Sample records for mercury

  1. Mercury

    NASA Technical Reports Server (NTRS)

    Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  2. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  3. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  4. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  5. Distribution of total mercury and methyl mercury in water, sediment, and fish from South Florida estuaries

    USGS Publications Warehouse

    Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.

    1998-01-01

    Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.

  6. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... gov . Mercury Background Mercury Report Additional Resources Mercury Report - Children's Exposure to Elemental Mercury Recommend on Facebook ... I limit exposure to mercury? Why was the report written? Children attending a daycare in New Jersey ...

  7. Human Exposure and Health Effects of Inorganic and Elemental Mercury

    PubMed Central

    Zheng, Wei

    2012-01-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety. PMID:23230464

  8. Human exposure and health effects of inorganic and elemental mercury.

    PubMed

    Park, Jung-Duck; Zheng, Wei

    2012-11-01

    Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

  9. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, Clay E.; Vass, Arpad A.; Tyndall, Richard L.

    1997-01-01

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  10. Method for the removal and recovery of mercury

    DOEpatents

    Easterly, C.E.; Vass, A.A.; Tyndall, R.L.

    1997-01-28

    The present invention is an enhanced method for the removal and recovery of mercury from mercury-contaminated matrices. The method involves contacting a mercury-contaminated matrix with an aqueous dispersant solution derived from specific intra-amoebic isolates to release the mercury from the mercury-contaminated matrix and emulsify the mercury; then, contacting the matrix with an amalgamating metal from a metal source to amalgamate the mercury to the amalgamating metal; removing the metallic source from the mercury-contaminated matrix; and heating the metallic source to vaporize the mercury in a closed system to capture the mercury vapors.

  11. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury... mercury from secondary mercury facilities processing recycled mercuric oxide batteries and other mercury...

  12. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury... mercury from secondary mercury facilities processing recycled mercuric oxide batteries and other mercury...

  13. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury... mercury from secondary mercury facilities processing recycled mercuric oxide batteries and other mercury...

  14. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury... mercury from secondary mercury facilities processing recycled mercuric oxide batteries and other mercury...

  15. 40 CFR 421.200 - Applicability: Description of the secondary mercury subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary mercury subcategory. 421.200 Section 421.200 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Mercury Subcategory § 421.200 Applicability: Description of the secondary mercury... mercury from secondary mercury facilities processing recycled mercuric oxide batteries and other mercury...

  16. Assessment of Dietary Mercury Intake and Blood Mercury Levels in the Korean Population: Results from the Korean National Environmental Health Survey 2012–2014

    PubMed Central

    Kim, Seong-Ah; Kwon, YoungMin; Kim, Suejin; Joung, Hyojee

    2016-01-01

    From a public health perspective, there is growing concern about dietary mercury intake as the most important source of mercury exposure. This study was performed to estimate dietary mercury exposure and to analyze the association between mercury intake and blood mercury levels in Koreans. The study subjects were 553 adults, comprising a 10% representative subsample of the Korean National Environmental Health Survey (KoNEHS) 2012–2014, who completed a health examination, a face-to-face interview, and a three-day food record. Dietary mercury and methylmercury intakes were assessed from the three-day food record, and blood mercury concentration was measured using a mercury analyzer. The association between dietary mercury intake and blood mercury levels was analyzed by comparing the odds ratios for the blood mercury levels above the Human BioMonitoring (HBM) I value (5 μg/L) among the three groups with different mercury intakes. The average total mercury intake was 4.74 and 3.07 μg/day in males and females, respectively. The food group that contributed most to mercury intake was fish and shellfish, accounting for 77.8% of total intake. The geometric mean of the blood mercury concentration significantly and linearly increased with the mercury and methylmercury intakes (p < 0.001). The odds ratios for blood mercury levels above the HBM I value in the highest mercury and methyl mercury intake group were 3.27 (95% Confidence Interval (CI) 1.79–5.95) and 3.20 (95% CI 1.77–5.79) times higher than that of the lowest intake group, respectively. Our results provide compelling evidence that blood mercury level has a strong positive association with dietary intake, and that fish and shellfish contribute most to the dietary mercury exposure. PMID:27598185

  17. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  18. Mercury in dental amalgam: Are our health care workers at risk?

    PubMed

    Sahani, M; Sulaiman, N S; Tan, B S; Yahya, N A; Anual, Z F; Mahiyuddin, W R Wan; Khan, M F; Muttalib, K A

    2016-11-01

    Dental amalgam in fillings exposes workers to mercury. The exposure to mercury was investigated among 1871 dental health care workers. The aim of the study was to evaluate the risk of mercury exposure among dental compared to nondental health care workers and to determine other risk factors for mercury exposure. Respondents answered questionnaires to obtain demographic, personal, professional, and workplace information and were examined for their own amalgam fillings. Chronic mercury exposure was assessed through urinary mercury levels. In total, 1409 dental and 462 nondental health care workers participated in the study. Median urine mercury levels for dental and nondental health care workers were 2.75 μg/L (interquartile range [IQR] = 3.0175) and 2.66 μg/L (IQR = 3.04) respectively. For mercury exposure, there were no significant risk factor found among the workers involved within the dental care. The Mann-Whitney test showed that urine mercury levels were significantly different between respondents who eat seafood more than 5 times per week compared to those who eat it less frequently or not at all (p = 0.003). The urinary mercury levels indicated significant difference between dental workers in their practice using squeeze cloths (Mann-Whitney test, p = 0.03). Multiple logistic regression showed that only the usage of cosmetic products that might contain mercury was found to be significantly associated with the urinary mercury levels (odds ratio [OR] = 15.237; CI: 3.612-64.276). Therefore, mean urinary mercury levels of health care workers were low. Exposure to dental amalgam is not associated with high mercury exposure. However, usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury. Exposure to the high levels of mercury from dental amalgam can lead to serious health effects among the dental health care workers. Nationwide chronic mercury exposure among dental personnel was assessed through urinary mercury levels. Findings suggest low urinary mercury levels of these health care workers. Exposure to dental amalgam is not associated with high mercury exposure. However, the usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury.

  19. Mercury recycling in the United States in 2000

    USGS Publications Warehouse

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on mercury is estimated because it is a low-volume commodity and its production, use, and disposal is difficult to track. The prices and volumes of each category of mercury-containing material may change dramatically from year to year. For example, the average price of mercury was approximately $150 per flask from 2000 until 2003 and then rose sharply to $650 per flask in fall 2004 and approximately $850 per flask in spring 2005. Since 1927, the common unit for measuring and pricing mercury has been the flask in order to conform to the system used at Almaden, Spain (Meyers, 1951). One flask weighs 34.5 kilograms, and 29 flasks of mercury are contained in a metric ton. In the United States, the chlorine-caustic soda industry, which is the leading end-user of elemental mercury, recycles most of its mercury in-plant as home scrap. Annual purchases of replacement mercury by the chlorine-caustic soda industry indicate that some mercury may be lost through evaporation to the environment, put into a landfill as industrial waste, or trapped within pipes in the plant. Impending closure of domestic and foreign mercury-cell chlorine-caustic soda plants and the shift to nonmercury technology for chlorine-caustic soda production could ultimately result in a significant volume of elemental mercury for recycling, sale, or storage. Globally, mercury is widely used in artisanal, or small-scale, gold mining. Most of that mercury is lost to the environment and is not recycled. The recycling rate for mercury was not available owing to insufficient data in 2000, and the efficiency of mercury recycling was estimated to be 62 percent.

  20. High residue levels and the chemical form of mercury in tissues and organs of seabirds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi

    1995-12-31

    Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less

  1. THE EFFECT OF MERCURY CONTROLS ON WALLBOARD MANUFACTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandra Meischen

    2004-07-01

    Pending EPA regulations may mandate 70 to 90% mercury removal efficiency from utility flue gas. A mercury control option is the trapping of oxidized mercury in wet flue gas desulfurization systems (FGD). The potential doubling of mercury in the FGD material and its effect on mercury volatility at temperatures common to wallboard manufacture is a concern that could limit the growing byproduct use of FGD material. Prediction of mercury fate is limited by lack of information on the mercury form in the FGD material. The parts per billion mercury concentrations prevent the identification of mercury compounds by common analytical methods.more » A sensitive analytical method, cold vapor atomic fluorescence, coupled with leaching and thermodecomposition methods were evaluated for their potential to identify mercury compounds in FGD material. The results of the study suggest that the mercury form is dominated by the calcium sulfate matrix and is probably associated with the sulfate form in the FGD material. Additionally, to determine the effect of high mercury concentration FGD material on wallboard manufacture, a laboratory FGD unit was built to trap the oxidized mercury generated in a simulated flue gas. Although the laboratory prepared FGD material did not contain the mercury concentrations anticipated, further thermal tests determined that mercury begins to evolve from FGD material at 380 to 390 F, consequently dropping the drying temperature should mitigate mercury evolution if necessary. Mercury evolution is also diminished as the weight of the wallboard sample increased. Consequently, mercury evolution may not be a significant problem in wallboard manufacture.« less

  2. Mercury Emission Measurement in Coal-Fired Boilers by Continuous Mercury Monitor and Ontario Hydro Method

    NASA Astrophysics Data System (ADS)

    Zhu, Yanqun; Zhou, Jinsong; He, Sheng; Cai, Xiaoshu; Hu, Changxin; Zheng, Jianming; Zhang, Le; Luo, Zhongyang; Cen, Kefa

    2007-06-01

    The mercury emission control approach attaches more importance. The accurate measurement of mercury speciation is a first step. Because OH method (accepted method) can't provide the real-time data and 2-week time for results attained, it's high time to seek on line mercury continuous emission monitors(Hg-CEM). Firstly, the gaseous elemental and oxidized mercury were conducted to measure using OH and CEM method under normal operation conditions of PC boiler after ESP, the results between two methods show good consistency. Secondly, through ESP, gaseous oxidized mercury decrease a little and particulate mercury reduce a little bit, but the elemental mercury is just the opposite. Besides, the WFGD system achieved to gaseous oxidized mercury removal of 53.4%, gaseous overall mercury and elemental mercury are 37.1% and 22.1%, respectively.

