, and biochemical properties. P5CR was able to use either NADPH or NADH as the electron donor, with contrasting affinities and maximum reaction rates. The presence of equimolar concentrations of NADP(+) completely suppressed the NADH-dependent activity, whereas the NADPH-dependent reaction was mildly affected. Proline inhibited only the NADH-dependent reaction. At physiological values, increasing concentrations of salt progressively inhibited the NADH-dependent activity, but were stimulatory of the NADPH-dependent reaction. The biochemical properties of A. thaliana P5CR suggest a complex regulation of enzyme activity by the redox status of the pyridine nucleotide pools, and the concentrations of proline and chloride in the cytosol. Data support a to date underestimated role of P5CR in controlling stress-induced proline accumulation.

  5. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.

    1991-01-01

    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  6. Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.

    1997-01-01

    Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.

  7. Reproductivity of Japanese quail fed mercuric chloride in the absence of vitamin D

    USGS Publications Warehouse

    Hill, E.F.; Soares, J.H.

    1977-01-01

    Mercuric chloride (HgCl2) was tested at 16 p.p.m. Hg for vitamin D sparing activity by presenting it dietarily in the presence and absence of 25-hydroxycholecalciferol (25-HCC) to Japanese quail (Coturnix c. japonica) for 25 days. No gross signs characteristic of mercury poisoning were observed, but some predictable effects of vitamin D deficiency on avian reproduction were manifested within 10 days. Rate of lay, egg shell thickness, and hatchability of fertile eggs decreased markedly for birds on vitamin D-deficient diets. Shell-less eggs were laid by these birds after 20 days and laying stopped entirely on the 23rd day. Laying resumed within 5 days after diets were refortified with 25-HCC. There was no detectable interaction between HgCl2 and vitamin D.

  8. Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier

    NASA Astrophysics Data System (ADS)

    Hoops, Alexandra A.; Reichardt, Thomas A.; Kliner, Dahv. A. V.; Koplow, Jeffrey P.; Moore, Sean W.

    2007-07-01

    A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl2) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl2(1∏1u ← 1∑1g+) transition at 213 nm generates 253.7 nm emission from the Hg (63P1) photoproduct that is proportional to the concentration of HgCl2. A measured quadratic dependence of the HgCl2 photofragment emission (PFE) signal on the laser irradiance indicates that the photodissociation process involves two-photon excitation. Additionally, low concentrations of HgCl2 are detected with the PFE approach in an environment characteristic of coal-fired power-plant flue gas using this compact solid-state laser source. A detection limit of 0.7 ppb is extrapolated from these results.

  9. Improvement in pixel signal uniformity of polycrystalline mercuric iodide films for digital X-ray imaging

    NASA Astrophysics Data System (ADS)

    Oh, Kyungmin; Kim, Jinseon; Shin, Jungwook; Heo, Seunguk; Cho, Gyuseok; Kim, Daekuk; Park, Jigoon; Nam, Sanghee

    2014-03-01

    We investigated polycrystalline mercuric iodide (HgI2) that exhibits uniform pixel signals for its use in digital X-ray imaging. To fabricate thin polycrystalline HgI2 films, the particle-in-binder (PIB) method is used because it enables the fabrication of X-ray conversion films at a low temperature and a normal pressure. Moreover, it has a large-scale deposition capacity at a low cost. Although the thin layers fabricated by the PIB method have such advantages, they are chemically unstable and show poor reproducibility and nonuniform X-ray response. To solve these problems, in this study, additional physical and chemical treatments were performed along with the PIB method after taking the size confinement effect of photoconductive particles into consideration. Morphological and electrical properties were measured to investigate the effects of the physical and chemical treatments.

  10. Photoluminescence variations associated with the deposition of palladium electrical contacts on detector-grade mercuric iodide

    SciTech Connect

    Wong, D.; Bao, X.J.; Schlesinger, T.E.; James, R.B.; Cheng, A.; Ortale, C.; van den Berg, L.

    1988-10-17

    Specimens of mercuric iodide with evaporated semitransparent palladium contacts have been studied using low-temperature photoluminescence spectroscopy. Distinct differences were found between spectra taken from beneath the Pd contacts and those taken from regions on the HgI/sub 2/ sample that were masked during the Pd deposition, indicating that contact fabrication can change the defect structure near the contact/substrate interface. Comparison of the spectra from spots beneath the contacts with spectra from bulk material specimens and HgI/sub 2/ detectors graded in terms of their nuclear detection performance suggests that the processing steps used to deposit electrical contacts and the choice of contact material may have a significant influence on detector performance.

  11. Inhibition of implantation caused by methylmercury and mercuric chloride in mouse embryos in vivo

    SciTech Connect

    Kajiwara, Yuji; Inouye, Minoru

    1992-10-01

    Methylmercury, an environmental pollutant, produces a wide spectrum of fetotoxic effects in men and laboratory animals. Experimental studies have shown that the exposure to methylmercury in the gestation period causes fetal death, gross malformation, growth retardation of the fetuses, and stillbirth. Although the effects of methylmercury on fetuses have been well documented, only a few experiments have been performed on the embryo toxicity at the early gestation periods. Because the embryos at preimplantation period are known to be highly sensitive to methylmercury in vitro and in vivo, in the present experiment, the embryonic development after implantation was investigated following treatment with methylmercury during the preimplantation period. Since the previous report showed that methylmercury and inorganic mercury were different in their manifestation of toxicity on preimplantation and mercuric chloride on embryos were investigated in vivo in the present study. 22 refs., 3 figs., 3 tabs.

  12. A review of recent measurements of optical and thermal properties of. alpha. -mercuric iodide

    SciTech Connect

    Burger, A.; Morgan, S.H.; Silberman, E. . Dept. of Physics); Nason, D.; Cheng, A.Y. . Santa Barbara Operations)

    1991-01-01

    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide ({alpha}-HgI{sub 2}) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of {alpha}-HgI{sub 2} where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication.

  13. A study of mercuric oxide and zinc-air battery life in hearing aids.

    PubMed

    Sparkes, C; Lacey, N K

    1997-09-01

    The requirement to phase out mercuric oxide (mercury) batteries on environmental grounds has led to the widespread introduction of zinc-air technology. The possibility arises that high drain hearing aids may not be adequately catered for by zinc-air cells, leading to poor performance. This study investigated the hearing aid user's ability to perceive differences between zinc-air and mercury cells in normal everyday usage. The data was collected for 100 experienced hearing aid users in field trials. Users report 50 per cent greater life for zinc-air cells in high power aids and 28 per cent in low power aids. The average life of the zinc-air cells range from 15 days in high power to 34 days in low power aids. Users are able to perceive a difference in sound quality in favour of zinc-air cells for low and medium power aids. The hearing aid population is not disadvantaged by phasing out mercury cells.

  14. Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier.

    PubMed

    Hoops, Alexandra A; Reichardt, Thomas A; Kliner, Dahv A V; Koplow, Jeffrey P; Moore, Sean W

    2007-07-01

    A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl(2)) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl(2) ([see text]) transition at 213 nm generates 253.7 nm emission from the Hg (6(3)P(1)) photoproduct that is proportional to the concentration of HgCl(2). A measured quadratic dependence of the HgCl(2) photofragment emission (PFE) signal on the laser irradiance indicates that the photodissociation process involves two-photon excitation. Additionally, low concentrations of HgCl(2) are detected with the PFE approach in an environment characteristic of coal-fired power-plant flue gas using this compact solid-state laser source. A detection limit of 0.7 ppb is extrapolated from these results.

  15. Specific labeling and partial inactivation of cytochrome oxidase by fluorescein mercuric acetate.

    PubMed

    Stonehuerner, J; O'Brien, P; Kendrick, L; Hall, J; Millett, F

    1985-09-25

    Addition of 1 eq of fluorescein mercuric acetate (FMA) to beef heart cytochrome oxidase was found to inhibit the steady-state electron transfer activity by 50%, but further additions up to 10 eq had no additional effect on activity. The partial inhibition caused by FMA is thus similar to that observed with other mercury compounds (Mann, A. J., and Auer, H. E. (1980) J. Biol. Chem. 255, 454-458). The fluorescence of FMA was quenched by a factor of 10 upon binding to cytochrome oxidase, consistent with the involvement of a sulfhydryl group. However, addition of mercuric chloride to FMA-cytochrome oxidase resulted in an increase in fluorescence, suggesting that FMA was displaced from the high affinity binding site. Cytochrome c binding to FMA-cytochrome oxidase resulted in a 10% decrease in the fluorescence, possibly caused by Forster energy transfer from FMA to the cytochrome c heme. The binding site for FMA in cytochrome oxidase was investigated by carrying out sodium dodecyl sulfate gel electrophoresis under progressively milder dissociation conditions. When FMA-cytochrome oxidase was dissociated with 3% sodium dodecyl sulfate and 6 M urea, FMA was predominantly bound to subunit II following electrophoresis. However, when the dissociation was carried out at 4 degrees C in the absence of urea with progressively smaller amounts of lithium dodecyl sulfate, the labeling of subunit II decreased and that of subunit I increased. These experiments demonstrate that mercury compounds bind to a high affinity site on cytochrome oxidase, possibly located in subunit I, but then migrate to subunit II under the normal sodium dodecyl sulfate gel electrophoresis conditions. A definitive assignment of the high affinity binding site in the native enzyme cannot be made, however, because it is possible that mercury compounds can migrate from one sulfhydryl to another under even the mildest electrophoresis conditions.

  16. State of the art and potential applications of Mercuric Iodide radiation detectors

    SciTech Connect

    Holzer, A.

    1982-01-01

    Mercuric Iodide (HgI/sub 2/) has been recognized as the best room temperature solid-state, X-ray detection material presently available. While the detection performance of Mercuric Iodide is not as good as liquid nitrogen cooled Si(Li) or Germanium it is already good enough to meet the requirements of several special applications where the simplicity and convenience of room temperature operation are important. The high atomic numbers of Hg and I (80, 53) enable efficient absorption of radiation, and the wide band gap (2.13 eV versus 1.12 eV for silicon) allows operation at room temperature without any significant thermal noise. Poor hole collection, resulting from deep hole trapping centers, is the main limitation in the use of HgI/sub 2/ for high energy (>60 keV) gamma-ray detection, but fortunately this is not a problem for detecting the 5--20 keV X-radiation normally used in crystallography. These lower energy X-rays are absorbed within a few microns of the negative electrode and so the holes do not contribute significantly to the pulse. In such cases, very good energy resolution can be obtained. The present performance characteristics for detection of X-rays: i.e., good energy resolution, long-term stability, and the lack of polarization effects: open a wide range of applications for HgI/sub 2/ detectors. This paper will focus on the different methods used to grow HgI/sub 2/ crystals and on how the method of growth is reflected in detector performance. The state of the art of HgI/sub 2/ detector capabilities is discussed and several of the most attractive applications are pointed out.

  17. Nitrate Reductase Regulates Expression of Nitrite Uptake and Nitrite Reductase Activities in Chlamydomonas reinhardtii 1

    PubMed Central

    Galván, Aurora; Cárdenas, Jacobo; Fernández, Emilio

    1992-01-01

    In Chlamydomonas reinhardtii mutants defective at the structural locus for nitrate reductase (nit-1) or at loci for biosynthesis of the molybdopterin cofactor (nit-3, nit-4, or nit-5 and nit-6), both nitrite uptake and nitrite reductase activities were repressed in ammonium-grown cells and expressed at high amounts in nitrogen-free media or in media containing nitrate or nitrite. In contrast, wild-type cells required nitrate induction for expression of high levels of both activities. In mutants defective at the regulatory locus for nitrate reductase (nit-2), very low levels of nitrite uptake and nitrite reductase activities were expressed even in the presence of nitrate or nitrite. Both restoration of nitrate reductase activity in mutants defective at nit-1, nit-3, and nit-4 by isolating diploid strains among them and transformation of a structural mutant upon integration of the wild-type nit-1 gene gave rise to the wild-type expression pattern for nitrite uptake and nitrite reductase activities. Conversely, inactivation of nitrate reductase by tungstate treatment in nitrate, nitrite, or nitrogen-free media made wild-type cells respond like nitrate reductase-deficient mutants with respect to the expression of nitrite uptake and nitrite reductase activities. Our results indicate that nit-2 is a regulatory locus for both the nitrite uptake system and nitrite reductase, and that the nitrate reductase enzyme plays an important role in the regulation of the expression of both enzyme activities. PMID:16668656

  18. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.

    PubMed

    Ondarza, Raúl N; Hurtado, Gerardo; Tamayo, Elsa; Iturbe, Angélica; Hernández, Eva

    2006-11-01

    This paper presents definitive data showing that the thiol-bimane compound isolated and purified by HPLC from Naegleria fowleri trophozoites unequivocally corresponds by matrix assisted laser-desorption ionization-time-of-flight MS, to the characteristic monoprotonated ion of trypanothione-(bimane)(2) [M(+)H(+)] of m/z 1104.57 and to the trypanothione-(bimane) of m/z 914.46. The trypanothione disulfide T(S)(2) was also found to have a molecular ion of m/z 723.37. Additionally HPLC demonstrated that thiol-bimane compounds corresponding to cysteine and glutathione were present in Naegleria. The ion patterns of the thiol-bimane compounds prepared from commercial trypanothione standard, Entamoeba histolytica and Crithidia luciliae are identical to the Naegleria thiol-bimane compound. Partially purified extracts from N. fowleri showed the coexistence of glutathione and trypanothione reductases activities. There is not doubt that the thiol compound trypanothione, which was previously thought to occur only in Kinetoplastida, is also present in the human pathogens E. histolytica and N. fowleri, as well as in the non-pathogenic euglenozoan E. gracilis. The presence of the trypanothione/trypanothione reductase system in N. fowleri creates the possibility of using this enzyme as a new "drug target" for rationally designed drugs to eliminate the parasite, without affecting the human host.

  19. Mercuric iodide research and development in support of DOE Historically Black Colleges and University Program. Semiannual technical progress report

    SciTech Connect

    George, M.A.; Zheng, Y.; Salary, L.; Chen, K.T.; Burger, A.

    1994-10-31

    This report describes the progress achieved during the first six months of the program. The different subjects studied were: zone refining experiments of mercuric iodide to establish optimum refining parameters and produce purified material; development of surface reflection spectroscopy as a method to measure crystal surface temperatures, with emphasis on investigation the potential of using optical multichannel analysis; optical methods for measuring iodine vapor during physical vapor transport of HgI{sub 2}; and atomic force microscopy studies.

  20. 1984 State of the art of the technology of mercuric iodide x-ray and gamma radiation detectors

    SciTech Connect

    Schieber, M.; Schnepple, W.

    1983-10-01

    The present state of the art of mercuric iodide technology is reviewed. Recent progress is reported in the use of HgI/sub 2/ in high energy resolution x-ray and gamma ray spectrometers which operate at room temperature. Purification of starting materials, methods of crystal growth, detector fabrication, and characterization methods used for HgI/sub 2/ are described, and some applications of HgI/sub 2/ detectors to various device systems are given.

  1. Superdiffusive cusp-like waves in the mercuric iodide precipitate system and their transition to regular reaction bands.

    PubMed

    Ayass, Mahmoud M; Al-Ghoul, Mazen

    2014-06-05

    We report a two-dimensional (2D) reaction-diffusion system that exhibits a superdiffusive propagating wave with anomalous cusp-like contours. This wave results from a leading precipitation reaction (wavefront) and a trailing redissolution (waveback) between initially separated mercuric chloride and potassium iodide to produce mercuric iodide precipitate (HgI2) in a thin sheet of a solid hydrogel (agar) medium. The propagation dynamics is accompanied by continuous polymorphic transformations between the metastable yellow crystals and the stable red crystals of HgI2. We study the dynamics of wavefront and waveback propagation that reveals interesting anomalous superdiffusive behavior without the influence of external enhancement. We find that a transition from superdiffusive to subdiffusive dynamics occurs as a function of outer iodide concentration. Inner mercuric concentrations lead to the transition from the anomalous cusp-like to cusp-free regular bands. While gel concentration affects the speed of propagation of the wave, it has no effect on its shape or on its superdiffusive dynamics. Microscopically, we show that the macroscopic wave propagation and polymorphic transformations are accompanied by an Ostwald ripening mechanism in which larger red HgI2 crystals are formed at the expense of smaller yellow HgI2 crystals.

  2. Neuroprotective role for carbonyl reductase?

    PubMed

    Maser, Edmund

    2006-02-24

    Oxidative stress is increasingly implicated in neurodegenerative disorders including Alzheimer's, Parkinson's, Huntington's, and Creutzfeld-Jakob diseases or amyotrophic lateral sclerosis. Reactive oxygen species seem to play a significant role in neuronal cell death in that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cellular growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme carbonyl reductase (CR), it is clear now that CR has a potential physiological role for neuroprotection in humans. Several lines of evidence suggest that CR represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CR in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration.

  3. ADP-ribosylation of dinitrogenase reductase in Rhodobacter capsulatus

    SciTech Connect

    Jouanneau, Y.; Roby, C.; Meyer, C.M.; Vignais, P.M. )

    1989-07-25

    In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase is regulated by a reversible covalent modification of Fe protein or dinitrogenase reductase (Rc2). The linkage of the modifying group to inactive Rc2 was found to be sensitive to alkali and to neutral hydroxylamine. Complete release of the modifying group was achieved by incubation of inactive Rc2 in 0.4 or 1 M hydroxylamine. After hydroxylamine treatment of the Rc2 preparation, the modifying group could be isolated and purified by affinity chromatography and ion-exchange HPLC. The modifying group comigrated with ADP-ribose on both ion-exchange HPLC and thin-layer chromatography. Analyses by {sup 31}P NMR spectroscopy and mass spectrometry provided further evidence that the modifying group was ADP-ribose. The NMR spectrum of inactive Rc2 exhibited signals characteristic of ADP-ribose; integration of these signals allowed calculation of a molar ration ADP-ribose/Rc2 of 0.63. A hexapeptide carrying the ADP-ribose moiety was purified from a subtilisin digest of inactive Rc2. The structure of this peptide, determined by amino acid analysis and sequencing, is Gly-Arg(ADP-ribose)-Gly-Val-Ile-Thr. This structure allows identification of the binding site for ADP-ribose as Arg 101 of the polypeptide chain of Rc2. It is concluded that nitrogenase activity in R. capsulatus is regulated by reversible ADP-ribosylation of a specific arginyl residue of dinitrogenase reductase.

  4. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    PubMed

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  5. Genetics Home Reference: 5-alpha reductase deficiency

    MedlinePlus

    ... About half of these individuals adopt a male gender role in adolescence or early adulthood. Related Information ... 1730-5. Citation on PubMed Cohen-Kettenis PT. Gender change in 46,XY persons with 5alpha-reductase- ...

  6. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1995-12-31

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.

  7. Kinetics and mechanism of reaction between silver molybdate and mercuric iodide in solid state

    SciTech Connect

    Beg, M.A.; Rafiuddin

    1987-05-01

    The kinetics and the mechanism of the reaction between silver molybdate and mercuric iodide were studied in the solid state by X-ray, chemical analysis, and electrical conductivity measurements. This is a multistep reaction where Ag/sub 2/HgI/sub 4/ is formed as an intermediate. In an equimolar mixture of Ag/sub 2/MoO/sub 4/ and HgI/sub 2/, AgI an HgMoO/sub 4/ are formed, whereas in a 1:2 molar mixture Ag/sub 2/HgI/sub 4/ and HgMoO/sub 4/ are formed. The data for lateral diffusion best fit the equation X/sup n/ = kt, where X is the product thickness, t is time, and k and n are constants. This is a multistep solid state ionic reaction initiated by the diffusion of HgI/sub 2/ molecules as such and not through counterdiffusion of cations.

  8. Improved yield of high resolution mercuric iodide gamma-ray spectrometers

    SciTech Connect

    Gerrish, V.; van den Berg, L.

    1990-01-01

    Mercuric iodide (HgI{sub 2}) exhibits properties which make it attractive for use as a solid state nuclear radiation detector. The wide bandgap (E{sub g} = 2.1 eV) and low dark current allow room temperature operation, while the high atomic number provides a large gamma-ray cross section. However, poor hole transport has been a major limitation in the routine fabrication of high-resolution spectrometers using this material. This paper presents the results of gamma-ray response and charge transport parameter measurements conducted during the past year at EG G/EM on 96 HgI{sub 2} spectrometers. The gamma-ray response measurements reveal that detector quality is correlated with the starting material used in the crystal growth. In particular, an increased yield of high-resolution spectrometers was obtained from HgI{sub 2} which was synthesized by precipitation from an aqueous solution, as opposed to using material from commercial vendors. Data are also presented which suggest that better spectrometer performance is tied to improved hole transport. Finally, some initial results on a study of detector uniformity reveal spatial variations which may explain why the correlation between hole transport parameters and spectrometer performance is sometimes violated. 6 refs., 3 figs.

  9. Development of mercuric iodide energy dispersive x-ray array detectors

    SciTech Connect

    Iwanczyk, J.S.; Warburton, W.K.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1988-02-01

    There are various areas of synchrotron radiation research particularly Extended X-Ray Absorption Fine Structure (EXAFS) on dilute solutions and anomalous scattering, which would strongly benefit from the availability of energy dispersive detector arrays with high energy resolution and good spatial resolution. The goal of this development project is to produce high energy resolution mercuric iodide (HgI/sub 2/) detector sub-modules, consisting of several elements. These sub-modules can later be grouped into larger arrays of 100-400 elements. A prototype 5 element HgI/sub 2/ array detector was constructed and tested. Dimensions of each element were 7.3 mm x 0.7 mm. An energy resolution of 335 eV (FWHM) for Mn0K..cap alpha.. at 5.9 keV has been measured. The novel fiber-optic pulsed light feedback has been introduced into the charge preamplifiers in order to minimize electronic crosstalk between channels.

  10. Mercuric chloride-induced protein-losing enteropathy (PLE) in brown Norway (BN) rats

    SciTech Connect

    Knoflach, P.; Weiser, M.M.; Albini, B.

    1986-03-05

    Prolonged exposure to low doses of mercuric chloride (MC) may induce immunologically mediated kidney disease in man and animals. Mercury compounds are of growing importance as environmental pollutants. Twenty female BN rats were gavaged with 150 microgram MC/100 gm body weight 3x/wk for up to 39 wks. Starting with wk 2, rat intestines demonstrated linear IgG and IgA deposits along the vascular and intestinal basement membranes (VBM and IBM). Serum antibodies to IBM were observed during the first 4 wks of gavage. At wk 11, first granular deposits of IgG and C3 were observed along VBM. Only after wk 35 were granular deposits also seen along the IBM. Using radioactive chromium chloride, 50% of rats with granular deposits along BM showed significantly increased protein loss into the intestines. Thus, granular deposits of IgG and C3 along the IBM, probably representing immune complexes, may lead to PLE. This animal model may contribute to the understanding of the pathogenesis of PLE in man described in graft-vrs-host reactions following bone marrow grafts, allergic enteritides, inflammatory bowel disease, and arsenic intoxication, as well as the assessment of biological effects of environmental pollutants.

  11. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    SciTech Connect

    Patt, B.

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  12. Physical vapor transport of mercurous chloride under a nonlinear thermal profile

    NASA Technical Reports Server (NTRS)

    Mennetrier, Christophe; Duval, Walter M. B.; Singh, Narsingh B.

    1992-01-01

    Our study investigates numerically the flow field characteristics during the growth of mercurous chloride (Hg2Cl2) crystals in a rectangular ampoule under terrestrial and microgravity conditions for a nonlinear thermal gradient. With a residual gas lighter than the nutrient, the solutal Grashof number is dominant. We observe that in tilted configurations, when solutal convection is dominant, the maximum transport rate occurs at approximately 40 percent. For the vertical configurations, we were able to obtain solutions only for the cases either below the critical Rayleigh numbers or the stabilized configurations. The total mass flux decreases exponentially with an increase of pressure of residual gas, but it increases following a power law with the temperature difference driving the transport. The nonlinear thermal gradient appears to destabilize the flow field when thermal convection is dominant for both vertical top-heated and bottom-heated configurations. However, when the solutal Grashof number is dominant, the density gradient resulting from the solutal gradient appears to stabilize the flow for the bottom-heated configuration. The flow field for the top-heated configuration is destabilized for high Grashof numbers. The microgravity environment provides a means for lowering convection. For gravity levels of 10(exp -3) g(0) or less, the Stefan wind drives the flow, and no recirculating cell is predicted.

  13. Investigation of a mercurous chloride acousto-optic cell based on longitudinal acoustic mode.

    PubMed

    Gupta, Neelam

    2009-03-01

    A number of spectral imagers using acousto-optic tunable filters (AOTFs) operating from the UV to the longwave infrared (LWIR) using KDP, MgF(2), TeO(2), and Tl(3)AsSe(3) crystals to cover different spectral regions have been developed. In the LWIR there is a lack of high quality acousto-optic (AO) materials. Mercurous halide (Hg(2)Cl(2) and Hg(2)Br(2)) crystals are highly anisotropic with a high AO figure of merit due to slow acoustic velocities and high photoelastic constants and are transparent over a wide spectral region from 0.35 to 20 mum for Hg(2)Cl(2) and from 0.4 to 30 mum for Hg(2)Br(2). AO modulators, deflectors, and AOTFs based on these crystals can operate over a wide spectral range. Single crystals of these materials are being grown and some prototype devices have been fabricated. Results are presented from device characterization for an AO cell fabricated in Hg(2)Cl(2) based on longitudinal acoustic mode propagation. This device was very useful in demonstrating the AO interaction as well as soundness of the transducer bonding technique. Acoustic phase velocity is calculated and measured, diffraction efficiency is obtained from experiments, and the AO figure of merit of the sample is evaluated.

  14. Volatilization of fluorescein mercuric acetate by marine bacterial from Minamata Bay

    SciTech Connect

    Nakamura, Kunihiko )

    1989-05-01

    Some bacteria that live in a mercury-polluted environment are resistant to mercury compounds. A majority of these mercury-resistant bacterial have been found to volatilize organic as well as inorganic mercury compounds into elemental mercury vapor by means of their enzymes. One compound, fluorescein mercuric acetate (FMA) has long been in use as a disinfectant in hospitals; yet, there has been little definitive information on bacterial resistance to this compound. Minamata Bay has been heavily polluted by mercury, which has caused methylmercury poisoning in humans, called Minamata disease. Sediments from the Bay still contain high concentrations of mercury. The percentage of mercury-resistant bacteria in the total bacterial count is higher in these sediments than in those of other marine environments. FMA-pollution, however, has not been reported. Research into the mechanism of bacterial resistance to FMA will not only add to our general understanding of the ability of certain bacteria to resist mercury, but will also help in defining the role bacteria play in the mercury cycle of a mercury-polluted environment. The purpose of the present study is to determine the mechanism of resistance to FMA of the FMA-resistant bacteria living in the Bay.

  15. Intrarenal distribution of mercury in the rat: effect of administered dose of mercuric chloride

    SciTech Connect

    Zalups, R.K.; Diamond, G.L.

    1987-01-01

    The authors recently observed that the distribution of mercury in the hypertrophied remnant kidneys of uninephrectomized rats was different from that in the kidneys of sham-operated rats when given the same non-toxic dose of mercuric chloride (HgCl/sub 2/; 0.5 ..mu..mol/kg). These observations are quite significant, since the altered intrarenal distribution of mercury in uninephrectomized rats may cause uninephrectomized rats to develop more severe tubular necrosis in the outer medulla than sham-operated rats. In the experiments described above, the mercury burden of the hypertrophied remnant kidneys from the uninephrectomized rats was approximately twice that of each of the kidneys from the sham-operated rats. Thus, the altered intrarenal distribution of mercury in the uninephrectomized rats may be, in part, the result of the remnant kidney being exposed to more mercury. Implicit in this hypothesis is the idea that the manner in which the kidney accumulates mercury is dependent on the amount of mercury it is exposed to. If this is the case, then one would predict that the intrarenal accumulation of mercury in rats with two kidneys would change as the administered dose of HgCl/sub 2/ is increased from the dose of 0.5 ..mu..mol/kg. The principal aim of this study was to test this hypothesis.

  16. Detection of mercuric chloride by photofragment emission using a frequency-converted fiber amplifier

    SciTech Connect

    Hoops, A.A.; Reichardt, T.A.; Kliner, D.A.V.; Koplow, J.P.; Moore, S.W.

    2007-07-15

    A real-time, noninvasive approach for detecting trace amounts of vapor-phase mercuric chloride (HgCl{sub 2}) in combustion flue gas is demonstrated using a near-infrared pulsed fiber amplifier that is frequency converted to the ultraviolet. Excitation of the HgCl{sub 2} (1{Pi}1{sub u}{l_arrow} 1{Sigma}1g+) transition at 213 nm generates 253.7 nm emission from the Hg (6{sup 3}P{sub 1}) photoproduct that is proportional to the concentration of HgC1{sub 2}. A measured quadratic dependence of the HgCl{sub 2} photofragment emission (PFE) signal on the laser irradiance indicates that the photodissociation process involves two-photon excitation. Additionally, low concentrations of HgCl{sub 2} are detected with the PFE approach in an environment characteristic of coal-fired power-plant flue gas using this compact solid-state laser source. A detection limit of 0.7 ppb is extrapolated from these results.

  17. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  18. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  19. Chicken muscle aldose reductase: purification, properties and relationship to other chicken aldo/keto reductases.

    PubMed

    Murphy, D G; Davidson, W S

    1986-01-01

    An enzyme that catalyzes the NADPH-dependent reduction of a wide range of aromatic and hydroxy-aliphatic aldehydes was purified from chicken breast muscle. This enzyme shares many properties with mammalian aldose reductases including molecular weight, relative substrate specificity, Michaelis constants, an inhibitor specificity. Therefore, it seems appropriate to call this enzyme an aldose reductase (EC 1.1.1.21). Chicken muscle aldose reductase appears to be kinetically identical to an aldose reductase that has been purified from chicken kidney (Hara et al., Eur. J. Biochem. 133, 207-214) and to hen muscle L-glycol dehydrogenase (Bernado et al., Biochim. biophys. Acta 659, 189-198). The association of this aldose reductase with muscular dystrophy in the chick is discussed.

  20. Hepato- and nephroprotective effects of bradykinin potentiating factor from scorpion (Buthus occitanus) venom on mercuric chloride-treated rats

    PubMed Central

    Salman, Muhammad M. A.; Kotb, Ahmed M.; Haridy, Mohie A. M.; Hammad, Seddik

    2016-01-01

    Bioactive peptides such as bradykinin potentiating factor (BPF), have, anti-oxidative, anti-inflammatory, immunomodulatory and ameliorative effects in chronic diseases and play a potential role in cancer prevention. It is known that the liver and kidney accumulate inorganic mercury upon exposure, which often leads to mercury intoxication in these organs. In this study, we investigated the effect of bradykinin potentiating factor (BPF), a scorpion venom peptide, on mercuric chloride-induced hepatic and renal toxicity in rats. We used 20 adult male Albino rats divided into four equal groups: the first group was injected with saline (control); the second group was administered daily with mercuric chloride (HgCl2) for 2 weeks; the third group was administered with BPF twice weekly for 2 successive weeks, while the fourth group was exposed to BPF followed by HgCl2. We observed that HgCl2 treated rats had a significant increase in serum ALT, AST, ALP, creatinine and urea levels compared to control. Furthermore, HgCl2 treated rats showed a marked decrease in total proteins, albumin and uric acids compared to control. The previously studied parameters were not significantly changed in BPF pretreated rats compared to control. Moreover, a significant decrease in the activities of glutathione perioxidase (GSH), superoxide dismutase (SOD), and catalase (CAT), in addition to a significant increase in the level of malondialdehyde (MDA) were observed in hepatic and renal tissues of rats after HgCl2 treatment. In contrast, the HgCl2/BPF treated rats showed a significant elevation in the activity of GSH, SOD, and CAT accompanied with a significant regression in the level of MDA compared to the HgCl2 exposed rats. We conclude that treatment with BPF is a promising prophylactic approach for the management of mercuric chloride-induced hepato- and nephro-toxicities. PMID:28337111

  1. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae.

    PubMed

    Zhang, Qun-Fang; Li, Ying-Wen; Liu, Zhi-Hao; Chen, Qi-Liang

    2016-12-01

    Mercury (Hg) is a widespread environmental pollutant that can produce severe negative effects on fish even at very low concentrations. However, the mechanisms underlying inorganic Hg-induced oxidative stress and immunotoxicity in the early development stage of fish still need to be clarified. In the present study, zebrafish (Danio rerio) embryos were exposed to different concentrations of Hg(2+) (0, 1, 4 and 16μg/L; added as mercuric chloride, HgCl2) from 2h post-fertilization (hpf) to 168hpf. Developmental parameters and total Hg accumulation were monitored during the exposure period, and antioxidant status and the mRNA expression of genes related to the innate immune system were examined at 168hpf. The results showed that increasing Hg(2+) concentration and time significantly increased total Hg accumulation in zebrafish embryos-larvae. Exposure to 16μg/L Hg(2+) caused developmental damage, including increased mortality and malformation, decreased body length, and delayed hatching period. Meanwhile, HgCl2 exposure (especially in the 16μg/L Hg(2+) group) induced oxidative stress affecting antioxidant enzyme (CAT, GST and GPX) activities, endogenous GSH and MDA contents, as well as the mRNA levels of genes (cat1, sod1, gstr, gpx1a, nrf2, keap1, hsp70 and mt) encoding antioxidant proteins. Moreover, the transcription levels of several representative genes (il-1β, il-8, il-10, tnfα2, lyz and c3) involved in innate immunity were up-regulated by HgCl2 exposure, suggesting that inorganic Hg had the potential to induce immunotoxicity. Taken together, the present study provides evidence that waterborne HgCl2 exposure can induce developmental impairment, oxidative stress and immunotoxicity in the early development stage of fish, which brings insights into the toxicity mechanisms of inorganic Hg in fish.

  2. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    PubMed

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  3. Respiratory arsenate reductase as a bidirectional enzyme

    USGS Publications Warehouse

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  4. A mercuric iodide detector system for X-ray astronomy. II - Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Vanderspek, R. K.; Ricker, G. R.

    1983-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, described by Ricker et al., an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, TX. The second flight of this instrument established a differential background counting rate of 4.2 + or - 0.7 x 10 to the -5th counts/s sq cm keV over the energy range of 40-80 keV. This measurement was within 50 percent of the predicted value. The measured rate is about 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range.

  5. Plasma enzyme activities in coturnix quail fed graded doses of DDE, polychlorinated biphenyl, malathion, and mercuric chloride

    USGS Publications Warehouse

    Dieter, M.P.

    1974-01-01

    Male Coturnix quail (Coturnix coturnix japonica) were fed diets for 12 weeks containing graded levels of DDE, polychlorinated biphenyl (Aroclor 1254), malathion, and mercuric chloride. Birds were bled prior to exposure and at 2, 4 and 12 weeks, and the plasma used to measure the activities of creatine kinase, aspartate aminotransferase, cholinesterase, fructose-diphosphate aldolase, and lactate dehydrogenase. Abnormal activity of certain plasma enzymes was noted in birds after 2 and 4 weeks, but these changes were not proportional to dose or exposure time. At 12 weeks increases in each of the activities of plasma enzymes of birds fed organochlorines, and decreases in cholinesterase activity of birds fed malathion or mercuric chloride, were proportional to the log dose of the respective agents. In addition, the pattern of enzyme responses in the 4 experimental groups had changed, and was illustrative of the specific type of substance that had been fed. The data suggest that qualitative and quantitative identification of environmental contaminants in birds, and perhaps a variety of wild animals, may be possible by utilization of multiple plasma enzyme assays. Residue analyses after 12 weeks of feeding showed that DDE accumulated in carcasses and livers at concentrations up to 4-fold higher than those in the diets. In contrast residues of Aroclor 1254 attained in carcasses were identical to, and in livers one-half of, the concentration in the feed. Mercury did not accumulate as much in the tissues; residues attained were one-twentieth or less of those in the feed.

  6. A mercuric detector system for X-ray astronomy. 2. Results from flight tests of a balloon borne instrument

    NASA Technical Reports Server (NTRS)

    Vallerga, J.; Vanderspek, R. K.; Ricker, G. R.

    1982-01-01

    To establish the expected sensitivity of a new hard X-ray telescope design, an experiment was conducted to measure the background counting rate at balloon altitudes (40 km) of mercuric iodide, a room temperature solid state X-ray detector. The prototype detector consisted of two thin mercuric iodide (HgI2) detectors surrounded by a large bismuth germanate (Bi4Ge3O12) scintillator operated in anticoincidence. The bismuth germanate shield vetoed most of the background counting rate induced by atmospheric gamma-rays, neutrons and cosmic rays. A balloon-borne gondola containing a prototype detector assembly was designed, constructed and flown twice in the spring of 1982 from Palestine, Texas. The second flight of this instrument established a differential background counting rate of 4.2 O.7 x 10-5 counts/sec cm keV over the energy range of 40 to 80 keV. This measurement was within 50% of the predicted value. The measured rate is approx 5 times lower than previously achieved in shielded NaI/CsI or Ge systems operating in the same energy range. The prediction was based on a Monte Carlo simulation of the detector assembly in the radiation environment at float altitude.

  7. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  8. Isolation, sequence identification and tissue expression profile of two novel soybean (glycine max) genes-vestitone reductase and chalcone reductase.

    PubMed

    Liu, G Y

    2009-09-01

    The complete mRNA sequences of two soybean (glycine max) genes-vestitone reductase and chalcone reductase, were amplified using the rapid amplification of cDNA ends methods. The sequence analysis of these two genes revealed that soybean vestitone reductase gene encodes a protein of 327 amino acids which has high homology with the vestitone reductase of Medicago sativa (77%). The soybean chalcone reductase gene encodes a protein of 314 amino acids that has high homology with the chalcone reductase of kudzu vine (88%) and medicago sativa (83%). The expression profiles of the soybean vestitone reductase and chalcone reductase genes were studied and the results indicated that these two soybean genes were differentially expressed in detected soybean tissues including leaves, stems, roots, inflorescences, embryos and endosperm. Our experiment established the foundation for further research on these two soybean genes.

  9. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  10. Fumarate Reductase Activity of Streptococcus faecalis

    PubMed Central

    Aue, B. J.; Diebel, R. H.

    1967-01-01

    Some characteristics of a fumarate reductase from Streptococcus faecalis are described. The enzyme had a pH optimum of 7.4; optimal activity was observed when the ionic strength of the phosphate buffer was adjusted to 0.088. The Km value of the enzyme for reduced flavin mononucleotide was 2 × 10−4 m as determined with a 26-fold preparation. In addition to fumarate, the enzyme reduced maleate and mesaconate. No succinate dehydrogenase activity was detected, but succinate did act as an inhibitor of the fumarate reductase activity. Other inhibitors were malonate, citraconate, and trans-, trans-muconate. Metal-chelating agents did not inhibit the enzyme. A limited inhibition by sulfhydryl-binding agents was observed, and the preparations were sensitive to air oxidation and storage. Glycine, alanine, histidine, and possibly lysine stimulated fumarate reductase activity in the cell-free extracts. However, growth in media supplemented with glycine did not enhance fumarate reductase activity. The enzymatic activity appears to be constitutive. PMID:4960892

  11. The anaerobic ribonucleoside triphosphate reductase from Escherichia coli requires S-adenosylmethionine as a cofactor.

    PubMed Central

    Eliasson, R; Fontecave, M; Jörnvall, H; Krook, M; Pontis, E; Reichard, P

    1990-01-01

    Extracts from anaerobically grown Escherichia coli contain an oxygen-sensitive activity that reduces CTP to dCTP in the presence of NADPH, dithiothreitol, Mg2+ ions, and ATP, different from the aerobic ribonucleoside diphosphate reductase (2'-deoxyribonucleoside-diphosphate: oxidized-thioredoxin 2'-oxidoreductase, EC 1.17.4.1) present in aerobically grown E. coli. After fractionation, the activity required at least five components, two heat-labile protein fractions and several low molecular weight fractions. One protein fraction, suggested to represent the actual ribonucleoside triphosphate reductase was purified extensively and on denaturing gel electrophoresis gave rise to several defined protein bands, all of which were stained by a polyclonal antibody against one of the two subunits (protein B1) of the aerobic reductase but not by monoclonal anti-B1 antibodies. Peptide mapping and sequence analyses revealed partly common structures between two types of protein bands but also suggested the presence of an additional component. Obviously, the preparations are heterogeneous and the structure of the reductase is not yet established. The second, crude protein fraction is believed to contain several ancillary enzymes required for the reaction. One of the low molecular weight components is S-adenosylmethionine; a second component is a loosely bound metal. We propose that S-adenosylmethionine together with a metal participates in the generation of the radical required for the reduction of carbon 2' of the ribosyl moiety of CTP. Images PMID:2185465

  12. Fumarate-Mediated Inhibition of Erythrose Reductase, a Key Enzyme for Erythritol Production by Torula corallina

    PubMed Central

    Lee, Jung-Kul; Koo, Bong-Seong; Kim, Sang-Yong

    2002-01-01

    Torula corallina, a strain presently being used for the industrial production of erythritol, has the highest erythritol yield ever reported for an erythritol-producing microorganism. The increased production of erythritol by Torula corallina with trace elements such as Cu2+ has been thoroughly reported, but the mechanism by which Cu2+ increases the production of erythritol has not been studied. This study demonstrated that supplemental Cu2+ enhanced the production of erythritol, while it significantly decreased the production of a major by-product that accumulates during erythritol fermentation, which was identified as fumarate by instrumental analyses. Erythrose reductase, a key enzyme that converts erythrose to erythritol in T. corallina, was purified to homogeneity by chromatographic methods, including ion-exchange and affinity chromatography. In vitro, purified erythrose reductase was significantly inhibited noncompetitively by increasing the fumarate concentration. In contrast, the enzyme activity remained almost constant regardless of Cu2+ concentration. This suggests that supplemental Cu2+ reduced the production of fumarate, a strong inhibitor of erythrose reductase, which led to less inhibition of erythrose reductase and a high yield of erythritol. This is the first report that suggests catabolite repression by a tricarboxylic acid cycle intermediate in T. corallina. PMID:12200310

  13. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    SciTech Connect

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  14. Construction and characterization of nitrate reductase-based amperometric electrode and nitrate assay of fertilizers and drinking water.