  3. Atmospheric mercury emissions from mine wastes and surrounding geologically enriched terrains

    USGS Publications Warehouse

    Gustin, M.S.; Coolbaugh, M.F.; Engle, M.A.; Fitzgerald, B.C.; Keislar, R.E.; Lindberg, S.E.; Nacht, D.M.; Quashnick, J.; Rytuba, J.J.; Sladek, C.; Zhang, H.; Zehner, R.E.

    2003-01-01

    Waste rock and ore associated with Hg, precious and base metal mining, and their surrounding host rocks are typically enriched in mercury relative to natural background concentrations (<0.1 ??g Hg g-1). Mercury fluxes to the atmosphere from mineralized areas can range from background rates (0-15 ng m-2 h-1) to tens of thousands of ng m-2 h-1. Mercury enriched substrate constitutes a long-term source of mercury to the global atmospheric mercury pool. Mercury emissions from substrate are influenced by light, temperature, precipitation, and substrate mercury concentration, and occur during the day and night. Light-enhanced emissions are driven by two processes: desorption of elemental mercury accumulated at the soil:air interface, and photo reduction of mercury containing phases. To determine the need for and effectiveness of regulatory controls on short-lived anthropogenic point sources the contribution of mercury from geologic non-point sources to the atmospheric mercury pool needs to be quantified. The atmospheric mercury contribution from small areas of mining disturbance with relatively high mercury concentrations are, in general, less than that from surrounding large areas of low levels of mercury enrichment. In the arid to semi-arid west-ern United States volatilization is the primary means by which mercury is released from enriched sites.

  4. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  5. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  6. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  7. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  8. 49 CFR 173.164 - Mercury (metallic and articles containing mercury).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Mercury (metallic and articles containing mercury... Than Class 1 and Class 7 § 173.164 Mercury (metallic and articles containing mercury). (a) For transportation by aircraft, mercury must be packaged in packagings which meet the requirements of part 178 of...

  9. Technical report: mercury in the environment: implications for pediatricians.

    PubMed

    Goldman, L R; Shannon, M W

    2001-07-01

    Mercury is a ubiquitous environmental toxin that causes a wide range of adverse health effects in humans. Three forms of mercury (elemental, inorganic, and organic) exist, and each has its own profile of toxicity. Exposure to mercury typically occurs by inhalation or ingestion. Readily absorbed after its inhalation, mercury can be an indoor air pollutant, for example, after spills of elemental mercury in the home; however, industry emissions with resulting ambient air pollution remain the most important source of inhaled mercury. Because fresh-water and ocean fish may contain large amounts of mercury, children and pregnant women can have significant exposure if they consume excessive amounts of fish. The developing fetus and young children are thought to be disproportionately affected by mercury exposure, because many aspects of development, particularly brain maturation, can be disturbed by the presence of mercury. Minimizing mercury exposure is, therefore, essential to optimal child health. This review provides pediatricians with current information on mercury, including environmental sources, toxicity, and treatment and prevention of mercury exposure.

  10. Fate and aqueous transport of mercury in light of the Clean Air Mercury Rule for coal-fired electric power plants

    NASA Astrophysics Data System (ADS)

    Arzuman, Anry

    Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm coefficients were derived. Mercury air-phase removal efficiency was studied as a function of dominant mercury species vapor pressures, the amount of chlorine, sorbent injection rate and adsorption capacities, and process temperature and modifications. A mercury air phase removal algorithm was derived which defines the future removal efficiencies as a function of activated carbon injection rate. Mercury adsorption on soil was studied as a function of Mercury Mass Law incorporating the dominant aquatic mercury species, pH, chlorine and sulfur concentrations, and the amount of complexed hydroxyl groups. Aquatic mercury longitudinal plume delineation was studied using the Domenico and Robbins function. A Monte Carlo simulation was performed using random number series (5000) for all of the variables in the Domenico and Robbins and mercury retardation functions. The probability that the Maximum Contaminant Level for mercury will be exceeded was found to be equal approximately 1 percent of all soil-related fly ash applications.

  11. Wildfires threaten mercury stocks in northern soils

    USGS Publications Warehouse

    Turetsky, M.R.; Harden, J.W.; Friedli, H.R.; Flannigan, M.; Payne, N.; Crock, J.; Radke, L.

    2006-01-01

    With climate change rapidly affecting northern forests and wetlands, mercury reserves once protected in cold, wet soils are being exposed to burning, likely triggering large releases of mercury to the atmosphere. We quantify organic soil mercury stocks and burn areas across western, boreal Canada for use in fire emission models that explore controls of burn area, consumption severity, and fuel loading on atmospheric mercury emissions. Though renowned as hotspots for the accumulation of mercury and its transformation to the toxic methylmercury, boreal wetlands might soon transition to hotspots for atmospheric mercury emissions. Estimates of circumboreal mercury emissions from this study are 15-fold greater than estimates that do not account for mercury stored in peat soils. Ongoing and projected increases in boreal wildfire activity due to climate change will increase atmospheric mercury emissions, contributing to the anthropogenic alteration of the global mercury cycle and exacerbating mercury toxicities for northern food chains. Copyright 2006 by the American Geophysical Union.

  12. Utility of EXAFS in characterization and speciation of mercury-bearing mine wastes

    USGS Publications Warehouse

    Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    1999-01-01

    Extensive mining of large mercury deposits located in the California Coast Range has resulted in mercury contamination of both the local environment and water supplies. The solubility, dispersal, and ultimate fate of mercury are all affected by its chemical speciation, which can be most readily determined in a direct fashion using EXAFS spectroscopy. EXAFS spectra of mine wastes collected from several mercury mines in the California Coast Range with mercury concentrations ranging from 230 to 1060 mg/kg (ppm) have been analyzed using a spectral database of mercury minerals and sorbed mercury complexes. While some calcines have been found to consist almost exclusively of mercuric sulfide, HgS, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. This experimental approach can provide a quantitative measurement of the mercury compounds present and may serve as an indicator of the bioavailability and toxicity levels of mercury mine wastes.

  13. Mercury study report to Congress. Volume 4. Health effects of mercury and mercury compounds. Sab review draft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoeny, R.

    1996-06-01

    This volume of the draft Mercury Study Report to Congress summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. PBPK models are described, but not applied in risk assessment. Reference doses are calculated for inorganic and methylmercury; a referencemore » concentration for inhaled elemental mercury is provided. A quantitiative analysis of factors contributing to variability and uncertainty in the methylmercury RfD is provided in an appendix. Interations and sensitive populations are described.« less

  14. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    USGS Publications Warehouse

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  15. Comparison of Indoor Mercury Vapor in Common Areas of Residential Buildings with Outdoor Levels in a Community Where Mercury Is Used for Cultural Purposes

    PubMed Central

    Garetano, Gary; Gochfeld, Michael; Stern, Alan H.

    2006-01-01

    Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659

  16. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler.

    PubMed

    Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping

    2010-01-01

    Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.

  17. Mercury: The World Closest to the Sun.

    ERIC Educational Resources Information Center

    Cordell, Bruce M.

    1984-01-01

    Discusses various topics related to the geology of Mercury including the origin of Mercury's magnetism, Mercury's motions, volcanism, scarps, and Mercury's violent birth and early life. Includes a table comparing Mercury's orbital and physical data to that of earth's. (JN)

  18. Mercury in the pelagic food web of Lake Champlain.

    PubMed

    Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2012-04-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.

  19. Mercury in the Pelagic Food Web of Lake Champlain

    PubMed Central

    Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela

    2013-01-01

    Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540

  20. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  1. Mercury accumulation plant Cyrtomium macrophyllum and its potential for phytoremediation of mercury polluted sites.

    PubMed

    Xun, Yu; Feng, Liu; Li, Youdan; Dong, Haochen

    2017-12-01

    Cyrtomium macrophyllum naturally grown in 225.73 mg kg -1 of soil mercury in mining area was found to be a potential mercury accumulator plant with the translocation factor of 2.62 and the high mercury concentration of 36.44 mg kg -1 accumulated in its aerial parts. Pot experiments indicated that Cyrtomium macrophyllum could even grow in 500 mg kg -1 of soil mercury with observed inhibition on growth but no obvious toxic effects, and showed excellent mercury accumulation and translocation abilities with both translocation and bioconcentration factors greater than 1 when exposed to 200 mg kg -1 and lower soil mercury, indicating that it could be considered as a great mercury accumulating species. Furthermore, the leaf tissue of Cyrtomium macrophyllum showed high resistance to mercury stress because of both the increased superoxide dismutase activity and the accumulation of glutathione and proline induced by mercury stress, which favorited mercury translocation from the roots to the aerial parts, revealing the possible reason for Cyrtomium macrophyllum to tolerate high concentration of soil mercury. In sum, due to its excellent mercury accumulation and translocation abilities as well as its high resistance to mercury stress, the use of Cyrtomium macrophyllum should be a promising approach to remediating mercury polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. MERCURY USAGE AND ALTERNATIVES IN THE ELECTRICAL AND ELECTRONICS INDUSTRIES

    EPA Science Inventory

    Many industries have already found alternatives for mercury or have greatly decreased mercury use. However, the unique electromechanical and photoelectric properties of mercury and mercury compounds have made replacement of mercury difficult in some applications. This study was i...

  3. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.

    PubMed

    Liu, Yan; Kelly, David J A; Yang, Hongqun; Lin, Christopher C H; Kuznicki, Steve M; Xu, Zhenghe

    2008-08-15

    A natural chabazite-based silver nanocomposite (AgMC) was synthesized to capture mercury from flue gases of coal-fired power plants. Silver nanoparticles were engineered on zeolite through ion-exchange of sodium ions with silver ions, followed by thermal annealing. Mercury sorption test using AgMC was performed at various temperatures by exposing it to either pulse injection of mercury or continuous mercury flow. A complete capture of mercury by AgMC was achieved up to a capture temperature of 250 degrees C. Nano silver particles were shown to be the main active component for mercury capture by amalgamation mechanism. Compared with activated carbon-based sorbents, the sorbent prepared in this study showed a much higher mercury capture capacity and upper temperature limit for mercury capture. More importantly, the mercury captured by the spent AgMC could be easily released for safe disposal and the sorbent regenerated by simple heating at 400 degrees C. Mercury capture tests performed in real flue gas environment showed a much higher level of mercury capture by AgMC than by other potential mercury sorbents tested. In our mercury capture tests, the AgMC exposed to real flue gases showed an increased mercury capture efficiency than the fresh AgMC.

  4. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  5. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    USGS Publications Warehouse

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in the United States since 1992. In 1996, the three leading end-use sectors for mercury in the United States were chloralkali manufacturing (accounting for 38 percent of consumption), electrical and electronic instrumentation (13 percent of consumption), and instruments and measuring devices (11 percent of consumption). In 2010, the three leading end-use sectors were dental amalgam (accounting for between 35 and 57 percent of consumption), electrical and electronic instrumentation (29 percent of consumption), and batteries (8 percent of consumption). Mercury use in lighting is increasing because incandescent lights are being phased out in favor of mercury-containing compact fluorescent bulbs, but the demand for mercury per unit produced is small. Dental amalgam constituted the largest amount of mercury in use in the United States. One study reported about 290 t of mercury in dental amalgam was estimated to be contained in human mouths, an estimated 30 t of mercury amalgam was treated as waste, 28.5 t of mercury amalgam was released to the environment, 6 t of amalgam was recycled, and 3.5 t was treated and stored in landfills in 2009. Mercury contained in products recovered by State, municipal, or industry collection activities is recycled, but the estimated overall recycling rate is less than 10 percent. Increasingly, the U.S. mercury recycling industry has been processing a significant amount of mercury-containing material derived from foreign gold mining operations or decommissioned mercury-cell chloralkali plants. Regulation of mercury export and storage is expected to result in surplus mercury inventories in the United States. The Mercury Export Ban Act of 2008 limits elemental mercury exports for unregulated uses such as artisanal gold mining after January 1, 2013, and requires development of adequate long-term storage facilities in the United States for elemental mercury. During the past 4 years, producers and recyclers of elemental mercury have been exporting large quantities of mercury in anticipation of this regulation, but the U.S. inventory of mercury in 2010 was estimated to have exceeded 7,000 t from Government stockpiles and industry stocks. Costs attributed to long-term storage may affect the competitiveness of mercury recycling.

  6. Mercury in breast milk - a health hazard for infants in gold mining areas?

    PubMed

    Bose-O'Reilly, Stephan; Lettmeier, Beate; Roider, Gabriele; Siebert, Uwe; Drasch, Gustav

    2008-10-01

    Breast-feeding can be a source of mercury exposure for infants. The main concern up to now is methyl-mercury exposure of women at child-bearing age. Certain fish species have high levels of methyl-mercury leading to consumer's advisory guidelines in regard of fish consumption to protect infants from mercury exposure passing through breast milk. Little is known about the transfer of inorganic mercury passing through breast milk to infants. Epidemiological studies showed negative health effects of inorganic mercury in gold mining areas. Small-scale gold miners use mercury to extract the gold from the ore. Environmental and health assessments of gold mining areas in Indonesia, Tanzania and Zimbabwe showed a high exposure with inorganic mercury in these gold mining areas, and a negative health impact of the exposure to the miners and the communities. This paper reports about the analysis and the results of 46 breast milk samples collected from mercury-exposed mothers. The median level of 1.87mug/l is fairly high compared to other results from literature. Some breast milk samples showed very high levels of mercury (up to 149mug/l). Fourteen of the 46 breast milk samples exceed 4mug/l which is considered to be a "high" level. US EPA recommends a "Reference Dose" of 0.3mug inorganic mercury/kg body weight/day [United States Environmental Protection Agency, 1997. Volume V: Health Effects of Mercury and Mercury Compounds. Study Report EPA-452/R-97-007: US EPA]. Twenty-two of the 46 children from these gold mining areas had a higher calculated total mercury uptake. The highest calculated daily mercury uptake of 127mug exceeds by far the recommended maximum uptake of inorganic mercury. Further systematic research of mercury in breast milk from small-scale gold mining areas is needed to increase the knowledge about the bio-transfer of mercury from mercury vapour-exposed mothers passing through breast milk to the breast-fed infant.

  7. Avian mercury exposure and toxicological risk across western North America: A synthesis

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, Christopher; Peterson, Sarah; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.

    2016-01-01

    Methylmercury contamination of the environment is an important issue globally, and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations.

  8. Avian mercury exposure and toxicological risk across western North America: A synthesis

    PubMed Central

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex; Peterson, Sarah H.; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.

    2017-01-01

    Methylmercury contamination of the environment is an important issue globally and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations. PMID:27093907

  9. The fate and management of high mercury-containing lamps from high technology industry.

    PubMed

    Chang, T C; You, S J; Yu, B S; Kong, H W

    2007-03-22

    This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.

  10. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  11. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  12. The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve

    NASA Astrophysics Data System (ADS)

    Jiang, Cong; Chen, Yanhao

    2018-04-01

    Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.

  13. Volatilization of mercury compounds by methylmercury-volatilizing bacteria in Minamata Bay sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, K.; Sakata, T.; Nakahara, H.

    1988-11-01

    Minamata Bay has been heavily polluted by high mercury concentrations which gave rise for a long time to methylmercury poisoning, Minamata disease (Kutsuna 1968; Irukayama 1977). The mercury still exists in the sediments of the Bay. The population of mercury-resistant bacteria in the sediments of Minamata Bay is larger than that in the sediments of other marine environments. The mercury-resistant bacteria isolated from a marine environment have been found to transform organic and inorganic mercury compounds into mercury vapor. The mercury-resistance confirmed in various bacterial genera has been shown to be plasmid-mediated volatilization. However, there has been little definitive informationmore » on the volatilization of organic mercury by the bacteria living in the mercury-polluted environment. It is important to know what bacterial transformations of mercury have been taking place and how the mercury-resistant bacteria may be playing a role in the mercury cycle in the marine environment of Minamata Bay. The object of the present study is to clarify the characteristics of the methylmercury-volatilizing bacteria in the sediments of Minamata Bay and of the volatilization of various mercury compounds by these bacteria.« less

  14. Method for removal and stabilization of mercury in mercury-containing gas streams

    DOEpatents

    Broderick, Thomas E.

    2005-09-13

    The present invention is directed to a process and apparatus for removing and stabilizing mercury from mercury-containing gas streams. A gas stream containing vapor phase elemental and/or speciated mercury is contacted with reagent, such as an oxygen-containing oxidant, in a liquid environment to form a mercury-containing precipitate. The mercury-containing precipitate is kept or placed in solution and reacts with one or more additional reagents to form a solid, stable mercury-containing compound.

  15. Substance flow analysis of mercury in Turkey for policy decision support.

    PubMed

    Civancik, Didem; Yetis, Ulku

    2018-02-01

    Identification and quantification of mercury flows in Turkey are essential for better policy development regarding to the implementation of water-related legislation. To this end, substance flow analysis (SFA) of mercury in Turkey was conducted in order to identify and quantify mercury releases to different environmental compartments and help policy decision makers to better understand their options to reduce mercury flows. For the quantification of mercury flows, United Nations Environment Programme (UNEP) Mercury Toolkit, which is develop by UNEP Chemicals Branch with the aim of assisting countries to develop their own mercury inventory, was used. Results of the study showed that a total of 34.61 t of mercury is released annually from the activities in Turkey to different environmental compartments. It was found that most of the mercury releases were to the atmosphere (74 %) and smaller amounts were to land (21 %) and to water (5 %). Mercury naturally found in the lithosphere was found to be responsible for most of the releases while intentional mercury uses have smaller shares and decreasing importance because of the phasing out of mercury.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elias, D.F.; Corbin, W.E.

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damagemore » growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.« less

  17. Bird mercury concentrations change rapidly as chicks age: Toxicological risk is highest at hatching and fledging.

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.