    PubMed

    Glazier, S A; Campbell, E R; Campbell, W H

    1998-04-15

    The construction and characterization of a nitrate reductase-based amperometric electrode for determination of nitrate ion is described. The electrode consisted of nitrate reductase held by dialysis membrane onto a Nafion-coated glassy carbon electrode. Methyl viologen was allowed to absorb into the Nafion layer, which acted as a reservoir for the electron mediator. The utility of the electrode to assay fertilizer and water sample for nitrate was demonstrated. The assays conducted with this electrode compared well with colorimetric and potentiometric assays of the same samples.

  15. Control of dihydrofolate reductase messenger ribonucleic acid production

    SciTech Connect

    Leys, E.J.; Kellems, R.E.

    1981-11-01

    The authors used methotrexate-resistant mouse cells in which dihydrofolate reductase levels are approximately 500 times normal to study the effect of growth stimulation on dihydrofolate reductase gene expression. As a result of growth stimulation, the relative rate of dihydrofolate reductase protein synthesis increased threefold, reaching a maximum between 25 and 30 h after stimulation. The relative rate of dihydrofolate reductase messenger ribonucleic acid production (i.e., the appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm) increased threefold after growth stimulation and was accompanied by a corresponding increase in the relative steady-state level of dihydrofolate reductase ribonucleic acid in the nucleus. However, the increase in the nuclear level of dihydrofolate reductase ribonucleic acid was not accompanied by a significant increase in the relative rate of transcription of the dihydrofolate reductase genes. These data indicated that the relative rate of appearance of dihydrofolate reductase messenger ribonucleic acid in the cytoplasm depends on the relative stability of the dihydrofolate reductase ribonucleic acid sequences in the nucleus and is not dependent on the relative rate of transcription of the dihydrofolate reductase genes.

  16. Augmentation of CFTR maturation by S-nitrosoglutathione reductase

    PubMed Central

    Sawczak, Victoria; Zaidi, Atiya; Butler, Maya; Bennett, Deric; Getsy, Paulina; Zeinomar, Maryam; Greenberg, Zivi; Forbes, Michael; Rehman, Shagufta; Jyothikumar, Vinod; DeRonde, Kim; Sattar, Abdus; Smith, Laura; Corey, Deborah; Straub, Adam; Sun, Fei; Palmer, Lisa; Periasamy, Ammasi; Randell, Scott; Kelley, Thomas J.; Lewis, Stephen J.

    2015-01-01

    S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41o−) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41o− cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. PMID:26637637

  17. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.

    PubMed

    Weger, Harold G; Walker, Crystal N; Fink, Michael B

    2007-10-01

    + concentrations with chelators other than desferrioxamine mesylate. With respect to cupric reductase activity, the O2 electrode consistently provided much higher estimates; we suggest that this was as a result of Cu2+ chelation by BCDS leading to a large underestimation of the true cupric reduction rate. These results suggest that an O2-electrode-based metal reductase assay system has some specific advantages compared with the traditional colorimetric assay system, including especially the ability to discriminate between the reduction of free metal ions and chelated metal ions.

  18. In vitro interaction of selected phospholipid species with mercuric chloride using Fourier transform sup 1 H-NMR

    SciTech Connect

    Shinada, Masayuki; Muto, Hajime; Takizawa, Yukio )

    1991-09-01

    Many studies on the mercury toxicities have been accumulated since the outbreak of Minamata Disease.' There have been few reports on the reaction mechanisms of mercurials with phospholipids which substantially locate in biological membranes, although the interactions of nucleotides or nucleosides with mercurials have been reported. Recently, the study on the interaction of mercuric chloride (HgCl{sub 2}) with amino polar heads of model membranes containing phosphatidylserine (PS) and phosphatidylethanolamine (PE) has been reported, as the results from the fluorescence polarization analysis using 1,6-diphenyl-1,3,5-hexatriene. The authors demonstrate here the interactions of dioleoylphosphatidylethanolamine (DOPE) and dioleoylphosphatidylcholine (DOPC) with HgCl{sub 2}, using Fourier transform {sup 1}H-NMR ({sup 1}H-FT-NMR).

  19. A mercuric ensemble based on a cycloruthenated complex as a visual probe for iodide in aqueous solution

    NASA Astrophysics Data System (ADS)

    Su, Xianlong; Guo, Lieping; Ma, Yajuan; Li, Xianghong

    2016-01-01

    A new water-soluble cycloruthenated complex Ru(bthiq)(dcbpy)2+ (1, Hbthiq = 1-(2-benzo[b]thiophenyl)isoquinoline, dcbpy = 4,4‧-dicarboxylate-2,2‧-bipyridine) was designed and synthesized to form its mercuric ensemble (1-Hg2+) to achieve visual detection of iodide anions. The binding constant of 1-Hg2+ is calculated to be 2.40 × 104 M-1, which is lower than that of HgI2. Therefore, the addition of I- to the aqueous solution of 1-Hg2+lead to significant color changes from yellow to deep-red by the release of 1. The results showed that iodide anions could be easily detected by the naked eyes. The detection limit of iodide anion is calculated as 0.77 μM. In addition, an easily-prepared test strip of 1-Hg2+ was obtained successfully to detect iodide anions.

  20. Low energy X-ray spectra measured with a mercuric iodide energy dispersive spectrometer in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Bradley, J. G.; Conley, J. M.

    1986-01-01

    A mercuric iodide energy dispersive X-ray spectrometer, with Peltier cooling provided for the detector and input field effect transistor, has been developed and tested in a scanning electron microscope. X-ray spectra were obtained with the 15 keV electron beam. An energy resolution of 225 eV (FWHM) for Mn-K(alpha) at 5.9 keV and 195 eV (FWHM) for the Mg-K line at 1.25 keV has been measured. Overall system noise level was 175 eV (FWHM). The detector system characterization with a carbon target demonstrated good energy sensitivity at low energies and lack of significant spectral artifacts at higher energies.

  1. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  2. Characterization of erythrose reductases from filamentous fungi

    PubMed Central

    2013-01-01

    Proteins with putative erythrose reductase activity have been identified in the filamentous fungi Trichoderma reesei, Aspergillus niger, and Fusarium graminearum by in silico analysis. The proteins found in T. reesei and A. niger had earlier been characterized as glycerol dehydrogenase and aldehyde reductase, respectively. Corresponding genes from all three fungi were cloned, heterologously expressed in Escherichia coli, and purified. Subsequently, they were used to establish optimal enzyme assay conditions. All three enzymes strictly require NADPH as cofactor, whereas with NADH no activity could be observed. The enzymatic characterization of the three enzymes using ten substrates revealed high substrate specificity and activity with D-erythrose and D-threose. The enzymes from T. reesei and A. niger herein showed comparable activities, whereas the one from F. graminearum reached only about a tenth of it for all tested substrates. In order to proof in vivo the proposed enzyme function, we overexpressed the erythrose reductase-encoding gene in T. reesei. An increased production of erythritol by the recombinant strain compared to the parental strain could be detected. PMID:23924507

  3. A Ferredoxin Disulfide Reductase Delivers Electrons to the Methanosarcina barkeri Class III Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant expression of the Methanosarcina barkeri class III RNR and show that the electrons required for ribonucleotide reduction can be delivered by a [4Fe-4S] protein ferredoxin disulfide reductase, and a conserved thioredoxin-like protein NrdH present in the RNR operon. The diversity of class III RNRs reflects the diversity of electron carriers used in anaerobic metabolism. PMID:26536144

  4. Effect of mercury, cadmium, nickel, chromium and zinc on kinetic properties of NADPH-cytochrome P450 reductase purified from leaping mullet (Liza saliens).

    PubMed

    Bozcaarmutlu, Azra; Arinç, Emel

    2007-04-01

    Information on the mechanism of metal ion inhibition of NADPH-cytochrome P450 reductase is limited. The purpose of the present paper was to elucidate in vitro effect of Hg(+2), Cd(+2), Ni(+2), Cr(+3) and Zn(+2) ions on the purified mullet NADPH-cytochrome P450 reductase. NADPH-cytochrome P450 reductase was purified from detergent-solubilized liver microsomes from leaping mullet (Liza saliens). All of the metal ions caused inhibition of the enzyme activity except Zn(+2). At 50 microM metal concentration, Hg(+2) inhibited the cytochrome P450 reductase activity completely (100%), while, at the same concentrations, Cd(+2), Cr(+3) and Ni(+2) caused 66%, 65% and 37% inhibition, respectively. At 50 microM metal concentration, Zn(+2) had no apparent effect on cytochrome P450 reductase activity. The IC(50) values of HgCl(2), CrCl(3), CdCl(2) and NiCl(2) were estimated to be 0.07 microM, 24 microM, 33 microM and 143 microM, respectively. Of the metal ions tested, Hg(+2) exhibited much higher inhibitory effect at lower concentrations, so it was evidently a more potent inhibitor than the others. All four metal ions displayed noncompetitive type of inhibition mechanism for the purified reductase as analyzed by Dixon plot. K(i) values of Hg(+2), Cr(+3), Cd(+2), and Ni(+2) were calculated from Dixon plots as 0.048 microM, 18 microM, 73 microM and 329 microM, respectively.

  5. Methionine sulfoxide reductase contributes to meeting dietary methionine requirements

    PubMed Central

    Zhao, Hang; Kim, Geumsoo; Levine, Rodney L.

    2012-01-01

    Methionine sulfoxide reductases are present in all aerobic organisms. They contribute to antioxidant defenses by reducing methionine sulfoxide in proteins back to methionine. However, the actual in vivo roles of these reductases are not well defined. Since methionine is an essential amino acid in mammals, we hypothesized that methionine sulfoxide reductases may provide a portion of the dietary methionine requirement by recycling methionine sulfoxide. We used a classical bioassay, the growth of weanling mice fed diets varying in methionine, and applied it to mice genetically engineered to alter the levels of methionine sulfoxide reductase A or B1. Mice of all genotypes were growth retarded when raised on chow containing 0.10% methionine instead of the standard 0.45% methionine. Retardation was significantly greater in knockout mice lacking both reductases. We conclude that the methionine sulfoxide reductases can provide methionine for growth in mice with limited intake of methionine, such as may occur in the wild. PMID:22521563

  6. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    PubMed Central

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  7. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  8. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    SciTech Connect

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  9. NADPH-Cytochrome P450 Oxidoreductase: Prototypic Member of the Diflavin Reductase Family

    PubMed Central

    Iyanagi, Takashi; Xia, Chuanwu; Kim, Jung-Ja P.

    2012-01-01

    NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca2+-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca2+/CaM-FMN construct, containing the FMN domain in complex with Ca2+/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities. PMID:22982532

  10. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  11. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1

    PubMed Central

    Li, Zhi; Kim, David D.; Nelson, Ornella D.; Otwell, Anne E.; Richardson, Ruth E.; Callister, Stephen J.; Lin, Hening

    2015-01-01

    Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron-reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have. PMID:26454174

  12. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1.

    PubMed

    Li, Zhi; Kim, David D; Nelson, Ornella D; Otwell, Anne E; Richardson, Ruth E; Callister, Stephen J; Lin, Hening

    2015-11-20

    Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron-reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.

  13. Structural study of the X-ray-induced enzymatic reaction of octahaem cytochrome C nitrite reductase.

    PubMed

    Trofimov, A A; Polyakov, K M; Lazarenko, V A; Popov, A N; Tikhonova, T V; Tikhonov, A V; Popov, V O

    2015-05-01

    Octahaem cytochrome c nitrite reductase from the bacterium Thioalkalivibrio nitratireducens catalyzes the reduction of nitrite to ammonium and of sulfite to sulfide. The reducing properties of X-ray radiation and the high quality of the enzyme crystals allow study of the catalytic reaction of cytochrome c nitrite reductase directly in a crystal of the enzyme, with the reaction being induced by X-rays. Series of diffraction data sets with increasing absorbed dose were collected from crystals of the free form of the enzyme and its complexes with nitrite and sulfite. The corresponding structures revealed gradual changes associated with the reduction of the catalytic haems by X-rays. In the case of the nitrite complex the conversion of the nitrite ions bound in the active sites to NO species was observed, which is the beginning of the catalytic reaction. For the free form, an increase in the distance between the oxygen ligand bound to the catalytic haem and the iron ion of the haem took place. In the case of the sulfite complex no enzymatic reaction was detected, but there were changes in the arrangement of the active-site water molecules that were presumably associated with a change in the protonation state of the sulfite ions.

  14. Nitrate Reductase of Primary Roots of Red Spruce Seedlings 1

    PubMed Central

    Yandow, Tim S.; Klein, Richard M.

    1986-01-01

    Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3−. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl− salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots. PMID:16664891

  15. Enzyme toolbox: novel enantiocomplementary imine reductases.

    PubMed

    Scheller, Philipp N; Fademrecht, Silvia; Hofelzer, Sebastian; Pleiss, Jürgen; Leipold, Friedemann; Turner, Nicholas J; Nestl, Bettina M; Hauer, Bernhard

    2014-10-13

    Reducing reactions are among the most useful transformations for the generation of chiral compounds in the fine-chemical industry. Because of their exquisite selectivities, enzymatic approaches have emerged as the method of choice for the reduction of C=O and activated C=C bonds. However, stereoselective enzymatic reduction of C=N bonds is still in its infancy-it was only recently described after the discovery of enzymes capable of imine reduction. In our work, we increased the spectrum of imine-reducing enzymes by database analysis. By combining the currently available knowledge about the function of imine reductases with the experimentally uncharacterized diversity stored in protein sequence databases, three novel imine reductases with complementary enantiopreference were identified along with amino acids important for catalysis. Furthermore, their reducing capability was demonstrated by the reduction of the pharmaceutically relevant prochiral imine 2-methylpyrroline. These novel enzymes exhibited comparable to higher catalytic efficiencies than previously described enzymes, and their biosynthetic potential is highlighted by the full conversion of 2-methylpyrroline in whole cells with excellent selectivities.

  16. Functional and Phylogenetic Divergence of Fungal Adenylate-Forming Reductases

    PubMed Central

    Kalb, Daniel; Lackner, Gerald

    2014-01-01

    A key step in fungal l-lysine biosynthesis is catalyzed by adenylate-forming l-α-aminoadipic acid reductases, organized in domains for adenylation, thiolation, and the reduction step. However, the genomes of numerous ascomycetes and basidiomycetes contain an unexpectedly large number of additional genes encoding similar but functionally distinct enzymes. Here, we describe the functional in vitro characterization of four reductases which were heterologously produced in Escherichia coli. The Ceriporiopsis subvermispora serine reductase Nps1 features a terminal ferredoxin-NADP+ reductase (FNR) domain and thus belongs to a hitherto undescribed class of fungal multidomain enzymes. The second major class is characterized by the canonical terminal short-chain dehydrogenase/reductase domain and represented by Ceriporiopsis subvermispora Nps3 as the first biochemically characterized l-α-aminoadipic acid reductase of basidiomycete origin. Aspergillus flavus l-tyrosine reductases LnaA and LnbA are members of a distinct phylogenetic clade. Phylogenetic analysis supports the view that fungal adenylate-forming reductases are more diverse than previously recognized and belong to four distinct classes. PMID:25085485

  17. Mechanism of inhibition of purified leaping mullet (Liza saliens) NADPH-cytochrome P450 reductase by toxic metals: aluminum and thallium.

    PubMed

    Bozcaarmutlu, Azra

    2007-01-01

    Aluminum and thallium may reach life-threatening levels in aquatic systems in the near future because of their extensive use in various industrial fields. It is therefore important to study the mechanism of toxicity of aluminum and thallium on fish enzymes. To this aim, the effects of aluminum and thallium on the activity of purified leaping mullet (Liza saliens) cytochrome P450 reductase, an essential component of the important cytochrome P450 system, have been studied. Results indicated that both metal ions strongly inhibited the NADPH-cytochrome P450 reductase. The IC50 values of AlCl3 and TlCl3 were estimated to be 34 microM and 3 microM, respectively. The Lineweaver-Burk plot and Dixon plot revealed that both metal ions noncompetitively inhibited the purified mullet cytochrome P450 reductase. The K(i) values of Al3+ and Tl3+ were calculated from Dixon plots as 8.9 and 5.6 microM, respectively. The inhibitory effects of Al3+ and Tl3+ on purified cytochrome P450 reductase were partially recovered by 1 mM EDTA. Additionally, tin and magnesium were shown to have no apparent effect on purified mullet cytochrome P450 reductase.

  18. Separation of mercury from aqueous mercuric chloride solutions by onion skins

    SciTech Connect

    Asai, S.; Konishi, Y.; Tomisaki, H.; Nakanishi, M.

    1986-01-01

    The separation of mercury from aqueous HgCl/sub 2/ solutions by onion skins (outermost coat) was studied both experimentally and theoretically. The distribution equilibria were measured by the batchwise method. The experimental results revealed that onion skin is a useful material for separating mercury from aqueous systems. The distribution data obtained at 25/sup 0/C were analyzed by using the theory based on the law of mass action. The separation of dissolved mercury by onion skins was found to be a process accompanied by an ion-exchange reaction of the cationic complex HgCl/sup +/ and an adsorption of the neutral complex HgCl/sub 2/. The equilibrium constants of the ion-exchange and adsorption processes at 25/sup 0/C and the mercury-binding capacity of onion skins were determined. Further, it was found that the distribution equilibrium of mercury is comparatively insensitive to temperature.

  19. Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel).

    PubMed

    Copan, Lori; Fowles, Jeff; Barreau, Tracy; McGee, Nancy

    2015-09-02

    Inorganic mercury, in the form of mercurous chloride, or calomel, is intentionally added to some cosmetic products sold through informal channels in Mexico and the US for skin lightening and acne treatment. These products have led to multiple cases of mercury poisoning but few investigations have addressed the contamination of cream users' homes. We report on several cases of mercury poisoning among three Mexican-American families in California from use of mercury-containing skin creams. Each case resulted in widespread household contamination and secondary contamination of family members. Urine mercury levels in cream users ranged from 37 to 482 µg/g creatinine and in non-users from non-detectable to 107 µg/g creatinine. Air concentrations of up to 8 µg/m³ of mercury within homes exceeded the USEPA/ATSDR health-based guidance and action level of <1.0 μg/m³. Mercury contamination of cream users' homes presented a multi-pathway exposure environment to residents. Homes required extensive decontamination, including disposal of most household items, to achieve acceptable air levels. The acceptable air levels used were not designed to consider multi-pathway exposure scenarios. These findings support that the calomel is able to change valence form to elemental mercury and volatilize once exposed to the skin or surfaces in the indoor environment.

  20. Acute effects of mercuric chloride on intracellular GSH levels and mercury distribution in the fish Oreochromic aureus

    SciTech Connect

    Allen, P.; Min, S.Y.; Keong, W.M.

    1988-02-01

    In recent years there has been much interest in the effects of trace metals on intracellular levels of reduced glutathione (GSH). Most of the research has been performed on rats. As GSH is ubiquitous in living organisms it is of interest to establish a relationship between mercury intoxication and intracellular GSH levels in fish; especially as fish living in rivers and coastal areas are often expose to mercury as an aquatic pollutant. The role of GSH in fish trace metal toxicity has not been thoroughly investigated. The distribution of total glutathione (oxidized + reduced) in selected black sea bass organs seems to follow the established pattern for mammalian organs. Thus, it would appear that teleostian and mammalian glutathione metabolism may have many similarities. There are few reports concerning the effects of mercury during the first few hours of exposure. The aim of this investigation is to establish any changes in organ GSH and mercury levels following just 2 h exposure to mercuric chloride (HgCl/sub 2/).

  1. Measurement of the characteristic X ray of oxygen and other ultrasoft X rays using mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Economou, T. E.

    1985-01-01

    This letter reports the detection and resolution of the characteristic X-ray of oxygen at 523 eV and other ultrasoft X-rays (photons energy less than 1 keV) using radiation detectors fabricated from the compound semi-insulator mercuric iodide (HgI2). These detectors are capable of operation at room ambient but in these experiments were slightly cooled using a Peltier element to 0 C. A pulsed light feedback preamplifier with a Peltier element cooled (to -30 deg) first stage field-effect transistor was used to amplify signals from the detector. Overall system noise level was 185 eV (full width at half-maximum) limited by the temperature of the first stage field-effect transistor. With optimal cooling of this element the characteristic X-ray of carbon at 282 eV should be measurable. These results would seem to be important in measurement of biological samples in electron column instruments.

  2. Th1/Th2 balance in mouse delayed-type hypersensitivity model with mercuric chloride via skin and oral mucosa.

    PubMed

    Ukichi, Kenichirou; Okamura, Taito; Fukushima, Daihei; Morimoto, Mitsuaki; Yamane, Gen-Yuki; Takahashi, Shinichi

    2011-01-01

    In order to compare delayed-type hypersensitivity (DTH) among different exposure sites, we evaluated the sensitization potency of mercuric chloride (HgCl(2)) via exposure to the skin, or oral or esophageal mucosa using the mouse ear swelling test. Furthermore, we investigated in vitro splenocyte proliferation reaction and cytokine profile in HgCl(2)-exposed and control mice. Sensitization with HgCl(2) was established via the skin and oral mucosa but not via the esophageal mucosa. The splenocyte proliferation reaction was significantly enhanced to a similar degree in skin and oral mucosa-sensitized mice compared with in the control mice. IL-10 levels from cultured splenocytes were significantly increased in skin and oral mucosa-sensitized mice compared with those in control mice, whilst IFN-γ significantly increased only in splenocytes from skin-sensitized mice. These results suggest that exposure of the skin or oral mucosa to HgCl(2) can induce DTH, but that Th1/Th2 balance differs according to the site of antigen exposure.

  3. Mercury Toxicity and Contamination of Households from the Use of Skin Creams Adulterated with Mercurous Chloride (Calomel)

    PubMed Central

    Copan, Lori; Fowles, Jeff; Barreau, Tracy; McGee, Nancy

    2015-01-01

    Inorganic mercury, in the form of mercurous chloride, or calomel, is intentionally added to some cosmetic products sold through informal channels in Mexico and the US for skin lightening and acne treatment. These products have led to multiple cases of mercury poisoning but few investigations have addressed the contamination of cream users’ homes. We report on several cases of mercury poisoning among three Mexican-American families in California from use of mercury-containing skin creams. Each case resulted in widespread household contamination and secondary contamination of family members. Urine mercury levels in cream users ranged from 37 to 482 µg/g creatinine and in non-users from non-detectable to 107 µg/g creatinine. Air concentrations of up to 8 µg/m3 of mercury within homes exceeded the USEPA/ATSDR health-based guidance and action level of <1.0 μg/m3. Mercury contamination of cream users’ homes presented a multi-pathway exposure environment to residents. Homes required extensive decontamination, including disposal of most household items, to achieve acceptable air levels. The acceptable air levels used were not designed to consider multi-pathway exposure scenarios. These findings support that the calomel is able to change valence form to elemental mercury and volatilize once exposed to the skin or surfaces in the indoor environment. PMID:26364641

  4. Technical Note: Could benzalkonium chloride be a suitable alternative to mercuric chloride for preservation of seawater samples?

    NASA Astrophysics Data System (ADS)

    Gloël, J.; Robinson, C.; Tilstone, G. H.; Tarran, G.; Kaiser, J.

    2015-08-01

    Instrumental equipment unsuitable or unavailable for fieldwork as well as lack of ship space can necessitate the preservation of seawater samples prior to analysis in a shore-based laboratory. Mercuric chloride (HgCl2) is routinely used for such preservation, but its handling and subsequent disposal incur significant risks and expense. Benzalkonium chloride (BAC) has been used previously for freshwater samples. Here, we assess BAC as a less hazardous alternative microbial inhibitor for marine samples prior to the measurement of oxygen-to-argon (O2/Ar) ratios, as used for the determination of plankton net community production. BAC at a concentration of 50 mg dm-3 inhibited microbial activity for at least three days in seawater with chlorophyll a (Chl a) concentrations up to 1 mg m-3, possibly longer when Chl a concentrations were lower. BAC concentrations of 100 and 200 mg dm-3 were no more effective than 50 mg dm-3. With fewer risks to human health and the environment, and no requirement for expensive waste disposal, BAC could be a viable alternative to HgCl2 for short-term preservation of seawater samples, but is not a replacement for HgCl2 in the case of oxygen triple isotope analysis, which requires storage over weeks to months. In any event, further tests on a case-by-case basis should be undertaken if use of BAC was considered, since its inhibitory activity may depend on concentration and composition of the microbial community.

  5. Study of mercuric iodide near melting using differential scanning calorimetry Raman spectroscopy, and x-ray diffraction

    SciTech Connect

    Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schnieber, M.; van den Berg, L.; Keller, L.; Wagner, C.N.J.

    1987-01-01

    High-temperature studies of mercuric iodide (HgI/sub 2/) involving differential scanning calorimetry (DSC), Raman spectroscopy, and x- ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called ..cap alpha.. '-HgI/sub 2/ reported by S.N. Toubektsis et al., (S.N. Toubektsis, E.K. Polychroniadis, and N.A. Economou, J. Appl. Phys., 58(5) (1985) 2070), using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI/sub 2/ and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the ..cap alpha..' phase is confirmed by high- temperature x-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point which clearly indicate the existence of the yellow orthorhombic ..beta..-HgI/sub 2/ phase only. The experimental high-temperature DSC, Raman, and x-ray diffraction data are presented and discussed. 14 refs., 8 figs., 2 tabs.

  6. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Astrophysics Data System (ADS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-02-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  7. Adsorption kinetic and equilibrium study for removal of mercuric chloride by CuCl2-impregnated activated carbon sorbent.

    PubMed

    Li, Xin; Liu, Zhouyang; Lee, Joo-Youp

    2013-05-15

    The intrinsic adsorption kinetics of mercuric chloride (HgCl2) was studied for raw, 4% and 10% CuCl2-impregnated activated carbon (CuCl2-AC) sorbents in a fixed-bed system. An HgCl2 adsorption kinetic model was developed for the AC sorbents by taking into account the adsorption kinetics, equilibrium, and internal and external mass transfer. The adsorption kinetic constants determined from the comparisons between the simulation and experimental results were 0.2, 0.3, and 0.5m(3)/(gs) for DARCO-HG, 4%(wt), and 10%(wt) CuCl2-AC sorbents, respectively, at 140 °C. CuCl2 loading was found to slightly increase the adsorption kinetic constant or at least not to decrease it. The HgCl2 equilibrium adsorption data based on the Langmuir isotherm show that high CuCl2 loading can result in high binding energy of the HgCl2 adsorption onto the carbon surface. The adsorption equilibrium constant was found to increase by ~10 times when CuCl2 loading varied from 0 to 10%(wt), which led to a decrease in the desorption kinetic constant (k2) by ~10 times and subsequently the desorption rate by ~50 times. Intraparticle pore diffusion considered in the model showed good accuracy, allowing for the determination of intrinsic HgCl2 adsorption kinetics.

  8. Technical note: Could benzalkonium chloride be a suitable alternative to mercuric chloride for preservation of seawater samples?

    NASA Astrophysics Data System (ADS)

    Gloël, J.; Robinson, C.; Tilstone, G. H.; Tarran, G.; Kaiser, J.

    2015-12-01

    Instrumental equipment unsuitable or unavailable for fieldwork as well as lack of ship space can necessitate the preservation of seawater samples prior to analysis in a shore-based laboratory. Mercuric chloride (HgCl2) is routinely used for such preservation, but its handling and subsequent disposal incur environmental risks and significant expense. There is therefore a strong motivation to find less hazardous alternatives. Benzalkonium chloride (BAC) has been used previously as microbial inhibitor for freshwater samples. Here, we assess the use of BAC for marine samples prior to the measurement of oxygen-to-argon (O2 / Ar) ratios, as used for the determination of biological net community production. BAC at a concentration of 50 mg dm-3 inhibited microbial activity for at least 3 days in samples tested with chlorophyll a (Chl a) concentrations up to 1 mg m-3. BAC concentrations of 100 and 200 mg dm-3 were no more effective than 50 mg dm-3. With fewer risks to human health and the environment, and no requirement for expensive waste disposal, BAC could be a viable alternative to HgCl2 for short-term preservation of seawater samples, but is not a replacement for HgCl2 in the case of oxygen triple isotope analysis, which requires storage over weeks to months. In any event, further tests on a case-by-case basis should be undertaken if use of BAC was considered, since its inhibitory activity may depend on concentration and composition of the microbial community.

  9. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  10. Transcripts of anthocyanidin reductase and leucoanthocyanidin reductase and measurement of catechin and epicatechin in tartary buckwheat.

    PubMed

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, Yeji; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions.

  11. Docking and molecular dynamics studies at trypanothione reductase and glutathione reductase active sites.

    PubMed

    Iribarne, Federico; Paulino, Margot; Aguilera, Sara; Murphy, Miguel; Tapia, Orlando

    2002-05-01

    A theoretical docking study on the active sites of trypanothione reductase (TR) and glutathione reductase (GR) with the corresponding natural substrates, trypanothione disulfide (T[S]2) and glutathione disulfide (GSSG), is reported. Molecular dynamics simulations were carried out in order to check the robustness of the docking results. The energetic results are in agreement with previous experimental findings and show the crossed complexes have lower stabilization energies than the natural ones. To test DOCK3.5, four nitro furanic compounds, previously designed as potentially active anti-chagasic molecules, were docked at the GR and TR active sites with the DOCK3.5 procedure. A good correlation was found between differential inhibitory activity and relative interaction energy (affinity). The results provide a validation test for the use of DOCK3.5 in connection with the design of anti-chagasic drugs.

  12. Transcripts of Anthocyanidin Reductase and Leucoanthocyanidin Reductase and Measurement of Catechin and Epicatechin in Tartary Buckwheat

    PubMed Central

    Kim, Yeon Bok; Thwe, Aye Aye; Kim, YeJi; Li, Xiaohua; Cho, Jin Woong; Park, Phun Bum; Valan Arasu, Mariadhas; Abdullah Al-Dhabi, Naif; Kim, Sun-Ju; Suzuki, Tastsuro; Hyun Jho, Kwang; Park, Sang Un

    2014-01-01

    Anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) play an important role in the monomeric units biosynthesis of proanthocyanidins (PAs) such as catechin and epicatechin in several plants. The aim of this study was to clone ANR and LAR genes involved in PAs biosynthesis and examine the expression of these two genes in different organs under different growth conditions in two tartary buckwheat cultivars, Hokkai T8 and T10. Gene expression was carried out by quantitative real-time RT-PCR, and catechin and epicatechin content was analyzed by high performance liquid chromatography. The expression pattern of ANR and LAR did not match the accumulation pattern of PAs in different organs of two cultivars. Epicatechin content was the highest in the flowers of both cultivars and it was affected by light in only Hokkai T8 sprouts. ANR and LAR levels in tartary buckwheat might be regulated by different mechanisms for catechin and epicatechin biosynthesis under light and dark conditions. PMID:24605062

  13. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity.

    PubMed

    Weiner, J H; MacIsaac, D P; Bishop, R E; Bilous, P T

    1988-04-01

    Dimethyl sulfoxide reductase, a terminal electron transfer enzyme, was purified from anaerobically grown Escherichia coli harboring a plasmid which codes for dimethyl sulfoxide reductase. The enzyme was purified to greater than 90% homogeneity from cell envelopes by a three-step purification procedure involving extraction with the detergent Triton X-100, chromatofocusing, and DEAE ion-exchange chromatography. The purified enzyme was composed of three subunits with molecular weights of 82,600, 23,600, and 22,700 as identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native molecular weight was determined by gel electrophoresis to be 155,000. The purified enzyme contained 7.5 atoms of iron and 0.34 atom of molybdenum per mol of enzyme. The presence of molybdopterin cofactor in dimethyl sulfoxide reductase was identified by reconstitution of cofactor-deficient NADPH nitrate reductase activity from Neurospora crassa nit-I mutant and by UV absorption and fluorescence emission spectra. The enzyme displayed a very broad substrate specificity, reducing various N-oxide and sulfoxide compounds as well as chlorate and hydroxylamine.

  14. Mercuric iodide (HgI/sub 2/) semiconductor devices as charged-particle detectors

    SciTech Connect

    Becchetti, F.D.; Raymond, R.S.; Ristinen, R.A.; Schnepple, W.F.; Ortale, C.

    1981-01-01

    The properties of HgI/sub 2/ semiconductor devices as charged particle detectors have been investigated. Nearly linear energy response with FWHM resolution of 5 to 15% is observed for /sup 1/ /sup 2/H and /sup 3/ /sup 4/He ions, E < 40 MeV. Fast proton damage is observed for > 10/sup 10/ protons/cm/sup 2/. However, based on measurements with two HgI/sub 2/ detectors, little fast neutron damage is apparent at fluences up to 10/sup 15/ neutrons/cm/sup 2/. This suggests considerably greater resistance to radiation damage than is observed for Si and other solid state devices.

  15. Methylenetetrahydrofolate reductase: biochemical characterization and medical significance.

    PubMed

    Trimmer, Elizabeth E

    2013-01-01

    Methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydofolate (CH2-H4folate) to 5-methyltetrahydrofolate (CH3-H4folate). The enzyme employs a noncovalently-bound flavin adenine dinucleotide (FAD), which accepts reducing equivalents from NAD(P)H and transfers them to CH2-H4folate. The reaction provides the sole source of CH3-H4folate, which is utilized by methionine synthase in the synthesis of methionine from homocysteine. MTHFR plays a key role in folate metabolism and in the homeostasis of homocysteine; mutations in the enzyme lead to hyperhomocyst(e)inemia. A common C677T polymorphism in MTHFR has been associated with an increased risk for the development of cardiovascular disease, Alzheimer's disease, and depression in adults, and of neural tube defects in the fetus. The mutation also confers protection for certain types of cancers. This review presents the current knowledge of the enzyme, its biochemical characterization, and medical significance.

  16. Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity.

    PubMed

    Vaidyanathan, Ramanathan; Gopalram, Shubaash; Kalishwaralal, Kalimuthu; Deepak, Venkataraman; Pandian, Sureshbabu Ram Kumar; Gurunathan, Sangiliyandi

    2010-01-01

    Nanostructure materials are attracting a great deal of attention because of their potential for achieving specific processes and selectivity, especially in biological and pharmaceutical applications. The generation of silver nanoparticles using optimized nitrate reductase for the reduction of Ag(+) with the retention of enzymatic activity in the complex is being reported. This report involves the optimization of enzyme activity to bring about enhanced nanoparticle synthesis. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of nitrate reductase by Bacillus licheniformis at pH 8. The four variables involved in the study of nitrate reductase were Glucose, Peptone, Yeast extract and KNO(3). Glucose had a significant effect on nitrate reductase production. The optimized medium containing (%) Glucose: 1.5, Peptone: 1, Yeast extract: 0.35 and KNO(3): 0.35 resulted in a nitrate reductase activity of 452.206 U/ml which is same as that of the central level. The medium A (showing least nitrate reductase activity) and the medium B (showing maximum nitrate reductase activity) were compared for the synthesis. Spectrophotometric analysis revealed that the particles exhibited a peak at 431 nm and the A(431) for the medium B was 2-fold greater than that of the medium A. The particles were also characterized using TEM. The particles synthesized using the optimized enzyme activity ranged from 10 to 80 nm and therefore can be extended to various medicinal applications.

  17. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    USGS Publications Warehouse

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  18. FAD binding, cobinamide binding and active site communication in the corrin reductase (CobR)

    PubMed Central

    Lawrence, Andrew D.; Taylor, Samantha L.; Scott, Alan; Rowe, Michelle L.; Johnson, Christopher M.; Rigby, Stephen E. J.; Geeves, Michael A.; Pickersgill, Richard W.; Howard, Mark J.; Warren, Martin J.

    2014-01-01

    Adenosylcobalamin, the coenzyme form of vitamin B12, is one Nature's most complex coenzyme whose de novo biogenesis proceeds along either an anaerobic or aerobic metabolic pathway. The aerobic synthesis involves reduction of the centrally chelated cobalt metal ion of the corrin ring from Co(II) to Co(I) before adenosylation can take place. A corrin reductase (CobR) enzyme has been identified as the likely agent to catalyse this reduction of the metal ion. Herein, we reveal how Brucella melitensis CobR binds its coenzyme FAD (flavin dinucleotide) and we also show that the enzyme can bind a corrin substrate consistent with its role in reduction of the cobalt of the corrin ring. Stopped-flow kinetics and EPR reveal a mechanistic asymmetry in CobR dimer that provides a potential link between the two electron reduction by NADH to the single electron reduction of Co(II) to Co(I). PMID:24909839

  19. The structure of apo and holo forms of xylose reductase, a dimeric aldo-keto reductase from Candida tenuis.

    PubMed

    Kavanagh, Kathryn L; Klimacek, Mario; Nidetzky, Bernd; Wilson, David K

    2002-07-16

    Xylose reductase is a homodimeric oxidoreductase dependent on NADPH or NADH and belongs to the largely monomeric aldo-keto reductase superfamily of proteins. It catalyzes the first step in the assimilation of xylose, an aldose found to be a major constituent monosaccharide of renewable plant hemicellulosic material, into yeast metabolic pathways. It does this by reducing open chain xylose to xylitol, which is reoxidized to xylulose by xylitol dehydrogenase and metabolically integrated via the pentose phosphate pathway. No structure has yet been determined for a xylose reductase, a dimeric aldo-keto reductase or a family 2 aldo-keto reductase. The structures of the Candida tenuis xylose reductase apo- and holoenzyme, which crystallize in spacegroup C2 with different unit cells, have been determined to 2.2 A resolution and an R-factor of 17.9 and 20.8%, respectively. Residues responsible for mediating the novel dimeric interface include Asp-178, Arg-181, Lys-202, Phe-206, Trp-313, and Pro-319. Alignments with other superfamily members indicate that these interactions are conserved in other dimeric xylose reductases but not throughout the remainder of the oligomeric aldo-keto reductases, predicting alternate modes of oligomerization for other families. An arrangement of side chains in a catalytic triad shows that Tyr-52 has a conserved function as a general acid. The loop that folds over the NAD(P)H cosubstrate is disordered in the apo form but becomes ordered upon cosubstrate binding. A slow conformational isomerization of this loop probably accounts for the observed rate-limiting step involving release of cosubstrate. Xylose binding (K(m) = 87 mM) is mediated by interactions with a binding pocket that is more polar than a typical aldo-keto reductase. Modeling of xylose into the active site of the holoenzyme using ordered waters as a guide for sugar hydroxyls suggests a convincing mode of substrate binding.

  20. A study of low-noise preamplifier systems for use with room temperature mercuric iodide /HgI2/ X-ray detectors

    NASA Astrophysics Data System (ADS)

    Iwanczyk, J. S.; Huth, G. C.; del Duca, A.; Schnepple, W.; Dabrowski, A. J.

    1981-02-01

    An analysis of different preamplification systems for use with room temperature mercuric iodide X-ray detectors has been performed. Resistor-, drain-, and light-feedback preamplifiers have been studied. Energy resolution values of 295 eV (FWHM) for an Fe-55 source (5.9 keV) and 225 eV (FWHM) for a pulser have been obtained with both the detector and the input FET at room temperature using a pulsed-light feedback preamplifier. Improvement in energy resolution by cooling the input FET using a small Peltier element has been discussed.

  1. Effects of water hardness and temperature on the acute toxicity of mercuric chloride on rainbow trout (Oncorhynchus mykiss).

    PubMed

    Terzi, Ertugrul; Verep, Bulent

    2012-07-01

    In this study, the toxicity of mercuric chloride (HgCl(2)), an important pollutant threatening water resources for many years, and the effects of water temperature and hardness on the toxicity in cultured rainbow trout Oncorhynchus mykiss (4.79 ± 0.16 g; 7.38 ± 0.24 cm; mean ± SD) were investigated at different temperatures (12 and 17°C) and hardness concentrations (35, 70 and 120 mg l(-1) as calcium carbonate, CaCO(3)). For this purpose, the acute toxicity tests were performed by 96-h static tests in different water temperatures and water hardness concentrations. For acute toxicity tests, solutions ranging from 0.4 to 1.2 mg l(-1) were used at 12°C and solutions ranging from 0.4 to 1.0 mg l(-1) at 17°C. The LC(50) values of HgCl(2) that killed 50% of rainbow trout within 96 h in the hardness concentrations of 35, 70 and 120 mg l(-1) CaCO(3) were calculated using probit analysis, and were found to be 0.725, 0.788, 0.855 mg l(-1) at 12°C and 0.670, 0.741, 0.787 mg l(-1) at 17°C, respectively. Consequently, the toxicity of HgCl(2) on rainbow trout decreased when the temperature decreased from 17 to 12°C. Toxicity increased when the hardness decreased from 120 to 35 mg l(-1) CaCO(3). In contrast to temperature, water hardness presents a negative effect on the toxicity of HgCl(2).

  2. Effect of mercuric chloride on macrophage-mediated resistance mechanisms against infection with herpes simplex virus type 2.

    PubMed

    Ellermann-Eriksen, S; Christensen, M M; Mogensen, S C

    1994-11-11

    Macrophages play an important role in the early, nonspecific resistance to infection with herpes simplex virus. Mercuric chloride (HgCl2) accumulates in macrophages and has in certain concentrations a marked influence on the functional capacity of these cells. Therefore the influence of HgCl2 on resistance to generalized infection with herpes simplex virus type 2 (HSV-2) in mice and its effect on the HSV-2-induced activation of macrophages in vitro was examined. Mice injected intraperitoneally with HgCl2 24 h before infection with HSV-2 had more than 100 times higher virus titres in the liver 4 days after infection than mice not receiving any mercury. HgCl2 exerted a toxic effect on macrophages in vitro, which was especially pronounced during their adherence. Macrophages infected with HSV-2 were activated for an enhanced respiratory burst. This activation was abolished by treatment of the cells for 24 h with relatively low concentrations of HgCl2, resulting in macrophages with a potential to react with a respiratory burst comparable to that of uninfected cells. The HSV-2-induced activation of macrophages is mediated through the production and synergistic interaction of interferon-alpha/beta and tumour necrosis factor-alpha in an autocrine manner. The ability of these cytokines to activate macrophages and to interact synergistically was not affected by mercury. However the production by macrophages of both cytokines during the HSV-2 infection, but especially interferon-alpha/beta, which is essential for the activation, was reduced at low concentrations of HgCl2. Collectively these data indicate that mercury, by interfering with the early macrophage-production of cytokines, disables the early control of virus replication, leading to an enhanced infection.

  3. Effects of mercuric chloride on chemiluminescent response of phagocytes and tissue lysozyme activity in Tilapia, Oreochromis aureus

    SciTech Connect

    Low, K.W.; Sin, Y.M.

    1995-02-01

    Phagocytosis is an important defense mechanism against foreign pathogenic organisms. The cells involved are phagocytes which are comprised of peripheral blood monocytes (tissue macrophages) and polymorphonuclear (PMN) leucocytes. These cells can be activated by either particulate or soluble stimuli and undergo a respiratory burst from which several reactive oxygen species (ROS) can be formed. The reactive oxygen species and some hydrolases generated in the cells are the major antibacterial agents released during phagocytosis. Chemiluminescence (CL) is emitted, in vitro, from phagocytizing human PMN neutrophils. A similar CL response was also encountered in fish phagocytes. ROS was the causative agent of the CL emitted during in vitro phagocytosis. Phagocytic activity can be monitored by measuring the CL response of the phagocytes. Lysozyme is one of the potent hydrolases which are involved in the destruction of pathogens during phagocytosis. In fish, it was found predominantly in haematopoietic tissues, PMN leucocytes and moncytes. This enzyme has been shown to have antibacterial activity against several pathogens in fish. A combined oxidative and hydrolytic attack upon the engulfed pathogens allow phagocytes to kill infectious agents effectively. However, severe suppression or enhancement of these two functions caused by some exogenous factors may be detrimental to the host tissues. It has been reported that inorganic mercury could inhibit, in vitro, the respiratory burst and the microbicidal activities of human PMN leucocytes. It was also reported that increased in vitro release of lysozyme was found in mercury-treated human PMN leucocytes. However, such work has not been reported in fish. The aim of this research was to examine whether mercury could exert similar effects on the CL response in phagocytes and tissue lysozyme activity in fish after they were exposed to different concentrations of mercuric chloride over a period of 3 wks. 17 refs., 1 fig., 1 tab.

  4. Effect of mercuric chloride on fertilization and larval development in the River Frog, Rana heckscheri (Wright) (Anura: Ranidae)

    SciTech Connect

    Punzo, F. )

    1993-10-01

    Previous investigations have indicated that heavy metals such as copper, cadmium, lead and mercury can act as systemic toxicants in many species of wildlife. Although numerous studies have emphasized the effects of metals and pesticides on metabolism, growth, survivorship, neural processes and reproduction in a number of taxa, little information is available on the effects of sublethal concentrations of metals on the reproductive physiology of amphibians. Industrial processes and mining activities can release substantial concentrations of heavy metals such as mercury into aquatic habitats. Since most amphibians have obligate aquatic larval stages, they are exposed to pollutants discharged into the aquatic environment. Amphibians can act as accumulators of heavy metals and their larval stages are useful indicators of pollution levels in the field. What little data are available, indicate that metals can significantly reduce viability in amphibians through their actions on metabolism, development and gametogenesis. The recent concerns over worldwide declines in amphibian populations and the susceptibility of amphibian populations to environmental toxicants, led me to assess the effect of mercuric chloride, one of the most common and persistent toxicants in aquatic environments, on fertilization and larval development in the river frog, Rana heckscheri (Wright). Although there is some information on fish, very little data are available on the effects of mercury on fertilization in amphibians generally, and no published data exist for R. heckscheri. This species is a conspicuous component of the aquatic fauna of parts of the southeastern United States where mercury levels have increased significantly over the last two decades. 22 refs., 2 tabs.

  5. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action.

  6. One-step green synthesis and characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Das, Amlan Kumar; Marwal, Avinash; Sain, Divya; Pareek, Vikram

    2015-03-01

    The present study demonstrates the bioreductive green synthesis of nanosized HgO using flower extracts of an ornamental plant Callistemon viminalis. The flower extracts of Callistemon viminalis seem to be environmentally friendly, so this protocol could be used for rapid production of HgO. Till date, there is no report of synthesis of nanoparticles using flower extract of Callistemon viminalis. Mercuric acetate was taken as the metal precursor in the present experiment. The flower extract was found to act as a reducing as well as a stabilizing agent. The phytochemicals present in the flower extract act as reducing agent which include proteins, saponins, phenolic compounds, phytosterols, and flavonoids. FT-IR spectroscopy confirmed that the extract had the ability to act as a reducing agent and stabilizer for HgO nanoparticles. The formation of the plant protein-coated HgO nanoparticles was first monitored using UV-Vis absorption spectroscopy. The UV-Vis spectroscopy revealed the formation of HgO nanoparticles by exhibiting the typical surface plasmon absorption maxima at 243 nm. The average particle size formed ranges from 2 to 4 nm. The dried form of synthesized nanoparticles was further characterized using TGA, XRD, TEM, and FTIR spectroscopy. FT-IR spectra of synthesized HgO nanoparticles were performed to identify the possible bio-molecules responsible for capping and stabilization of nanoparticles, which confirm the formation of plant protein-coated HgO nanoparticles that is further corroborated by TGA study. The optical band gap of HgO nanoparticle was measured to be 2.48 eV using cutoff wavelength which indicates that HgO nanoparticles can be used in metal oxide semiconductor-based photovoltaic cells. A possible core-shell structure of the HgO nanobiocomposite has been proposed.

  7. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  8. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.

    PubMed

    Gamenara, Daniela; Domínguez de María, Pablo

    2014-05-21

    Adding value to organic synthesis. Novel imine reductases enable the enantioselective reduction of imines to afford optically active amines. Likewise, novel bioinspired artificial metalloenzymes can perform the same reaction as well. Emerging proof-of-concepts are herein discussed.

  9. Exploration of Nitrate Reductase Metabolic Pathway in Corynebacterium pseudotuberculosis

    PubMed Central

    Abreu, Vinícius; Diniz, Carlos; Dorneles, Elaine M. S.; Barh, Debmalya

    2017-01-01

    Based on the ability of nitrate reductase synthesis, Corynebacterium pseudotuberculosis is classified into two biovars: Ovis and Equi. Due to the presence of nitrate reductase, the Equi biovar can survive in absence of oxygen. On the other hand, Ovis biovar that does not have nitrate reductase is able to adapt to various ecological niches and can grow on certain carbon sources. Apart from these two biovars, some other strains are also able to carry out the reduction of nitrate. The enzymes that are involved in electron transport chain are also identified by in silico methods. Findings about pathogen metabolism can contribute to the identification of relationship between nitrate reductase and the C. pseudotuberculosis pathogenicity, virulence factors, and discovery of drug targets. PMID:28316974

  10. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activity of the enzyme glutathione reductase in serum, plasma, or erythrocytes by such techniques as fluorescence and photometry. The results of this assay are used in the diagnosis of liver disease,...

  11. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed

    Sengupta, S; Shaila, M S; Rao, G R

    1996-07-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

  12. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-09-15

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  13. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia

    PubMed Central

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase. PMID:27051453

  14. Anti-HMG-CoA Reductase, Antioxidant, and Anti-Inflammatory Activities of Amaranthus viridis Leaf Extract as a Potential Treatment for Hypercholesterolemia.

    PubMed

    Salvamani, Shamala; Gunasekaran, Baskaran; Shukor, Mohd Yunus; Shaharuddin, Noor Azmi; Sabullah, Mohd Khalizan; Ahmad, Siti Aqlima

    2016-01-01

    Inflammation and oxidative stress are believed to contribute to the pathology of several chronic diseases including hypercholesterolemia (elevated levels of cholesterol in blood) and atherosclerosis. HMG-CoA reductase inhibitors of plant origin are needed as synthetic drugs, such as statins, which are known to cause adverse effects on the liver and muscles. Amaranthus viridis (A. viridis) has been used from ancient times for its supposedly medically beneficial properties. In the current study, different parts of A. viridis (leaf, stem, and seed) were evaluated for potential anti-HMG-CoA reductase, antioxidant, and anti-inflammatory activities. The putative HMG-CoA reductase inhibitory activity of A. viridis extracts at different concentrations was determined spectrophotometrically by NADPH oxidation, using HMG-CoA as substrate. A. viridis leaf extract revealed the highest HMG-CoA reductase inhibitory effect at about 71%, with noncompetitive inhibition in Lineweaver-Burk plot analysis. The leaf extract showed good inhibition of hydroperoxides, 2,2-diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), and ferric ion radicals in various concentrations. A. viridis leaf extract was proven to be an effective inhibitor of hyaluronidase, lipoxygenase, and xanthine oxidase enzymes. The experimental data suggest that A. viridis leaf extract is a source of potent antioxidant and anti-inflammatory agent and may modulate cholesterol metabolism by inhibition of HMG-CoA reductase.

  15. Molybdenum effector of fumarate reductase repression and nitrate reductase induction in Escherichia coli.

    PubMed Central

    Iuchi, S; Lin, E C

    1987-01-01

    In Escherichia coli the presence of nitrate prevents the utilization of fumarate as an anaerobic electron acceptor. The induction of the narC operon encoding the nitrate reductase is coupled to the repression of the frd operon encoding the fumarate reductase. This coupling is mediated by nitrate as an effector and the narL product as the regulatory protein (S. Iuchi and E. C. C. Lin, Proc. Natl. Acad. Sci. USA 84:3901-3905, 1987). The protein-ligand complex appears to control narC positively but frd negatively. In the present study we found that a molybdenum coeffector acted synergistically with nitrate in the regulation of frd and narC. In chlD mutants believed to be impaired in molybdate transport (or processing), full repression of phi(frd-lac) and full induction of phi(narC-lac) by nitrate did not occur unless the growth medium was directly supplemented with molybdate (1 microM). This requirement was not clearly manifested in wild-type cells, apparently because it was met by the trace quantities of molybdate present as a contaminant in the mineral medium. In chlB mutants, which are known to accumulate the Mo cofactor because of its failure to be inserted as a prosthetic group into proteins such as nitrate reductase, nitrate repression of frd and induction of narC were also intensified by molybdate supplementation. In this case a deficiency of the molybdenum coeffector might have resulted from enhanced feedback inhibition of molybdate transport (or processing) by the elevated level of the unutilized Mo cofactor. In addition, mutations in chlE, which are known to block the synthesis of the organic moiety of the Mo cofactor, lowered the threshold concentration of nitrate (< 1 micromole) necessary for frd repression and narC induction. These changes could be explained simply by the higher intracellular nitrate attainable in cells lacking the ability to destroy the effector. PMID:3301812

  16. Distribution of Prx-linked hydroperoxide reductase activity among microorganisms.

    PubMed

    Takeda, Kouji; Nishiyama, Yoshitaka; Yoda, Koji; Watanabe, Toshihiro; Nimura-Matsune, Kaori; Mura, Kiyoshi; Tokue, Chiyoko; Katoh, Tetzuya; Kawasaki, Shinji; Niimura, Youichi

    2004-01-01

    Peroxiredoxin (Prx) constitutes a large family of enzymes found in microorganisms, animals, and plants, but the detection of the activities of Prx-linked hydroperoxide reductases (peroxiredoxin reductases) in cell extracts, and the purification based on peroxide reductase activity, have only been done in bacteria and Trypanosomatidae. A peroxiredoxin reductase (NADH oxidase) from a bacterium, Amphibacillus, displayed only poor activities in the presence of purified Prx from Saccharomyces or Synechocystis, while it is highly active in the presence of bacterial Prx. These results suggested that an enzyme system different from that in bacteria might exist for the reduction of Prx in yeast and cyanobacteria. Prx-linked hydroperoxide reductase activities were detected in cell extracts of Saccharomyces, Synechocystis, and Chlorella, and the enzyme activities of Saccharomyces and Chlorella were induced under vigorously aerated culture conditions and intensive light exposure conditions, respectively. Partial purification of Prx-linked peroxidase from the induced yeast cells indicated that the Prx-linked peroxidase system consists of two protein components, namely, thioredoxin and thioredoxin reductase. This finding is consistent with the previous report on its purification based on its protein protection activity against oxidation [Chae et al., J. Biol. Chem., 269, 27670-27678 (1994)]. In this study we have confirmed that Prx-linked peroxidase activity are widely distributed, not only in bacteria species and Trypanosomatidae, but also in yeast and photosynthetic microorganisms, and showed reconstitution of the activity from partially purified interspecies components.

  17. Carbon-carbon double-bond reductases in nature.

    PubMed

    Huang, Minmin; Hu, Haihong; Ma, Li; Zhou, Quan; Yu, Lushan; Zeng, Su

    2014-08-01

    Reduction of C = C bonds by reductases, found in a variety of microorganisms (e.g. yeasts, bacteria, and lower fungi), animals, and plants has applications in the production of metabolites that include pharmacologically active drugs and other chemicals. Therefore, the reductase enzymes that mediate this transformation have become important therapeutic targets and biotechnological tools. These reductases are broad-spectrum, in that, they can act on isolation/conjugation C = C-bond compounds, α,β-unsaturated carbonyl compounds, carboxylic acids, acid derivatives, and nitro compounds. In addition, several mutations in the reductase gene have been identified, some associated with diseases. Several of these reductases have been cloned and/or purified, and studies to further characterize them and determine their structure in order to identify potential industrial biocatalysts are still in progress. In this study, crucial reductases for bioreduction of C = C bonds have been reviewed with emphasis on their principal substrates and effective inhibitors, their distribution, genetic polymorphisms, and implications in human disease and treatment.

  18. Microsecond subdomain folding in dihydrofolate reductase.

    PubMed

    Arai, Munehito; Iwakura, Masahiro; Matthews, C Robert; Bilsel, Osman

    2011-07-08

    The characterization of microsecond dynamics in the folding of multisubdomain proteins has been a major challenge in understanding their often complex folding mechanisms. Using a continuous-flow mixing device coupled with fluorescence lifetime detection, we report the microsecond folding dynamics of dihydrofolate reductase (DHFR), a two-subdomain α/β/α sandwich protein known to begin folding in this time range. The global dimensions of early intermediates were monitored by Förster resonance energy transfer, and the dynamic properties of the local Trp environments were monitored by fluorescence lifetime detection. We found that substantial collapse occurs in both the locally connected adenosine binding subdomain and the discontinuous loop subdomain within 35 μs of initiation of folding from the urea unfolded state. During the fastest observable ∼550 μs phase, the discontinuous loop subdomain further contracts, concomitant with the burial of Trp residue(s), as both subdomains achieve a similar degree of compactness. Taken together with previous studies in the millisecond time range, a hierarchical assembly of DHFR--in which each subdomain independently folds, subsequently docks, and then anneals into the native conformation after an initial heterogeneous global collapse--emerges. The progressive acquisition of structure, beginning with a continuously connected subdomain and spreading to distal regions, shows that chain entropy is a significant organizing principle in the folding of multisubdomain proteins and single-domain proteins. Subdomain folding also provides a rationale for the complex kinetics often observed.

  19. Active sites of thioredoxin reductases: why selenoproteins?

    PubMed

    Gromer, Stephan; Johansson, Linda; Bauer, Holger; Arscott, L David; Rauch, Susanne; Ballou, David P; Williams, Charles H; Schirmer, R Heiner; Arnér, Elias S J

    2003-10-28

    Selenium, an essential trace element for mammals, is incorporated into a selected class of selenoproteins as selenocysteine. All known isoenzymes of mammalian thioredoxin (Trx) reductases (TrxRs) employ selenium in the C-terminal redox center -Gly-Cys-Sec-Gly-COOH for reduction of Trx and other substrates, whereas the corresponding sequence in Drosophila melanogaster TrxR is -Ser-Cys-Cys-Ser-COOH. Surprisingly, the catalytic competence of these orthologous enzymes is similar, whereas direct Sec-to-Cys substitution of mammalian TrxR, or other selenoenzymes, yields almost inactive enzyme. TrxRs are therefore ideal for studying the biology of selenocysteine by comparative enzymology. Here we show that the serine residues flanking the C-terminal Cys residues of Drosophila TrxRs are responsible for activating the cysteines to match the catalytic efficiency of a selenocysteine-cysteine pair as in mammalian TrxR, obviating the need for selenium. This finding suggests that the occurrence of selenoenzymes, which implies that the organism is selenium-dependent, is not necessarily associated with improved enzyme efficiency. Our data suggest that the selective advantage of selenoenzymes is a broader range of substrates and a broader range of microenvironmental conditions in which enzyme activity is possible.

  20. Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus).

    PubMed

    Elseady, Y; Zahran, E

    2013-08-01

    The impact of different levels of dietary β-carotene to alleviate the effect of mercuric chloride toxicity in Nile tilapia was assessed. Semi-purified diets containing 0, 40, and 100 mg β-carotene kg(-1) dry diet were fed for 21 days, which were subjected to sublethal concentration of mercuric chloride (0.05 ppm). Hematological and biochemical parameters, lipid profile, and antioxidant response were examined. All hematological parameters of tilapia fish starting from second week of toxicity were significantly decreased. A significant increasing trend in liver enzymes (ALT and AST) were observed parallel to the time of toxicity and peroxide radicals (MDA) appearing significantly increased in toxicated group without carotene supplement, although carotene supplementation return all parameters within the control levels. Mercury accumulated significantly in fish liver and white muscles in toxicated group while it showed a significant reduction in dietary β-carotene-treated group. Overall, it can be used as immunostimulant and alleviate the suppression effect resulted from immune depressive stressful condition in farmed Nile tilapia.

  1. Analytical interferences of mercuric chloride preservative in environmental water samples: Determination of organic compounds isolated by continuous liquid-liquid extraction or closed-loop stripping

    USGS Publications Warehouse

    Foreman, W.T.; Zaugg, S.D.; Falres, L.M.; Werner, M.G.; Leiker, T.J.; Rogerson, P.F.

    1992-01-01

    Analytical interferences were observed during the determination of organic compounds in groundwater samples preserved with mercuric chloride. The nature of the interference was different depending on the analytical isolation technique employed. (1) Water samples extracted with dichloromethane by continuous liquid-liquid extraction (CLLE) and analyzed by gas chromatography/mass spectrometry revealed a broad HgCl2 'peak' eluting over a 3-5-min span which interfered with the determination of coeluting organic analytes. Substitution of CLLE for separatory funnel extraction in EPA method 508 also resulted in analytical interferences from the use of HgCl2 preservative. (2) Mercuric chloride was purged, along with organic contaminants, during closed-loop stripping (CLS) of groundwater samples and absorbed onto the activated charcoal trap. Competitive sorption of the HgCl2 by the trap appeared to contribute to the observed poor recoveries for spiked organic contaminants. The HgCl2 was not displaced from the charcoal with the dichloromethane elution solvent and required strong nitric acid to achieve rapid, complete displacement. Similar competitive sorption mechanisms might also occur in other purge and trap methods when this preservative is used.

  2. Modifications in rat testicular morphology and increases in IFN-gamma serum levels by the oral administration of subtoxic doses of mercuric chloride.

    PubMed

    Penna, Salvador; Pocino, Marisol; Marval, Maria Josefina; Lloreta, José; Gallardo, Luis; Vila, Joan

    2009-01-01

    Mercury induces structural and functional damage in several organs, however the effects of subtoxic doses of the metal on the male reproductive system are not well defined. In order to analyze testicular and epididymal morphological alterations and changes in IL-4 or IFN-gamma serum levels, adult male Sprague-Dawley rats received 0.01, 0.05 or 0.1 microg/ml of mercuric chloride (HgCl(2)) in deionized water for 1 to 7 months by oral route. Controls received deionized water alone. Twenty rats, separated in four groups of five animals each, were used per time of exposure. Progressive degenerative lesions consisting of lack of germ cell cohesion and desquamation, arrest at spermatocyte stage and hypospermatogenesis were observed in seminiferous epithelium by light and electron microscopy. Leydig cells showed cytoplasmic vacuolation and nuclear signs of cell death. Loss of peritubular cell aggregation was evidenced in the epididymis. Mercury accumulation was detected in both organs by mass spectroscopy. Rats showed enhanced IFN-gamma serum levels as compared to controls but only reached significance after 7 months of mercury administration. Subtoxic doses of inorganic mercury could lead to reproductive and immunological alterations. The results demonstrate that sublethal concentrations of mercuric chloride are enough to induce morphological and ultrastructural modifications in male reproductive organs. These contribute to functional alterations of spermatogenesis with arrest at spermatocyte stage, hypospermatogenesis and possibly impaired steroidogenesis which together could affect male fertility.

  3. Toxicology and Carcinogenesis Studies of Mercuric Chloride (CAS No. 7487-94-7) in F344 Rats and B6C3F1 Mice (Gavage Studies).

    PubMed

    1993-02-01

    Mercuric chloride is an inorganic compound that has been used in agriculture as a fungicide, in medicine as a topical antiseptic and disinfectant, and in chemistry as an intermediate in the production of other mercury compounds. The widespread use of mercury has resulted in increased levels of mercury in rivers and lakes. Mercuric chloride was evaluated in toxicity and carcinogenicity studies because of its extensive use and its occurrence as an environmental pollutant, and because of the lack of adequate long-term rodent studies. Toxicology and carcinogenesis studies were conducted by administering mercuric chloride (greater than 99% pure) in deionized water by gavage to groups of F344 rats or B6C3F1 mice for 16 days, 6 months, and 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium (strains TA98, TA100, TA1535, and TA1537), in mouse lymphoma L5178Y cells, in Chinese hamster ovary cells, and in Drosophila melanogaster. 16-DAY STUDIES: Groups of five rats of each sex received 0, 1.25, 2.5, 5, 10, or 20 mg mercuric chloride/kg body weight and groups of five mice of each sex received 0, 5, 10, 20, 40, or 80 mg/kg in deionized water by gavage for 12 dose days. Two male rats in the 20 mg/kg group died in the first week, as did all male and four female mice from the 80 mg/kg group and one male mouse from the 40 mg/kg group. The final mean body weight of male rats receiving 20 mg/kg was 10% lower than that of the controls; the final mean body weight of 20 mg/kg females was 9% lower than that of the controls. Final mean body weights and body weight gains of dosed mice were similar to those of the controls. Absolute and relative kidney weights of male rats receiving 2.5 mg/kg or greater doses and of female rats administered 5 mg/kg or more were significantly greater than those of the controls. Absolute kidney weights of mice were significantly increased in all male dose groups and in the 40 mg/kg female dose group; relative kidney weights of dosed

  4. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    DOE PAGES

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; ...

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to usemore » in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.« less

  5. Effect of mercuric chloride on the kinetics of cationic and substrate activation of the rat brain microsomal ATPase system.

    PubMed

    Rajanna, B; Chetty, C S; Rajanna, S

    1990-06-15

    Mercuric chloride (HgCl2), a neurotoxic compound, inhibited the adenosine triphosphatase (ATPase) system in a concentration-dependent manner. Hydrolysis of ATP was linear with time with or without HgCl2 in the reaction mixtures. Higher inhibition of (Na(+)-K+)ATPase activity by HgCl2 was observed in alkaline (8.0 to 9.0) pH and at lower temperatures (17 to 32 degrees). Activation energy values were increased slightly in the presence of HgCl2. Activation of (Na(+)-K+)ATPase by ATP in the presence of HgCl2 showed a decrease in Vmax from 15.29 to 5.0 mumol of inorganic phosphate (Pi)/mg protein/hr with no change in Km. Similarly, activation of K(+)-stimulated p-nitrophenyl phosphatase (K(+)-PNPPase) in the presence of HgCl2 showed a decrease in Vmax from 3.26 to 1.35 mumols of p-nitrophenol (PNP)/mg protein/hr with no change in Km. K(+)-activation kinetic studies indicated that HgCl2 decreased Vmax from 14.01 to 4.30 mumols Pi/mg protein/hr in the case of (Na(+)-K+)ATPase and from 3.45 to 2.40 mumols PNP/mg protein/hr in the case of K(+)-PNPPase with no changes in Km. Na(+)-activation of (Na(+)-K+)ATPase in the presence of HgCl2 showed a decrease in Vmax from 11.06 to 3.23 mumols Pi/mg protein/hr and an increase in Km from 1.06 to 2.08 mM. Preincubation of microsomes with sulfhydryl (SH) agents dithiothreitol, cysteine and glutathione protected HgCl2-inhibition of (Na(+)-K+)ATPase. The data suggest that HgCl2 inhibited (Na(+)-K+)ATPase by interfering with the dephosphorylation of the enzyme-phosphoryl complex.

  6. Sulfite reductase protects plants against sulfite toxicity.

    PubMed

    Yarmolinsky, Dmitry; Brychkova, Galina; Fluhr, Robert; Sagi, Moshe

    2013-02-01

    Plant sulfite reductase (SiR; Enzyme Commission 1.8.7.1) catalyzes the reduction of sulfite to sulfide in the reductive sulfate assimilation pathway. Comparison of SiR expression in tomato (Solanum lycopersicum 'Rheinlands Ruhm') and Arabidopsis (Arabidopsis thaliana) plants revealed that SiR is expressed in a different tissue-dependent manner that likely reflects dissimilarity in sulfur metabolism between the plant species. Using Arabidopsis and tomato SiR mutants with modified SiR expression, we show here that resistance to ectopically applied sulfur dioxide/sulfite is a function of SiR expression levels and that plants with reduced SiR expression exhibit higher sensitivity than the wild type, as manifested in pronounced leaf necrosis and chlorophyll bleaching. The sulfite-sensitive mutants accumulate applied sulfite and show a decline in glutathione levels. In contrast, mutants that overexpress SiR are more tolerant to sulfite toxicity, exhibiting little or no damage. Resistance to high sulfite application is manifested by fast sulfite disappearance and an increase in glutathione levels. The notion that SiR plays a role in the protection of plants against sulfite is supported by the rapid up-regulation of SiR transcript and activity within 30 min of sulfite injection into Arabidopsis and tomato leaves. Peroxisomal sulfite oxidase transcripts and activity levels are likewise promoted by sulfite application as compared with water injection controls. These results indicate that, in addition to participating in the sulfate assimilation reductive pathway, SiR also plays a role in protecting leaves against the toxicity of sulfite accumulation.

  7. Exposure to Silver Nanoparticles Inhibits Selenoprotein Synthesis and the Activity of Thioredoxin Reductase

    PubMed Central

    Srivastava, Milan; Singh, Sanjay

    2011-01-01

    Background: Silver nanoparticles (AgNPs) and silver (Ag)-based materials are increasingly being incorporated into consumer products, and although humans have been exposed to colloidal Ag in many forms for decades, this rise in the use of Ag materials has spurred interest into their toxicology. Recent reports have shown that exposure to AgNPs or Ag ions leads to oxidative stress, endoplasmic reticulum stress, and reduced cell proliferation. Previous studies have shown that Ag accumulates in tissues as silver sulfides (Ag2S) and silver selenide (Ag2Se). Objectives: In this study we investigated whether exposure of cells in culture to AgNPs or Ag ions at subtoxic doses would alter the effective metabolism of selenium, that is, the incorporation of selenium into selenoproteins. Methods: For these studies we used a keratinocyte cell model (HaCat) and a lung cell model (A549). We also tested (in vitro, both cellular and chemical) whether Ag ions could inhibit the activity of a key selenoenzyme, thioredoxin reductase (TrxR). Results: We found that exposure to AgNPs or far lower levels of Ag ions led to a dose-dependent inhibition of selenium metabolism in both cell models. The synthesis of protein was not altered under these conditions. Exposure to nanomolar levels of Ag ions effectively blocked selenium metabolism, suggesting that Ag ion leaching was likely the mechanism underlying observed changes during AgNP exposure. Exposure likewise inhibited TrxR activity in cultured cells, and Ag ions were potent inhibitors of purified rat TrxR isoform 1 (cytosolic) (TrxR1) enzyme. Conclusions: Exposure to AgNPs leads to the inhibition of selenoprotein synthesis and inhibition of TrxR1. Further, we propose these two sites of action comprise the likely mechanism underlying increases in oxidative stress, increases endoplasmic reticulum stress, and reduced cell proliferation during exposure to Ag. PMID:21965219

  8. Molecular dissection of a putative iron reductase from Desulfotomaculum reducens MI-1

    SciTech Connect

    Li, Zhi; Kim, David D.; Nelson, Ornella D.; Otwell, Annie E.; Richardson, Ruth E.; Callister, Stephen J.; Lin, Hening

    2015-10-08

    Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation.We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fee4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fee4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the ironereductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.

  9. Uterine glutathione reductase activity: modulation by estrogens and progesterone.

    PubMed

    Díaz-Flores, M; Baiza-Gutman, L A; Pedrón, N N; Hicks, J J

    1999-10-29

    The aim of this study was to determine whether glutathione reductase activity in uterine tissue is regulated by sex hormones. In spayed rats uterine glutathione reductase was significantly increased by exogenous estrogen (P< 0.01), progesterone (P< 0.01) or estrogen plus progesterone (P<0.01). When enzyme activity is expressed per mg protein, daily administration of estrogen or progesterone induces a progressive increase of this enzyme between 24 to 48 h or 24 to 72 h of treatment, respectively. Whereas the combination of both steroids causes an earlier and higher increase in glutathione reductase activity at 24 h of treatment. Estradiol singly or in combination with progesterone induced the highest protein concentration in the uterus. Whereas uterine DNA concentration is only significantly affected by estradiol. Our results suggest that uterine glutathione reductase is regulated by estradiol and progesterone and may be involved in maintaining levels of reduced glutathione in the uterus. This compound may be required for control of the redox state of thiol groups and in detoxification reactions involving H2O2 and electrophylic substances. The antioxidant action of estrogens is partially due to the stimulation of glutathione reductase.

  10. HMG-CoA reductase guides migrating primordial germ cells.

    PubMed

    Van Doren, M; Broihier, H T; Moore, L A; Lehmann, R

    1998-12-03

    The enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is best known for catalysing a rate-limiting step in cholesterol biosynthesis, but it also participates in the production of a wide variety of other compounds. Some clinical benefits attributed to inhibitors of HMG-CoA reductase are now thought to be independent of any serum cholesterol-lowering effect. Here we describe a new cholesterol-independent role for HMG-CoA reductase, in regulating a developmental process: primordial germ cell migration. We show that in Drosophila this enzyme is highly expressed in the somatic gonad and that it is necessary for primordial germ cells to migrate to this tissue. Misexpression of HMG-CoA reductase is sufficient to attract primordial germ cells to tissues other than the gonadal mesoderm. We conclude that the regulated expression of HMG-CoA reductase has a critical developmental function in providing spatial information to guide migrating primordial germ cells.

  11. Bacterial morphinone reductase is related to Old Yellow Enzyme.

    PubMed Central

    French, C E; Bruce, N C

    1995-01-01

    Morphinone reductase, produced by Pseudomonas putida M10, catalyses the NADH-dependent saturation of the carbon-carbon double bond of morphinone and codeinone, and is believed to be involved in the metabolism of morphine and codeine. The structural gene encoding morphinone reductase, designated morB, was cloned from Ps. putida M10 genomic DNA by the use of degenerate oligonucleotide probes based on elements of the amino acid sequence of the purified enzyme. Sequence analysis and structural characteristics indicated that morphinone reductase is related to the flavoprotein alpha/beta-barrel oxidoreductases, and is particularly similar to Old Yellow Enzyme of Saccharomyces spp. and the related oestrogen-binding protein of Candida albicans. Expressed sequence tags from several plant species show high homology to these enzymes, suggesting the presence of a family of enzymes conserved in plants and fungi. Although related bacterial proteins are known, morphinone reductase appears to be more similar to the eukaryotic proteins. Morphinone reductase was overexpressed in Escherichia coli, and has potential applications for the industrial preparation of semisynthetic opiates. Images Figure 1 Figure 5 PMID:8554504

  12. Purification and properties of proline reductase from Clostridium sticklandii.

    PubMed

    Seto, B; Stadtman, T C

    1976-04-25

    Proline reductase of Clostridium sticklandii is a membrane-bound protein and is released by treatment with detergents. The enzyme has been purified to homogeneity and is estimated by gel filtration and sedimentation equilibrium centrifugation to have a molecular weight of 298,000 to 327,000. A minimum molecular weight of 30,000 to 31,000 was calculated on the basis of sodium dodecyl sulfate-acrylamide gel electrophoresis and amino acid composition. Amino acid analysis showed a preponderance of acidic amino acids. No tryptophan was detected in the protein either spectrophotometrically or by amino acid analysis. A total of 20 sulfhydryl groups measured by titration of the reduced protein with 5,5'-dithiobis(2-nitrobenzoic acid) is in agreement with 20 cystic acid residues determined in hydrolysates of performic acid-oxidized protein. No molybdenum, iron, or selenium was found in the pure protein. Although NADH is the physiological electron donor for the proline reductase complex, the purified 300,000 molecular weight reductase component is inactive in the presence of NADH in vitro. Dithiothreitol, in contrast, can serve as electron donor both for unpurified (putative proline reductase complex) and purified proline reductase in vitro.

  13. Potential use of aldose reductase inhibitors to prevent diabetic complications.

    PubMed

    Zenon, G J; Abobo, C V; Carter, B L; Ball, D W

    1990-06-01

    Reviewed are (1) the biochemical basis and pathophysiology of diabetic complications and (2) the structure-activity relationships, pharmacology, pharmacokinetics, clinical trials, and adverse effects of aldose reductase inhibitors (ARIs). ARIs are a new class of drugs potentially useful in preventing diabetic complications, the most widely studied of which have been cataracts and neuropathy. ARIs inhibit aldose reductase, the first, rate-limiting enzyme in the polyol metabolic pathway. In nonphysiological hyperglycemia the activity of hexokinase becomes saturated while that of aldose reductase is enhanced, resulting in intracellular accumulation of sorbitol. Because sorbitol does not readily penetrate the cell membrane it can persist within cells, which may lead to diabetic complications. ARIs are a class of structurally dissimilar compounds that include carboxylic acid derivatives, flavonoids, and spirohydantoins. The major pharmacologic action of an ARI involves competitive binding to aldose reductase and consequent blocking of sorbitol production. ARIs delay cataract formation in animals, but the role of aldose reductase in cataract formation in human diabetics has not been established. The adverse effects of ARIs include hypersensitivity reactions. Although the polyol pathway may not be solely responsible for diabetic complications, studies suggest that therapy with ARIs could be beneficial. Further research is needed to determine the long-term impact and adverse effects of ARIs in the treatment of diabetic complications.

  14. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  15. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase.

    PubMed

    Leavitt, William D; Bradley, Alexander S; Santos, André A; Pereira, Inês A C; Johnston, David T

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major ((34)S/(32)S) and minor ((33)S/(32)S, (36)S/(32)S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in (34)S/(32)S (hereafter, [Formula: see text]) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in (33)S, described as [Formula: see text], is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3-0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in (34)εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of [Formula: see text] is similar to the median value of experimental observations compiled from all known published work, where (34)ε r-p = 16.1‰ (r-p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments ([Formula: see text] 17.3 ± 1.5‰, 2σ) and in modern marine sediments ([Formula: see text] 17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the

  16. Selenium in thioredoxin reductase: a mechanistic perspective.

    PubMed

    Lacey, Brian M; Eckenroth, Brian E; Flemer, Stevenson; Hondal, Robert J

    2008-12-02

    Most high M(r) thioredoxin reductases (TRs) have the unusual feature of utilizing a vicinal disulfide bond (Cys(1)-Cys(2)) which forms an eight-membered ring during the catalytic cycle. Many eukaryotic TRs have replaced the Cys(2) position of the dyad with the rare amino acid selenocysteine (Sec). Here we demonstrate that Cys- and Sec-containing TRs are distinguished by the importance each class of enzymes places on the eight-membered ring structure in the catalytic cycle. This hypothesis was explored by studying the truncated enzyme missing the C-terminal ring structure in conjunction with oxidized peptide substrates to investigate the reduction and opening of this dyad. The peptide substrates were identical in sequence to the missing part of the enzyme, containing either a disulfide or selenylsulfide linkage, but were differentiated by the presence (cyclic) and absence (acyclic) of the ring structure. The ratio of these turnover rates informs that the ring is only of modest importance for the truncated mouse mitochondrial Sec-TR (ring/no ring = 32), while the ring structure is highly important for the truncated Cys-TRs from Drosophila melanogaster and Caenorhabditis elegans (ring/no ring > 1000). All three enzymes exhibit a similar dependence upon leaving group pK(a) as shown by the use of the acyclic peptides as substrates. These two factors can be reconciled for Cys-TRs if the ring functions to simultaneously allow for attack by a nearby thiolate while correctly positioning the leaving group sulfur atom to accept a proton from the enzymic general acid. For Sec-TRs the ring is unimportant because the lower pK(a) of the selenol relative to a thiol obviates its need to be protonated upon S-Se bond scission and permits physical separation of the selenol and the general acid. Further study of the biochemical properties of the truncated Cys and Sec TR enzymes demonstrates that the chemical advantage conferred on the eukaryotic enzyme by a selenol is the ability to

  17. Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp.

    PubMed Central

    Arévalo-Rangel, Damaris L.; Cárdenas-González, Juan F.; Martínez-Juárez, Víctor M.; Acosta-Rodríguez, Ismael

    2013-01-01

    A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.0; there is an increase in Cr(VI) reductase activity with addition of NADH as an electron donor, and it was highly inhibited by Hg2+, Ca2+ and Mg2+, and azide, EDTA, and KCN. PMID:24027493

  18. An (R)-Imine Reductase Biocatalyst for the Asymmetric Reduction of Cyclic Imines.

    PubMed

    Hussain, Shahed; Leipold, Friedemann; Man, Henry; Wells, Elizabeth; France, Scott P; Mulholland, Keith R; Grogan, Gideon; Turner, Nicholas J

    2015-02-01

    Although the range of biocatalysts available for the synthesis of enantiomerically pure chiral amines continues to expand, few existing methods provide access to secondary amines. To address this shortcoming, we have over-expressed the gene for an (R)-imine reductase [(R)-IRED] from Streptomyces sp. GF3587 in Escherichia coli to create a recombinant whole-cell biocatalyst for the asymmetric reduction of prochiral imines. The (R)-IRED was screened against a panel of cyclic imines and two iminium ions and was shown to possess high catalytic activity and enantioselectivity. Preparative-scale synthesis of the alkaloid (R)-coniine (90 % yield; 99 % ee) from the imine precursor was performed on a gram-scale. A homology model of the enzyme active site, based on the structure of a closely related (R)-IRED from Streptomyces kanamyceticus, was constructed and used to identify potential amino acids as targets for mutagenesis.

  19. [Ligand spectrum of hemoglobin activity of methemoglobin-reductase and hemolytic resistance of erythrocytes during chronic exposure to nitrates].

    PubMed

    Kiiza, D A; Artiukh, V P; Starodub, N F; Khmel'nitskiĭ, G A

    1992-01-01

    It is found that nitrite-ions formed as a result of biotransformation during long term feeding of calves with sodium and potassium nitrates induce changes in some biochemical parameters of blood, including HS-glutathione content in erythrocytes, acid hemolytic resistance of erythrocytes, activity of NAD-dependent methemoglobin-reductase, correlation of ligand forms of hemoglobin and its total content. It is supposed that the observed changes are of an adaptational character and, as a whole, provide for the optimization of both quantitative and qualitative composition of population of erythroid cells at the expense of erythropoiesis intensification.

  20. Prevention of toxic effects of mercuric chloride on Some male accessory organs in mice with a Multiherbal drug “Speman”

    PubMed Central

    Rathore, H.S.