    2011-01-01

    Toxicological risk of methylmercury exposure to juvenile birds is complex due to the highly transient nature of mercury concentrations as chicks age. We examined total mercury and methylmercury concentrations in blood, liver, kidney, muscle, and feathers of 111 Forster's tern (Sterna forsteri), 69 black-necked stilt (Himantopus mexicanus), and 43 American avocet (Recurvirostra americana) chicks as they aged from hatching through postfledging at wetlands that had either low or high mercury contamination in San Francisco Bay, California. For each waterbird species, internal tissue, and wetland, total mercury and methylmercury concentrations changed rapidly as chicks aged and exhibited a quadratic, U-shaped pattern from hatching through postfledging. Mercury concentrations were highest immediately after hatching, due to maternally deposited mercury in eggs, then rapidly declined as chicks aged and diluted their mercury body burden through growth in size and mercury depuration into growing feathers. Mercury concentrations then increased during fledging when mass gain and feather growth slowed, while chicks continued to acquire dietary mercury. In contrast to mercury in internal tissues, mercury concentrations in chick feathers were highly variable and declined linearly with age. For 58 recaptured Forster's tern chicks, the proportional change in blood mercury concentration was negatively related to the proportional change in body mass, but not to the amount of feathers or wing length. Thus, mercury concentrations declined more in chicks that gained more mass between sampling events. The U-shaped pattern of mercury concentrations from hatching to fledging indicates that juvenile birds may be at highest risk to methylmercury toxicity shortly after hatching when maternally deposited mercury concentrations are still high and again after fledging when opportunities for mass dilution and mercury excretion into feathers are limited.

  18. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition

    USGS Publications Warehouse

    Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.

    2007-01-01

    Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.

  19. Global and regional contributions to total mercury concentrations in Lake Michigan water

    EPA Science Inventory

    A calibrated mercury component mass balance model, LM2-Mercury, was applied to Lake Michigan to predict mercury concentrations in the lake under different mercury loadings, mercury air concentrations, and management scenarios. Although post-audit data are few, model predictions (...

  20. Retention of mercury by salmon

    USGS Publications Warehouse

    Amend, Donald F.

    1970-01-01

    Consuming fish that have been exposed repeatedly to mercury derivatives is a potential public health hazard because fish can accumulate and retain mercury in their tissues (Rucker, 1968). Concern has been expressed in the United States because mercurials have been used extensively in industry and as prophylactic and therapeutic agents in fish hatcheries. Rucker and Amend (1969) showed that yearling rainbow trout (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) exposed to mercurials accumulated excessive amounts of mercury in many tissues. Further, Rucker and Amend (1969) concluded that wild fish that ate mercury-contaminated fish also could contain high mercury levels. Although mercury was eliminated from most tissues within several months, substantial levels remained in the kidney for more than 33 weeks after the last exposure. Since high levels of mercury can be retained in the kidney for an undetermined time, it is possible that returning adult salmon exposed to mercurials as juveniles could constitute a potential hazard to public health. The purpose of this study was to determine whether such fish contained high residual levels of mercury.

  1. Measuring mercury in coastal fog water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-04-01

    Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)

  2. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/cu m in the total spacecraft atmosphere for exposures lasting 30 days or less or 0.01 mg/cu m mercury vapor for exposures lasting more than 30 days. We also encourage the use of alternative devices that do not contain mercury.

  3. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    PubMed Central

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2012-01-01

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 ug/L) and hair mercury levels (0.49±0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5’), or both (SEPP1 3’UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). PMID:21967774

  4. Marsh wrens as bioindicators of mercury in wetlands of Great Salt Lake: do blood and feathers reflect site-specific exposure risk to bird reproduction?

    USGS Publications Warehouse

    Hartman, C. Alex; Ackerman, Joshua T.; Herring, Garth; Isanhart, John; Herzog, Mark P.

    2013-01-01

    Nonlethal sampling of bird blood and feathers are among the more common ways of estimating the risk of mercury exposure to songbird reproduction. The implicit assumption is that mercury concentrations in blood or feathers of individuals captured in a given area are correlated with mercury concentrations in eggs from the same area. Yet, this assumption is rarely tested. We evaluated mercury concentrations in blood, feathers, and eggs of marsh wrens in wetlands of Great Salt Lake, Utah, and, at two spatial scales, specifically tested the assumption that mercury concentrations in blood and feather samples from birds captured in a defined area were predictive of mercury concentrations in eggs collected in the same area. Mercury concentrations in blood were not correlated with mercury concentrations in eggs collected within the same wetland unit, and were poorly correlated with mercury concentrations in eggs collected at the smaller home range spatial scale of analysis. Moreover, mercury exposure risk, as estimated via tissue concentrations, differed among wetland units depending upon whether blood or egg mercury concentrations were sampled. Mercury concentrations in feathers also were uncorrelated with mercury concentrations in eggs, and were poorly correlated with mercury concentrations in blood. These results demonstrate the potential for contrasting management actions that may be implemented based solely on the specific avian tissue that is sampled, and highlight the importance of developing avian tissues as biomonitoring tools for assessing local risk of mercury exposure to bird reproduction.

  5. Methods and sorbents for utilizing a hot-side electrostatic precipitator for removal of mercury from combustion gases

    DOEpatents

    Nelson, Sidney [Hudson, OH

    2011-02-15

    Methods are provided for reducing emission of mercury from a gas stream by treating the gas with carbonaceous mercury sorbent particles to reduce the mercury content of the gas; collecting the carbonaceous mercury sorbent particles on collection plates of a hot-side ESP; periodically rapping the collection plates to release a substantial portion of the collected carbonaceous mercury sorbent particles into hoppers; and periodically emptying the hoppers, wherein such rapping and emptying are done at rates such that less than 70% of mercury adsorbed onto the mercury sorbent desorbs from the collected mercury sorbent into the gas stream.

  6. Mercury accumulation and loss in mallard eggs

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2004-01-01

    Female mallards (Anas platyrhynchos) were fed diets containing 5, 10, or 20 ppm mercury as methylmercury chloride. One egg was collected from each bird before the start of the mercury diets and 15 eggs were collected from each bird while it was being fed mercury. The mercury diets were then replaced by uncontaminated diets, and each female was allowed to lay 29 more eggs. Mercury levels in eggs rose to about 7,18, and 35 ppm wet-weight in females fed 5,10, or 20 ppm mercury, respectively. Mercury levels fell to about 0.16,0.80, and 1.7 ppm in the last egg laid by birds that had earlier been fed 5, 10, or 20 ppm mercury, respectively. Higher concentrations of mercury were found in egg albumen than in yolk, and between 95 and 100% of the mercury in the eggs was in the form of methylmercury.

  7. Mercury concentration change in human hair after the ingestion of canned tuna fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inasmasu, T.; Ogo, A.; Yanagawa, M.

    1986-10-01

    The concentration of mercury in the hair of man has been conveniently used as an indicator of environmental exposure to mercury. In particular, studies concerning the relationship between the concentration of mercury in the hair and the dietary intake of mercury have revealed that the amount of fish consumed significantly affects the mercury concentration in the scalp hair. However, the quantitative relationship between the mercury concentration in the hair and the dietary intake of mercury has been scarcely proven. This is because mercury concentration in hair sampled reflects the degree of exposure from diet in the past, and because themore » dietary measurements of mercury generally depend on individuals remembering accurately or having recorded their intake of fish in the past. In an attempt to elucidate this problem. The authors assessed the mercury concentration in the hair of human subjects who ingested a certain amount of canned tuna fish.« less

  8. Microbial mercury methylation in Antarctic sea ice.

    PubMed

    Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W

    2016-08-01

    Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.

  9. Mercury study report to Congress. Volume 5. Health effects of mercury and mercury compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassett-Sipple, B.; Swartout, J.; Schoeny, R.

    1997-12-01

    This volume summarizes the available information on human health effects and animal data for hazard identification and dose-response assessment for three forms of mercury: elemental mercury, mercury chloride (inorganic mercury), and methylmercury (organic mercury). Effects are summarized by endpoint. The risk assessment evaluates carcinogenicity, mutagenicity, developmental toxicity and general systemic toxicity of these chemical species of mercury. Toxicokinetics (absorption, distribution, metabolism and excretion) are described for each of the three mercury species. Reference doses are calculated for inorganic and methylmercury; a reference concentrations for inhaled elemental mercury is provided. A quantitative analysis of factors contributing to variability and uncertainty inmore » the methylmercury RfD is provided in an appendix. Interactions and sensitive populations are described. the draft volume assesses ongoing research and research needs to reduce uncertainty surrounding adverse human health consequences of methylmercury exposure.« less

  10. 76 FR 56127 - Proposed Amendment of Class E Airspace; Mercury, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-12

    ...-0894; Airspace Docket No. 11-AWP-14] Proposed Amendment of Class E Airspace; Mercury, NV AGENCY... action proposes to amend Class E airspace at Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non- Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action...

  11. 76 FR 75446 - Amendment of Class E Airspace; Mercury, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-02

    ...-0894; Airspace Docket No. 11-AWP-14] Amendment of Class E Airspace; Mercury, NV AGENCY: Federal... Mercury, Desert Rock Airport, Mercury, NV. Decommissioning of the Mercury Non-Directional Beacon (NDB) at Mercury, Desert Rock Airport has made this action necessary for the safety and management of Instrument...

  12. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  13. [Amalgam. IV. Metabolism of mercury].