    2000-01-01

    Adult Swiss albino male mice exposed to mercuric chloride via drinking water at 5 μg/ml for 100 days revealed significant reduction in the wet weight and severe histopathological changes in male accessory organs, poor level of serum testosterone and infertility. These effects were reduced remarkable and fertility was restored when drug (12.50 mg/mouse/day orally) was administered during mercury exposure for 100days or after Hg-exposure for next 60 days (Post therapy). Natural recovery after mercury exposure for 60 days remind ineffective. Probable action of herbal drug based on the presence of the active principles of constituents (i.e Orchis mascula, Mucuna pruriens, parmelia perlata, Argyreia speciosa, Tribulus terristris, Leptadenia reticulate, Lactuca scariola and Hygrophila spinosa) is discussed in detail. PMID:22556990

  1. Reaction of methanol with chlorate ions in acid solution containing Hg{sup +2} by NMR

    SciTech Connect

    Ernst, W.R.; Indu, B.; Crump, B.; Gelbaum, L.T.

    1996-05-01

    The reaction rate of methanol was measured in solutions of sodium chlorate and sulfuric acid at several levels of temperature and concentration, in the presence of mercuric nitrate. The progress of the reaction was monitored by proton NMR signals corresponding to methanol and formic acid. Chlorine dioxide formation was suppressed by adding mercuric nitrate, which was shown earlier to catalyze the disproportionation of the intermediate species, chlorous acid, and sequester chloride ions. The reaction is first order in methanol and chlorate concentration and in the Hammett acidity function. The reaction of formic acid, sodium chlorate and sulfuric acid was also studied using the same technique. Formic acid was stable and did not react with chlorate at a measurable rate, even at concentrations and temperatures of a commercial process. This study related to commercial processes that produce chlorine dioxide by reducing chlorate ions with methanol. Chlorine dioxide is an oxidizing chemical that is used in water purification and is replacing chlorine in many chemical bleaching processes because of environmental concerns.

  2. Mercuric oxide poisoning

    MedlinePlus

    ... oxide may be found in some: Button batteries (batteries containing mercury are no longer sold in the United States) Disinfectants Fungicides There have been reports of inorganic mercury poisoning from the use of skin-lightening creams. Note: This list may ...

  3. A detoxifying oxygen reductase in the anaerobic protozoan Entamoeba histolytica.

    PubMed

    Vicente, João B; Tran, Vy; Pinto, Liliana; Teixeira, Miguel; Singh, Upinder

    2012-09-01

    We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ~5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.

  4. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  5. Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells

    NASA Technical Reports Server (NTRS)

    Johnson, T. C.; Cao, R. Q.; Kung, J. E.; Buchanan, B. B.

    1987-01-01

    Dark-grown carrot (Daucus carota L.) tissue cultures were found to contain both protein components of the NADP/thioredoxin system--NADP-thioredoxin reductase and the thioredoxin characteristic of heterotrophic systems, thioredoxin h. Thioredoxin h was purified to apparent homogeneity and, like typical bacterial counterparts, was a 12-kdalton (kDa) acidic protein capable of activating chloroplast NADP-malate dehydrogenase (EC 1.1.1.82) more effectively than fructose-1,6-bisphosphatase (EC 3.1.3.11). NADP-thioredoxin reductase (EC 1.6.4.5) was partially purified and found to be an arsenite-sensitive enzyme composed of two 34-kDa subunits. Carrot NADP-thioredoxin reductase resembled more closely its counterpart from bacteria rather than animal cells in acceptor (thioredoxin) specificity. Upon greening of the cells, the content of NADP-thioredoxin-reductase activity, and, to a lesser extent, thioredoxin h decreased. The results confirm the presence of a heterotrophic-type thioredoxin system in plant cells and raise the question of its physiological function.

  6. Obtaining partial purified xylose reductase from Candida guilliermondii

    PubMed Central

    Tomotani, Ester Junko; de Arruda, Priscila Vaz; Vitolo, Michele; de Almeida Felipe, Maria das Graças

    2009-01-01

    The enzymatic bioconversion of xylose into xylitol by xylose reductase (XR) is an alternative for chemical and microbiological processes. The partial purified XR was obtained by using the following three procedures: an agarose column, a membrane reactor or an Amicon Ultra-15 50K Centrifugal Filter device at yields of 40%, 7% and 67%, respectively. PMID:24031408

  7. Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria

    PubMed Central

    Casciotti, Karen L.; Ward, Bess B.

    2001-01-01

    The presence of a copper-containing dissimilatory nitrite reductase gene (nirK) was discovered in several isolates of β-subdivision ammonia-oxidizing bacteria using PCR and DNA sequencing. PCR primers Cunir3 and Cunir4 were designed based on published nirK sequences from denitrifying bacteria and used to amplify a 540-bp fragment of the nirK gene from Nitrosomonas marina and five additional isolates of ammonia-oxidizing bacteria. Amplification products of the expected size were cloned and sequenced. Alignment of the nucleic acid and deduced amino acid (AA) sequences shows significant similarity (62 to 75% DNA, 58 to 76% AA) between nitrite reductases present in these nitrifiers and the copper-containing nitrite reductase found in classic heterotrophic denitrifiers. While the presence of a nitrite reductase in Nitrosomonas europaea is known from early biochemical work, preliminary sequence data from its genome indicate a rather low similarity to the denitrifier nirKs. Phylogenetic analysis of the partial nitrifier nirK sequences indicates that the topology of the nirK tree corresponds to the 16S rRNA and amoA trees. While the role of nitrite reduction in the metabolism of nitrifying bacteria is still uncertain, these data show that the nirK gene is present in closely related nitrifying isolates from many oceanographic regions and suggest that nirK sequences retrieved from the environment may include sequences from ammonia-oxidizing bacteria. PMID:11319103

  8. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  10. 21 CFR 864.7375 - Glutathione reductase assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Glutathione reductase assay. 864.7375 Section 864.7375 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375...

  11. Dihydrofolate reductase: A potential drug target in trypanosomes and leishmania

    NASA Astrophysics Data System (ADS)

    Zuccotto, Fabio; Martin, Andrew C. R.; Laskowski, Roman A.; Thornton, Janet M.; Gilbert, Ian H.

    1998-05-01

    Dihydrofolate reductase has successfully been used as a drug target in the area of anti-cancer, anti-bacterial and anti-malarial chemotherapy. Little has been done to evaluate it as a drug target for treatment of the trypanosomiases and leishmaniasis. A crystal structure of Leishmania major dihydrofolate reductase has been published. In this paper, we describe the modelling of Trypanosoma cruzi and Trypanosoma brucei dihydrofolate reductases based on this crystal structure. These structures and models have been used in the comparison of protozoan, bacterial and human enzymes in order to highlight the different features that can be used in the design of selective anti-protozoan agents. Comparison has been made between residues present in the active site, the accessibility of these residues, charge distribution in the active site, and the shape and size of the active sites. Whilst there is a high degree of similarity between protozoan, human and bacterial dihydrofolate reductase active sites, there are differences that provide potential for selective drug design. In particular, we have identified a set of residues which may be important for selective drug design and identified a larger binding pocket in the protozoan than the human and bacterial enzymes.

  12. The Kinetics and Inhibition of the Enzyme Methemoglobin Reductase

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; And Others

    1975-01-01

    Describes an undergraduate biochemistry experiment which involves the preparation and kinetics of an oxidation-reduction enzyme system, methemoglobin reductase. A crude enzyme extract is prepared and assayed spectrophotometrically. The enzyme system obeys Michaelis-Menton kinetics with respect to both substrate and the NADH cofactor. (MLH)

  13. [Malate oxidation by mitochondrial succinate:ubiquinone-reductase].

    PubMed

    Belikova, Iu O; Kotliar, A B

    1988-04-01

    Succinate:ubiquinone reductase was shown to catalyze the oxidation of L- and D-stereoisomers of malate by artificial electron acceptors and ubiquinone. The rate of malate oxidation by succinate:ubiquinone reductase is by two orders of magnitude lower than that for the natural substrate--succinate. The values of kinetic constants for the oxidation of D- and L-stereoisomers of malate are equal to: V infinity = 0.1 mumol/min/mg protein, Km = 2 mM and V infinity = 0.05 mumol/min/mg protein, Km = 2 mM, respectively. The malate dehydrogenase activity is fully inhibited by the inhibitors of the dicarboxylate-binding site of the enzyme, i.e., N-ethylmaleimide and malonate and is practically insensitive to carboxin, a specific inhibitor of the ubiquinone-binding center. The enol form of oxaloacetate was shown to be the product of malate oxidation by succinate:ubiquinone reductase. The kinetics of inhibition of the enzyme activity by the ketone and enol forms of oxaloacetate was studied. Both forms of oxaloacetate effectively inhibit the succinate:ubiquinone reductase reaction.

  14. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    PubMed Central

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-01-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5–8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5–8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5–8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction. PMID:26412036

  15. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases.

    PubMed

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-28

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  16. [Inhibition of aldose reductase by Chinese herbal medicine].

    PubMed

    Mao, X M; Zhang, J Q

    1993-10-01

    Seven Chinese herbal drugs were screened for experimental inhibition of lens aldose reductase activity, among which quercetin exhibited potent enzyme-inhibitory activities in vitro. Its IC50 value was 3.44 x 10(-7) mol/L. It may be helpful in the prophylaxis and treatment of diabetic complications.

  17. Characterization of mitochondrial thioredoxin reductase from C. elegans

    SciTech Connect

    Lacey, Brian M.; Hondal, Robert J. . E-mail: Robert.Hondal@uvm.edu

    2006-08-04

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k {sub cat} of 610 min{sup -1} and a K {sub m} of 610 {mu}M using E. coli thioredoxin as substrate. The reported k {sub cat} is 25% of the k {sub cat} of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate.

  18. The arsenic hyperaccumulating Pteris vittata expresses two arsenate reductases

    NASA Astrophysics Data System (ADS)

    Cesaro, Patrizia; Cattaneo, Chiara; Bona, Elisa; Berta, Graziella; Cavaletto, Maria

    2015-09-01

    Enzymatic reduction of arsenate to arsenite is the first known step in arsenate metabolism in all organisms. Although the presence of one mRNA arsenate reductase (PvACR2) has been characterized in gametophytes of P. vittata, no arsenate reductase protein has been directly observed in this arsenic hyperaccumulating fern, yet. In order to assess the possible presence of arsenate reductase in P. vittata, two recombinant proteins, ACR2-His6 and Trx-His6-S-Pv2.5-8 were prepared in Escherichia coli, purified and used to produce polyclonal antibodies. The presence of these two enzymes was evaluated by qRT-PCR, immunoblotting and direct MS analysis. Enzymatic activity was detected in crude extracts. For the first time we detected and identified two arsenate reductase proteins (PvACR2 and Pv2.5-8) in sporophytes and gametophytes of P. vittata. Despite an increase of the mRNA levels for both proteins in roots, no difference was observed at the protein level after arsenic treatment. Overall, our data demonstrate the constitutive protein expression of PvACR2 and Pv2.5-8 in P. vittata tissues and propose their specific role in the complex metabolic network of arsenic reduction.

  19. The polymorphisms in methylenetetrahydrofolate reductase, methionine synthase, methionine synthase reductase, and the risk of colorectal cancer.

    PubMed

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results.

  20. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    PubMed Central

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  1. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  2. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed

    Gupta, S K; Gupta, R C; Seth, A K; Gupta, A B; Bassin, J K; Gupta, A

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents.

  3. Treatment of hirsutism with 5 alpha-reductase inhibitors.

    PubMed

    Brooks, J R

    1986-05-01

    Much os the evidence gathered from studies of 5 alpha-reductase activity levels and androgen metabolism in the skin of hirsute women and the excretion of androgen metabolites by hirsute women indicates that 5 alpha-reduced androgens are probably of primary importance in hirsutism. Unfortunately, until very recently, the lack of a suitable 5 alpha-reductase inhibitor made it very difficult to adequately test the hypothesis that such an inhibitor might be useful in the treatment of hirsutism and certain other androgen-related diseases. No substance was available which had good, unambiguous activity in vivo as a 5 alpha-reductase inhibitor. A number of 4-azasteroids have now been found to possess excellent 5 alpha-reductase inhibitory activity both in vitro and in vivo. Among other properties, several of these compounds show little or no affinity for the androgen receptor of rat prostate cytosol, they attenuate the growth promoting effect of T, but not DHT, on the ventral prostate of castrated male rats, they cause a marked reduction in prostatic DHT concentration in acutely treated rats and dogs and they bring about a significant decline in prostate size in chronically treated rats and dogs. It is expected that, in the near future, one or more of these highly active 5 alpha-reductase inhibitors will be tested in the clinic as a treatment for hirsutism. The results of those studies will be awaited with a great deal of interest since they should considerably advance our understanding of this disease and possibly contribute to its control.

  4. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  5. Measurement of nitrous oxide reductase activity in aquatic sediments

    SciTech Connect

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N/sub 2/O reductase assay. Sediments consumed small added quantities of N/sub 2/O over short periods (a few hours). In experiments with sediment slurries, N/sub 2/O reductase activity was inhibited by 0/sub 2/, C/sub 2/H/sub 2/, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 ..mu..M) did not influence activity, and moderate levels (about 150 ..mu..M) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N/sub 2/O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater, estuarine, and alkaline-saline environments. An in situ assay was devised in which a solution of N/sub 2/O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N/sub 2/O per m/sup 2/ per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N/sub 2/O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N/sub 2/O per m/sup 2/ per h made with the acetylene block assay.

  6. Measurement of nitrous oxide reductase activity in aquatic sediments

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N2O reductase assay. Sediments consumed small added quantities of N2O over short periods (a few hours). In experiments with sediment slurries, N2O reductase activity was inhibited by O2, C2H2, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 μM) did not influence activity, and moderate levels (about 150 μM) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N2O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater (Km = 2.17 μM), estuarine (Km = 14.5 μM), and alkaline-saline (Km = 501 μM) environments. An in situ assay was devised in which a solution of N2O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N2O per m2 per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N2O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N2O per m2 per h made with the acetylene block assay.

  7. Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases.

    PubMed

    Eberlein, Christian; Estelmann, Sebastian; Seifert, Jana; von Bergen, Martin; Müller, Michael; Meckenstock, Rainer U; Boll, Matthias

    2013-06-01

    The enzymatic dearomatization of aromatic ring systems by reduction represents a highly challenging redox reaction in biology and plays a key role in the degradation of aromatic compounds under anoxic conditions. In anaerobic bacteria, most monocyclic aromatic growth substrates are converted to benzoyl-coenzyme A (CoA), which is then dearomatized to a conjugated dienoyl-CoA by ATP-dependent or -independent benzoyl-CoA reductases. It was unresolved whether or not related enzymes are involved in the anaerobic degradation of environmentally relevant polycyclic aromatic hydrocarbons (PAHs). In this work, a previously unknown dearomatizing 2-naphthoyl-CoA reductase was purified from extracts of the naphthalene-degrading, sulphidogenic enrichment culture N47. The oxygen-tolerant enzyme dearomatized the non-activated ring of 2-naphthoyl-CoA by a four-electron reduction to 5,6,7,8-tetrahydro-2-naphthoyl-CoA. The dimeric 150 kDa enzyme complex was composed of a 72 kDa subunit showing sequence similarity to members of the flavin-containing 'old yellow enzyme' family. NCR contained FAD, FMN, and an iron-sulphur cluster as cofactors. Extracts of Escherichia coli expressing the encoding gene catalysed 2-naphthoyl-CoA reduction. The identified NCR is a prototypical enzyme of a previously unknown class of dearomatizing arylcarboxyl-CoA reductases that are involved in anaerobic PAH degradation; it fundamentally differs from known benzoyl-CoA reductases.

  8. Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases

    NASA Technical Reports Server (NTRS)

    Min, Tongpil; Kasahara, Hiroyuki; Bedgar, Diana L.; Youn, Buhyun; Lawrence, Paulraj K.; Gang, David R.; Halls, Steven C.; Park, HaJeung; Hilsenbeck, Jacqueline L.; Davin, Laurence B.; Lewis, Norman G.; Kang, ChulHee

    2003-01-01

    Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.

  9. A stable mercury-containing complex of the organomercurial lyase MerB: catalysis, product release, and direct transfer to MerA.

    PubMed

    Benison, Gregory C; Di Lello, Paola; Shokes, Jacob E; Cosper, Nathaniel J; Scott, Robert A; Legault, Pascale; Omichinski, James G

    2004-07-06

    Bacteria isolated from organic mercury-contaminated sites have developed a system of two enzymes that allows them to efficiently convert both ionic and organic mercury compounds to the less toxic elemental mercury. Both enzymes are encoded on the mer operon and require sulfhydryl-bound substrates. The first enzyme is an organomercurial lyase (MerB), and the second enzyme is a mercuric ion reductase (MerA). MerB catalyzes the protonolysis of the carbon-mercury bond, resulting in the formation of a reduced carbon compound and inorganic ionic mercury. Of several mercury-containing MerB complexes that we attempted to prepare, the most stable was a complex consisting of the organomercurial lyase (MerB), a mercuric ion, and a molecule of the MerB inhibitor dithiothreitol (DTT). Nuclear magnetic resonance (NMR) spectroscopy and extended X-ray absorption fine structure spectroscopy of the MerB/Hg/DTT complex have shown that the ligands to the mercuric ion in the complex consist of both sulfurs from the DTT molecule and one cysteine ligand, C96, from the protein. The stability of the MerB/Hg/DTT complex, even in the presence of a large excess of competing cysteine, has been demonstrated by NMR and dialysis. We used an enzyme buffering test to determine that the MerB/Hg/DTT complex acts as a substrate for the mercuric reductase MerA. The observed MerA activity is higher than the expected activity assuming free diffusion of the mercuric ion from MerB to MerA. This suggests that the mercuric ion can be transferred between the two enzymes by a direct transfer mechanism.

  10. Immunological approach to the regulation of nitrate reductase in Monoraphidium braunii.

    PubMed

    Díez, J; López-Ruiz, A

    1989-02-01

    The effects of different culture conditions on nitrate reductase activity and nitrate reductase protein from Monoraphidium braunii have been studied, using two different immunological techniques, rocket immunoelectrophoresis and an enzyme-linked immunosorbent assay, to determine nitrate reductase protein. The nitrogen sources ammonium and glutamine repressed nitrate reductase synthesis, while nitrite, alanine, and glutamate acted as derepressors. There was a four- to eightfold increase of nitrate reductase activity and a twofold increase of nitrate reductase protein under conditions of nitrogen starvation versus growth on nitrate. Nitrate reductase synthesis was repressed in darkness. However, when Monoraphidium was grown under heterotrophic conditions with glucose as the carbon and energy source, the synthesis of nitrate reductase was maintained. With ammonium or darkness, changes in nitrate reductase activity correlated fairly well with changes in nitrate reductase protein, indicating that in both cases loss of activity was due to repression and not to inactivation of the enzyme. Experiments using methionine sulfoximine, to inhibit ammonium assimilation, showed that ammonium per se and not a product of its metabolism was the corepressor of the enzyme. The appearance of nitrate reductase activity after transferring the cells to induction media was prevented by cycloheximide and by 6-methylpurine, although in this latter case the effect was observed only in cells preincubated with the inhibitor for 1 h before the induction period.

  11. Recominant Pinoresino-Lariciresinol Reductase, Recombinant Dirigent Protein And Methods Of Use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki , Gang; David R. , Sarkanen; Simo , Ford; Joshua D.

    2003-10-21

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided from source species Forsythia intermedia, Thuja plicata, Tsuga heterophylla, Eucommia ulmoides, Linum usitatissimum, and Schisandra chinensis, which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  12. Recombinant pinoresinol/lariciresinol reductase, recombinant dirigent protein, and methods of use

    DOEpatents

    Lewis, Norman G.; Davin, Laurence B.; Dinkova-Kostova, Albena T.; Fujita, Masayuki; Gang, David R.; Sarkanen, Simo; Ford, Joshua D.

    2001-04-03

    Dirigent proteins and pinoresinol/lariciresinol reductases have been isolated, together with cDNAs encoding dirigent proteins and pinoresinol/lariciresinol reductases. Accordingly, isolated DNA sequences are provided which code for the expression of dirigent proteins and pinoresinol/lariciresinol reductases. In other aspects, replicable recombinant cloning vehicles are provided which code for dirigent proteins or pinoresinol/lariciresinol reductases or for a base sequence sufficiently complementary to at least a portion of dirigent protein or pinoresinol/lariciresinol reductase DNA or RNA to enable hybridization therewith. In yet other aspects, modified host cells are provided that have been transformed, transfected, infected and/or injected with a recombinant cloning vehicle and/or DNA sequence encoding dirigent protein or pinoresinol/lariciresinol reductase. Thus, systems and methods are provided for the recombinant expression of dirigent proteins and/or pinoresinol/lariciresinol reductases.

  13. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens.

    PubMed

    Stevenson, Clare E M; Hughes, Richard K; McManus, Michael T; Lawson, David M; Kopriva, Stanislav

    2013-11-15

    Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.

  14. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells.

    PubMed

    Toyama, Takashi; Abiko, Yumi; Katayama, Yuko; Kaji, Toshiyuki; Kumagai, Yoshito

    2015-12-01

    Methylmercury (MeHg) is an environmental electrophile that covalently modifies cellular proteins. In this study, we identified proteins that undergo S-mercuration by MeHg. By combining two-dimensional SDS-PAGE, atomic absorption spectrometry and ultra performance liquid chromatography mass spectrometry (UPLC/MS/MS), we revealed that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a target for S-mercuration in human neuroblastoma SH-SY5Y cells exposed to MeHg (1 µM, 9 hr). The modification site of UCH-L1 by MeHg was Cys152, as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. MeHg was shown to inhibit the catalytic activity of recombinant human UCH-L1 in a concentration-dependent manner. Knockdown of UCH-L1 indicated that this enzyme plays a critical role in regulating mono-ubiquitin (monoUb) levels in SH-SY5Y cells and exposure of SH-SY5Y cells to MeHg caused a reduction in the level of monoUb in these cells. These observations suggest that UCH-L1 readily undergoes S-mercuration by MeHg through Cys152 and this covalent modification inhibits UCH-L1, leading to the potential disruption of the maintenance of cellular monoUb levels.

  15. Spectroscopic studies of the copper sites in wild-type pseudomonas stutzeri N sub 2 O reductase and in an inactive protein isolated from a mutant deficient in copper-site biosynthesis

    SciTech Connect

    Dooley, D.M.; McGuirl, M.A.; Rosenzweig, A.C.; Landin, J.A. ); Scott, R.A. ); Zumft, W.G. ); Devlin, F.; Stephens, P.J. )

    1991-07-24

    The results of studies of circular dichroism, magnetic circular dichroism, and x-ray absorption and fluorescence spectroscopy used to further characterize the copper sites in native N{sub 2}O reductase and in a mutant protein isolated from a strain deficient in the biosynthesis of the N{sub 2}O reductase copper sites that contains only 2 copper ions/protein molecule, are reported herein. Both magnetic circular dichroism and x-ray absorption (Cu K-edge and EXADS) data are consistent with the presence of (on average) one Cu{sub A}-type site per protein in the mutant N{sub 2}O reductase. Comparisons of the near-infrared circular dichroism spectra of the oxidized native and mutant N{sub 2}O reductases suggest that transitions at 7,200 and 9,500 cm{sup {minus}1} in the native enzyme are associated with copper sites other than the Cu{sub A}-type sites. These are the first electronic spectral features that can be attributed to non-Cu-type sites in N{sub 2}O reductase. The near-infrared bands are believed to be significantly less intense in preparations of N{sub 2}O reductase that display lower specific activities. Several electronic transitions are resolved in the circular and magnetic circular dichroism spectra of dithionite-reduced N{sub 2}O reductase. Notably a near-infrared band is observed in the circular dichroism spectrum at 8,200 cm{sup {minus}1}. Theories are presented to explain the reported data. 29 refs., 8 figs., 1 tab.

  16. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.

    PubMed

    Gholami-Shabani, Mohammadhassan; Akbarzadeh, Azim; Norouzian, Dariush; Amini, Abdolhossein; Gholami-Shabani, Zeynab; Imani, Afshin; Chiani, Mohsen; Riazi, Gholamhossein; Shams-Ghahfarokhi, Masoomeh; Razzaghi-Abyaneh, Mehdi

    2014-04-01

    Nanostructures from natural sources have received major attention due to wide array of biological activities and less toxicity for humans, animals, and the environment. In the present study, silver nanoparticles were successfully synthesized using a fungal nitrate reductase, and their biological activity was assessed against human pathogenic fungi and bacteria. The enzyme was isolated from Fusarium oxysporum IRAN 31C after culturing on malt extract-glucose-yeast extract-peptone (MGYP) medium. The enzyme was purified by a combination of ultrafiltration and ion exchange chromatography on DEAE Sephadex and its molecular weight was estimated by gel filtration on Sephacryl S-300. The purified enzyme had a maximum yield of 50.84 % with a final purification of 70 folds. With a molecular weight of 214 KDa, it is composed of three subunits of 125, 60, and 25 KDa. The purified enzyme was successfully used for synthesis of silver nanoparticles in a way dependent upon NADPH using gelatin as a capping agent. The synthesized silver nanoparticles were characterized by X-ray diffraction, dynamic light scattering spectroscopy, and transmission and scanning electron microscopy. These stable nonaggregating nanoparticles were spherical in shape with an average size of 50 nm and a zeta potential of -34.3. Evaluation of the antimicrobial effects of synthesized nanoparticles by disk diffusion method showed strong growth inhibitory activity against all tested human pathogenic fungi and bacteria as evident from inhibition zones that ranged from 14 to 25 mm. Successful green synthesis of biologically active silver nanoparticles by a nitrate reductase from F. oxysporum in the present work not only reduces laborious downstream steps such as purification of nanoparticle from interfering cellular components, but also provides a constant source of safe biologically-active nanomaterials with potential application in agriculture and medicine.

  17. The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10

    USGS Publications Warehouse

    Afkar, E.; Lisak, J.; Saltikov, C.; Basu, P.; Oremland, R.S.; Stolz, J.F.

    2003-01-01

    The respiratory arsenate reductase from the Gram-positive, haloalkaliphile, Bacillus selenitireducens strain MLS10 was purified and characterized. It is a membrane bound heterodimer (150 kDa) composed of two subunits ArrA (110 kDa) and ArrB (34 kDa), with an apparent Km for arsenate of 34 ??M and Vmax of 2.5 ??mol min-1 mg-1. Optimal activity occurred at pH 9.5 and 150 g l-1 of NaCl. Metal analysis (inductively coupled plasma mass spectrometry) of the holoenzyme and sequence analysis of the catalytic subunit (ArrA; the gene for which was cloned and sequenced) indicate it is a member of the DMSO reductase family of molybdoproteins. ?? 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

  18. Pyrroline-5-Carboxylate Reductase in Soybean Nodules 1

    PubMed Central

    Chilson, Oscar P.; Kelly-Chilson, Anne E.; Schneider, Julie D.

    1992-01-01

    Characteristics of pyrroline-5-carboxylate reductase (P5CR) from Bradyrhizobium japonicum bacteroids and cultured rhizobia were compared with those of the enzyme in soybean nodule host cytosol. Reductase from host cytosol differed from that in bacteroids in: (a) the effect of pH on enzymic activity, (b) the capacity to catalyze both reduction of pyrroline-5-carboxylic acid and NAD+-dependent proline oxidation, (c) apparent affinities for pyrroline-5-carboxylic acid, and (d) sensitivities to inhibition by NADP+ and proline. The K1 for proline inhibition of P5CR in bacteroid cytosol was 1.8 millimolar. The properties of P5CR in B. japonicum and bacteroid cytosol were similar. The specific activities of P5CR in the cytosolic fractions of the nodule host and the bacteroid compartment were also comparable. PMID:16668837

  19. Characterization of 12-Oxo-Phytodienoic Acid Reductase in Corn

    PubMed Central

    Vick, Brady A.; Zimmerman, Don C.

    1986-01-01

    12-Oxo-phytodienoic acid reductase, an enzyme of the biosynthetic pathway that converts linolenic acid to jasmonic acid, has been characterized from the kernel and seedlings of corn (Zea mays L.). The molecular weight of the enzyme, estimated by gel filtration, was 54,000. Optimum enzyme activity was observed over a broad pH range, from pH 6.8 to 9.0. The enzyme had a Km of 190 micromolar for its substrate, 12-oxo-phytodienoic acid. The preferred reductant was NADPH, for which the enzyme exhibited a Km of 13 micromolar, compared with 4.2 millimolar for NADH. Reductase activity was low in the corn kernel but increased five-fold by the fifth day after germination and then gradually declined. PMID:16664582

  20. Ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species.

  1. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  2. Aldose and aldehyde reductases : structure-function studies on the coenzyme and inhibitor-binding sites.

    SciTech Connect

    El-Kabbani, O.; Old, S. E.; Ginell, S. L.; Carper, D. A.; Biosciences Division; Monash Univ.; NIH

    1999-09-03

    PURPOSE: To identify the structural features responsible for the differences in coenzyme and inhibitor specificities of aldose and aldehyde reductases. METHODS: The crystal structure of porcine aldehyde reductase in complex with NADPH and the aldose reductase inhibitor sorbinil was determined. The contribution of each amino acid lining the coenzyme-binding site to the binding of NADPH was calculated using the Discover package. In human aldose reductase, the role of the non-conserved Pro 216 (Ser in aldehyde reductase) in the binding of coenzyme was examined by site-directed mutagenesis. RESULTS: Sorbinil binds to the active site of aldehyde reductase and is hydrogen-bonded to Trp 22, Tyr 50, His 113, and the non-conserved Arg 312. Unlike tolrestat, the binding of sorbinil does not induce a change in the side chain conformation of Arg 312. Mutation of Pro 216 to Ser in aldose reductase makes the binding of coenzyme more similar to that of aldehyde reductase. CONCLUSIONS: The participation of non-conserved active site residues in the binding of inhibitors and the differences in the structural changes required for the binding to occur are responsible for the differences in the potency of inhibition of aldose and aldehyde reductases. We report that the non-conserved Pro 216 in aldose reductase contributes to the tight binding of NADPH.

  3. Early diagnosis and management of 5 alpha-reductase deficiency.

    PubMed Central

    Odame, I; Donaldson, M D; Wallace, A M; Cochran, W; Smith, P J

    1992-01-01

    Two siblings of Pakistani origin, karyotype 46 XY, were born with predominantly female external genitalia with minute phallus, bifid scrotum, urogenital sinus, and palpable gonads. The older sibling at the age of 8 days showed an adequate testosterone response to human chorionic gonadotrophin (hCG) stimulation. The diagnosis of 5 alpha-reductase deficiency was made at age 6 years when no 5 alpha-reduced glucocorticoid metabolites were detectable in urine even after tetracosactrin (Synacthen) stimulation. In the younger sibling the diagnosis of 5 alpha-reductase deficiency was provisionally made at the early age of 3 days on the basis of high urinary tetrahydrocortisol (THF)/allotetrahydrocortisol (5 alpha-THF) ratio and this ratio increased with age confirming the diagnosis. Plasma testosterone: dihydrotestosterone (DHT) ratio before and after hCG stimulation was within normal limits at age 3 days but was raised at age 9 months. Topical DHT cream application to the external genitalia promoted significant phallic growth in both siblings and in the older sibling corrective surgery was facilitated. In prepubertal male pseudohermaphrodites with normal or raised testosterone concentrations, phallic growth in response to DHT cream treatment could be an indirect confirmation of 5 alpha-reductase deficiency. Images Figure 1 PMID:1626992

  4. Cloning and Sequence Analysis of Two Pseudomonas Flavoprotein Xenobiotic Reductases

    PubMed Central

    Blehert, David S.; Fox, Brian G.; Chambliss, Glenn H.

    1999-01-01

    The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5α. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems. PMID:10515912

  5. The existence and significance of a mitochondrial nitrite reductase.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V

    2005-01-01

    The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.

  6. Phosphoglycerate kinase acts in tumour angiogenesis as a disulphide reductase

    NASA Astrophysics Data System (ADS)

    Lay, Angelina J.; Jiang, Xing-Mai; Kisker, Oliver; Flynn, Evelyn; Underwood, Anne; Condron, Rosemary; Hogg, Philip J.

    2000-12-01

    Disulphide bonds in secreted proteins are considered to be inert because of the oxidizing nature of the extracellular milieu. An exception to this rule is a reductase secreted by tumour cells that reduces disulphide bonds in the serine proteinase plasmin. Reduction of plasmin initiates proteolytic cleavage in the kringle 5 domain and release of the tumour blood vessel inhibitor angiostatin. New blood vessel formation or angiogenesis is critical for tumour expansion and metastasis. Here we show that the plasmin reductase isolated from conditioned medium of fibrosarcoma cells is the glycolytic enzyme phosphoglycerate kinase. Recombinant phosphoglycerate kinase had the same specific activity as the fibrosarcoma-derived protein. Plasma of mice bearing fibrosarcoma tumours contained several-fold more phosphoglycerate kinase, as compared with mice without tumours. Administration of phosphoglycerate kinase to tumour-bearing mice caused an increase in plasma levels of angiostatin, and a decrease in tumour vascularity and rate of tumour growth. Our findings indicate that phosphoglycerate kinase not only functions in glycolysis but is secreted by tumour cells and participates in the angiogenic process as a disulphide reductase.

  7. The effect of quercetin and galangin on glutathione reductase.

    PubMed

    Paulíková, Helena; Berczeliová, Elena

    2005-12-01

    Quercetin and galangin can change the activity of glutathione reductase. Quercetin (a catechol structure in the B-ring) and galangin (any hydroxyl group in the B-ring) have different biological activities but, both possess high antioxidant abilities. Quercetin during the antioxidative action, is converted into an oxidized products (o-semiquinone and o-quinone), and subsequently glutathionyl adducts may be formed or SH-enzyme can be inhibited. We have tried to see whether inhibition of glutathione reductase (GR) can be influenced by preincubation of enzyme with NADPH (a creation of reduced form of enzyme, GRH(2)) and whether diaphorase activity of the enzyme is decreased by these flavonoids. The results confirmed that quercetin inhibits GRH(2) and inhibition is reduced by addition of EDTA or N-acetylcysteine. Both of flavonoids have no effect on diaphorase activity of glutathione reductase and this enzyme could increase the production of free radicals by catalysis of reduction of o-quinone during action of quercetin in vivo.

  8. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  9. Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

    PubMed Central

    Rouf, Syed Fazle; Kitowski, Vera; Böhm, Oliver M.; Rhen, Mikael; Jäger, Timo; Bange, Franz-Christoph

    2011-01-01

    Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium. PMID:22073230

  10. Kinetic characteristics of ZENECA ZD5522, a potent inhibitor of human and bovine lens aldose reductase.

    PubMed

    Cook, P N; Ward, W H; Petrash, J M; Mirrlees, D J; Sennitt, C M; Carey, F; Preston, J; Brittain, D R; Tuffin, D P; Howe, R

    1995-04-18

    Aldose reductase (aldehyde reductase 2) catalyses the conversion of glucose to sorbitol, and methylglyoxal to acetol. Treatment with aldose reductase inhibitors (ARIs) is a potential approach to decrease the development of diabetic complications. The sulphonylnitromethanes are a recently discovered class of aldose reductase inhibitors, first exemplified by ICI215918. We now describe enzyme kinetic characterization of a second sulphonylnitromethane, 3',5'-dimethyl-4'-nitromethylsulphonyl-2-(2-tolyl)acetanilide (ZD5522), which is at least 10-fold more potent against bovine lens aldose reductase in vitro and which also has a greater efficacy for reduction of rat nerve sorbitol levels in vivo (ED95 = 2.8 mg kg-1 for ZD5522 and 20 mg kg-1 for ICI 215918). ZD5522 follows pure noncompetitive kinetics against bovine lens aldose reductase when either glucose or methylglyoxal is varied (K(is) = K(ii) = 7.2 and 4.3 nM, respectively). This contrasts with ICI 215918 which is an uncompetitive inhibitor (K(ii) = 100 nM) of bovine lens aldose reductase when glucose is varied. Against human recombinant aldose reductase, ZD5522 displays mixed noncompetitive kinetics with respect to both substrates (K(is) = 41 nM, K(ii) = 8 nM with glucose and K(is) = 52 nM, K(ii) = 3.8 nM with methylglyoxal). This is the first report of the effects of a sulphonylnitromethane on either human aldose reductase or utilization of methylglyoxal. These results are discussed with reference to a Di Iso Ordered Bi Bi mechanism for aldose reductase, where the inhibitors compete with binding of both the aldehyde substrate and alcohol product. This model may explain why aldose reductase inhibitors follow noncompetitive or uncompetitive kinetics with respect to aldehyde substrates, and X-ray crystallography paradoxically locates an ARI within the substrate binding site. Aldehyde reductase (aldehyde reductase 1) is closely related to aldose reductase. Inhibition of bovine kidney aldehyde reductase by ZD5522

  11. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    SciTech Connect

    Forlani, Giuseppe; Bertazzini, Michele; Zarattini, Marco; Funck, Dietmar; Ruszkowski, Milosz; Nocek, Bogusław

    2015-07-28

    The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L.) for δ1-pyrroline-5-carboxylate (P5C) reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in Escherichia coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. It was possible to identify dynamic structural differences among rice, human, and bacterial enzymes.

  12. Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity

    PubMed Central

    Yang, Daqian; Tan, Xiao; Lv, Zhanjun; Liu, Biying; Baiyun, Ruiqi; Lu, Jingjing; Zhang, Zhigang

    2016-01-01

    Inorganic mercury, though a key component of pediatric vaccines, is an environmental toxicant threatening human health via accumulating oxidative stress in part. Luteolin has been of great interest because of its antiinflammatory, anticarcinogenic and antioxidative effects. Here we hypothesized that luteolin would attenuate hepatotoxicity induced by acute inorganic mercury exposure. Kunming mice were treated with luteolin (100 mg/kg) 24 h after administration of 4 mg/kg mercuric chloride (HgCl2). The results showed that luteolin ameliorated HgCl2 induced anemia and hepatotoxicity, regulating radical oxygen species (ROS) production and hepatocyte viability in vitro and oxidative stress and apoptosis in vivo. Furthermore, luteolin reversed the changes in levels of inflammation- and apoptosis-related proteins involving NF-κB, TNF-α, Sirt1, mTOR, Bax, p53, and Bcl-2, and inhibited p38 MAPK activation. Luteolin enhanced antioxidant defense system based on Keap1, Nrf2, HO-1, NQO1, and KLF9. Moreover, luteolin did not affect miRNA-146a expression. Collectively, our findings, for the first time, elucidate a precise mechanism for attenuation of HgCl2-induced liver dysfunction by dietary luteolin via regulating Sirt1/Nrf2/TNF-α signaling pathway, and provide a foundation for further study of luteolin as a novel therapeutic agent against inorganic mercury poisoning. PMID:27853236

  13. Curcuma longa Linn. extract and curcumin protect CYP 2E1 enzymatic activity against mercuric chloride-induced hepatotoxicity and oxidative stress: A protective approach.

    PubMed

    Joshi, Deepmala; Mittal, Deepak Kumar; Shukla, Sangeeta; Srivastav, Sunil Kumar; Dixit, Vaibhav A

    2017-03-20

    The present investigation has been conducted to evaluate the therapeutic potential of Curcuma longa (200mgkg(-1), po) and curcumin (80mgkg(-1), po) for their hepatoprotective efficacy against mercuric chloride (HgCl2: 12μmolkg(-1), ip; once only) hepatotoxicity. The HgCl2 administration altered various biochemical parameters, including transaminases, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transferase, triglycerides and cholesterol contents with a concomitant decline in protein and albumin concentration in serum which were restored towards control by therapy of Curcuma longa or curcumin. On the other hand, both treatments showed a protective effect on drug metabolizing enzymes viz. aniline hydroxylase (AH) and amidopyrine-N-demethylase (AND), hexobarbitone induced sleep time and BSP retention. Choleretic, 1,1-diphenyl-2-picryl-hydrazil (DPPH)-free radical scavenging activities and histological studies also supported the biochemical findings. The present study concludes that Curcuma longa extract or curcumin has the ability to alleviate the hepatotoxic effects caused by HgCl2 in rats.

  14. Mercuric chloride-induced gastrin/cholecystokinin 8 immunoreactivity in the central nervous system of the terrestrial slug Semperula maculata: an immunohistochemical study.

    PubMed

    Londhe, Sunil; Kamble, Nitin

    2013-12-01

    We measured the immunoreactivity of the neuropeptide gastrin cholecystokinin 8 (gastrin/CCK 8) in neurons of the terrestrial slug Semperula maculata following acute treatment with mercuric chloride (HgCl2). The distribution of gastrin/CCK 8 was analyzed in neurons of different regions, specifically from cerebral ganglia (procerebrum (pro-c), mesocerebrum (meso-c) and metacerebrum (meta-c). In the control group, neurons of pedal, pleural, parietal and visceral ganglia showed positive immunoreactivity using vertebrate antiserum against gastrin/CCK 8. Gastrin/CCK 8 immunoreactivity was also seen in the fibers and neuropil region of all ganglia. In the cerebral ganglion, 10, 12 and 8 % of the neurons from pro-c, meso-c and meta-c, respectively, were stained with the antibody. The immunostaining was increased in neurons (giant, large, medium and small) after HgCl2 treatment. The treatment greatly increased the mucin content within the neurons. Exposure to HgCl2 enhanced gastrin immunoreactivity in the neurons and this increased with time. Results are discussed in the context of neuropathology in cerebral ganglia associated with the feeding behavior of Semperula maculata.

  15. Optical, electrical and surface characterization of mercuric iodide platelets grown in the HgI{sub 2}-HI-H{sub 2}O system

    SciTech Connect

    Fornaro, L.; Chen, H.; Chattopadhyay, K.; Chen, K.T.; Burger, A.

    1998-12-31

    The optical, electrical and surface properties of mercuric iodide platelets grown from solution in a HgI{sub 2}-HI-H{sub 2}O system were investigated by comparing them with Physical Vapor Transport (PVT) grown crystals. The absence of bulk imperfections and the uniformity of the as-grown surfaces and the KI solution etched surfaces were confirmed by optical microscopy. The as-grown surface uniformity is higher for solution grown crystals than that of PVT crystals, since the platelets do not have to be cleaved or polished. AFM studies show that the roughness for the cleaved, aged and etched surfaces were 0.06 nm, 0.48 nm and 0.3 nm respectively. Low temperature photoluminescence properties were measured for the two kinds of crystals and will be discussed. However, I-V curves give higher current density and lower apparent resistivity values for the solution grown than for PVT grown crystals. Correlations between optical and surface quality as well as the electrical properties of the crystals grown from both solution and PVT methods are also discussed.

  16. Nitric Oxide (NO) Generation from Heme/Copper Assembly Mediated Nitrite Reductase Activity

    PubMed Central

    Hematian, Shabnam; Siegler, Maxime A.

    2014-01-01

    Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2−) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase (CcO) binuclear hemea3/CuB active site is one entity known to be responsible for cellular nitrite conversion to nitric oxide. We recently reported that a partially reduced heme/Cu assembly reduces nitrite ion, producing NO; the heme serves as the reductant and cupric ion provides a Lewis Acid interaction with nitrite, facilitating nitrite (N−O) bond cleavage (Hematian et al., J Am Chem Soc 134:18912–18915, 2012). To further investigate this nitrite reductase (NIR) chemistry, copper(II)-nitrito complexes with tri-and tetra-dentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron donating para-methoxy peripheral substituents, (TMPP)FeII, and the other with electron withdrawing 2,6-difluorophenyl substituents, (F8)FeII, were employed. The results show that differing nitrite coordination modes to copper(II) ion leads to varying kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to take nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. Based on our observations, reaction mechanisms are proposed and discussed in terms of heme/Cu heterobinuclear structures. PMID:24430198

  17. Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity.

    PubMed

    Hematian, Shabnam; Siegler, Maxime A; Karlin, Kenneth D

    2014-06-01

    Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO2 (-)) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a 3/CuB active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N-O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912-18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)-nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O'-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate-iron(II) complexes, one with electron-donating para-methoxy peripheral substituents and the other with electron-withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/copper heterobinuclear structures.

  18. A flavone from Manilkara indica as a specific inhibitor against aldose reductase in vitro.

    PubMed

    Haraguchi, Hiroyuki; Hayashi, Ryosuke; Ishizu, Takashi; Yagi, Akira

    2003-09-01

    Isoaffinetin (5,7,3',4',5'-pentahydroxyflavone-6-C-glucoside) was isolated from Manilkara indica as a potent inhibitor of lens aldose reductase by bioassay-directed fractionation. This C-glucosyl flavone showed specific inhibition against aldose reductases (rat lens, porcine lens and recombinant human) with no inhibition against aldehyde reductase and NADH oxidase. Kinetic analysis showed that isoaffinetin exhibited uncompetitive inhibition against both dl-glyceraldehyde and NADPH. A structure-activity relationship study revealed that the increasing number of hydroxy groups in the B-ring contributes to the increase in aldose reductase inhibition by C-glucosyl flavones.

  19. Ammonification in Bacillus subtilis Utilizing Dissimilatory Nitrite Reductase Is Dependent on resDE

    PubMed Central

    Hoffmann, Tamara; Frankenberg, Nicole; Marino, Marco; Jahn, Dieter

    1998-01-01

    During anaerobic nitrate respiration Bacillus subtilis reduces nitrate via nitrite to ammonia. No denitrification products were observed. B. subtilis wild-type cells and a nitrate reductase mutant grew anaerobically with nitrite as an electron acceptor. Oxygen-sensitive dissimilatory nitrite reductase activity was demonstrated in cell extracts prepared from both strains with benzyl viologen as an electron donor and nitrite as an electron acceptor. The anaerobic expression of the discovered nitrite reductase activity was dependent on the regulatory system encoded by resDE. Mutation of the gene encoding the regulatory Fnr had no negative effect on dissimilatory nitrite reductase formation. PMID:9422613

  20. Structure of the Molybdenum Site of EEcherichia Coli Trimethylamine N-Oxide Reductase

    SciTech Connect

    Zhang, L.; Nelson, K.Johnson; Rajagopalan, K.V.; George, G.N.

    2009-05-28

    We report a structural characterization of the molybdenum site of recombinant Escherichia coli trimethylamine N-oxide (TMAO) reductase using X-ray absorption spectroscopy. The enzyme active site shows considerable similarity to that of dimethyl sulfoxide (DMSO) reductase, in that, like DMSO reductase, the TMAO reductase active site can exist in multiple forms. Examination of the published crystal structure of TMAO oxidase from Shewanella massilia indicates that the postulated Mo coordination structure is chemically impossible. The presence of multiple active site structures provides a potential explanation for the anomalous features reported from the crystal structure.

  1. Components of glycine reductase from Eubacterium acidaminophilum. Cloning, sequencing and identification of the genes for thioredoxin reductase, thioredoxin and selenoprotein PA.

    PubMed

    Lübbers, M; Andreesen, J R

    1993-10-15

    The genes encoding thioredoxin reductase (trxB), thioredoxin (trxA), protein PA of glycine reductase (grdA) and the first 23 amino acids of the large subunit of protein PC of glycine reductase (grdC) belonging to the reductive deamination systems present in Eubacterium acidaminophilum were cloned and sequenced. The proteins were products of closely linked genes with 314 codons (thioredoxin reductase), 110 codons (thioredoxin), and 158 codons (protein PA). The protein previously called 'atypically small lipoamide dehydrogenase' or 'electron transferring flavoprotein' could now conclusively be identified as a thioredoxin reductase (subunit mass of 34781 Da) by the alignment with the enzyme of Escherichia coli showing the same typical order of the corresponding domains. The thioredoxin (molecular mass of 11742 Da) deviated considerably from the known consensus sequence, even in the most strongly conserved redox-active segment WCGPC that was now GCVPC. The selenocysteine of protein PA (molecular mass of 16609 Da) was encoded by TGA. The protein was highly similar to those of Clostridium purinolyticum and Clostridium sticklandii involved in glycine reductase. Thioredoxin reductase and thioredoxin of E. acidaminophilum could be successfully expressed in E. coli.

  2. Ion-Ion Neutralization.

    DTIC Science & Technology

    1980-12-31

    plasma were identified using a downstream quadrupole mass spectrometer. In these experimento it is a simple matter to establish H+(H 2 0):f as the...pressure as predicted by the Thomson t2rnary mechanism whicK hzr been suownr to be valid experimentally at hiTh rrsurs (,han and Peron, 1:EI4 hereafter t...of NO , NO2 ions in various gases and the ternary recombination coefficients of these ions in the higher pres:;ure ( Thomson ) re"ie. Equation (5) cr>n

  3. Charaterization of bumarsin, a 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitor from Mesobuthus martensii Karsch venom.

    PubMed

    Chai, S C; Armugam, A; Strong, P N; Jeyaseelan, K

    2012-09-01

    Scorpion venoms are rich sources of bioactive peptides and are widely known for their ion channel inhibiting properties. We have isolated, cloned and characterized a venom protein (Bumarsin) from the Chinese scorpion, Mesobuthus martensii Karsch. Bumarsin cDNA encodes a 8132 Da, 72 amino acid mature protein that most probably exists in its native form as a Cys-bridged homodimer. We have identified this novel protein to be an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity. 0.6 μM of Bumarsin inhibits 32% of the HMG-CoA reductase activity, in comparison to 10 μM simvastatin which only inhibits 35% of the activity. RT-PCR and SELDI-TOF mass spectrometric studies demonstrate that bumarsin regulates the expression of both genes and proteins involved in cholesterol homeostasis. Our results suggest that bumarsin may provide a model for the design of novel drugs that can be used to modulate cholesterol homeostasis.

  4. Insights into function, catalytic mechanism, and fold evolution of selenoprotein methionine sulfoxide reductase B1 through structural analysis.

    PubMed

    Aachmann, Finn L; Sal, Lena S; Kim, Hwa-Young; Marino, Stefano M; Gladyshev, Vadim N; Dikiy, Alexander

    2010-10-22

    Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec(95) and resolving Cys(4) residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.

  5. Structural and Biochemical Characterization of Cinnamoyl-CoA Reductases.

    PubMed

    Sattler, Steven A; Walker, Alexander M; Vermerris, Wilfred; Sattler, Scott E; Kang, ChulHee

    2017-02-01

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a strategic plant for bioenergy production, were deduced from crystal structures, site-directed mutagenesis, and kinetic and thermodynamic analyses. Although SbCCR1 displayed higher affinity for caffeoyl-CoA or p-coumaroyl-CoA than for feruloyl-CoA, the enzyme showed significantly higher activity for the latter substrate. Through molecular docking and comparisons between the crystal structures of the Vitis vinifera dihydroflavonol reductase and SbCCR1, residues threonine-154 and tyrosine-310 were pinpointed as being involved in binding CoA-conjugated phenylpropanoids. Threonine-154 of SbCCR1 and other CCRs likely confers strong substrate specificity for feruloyl-CoA over other cinnamoyl-CoA thioesters, and the T154Y mutation in SbCCR1 led to broader substrate specificity and faster turnover. Through data mining using our structural and biochemical information, four additional putative CCR genes were discovered from sorghum genomic data. One of these, SbCCR2, displayed greater activity toward p-coumaroyl-CoA than did SbCCR1, which could imply a role in the synthesis of defense-related lignin. Taken together, these findings provide knowledge about critical residues and substrate preference among CCRs and provide, to our knowledge, the first three-dimensional structure information for a CCR from a monocot species.

  6. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites

    PubMed Central

    Bonilla, Mariana; Gladyshev, Vadim N.

    2013-01-01

    Abstract Significance: Platyhelminth parasites cause chronic infections that are a major cause of disability, mortality, and economic losses in developing countries. Maintaining redox homeostasis is a major adaptive problem faced by parasites and its disruption can shift the biochemical balance toward the host. Platyhelminth parasites possess a streamlined thiol-based redox system in which a single enzyme, thioredoxin glutathione reductase (TGR), a fusion of a glutaredoxin (Grx) domain to canonical thioredoxin reductase (TR) domains, supplies electrons to oxidized glutathione (GSSG) and thioredoxin (Trx). TGR has been validated as a drug target for schistosomiasis. Recent Advances: In addition to glutathione (GSH) and Trx reduction, TGR supports GSH-independent deglutathionylation conferring an additional advantage to the TGR redox array. Biochemical and structural studies have shown that the TR activity does not require the Grx domain, while the glutathione reductase and deglutathionylase activities depend on the Grx domain, which receives electrons from the TR domains. The search for TGR inhibitors has identified promising drug leads, notably oxadiazole N-oxides. Critical Issues: A conspicuous feature of platyhelminth TGRs is that their Grx-dependent activities are temporarily inhibited at high GSSG concentrations. The mechanism underlying the phenomenon and its biological relevance are not completely understood. Future Directions: The functional diversity of Trxs and Grxs encoded in platyhelminth genomes remains to be further assessed to thoroughly understand the TGR-dependent redox network. Optimization of TGR inhibitors and identification of compounds targeting other parasite redox enzymes are good options to clinically develop relevant drugs for these neglected, but important diseases. Antioxid. Redox Signal. 19, 735–745. PMID:22909029

  7. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    PubMed

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease.

  8. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated.

  9. Applications of Carboxylic Acid Reductases in Oleaginous Microbes

    SciTech Connect

    Resch, Michael G.; Linger, Jeffrey; McGeehan, John; Tyo, Keith; Beckham, Gregg

    2016-04-24

    Carboxylic acid reductases (CARs) are recently emerging reductive enzymes for the direct production of aldehydes from biologically-produced carboxylic acids. Recent work has demonstrated that these powerful enzymes are able to reduce a very broad range of volatile- to long-chain fatty acids as well as aromatic acids. Here, we express four CAR enzymes from different fungal origins to test their activity against fatty acids commonly produced in oleaginous microbes. These in vitro results will inform metabolic engineering strategies to conduct mild biological reduction of carboxylic acids in situ, which is conventionally done via hydrotreating catalysis at high temperatures and hydrogen pressures.

  10. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  11. Evidences of Biological Functions of Biliverdin Reductase A in the Bovine Epididymis.

    PubMed

    D'Amours, Olivier; Frenette, Gilles; Caron, Patrick; Belleannée, Clémence; Guillemette, Chantal; Sullivan, Robert

    2016-05-01

    Epididymal sperm binding protein 1 (ELSPBP1) is secreted by the epididymal epithelium via epididymosomes and is specifically transferred to dead spermatozoa during epididymal transit. We identified biliverdin reductase A (BLVRA) as a partner of ELSPBP1 by immunoprecipitation followed by tandem mass spectrometry. Pull down assays showed that these two proteins interact in the presence of zinc ions. The BLVRA enzyme is known to convert biliverdin to bilirubin, both of which possess antioxidant activity. Assessment by real-time RT-PCR showed that BLVRA is highly expressed in the caput and the corpus epididymis, but is expressed at lower levels in the testis and the cauda epididymis. It is primarily found in the soluble fraction of the caput epididymal fluid, is barely detectable in the cauda fluid, and is detectable to a lesser extent in the epididymosome fraction of both caput and cauda fluids. Immunocytometry on epididymal sperm showed that BLVRA is found on all sperm recovered from the caput region, whereas it is undetectable on cauda sperm. Biliverdin and bilirubin are found in higher concentrations in the caput epididymal fluid, as measured by mass spectrometry. Lipid peroxidation was limited by 1 μM of biliverdin, but not bilirubin when caput spermatozoa were challenged with 500 μM H2O2. Since immature spermatozoa are a source of reactive oxygen species, BLVRA may be involved in the protection of maturing spermatozoa. It is also plausible that BLVRA is implicated in haemic protein catabolism in the epididymal luminal environment.

  12. Identification, characterization, and structure/function analysis of a corrin reductase involved in adenosylcobalamin biosynthesis.

    PubMed

    Lawrence, Andrew D; Deery, Evelyne; McLean, Kirsty J; Munro, Andrew W; Pickersgill, Richard W; Rigby, Stephen E J; Warren, Martin J

    2008-04-18

    Vitamin B(12), the antipernicious anemia factor, is the cyano derivative of adenosylcobalamin, which is one of nature's most complex coenzymes. Adenosylcobalamin is made along one of two similar yet distinct metabolic pathways, which are referred to as the aerobic and anaerobic routes. The aerobic pathway for cobalamin biosynthesis proceeds via cobalt insertion into a ring-contracted macrocycle, which is closely followed by adenosylation of the cobalt ion. An important prerequisite for adenosylation is the reduction of the centrally chelated metal from Co(II) to a highly nucleophilic Co(I) form. We have cloned a gene, cobR, encoding a biosynthetic enzyme with this co(II)rrin reductase activity from Brucella melitensis. The protein has been overproduced, and the resulting flavoprotein has been purified, characterized, and crystallized and its structure determined to 1.6A resolution. Kinetic and EPR analysis reveals that the enzyme proceeds via a semiquinone form. It is proposed that CobR may interact with the adenosyltransferase to overcome the large thermodynamic barrier required for co(II)rrin reduction.

  13. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    DOE PAGES

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; ...

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue ismore » substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.« less

  14. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue

    SciTech Connect

    Teixeira, Miguel; Cabelli, Diane; Pinto, Ana F.; Romao, Celia V.; Pinto, Liliana C.; Huber, Harald; Saraiva, Ligia M.; Todorovic, Smilja

    2014-12-05

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the –EKHVP– motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (₋E₂₃T₂₄HVP₋), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  15. Superoxide reduction by a superoxide reductase lacking the highly conserved lysine residue.

    PubMed

    Pinto, Ana F; Romão, Célia V; Pinto, Liliana C; Huber, Harald; Saraiva, Lígia M; Todorovic, Smilja; Cabelli, Diane; Teixeira, Miguel

    2015-01-01

    Superoxide reductases (SORs) are the most recently identified superoxide detoxification systems, being found in microorganisms from the three domains of life. These enzymes are characterized by a catalytic mononuclear iron site, with one cysteine and four histidine ligands of the ferrous active form. A lysine residue in the -EKHVP- motif, located close to the active site, has been considered to be essential for the enzyme function, by contributing to the positive surface patch that attracts the superoxide anion and by controlling the chemistry of the catalytic mechanism through a hydrogen bond network. However, we show here that this residue is substituted by non-equivalent amino acids in several putative SORs from Archaea and unicellular Eukarya. In this work, we focus on mechanistic and spectroscopic studies of one of these less common enzymes, the SOR from the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. We employ pulse radiolysis fast kinetics and spectroscopic approaches to study the wild-type enzyme (-E23T24HVP-), and two mutants, T24K and E23A, the later mimicking enzymes lacking both the lysine and glutamate (a ferric ion ligand) of the motif. The efficiency of the wild-type protein and mutants in reducing superoxide is comparable to other SORs, revealing the robustness of these enzymes to single mutations.

  16. Purification and properties of glutathione reductase from the cyanobacterium Anabaena sp. strain 7119.

    PubMed Central

    Serrano, A; Rivas, J; Losada, M

    1984-01-01

    An NADPH-glutathione reductase (EC 1.6.4.2) has been purified 6,000-fold to electrophoretic homogeneity from the filamentous cyanobacterium Anabaena sp. strain 7119. The purified enzyme exhibits a specific activity of 249 U/mg and is characterized by being a dimeric flavin adenine dinucleotide-containing protein with a ratio of absorbance at 280 nm to absorbance at 462 nm of 5.8, a native molecular weight of 104,000, a Stokes radius of 4.13 nm, and a pI of 4.02. The enzyme activity is inhibited by sulfhydryl reagents and heavy-metal ions, especially in the presence of NADPH, with oxidized glutathione behaving as a protective agent. As is the case with the same enzyme from other sources, the kinetic data are consistent with a branched mechanism. Nevertheless, the cyanobacterial enzyme presents three distinctive features with respect to that isolated from non-photosynthetic organisms: (i) absolute specificity for NADPH, (ii) an alkaline optimum pH value of ca. 9.0, and (iii) strong acidic character of the protein, as estimated by column chromatofocusing. The kinetic parameters are very similar to those found for the chloroplast enzyme, but the molecular weight is lower, being comparable to that of non-photosynthetic microorganisms. A protective function, analogous to that assigned to the chloroplast enzyme, is suggested. Images PMID:6425264

  17. Aldose Reductase-catalyzed Reduction of Aldehyde Phospholipids

    PubMed Central

    Srivastava, Sanjay; Spite, Matthew; Trent, John O.; West, Matthew B.; Ahmed, Yonis; Bhatnagar, Aruni

    2012-01-01

    SUMMARY Oxidation of unsaturated phospholipids results in the generation of aldehyde side chains that remain esterified to the phospholipid backbone. Such “core” aldehydes elicit immune responses and promote inflammation. However, the biochemical mechanisms by which phospholipid aldehydes are metabolized or detoxified are not well understood. In the studies reported here, we examined whether aldose reductase (AR), which reduces hydrophobic aldehydes, metabolizes phospholipid aldehydes. Incubation with AR led to the reduction of 5-oxovaleroyl, 7-oxo-5-heptenoyl, 5-hydroxy-6-oxo-caproyl, and 5-hydroxy-8-oxo-6-octenoyl phospholipids generated upon oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC). The enzyme also catalyzed the reduction of phospholipid aldehydes generated from the oxidation of 1-alkyl, and 1-alkenyl analogs of PAPC, and 1-palmitoyl-2-arachidonoyl phosphatidic acid or phosphoglycerol. Aldose reductase catalyzed the reduction of chemically synthesized 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphatidylcholine (POVPC) with a Km of 10 μM. Addition of POVPC to the culture medium led to incorporation and reduction of the aldehyde in COS-7 and THP-1 cells. Reduction of POVPC in these cells was prevented by the AR inhibitors sorbinil and tolrestat and was increased in COS-7 cells overexpressing AR. Together, these observations suggest that AR may be a significant participant in the metabolism of several structurally diverse phospholipid aldehydes. This metabolism may be a critical regulator of the pro-inflammatory and immunogenic effects of oxidized phospholipids. PMID:15465833

  18. Two fatty acyl reductases involved in moth pheromone biosynthesis

    PubMed Central

    Antony, Binu; Ding, Bao-Jian; Moto, Ken’Ichi; Aldosari, Saleh A.; Aldawood, Abdulrahman S.

    2016-01-01

    Fatty acyl reductases (FARs) constitute an evolutionarily conserved gene family found in all kingdoms of life. Members of the FAR gene family play diverse roles, including seed oil synthesis, insect pheromone biosynthesis, and mammalian wax biosynthesis. In insects, FAR genes dedicated to sex pheromone biosynthesis (pheromone-gland-specific fatty acyl reductase, pgFAR) form a unique clade that exhibits substantial modifications in gene structure and possesses unique specificity and selectivity for fatty acyl substrates. Highly selective and semi-selective ‘single pgFARs’ produce single and multicomponent pheromone signals in bombycid, pyralid, yponomeutid and noctuid moths. An intriguing question is how a ‘single reductase’ can direct the synthesis of several fatty alcohols of various chain lengths and isomeric forms. Here, we report two active pgFARs in the pheromone gland of Spodoptera, namely a semi-selective, C14:acyl-specific pgFAR and a highly selective, C16:acyl-specific pgFAR, and demonstrate that these pgFARs play a pivotal role in the formation of species-specific signals, a finding that is strongly supported by functional gene expression data. The study envisages a new area of research for disclosing evolutionary changes associated with C14- and C16-specific FARs in moth pheromone biosynthesis. PMID:27427355

  19. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  20. A mutant of barley lacking NADH-hydroxypyruvate reductase

    SciTech Connect

    Blackwell, R.; Lea, P. )

    1989-04-01

    A mutant of barley, LaPr 88/29, deficient in peroxisomal NADH-hydroxypyruvate reductase (HPR) activity has been identified. Compared to the wild type the activities of NADH-HPR and NADPH-HPR were severely reduced but the mutant was still capable of fixing CO{sub 2} at rates equivalent to 75% of that of the wild type in air. Although lacking an enzyme in the main photorespiratory pathway, there appeared to be little disruption to photorespiratory metabolism as ammonia release, CO{sub 2} efflux and {sup 14}CO{sub 2} release from L-(U-{sup 14}C) serine were similar in both mutant and wild type. LaPr 88/29 has been used to show that NADH-glyoxylate reductase (GR) and NADH-HPR are probably not catalyzed by the same enzyme in barley and that over 80% of the NADPH-HPR activity is due to the NADH-HPR enzyme. Immunological studies, using antibodies raised against spinach HPR, have shown that the NADH-dependent enzyme protein is absent in LaPr 88/29 but there appears to be enhanced synthesis of the NADPH-dependent enzyme protein.

  1. Fluorescent analogues of methotrexate: characterization and interaction with dihydrofolate reductase.

    PubMed

    Kumar, A A; Kempton, R J; Anstead, G M; Freisheim, J H

    1983-01-18

    The dansylated derivatives of lysine and ornithine analogues of methotrexate exhibit fluorescence properties characteristic of the dansyl moiety with an excitation at 328 nm and an emission maximum at 580 nm in aqueous media. As in the case of dansyl amino acids, the fluorescence emission is dependent upon the polarity of the medium. In solvents of low dielectric constant there is an enhancement of the dansyl fluorescence intensity as well as a shift to shorter wavelengths. The dansylated analogues show a reduction in the quantum yields as compared to N epsilon-dansyl-L-lysine and 5-(N,N-dimethylamino)-1-naphthalenesulfonic acid. The absorption spectra of the two dansyl analogues are similar to the spectra of the parent basic amino acid precursors but with reduced molar extinction values. The two fluorescent analogues of methotrexate were found to be potent inhibitors of purified dihydrofolate reductases from Lactobacillus casei and from chicken liver. The binding of these fluorescent analogues to either dihydrofolate reductase resulted in 10-15-nm blue shift of the ligand emission maxima and a 2-5-fold enhancement of the emission. These fluorescent properties of the bound ligands indicate a possible interaction of the dansyl moiety with a region on the enzyme molecule which is more hydrophobic relative to the surrounding solvent.

  2. Hydroxyurea-resistant vaccinia virus: overproduction of ribonucleotide reductase

    SciTech Connect

    Slabaugh, M.B.; Mathews, C.K.

    1986-11-01

    Repeated passage of vaccinia virus in increasing concentrations of hydroxyurea followed by plaque purification resulted in the isolation of variants capable of growth in 5 mM hydroxyurea, a drug concentration which inhibited the reproduction of wild-type vaccinia virus 1000-fold. Analyses of viral protein synthesis by using (/sup 35/S)methionine pulse-labeling at intervals throughout the infection cycle revealed that all isolates overproduced a 34,000-molecular-weight (MW) early polypeptide. Measurement of ribonucleoside-diphosphate reductase activity after infection indicated that 4- to 10-fold more activity was induced by hydroxyurea-resistant viruses than by the wild-type virus. A two-step partial purification resulted in a substantial enrichment for the 34,000-MW protein from extracts of wild-type and hydroxyurea-resistant-virus-infected, but not mock-infected, cells. In the presence of the drug, the isolates incorporated (/sup 3/H)thymidine into DNA earlier and a rate substantially greater than that of the wild type, although the onset of DNA synthesis was delayed in both cases. The drug resistance trait was markedly unstable in all isolates. In the absence of selective pressure, plaque-purified isolated readily segregated progeny that displayed a wide range of resistance phenotypes. The results of this study indicate that vaccinia virus encodes a subunit of ribonucleotide reductase which is 34,000-MW early protein whose overproduction confers hydroxyurea resistance on reproducing viruses.

  3. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin

    PubMed Central

    Blood, Arlin B.; Tiso, Mauro; Verma, Shilpa T.; Lo, Jennifer; Joshi, Mahesh S.; Azarov, Ivan; Longo, Lawrence D.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Power, Gordon G.

    2009-01-01

    Growing evidence indicates that nitrite, NO2−, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50–80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus. PMID:19028797

  4. Dimethyl Fumarate Induces Glutathione Recycling by Upregulation of Glutathione Reductase

    PubMed Central

    Hoffmann, Christina; Dietrich, Michael; Herrmann, Ann-Kathrin; Schacht, Teresa

    2017-01-01

    Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate (DMF) is an effective oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. DMF activates the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) leading to increased synthesis of the major cellular antioxidant glutathione (GSH) and prominent neuroprotection in vitro. We previously demonstrated that DMF is capable of raising GSH levels even when glutathione synthesis is inhibited, suggesting enhanced GSH recycling. Here, we found that DMF indeed induces glutathione reductase (GSR), a homodimeric flavoprotein that catalyzes GSSG reduction to GSH by using NADPH as a reducing cofactor. Knockdown of GSR using a pool of E. coli RNase III-digested siRNAs or pharmacological inhibition of GSR, however, also induced the antioxidant response rendering it impossible to verify the suspected attenuation of DMF-mediated neuroprotection. However, in cystine-free medium, where GSH synthesis is abolished, pharmacological inhibition of GSR drastically reduced the effect of DMF on glutathione recycling. We conclude that DMF increases glutathione recycling through induction of glutathione reductase. PMID:28116039

  5. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants.

  6. Properties of the arsenate reductase of plasmid R773.

    PubMed

    Gladysheva, T B; Oden, K L; Rosen, B P

    1994-06-14

    Resistance to toxic oxyanions in Escherichia coli is conferred by the ars operon carried on plasmid R773. The gene products of this operon catalyze extrusion of antimonials and arsenicals from cells of E. coli, thus providing resistance to those toxic oxyanions. In addition, resistance to arsenate is conferred by the product of the arsC gene. In this report, purified ArsC protein was shown to catalyze reduction of arsenate to arsenite. The enzymatic activity of the ArsC protein required glutaredoxin as a source of reducing equivalents. Other reductants, including glutathione and thioredoxin, were not effective electron donors. A spectrophotometric assay was devised in which arsenate reduction was coupled to NADPH oxidation. The results obtained with the coupled assay corresponded to those found by direct reduction of radioactive arsenate to arsenite. The only substrate of the reaction was arsenate (Km = 8 mM); other oxyanions including phosphate, sulfate, and antimonate were not reduced. Phosphate and sulfate were weak inhibitors, while the product, arsenite, was a stronger inhibitor (Ki = 0.1 mM). Arsenate reductase activity exhibited a pH optimum of 6.3-6.8. These results indicate that the ArsC protein is a novel reductase, and elucidation of its enzymatic mechanism should be of interest.

  7. Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2.

    PubMed

    French, C E; Nicklin, S; Bruce, N C

    1996-11-01

    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one.

  8. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  9. QTL analysis of ferric reductase activity in the model legume lotus japonicus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological and molecular studies have demonstrated that iron accumulation from the soil into Strategy I plants can be limited by ferric reductase activity. An initial study of Lotus japonicus ecotypes Miyakojima MG-20 and Gifu B-129 identified significant leaf chlorosis and ferric reductase activ...

  10. Biliverdin Reductase Mediates Hypoxia-Induced EMT via PI3-Kinase and Akt

    PubMed Central

    Zeng, Rui; Yao, Ying; Han, Min; Zhao, Xiaoqin; Liu, Xiao-Cheng; Wei, Juncheng; Luo, Yun; Zhang, Juan; Zhou, Jianfeng; Wang, Shixuan; Ma, Ding; Xu, Gang

    2008-01-01

    Chronic hypoxia in the renal parenchyma is thought to induce epithelial-to-mesenchymal transition (EMT), leading to fibrogenesis and ultimately end-stage renal failure. Biliverdin reductase, recently identified as a serine/threonine/tyrosine kinase that may activate phosphatidylinositol 3-kinase (PI3K) and Akt, is upregulated in response to reactive oxygen species that may accompany hypoxia. We investigated this potential role of biliverdin reductase in hypoxia-induced renal tubular EMT. Expression of biliverdin reductase was upregulated in a human proximal tubule cell line (HK-2) cultured in hypoxic conditions (1% O2), and this was accompanied by reduced expression of E-cadherin and increased expression of the mesenchymal marker vimentin. Inhibiting PI3K reversed these changes, consistent with EMT. In normoxic conditions, overexpression of biliverdin reductase promoted similar characteristics of EMT, which were also reversed by inhibiting PI3K. Furthermore, using small interfering RNA (siRNA) to knockdown biliverdin reductase, we demonstrated that the enzyme associates with phosphorylated Akt and mediates the hypoxia-induced EMT phenotype. In vivo, expression of biliverdin reductase increased in the tubular epithelia of 5/6-nephrectomized rats, and immunohistochemistry of serial sections demonstrated similar localization of phosphorylated Akt and biliverdin reductase. In conclusion, biliverdin reductase mediates hypoxia-induced EMT through a PI3K/Akt-dependent pathway. PMID:18184861

  11. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  12. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis

    PubMed Central

    Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.

    2011-01-01

    Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H2AsO4 −), a compound that is toxic to bacteria, to arsenite ion (AsO2 −), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein’s major biological function then disabling the cell’s ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with 15N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX 3CX 3R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins. PMID:21904062

  13. Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis.

    PubMed

    Buchko, Garry W; Hewitt, Stephen N; Napuli, Alberto J; Van Voorhis, Wesley C; Myler, Peter J

    2011-09-01

    Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H(2)AsO(4)(-)), a compound that is toxic to bacteria, to arsenite ion (AsO(2)(-)), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed β-sheet flanked by two α-helices on one side and an α-helical bundle. The α/β domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with (15)N-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX(3)CX(3)R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins.

  14. Physiological studies on the effect of copper nicotinate (Cu-N complex) on the fish, Clarias gariepinus, exposed to mercuric chloride.

    PubMed

    Al-Salahy, M Bassam

    2011-09-01

    Female catfish, Clarias gariepinus, were collected from the Nile River at Assiut region, were divided into 7 groups. The first group was left as control, and the second was treated with mercuric chloride (MC) for 3 weeks following by normal water for 1 week. The third, fourth and fifth groups were provided by MC (150 μg/ l of water). This treatment was continued for 3 weeks. Then, the fish were received CN instead of MC, for 1 week, with 15 and 25 mg CN/100 g wet food. The fifth fish group received diet supplemented with vit E (α-tocopherol) (100 mg/kg wet diet), for 1 week, instead of MC treatment. Vitamin E was used as standard antioxidant drug. Following 3 weeks of normal ambient water, the sixth and seventh aquaria received only CN for 1 week, with 15 and 25 mg CN respectively/100 g wet food, respectively. At the end of the experiment, Samples of liver, kidneys (posterior part), gills (right gills) and ovary were excised. The measurement included the oxidative stress parameters: carbonyl protein and total peroxide and the antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in all selected organs. MC treatment induced harmful effect in fish, probably due to its enhancing effect on reactive oxygen species (ROS) production in fish organs especially the respiratory and osmoregulatory organs namely gills. The result suggests that this gill damage may exert hypoxic case, anoxia for different organs and some Cu excretion resulting in a magnification of ROS overproduction. Also, the observed oxidative stress in ovary tissue of MC-treated fish may affect fish fertility. The addition of CN in fish diets could protect the fish C. gariepinus against MC-induced oxidative damage showing recovery of fish organs. It could suggest that the detoxifying mechanism of action of CN is mainly due to its scavenging activity of free radicals rather than tissue healing.

  15. Alteration of mercuric chloride-induced autoimmune glomerulonephritis in brown-Norway rats by herring oil, evening primrose oil and OKY-046 a selective TXA-synthetase inhibitor.

    PubMed

    Papanikolaou, N

    1987-05-01

    Repeated subcutaneous (SC) injections of mercuric chloride (MC) in Brown Norway (BN) rats induce an autoimmune glomerulonephritis (GN) due to antiglomerular basement membrane (BM) antibody deposition in the glomeruli. The aim of this study was to investigate the effects on MC-induced autoimmune GN of OKY-046, a selective TXA-synthetase inhibitor herring oil (HO), which is rich in eicosapentaenoic acid (EPA) (5.6%) precursor of the three series of prostaglandins (PGs) and of (inactive) thromboxane (TXA3), and evening primrose oil (EPO), which is rich in linoleic acid (LA) (72%) and gamma-linolenic acid (GLNA) (9%), precursors of the one series of PGs, mainly PGE1, and of (inactive) TXA1. The administration of OKY-046 significantly inhibited proteinuria, partially prevented fibrin thrombi (FT) formation in the glomeruli, decreased urinary TXB, enhanced 6ketoPGF excretion and, increased survival rate of the animals from 60% (group receiving only MC) to 86%. However, OKY-046 did not prevent body weight (BW) loss or the development and deposition of IgG in the glomeruli. Increased intake of HO (80 days prior and throughout the experiment) and avoidance of arachidonic acid (AA) intake produced an effect comparable to that of OKY-046 in the rats. Furthermore, HO significantly inhibited the deposition of IgG in the glomeruli, increased the survival rate of the animals to 100% and further enhanced the increased urinary PGE excretion induced by MC. However, HO did not prevent BW loss in the animals. Increased intake of EPO and avoidance of AA intake produced an effect comparable to that of HO. Additionally, EPO completely prevented BW loss induced by MC in these animals. These findings suggest that the metabolites of AA, EPA and GLNA play an important role either in the development or in the modulation of this model of MC induced GN.

  16. Inclusion of Ethyl Acetoacetate Bearing 7-Hydroxycoumarin Dye by β-Cyclodextrin and its Cooperative Assembly with Mercury(II) Ions: Spectroscopic and Molecular Modeling Studies.

    PubMed

    Aliaga, Margarita E; Fierro, Angélica; Uribe, Iván; García-Río, Luis; Cañete, Álvaro

    2016-10-18

    The inclusion of the fluorescent organic dye, ethyl 3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxopropanoate (1) by the host β-cyclodextrin (β-CD), and its response toward mercuric ions (Hg(2+) ), was studied by UV/Vis, fluorescence, and (1) H NMR spectroscopic analyses, mass spectrometry and molecular modeling studies. (1) H NMR measurements together with molecular modeling studies for dye 1 demonstrate that it exhibits two tautomeric forms (keto and enol); however, when the dye is included into the β-CD cavity, the enol form predominates. Moreover, by using spectroscopic and spectrometry techniques, a 1:1 stoichiometry was determined for the complexes formed between dye 1 (enol form) and β-CD, with a binding constant (Kb1 =1.8×10(4)  m(-1) ) and for the dye 1 (keto form)-Hg(2+) (Kb2 =2.3×10(3)  m(-1) ). Interestingly, in the presence of 1-β-CD complex and mercuric ions, a ternary supramolecular system (Hg-1-β-CD complex) was established, with a 1:1:1 stoichiometry and a Kb3 value of 4.3×10(3)  m(-1) , with the keto form of the dye being the only one present in this assembly. The three-component system provides a starting point for the development of novel and directed supramolecular assemblies.

  17. Comparison of finasteride (Proscar), a 5 alpha reductase inhibitor, and various commercial plant extracts in in vitro and in vivo 5 alpha reductase inhibition.

    PubMed

    Rhodes, L; Primka, R L; Berman, C; Vergult, G; Gabriel, M; Pierre-Malice, M; Gibelin, B

    1993-01-01

    Human prostate was used as a source of 5 alpha reductase. Compounds were incubated with an enzyme preparation and [3H]testosterone. [3H]-dihydrotestosterone production was measured to calculate 5 alpha reductase activity. IC50 values (ng/ml) were finasteride = 1; Permixon = 5,600; Talso = 7,000; Strogen Forte = 31,000; Prostagutt = 40,000; and Tadenan = 63,000. Bazoton and Harzol had no activity at concentrations up to 500,000 ng/ml. In castrate rats stimulated with testosterone (T) or dihydrotestosterone (DHT), finasteride, but not Permixon or Bazoton, inhibited T stimulated prostate growth, while none of the three compounds inhibited DHT stimulated growth. These results demonstrate that finasteride inhibits 5 alpha reductase, while Permixon and Bazoton have neither anti-androgen nor 5 alpha reductase inhibitory activity. In addition, in a 7 day human clinical trial, finasteride, but not Permixon or placebo, decreased serum DHT in men, further confirming the lack of 5 alpha reductase inhibition by Permixon. Finasteride and the plant extracts listed above do not inhibit the binding of DHT to the rat prostatic androgen receptor (concentrations to 100 micrograms/ml). Based on these results, it is unlikely that these plant extracts would shrink the prostate by inhibiting androgen action or 5 alpha reductase.

  18. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.

    PubMed

    Bando, Masayasu; Inoue, Takashi; Oka, Mikako; Nakamura, Kayako; Kawai, Kenji; Obazawa, Hajime; Kobayashi, Shizuko; Takehana, Makoto

    2004-12-01

    Ascorbate free radical (AFR) reductase with diaphorase activity was isolated from the rabbit lens soluble fraction to characterise some molecular properties of the enzyme. The isolation was accomplished using gel filtration (Sephadex G-75 superfine or Sephacryl S-200 HR), affinity chromatography (Affi-Gel Blue), native isoelectric focusing and two-dimensional gel electrophoresis. A major soluble AFR reductase was found at an isoelectric point of 8.4 and a molecular weight of 31 kDa, and a few minor enzymes were also detected in the range of pI 7.0-8.6. An unknown N-terminal partial amino acid sequence was determined in one peptide fragment prepared from the major enzyme fraction. From the sequence analysis, it is discussed that the lens soluble AFR reductase may differ from NADH-cytochrome b5 reductase reported to be involved in the membrane-bound AFR reductase activity of mitochondria, microsomes and plasma membrane.

  19. Trypanothione Reductase: A Viable Chemotherapeutic Target for Antitrypanosomal and Antileishmanial Drug Design

    PubMed Central

    Khan, M. Omar F.

    2007-01-01

    Trypanosomiasis and leishmaniasis are two debilitating disease groups caused by parasites of Trypanosoma and Leishmania spp. and affecting millions of people worldwide. A brief outline of the potential targets for rational drug design against these diseases are presented, with an emphasis placed on the enzyme trypanothione reductase. Trypanothione reductase was identified as unique to parasites and proposed to be an effective target against trypanosomiasis and leishmaniasis. The biochemical basis of selecting this enzyme as a target, with reference to the simile and contrast to human analogous enzyme glutathione reductase, and the structural aspects of its active site are presented. The process of designing selective inhibitors for the enzyme trypanothione reductase has been discussed. An overview of the different chemical classes of inhibitors of trypanothione reductase with their inhibitory activities against the parasites and their prospects as future chemotherapeutic agents are briefly revealed. PMID:21901070

  20. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase[S

    PubMed Central

    Cuccioloni, Massimiliano; Mozzicafreddo, Matteo; Spina, Michele; Tran, Chi Nhan; Falconi, Maurizio; Eleuteri, Anna Maria; Angeletti, Mauro

    2011-01-01

    Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (Ki in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration. PMID:21357570

  1. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    PubMed

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  2. Polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTR), methionine synthase reductase (MTRR), and thymidylate synthase (TYMS) in multiple myeloma risk.