    PubMed

    Gladys, S; van Meerbeek, B; Vanherle, G; Lambrechts, P

    1993-04-01

    After absorption in the body by four ways, each type of mercury undergoes a specific metabolism. Elementary mercury as mercury vapour becomes rapidly oxidized to Hg2+ and, afterwards, is metabolized as an inorganic mercurial compound. From the blood circulation mercury reaches target organs like the kidneys, the central nervous system, the liver and the hypophysis, in which mercury accumulates. The retention time varies by organ and is longest in the brain. Mercury is mainly eliminated with urine and faeces, to a lesser degree with transpiration and mother's milk and sometimes by respiration.

  14. [Evaluation and source analysis of the mercury pollution in soils and vegetables around a large-scale zinc smelting plant].

    PubMed

    Liu, Fang; Wang, Shu-Xiao; Wu, Qing-Ru; Lin, Hai

    2013-02-01

    The farming soil and vegetable samples around a large-scale zinc smelter were collected for mercury content analyses, and the single pollution index method with relevant regulations was used to evaluate the pollution status of sampled soils and vegetables. The results indicated that the surface soil and vegetables were polluted with mercury to different extent. Of the soil samples, 78% exceeded the national standard. The mercury concentration in the most severely contaminated area was 29 times higher than the background concentration, reaching the severe pollution degree. The mercury concentration in all vegetable samples exceeded the standard of non-pollution vegetables. Mercury concentration, in the most severely polluted vegetables were 64.5 times of the standard, and averagely the mercury concentration in the vegetable samples was 25.4 times of the standard. For 85% of the vegetable samples, the mercury concentration, of leaves were significantly higher than that of roots, which implies that the mercury in leaves mainly came from the atmosphere. The mercury concentrations in vegetable roots were significantly correlated with that in soils, indicating the mercury in roots was mainly from soil. The mercury emissions from the zinc smelter have obvious impacts on the surrounding soils and vegetables. Key words:zinc smelting; mercury pollution; soil; vegetable; mercury content

  15. Sources of Mercury to East Fork Poplar Creek Downstream from the Y-12 National Security Complex: Inventories and Export Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, George R; Greeley Jr, Mark Stephen; Peterson, Mark J

    2010-02-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventorymore » of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.« less

  16. Anthropogenic Mercury Accumulation in Watersheds of the Northern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Drohan, P. J.; Lawler, D.; Grimm, J.; Grant, C.; Eklof, K. J.; Bennett, J.; Naber, M. D.

    2014-12-01

    Atmospheric deposition of mercury (Hg) is a critical environmental stress that affects ecosystems and human health. Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited over large geographic areas to downwind landscapes in precipitation and in dry fallout. The northern Appalachian Mountains are downwind of major atmospheric mercury emissions sources. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the region. Here, we explored mercury accumulation in forested landscapes - in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at 10 forested locations, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. To quantify mercury accumulation in terrestrial environments, we measured soil mercury concentrations within and surrounding 12 vernal pools spanning various physiographic settings in the region. Given that vernal pools have large inputs of water via precipitation yet do not have any stream discharge outflow, they are likely spots within the forested landscape to accumulate pollutants that enter via wet atmospheric deposition. To quantify mercury accumulation in aquatic environments, we sampled mercury concentrations in streams draining 35 forested watersheds, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of the Northern Appalachian Mountains.

  17. Mercury in terrestrial forested systems with highly elevated mercury deposition in southwestern China: The risk to insects and potential release from wildfires.

    PubMed

    Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan

    2016-05-01

    Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Preservation of samples for dissolved mercury

    USGS Publications Warehouse

    Hamlin, S.N.

    1989-01-01

    Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms.

  19. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems.« less

  20. Automated Calibration of Atmospheric Oxidized Mercury Measurements.

    PubMed

    Lyman, Seth; Jones, Colleen; O'Neil, Trevor; Allen, Tanner; Miller, Matthieu; Gustin, Mae Sexauer; Pierce, Ashley M; Luke, Winston; Ren, Xinrong; Kelley, Paul

    2016-12-06

    The atmosphere is an important reservoir for mercury pollution, and understanding of oxidation processes is essential to elucidating the fate of atmospheric mercury. Several recent studies have shown that a low bias exists in a widely applied method for atmospheric oxidized mercury measurements. We developed an automated, permeation tube-based calibrator for elemental and oxidized mercury, and we integrated this calibrator with atmospheric mercury instrumentation (Tekran 2537/1130/1135 speciation systems) in Reno, Nevada and at Mauna Loa Observatory, Hawaii, U.S.A. While the calibrator has limitations, it was able to routinely inject stable amounts of HgCl 2 and HgBr 2 into atmospheric mercury measurement systems over periods of several months. In Reno, recovery of injected mercury compounds as gaseous oxidized mercury (as opposed to elemental mercury) decreased with increasing specific humidity, as has been shown in other studies, although this trend was not observed at Mauna Loa, likely due to differences in atmospheric chemistry at the two locations. Recovery of injected mercury compounds as oxidized mercury was greater in Mauna Loa than in Reno, and greater still for a cation-exchange membrane-based measurement system. These results show that routine calibration of atmospheric oxidized mercury measurements is both feasible and necessary.

  1. Mercury, monomethyl mercury, and dissolved organic carbon concentrations in surface water entering and exiting constructed wetlands treated with metal-based coagulants, Twitchell Island, California

    USGS Publications Warehouse

    Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.

    2015-09-02

    Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.

  2. Leaching, transport, and methylation of mercury in and around abandoned mercury mines in the Humboldt River basin and surrounding areas, Nevada. Chapter C.

    USGS Publications Warehouse

    Gray, John E.; Stillings, Lisa L.

    2003-01-01

    Mercury and methylmercury concentrations were measured in mine wastes, stream sediments, and stream waters collected both proximal and distal from abandoned mercury mines to evaluate mercury contamination and mercury methylation in the Humboldt River system. The climate in the study area is arid, and due to the lack of mine-water runoff, water-leaching laboratory experiments were used to evaluate the potential of mine wastes to release mercury. Mine-waste calcine contains mercury concentrations as high as 14,000 ?g/g. Stream-sediment samples collected within 1 km of the mercury mines studied contain mercury concentrations as high as 170 ?g/g, but sediments collected from the Humboldt River and regional baseline sites have much lower mercury contents, less than 0.44 ?g/g. Similarly, methylmercury concentrations in mine-waste calcine are locally as high as 96 ng/g, but methylmercury contents in stream sediments collected down-stream from the mines and from the Humboldt River are lower (<0.05-0.95 ng/g). Stream-water samples collected below two mines studied contain mercury concentrations ranging from 6 to 2,000 ng/L, whereas mercury contents in Humboldt River and Rye Patch Reservoir water were generally lower, ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in Humboldt River system water were the lowest in this study (<0.02- 0.27 ng/L). Although mercury and methylmercury concentrations were elevated in some mine-waste calcine and mercury concentrations were locally high in mine-waste leachate samples, data show significant dilution of mercury and lower mercury methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is more than 8 km from any mercury mines. Data show only minor, local transference of mercury and methylmercury from mine-waste calcine to stream sediment, and then onto the water column, and indicate little transference of mercury from the mine sites to the Humboldt River system.

  3. Removal of mercury from coal via a microbial pretreatment process

    DOEpatents

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  4. Preliminary interpretation of plasma electron observations at the third encounter of Mariner 10 with Mercury

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Ogilvie, K. W.; Scudder, J. D.; Bridge, H. S.; Siscoe, G. L.; Lazarus, A. J.; Vasyliunas, V. M.; Yeates, C. M.

    1975-01-01

    Plasma electron count observations made during the first and third encounters of Mariner 10 with Mercury (i.e., during Mercury I and III) are reported. They provide detailed information on the magnetosphere of Mercury, especially those from Mercury III. A low-flux region was observed about closest approach (CA) of Mercury III, whereas no such region was detected by the lower-latitude Mercury I; a hot plasma sheet was measured on the outgoing (and near-equator) trajectory of Mercury I, while only cool plasma sheets were observed in the magnetosphere by Mercury III. Findings are similar, on a reduced scale, to models of the earth's magnetosphere and magnetosheath.

  5. Adsorbents for capturing mercury in coal-fired boiler flue gas.

    PubMed

    Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R

    2007-07-19

    This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.