    PubMed

    Lima, Carmen S P; Ortega, Manoela M; Ozelo, Margareth C; Araujo, Renato C; De Souza, Cármino A; Lorand-Metze, Irene; Annichino-Bizzacchi, Joyce M; Costa, Fernando F

    2008-03-01

    We tested whether the polymorphisms of the methylenetetrahydrofolate reductase gene, MTHFR C677T and A1298C, the methionine synthase gene, MTR A2756G, the methionine synthase reductase gene, MTRR A66G, and the thymidylate synthase gene, TYMS 2R-->3R, involved in folate and methionine metabolism, altered the risk for multiple myeloma (MM). Genomic DNA from 123MM patients and 188 controls was analysed by polymerase chain reaction and restriction digestion for the polymorphism analyses. The frequency of the MTR 2756 AG plus GG genotype was higher in patients than in controls (39.8% versus 23.4%, P=0.001). Individual carriers of the variant allele G had a 2.31 (95% CI: 1.38-3.87)-fold increased risk for MM compared with others. In contrast, similar frequencies of the MTHFR, the MTRR and the TYMS genotypes were seen in patients and controls. These results suggest, for the first time, a role for the MTR A2756G polymorphism in MM risk in our country, but should be confirmed by large-scale epidemiological studies with patients and controls age matched.

  3. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    PubMed

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  4. Curcumin is a tight-binding inhibitor of the most efficient human daunorubicin reductase--Carbonyl reductase 1.

    PubMed

    Hintzpeter, Jan; Hornung, Jan; Ebert, Bettina; Martin, Hans-Jörg; Maser, Edmund

    2015-06-05

    Curcumin is a major component of the plant Curcuma longa L. It is traditionally used as a spice and coloring in foods and is an important ingredient in curry. Curcuminoids have anti-oxidant and anti-inflammatory properties and gained increasing attention as potential neuroprotective and cancer preventive compounds. In the present study, we report that curcumin is a potent tight-binding inhibitor of human carbonyl reductase 1 (CBR1, Ki=223 nM). Curcumin acts as a non-competitive inhibitor with respect to the substrate 2,3-hexandione as revealed by plotting IC50-values against various substrate concentrations and most likely as a competitive inhibitor with respect to NADPH. Molecular modeling supports the finding that curcumin occupies the cofactor binding site of CBR1. Interestingly, CBR1 is one of the most effective human reductases in converting the anthracycline anti-tumor drug daunorubicin to daunorubicinol. The secondary alcohol metabolite daunorubicinol has significantly reduced anti-tumor activity and shows increased cardiotoxicity, thereby limiting the clinical use of daunorubicin. Thus, inhibition of CBR1 may increase the efficacy of daunorubicin in cancer tissue and simultaneously decrease its cardiotoxicity. Western-blots demonstrated basal expression of CBR1 in several cell lines. Significantly less daunorubicin reduction was detected after incubating A549 cell lysates with increasing concentrations of curcumin (up to 60% less with 50 μM curcumin), suggesting a beneficial effect in the co-treatment of anthracycline anti-tumor drugs together with curcumin.

  5. Thioredoxin-thioredoxin reductase system of Streptomyces clavuligerus: sequences, expression, and organization of the genes.

    PubMed Central

    Cohen, G; Yanko, M; Mislovati, M; Argaman, A; Schreiber, R; Av-Gay, Y; Aharonowitz, Y

    1993-01-01

    The genes that encode thioredoxin and thioredoxin reductase of Streptomyces clavuligerus were cloned, and their DNA sequences were determined. Previously, we showed that S. clavuligerus possesses a disulfide reductase with broad substrate specificity that biochemically resembles the thioredoxin oxidoreductase system and may play a role in the biosynthesis of beta-lactam antibiotics. It consists consists of two components, a 70-kDa NADPH-dependent flavoprotein disulfide reductase with two identical subunits and a 12-kDa heat-stable protein general disulfide reductant. In this study, we found, by comparative analysis of their predicted amino acid sequences, that the 35-kDa protein is in fact thioredoxin reductase; it shares 48.7% amino acid sequence identity with Escherichia coli thioredoxin reductase, the 12-kDa protein is thioredoxin, and it shares 28 to 56% amino acid sequence identity with other thioredoxins. The streptomycete thioredoxin reductase has the identical cysteine redox-active region--Cys-Ala-Thr-Cys--and essentially the same flavin adenine dinucleotide- and NADPH dinucleotide-binding sites as E. coli thioredoxin reductase and is partially able to accept E. coli thioredoxin as a substrate. The streptomycete thioredoxin has the same cysteine redox-active segment--Trp-Cys-Gly-Pro-Cys--that is present in virtually all eucaryotic and procaryotic thioredoxins. However, in vivo it is unable to donate electrons to E. coli methionine sulfoxide reductase and does not serve as a substrate in vitro for E. coli thioredoxin reductase. The S. clavuligerus thioredoxin (trxA) and thioredoxin reductase (trxB) genes are organized in a cluster. They are transcribed in the same direction and separated by 33 nucleotides. In contrast, the trxA and trxB genes of E. coli, the only other organism in which both genes have been characterized, are physically widely separated. Images PMID:8349555

  6. Flavin reductase: sequence of cDNA from bovine liver and tissue distribution.

    PubMed Central

    Quandt, K S; Hultquist, D E

    1994-01-01

    Flavin reductase catalyzes electron transfer from reduced pyridine nucleotides to methylene blue or riboflavin, and this catalysis is the basis of the therapeutic use of methylene blue or riboflavin in the treatment of methemoglobinemia. A cDNA for a mammalian flavin reductase has been isolated and sequenced. Degenerate oligonucleotides, with sequences based on amino acid sequences of peptides derived from bovine erythrocyte flavin reductase, were used as primers in PCR to selectively amplify a partial cDNA that encodes the bovine reductase. The template used in the PCR was first strand cDNA synthesized from bovine liver total RNA using oligo(dT) primers. A PCR product was used as a specific probe to screen a bovine liver cDNA library. The sequence determined from two overlapping clones contains an open reading frame of 621 nucleotides and encodes 206 amino acids. The amino acid sequence deduced from the bovine liver flavin reductase cDNA matches the amino acid sequences determined for erythrocyte reductase-derived peptides, and the predicted molecular mass of 22,001 Da for the liver reductase agrees well with the molecular mass of 21,994 Da determined for the erythrocyte reductase by electrospray mass spectrometry. The amino acid sequence at the N terminus of the reductase has homology to sequences of pyridine nucleotide-dependent enzymes, and the predicted secondary structure, beta alpha beta, resembles the common nucleotide-binding structural motif. RNA blot analysis indicates a single 1-kilobase reductase transcript in human heart, kidney, liver, lung, pancreas, placenta, and skeletal muscle. Images PMID:7937764

  7. Effects of various compounds on lipid peroxidation mediated by detergent-solubilized rat liver NADPH-cytochrome C reductase.

    PubMed

    Kamataki, T; Sugita, O; Naminohira, S; Kitagawa, H

    1978-12-01

    A reconstituted lipid peroxidation system containing NADPH-cytochrome c reductase isolated from detergent-solubilized rat liver microsomes was used to determine the effects of several compounds, including drugs, on the lipid peroxidation activity. EDTA and ferrous ion were essential requirements for reconstitution of the activity. The addition of 1,10-phenanthroline to the system containing both EDTA and ferrous ion further enhanced the activity. Pyrocatecol, thymol, p-aminophenol, imipramine, p-chloromercuribenzoate (PCMB) and alpha-tocopherol exhibited strong inhibition, aniline, N-monomethylaniline, aminopyrine, benzphetamine, SKF 525-A and NADP exhibited moderate inhibition, and phenol, benzoic acid, acetanilide and nicotinamide exhibited less or no inhibition at the concentrations lower than 1000 micron M. Metal ions such as Hg+, Hg2+, Co2+, Cu2+, Mn2+ and U6+ inhibited lipid peroxidation strongly. In addition, Cd2+, St2+ and Ca2+ exhibited less potent to moderate inhibition, and Ba2+ and Mg2+ were without effects on the activity. Among sulfhydryl compounds tested, dithiothreitol inhibited lipid peroxidation to a greater extent than did the other three compounds, glutathione, cysteine and mercaptoethanol.

  8. B-vitamins, methylenetetrahydrofolate reductase (MTHFR) and hypertension.

    PubMed

    Ward, Mary; Wilson, Carol P; Strain, J J; Horigan, Geraldine; Scott, John M; McNulty, Helene

    2011-07-01

    Hypertension is a leading risk factor for cardiovascular disease (CVD) and stroke. A common polymorphism in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR), previously identified as the main genetic determinant of elevated homocysteine concentration and also recognized as a risk factor for CVD, appears to be independently associated with hypertension. The B-vitamin riboflavin is required as a cofactor by MTHFR and recent evidence suggests it may have a role in modulating blood pressure, specifically in those with the homozygous mutant MTHFR 677 TT genotype. If studies confirm that this genetic predisposition to hypertension is correctable by low-dose riboflavin, the findings could have important implications for the management of hypertension given that the frequency of this polymorphism ranges from 3 to 32 % worldwide.

  9. A ribonucleotide reductase inhibitor with deoxyribonucleoside-reversible cytotoxicity.

    PubMed

    Crona, Mikael; Codó, Paula; Jonna, Venkateswara Rao; Hofer, Anders; Fernandes, Aristi P; Tholander, Fredrik

    2016-11-01

    Ribonucleotide Reductase (RNR) is the sole enzyme that catalyzes the reduction of ribonucleotides into deoxyribonucleotides. Even though RNR is a recognized target for antiproliferative molecules, and the main target of the approved drug hydroxyurea, few new leads targeted to this enzyme have been developed. We have evaluated a recently identified set of RNR inhibitors with respect to inhibition of the human enzyme and cellular toxicity. One compound, NSC73735, is particularly interesting; it is specific for leukemia cells and is the first identified compound that hinders oligomerization of the mammalian large RNR subunit. Similar to hydroxyurea, it caused a disruption of the cell cycle distribution of cultured HL-60 cells. In contrast to hydroxyurea, the disruption was reversible, indicating higher specificity. NSC73735 thus defines a potential lead candidate for RNR-targeted anticancer drugs, as well as a chemical probe with better selectivity for RNR inhibition than hydroxyurea.

  10. Crystal structure of isoflavone reductase from alfalfa (Medicago sativa L.).

    PubMed

    Wang, Xiaoqiang; He, Xianzhi; Lin, Jianqiao; Shao, Hui; Chang, Zhenzhan; Dixon, Richard A

    2006-05-19

    Isoflavonoids play important roles in plant defense and exhibit a range of mammalian health-promoting activities. Isoflavone reductase (IFR) specifically recognizes isoflavones and catalyzes a stereospecific NADPH-dependent reduction to (3R)-isoflavanone. The crystal structure of Medicago sativa IFR with deletion of residues 39-47 has been determined at 1.6A resolution. Structural analysis, molecular modeling and docking, and comparison with the structures of other NADPH-dependent enzymes, defined the putative binding sites for co-factor and substrate and potential key residues for enzyme activity and substrate specificity. Further mutagenesis has confirmed the role of Lys144 as a catalytic residue. This study provides a structural basis for understanding the enzymatic mechanism and substrate specificity of IFRs as well as the functions of IFR-like proteins.

  11. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  12. Thioredoxin reductase 1 suppresses adipocyte differentiation and insulin responsiveness

    PubMed Central

    Peng, Xiaoxiao; Giménez-Cassina, Alfredo; Petrus, Paul; Conrad, Marcus; Rydén, Mikael; Arnér, Elias S. J.

    2016-01-01

    Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1−/−) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation. PMID:27346647

  13. B-factor Analysis and Conformational Rearrangement of Aldose Reductase.

    PubMed

    Balendiran, Ganesaratnam K; Pandian, J Rajendran; Drake, Evin; Vinayak, Anubhav; Verma, Malkhey; Cascio, Duilio

    2014-01-01

    The NADPH-dependent reduction of glucose reaction that is catalyzed by Aldose Reductase (AR) follows a sequential ordered kinetic mechanism in which the co-factor NADPH binds to the enzyme prior to the aldehyde substrate. The kinetic/structural experiments have found a conformational change involving a hinge-like movement of a surface loop (residues 213-224) which is anticipated to take place upon the binding of the diphosphate moiety of NADPH. The reorientation of this loop, expected to permit the release of NADP(+), represents the rate-limiting step of the catalytic mechanism. This study reveals: 1) The Translation/Libration/Screw (TLS) analysis of absolute B-factors of apo AR crystal structures indicates that the 212-224 loop might move as a rigid group. 2) Residues that make the flexible loop slide in the AR binary and ternary complexes. 3) The normalized B-factors separate this segment into three different clusters with fewer residues.

  14. Purification and characterization of 5-ketofructose reductase from Erwinia citreus.

    PubMed Central

    Schrimsher, J L; Wingfield, P T; Bernard, A; Mattaliano, R; Payton, M A

    1988-01-01

    5-Ketofructose reductase [D(-)fructose:(NADP+) 5-oxidoreductase] was purified to homogeneity from Erwinia citreus and demonstrated to catalyse the reversible NADPH-dependent reduction of 5-ketofructose (D-threo-2,5-hexodiulose) to D-fructose. The enzyme appeared as a single species upon analyses by SDS/polyacrylamide-gel electrophoresis and isoelectric focusing with an apparent relative molecular mass of 40,000 and an isoelectric point of 4.4. The amino acid composition of the enzyme and the N-terminal sequence of the first 39 residues are described. The steady-state kinetic mechanism was an ordered one with NADPH binding first to the enzyme and then to 5-ketofructose, and the order of product release was D-fructose followed by NADP+. The reversible nature of the reaction offers the possibility of using this enzyme for the determination of D-fructose. Images Fig. 1. Fig. 2. PMID:3178725

  15. Mechanism of inhibition of ribonucleotide reductase with motexafin gadolinium (MGd)

    SciTech Connect

    Zahedi Avval, Farnaz; Berndt, Carsten; Pramanik, Aladdin; Holmgren, Arne

    2009-02-13

    Motexafin gadolinium (MGd) is an expanded porphyrin anticancer agent which selectively targets tumor cells and works as a radiation enhancer, with promising results in clinical trials. Its mechanism of action is oxidation of intracellular reducing molecules and acting as a direct inhibitor of mammalian ribonucleotide reductase (RNR). This paper focuses on the mechanism of inhibition of RNR by MGd. Our experimental data present at least two pathways for inhibition of RNR; one precluding subunits oligomerization and the other direct inhibition of the large catalytic subunit of the enzyme. Co-localization of MGd and RNR in the cytoplasm particularly in the S-phase may account for its inhibitory properties. These data can elucidate an important effect of MGd on the cancer cells with overproduction of RNR and its efficacy as an anticancer agent and not only as a general radiosensitizer.

  16. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  17. Go green: the anti-inflammatory effects of biliverdin reductase.

    PubMed

    Wegiel, Barbara; Otterbein, Leo E

    2012-01-01

    Biliverdin (BV) has emerged as a cytoprotective and important anti-inflammatory molecule. Conversion of BV to bilirubin (BR) is catalyzed by biliverdin reductase (BVR) and is required for the downstream signaling and nuclear localization of BVR. Recent data by others and us make clear that BVR is a critical regulator of innate immune responses resulting from acute insult and injury and moreover, that a lack of BVR results in an enhanced proinflammatory phenotype. In macrophages, BVR is regulated by its substrate BV which leads to activation of the PI3K-Akt-IL-10 axis and inhibition of TLR4 expression via direct binding of BVR to the TLR4 promoter. In this review, we will summarize recent findings on the role of BVR and the bile pigments in inflammation in context with its activity as an enzyme, receptor, and transcriptional regulator.

  18. Identification of imine reductase-specific sequence motifs.

    PubMed

    Fademrecht, Silvia; Scheller, Philipp N; Nestl, Bettina M; Hauer, Bernhard; Pleiss, Jürgen

    2016-05-01

    Chiral amines are valuable building blocks for the production of a variety of pharmaceuticals, agrochemicals and other specialty chemicals. Only recently, imine reductases (IREDs) were discovered which catalyze the stereoselective reduction of imines to chiral amines. Although several IREDs were biochemically characterized in the last few years, knowledge of the reaction mechanism and the molecular basis of substrate specificity and stereoselectivity is limited. To gain further insights into the sequence-function relationships, the Imine Reductase Engineering Database (www.IRED.BioCatNet.de) was established and a systematic analysis of 530 putative IREDs was performed. A standard numbering scheme based on R-IRED-Sk was introduced to facilitate the identification and communication of structurally equivalent positions in different proteins. A conservation analysis revealed a highly conserved cofactor binding region and a predominantly hydrophobic substrate binding cleft. Two IRED-specific motifs were identified, the cofactor binding motif GLGxMGx(5 )[ATS]x(4) Gx(4) [VIL]WNR[TS]x(2) [KR] and the active site motif Gx[DE]x[GDA]x[APS]x(3){K}x[ASL]x[LMVIAG]. Our results indicate a preference toward NADPH for all IREDs and explain why, despite their sequence similarity to β-hydroxyacid dehydrogenases (β-HADs), no conversion of β-hydroxyacids has been observed. Superfamily-specific conservations were investigated to explore the molecular basis of their stereopreference. Based on our analysis and previous experimental results on IRED mutants, an exclusive role of standard position 187 for stereoselectivity is excluded. Alternatively, two standard positions 139 and 194 were identified which are superfamily-specifically conserved and differ in R- and S-selective enzymes.

  19. Evidence for a Hexaheteromeric Methylenetetrahydrofolate Reductase in Moorella thermoacetica

    PubMed Central

    Mock, Johanna; Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2014-01-01

    Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown. PMID:25002540

  20. The modulation of carbonyl reductase 1 by polyphenols.

    PubMed

    Boušová, Iva; Skálová, Lenka; Souček, Pavel; Matoušková, Petra

    2015-01-01

    Carbonyl reductase 1 (CBR1), an enzyme belonging to the short-chain dehydrogenases/reductases family, has been detected in all human tissues. CBR1 catalyzes the reduction of many xenobiotics, including important drugs (e.g. anthracyclines, nabumetone, bupropion, dolasetron) and harmful carbonyls and quinones. Moreover, it participates in the metabolism of a number of endogenous compounds and it may play a role in certain pathologies. Plant polyphenols are not only present in many human food sources, but are also a component of many popular dietary supplements and herbal medicines. Many studies reviewed herein have demonstrated the potency of certain flavonoids, stilbenes and curcuminoids in the inhibition of the activity of CBR1. Interactions of these polyphenols with transcriptional factors, which regulate CBR1 expression, have also been reported in several studies. As CBR1 plays an important role in drug metabolism as well as in the protection of the organism against potentially harmful carbonyls, the modulation of its expression/activity may have significant pharmacological and/or toxicological consequences. Some polyphenols (e.g. luteolin, apigenin and curcumin) have been shown to be very potent CBR1 inhibitors. The inhibition of CBR1 seems useful regarding the increased efficacy of anthracycline therapy, but it may cause the worse detoxification of reactive carbonyls. Nevertheless, all known information about the interactions of polyphenols with CBR1 have only been based on the results of in vitro studies. With respect to the high importance of CBR1 and the frequent consumption of polyphenols, in vivo studies would be very helpful for the evaluation of risks/benefits of polyphenol interactions with CBR1.

  1. d-Apiose Reductase from Aerobacter aerogenes1

    PubMed Central

    Neal, Donna L.; Kindel, Paul K.

    1970-01-01

    A strain of Aerobacter aerogenes PRL-R3 has been isolated which utilizes d-apiose as its sole source of carbon. A new enzyme, d-apiose reductase, was discovered in this strain. The enzyme was not present when the strain was grown on d-glucose. d-Apiose reductase catalyzes the nicotinamide adenine dinucleotide-dependent interconversion of d-apiose and d-apiitol. The enzyme is specific for d-apiose and d-apiitol, with a few possible exceptions. The Km for d-apiose is 0.02 m. The Km for d-apiitol is 0.01 m. The enzyme is almost completely specific for the reduced and oxidized forms of nicotinamide adenine dinucleotide. When cell-free extracts were centrifuged at 100,000 × g for 1 hr, the enzyme remained in solution. Optimal activity for the reduction of d-apiose was obtained at pH 7.5 in glycylglycine buffer, whereas for the oxidation of d-apiitol it was obtained at pH 10.5 in glycine buffer. Enzymatic reduction of d-apiose was not appreciably affected by the presence of 0.02 m ethylenediaminetetraacetate. Paper chromatography and specific spray reagents were used to identify d-apiitol and d-apiose as the products of this reversible reaction. d-Apiose and d-apiitol did not serve as substrates for ribitol dehydrogenase and d-arabitol dehydrogenase from A. aerogenes PRL-R3. PMID:4314545

  2. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    PubMed

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  3. Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase

    PubMed Central

    Landry, Aaron P.; Cheng, Zishuo; Ding, Huangen

    2015-01-01

    Human mitochondrial outer membrane protein mitoNEET is a newly discovered target of type II diabetes drug pioglitazone. Structurally, mitoNEET is a homodimer with each monomer containing an N-terminal transmembrane alpha helix tethered to mitochondrial outer membrane and a C-terminal cytosolic domain hosting a redox active [2Fe-2S] cluster. Genetic studies have shown that mitoNEET has a central role in regulating energy metabolism in mitochondria. However, specific function of mitoNEET remains largely elusive. Here we find that the mitoNEET [2Fe-2S] clusters can be efficiently reduced by Escherichia coli thioredoxin reductase and glutathione reductase in an NADPH-dependent reaction. Purified human glutathione reductase has the same activity as E. coli thioredoxin reductase and glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters. However, rat thioredoxin reductase, a human thioredoxin reductase homolog that contains selenocysteine in the catalytic center, has very little or no activity to reduce the mitoNEET [2Fe-2S] clusters. N-ethylmaleimide, a potent thiol modifier, completely inhibits human glutathione reductase to reduce the mitoNEET [2Fe-2S] clusters, indicating that the redox active disulfide in the catalytic center of human glutathione reductase may be directly involved in reducing the mitoNEET [2Fe-2S] clusters. Additional studies reveal that the reduced mitoNEET [2Fe-2S] clusters in mouse heart cell extracts can be reversibly oxidized by hydrogen peroxide without disruption of the clusters, suggesting that the mitoNEET [2Fe-2S] clusters may undergo redox transition to regulate energy metabolism in mitochondria in response to oxidative signals. PMID:25645953

  4. 40 CFR 63.11647 - What are my monitoring requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section, you must establish operating parameter ranges for mercuric ion and chloride ion concentrations or... section respectively. (1) Establish the mercuric ion concentration and chloride ion concentration ranges for each calomel-based mercury control system. The mercuric ion concentration and chloride...

  5. 40 CFR 63.11647 - What are my monitoring requirements?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section, you must establish operating parameter ranges for mercuric ion and chloride ion concentrations or... section respectively. (1) Establish the mercuric ion concentration and chloride ion concentration ranges for each calomel-based mercury control system. The mercuric ion concentration and chloride...

  6. Steroidal pyrazolines evaluated as aromatase and quinone reductase-2 inhibitors for chemoprevention of cancer.

    PubMed

    Abdalla, Mohamed M; Al-Omar, Mohamed A; Bhat, Mashooq A; Amr, Abdel-Galil E; Al-Mohizea, Abdullah M

    2012-05-01

    The aromatase and quinone reductase-2 inhibition of synthesized heterocyclic pyrazole derivatives fused with steroidal structure for chemoprevention of cancer is reported herein. All compounds were interestingly less toxic than the reference drug (Cyproterone(®)). The aromatase inhibitory activities of these compounds were much more potent than the lead compound resveratrol, which has an IC(50) of 80 μM. In addition, all the compounds displayed potent quinone reductase-2 inhibition. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). The aromatase and quinone reductase-2 inhibitors resulting from this study have potential value in the treatment and prevention of cancer.

  7. Comparison of the Stereospecificity and Immunoreactivity of NADH-Ferricyanide Reductases in Plant Membranes.

    PubMed Central

    Fredlund, K. M.; Struglics, A.; Widell, S.; Askerlund, P.; Kader, J. C.; Moller, I. M.

    1994-01-01

    The substrate stereospecificity of NADH-ferricyanide reductase activities in the inner mitochondrial membrane and peroxisomal membrane of potato (Solanum tuberosum L.) tubers, spinach (Spinacea oleracea L.) leaf plasma membrane, and red beetroot (Beta vulgaris L.) tonoplast were all specific for the [beta]-hydrogen of NADH, whereas the reductases in wheat root (Triticum aestivum L.) endoplasmic reticulum and potato tuber outer mitochondrial membrane were both [alpha]-hydrogen specific. In all isolated membrane fractions one or several polypeptides with an apparent size of 45 to 55 kD cross-reacted with antibodies raised against a microsomal NADH-ferricyanide reductase on western blots. PMID:12232391

  8. Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum.

    PubMed Central

    Bokranz, M; Bäumner, G; Allmansberger, R; Ankel-Fuchs, D; Klein, A

    1988-01-01

    The genes coding for methyl coenzyme M reductase were cloned from a genomic library of Methanobacterium thermoautotrophicum Marburg into Escherichia coli by using plasmid expression vectors. When introduced into E. coli, the reductase genes were expressed, yielding polypeptides identical in size to the three known subunits of the isolated enzyme, alpha, beta, and gamma. The polypeptides also reacted with the antibodies raised against the respective enzyme subunits. In M. thermoautotrophicum, the subunits are encoded by a gene cluster whose transcript boundaries were mapped. Sequence analysis revealed two more open reading frames of unknown function located between two of the methyl coenzyme M reductase genes. Images PMID:2448287

  9. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.

    PubMed

    Bogs, Jochen; Downey, Mark O; Harvey, John S; Ashton, Anthony R; Tanner, Gregory J; Robinson, Simon P

    2005-10-01

    Proanthocyanidins (PAs), also called condensed tannins, can protect plants against herbivores and are important quality components of many fruits. Two enzymes, leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR), can produce the flavan-3-ol monomers required for formation of PA polymers. We isolated and functionally characterized genes encoding both enzymes from grapevine (Vitis vinifera L. cv Shiraz). ANR was encoded by a single gene, but we found two highly related genes encoding LAR. We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion. Grape flowers had high levels of PA, and accumulation continued in skin and seeds from fruit set until the onset of ripening. VvANR was expressed throughout early flower and berry development, with expression increasing after fertilization. It was expressed in berry skin and seeds until the onset of ripening, and in expanding leaves. The genes encoding LAR were expressed in developing fruit, particularly in seeds, but had low expression in leaves. The two LAR genes had different patterns of expression in skin and seeds. During grape ripening, PA levels decreased in both skin and seeds, and expression of genes encoding ANR and LAR were no longer detected. The results indicate that PA accumulation occurs early in grape development and is completed when ripening starts. Both ANR and LAR contribute to PA synthesis in fruit, and the tissue and temporal-specific regulation of the genes encoding ANR and LAR determines PA accumulation and composition during grape berry development.

  10. Inhibition by mercuric chloride of Na-K-2Cl cotransport activity in rectal gland plasma membrane vesicles isolated from Squalus acanthias.

    PubMed

    Kinne-Saffran, E; Kinne, R K

    2001-02-09

    The rectal gland of the dogfish shark is a model system for active transepithelial transport of chloride. It has been shown previously that mercuric chloride, one of the toxic environmental pollutants, inhibits chloride secretion in this organ. In order to investigate the mechanism of action of HgCl(2) at a membrane-molecular level, plasma membrane vesicles were isolated from the rectal gland and the effect of mercury on the activity of the Na-K-2Cl cotransporter was investigated in isotope flux studies. During a 30 s exposure HgCl(2) inhibited cotransport activity in a dose-dependent manner with an apparent K(i) of approx. 50 microM. The inhibition was complete after 15 s, partly reversible by dilution of the incubation medium and completely attenuated upon addition of reduced glutathione. The extent of inhibition by mercury depended on the ionic composition of the medium. The sensitivity of the cotransporter was highest when only the high affinity binding sites for sodium and chloride were saturated. Organic mercurials such as p-chloromercuribenzoic acid and p-chloromercuriphenylsulfonic acid at 100 microM did not inhibit the cotransporter, similarly exposure of the vesicles to 10 mM H(2)O(2) or 1 mM dithiothreitol for 30 min at 15 degrees C did not change cotransport activity. Transport activity was, however, reduced by 45.9+/-2.5% after an incubation with 3 mM N-ethylmaleimide for 20 min. Blocking free amino groups by N-hydroxysuccinimide or biotinamidocapronate-N-hydroxysulfosuccinimide had no effect. Investigations on the sidedness of the plasma membrane vesicles, employing the asymmetry of the (Na+K)-ATPase, demonstrated a right-side-out orientation in which the former extracellular face of the membrane is exposed to the incubation medium. In addition, extracellular mercury (5x10(-5) M) inhibited bumetanide-sensitive rubidium uptake into T84 cells by 48.5+/-7.1% after a 2 min incubation period. This inhibition was reversible in a manner similar to that

  11. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    NASA Astrophysics Data System (ADS)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  12. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus.

    PubMed

    Sann, R; Kostka, S; Friedrich, B

    1994-01-01

    Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd1-type nitrite reductase. It appeared to be a dimer of kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.

  13. Inhibition of carbonyl reductase activity in pig heart by alkyl phenyl ketones.

    PubMed

    Imamura, Yorishige; Narumi, Rika; Shimada, Hideaki

    2007-02-01

    The inhibitory effects of alkyl phenyl ketones on carbonyl reductase activity were examined in pig heart. In this study, carbonyl reductase activity was estimated as the ability to reduce 4-benzoylpyridine to S(-)-alpha-phenyl-4-pyridylmethanol in the cytosolic fraction from pig heart (pig heart cytosol). The order of their inhibitory potencies was hexanophenone > valerophenone > heptanophenone > butyrophenone > propiophenone. The inhibitory potencies of acetophenone and nonanophenone were much lower. A significant relationship was observed between Vmax/Km values for the reduction of alkyl phenyl ketones and their inhibitory potencies for carbonyl reductase activity in pig heart cytosol. Furthermore, hexanophenone was a competitive inhibitor for the enzyme activity. These results indicate that several alkyl phenyl ketones including hexanophenone inhibit carbonyl reductase activity in pig heart cytosol, by acting as substrate inhibitors.

  14. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line

    SciTech Connect

    Kaufman, R.J.; Schimke, R.T.

    1981-12-01

    During stepwise increases in the methotrexate concentration in culture medium, the authors selected Chinese hamster ovary cells that contained elevated dihydrofolate reductase levels which were proportional to the number of dihydrofolate reductase gene copies (i.e., gene amplification). The authors studied the dihydrofolate reductase levels in individual cells that underwent the initial steps of methotrexate resistance by using the fluorescence-activated cell sorter technique. Such cells constituted a heterogeneous population with differing dihydrofolate reductase levels, and they characteristically lost the elevated enzyme levels when they were grown in the absence of methotrexate. The progeny of individual cells with high enzyme levels behaved differently and could lose all or variable numbers of the amplified genes.

  15. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase : physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase.

    PubMed

    Suzuki, A; Oaks, A; Jacquot, J P; Vidal, J; Gadal, P

    1985-06-01

    A non-heme iron containing protein which bears an antigenic similarity to ferredoxin from spinach leaves (Spinacia oleracea L.) has been identified in extracts prepared from young roots of maize (Zea mays L., hybrid W64A x W182E). The ferredoxin-like root electron carrier could substitute for ferredoxin in a cytochrome c reduction system in which pyridine nucleotide (NADPH) reduces the root electron carrier in a reaction catalyzed by ferredoxin-NADP(+) reductase (EC 1.6.7.1) from spinach leaves. However, the root electron carrier did not mediate the photoreduction of NADP(+) in an illuminated reconstituted chloroplast system.A pyridine nucleotide reductase which shares identical immunological determinants with the ferredoxin-NADP(+) reductase from spinach leaves has also been characterized from maize roots. Root pyridine nucleotide reductase mediated the transfer of electrons from either NADPH or NADH to cytochrome c via ferredoxin or the root electron carrier. Under chemical reducing conditions with sodium dithionite and bicarbonate, the ferredoxin-like root electron carrier served as an electron carrier for the ferredoxin-requiring glutamate synthase (EC 1.4.7.1) and nitrite reductase (EC 1.7.7.1) obtained from maize roots or leaves. In the presence of root pyridine nucleotide reductase and root electron carrier, either NADPH or NADH served as the primary electron donor for glutamate synthesis in extracts from maize roots or leaves. The electron transport system originating with NADH or NADPH, was, however, not able to mediate the reduction of NO(2) (-) to NH(3).

  16. Ion colliders

    SciTech Connect

    Fischer, W.

    2011-12-01

    Ion colliders are research tools for high-energy nuclear physics, and are used to test the theory of Quantum Chromo Dynamics (QCD). The collisions of fully stripped high-energy ions create matter of a temperature and density that existed only microseconds after the Big Bang. Ion colliders can reach higher densities and temperatures than fixed target experiments although at a much lower luminosity. The first ion collider was the CERN Intersecting Storage Ring (ISR), which collided light ions [77Asb1, 81Bou1]. The BNL Relativistic Heavy Ion Collider (RHIC) is in operation since 2000 and has collided a number of species at numerous energies. The CERN Large Hadron Collider (LHC) started the heavy ion program in 2010. Table 1 shows all previous and the currently planned running modes for ISR, RHIC, and LHC. All three machines also collide protons, which are spin-polarized in RHIC. Ion colliders differ from proton or antiproton colliders in a number of ways: the preparation of the ions in the source and the pre-injector chain is limited by other effects than for protons; frequent changes in the collision energy and particle species, including asymmetric species, are typical; and the interaction of ions with each other and accelerator components is different from protons, which has implications for collision products, collimation, the beam dump, and intercepting instrumentation devices such a profile monitors. In the preparation for the collider use the charge state Z of the ions is successively increased to minimize the effects of space charge, intrabeam scattering (IBS), charge change effects (electron capture and stripping), and ion-impact desorption after beam loss. Low charge states reduce space charge, intrabeam scattering, and electron capture effects. High charge states reduce electron stripping, and make bending and acceleration more effective. Electron stripping at higher energies is generally more efficient. Table 2 shows the charge states and energies in the

  17. Structure of Coenzyme A-Disulfide Reductase from Staphylococcus aureus at 1.54 Angstrom Resolution

    SciTech Connect

    Mallett,T.; Wallen, J.; Karplus, P.; Sakai, H.; Tsukihara, T.; Claiborne, A.

    2006-01-01

    Coenzyme A (CoASH) replaces glutathione as the major low molecular weight thiol in Staphylococcus aureus; it is maintained in the reduced state by coenzyme A-disulfide reductase (CoADR), a homodimeric enzyme similar to NADH peroxidase but containing a novel Cys43-SSCoA redox center. The crystal structure of S. aureus CoADR has been solved using multiwavelength anomalous dispersion data and refined at a resolution of 1.54 {angstrom}. The resulting electron density maps define the Cys43-SSCoA disulfide conformation, with Cys43-S{gamma} located at the flavin si face, 3.2 {angstrom} from FAD-C4aF, and the CoAS- moiety lying in an extended conformation within a cleft at the dimer interface. A well-ordered chloride ion is positioned adjacent to the Cys43-SSCoA disulfide and receives a hydrogen bond from Tyr361'-OH of the complementary subunit, suggesting a role for Tyr361' as an acid-base catalyst during the reduction of CoAS-disulfide. Tyr419'-OH is located 3.2 {angstrom} from Tyr361'-OH as well and, based on its conservation in known functional CoADRs, also appears to be important for activity. Identification of residues involved in recognition of the CoAS-disulfide substrate and in formation and stabilization of the Cys43-SSCoA redox center has allowed development of a CoAS-binding motif. Bioinformatics analyses indicate that CoADR enzymes are broadly distributed in both bacterial and archaeal kingdoms, suggesting an even broader significance for the CoASH/CoAS-disulfide redox system in prokaryotic thiol/disulfide homeostasis.

  18. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Lin, Y.W.; Robinson, H.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Lei, L.; Lu, Y.

    2010-07-28

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN?-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  19. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Y Lin; N Yeung; Y Gao; K Miner; L Lei; H Robinson; Y Lu

    2011-12-31

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN{sup -}-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  20. Biochemical characterization of recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) from Leucaena leucocephala.

    PubMed

    Sonawane, Prashant; Vishwakarma, Rishi Kishore; Khan, Bashir M

    2013-07-01

    Recombinant cinnamoyl CoA reductase 1 (Ll-CCRH1) protein from Leucaena leucocephala was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Optimum pH for forward and reverse reaction was found to be 6.5 and 7.8 respectively. The enzyme was most stable around pH 6.5 at 25°C for 90 min. The enzyme showed Kcat/Km for feruloyl, caffeoyl, sinapoyl, coumaroyl CoA, coniferaldehyde and sinapaldehyde as 4.6, 2.4, 2.3, 1.7, 1.9 and 1.2 (×10(6) M(-1) s(-1)), respectively, indicating affinity of enzyme for feruloyl CoA over other substrates and preference of reduction reaction over oxidation. Activation energy, Ea for various substrates was found to be in the range of 20-50 kJ/mol. Involvement of probable carboxylate ion, histidine, lysine or tyrosine at the active site of enzyme was predicted by pH activity profile. SAXS studies of protein showed radius 3.04 nm and volume 49.25 nm(3) with oblate ellipsoid shape. Finally, metal ion inhibition studies revealed that Ll-CCRH1 is a metal independent enzyme.

  1. Ion mixing

    NASA Technical Reports Server (NTRS)

    Matteson, S.; Nicolet, M.-A.

    1983-01-01

    Recent experimental studies of the ion-mixing phenomenon are summarized. Ion mixing is differentiated from ion implantation and shown to be a useful technique for overcoming the sputter-dependent limitations of implantation processes. The fundamental physical principles of ion/solid interactions are explored. The basic experimental configurations currently in use are characterized: bilayered samples, multilayered samples, and samples with a thin marker layer. A table listing the binary systems (metal-semiconductor or metal-metal) which have been investigated using each configuration is presented. Results are discussed, and some sample data are plotted. The prospects for future application of ion mixing to the alteration of solid surface properties are considered. Practical applications are seen as restricted by economic considerations to the production of small, expensive components or to fields (such as the semiconductor industry) which already have facilities for ion implantation.

  2. ION SOURCE

    DOEpatents

    Martina, E.F.

    1958-04-22

    An improved ion source particularly adapted to provide an intense beam of ions with minimum neutral molecule egress from the source is described. The ion source structure includes means for establishing an oscillating electron discharge, including an apertured cathode at one end of the discharge. The egress of ions from the source is in a pencil like beam. This desirable form of withdrawal of the ions from the plasma created by the discharge is achieved by shaping the field at the aperture of the cathode. A tubular insulator is extended into the plasma from the aperture and in cooperation with the electric fields at the cathode end of the discharge focuses the ions from the source,

  3. In vitro inhibition of human erythrocyte glutathione reductase by some new organic nitrates.

    PubMed

    Sentürk, Murat; Talaz, Oktay; Ekinci, Deniz; Cavdar, Hüseyin; Küfrevioğlu, Omer Irfan

    2009-07-01

    Glutathione reductase (GR), is responsible for the existence of GSH molecule, a crucial antioxidant against oxidative stress reagents. The antimalarial activities of some redox active compounds are attributed to their inhibition of antioxidant flavoenzyme glutathione reductase, and inhibitors are therefore expected to be useful for the treatment of malaria. Twelve organic nitrate derivatives were synthesized and treated with human erythrocyte GR. The molecules were identified as strong GR inhibitors and novel antimalaria candidates.

  4. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2. 4- angstrom resolution

    SciTech Connect

    Kuriyan, J.; Xiangpeng Kong; Krishna, T.S.R.; Murgolo, N.J.; Field, H.; Cerami, A.; Henderson, G.B. ); Sweet, R.M. )

    1991-10-01

    Trypanosomes and related protozoan parasites lack glutathione reductase and possess instead a closely related enzyme that serves as the reductant of a bis(glutathione)-spermidien conjugate, trypanothione. The human and parasite enzymes have mutually exclusive substrate specificities, providing a route for the design of therapeutic agents by specific inhibition of the parasite enzyme. The authors report here the three-dimensional structure of trypanothione reductase from Crithidia fasciculata and show that it closely resembles the structure of human glutathione reductase. In particular, the core structure surrounding the catalytic machinery is almost identical in the two enzymes. However, significant differences are found at the substrate binding sites. A cluster of basic residues in glutathione reductase is replaced by neutral, hydrophobic, or acidic residues in trypanothione reductase, consistent with the nature of the spermidine linkage and the change in overall charge of the substrate from {minus}2 to +1, respectively. The binding site is more open in trypanothione reductase due to rotations of about 4{degree} in the domains that form in site, with relative shifts of as much as 2-3 {angstrom} in residues that can interact with potential inhibitors and complement previous modeling and mutagenesis studies on the two enzymes.

  5. Genetic and Physiologic Characterization of Ferric/Cupric Reductase Constitutive Mutants of Cryptococcus neoformans

    PubMed Central

    Nyhus, Karin J.; Jacobson, Eric S.

    1999-01-01

    Cryptococcus neoformans is a pathogenic yeast that causes meningitis in immunocompromised patients. Because iron acquisition is critical for growth of a pathogen in a host, we studied the regulation of the ferric reductase and ferrous uptake system of this organism. We isolated 18 mutants, representing four independent loci, with dysregulated ferric reductase. The mutant strains had >10-fold higher than wild-type WT reductase activity in the presence of iron. Two of the strains also had >7-fold higher than WT iron uptake in the presence of iron but were not markedly iron sensitive. Both were sensitive to the oxidative stresses associated with superoxide and hydrogen peroxide. One strain exhibited only 23% of the WT level of iron uptake in the absence of iron and grew poorly without iron supplementation of the medium, phenotypes consistent with an iron transport deficiency; it was sensitive to superoxide but not to hydrogen peroxide. The fourth strain had high reductase activity but normal iron uptake; it was not very sensitive to oxidative stress. We also demonstrated that the ferric reductase was regulated by copper and could act as a cupric reductase. Sensitivity to oxidants may be related to iron acquisition by a variety of mechanisms and may model the interaction of the yeast with the immune system. PMID:10225895

  6. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  7. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network.

    PubMed

    Couto, Narciso; Wood, Jennifer; Barber, Jill

    2016-06-01

    In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.

  8. Androgen Regulation of 5α-Reductase Isoenzymes in Prostate Cancer: Implications for Prostate Cancer Prevention

    PubMed Central

    Li, Jin; Ding, Zhiyong; Wang, Zhengxin; Lu, Jing-Fang; Maity, Sankar N.; Navone, Nora M.; Logothetis, Christopher J.; Mills, Gordon B.; Kim, Jeri

    2011-01-01

    The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT), performs key functions in the androgen receptor (AR) signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type–specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE) on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention. PMID:22194926

  9. Cyclohexanol and methylcyclohexanols. A family of inhibitors of hepatic HMGCoA reductase in vivo.

    PubMed

    Miciak, A; White, D A; Middleton, B

    1986-10-15

    Oral dosing of rats with cyclohexanol and methylcyclohexanols resulted in the inhibition of hepatic HMGCoA reductase. Neither cyclohexane or cyclohexane diols exerted any effects. Inhibition was not due to alcohol dehydrogenase mediated changes in redox state since 3,3',5-trimethylcyclohexanol (TMC), a non substrate for alcohol dehydrogenase, was a potent inhibitor of HMGCoA reductase. Following a single dose of TMC there was no alteration in total hepatic HMGCoA reductase activity for more than 6 hr after which the enzyme activity was depressed in a dose-dependent manner. The normal diurnal rhythm of HMGCoA reductase was reduced in amplitude following TMC administration but the phase was unaltered and the t 1/2 for activity decay following the peak of activity was unaffected. Prior to the inhibitory effect of a TMC dose becoming apparent in total HMGCoA reductase activity we found that the expressed activity of the enzyme (after isolation in F- medium to suppress endogenous protein phosphatase) was depressed by 43%. The inhibitory effect of TMC on total HMGCoA reductase activity seen 8 hr or more after dosing was reflected by inhibition of sterol synthesis in liver measured in vivo after [3H]-H2O administration.

  10. A novel L-xylulose reductase essential for L-arabinose catabolism in Trichoderma reesei.

    PubMed

    Metz, Benjamin; Mojzita, Dominik; Herold, Silvia; Kubicek, Christian P; Richard, Peter; Seiboth, Bernhard

    2013-04-09

    L-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of L-xylulose to xylitol in L-arabinose and glucuronic acid catabolism. Here we report the identification of a novel L-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of L-xylulose to xylitol via NADPH and is also able to convert D-xylulose, D-ribulose, L-sorbose, and D-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by L-arabinose and L-arabitol. Deletion of lxr3 affects growth on L-arabinose and L-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known L-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus niger L-xylulose reductase LxrA and, moreover, that all identified true L-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of L-xylulose in L-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the L-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs.

  11. A Novel l-Xylulose Reductase Essential for l-Arabinose Catabolism in Trichoderma reesei

    PubMed Central

    2013-01-01

    l-Xylulose reductases belong to the superfamily of short chain dehydrogenases and reductases (SDRs) and catalyze the NAD(P)H-dependent reduction of l-xylulose to xylitol in l-arabinose and glucuronic acid catabolism. Here we report the identification of a novel l-xylulose reductase LXR3 in the fungus Trichoderma reesei by a bioinformatic approach in combination with a functional analysis. LXR3, a 31 kDa protein, catalyzes the reduction of l-xylulose to xylitol via NADPH and is also able to convert d-xylulose, d-ribulose, l-sorbose, and d-fructose to their corresponding polyols. Transcription of lxr3 is specifically induced by l-arabinose and l-arabitol. Deletion of lxr3 affects growth on l-arabinose and l-arabitol and reduces total NADPH-dependent LXR activity in cell free extracts. A phylogenetic analysis of known l-xylulose reductases shows that LXR3 is phylogenetically different from the Aspergillus nigerl-xylulose reductase LxrA and, moreover, that all identified true l-xylulose reductases belong to different clades within the superfamily of SDRs. This indicates that the enzymes responsible for the reduction of l-xylulose in l-arabinose and glucuronic acid catabolic pathways have evolved independently and that even the fungal LXRs of the l-arabinose catabolic pathway have evolved in different clades of the superfamily of SDRs. PMID:23506391

  12. Characterization of anaerobic sulfite reduction by Salmonella typhimurium and purification of the anaerobically induced sulfite reductase

    SciTech Connect

    Hallenbeck, P.C. ); Clark, M.A.; Barrett, E.L. )

    1989-06-01

    Mutants of Salmonella typhimurium that lack the biosynthetic sulfite reductase (cysI and cysJ mutants) retain the ability to reduce sulfite for growth under anaerobic conditions. Here we report studies of sulfite reduction by a cysI mutant of S. typhimurium and purification of the associated anaerobic sulfite reductase. Sulfite reduction for anaerobic growth did not require a reducing atmosphere but was prevented by an argon atmosphere contaminated with air (<0.33%). It was also prevented by the presence of 0.1 mM nitrate. Anaerobic growth in liquid minimal medium, but not on agar, was found to require additions of trace amounts (10{sup {minus}7} M) of cysteine. Spontaneous mutants that grew under the argon contaminated with air also lost the requirement for 10{sup {minus}7}M cysteine for anaerobic growth in liquid. A role for sulfite reduction in anaerobic energy generation was contraindicated by the findings that sulfite reduction did not improve cell yields, and anaerobic sulfite reductase activity was greatest during the stationary phase of growth. Sulfite reductase was purified from the cytoplasmic fraction of the anaerobically grown cysI mutant and was purified 190-fold. The most effective donor in crude extracts was NADH. NADHP and methyl viologen were, respectively, 40 and 30% as effective as NADH. Oxygen reversibly inhibited the enzyme. The anaerobic sulfite reductase showed some resemblance to the biosynthetic sulfite reductase, but apparently it has a unique, as yet unidentified function.

  13. Effect of lanthanum ions (La3+) on ferritin-regulated antioxidant process under PEG stress.

    PubMed

    Zhang, Lijing; Yang, Tongwen; Gao, Yongsheng; Liu, Yubing; Zhang, Tengguo; Xu, Shijian; Zeng, Fuli; An, Lizhe

    2006-11-01

    The physiological effects of lanthanum(III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH.), alleviating the oxidative damage induced by PEG stress.

  14. Catalytic cycle of human glutathione reductase near 1 Å resolution

    PubMed Central

    Berkholz, Donald S.; Faber, H. Richard; Savvides, Savvas N.; Karplus, P. Andrew

    2008-01-01

    Summary Efficient enzyme catalysis depends on exquisite details of structure beyond those resolvable in typical medium- and high-resolution crystallographic analyses. Here we report synchrotron-based cryocrystallographic studies of natural substrate complexes of the flavoenzyme human glutathione reductase (GR) at nominal resolutions between 1.1 and 0.95 Å that reveal new aspects of its mechanism. Compression in the active site causes overlapping van der Waals radii and distortion in the nicotinamide ring of the NADPH substrate, which enhances catalysis via stereoelectronic effects. The bound NADPH and redox-active disulfide are positioned optimally on opposite sides of the flavin for a 1,2-addition across a flavin double bond. The new structures extend earlier observations to reveal that the redox-active disulfide loop in GR is an extreme case of sequential peptide bonds systematically deviating from planarity, a net deviation of 53° across 5 residues. But this apparent strain is not a factor in catalysis as it is present in both oxidized and reduced structures. Intriguingly, the flavin bond lengths in oxidized GR are intermediate between those expected for oxidized and reduced flavin, but we present evidence that this may not be due to the protein environment but instead to partial synchrotron reduction of the flavin by the synchrotron beam. Finally, of more general relevance, we present evidence that the structures of synchrotron-reduced disulfide bonds cannot generally be used as reliable models for naturally reduced disulfide bonds. PMID:18638483

  15. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection.

    PubMed

    Fodil-Cornu, N; Kozij, N; Wu, Q; Rozen, R; Vidal, S M

    2009-10-01

    Folates provide one-carbon units for nucleotide synthesis and methylation reactions. A common polymorphism in the MTHFR gene (677C --> T) results in reduced enzymatic activity, and is associated with an increased risk for neural tube defects and cardiovascular disease. The high prevalence of this polymorphism suggests that it may have experienced a selective advantage under environmental pressure, possibly an infectious agent. To test the hypothesis that methylenetetrahydrofolate reductase (MTHFR) genotype influences the outcome of infectious disease, we examined the response of Mthfr-deficient mice against mouse cytomegalovirus (MCMV) infection. Acute MCMV infection of Mthfr(-/-) mice resulted in early control of cytokine secretion, decreased viral titer and preservation of spleen immune cells, in contrast to Mthfr wild-type littermates. The phenotype was abolished in MTHFR transgenic mice carrying an extra copy of the gene. Infection of primary fibroblasts with MCMV showed a decrease in viral replication and in the number of productively infected cells in Mthfr(+/-) fibroblasts compared with wild-type cells. These results indicate that Mthfr deficiency protects against MCMV infection in vivo and in vitro, suggesting that human genetic variants may provide an advantage in the host response against certain pathogens.

  16. Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy

    PubMed Central

    Satyanarayana, A.; Balakrishna, N.; Ayyagari, Radha; Padma, M.; Viswanath, K.; Petrash, J. Mark

    2008-01-01

    Purpose Activation of polyol pathway due to increased aldose reductase (ALR2) activity has been implicated in the development of diabetic complications including diabetic retinopathy (DR), a leading cause of blindness. However, the relationship between hyperglycemia-induced activation of polyol pathway in retina and DR is still uncertain. We investigated the relationship between ALR2 levels and human DR by measuring ALR2 activity and its product, sorbitol, in erythrocytes. Methods We enrolled 362 type 2 diabetic subjects (T2D) with and without DR and 66 normal subjects in this clinical case-control study. Clinical evaluation of DR in T2D patients was done by fundus examination. ALR2 activity and sorbitol levels along with glucose and glycosylated hemoglobin (HbA1C) levels in erythrocytes were determined. Results T2D patients with DR showed significantly higher specific activity of ALR2 as compared to T2D patients without DR. Elevated levels of sorbitol in T2D patients with DR, as compared to T2D patients without DR, corroborated the increased ALR2 activity in erythrocytes of DR patients. However, the increased ALR2 activity was not significantly associated with diabetes duration, age, and HbA1C in both the DR group and total T2D subjects. Conclusions Levels of ALR2 activity as well as sorbitol in erythrocytes may have value as a quantitative trait to be included among other markers to establish a risk profile for development of DR. PMID:18385795

  17. [Molecular characterizations of two dehydroascorbate reductases from Selaginella moellendorffii].

    PubMed

    Cheng, Zishuo; Lan, Ting; Li, Di; Yang, Hailing; Zeng, Qingyin

    2011-01-01

    Plant dehydroascorbate reductase (DHAR) is a physiologically important reducing enzyme in the ascorbate-glutathione recycling reaction. In this study, two DHARs genes (SmDHAR1 and SmDHAR2) were isolated from Selaginella moellendorffii. The SmDHAR1 and SmDHAR2 genes encode two proteins of 218 and 241 amino acid residues, with a calculated molecular mass of 23.97 kDa and 27.33 kDa, respectively. The genomic sequence analysis showed SmDHAR1 and SmDHAR2 contained five and six introns, respectively. Reverse transcription PCR revealed that the SmDHAR1 and SmDHAR2 were constitutive expression genes in S. moellendorffii. The recombinant SmDHAR1 and SmDHAR2 proteins were overexpressed in E. coli, and were purified by Ni-affinity chromatography. The recombinant SmDHAR1 showed 116-fold higher enzymatic activity towards the substrate dehydroascorbate than recombinant SmDHAR2. The recombinant SmDHAR1 showed higher thermal stability than recombinant SmDHAR2. These results indicated obvious functional divergence between the duplicate genes SmDHAR1 and SmDHAR2.

  18. The superoxide reductase from the early diverging eukaryote Giardia intestinalis.

    PubMed

    Testa, Fabrizio; Mastronicola, Daniela; Cabelli, Diane E; Bordi, Eugenio; Pucillo, Leopoldo P; Sarti, Paolo; Saraiva, Lígia M; Giuffrè, Alessandro; Teixeira, Miguel

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxide reductases (SORs) eliminate superoxide anion (O(2)(•-)) not through its dismutation, but via reduction to hydrogen peroxide (H(2)O(2)) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR(Gi)) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T(final)) with Fe(3+) ligated to glutamate or hydroxide depending on pH (apparent pK(a)=8.7). Although showing negligible SOD activity, reduced SOR(Gi) reacts with O(2)(•-) with a pH-independent second-order rate constant k(1)=1.0×10(9) M(-1) s(-1) and yields the ferric-(hydro)peroxo intermediate T(1); this in turn rapidly decays to the T(final) state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR(Gi) is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  19. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  20. A second target of benzamide riboside: dihydrofolate reductase.

    PubMed

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  1. Chromate reductase activity in Streptomyces sp. MC1.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2010-02-01

    Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments.

  2. Identification of activators of methionine sulfoxide reductases A and B

    PubMed Central

    Cudic, Predrag; Joshi, Neelambari; Sagher, Daphna; Williams, Brandon T.; Stawikowski, Maciej J.; Weissbach, Herbert

    2016-01-01

    The methionine sulfoxide reductase (Msr) family of enzymes has been shown to protect cells against oxidative damage. The two major Msr enzymes, MsrA and MsrB, can repair oxidative damage to proteins due to reactive oxygen species, by reducing the methionine sulfoxide in proteins back to methionine. A role of MsrA in animal aging was first demonstrated in D. melanogaster where transgenic flies over-expressing recombinant bovine MsrA had a markedly extended life span. Subsequently, MsrA was also shown to be involved in the life span extension in C. elegans. These results supported other studies that indicated up-regulation, or activation, of the normal cellular protective mechanisms that cells use to defend against oxidative damage could be an approach to treat age related diseases and slow the aging process. In this study we have identified, for the first time, compounds structurally related to the natural products fusaricidins that markedly activate recombinant bovine and human MsrA and human MsrB. PMID:26718410

  3. Structural Basis for Activation of Class Ib Ribonucleotide Reductase

    SciTech Connect

    Boal, Amie K.; Cotruvo, Jr., Joseph A.; Stubbe, JoAnne; Rosenzweig, Amy C.

    2010-12-03

    The class Ib ribonucleotide reductase of Escherichia coli can initiate reduction of nucleotides to deoxynucleotides with either a Mn{sub 2}{sup III}-tyrosyl radical (Y{sm_bullet}) or a Fe{sub 2}{sup III}-Y{sm_bullet} cofactor in the NrdF subunit. Whereas Fe{sub 2}{sup III}-Y{sm_bullet} can self-assemble from Fe{sub 2}{sup II}-NrdF and O{sub 2}, activation of Mn{sub 2}{sup II}-NrdF requires a reduced flavoprotein, NrdI, proposed to form the oxidant for cofactor assembly by reduction of O{sub 2}. The crystal structures reported here of E. coli Mn{sub 2}{sup II}-NrdF and Fe{sub 2}{sup II}-NrdF reveal different coordination environments, suggesting distinct initial binding sites for the oxidants during cofactor activation. In the structures of Mn{sub 2}{sup II}-NrdF in complex with reduced and oxidized NrdI, a continuous channel connects the NrdI flavin cofactor to the NrdF Mn{sub 2}{sup II} active site. Crystallographic detection of a putative peroxide in this channel supports the proposed mechanism of Mn{sub 2}{sup III}-Y{sm_bullet} cofactor assembly.

  4. Structure and kinetics assays of recombinant Schistosoma mansoni dihydrofolate reductase.

    PubMed

    Serrão, Vitor Hugo Balasco; Romanello, Larissa; Cassago, Alexandre; de Souza, Juliana Roberta Torini; Cheleski, Juliana; DeMarco, Ricardo; Brandão-Neto, José; Pereira, Humberto D'Muniz

    2017-03-11

    The parasite Schistosoma mansoni possesses all pathways for pyrimidine biosynthesis, in which dihydrofolate reductase (DHFR), thymidylate cycle participants, is essential for nucleotide metabolism to obtain energy and structural nucleic acids. Thus, DHFRs have been widely suggested as therapeutic targets for the treatment of infectious diseases. In this study, we expressed recombinant SmDHFR in a heterologous manner to obtain structural, biochemical and kinetic information. X-ray diffraction of recombinant SmDHFR at 1.95Å resolution showed that the structure exhibited the canonical DHFR fold. Isothermal titration calorimetry was used to determine the kinetic constants for NADP(+) and dihydrofolate. Moreover, inhibition assays were performed using the commercial folate analogs methotrexate and aminopterin; these analogs are recognized as folate competitors and are used as chemotherapeutic agents in cancer and autoimmune diseases. This study provides information that may prove useful for the future discovery of novel drugs and for understanding these metabolic steps from this pathway of S. mansoni, thus aiding in our understanding of the function of these essential pathways for parasite metabolism.

  5. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling.

    PubMed

    Gupta, Ankita; Kesherwani, Manish; Velmurugan, Devadasan; Tripathi, Timir

    2016-08-01

    Platyhelminth thioredoxin glutathione reductase (TGR) is a multifunctional enzyme that crosstalk between the conventional thioredoxin (Trx) and glutathione (GSH) system. It has been validated as a potential drug target in blood flukes. In the present study, we have performed a biochemical study on Fasciola gigantica TGR with substrates DTNB and GSSG. The Michaelis constant (Km) with DTNB was found to be 4.34±0.12μM while it was 61.15±1.50μM with GSSG. The kinetic results were compared with the TGR activities of other helminths. FgTGR showed typical hysteretic behavior with GSSG as other TGRs. We also described a homology-based structure of FgTGR. The cofactors (NADPH and FAD) and substrates (GSSG and DTNB) were docked, and two possible binding sites for substrates were identified in a single chain. The substrates were found to bind more favorably in the second site of TrxR domains. We also presented the first report on binding interaction of DTNB with a TGR. DTNB forms H-bond with His204 and Arg450 of chain A, Sec597, and Gly598 from chain B, salt-bridge with Lys124, and numerous other hydrophobic interactions. Helminth TGR represents an important enzyme in the redox and antioxidant system; hence, its inhibition can be used as an effective strategy against liver flukes.

  6. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    NASA Astrophysics Data System (ADS)

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; de Proft, Frank; Huang, Jingjing; van Breusegem, Frank; Messens, Joris

    2017-02-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release.

  7. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.

    PubMed

    Chardin, B; Giudici-Orticoni, M-T; De Luca, G; Guigliarelli, B; Bruschi, M

    2003-12-01

    The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H(2)S produced by the bacteria, and enzymatically, by polyhemic cytochromes c(3). We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is widespread among [Fe], [NiFe], and [NiFeSe] hydrogenases isolated from SRB of the genera Desulfovibrio and Desulfomicrobium. Among them, the [Fe] hydrogenase from Desulfovibrio vulgaris strain Hildenborough reduces Cr(VI) with the highest rate. Both [Fe] and [NiFeSe] enzymes exhibit the same K(m) towards Cr(VI), suggesting that Cr(VI) reduction rates are directly correlated with hydrogen consumption rates. Electron paramagnetic resonance spectroscopy enabled us to probe the oxidation by Cr(VI) of the various metal centers in both [NiFe] and [Fe] hydrogenases. These experiments showed that Cr(VI) is reduced to paramagnetic Cr(III), and revealed inhibition of the enzyme at high Cr(VI) concentrations. The significant decrease of both hydrogenase and Cr(VI)-reductase activities in a mutant lacking [Fe] hydrogenase demonstrated the involvement of this enzyme in Cr(VI) reduction in vivo. Experiments with [3Fe-4S] ferredoxin from Desulfovibrio gigas demonstrated that the low redox [Fe-S] (non-heme iron) clusters are involved in the mechanism of metal reduction by hydrogenases.

  8. Transgenic overexpression of ribonucleotide reductase improves cardiac performance

    PubMed Central

    Nowakowski, Sarah G.; Kolwicz, Stephen C.; Korte, Frederick Steven; Luo, Zhaoxiong; Robinson-Hamm, Jacqueline N.; Page, Jennifer L.; Brozovich, Frank; Weiss, Robert S.; Tian, Rong; Murry, Charles E.; Regnier, Michael

    2013-01-01

    We previously demonstrated that cardiac myosin can use 2-deoxy-ATP (dATP) as an energy substrate, that it enhances contraction and relaxation with minimal effect on calcium-handling properties in vitro, and that contractile enhancement occurs with only minor elevation of cellular [dATP]. Here, we report the effect of chronically enhanced dATP concentration on cardiac function using a transgenic mouse that overexpresses the enzyme ribonucleotide reductase (TgRR), which catalyzes the rate-limiting step in de novo deoxyribonucleotide biosynthesis. Hearts from TgRR mice had elevated left ventricular systolic function compared with wild-type (WT) mice, both in vivo and in vitro, without signs of hypertrophy or altered diastolic function. Isolated cardiomyocytes from TgRR mice had enhanced contraction and relaxation, with no change in Ca2+ transients, suggesting targeted improvement of myofilament function. TgRR hearts had normal ATP and only slightly decreased phosphocreatine levels by 31P NMR spectroscopy, and they maintained rate responsiveness to dobutamine challenge. These data demonstrate long-term (at least 5-mo) elevation of cardiac [dATP] results in sustained elevation of basal left ventricular performance, with maintained β-adrenergic responsiveness and energetic reserves. Combined with results from previous studies, we conclude that this occurs primarily via enhanced myofilament activation and contraction, with similar or faster ability to relax. The data are sufficiently compelling to consider elevated cardiac [dATP] as a therapeutic option to treat systolic dysfunction. PMID:23530224

  9. Effects of galactose feeding on aldose reductase gene expression.

    PubMed Central

    Wu, R R; Lyons, P A; Wang, A; Sainsbury, A J; Chung, S; Palmer, T N

    1993-01-01

    Aldose reductase (AR) is implicated in the pathogenesis of the diabetic complications and osmotic cataract. AR has been identified as an osmoregulatory protein, at least in the renal medulla. An outstanding question relates to the response of AR gene expression to diet-induced galactosemia in extrarenal tissues. This paper shows that AR gene expression in different tissues is regulated by a complex multifactorial mechanism. Galactose feeding in the rat is associated with a complex and, on occasions, multiphasic pattern of changes in AR mRNA levels in kidney, testis, skeletal muscle, and brain. These changes are not in synchrony with the temporal sequence of changes in tissue galactitol, galactose, and myoinositol concentrations. Moreover, galactose feeding results in changes in tissue AR activities that are not related, temporally or quantitatively, to the alterations in tissue AR mRNA or galactitol levels. It is concluded that AR gene expression and tissue AR activities are regulated by mechanisms that are not purely dependent on nonspecific alterations in intracellular metabolite concentrations. This conclusion is supported by the finding that chronic xylose feeding, despite being associated with intracellular xylitol accumulation, does not result in alterations in AR mRNA levels, at least in the kidney. PMID:8325980

  10. Structure of Escherichia coli Flavodiiron Nitric Oxide Reductase.

    PubMed

    Romão, Célia V; Vicente, João B; Borges, Patrícia T; Victor, Bruno L; Lamosa, Pedro; Silva, Elísio; Pereira, Luís; Bandeiras, Tiago M; Soares, Cláudio M; Carrondo, Maria A; Turner, David; Teixeira, Miguel; Frazão, Carlos

    2016-11-20

    Flavodiiron proteins (FDPs) are present in organisms from all domains of life and have been described so far to be involved in the detoxification of oxygen or nitric oxide (NO), acting as O2 and/or NO reductases. The Escherichia coli FDP, named flavorubredoxin (FlRd), is the most extensively studied FDP. Biochemical and in vivo studies revealed that FlRd is involved in NO detoxification as part of the bacterial defense mechanisms against reactive nitrogen species. E. coli FlRd has a clear preference for NO as a substrate in vitro, exhibiting a very low reactivity toward O2. To contribute to the understanding of the structural features defining this substrate selectivity, we determined the crystallographic structure of E. coli FlRd, both in the isolated and reduced states. The overall tetrameric structure revealed a highly conserved flavodiiron core domain, with a metallo-β-lactamase-like domain containing a diiron center, and a flavodoxin domain with a flavin mononucleotide cofactor. The metal center in the oxidized state has a μ-hydroxo bridge coordinating the two irons, while in the reduced state, this moiety is not detected. Since only the flavodiiron domain was observed in these crystal structures, the structure of the rubredoxin domain was determined by NMR. Tunnels for the substrates were identified, and through molecular dynamics simulations, no differences for O2 or NO permeation were found. The present data represent the first structure for a NO-selective FDP.

  11. Prognostic Relevance of Methylenetetrahydrofolate Reductase Polymorphisms for Prostate Cancer

    PubMed Central

    Lin, Victor C.; Lu, Te-Ling; Yin, Hsin-Ling; Yang, Sheau-Fang; Lee, Yung-Chin; Liu, Chia-Chu; Huang, Chao-Yuan; Yu, Chia-Cheng; Chang, Ta-Yuan; Huang, Shu-Pin; Bao, Bo-Ying

    2016-01-01

    Folate metabolism has been associated with cancers via alterations in nucleotide synthesis, DNA methylation, and DNA repair. We hypothesized that genetic variants in methylenetetrahydrofolate reductase (MTHFR), a key enzyme of folate metabolism, would affect the prognosis of prostate cancer. Three haplotype-tagging single-nucleotide polymorphisms (SNPs) across the MTHFR gene region were genotyped in a cohort of 458 patients with clinically localized prostate cancer treated with radical prostatectomy. One SNP, rs9651118, was associated with disease recurrence, and the association persisted after multivariate analyses adjusting for known risk factors. Public dataset analyses suggested that rs9651118 affects MTHFR expression. Quantitative real-time polymerase chain reaction analysis revealed that MTHFR expression is significantly upregulated in prostate tumor tissues when compared with adjacent normal tissues. Furthermore, overexpression of MTHFR correlates with cancer recurrence and death in two independent publicly available prostate cancer datasets. In conclusion, our data provide rationale to further validate the clinical utility of MTHFR rs9651118 as a biomarker for prognosis in prostate cancer. PMID:27916838

  12. CHARACTERIZATION OF THE METHIONINE SULFOXIDE REDUCTASES OF SCHISTOSOMA MANSONI

    PubMed Central

    Oke, Tolulope T.; Moskovitz, Jackob; Williams, David L.

    2013-01-01

    Schistosomiasis, also known as Bilharzia, is an infectious disease caused by several species of Schistosoma. Twenty million individuals suffer severe symptoms and 200,000 people die annually from the disease. The host responds to the presence of S. mansoni by producing reactive oxygen species that cause oxidative stress. We hypothesized that schistosomes produce antioxidants in response to oxidative stress. A known antioxidant protein is methionine sulfoxide reductase (Msr). Methionine residues can be oxidized to methionine sulfoxide in the presence of oxidizing agents, which is readily reversed by the action of the Msr system. Two S. mansoni MsrB genes (MsrB1 and MsrB2) were cloned and the recombinant proteins expressed in bacteria and purified. The S. mansoni MsrB proteins contained the common conserved catalytic and zinc coordinating cysteines. Analysis of the proteins showed that both proteins promote the reduction of both free methionine sulfoxide (Met[O]) and dabsyl-Met(O) to free methionine (Met) and dabsyl-Met, respectively, while exhibiting differences in their specific activities towards these substrates. Using real-time PCR, both proteins were found to be expressed in all stages of the parasite’s life cycle with the highest level of expression of both proteins in the egg stage. This is the first description of MsrB proteins from a parasite. PMID:19604033

  13. Lausannevirus Encodes a Functional Dihydrofolate Reductase Susceptible to Proguanil

    PubMed Central

    Mueller, L.; Hauser, P. M.; Gauye, F.

    2017-01-01

    ABSTRACT Lausannevirus belongs to the family Marseilleviridae within the group of nucleocytoplasmic large DNA viruses (NCLDVs). These giant viruses exhibit unique features, including a large genome, ranging from 100 kb to 2.5 Mb and including from 150 to more than 2,500 genes, as well as the presence of genes coding for proteins involved in transcription and translation. The large majority of Lausannevirus open reading frames have unknown functions. Interestingly, a bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is encoded in the Lausannevirus genome. The enzyme plays central roles in DNA precursor biosynthesis. DHFR is the pharmacological target of antifolates, such as trimethoprim, pyrimethamine, and proguanil. First, the functionality of Lausannevirus DHFR-TS was demonstrated by the successful complementation of a DHFR-deficient Saccharomyces cerevisiae strain with a plasmid expressing the heterologous gene. Additionally, using this heterologous expression system, we demonstrated the in vitro susceptibility of Lausannevirus DHFR-TS to proguanil and its resistance to pyrimethamine and trimethoprim. Proguanil may provide a unique and useful treatment if Lausannevirus proves to be a human pathogen. To our knowledge, this is the first time that a DHFR-TS has been described and characterized in an NCLDV. PMID:28137801

  14. Short-chain dehydrogenases/reductases (SDR): the 2002 update.

    PubMed

    Oppermann, Udo; Filling, Charlotta; Hult, Malin; Shafqat, Naeem; Wu, Xiaoqiu; Lindh, Monica; Shafqat, Jawed; Nordling, Erik; Kallberg, Yvonne; Persson, Bengt; Jörnvall, Hans

    2003-02-01

    Short-chain dehydrogenases/reductases (SDR) form a large, functionally heterogeneous protein family presently with about 3000 primary and about 30 3D structures deposited in databases. Despite low sequence identities between different forms (about 15-30%), the 3D structures display highly similar alpha/beta folding patterns with a central beta-sheet, typical of the Rossmann-fold. Based on distinct sequence motifs functional assignments and classifications are possible, making it possible to build a general nomenclature system. Recent mutagenetic and structural studies considerably extend the knowledge on the general reaction mechanism, thereby establishing a catalytic tetrad of Asn-Ser-Tyr-Lys residues, which presumably form the framework for a proton relay system including the 2'-OH of the nicotinamide ribose, similar to the mechanism found in horse liver ADH. Based on their cellular functions, several SDR enzymes appear as possible and promising pharmacological targets with application areas spanning hormone-dependent cancer forms or metabolic diseases such as obesity and diabetes, and infectious diseases.

  15. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase.

    PubMed

    Loveridge, E Joel; Tey, Lai-Hock; Allemann, Rudolf K

    2010-01-27

    Hydride transfer catalyzed by dihydrofolate reductase (DHFR) has been described previously within an environmentally coupled model of hydrogen tunneling, where protein motions control binding of substrate and cofactor to generate a tunneling ready conformation and modulate the width of the activation barrier and hence the reaction rate. Changes to the composition of the reaction medium are known to perturb protein motions. We have measured kinetic parameters of the reaction catalyzed by DHFR from Escherichia coli in the presence of various cosolvents and cosolutes and show that the dielectric constant, but not the viscosity, of the reaction medium affects the rate of reaction. Neither the primary kinetic isotope effect on the reaction nor its temperature dependence were affected by changes to the bulk solvent properties. These results are in agreement with our previous report on the effect of solvent composition on catalysis by DHFR from the hyperthermophile Thermotoga maritima. However, the effect of solvent on the temperature dependence of the kinetic isotope effect on hydride transfer catalyzed by E. coli DHFR is difficult to explain within a model, in which long-range motions couple to the chemical step of the reaction, but may indicate the existence of a short-range promoting vibration or the presence of multiple nearly isoenergetic conformational substates of enzymes with similar but distinct catalytic properties.

  16. Constitutive nitrate reductase expression and inhibition in winged bean

    SciTech Connect

    Wu, Shenchuan; Harper, J.E. )

    1990-05-01

    It was found that NO{sub 3}{sup {minus}} had no effect on winged bean nitrate reductase activity (NRA). Similar NRA was expressed in plants grown on NO{sub 3}{sup {minus}}, urea, NH{sub 4}{sup +}, and nil N. This indicated that the primary NR expressed in winged bean was constitutive, rather than substrate-inducible. Maximum NRA in winged bean was obtained in the light. KClO{sub 3} was capable of inhibiting NRA of leaves if added to the root growth medium or to the NR assay medium, indicating possible competition with NO{sub 3}{sup {minus}} at the reduction site. While it has previously been shown that either cycloheximide alone, or both cycloheximide and chloramphenicol impair the synthesis of NR protein, our data unexpectedly demonstrated that cycloheximide had little effect on NRA, whereas chloramphenicol greatly inhibited the expression of NRA in winged bean. One interpretation is that chloroplasts may influence the activity and/or synthesis of constitutive NR proteins.

  17. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  18. Loss of quinone reductase 2 function selectively facilitates learning behaviors.

    PubMed

    Benoit, Charles-Etienne; Bastianetto, Stephane; Brouillette, Jonathan; Tse, YiuChung; Boutin, Jean A; Delagrange, Philippe; Wong, TakPan; Sarret, Philippe; Quirion, Rémi

    2010-09-22

    High levels of reactive oxygen species (ROS) are associated with deficits in learning and memory with age as well as in Alzheimer's disease. Using DNA microarray, we demonstrated the overexpression of quinone reductase 2 (QR2) in the hippocampus in two models of learning deficits, namely the aged memory impaired rats and the scopolamine-induced amnesia model. QR2 is a cytosolic flavoprotein that catalyzes the reduction of its substrate and enhances the production of damaging activated quinone and ROS. QR2-like immunostaining is enriched in cerebral structures associated with learning behaviors, such as the hippocampal formation and the temporofrontal cortex of rat, mouse, and human brains. In cultured rat embryonic hippocampal neurons, selective inhibitors of QR2, namely S26695 and S29434, protected against menadione-induced cell death by reversing its proapoptotic action. S26695 (8 mg/kg) also significantly inhibited scopolamine-induced amnesia. Interestingly, adult QR2 knock-out mice demonstrated enhanced learning abilities in various tasks, including Morris water maze, object recognition, and rotarod performance test. Other behaviors related to anxiety (elevated plus maze), depression (forced swim), and schizophrenia (prepulse inhibition) were not affected in QR2-deficient mice. Together, these data suggest a role for QR2 in cognitive behaviors with QR2 inhibitors possibly representing a novel therapeutic strategy toward the treatment of learning deficits especially observed in the aged brain.

  19. Severe scoliosis in a patient with severe methylenetetrahydrofolate reductase deficiency.

    PubMed

    Munoz, Tatiana; Patel, Jinesh; Badilla-Porras, Ramses; Kronick, Jonathan; Mercimek-Mahmutoglu, Saadet

    2015-01-01

    Severe methylenetetrahydrofolate reductase (MTHFR) deficiency is a rare autosomal recessively inherited inborn error of folate metabolism. We report a new patient with severe MTHFR deficiency who presented at age 4 months with early onset severe scoliosis associated with severe hypotonia. Markedly decreased MTHFR enzyme activity (0.3 nmoles CHO/mg protein/h; reference range>9) and compound heterozygous mutations (c. 1304T>C; p.Phe435Ser and c.1539dup; p.Glu514Argfs∗24) in the MTHFR gene confirmed the diagnosis. She was treated with vitamin B12, folic acid and betaine supplementation and showed improvements in her developmental milestones and hypotonia. To the best of our knowledge, this is the first patient with MTHFR deficiency reported with severe early onset scoliosis. Despite the late diagnosis and treatment initiation, she showed favorable short-term neurodevelopmental outcome. This case suggests that homocysteine measurement should be included in the investigations of patients with developmental delay, hypotonia and scoliosis within first year of life prior to organizing genetic investigations.

  20. Mutation Update and Review of Severe Methylenetetrahydrofolate Reductase Deficiency.

    PubMed

    Froese, D Sean; Huemer, Martina; Suormala, Terttu; Burda, Patricie; Coelho, David; Guéant, Jean-Louis; Landolt, Markus A; Kožich, Viktor; Fowler, Brian; Baumgartner, Matthias R

    2016-05-01

    Severe 5,10-methylenetetrahydrofolate reductase (MTHFR) deficiency is caused by mutations in the MTHFR gene and results in hyperhomocysteinemia and varying severity of disease, ranging from neonatal lethal to adult onset. Including those described here, 109 MTHFR mutations have been reported in 171 families, consisting of 70 missense mutations, 17 that primarily affect splicing, 11 nonsense mutations, seven small deletions, two no-stop mutations, one small duplication, and one large duplication. Only 36% of mutations recur in unrelated families, indicating that most are "private." The most common mutation is c.1530A>G (numbered from NM_005957.4, p.Lys510 = ) causing a splicing defect, found in 13 families; the most common missense mutation is c.1129C>T (p.Arg377Cys) identified in 10 families. To increase disease understanding, we report enzymatic activity, detected mutations, and clinical onset information (early, <1 year; or late, >1 year) for all published patients available, demonstrating that patients with early onset have less residual enzyme activity than those presenting later. We also review animal models, diagnostic approaches, clinical presentations, and treatment options. This is the first large review of mutations in MTHFR, highlighting the wide spectrum of disease-causing mutations.

  1. Composition and structure of assimilatory nitrate reductase from Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A; Vega, J M; Zumft, W G

    1981-06-10

    Assimilatory NAD(P)H-nitrate reductase (EC 1.6.6.2) from Ankistrodesmus braunii has been purified to homogeneity by affinity chromatography on blue Sepharose. The specific activity of the purified enzyme is in the range of 72 to 80 units/mg of protein. The electronic spectrum of the native enzyme shows absorption maxima at 278, 414 (Soret), 532 (beta), 562 (alpha), and 669 nm and shoulders at 455 and 484 nm, with an A278/A414 ratio of 2.56. The reduced enzyme shows absorption maxima at 424 (Soret), 528 (beta), 557 (alpha),and 669 n. The enzyme complex (Mr = 467,400) is composed of eight similar subunits (Mr = 58,750) and contains 4 molecules of FAD, 4 heme groups, and 2 atoms of molybdenum. Labile sulfide and nonheme iron were not detected. Electron micrographs show the eight subunits arranged alternately in two planes, and an 8-fold rotational symmetry was deduced from highly magnified images processed by optical superposition.

  2. Converting a Sulfenic Acid Reductase into a Disulfide Bond Isomerase

    PubMed Central

    Chatelle, Claire; Kraemer, Stéphanie; Ren, Guoping; Chmura, Hannah; Marechal, Nils; Boyd, Dana; Roggemans, Caroline; Ke, Na; Riggs, Paul; Bardwell, James

    2015-01-01

    Abstract Aims: Posttranslational formation of disulfide bonds is essential for the folding of many secreted proteins. Formation of disulfide bonds in a protein with more than two cysteines is inherently fraught with error and can result in incorrect disulfide bond pairing and, consequently, misfolded protein. Protein disulfide bond isomerases, such as DsbC of Escherichia coli, can recognize mis-oxidized proteins and shuffle the disulfide bonds of the substrate protein into their native folded state. Results: We have developed a simple blue/white screen that can detect disulfide bond isomerization in vivo, using a mutant alkaline phosphatase (PhoA*) in E. coli. We utilized this screen to isolate mutants of the sulfenic acid reductase (DsbG) that allowed this protein to act as a disulfide bond isomerase. Characterization of the isolated mutants in vivo and in vitro allowed us to identify key amino acid residues responsible for oxidoreductase properties of thioredoxin-like proteins such as DsbC or DsbG. Innovation and Conclusions: Using these key residues, we also identified and characterized interesting environmental homologs of DsbG with novel properties, thus demonstrating the capacity of this screen to discover and elucidate mechanistic details of in vivo disulfide bond isomerization. Antioxid. Redox Signal. 23, 945–957. PMID:26191605

  3. Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation

    PubMed Central

    Kuhns, Lisa G.; Mahawar, Manish; Sharp, Joshua S.; Benoit, Stéphane; Maier, Robert J.

    2014-01-01

    The persistence of the gastric pathogen Helicobacter pylori is due in part to urease and Msr (methionine sulfoxide reductase). Upon exposure to relatively mild (21% partial pressure of O2) oxidative stress, a Δmsr mutant showed both decreased urease specific activity in cell-free extracts and decreased nickel associated with the partially purified urease fraction as compared with the parent strain, yet urease apoprotein levels were the same for the Δmsr and wild-type extracts. Urease activity of the Δmsr mutant was not significantly different from the wild-type upon non-stress microaerobic incubation of strains. Urease maturation occurs through nickel mobilization via a suite of known accessory proteins, one being the GTPase UreG. Treatment of UreG with H2O2 resulted in oxidation of MS-identified methionine residues and loss of up to 70% of its GTPase activity. Incubation of pure H2O2-treated UreG with Msr led to reductive repair of nine methionine residues and recovery of up to full enzyme activity. Binding of Msr to both oxidized and non-oxidized UreG was observed by cross-linking. Therefore we conclude Msr aids the survival of H. pylori in part by ensuring continual UreG-mediated urease maturation under stress conditions. PMID:23181726

  4. Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin.