  6. Mercury mine drainage and processes that control its environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2000-01-01

    Mine drainage from mercury mines in the California Coast Range mercury mineral belt is an environmental concern because of its acidity and high sulfate, mercury, and methylmercury concentrations. Two types of mercury deposits are present in the mineral belt, silica-carbonate and hot-spring type. Mine drainage is associated with both deposit types but more commonly with the silica-carbonate type because of the extensive underground workings present at these mines. Mercury ores consisting primarily of cinnabar were processed in rotary furnaces and retorts and elemental mercury recovered from condensing systems. During the roasting process mercury phases more soluble than cinnabar are formed and concentrated in the mine tailings, commonly termed calcines. Differences in mineralogy and trace metal geochemistry between the two deposit types are reflected in mine drainage composition. Silica-carbonate type deposits have higher iron sulfide content than hot- spring type deposits and mine drainage from these deposits may have extreme acidity and very high concentrations of iron and sulfate. Mercury and methylmercury concentrations in mine drainage are relatively low at the point of discharge from mine workings. The concentration of both mercury species increases significantly in mine drainage that flows through and reacts with calcines. The soluble mercury phases in the calcines are dissolved and sulfate is added such that methylation of mercury by sulfate reducing bacteria is enhanced in calcines that are saturated with mine drainage. Where mercury mine drainage enters and first mixes with stream water, the addition of high concentrations of mercury and sulfate generates a favorable environment for methylation of mercury. Mixing of oxygenated stream water with mine drainage causes oxidation of dissolved iron(II) and precipitation of iron oxyhydroxide that accumulates in the streambed. Both mercury and methylmercury are strongly adsorbed onto iron oxyhydroxide over the pH range of 3.2-7.1 in streams impacted by mine drainage. The dissolved fraction of both mercury species is depleted and concentrated in iron oxyhydroxide such that the amount of iron oxyhydroxide in the water column reflects the concentration of mercury species. In streams impacted by mine drainage, mercury and methylmercury are transported and adsorbed onto particulate phases. During periods of low stream flow, fine-grained iron hydroxide sediment accumulates in the bed load of the stream and adsorbs mercury and methylmercury such that both forms of mercury become highly enriched in the iron oxyhydroxide sediment. During high-flow events, mercury- and methylmercury-enriched iron hydroxide sediment is transported into larger aquatic systems producing a high flux of bioavailable mercury. (C) 2000 Elsevier Science B.V.

  7. Inorganic mercury poisoning associated with skin-lightening cosmetic products.

    PubMed

    Chan, Thomas Y K

    2011-12-01

    Mercury and mercury salts, including mercurous chloride and mercurous oxide, are prohibited for use in cosmetic products as skin-lightening agents because of their high toxicity. Yet, the public continue to have access to these products. Reports of skin-lightening cosmetic products containing mercury and cases of mercury poisoning following the use of such products were identified using Medline (1950 - 28 March 2011) with mercury, mercury compounds, mercury poisoning, cosmetics and skin absorption as the subject headings. These searches identified 118 citations of which 31 were relevant. The rate of dermal absorption increases with the concentration of mercury and prior hydration of the skin. The degree of dermal absorption varies with the skin integrity and lipid solubility of the vehicle in the cosmetic products. Ingestion may occur after topical application around the mouth and hand-to-mouth contact. After absorption, inorganic mercury is distributed widely and elimination occurs primarily through the urine and feces. With long-term exposure, urinary excretion is the major route of elimination. The half-life is approximately 1-2 months. The kidneys are the major site of inorganic mercury deposition; renal damage includes reversible proteinuria, acute tubular necrosis and nephrotic syndrome. Gastrointestinal symptoms include a metallic taste, gingivostomatitis, nausea and hypersalivation. Although penetration of the blood-brain barrier by inorganic mercury is poor, prolonged exposure can result in central nervous system (CNS) accumulation and neurotoxicity. Inorganic mercury poisoning following the use of skin-lightening creams has been reported from Africa, Europe, USA, Mexico, Australia and Hong Kong. Nephrotic syndrome (mainly due to minimal change or membranous nephropathy) and neurotoxicity were the most common presenting features. As mercury-containing cosmetic products can contaminate the home, some close household contacts were also reported to have elevated urine mercury concentrations. Prevention from further exposure is the first step. Cream users and their close contacts should be evaluated for evidence of mercury exposure, the presence of target organ damage and the need for chelation treatment. Laboratory evaluation of affected subjects should include a complete blood count, serum electrolytes, liver and renal function tests, urinalysis, urine and blood mercury concentrations. Since blood mercury concentrations tend to return to normal within days of exposure, blood samples are useful primarily in short-term, higher-level exposures. Estimation of the urine mercury concentration is the best marker of exposure to inorganic mercury and indicator of body burden. A 24-hour urine for measurement of mercury excretion is preferred; a spot urine mercury concentration should be corrected for creatinine output. Chelation therapy is indicated in patients with features of mercury poisoning and elevated blood and/or urine mercury concentrations. Unithiol (2,3-dimercapto-1-propanesulfonic acid, DMPS) is the preferred antidote though succimer (dimercaptosuccinic acid, DMSA) has also been employed. The use of mercury in cosmetic products should be strictly prohibited. The public should be warned not to use such products as their use can result in systemic absorption and accumulation of mercury causing renal, gastrointestinal and CNS toxicity.

  8. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    EPA Science Inventory

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  9. The role of sorption and bacteria in mercury partitioning and bioavailability in artificial sediments.

    PubMed

    Zhong, Huan; Wang, Wen-Xiong

    2009-03-01

    This study compared the relative importance of three types of sorption (organic matter-particle, mercury-organic matter and mercury-particle) in controlling the overall mercury partitioning and bioavailability in sediments. We found that all three types of sorption were important for both inorganic mercury (Hg) and methylated mercury (MeHg). Mercury-particle sorption was more important than mercury-fulvic acid (FA) sorption in increasing the mercury concentrations with increasing aging. Bioavailability (quantified by gut juice extraction from sipunculans) was mainly controlled by mercury-particle sorption, while FA-particle and mercury-FA sorption were not as important, especially for MeHg. Bacterial activity also increased the partitioning of Hg or MeHg in the sediments and was further facilitated by the presence of organic matter. The bioavailability of Hg or MeHg from sediments was only slightly influenced by bacterial activity. This study highlights the importance of sorption from various sources (especially mercury-particle sorption) as well as bacteria in controlling the partitioning and bioavailability of Hg or MeHg in sediments.

  10. Total and methyl mercury contents and distribution characteristics in cicada, Cryptotympana atrata (Fabricius).

    PubMed

    Zheng, Dongmei; Zhang, Zhongsheng; Wang, Qichao

    2010-06-01

    Total and methyl mercury concentrations of cicada bodies, wings, and exuviae were investigated to study the mercury distribution characteristics. Results indicated that total and methyl mercury concentrations of cicada bodies were 2.64 mg/kg and 123.93 ng/g on average, respectively. In cicada tissues, total mercury concentrations were found to increase in the order of exuviae (0.50 mg/kg on average) < wings (0.98 mg/kg on average) < cicada bodies (2.64 mg/kg on average) and methyl mercury concentrations of cicada bodies were 123.93 ng/g on average and were the highest. Methyl mercury concentrations accounted for about 4.69% of total mercury in cicada bodies and most mercury was in inorganic forms in cicada. Sex differences of total mercury concentrations were significantly great (F = 8.433, p < 0.01) and total mercury concentrations of the males, which were 3.38 mg/kg on average, were much higher. Correlation analysis showed that neither total nor methyl mercury concentrations of cicada bodies was significantly related to the corresponding contents of soil (r = 0.0598, p > 0.05).

  11. Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korbas, Malgorzata; MacDonald, Tracy C.; Pickering, Ingrid J.

    2013-04-08

    Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns ofmore » mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versus L-cysteine). For inorganic mercury species, in absence of L-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with L-cysteine present in the treatment solution, mercuric bis-L-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.« less

  12. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  13. Spatial variation of mercury bioaccumulation in bats of Canada linked to atmospheric mercury deposition.

    PubMed

    Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle

    2018-06-01

    Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.

  15. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant.« less

  16. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  17. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  18. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  19. Mercury in the National Parks: Current Status and Effects

    NASA Astrophysics Data System (ADS)

    Flanagan, C.; Blett, T. F.; Morris, K.

    2012-12-01

    Mercury is a globally distributed contaminant that can harm human and wildlife health, and threaten resources the National Park Service (NPS) is charged with protecting. Due in part to emissions and long-range transport from coal burning power plants, even remote national park environments receive mercury deposition from the atmosphere. Given the concern regarding mercury, there are and have been many mercury monitoring initiatives in national parks to determine the risk from mercury contamination. This includes the study of litter fall at Acadia National Park (Maine), snow at Mount Rainier National Park (Washington), heron eggs at Indiana Dunes National Lakeshore (Indiana), bat hair at Mammoth Cave National Park (Kentucky), and panthers at Everglades National Park (Florida). Wet deposition is also measured at 16 national parks as part of the National Atmospheric Deposition Network / Mercury Deposition Network. Results from these studies indicate that mercury deposition is increasing or is elevated in many national parks, and fish and other biota have been found to contain levels of mercury above toxicity thresholds for impacts to both humans and wildlife. Current research coordinated by the NPS Air Resources Division (ARD) in Denver, Colorado, on the effects of mercury includes broad-scale assessments of mercury in fish, dragonfly larvae, and songbirds across 30+ national parks. Fish provide the trophic link to human and wildlife health, dragonfly larvae can describe fine-scale differences in mercury levels, and songbirds shed light on the risk to terrestrial ecosystems. External project partners include the U.S. Geological Survey, University of Maine, and the Biodiversity Research Institute. In addition, the dragonfly project engages citizen scientists in the collection of dragonfly larvae, supporting the NPS Centennial Initiative by connecting people to parks and advancing the educational mission, and increasing public awareness about mercury impacts. Much of the current, large scale work on mercury in national parks is conducted in western and Alaskan parks and will be incorporated into the Western Mercury Synthesis project, a multi-agency/multi-organizational landscape scale synthesis linking large, spatiotemporal datasets about mercury cycling, bioaccumulation, and risk across western North America. Mercury findings in national parks are also communicated to other outlets, including public comment on EPA's Mercury and Air Toxics Standards and in video podcasts (e.g., http://www.nature.nps.gov/air/Multimedia/podcast/acadia_mercury/acadia_mercury.cfm). The NPS Organic Act states that national park resources are to remain unimpaired, and the toxic effects of mercury challenge that legal mandate. National park ecosystems are already experiencing multiple stressors (e.g., nitrogen deposition) and mercury impacts may push vulnerable species too far. This talk will give an overview of NPS-ARD mercury initiatives, and contribute to the overall understanding of mercury in the science, policy, and outreach arenas.