    PubMed

    Mano, S; Hayashi, M; Nishimura, M

    1999-02-01

    Hydroxypyruvate reductase (HPR) is a leaf peroxisomal enzyme that functions in the glycolate pathway of photorespiration in plants. We have obtained two highly similar cDNAs for pumpkin HPR (HPR1 and HPR2). It has been revealed that two HPR mRNAs might be produced by alternative splicing from a single type of pre-mRNA. The HPR1 protein, but not the HPR2 protein, was found to have a targeting sequence into leaf peroxisomes at the C-terminus, suggesting that alternative splicing controls the subcellular localization of the two HPR proteins. Immunoblot analysis and subcellular fractionation experiments showed that HPR1 and HPR2 proteins are localized in leaf peroxisomes and the cytosol, respectively. Moreover, indirect fluorescence microscopy and analyses of transgenic tobacco cultured cells and Arabidopsis thaliana expressing fusion proteins with green fluorescent protein (GFP) revealed the different subcellular localizations of the two HPR proteins. Both mRNAs were induced developmentally and by light, but with quantitative differences. Almost equal amounts of the mRNAs were detected in pumpkin cotyledons grown in darkness, but treatment with light greatly enhanced the production of HPR2 mRNA. These findings indicate that light regulates alternative splicing of HPR mRNA, suggesting the presence of a novel mechanism of mRNA maturation, namely light-regulated alternative splicing, in higher plants.

  5. Arabidopsis thaliana dehydroascorbate reductase 2: Conformational flexibility during catalysis

    PubMed Central

    Bodra, Nandita; Young, David; Astolfi Rosado, Leonardo; Pallo, Anna; Wahni, Khadija; De Proft, Frank; Huang, Jingjing; Van Breusegem, Frank; Messens, Joris

    2017-01-01

    Dehydroascorbate reductase (DHAR) catalyzes the glutathione (GSH)-dependent reduction of dehydroascorbate and plays a direct role in regenerating ascorbic acid, an essential plant antioxidant vital for defense against oxidative stress. DHAR enzymes bear close structural homology to the glutathione transferase (GST) superfamily of enzymes and contain the same active site motif, but most GSTs do not exhibit DHAR activity. The presence of a cysteine at the active site is essential for the catalytic functioning of DHAR, as mutation of this cysteine abolishes the activity. Here we present the crystal structure of DHAR2 from Arabidopsis thaliana with GSH bound to the catalytic cysteine. This structure reveals localized conformational differences around the active site which distinguishes the GSH-bound DHAR2 structure from that of DHAR1. We also unraveled the enzymatic step in which DHAR releases oxidized glutathione (GSSG). To consolidate our structural and kinetic findings, we investigated potential conformational flexibility in DHAR2 by normal mode analysis and found that subdomain mobility could be linked to GSH binding or GSSG release. PMID:28195196

  6. Atypical features of Thermus thermophilus succinate:quinone reductase.

    PubMed

    Kolaj-Robin, Olga; Noor, Mohamed R; O'Kane, Sarah R; Baymann, Frauke; Soulimane, Tewfik

    2013-01-01

    The Thermus thermophilus succinate:quinone reductase (SQR), serving as the respiratory complex II, has been homologously produced under the control of a constitutive promoter and subsequently purified. The detailed biochemical characterization of the resulting wild type (wt-rcII) and His-tagged (rcII-His(8)-SdhB and rcII-SdhB-His(6)) complex II variants showed the same properties as the native enzyme with respect to the subunit composition, redox cofactor content and sensitivity to the inhibitors malonate, oxaloacetate, 3-nitropropionic acid and nonyl-4-hydroxyquinoline-N-oxide (NQNO). The position of the His-tag determined whether the enzyme retained its native trimeric conformation or whether it was present in a monomeric form. Only the trimer exhibited positive cooperativity at high temperatures. The EPR signal of the [2Fe-2S] cluster was sensitive to the presence of substrate and showed an increased rhombicity in the presence of succinate in the native and in all recombinant forms of the enzyme. The detailed analysis of the shape of this signal as a function of pH, substrate concentration and in the presence of various inhibitors and quinones is presented, leading to a model for the molecular mechanism that underlies the influence of succinate on the rhombicity of the EPR signal of the proximal iron-sulfur cluster.

  7. Phosphorylation and proteolysis of HMGCoA reductase

    SciTech Connect

    Parker, R.A.; Lanier, T.L.; Miller, S.J.; Gibson, D.M.

    1987-05-01

    The phosphorylation of rat liver microsomal 97 kDa HMGCoA reductase (HMGR) was examined by immunoprecipitation and SDS-PAGE using antibodies to 53 kDa HMGR. MgATP preincubation decreased expressed HMGR activity from 10.1 +/- 2.4 to 0.81 +/- 0.2 U/mg. Concomitant incorporation of TSP from el-TSP-ATP into 97 kDa HMGR protein was observed. Competitive antibody binding by affinity-purified 53 kDa HMGR showed that the 97 kDa TSP band was authentic HMGR. HMGR was reactivated and the TSP label was removed by protein phosphatase in a concentration-dependent manner: the increase in expressed/total activity ratio (E/T) correlated linearly with a decrease in 97 kDa TSP. Therefore, the E/T ratio provides a valid index of the phosphorylation state of microsomal 97 kDa HMGR. Protease cleavage patterns of HMGR mass and TSP were compared using calpain: a 52-56 kDa doublet of HMGR mass was observed in immunoblots under conditions in which only the 56 kDa band contained TSP. Further proteolysis decreased the TSP label as the 52 kDa mass product increased. The data suggest that the major phosphorylation site in 97 kDa HMGR lies between two main calpain cleavage sites in the linker region joining the cytoplasmic domain to the membrane-spanning domain of the native enzyme.

  8. Molecular Cloning of Complementary DNA Encoding Maize Nitrite Reductase

    PubMed Central

    Lahners, Kristine; Kramer, Vance; Back, Eduard; Privalle, Laura; Rothstein, Steven

    1988-01-01

    Complementary DNA has been isolated that codes for maize nitrite reductase (NiR) by using the corresponding spinach gene (E Back et al. 1988 Mol Gen Genet 212:20-26) as a heterologous probe. The sequences of the complementary DNAs from the two species are 66% homologous while the deduced amino acid sequences are 86% similar when analogous amino acids are included. A high percentage of the differences in the DNA sequences is due to the extremely strong bias in the corn gene to have a G/C base in the third codon position with 559/569 codons ending in a G or C. Using a hydroponic system, maize seedlings grown in the absence of an exogenous nitrogen source were induced with nitrate or nitrite. Nitrate stimulated a rapid induction of the NiR mRNA in both roots and leaves. There is also a considerable induction of this gene in roots upon the addition of nitrite, although under the conditions used the final mRNA level was not as high as when nitrate was the inducer. There is a small but detectable level of NiR mRNA in leaves prior to induction, but no constitutive NiR mRNA can be seen in the roots. Analysis of genomic DNA supports the notion that there are at least two NiR genes in maize. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666376

  9. Drug susceptibility testing of Mycobacterium tuberculosis with nitrate reductase assay.

    PubMed

    Coban, Ahmet Yilmaz; Birinci, Asuman; Ekinci, Bora; Durupinar, Belma

    2004-09-01

    The nitrate reductase assay (NRA) was evaluated for susceptibility testing of Mycobacterium tuberculosis using 80 clinical isolates of M. tuberculosis and H37Rv as a control strain. All isolates were tested by the proportion method and the NRA for isoniazid (INH), rifampicin (RIF), streptomycin (STR) and ethambutol (ETM). The proportion method was carried out according to NCCLS on Löwenstein-Jensen (LJ) medium and the NRA on LJ medium containing 1000 microg/ml potassium nitrate (KNO(3)). After incubation for 7, 10, 14 and 21 days, Griess reagent was added to each LJ medium and nitrate reduction was determined by a colour change. Comparing the NRA with the proportion method, sensitivities were 100, 100, 82.1 and 92.2% for INH, RIF, STR and ETM, respectively. Specificities were 100, 100, 92.3 and 100% for INH, RIF, STR and ETM, respectively. The results of 2, 22 and 56 isolates were obtained after 7, 10 and 14 days, respectively. The proportion method result were read at 21-28 days. The NRA is rapid, inexpensive and easy to perform. Our results indicated that the NRA is suitable for the early determination of INH and RIF resistance in countries where sophisticated procedures are not always available.

  10. The Tail Wagging the Dog: Insights into Catalysis in R67 Dihydrofolate Reductase

    SciTech Connect

    Kamath, Ganesh K; Agarwal, Pratul K

    2010-01-01

    Plasmid-encoded R67 dihydrofolate reductase (DHFR) catalyzes a hydride transfer reaction between substrate dihydrofolate (DHF) and its cofactor, nicotinamide adenine dinucleotide phosphate (NADPH). R67 DHFR is a homotetramer that exhibits numerous characteristics of a primitive enzyme, including promiscuity in binding of substrate and cofactor, formation of nonproductive complexes, and the absence of a conserved acid in its active site. Furthermore, R67's active site is a pore, which is mostly accessible by bulk solvent. This study uses a computational approach to characterize the mechanism of hydride transfer. Not surprisingly, NADPH remains fixed in one-half of the active site pore using numerous interactions with R67. Also, stacking between the nicotinamide ring of the cofactor and the pteridine ring of the substrate, DHF, at the hourglass center of the pore, holds the reactants in place. However, large movements of the p-aminobenzoylglutamate tail of DHF occur in the other half of the pore because of ion pair switching between symmetry-related K32 residues from two subunits. This computational result is supported by experimental results that the loss of these ion pair interactions (located >13 {angstrom} from the center of the pore) by addition of salt or in asymmetric K32M mutants leads to altered enzyme kinetics [Hicks, S. N., et al. (2003) Biochemistry 42, 10569-10578; Hicks, S. N., et al. (2004) J. Biol. Chem. 279, 46995?47002]. The tail movement at the edge of the active site, coupled with the fixed position of the pteridine ring in the center of the pore, leads to puckering of the pteridine ring and promotes formation of the transition state. Flexibility coupled to R67 function is unusual as it contrasts with the paradigm that enzymes use increased rigidity to facilitate attainment of their transition states. A comparison with chromosomal DHFR indicates a number of similarities, including puckering of the nicotinamide ring and changes in the DHF tail

  11. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution.

    PubMed Central

    Haltia, Tuomas; Brown, Kieron; Tegoni, Mariella; Cambillau, Christian; Saraste, Matti; Mattila, Kimmo; Djinovic-Carugo, Kristina

    2003-01-01

    N2O is generated by denitrifying bacteria as a product of NO reduction. In denitrification, N2O is metabolized further by the enzyme N2O reductase (N2OR), a multicopper protein which converts N2O into dinitrogen and water. The structure of N2OR remained unknown until the recent elucidation of the structure of the enzyme isolated from Pseudomonas nautica. In the present paper, we report the crystal structure of a blue form of the enzyme that was purified under aerobic conditions from Paracoccus denitrificans. N2OR is a head-to-tail homodimer stabilized by a multitude of interactions including two calcium sites located at the intermonomeric surface. Each monomer is composed of two domains: a C-terminal cupredoxin domain that carries the dinuclear electron entry site known as Cu(A), and an N-terminal seven-bladed beta-propeller domain which hosts the active-site centre Cu(Z). The electrons are transferred from Cu(A) to Cu(Z) across the subunit interface. Cu(Z) is a tetranuclear copper cluster in which the four copper ions (Cu1 to Cu4) are ligated by seven histidine imidazoles, a hydroxyl or water oxygen and a bridging inorganic sulphide. A bound chloride ion near the Cu(Z) active site shares one of the ligand imidazoles of Cu1. This arrangement probably influences the redox potential of Cu1 so that this copper is stabilized in the cupric state. The treatment of N2OR with H2O2 or cyanide causes the disappearance of the optical band at 640 nm, attributed to the Cu(Z) centre. The crystal structure of the enzyme soaked with H2O2 or cyanide suggests that an average of one copper of the Cu(Z) cluster has been lost. The lowest occupancy is observed for Cu3 and Cu4. A docking experiment suggests that N(2)O binds between Cu1 and Cu4 so that the oxygen of N2O replaces the oxygen ligand of Cu4. Certain ligand imidazoles of Cu1 and Cu2, as well as of Cu4, are located at the dimer interface. Particularly those of Cu2 and Cu4 are parts of a bonding network which couples these

  12. Spectropotentiometric and structural analysis of the periplasmic nitrate reductase from Escherichia coli.

    PubMed

    Jepson, Brian J N; Mohan, Sudesh; Clarke, Thomas A; Gates, Andrew J; Cole, Jeffrey A; Butler, Clive S; Butt, Julea N; Hemmings, Andrew M; Richardson, David J

    2007-03-02

    The Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined. In contrast to the well characterized heterodimeric NapAB systems ofalpha-proteobacteria, such as Rhodobacter sphaeroides and Paracoccus pantotrophus, the gamma-proteobacterial E. coli NapA and NapB proteins purify independently and not as a tight heterodimeric complex. This relatively weak interaction is reflected in dissociation constants of 15 and 32 mum determined for oxidized and reduced NapAB complexes, respectively. The surface electrostatic potential of E. coli NapA in the apparent NapB binding region is markedly less polar and anionic than that of the alpha-proteobacterial NapA, which may underlie the weaker binding of NapB. The molybdenum ion coordination sphere of E. coli NapA includes two molybdopterin guanine dinucleotide dithiolenes, a protein-derived cysteinyl ligand and an oxygen atom. The Mo-O bond length is 2.6 A, which is indicative of a water ligand. The potential range over which the Mo(6+) state is reduced to the Mo(5+) state in either NapA (between +100 and -100 mV) or the NapAB complex (-150 to -350 mV) is much lower than that reported for R. sphaeroides NapA (midpoint potential Mo(6+/5+) > +350 mV), and the form of the Mo(5+) EPR signal is quite distinct. In E. coli NapA or NapAB, the Mo(5+) state could not be further reduced to Mo(4+). We then propose a catalytic cycle for E. coli NapA in which nitrate binds to the Mo(5+) ion and where a stable des-oxo Mo(6+) species may participate.

  13. Ion Chromatography.

    ERIC Educational Resources Information Center

    Mulik, James D.; Sawicki, Eugene

    1979-01-01

    Accurate for the analysis of ions in solution, this form of analysis enables the analyst to directly assay many compounds that previously were difficult or impossible to analyze. The method is a combination of the methodologies of ion exchange, liquid chromatography, and conductimetric determination with eluant suppression. (Author/RE)

  14. Recombinant bovine dihydrofolate reductase produced by mutagenesis and nested PCR of murine dihydrofolate reductase cDNA.

    PubMed

    Cody, Vivian; Mao, Qilong; Queener, Sherry F

    2008-11-01

    Recent reports of the slow-tight binding inhibition of bovine liver dihydrofolate reductase (bDHFR) in the presence of polyphenols isolated from green tea leaves has spurred renewed interest in the biochemical properties of bDHFR. Earlier studies were done with native bDHFR but in order to validate models of polyphenol binding to bDHFR, larger quantities of bDHFR are necessary to support structural studies. Bovine DHFR differs from its closest sequence homologue, murine DHFR, by 19 amino acids. To obtain the bDHFR cDNA, murineDHFR cDNA was transformed by a series of nested PCRs to reproduce the amino acid coding sequence for bovine DHFR. The bovine liver DHFR cDNA has an open reading frame of 561 base pairs encoding a protein of 187 amino acids that has a high level of conservation at the primary sequence level with other DHFR enzymes, and more so for the amino acid residues in the active site of the mammalian DHFR enzymes. Expression of the bovine DHFR cDNA in bacterial cells produced a stable recombinant protein with high enzymatic activity and kinetic properties similar to those previously reported for the native protein.

  15. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    SciTech Connect

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  16. Molecular basis for thermoprotection in Bemisia: structural differences between whitefly ketose reductase and other medium-chain dehydrogenases/reductases.

    PubMed

    Wolfe, G R; Smith, C A; Hendrix, D L; Salvucci, M E

    1999-02-01

    The silverleaf whitefly (Bemisia argentifolii, Bellows and Perring) accumulates sorbitol as a thermoprotectant in response to elevated temperature. Sorbitol synthesis in this insect is catalyzed by an unconventional ketose reductase (KR) that uses NADPH to reduce fructose. A cDNA encoding the NADPH-KR from adult B. argentifolii was cloned and sequenced to determine the primary structure of this enzyme. The cDNA encoded a protein of 352 amino acids with a calculated molecular mass of 38.2 kDa. The deduced amino acid sequence of the cDNA shared 60% identity with sheep NAD(+)-dependent sorbitol dehydrogenase (SDH). Residues in SDH involved in substrate binding were conserved in the whitefly NADPH-KR. An important structural difference between the whitefly NADPH-KR and NAD(+)-SDHs occurred in the nucleotide-binding site. The Asp residue that coordinates the adenosyl ribose hydroxyls in NAD(+)-dependent dehydrogenases (including NAD(+)-SDH), was replaced by an Ala in the whitefly NADPH-KR. The whitefly NADPH-KR also contained two neutral to Arg substitutions within four residues of the Asp to Ala substitution. Molecular modeling indicated that addition of the Arg residues and loss of the Asp decreased the electric potential of the adenosine ribose-binding pocket, creating an environment favorable for NADPH-binding. Because of the ability to use NADPH, the whitefly NADPH-KR synthesizes sorbitol under physiological conditions, unlike NAD(+)-SDHs, which function in sorbitol catabolism.

  17. Aerobic Degradation of 2,4,6-Trinitrotoluene by Enterobacter cloacae PB2 and by Pentaerythritol Tetranitrate Reductase

    PubMed Central

    French, Christopher E.; Nicklin, Stephen; Bruce, Neil C.

    1998-01-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water. PMID:9687442

  18. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  19. Genetic Diversity of Benzoyl Coenzyme A Reductase Genes Detected in Denitrifying Isolates and Estuarine Sediment Communities

    PubMed Central

    Song, Bongkeun; Ward, Bess B.

    2005-01-01

    Benzoyl coenzyme A (benzoyl-CoA) reductase is a central enzyme in the anaerobic degradation of organic carbon, which utilizes a common intermediate (benzoyl-CoA) in the metabolism of many aromatic compounds. The diversity of benzoyl-CoA reductase genes in denitrifying bacterial isolates capable of degrading aromatic compounds and in river and estuarine sediment samples from the Arthur Kill in New Jersey and the Chesapeake Bay in Maryland was investigated. Degenerate primers were developed from the known benzoyl-CoA reductase genes from Thauera aromatica, Rhodopseudomonas palustris, and Azoarcus evansii. PCR amplification detected benzoyl-CoA reductase genes in the denitrifying isolates belonging to α-, β-, or γ-Proteobacteria as well as in the sediment samples. Phylogenetic analysis, sequence similarity comparison, and conserved indel determination grouped the new sequences into either the bcr type (found in T. aromatica and R. palustris) or the bzd type (found in A. evansii). All the Thauera strains and the isolates from the genera Acidovorax, Bradyrhizobium, Paracoccus, Ensifer, and Pseudomonas had bcr-type benzoyl-CoA reductases with amino acid sequence similarities of more than 97%. The genes detected from Azarocus strains were assigned to the bzd type. A total of 50 environmental clones were detected from denitrifying consortium and sediment samples, and 28 clones were assigned to either the bcr or the bzd type of benzoyl-CoA reductase genes. Thus, we could determine the genetic capabilities for anaerobic degradation of aromatic compounds in sediment communities of the Chesapeake Bay and the Arthur Kill on the basis of the detection of two types of benzoyl-CoA reductase genes. The detected genes have future applications as genetic markers to monitor aromatic compound degradation in natural and engineered ecosystems. PMID:15812036

  20. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    PubMed Central

    Paek, Ji Hun; Shin, Kuk Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2013-01-01

    The ethyl acetate (EtOAc) soluble fraction of methanol extracts of Perilla frutescens (P. frutescens) inhibits aldose reductase (AR), the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC) isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR). The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2) (IC50 = 3.16 μM), rosmarinic acid (4) (IC50 = 2.77 μM), luteolin (5) (IC50 = 6.34 μM), and methyl rosmarinic acid (6) (IC50 = 4.03 μM). PMID:24308003

  1. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    SciTech Connect

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  2. Metabolism of bupropion by carbonyl reductases in liver and intestine.

    PubMed

    Connarn, Jamie N; Zhang, Xinyuan; Babiskin, Andrew; Sun, Duxin

    2015-07-01

    Bupropion's metabolism and the formation of hydroxybupropion in the liver by cytochrome P450 2B6 (CYP2B6) has been extensively studied; however, the metabolism and formation of erythro/threohydrobupropion in the liver and intestine by carbonyl reductases (CR) has not been well characterized. The purpose of this investigation was to compare the relative contribution of the two metabolism pathways of bupropion (by CYP2B6 and CR) in the subcellular fractions of liver and intestine and to identify the CRs responsible for erythro/threohydrobupropion formation in the liver and the intestine. The results showed that the liver microsome generated the highest amount of hydroxybupropion (Vmax = 131 pmol/min per milligram, Km = 87 μM). In addition, liver microsome and S9 fractions formed similar levels of threohydrobupropion by CR (Vmax = 98-99 pmol/min per milligram and Km = 186-265 μM). Interestingly, the liver has similar capability to form hydroxybupropion (by CYP2B6) and threohydrobupropion (by CR). In contrast, none of the intestinal fractions generate hydroxybupropion, suggesting that the intestine does not have CYP2B6 available for metabolism of bupropion. However, intestinal S9 fraction formed threohydrobupropion to the extent of 25% of the amount of threohydrobupropion formed by liver S9 fraction. Enzyme inhibition and Western blots identified that 11β-dehydrogenase isozyme 1 in the liver microsome fraction is mainly responsible for the formation of threohydrobupropion, and in the intestine AKR7 may be responsible for the same metabolite formation. These quantitative comparisons of bupropion metabolism by CR in the liver and intestine may provide new insight into its efficacy and side effects with respect to these metabolites.

  3. Human endothelial dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling.

    PubMed

    Whitsett, Jennifer; Rangel Filho, Artur; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vasquez-Vivar, Jeannette

    2013-10-01

    Tetrahydrobiopterin (BH₄) is required for NO synthesis and inhibition of superoxide release from endothelial NO synthase. Clinical trials using BH₄ to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH₄. One of the oxidation products of BH₄, 7,8-dihydrobiopterin (7,8-BH₂), is recycled back to BH₄ by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH₄ treatment is lacking. To characterize this reaction, we applied a novel multielectrode coulometric HPLC method that enabled the direct quantification of 7,8-BH₂ and BH₄, which is not possible with fluorescence-based methodologies. We found that basal untreated BH₄ and 7,8-BH₂ concentrations in human endothelial cells (ECs) are lower than in bovine and murine endothelioma cells. Treatment of human ECs with BH₄ transiently increased intracellular BH₄ while accumulating the more stable 7,8-BH₂. This was different from bovine or murine ECs, which resulted in preferential BH₄ increase. Using BH₄ diastereomers, 6S-BH₄ and 6R-BH₄, the narrow contribution of enzymatic DHFR recycling to total intracellular BH₄ was demonstrated. Reduction of 7,8-BH₂ to BH₄ occurs at very slow rates in cells and needs supraphysiological levels of 7,8-BH₂, indicating this reaction is kinetically limited. Activity assays verified that human DHFR has very low affinity for 7,8-BH₂ (DHF7,8-BH₂) and folic acid inhibits 7,8-BH₂ recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies, which may be further aggravated by folate supplements.

  4. The Reaction Mechanism of Methyl-Coenzyme M Reductase

    PubMed Central

    Wongnate, Thanyaporn; Ragsdale, Stephen W.

    2015-01-01

    Methyl-coenzyme M reductase (MCR) is a nickel tetrahydrocorphinoid (coenzyme F430) containing enzyme involved in the biological synthesis and anaerobic oxidation of methane. MCR catalyzes the conversion of methyl-2-mercaptoethanesulfonate (methyl-SCoM) and N-7-mercaptoheptanoylthreonine phosphate (CoB7SH) to CH4 and the mixed disulfide CoBS-SCoM. In this study, the reaction of MCR from Methanothermobacter marburgensis, with its native substrates was investigated using static binding, chemical quench, and stopped-flow techniques. Rate constants were measured for each step in this strictly ordered ternary complex catalytic mechanism. Surprisingly, in the absence of the other substrate, MCR can bind either substrate; however, only one binary complex (MCR·methyl-SCoM) is productive whereas the other (MCR·CoB7SH) is inhibitory. Moreover, the kinetic data demonstrate that binding of methyl-SCoM to the inhibitory MCR·CoB7SH complex is highly disfavored (Kd = 56 mm). However, binding of CoB7SH to the productive MCR·methyl-SCoM complex to form the active ternary complex (CoB7SH·MCR(NiI)·CH3SCoM) is highly favored (Kd = 79 μm). Only then can the chemical reaction occur (kobs = 20 s−1 at 25 °C), leading to rapid formation and dissociation of CH4 leaving the binary product complex (MCR(NiII)·CoB7S−·SCoM), which undergoes electron transfer to regenerate Ni(I) and the final product CoBS-SCoM. This first rapid kinetics study of MCR with its natural substrates describes how an enzyme can enforce a strictly ordered ternary complex mechanism and serves as a template for identification of the reaction intermediates. PMID:25691570

  5. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase

    PubMed Central

    Francis, Kevin; Sapienza, Paul J.; Lee, Andrew L.; Kohen, Amnon

    2016-01-01

    Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H→C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs) that are sensitive to the physical nature of the chemical step, and protein mass-modulation that slows down fast dynamics (femto- to picosecond timescale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5–45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction’s transition state (or tunneling ready state – TRS). Mass modulation of these enzymes through isotopic labeling with 13C, 15N, and 2H at nonexchangeable hydrogens yield an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass-modulation of the human DHFR affects neither DAD distribution nor the DAD’s conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H→C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically-modulated heavy enzymes in general. PMID:26813442

  6. Environmental Adaptation of Dihydrofolate Reductase from Deep-Sea Bacteria.

    PubMed

    Ohmae, Eiji; Gekko, Kunihiko; Kato, Chiaki

    2015-01-01

    In order to elucidate the molecular adaptation mechanisms of enzymes to the high hydrostatic pressure of the deep sea, we cloned, purified, and characterized more than ten dihydrofolate reductases (DHFRs) from bacteria living in deep-sea and ambient atmospheric pressure environments. The nucleotide and amino acid sequences of these DHFRs indicate the deep-sea bacteria are adapted to their environments after the differentiation of their genus from ancestors inhabiting atmospheric pressure environments. In particular, the backbone structure of the deep-sea DHFR from Moritella profunda (mpDHFR) almost overlapped with the normal homolog from Escherichia coli (ecDHFR). Thus, those of other DHFRs would also overlap on the basis of their sequence similarities. However, the structural stability of both DHFRs was quite different: compared to ecDHFR, mpDHFR was more thermally stable but less stable against urea and pressure unfolding. The smaller volume changes due to unfolding suggest that the native structure of mpDHFR has a smaller cavity and/or enhanced hydration compared to ecDHFR. High hydrostatic pressure reduced the enzymatic activity of many DHFRs, but three deep-sea DHFRs and the D27E mutant of ecDHFR exhibited pressure-dependent activation. The inverted activation volumes from positive to negative values indicate the modification of their structural dynamics, conversion of the rate-determining step of the enzymatic reaction, and different contributions of the cavity and hydration to the transition-state structure. Since the cavity and hydration depend on amino acid side chains, DHFRs would adapt to the deep-sea environment by regulating the cavity and hydration by substituting their amino acid side chains without altering their backbone structure. The results of this study clearly indicate that the cavity and hydration play important roles in the adaptation of enzymes to the deep-sea environment.

  7. Pyranopterin Coordination Controls Molybdenum Electrochemistry in Escherichia coli Nitrate Reductase.

    PubMed

    Wu, Sheng-Yi; Rothery, Richard A; Weiner, Joel H

    2015-10-09

    We test the hypothesis that pyranopterin (PPT) coordination plays a critical role in defining molybdenum active site redox chemistry and reactivity in the mononuclear molybdoenzymes. The molybdenum atom of Escherichia coli nitrate reductase A (NarGHI) is coordinated by two PPT-dithiolene chelates that are defined as proximal and distal based on their proximity to a [4Fe-4S] cluster known as FS0. We examined variants of two sets of residues involved in PPT coordination: (i) those interacting directly or indirectly with the pyran oxygen of the bicyclic distal PPT (NarG-Ser(719), NarG-His(1163), and NarG-His(1184)); and (ii) those involved in bridging the two PPTs and stabilizing the oxidation state of the proximal PPT (NarG-His(1092) and NarG-His(1098)). A S719A variant has essentially no effect on the overall Mo(VI/IV) reduction potential, whereas the H1163A and H1184A variants elicit large effects (ΔEm values of -88 and -36 mV, respectively). Ala variants of His(1092) and His(1098) also elicit large ΔEm values of -143 and -101 mV, respectively. An Arg variant of His(1092) elicits a small ΔEm of +18 mV on the Mo(VI/IV) reduction potential. There is a linear correlation between the molybdenum Em value and both enzyme activity and the ability to support anaerobic respiratory growth on nitrate. These data support a non-innocent role for the PPT moieties in controlling active site metal redox chemistry and catalysis.

  8. Short-chain dehydrogenases/reductases in cyanobacteria.

    PubMed

    Kramm, Anneke; Kisiela, Michael; Schulz, Rüdiger; Maser, Edmund

    2012-03-01

    The short-chain dehydrogenases/reductases (SDRs) represent a large superfamily of enzymes, most of which are NAD(H)-dependent or NADP(H)-dependent oxidoreductases. They display a wide substrate spectrum, including steroids, alcohols, sugars, aromatic compounds, and xenobiotics. On the basis of characteristic sequence motifs, the SDRs are subdivided into two main (classical and extended) and three smaller (divergent, intermediate, and complex) families. Despite low residue identities in pairwise comparisons, the three-dimensional structure among the SDRs is conserved and shows a typical Rossmann fold. Here, we used a bioinformatics approach to determine whether and which SDRs are present in cyanobacteria, microorganisms that played an important role in our ecosystem as the first oxygen producers. Cyanobacterial SDRs could indeed be identified, and were clustered according to the SDR classification system. Furthermore, because of the early availability of its genome sequence and the easy application of transformation methods, Synechocystis sp. PCC 6803, one of the most important cyanobacterial strains, was chosen as the model organism for this phylum. Synechocystis sp. SDRs were further analysed with bioinformatics tools, such as hidden Markov models (HMMs). It became evident that several cyanobacterial SDRs show remarkable sequence identities with SDRs in other organisms. These so-called 'homologous' proteins exist in plants, model organisms such as Drosophila melanogaster and Caenorhabditis  elegans, and even in humans. As sequence identities of up to 60% were found between Synechocystis and humans, it was concluded that SDRs seemed to have been well conserved during evolution, even after dramatic terrestrial changes such as the conversion of the early reducing atmosphere to an oxidizing one by cyanobacteria.

  9. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    PubMed

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  10. Characterization of thioredoxin glutathione reductase in Schiotosoma japonicum.

    PubMed

    Han, Yanhui; Zhang, Min; Hong, Yang; Zhu, Zhu; Li, Dong; Li, Xiangrui; Fu, Zhiqiang; Lin, Jiaojiao

    2012-09-01

    Schistosomiasis is one of the most prevalent and serious parasitic diseases in the world and remains an important public health problem in China. Screening and discovery of an effective vaccine candidate or new drug target is crucial for the control of this disease. In this study, we cloned a cDNA encoding Schistosoma japonicum (S. japonicum) thioredoxin glutathione reductase (SjTGR) from the cDNA of 42-day-old adult worms. The open reading frame (ORF) of the gene was 1791 base pairs (bp) encoding a protein of 596 amino acids. SjTGR was subcloned into pET-32a (+) and expressed in Escherichia coli (E. coli) BL21 (DE3). The recombinant protein rSjTGR exhibited enzymatic activity of 5.13U/mg with DTNB as the substrate, and showed strong immunogenecity. Real-time PCR results indicated that SjTGR was expressed at a higher level in 35-day-old schistosome worms in transcript. We vaccinated BALB/c mice with rSjTGR in combination with MONTANIDE™ ISA 206 VG (ISA 206) and observed a 33.50% to 36.51% (P<0.01) decrease in the adult worm burden and a 33.73%to 43.44% (P<0.01) decrease in the number of eggs counted compared to the ISA 206 or blank control groups in two independent vaccination tests. ELISA analysis demonstrated that rSjTGR induced a high level of SjTGR-specific IgG, IgG1, and IgG 2a antibodies and induced elevated production of IFN-γ. This study provides the basis for further investigations into the biological function of SjTGR and further evaluation of the potential use of this molecule as a vaccine candidate or new drug target is warranted.

  11. Human carbonyl reductase catalyzes reduction of 4-oxonon-2-enal.

    PubMed

    Doorn, Jonathan A; Maser, Edmund; Blum, Andreas; Claffey, David J; Petersen, Dennis R

    2004-10-19

    4-Oxonon-2-enal (4ONE) was demonstrated to be a product of lipid peroxidation, and previous studies found that it was highly reactive toward DNA and protein. The present study sought to determine whether carbonyl reductase (CR) catalyzes reduction of 4ONE, representing a potential pathway for metabolism of the lipid peroxidation product. Recombinant CR was cloned from a human liver cDNA library, expressed in Escherichia coli, and purified by metal chelate chromatography. Both 4ONE and its glutathione conjugate were found to be substrates for CR, and kinetic parameters were calculated. TLC analysis of reaction products revealed the presence of three compounds, two of which were identified as 4-hydroxynon-2-enal (4HNE) and 1-hydroxynon-2-en-4-one (1HNO). GC/MS analysis confirmed 4HNE and 1HNO and identified the unknown reaction product as 4-oxononanal (4ONA). Analysis of oxime derivatives of the reaction products via LC/MS confirmed the unknown as 4ONA. The time course for CR-mediated, NADPH-dependent 4ONE reduction and appearance of 4HNE and 1HNO was determined using HPLC, demonstrating 4HNE to be a major product and 1HNO and 4ONA to be minor products. Simulated structures of 4ONE in the active site of CR/NADPH calculated via docking experiments predict the ketone positioned as primary hydride acceptor. Results of the present study demonstrate that 4ONE is a substrate for CR/NADPH and the enzyme may represent a pathway for biotransformation of the lipid. Furthermore, these findings reveal that CR catalyzes hydride transfer selectively to the ketone but also to the aldehyde and C=C of 4ONE, resulting in 4HNE, 1HNO, and 4ONA, respectively.

  12. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase

    PubMed Central

    2015-01-01

    Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on kcat were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The Ki for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis. PMID:26637016

  13. Hydride transfer during catalysis by dihydrofolate reductase from Thermotoga maritima.

    PubMed Central

    Maglia, Giovanni; Javed, Masood H; Allemann, Rudolf K

    2003-01-01

    DHFR (dihydrofolate reductase) catalyses the metabolically important reduction of 7,8-dihydrofolate by NADPH. DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR), which shares similarity with DHFR from Escherichia coli, has previously been characterized structurally. Its tertiary structure is similar to that of DHFR from E. coli but it is the only DHFR characterized so far that relies on dimerization for stability. The midpoint of the thermal unfolding of TmDHFR was at approx. 83 degrees C, which was 30 degrees C higher than the melting temperature of DHFR from E. coli. The turnover and the hydride-transfer rates in the kinetic scheme of TmDHFR were derived from measurements of the steady-state and pre-steady-state kinetics using absorbance and stopped-flow fluorescence spectroscopy. The rate constant for hydride transfer was found to depend strongly on the temperature and the pH of the solution. Hydride transfer was slow (0.14 s(-1) at 25 degrees C) and at least partially rate limiting at low temperatures but increased dramatically with temperature. At 80 degrees C the hydride-transfer rate of TmDHFR was 20 times lower than that observed for the E. coli enzyme at its physiological temperature. Hydride transfer depended on ionization of a single group in the active site with a p K(a) of 6.0. While at 30 degrees C, turnover of substrate by TmDHFR was almost two orders of magnitude slower than by DHFR from E. coli; the steady-state rates of the two enzymes differed only 8-fold at their respective working temperatures. PMID:12765545

  14. ION SWITCH

    DOEpatents

    Cook, B.

    1959-02-10

    An ion switch capable of transferring large magnitudes of power is described. An ion switch constructed in accordance with the invention includes a pair of spaced control electrodes disposed in a highly evacuated region for connection in a conventional circuit to control the passing of power therethrough. A controllable ionic conduction path is provided directiy between the control electrodes by a source unit to close the ion switch. Conventional power supply means are provided to trigger the source unit and control the magnitude, durations and pulse repetition rate of the aforementioned ionic conduction path.

  15. ION SOURCE

    DOEpatents

    Blue, C.W.; Luce, J.S.

    1960-07-19

    An ion source is described and comprises an arc discharge parallel to the direction of and inside of a magnetic field. an accelerating electrode surrounding substantially all of the discharge except for ion exit apertures, and means for establishing an electric field between that electrode and the arc discharge. the electric field being oriented at an acute angle to the magnetic field. Ions are drawn through the exit apertures in the accelrating electrcde in a direction substantially divergent to the direction of the magnetic field and so will travel in a spiral orbit along the magnetic field such that the ions will not strike the source at any point in their orbit within the magnetic field.

  16. Ion focusing

    DOEpatents

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2017-01-17

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  17. ION SOURCE

    DOEpatents

    Leland, W.T.

    1960-01-01

    The ion source described essentially eliminater the problem of deposits of nonconducting materials forming on parts of the ion source by certain corrosive gases. This problem is met by removing both filament and trap from the ion chamber, spacing them apart and outside the chamber end walls, placing a focusing cylinder about the filament tip to form a thin collimated electron stream, aligning the cylinder, slits in the walls, and trap so that the electron stream does not bombard any part in the source, and heating the trap, which is bombarded by electrons, to a temperature hotter than that in the ion chamber, so that the tendency to build up a deposit caused by electron bombardment is offset by the extra heating supplied only to the trap.

  18. Ion focusing

    SciTech Connect

    Cooks, Robert Graham; Baird, Zane; Peng, Wen-Ping

    2015-11-10

    The invention generally relates to apparatuses for focusing ions at or above ambient pressure and methods of use thereof. In certain embodiments, the invention provides an apparatus for focusing ions that includes an electrode having a cavity, at least one inlet within the electrode configured to operatively couple with an ionization source, such that discharge generated by the ionization source is injected into the cavity of the electrode, and an outlet. The cavity in the electrode is shaped such that upon application of voltage to the electrode, ions within the cavity are focused and directed to the outlet, which is positioned such that a proximal end of the outlet receives the focused ions and a distal end of the outlet is open to ambient pressure.

  19. Structural and biochemical properties of cloned and expressed human and rat steroid 5. alpha. -reductases

    SciTech Connect

    Andersson, S.; Russell, D.W. )

    1990-05-01

    The microsomal enzyme steroid 5{alpha}-reductase is responsible for the conversion of testosterone into the more potent androgen dihydrotestosterone. In man, this steroid acts on a variety of androgen-responsive target tissues to mediate such diverse endocrine processes as male sexual differentiation in the fetus and prostatic growth in men. Here we describe the isolation, structure, and expression of a cDNA encoding the human steroid 5{alpha}-reductase. A rat cDNA was used as a hybridization probe to screen a human prostate cDNA library. A 2.1-kilobase cDNA was identified and DNA sequence analysis indicated that the human steroid 5{alpha}-reductase was a hydrophobic protein of 259 amino acids with a predicted molecular weight of 29,462. A comparison of the human and rat protein sequences revealed a 60% identity. Transfection of expression vectors containing the human and rat cDNAs into simian COS cells resulted in the synthesis of high levels of steroid 5{alpha}-reductase enzyme activity. Both enzymes expressed in COS cells showed similar substrate specificities for naturally occurring steroid hormones. However, synthetic 4-azasteroids demonstrated marked differences in their abilities to inhibit the human and rat steroid 5{alpha}-reductases.

  20. Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase.

    PubMed

    Montalvetti, A; Peña-Díaz, J; Hurtado, R; Ruiz-Pérez, L M; González-Pacanowska, D

    2000-07-01

    In eukaryotes the enzyme 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase catalyses the synthesis of mevalonic acid, a common precursor to all isoprenoid compounds. Here we report the isolation and overexpression of the gene coding for HMG-CoA reductase from Leishmania major. The protein from Leishmania lacks the membrane domain characteristic of eukaryotic cells but exhibits sequence similarity with eukaryotic reductases. Highly purified protein was achieved by ammonium sulphate precipitation followed by chromatography on hydroxyapatite. Kinetic parameters were determined for the protozoan reductase, obtaining K(m) values for the overall reaction of 40.3+/-5.8 microM for (R,S)-HMG-CoA and 81.4+/-5.3 microM for NADPH; V(max) was 33.55+/-1.8 units x mg(-1). Gel-filtration experiments suggested an apparent molecular mass of 184 kDa with subunits of 46 kDa. Finally, in order to achieve a better understanding of the role of this enzyme in trypanosomatids, the effect of possible regulators of isoprenoid biosynthesis in cultured promastigote cells was studied. Neither mevalonic acid nor serum sterols appear to modulate enzyme activity whereas incubation with lovastatin results in significant increases in the amount of reductase protein. Western- and Northern-blot analyses indicate that this activation is apparently performed via post-transcriptional control.