  20. Recent Approaches to Modeling Transport of Mercury in Surface Water and Groundwater - Case Study in Upper East Fork Poplar Creek, Oak Ridge, TN - 13349

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, Kent; Daniel, Anamary; Tachiev, Georgio

    2013-07-01

    In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less

  1. Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B.

    PubMed

    Dash, Hirak R; Basu, Subham; Das, Surajit

    2017-04-01

    Biofilm-forming mercury-resistant marine bacterium Bacillus cereus BW-201B has been explored to evident that the bacterial biofilm-EPS (exopolymers) trap inorganic mercury but subsequently release EPS-bound mercury for induction of mer operon-mediated volatilization of inorganic mercury. The isolate was able to tolerate 50 ppm of mercury and forms biofilm in presence of mercury. mer operon-mediated volatilization was confirmed, and -SH was found to be the key functional group of bacterial EPS responsible for mercury binding. Biofilm-EPS-bound mercury was found to be internalized to the bacterial system as confirmed by reversible conformational change of -SH group and increased expression level of merA gene in a timescale experiment. Biofilm-EPS trapped Hg after 24 h of incubation, and by 96 h, the volatilization process reaches to its optimum confirming the internalization of EPS-bound mercury to the bacterial cells. Biofilm disintegration at the same time corroborates the results.

  2. [Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting].

    PubMed

    Zheng, Dong-Mei; Li, Xin-Xin; Luo, Qing

    2012-10-01

    Total mercury contents in cricket bodies were studied in different biotopes in the surrounding of Huludao Zinc Plant to discuss the mercury distribution characteristics in cricket and to reveal the effects of environmental mercury accumulation in the short life-cycle insects through comparing cricket with other insect species. The average mercury content in cricket was 0.081 mg x kg(-1) and much higher than those in the control sites (0.012 mg x kg(-1) in average) in different biotopes. Mercury contents were found in the order of cricket head > wing > thorax approximately abdomen > leg. Mercury contents in cricket bodies varied greatly with sample sites. Significant correlation was found between the mercury contents in cricket and the distance from the pollution source as well as the mercury contents in plant stems. No significant correlation was found between the mercury contents in soil and in cricket bodies. Mercury contents in cricket were lower than those in cicadae, similar to those in other insects with shorter life-cycle periods.

  3. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades

    USGS Publications Warehouse

    Reddy, M.M.; Aiken, G.R.

    2001-01-01

    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  4. Environmental Mercury and Its Toxic Effects

    PubMed Central

    Rice, Kevin M.; Walker, Ernest M.; Wu, Miaozong; Gillette, Chris

    2014-01-01

    Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects. PMID:24744824

  5. Blood Mercury Levels of Zebra Finches Are Heritable: Implications for the Evolution of Mercury Resistance

    PubMed Central

    Buck, Kenton A.; Varian-Ramos, Claire W.; Cristol, Daniel A.; Swaddle, John P.

    2016-01-01

    Mercury is a ubiquitous metal contaminant that negatively impacts reproduction of wildlife and has many other sub-lethal effects. Songbirds are sensitive bioindicators of mercury toxicity and may suffer population declines as a result of mercury pollution. Current predictions of mercury accumulation and biomagnification often overlook possible genetic variation in mercury uptake and elimination within species and the potential for evolution in affected populations. We conducted a study of dietary mercury exposure in a model songbird species, maintaining a breeding population of zebra finches (Taeniopygia guttata) on standardized diets ranging from 0.0–2.4 μg/g methylmercury. We applied a quantitative genetics approach to examine patterns of variation and heritability of mercury accumulation within dietary treatments using a method of mixed effects modeling known as the 'animal model'. Significant variation in blood mercury accumulation existed within each treatment for birds exposed at the same dietary level; moreover, this variation was highly repeatable for individuals. We observed substantial genetic variation in blood mercury accumulation for birds exposed at intermediate dietary concentrations. Taken together, this is evidence that genetic variation for factors affecting blood mercury accumulation could be acted on by selection. If similar heritability for mercury accumulation exists in wild populations, selection could result in genetic differentiation for populations in contaminated locations, with possible consequences for mercury biomagnification in food webs. PMID:27668745

  6. Potential health and environmental issues of mercury-contaminated amalgamators.

    PubMed

    Roberts, H W; Leonard, D; Osborne, J

    2001-01-01

    Dental amalgamators may become contaminated internally with metallic mercury. This contamination may result from mercury leakage from capsules during trituration or from the long-term accrual from microscopic exterior contaminants that result from the industrial assembly process. The potential health risk to dental personnel from this contamination is unknown. The authors assessed used amalgamators from the federal service inventory for the amounts of mercury vapor levels, as well as the visual presence of mercury contamination. They evaluated these amalgamators for potential mercury vapor health risk, using established National Institute for Occupational Safety and Health methods and American Conference of Governmental Industrial Hygienists standards. Ten of the 11 amalgamators assessed had measurable mercury vapor levels. Four amalgamators were found to have internal static mercury vapor levels above Occupational Safety and Health Administration ceiling limit thresholds. During a simulated worst-case clinical use protocol, the authors found that no amalgamators produced mercury vapor in the breathing space of dental personnel that exceeded established time-weighted federal mercury vapor limits. Amalgamators may be contaminated internally with metallic mercury. Although the authors detected mercury vapor from these units during aggressive, simulated clinical use, dilution factors combined with room air exchange were found to keep health risks below established federal safety thresholds. Dental personnel should be aware that amalgamators may be contaminated with mercury and produce minute amounts of mercury vapor. These contaminated amalgamators may require disposal as environmentally hazardous waste.

  7. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  8. Mercury in Indiana watersheds: retrospective for 2001-2006

    USGS Publications Warehouse

    Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.

    2010-01-01

    Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that exceeded the 0.3 milligram per kilogram (mg/kg) U.S. Environmental Protection Agency (USEPA) methylmercury criterion in 12.4 percent of the 1,731 samples. The median wet-weight concentration in the fish-tissue samples was 0.13 mg/kg, and the maximum was 1.07 mg/kg. A coarse-scale analysis of all fish-tissue data in each watershed and a fine-scale analysis of data within 5 kilometers (km) of the downstream end of each watershed showed similar results overall. Mercury concentrations in fish-tissue samples were highest in the White River watershed in southern Indiana and the Fall Creek watershed in central Indiana. In fish-tissue samples within 5 km of the downstream end of a watershed, the USEPA methylmercury criterion was exceeded by 45 percent of mercury concentrations from the White River watershed and 40 percent of the mercury concentration from the Fall Creek watershed. A clear relation between mercury concentrations in fish-tissue samples and methylmercury concentrations in water was not observed in the data from watersheds in Indiana. Average annual atmospheric mercury wet-deposition rates were mapped with data at 156 locations in Indiana and four surrounding states for 2001-2006. These maps revealed an area in southeastern Indiana with high mercury wet-deposition rates-from 15 to 19 micrograms per square meter per year (ug/m2/yr). Annual atmospheric mercury dry-deposition rates were estimated with an inferential method by using concentrations of mercury species in air samples at three locations in Indiana. Mercury dry deposition-rates were 5.6 to 13.6 ug/m2/yr and were 0.49 to 1.4 times mercury wet-deposition rates. Total mercury concentrations were detected in 96 percent of 402 samples of wastewater effluent from 50 publicly owned treatment works in the watersheds; the median concentration was 3.0 ng/L, and the maximum was 88 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 12 percent exceeded the 12-n

  9. The Mercury Problem in Artisanal and Small-Scale Gold Mining.

    PubMed

    Esdaile, Louisa J; Chalker, Justin M

    2018-05-11

    Mercury-dependent artisanal and small-scale gold mining (ASGM) is the largest source of mercury pollution on Earth. In this practice, elemental mercury is used to extract gold from ore as an amalgam. The amalgam is typically isolated by hand and then heated-often with a torch or over a stove-to distill the mercury and isolate the gold. Mercury release from tailings and vaporized mercury exceed 1000 tonnes each year from ASGM. The health effects on the miners are dire, with inhaled mercury leading to neurological damage and other health issues. The communities near these mines are also affected due to mercury contamination of water and soil and subsequent accumulation in food staples, such as fish-a major source of dietary protein in many ASGM regions. The risks to children are also substantial, with mercury emissions from ASGM resulting in both physical and mental disabilities and compromised development. Between 10 and 19 million people use mercury to mine for gold in more than 70 countries, making mercury pollution from ASGM a global issue. With the Minamata Convention on Mercury entering force this year, there is political motivation to help overcome the problem of mercury in ASGM. In this effort, chemists can play a central role. Here, the problem of mercury in ASGM is reviewed with a discussion on how the chemistry community can contribute solutions. Introducing portable and low-cost mercury sensors, inexpensive and scalable remediation technologies, novel methods to prevent mercury uptake in fish and food crops, and efficient and easy-to-use mercury-free mining techniques are all ways in which the chemistry community can help. To meet these challenges, it is critical that new technologies or techniques are low-cost and adaptable to the remote and under-resourced areas in which ASGM is most common. The problem of mercury pollution in ASGM is inherently a chemistry problem. We therefore encourage the chemistry community to consider and address this issue that affects the health of millions of people. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. A comparison of the dynamics and bioconcentration of mercury in Oregon reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J.; Curtis, L.

    1995-12-31

    The authors assessed the extent of mercury pollution and its bioconcentration effects in fish in two Oregon reservoirs. Cottage Grove and Dorena Reservoirs are located in same ecoregions but distinguished by the history of mercury mining in the formers watershed. Past mercury mining activity deposited up to 271 {micro}g/g mercury and 2.6 mg/g sulfur in soils of near Black Butte Mine, OR. Sediment mercury concentration in the main tributary of Cottage Grove Reservoir, which drains the tailings of the past mercury mine, was ten times higher than in sediment from other tributaries to the reservoir. However there was no significantlymore » difference between mercury concentration in each tributary of Dorena Reservoir, which has no mercury mining history in its watershed. Average mercury concentration in sediment of Cottage Grove Reservoir (0.67 {micro}g/g dw) was higher than of Dorena Reservoir (0.12 {micro}g/g dw). The authors also determined percent volatile solid and grain size effect in sediment. Maximum mercury concentration exceeded the FDA limit 1 {micro}g/g ww for largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus) in Cottage Grove Reservoir. All fish species (largemouth bass, bluegill, crappie (Pomoxis nigromaculatus), catfish (Ictalurus nebulosus)) from Cottage Grove Reservoir had significantly higher levels of mercury than from Dorena Reservoir. Fish weight and age was positively correlated with mercury concentration in both-reservoirs and seasonal variation of mercury concentration in fish was examined. These results indicate that the Black Butte Mine is the main source of mercury and mercury bioconcentration in fish represents a management problem in Cottage Grove Reservoir.« less

  11. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  12. Mercury emission and speciation of coal-fired power plants in China

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2009-11-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  13. Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces

    USGS Publications Warehouse

    Gustin, M.S.; Lindberg, S.; Marsik, F.; Casimir, A.; Ebinghaus, R.; Edwards, G.; Hubble-Fitzgerald, C.; Kemp, R.; Kock, H.; Leonard, T.; London, J.; Majewski, M.; Montecinos, C.; Owens, J.; Pilote, M.; Poissant, L.; Rasmussen, P.; Schaedlich, F.; Schneeberger, D.; Schroeder, W.; Sommar, J.; Turner, R.; Vette, A.; Wallschlaeger, D.; Xiao, Z.; Zhang, H.

    1999-01-01

    Diffuse anthropogenic and naturally mercury-enriched areas represent long-lived sources of elemental mercury to the atmosphere. The Nevada Study and Tests of the Release of Mercury From Soils (STORMS) project focused on the measurement of mercury emissions from a naturally enriched area. During the project, concurrent measurements of mercury fluxes from naturally mercury-enriched substrate were made September 1-4, 1997, using four micrometeorological methods and seven field flux chambers. Ambient air mercury concentrations ranged from 2 to nearly 200 ng m-3 indicating that the field site is a source of atmospheric mercury. The mean daytime mercury fluxes, during conditions of no precipitation, measured with field chambers were 50 to 360 ng m-2 h-1, and with the micrometeorological methods were 230 to 600 ng m-2 h-1. This wide range in mercury emission rates reflects differences in method experimental designs and local source strengths. Mercury fluxes measured by many field chambers were significantly different (p < 0.05) but linearly correlated. This indicates that field chambers responded similarly to environmental conditions, but differences in experimental design and site heterogeneity had a significant influence on the magnitude of mercury fluxes. Data developed during the field study demonstrated that field flux chambers are ideal for assessment of the physicochemical processes driving mercury flux and development of an understanding of the magnitude of the influence of individual factors on flux. In general, mean mercury fluxes measured with micrometeorological methods during daytime periods were nearly 3 times higher than mean fluxes measured with field flux chambers. Micrometeorological methods allow for derivation of a representative mercury flux occurring from an unconstrained system and provide an assessment of the actual magnitude and variability of fluxes occurring from an area. Copyright 1999 by the American Geophysical Union.

  14. A preliminary study on health effects in villagers exposed to mercury in a small-scale artisanal gold mining area in Indonesia.

    PubMed

    Bose-O'Reilly, Stephan; Schierl, Rudolf; Nowak, Dennis; Siebert, Uwe; William, Jossep Frederick; Owi, Fradico Teorgi; Ir, Yuyun Ismawati

    2016-08-01

    Cisitu is a small-scale gold mining village in Indonesia. Mercury (Hg) is used to extract gold from ore, heavily polluting air, soil, fish and rice paddy fields with Hg. Rice in Cisitu is burdened with mercury. The main staple food of the inhabitants of Cisitu is this polluted rice. Villagers were concerned that the severe diseases they observed in the community might be related to their mining activities, including high mercury exposure. Case report of the medical examinations and the mercury levels in urine and hair of 18 people with neurological symptoms. Typical signs and symptoms of chronic mercury intoxication were found (excessive salivation, sleep disturbances, tremor, ataxia, dysdiadochokinesia, pathological coordination tests, gray to bluish discoloration of the oral cavity and proteinuria). Mercury levels in urine were increased in eight patients (>7µg Hg/L urine). All 18 people had increased hair levels (>1µg Hg/g hair). 15 patients exhibited several, and sometimes numerous, symptoms in addition to having moderately to highly elevated levels of mercury in their specimens. These patients were classified as intoxicated. The situation in Cisitu is special, with rice paddy fields being irrigated with mercury-contaminated water and villagers consuming only local food, especially mercury-contaminated rice. Severe neurological symptoms and increased levels of mercury in urine and hair support are possibly caused by exposure to inorganic mercury in air, and the consumption of mercury-contaminated fish and rice. The mercury exposure needs to be reduced and treatment provided. Further research is needed to test the hypothesis that mercury-contaminated rice from small-scale gold mining areas might cause mercury intoxication. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Searching for the Source of Salt Marsh Buried Mercury.

    NASA Astrophysics Data System (ADS)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  16. Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Wilmarth, W. R.

    2016-12-16

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%,more » though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements« less

  17. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor.

    PubMed

    Aposhian, H Vasken; Morgan, Daniel L; Queen, H L Sam; Maiorino, Richard M; Aposhian, Mary M

    2003-01-01

    Some medical practitioners prescribe GSH and vitamin C alone or in combination with DMPS or DMSA for patients with mercury exposure that is primarily due to the mercury vapor emitted by dental amalgams. This study tested the hypothesis that GSH, vitamin C, or lipoic acid alone or in combination with DMPS or DMSA would decrease brain mercury. Young rats were exposed to elemental mercury by individual nose cone, at the rate of 4.0 mg mercury per m3 air for 2 h per day for 7 consecutive days. After a 7-day equilibrium period, DMPS, DMSA, GSH, vitamin C, lipoic acid alone, or in combination was administered for 7 days and the brain and kidneys of the animals removed and analyzed for mercury by cold vapor atomic absorption. None of these regimens reduced the mercury content of the brain. Although DMPS or DMSA was effective in reducing kidney mercury concentrations, GSH, vitamin C, lipoic acid alone, or in combination were not. One must conclude that the palliative effect, if any, of GSH, vitamin C, or lipoic acid for treatment of mercury toxicity due to mercury vapor exposure does not involve mercury mobilization from the brain and kidney.

  18. Virtual atmospheric mercury emission network in China.

    PubMed

    Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong

    2014-01-01

    Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.

  19. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex.

    PubMed

    Vidal, Dora Elva; Horne, Alex John

    2003-09-01

    Resistance to contaminants is an important yet unmeasured factor in sediment toxicity tests. The rate at which mercury resistance develops and its genetic persistence in the oligochaete worm Tubifex tubifex were studied under laboratory conditions. Worms were raised for four generations under two different sediment treatments, one reference clean sediment, the other contaminated with mercury. Worms raised in mercury-contaminated sediment developed mercury tolerance that persisted even when the worms were raised for three subsequent generations in clean sediment. Mercury tolerance was determined by comparative water-only toxicity tests with mercury as the only stressor. Control worms had a mean lethal concentration (LC50) of 0.18 mg/L(-1). Worms exposed to high levels of mercury in sediment had high mercury tolerance with a mean LC50 of 1.40 mg/L(-1). When mercury-tolerant and control mercury-intolerant worms were crossed, their descendants also demonstrated mercury tolerance during lethal toxicity tests. The LC50 for worm descendants resulting from this cross was 1.39 mg/L(-1). Adaptation to mercury exposures occurred rapidly in this group of worms and appears to be due to both phenotypic and genotypic mechanisms. Development of contaminant resistance and adaptation may be common phenomena in aquatic benthic invertebrates, which should be considered during the design and interpretation of toxicity tests.

  20. Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter

    USGS Publications Warehouse

    Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,

    2015-01-01

    Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.

  1. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  2. PHA-stimulated immune-responsiveness in mercury-dosed zebra finches does not match results from environmentally exposed songbirds.

    PubMed

    Caudill, Mitchell T; Spear, Eliza L; Varian-Ramos, Claire W; Cristol, Daniel A

    2015-04-01

    Dietary mercury exposure is associated with suppressed immune responsiveness in birds. This study examined the immune-responsiveness of domestic zebra finches (Taeniopygia guttata) experimentally exposed to mercury through their diet. We used the phytohemagglutinin (PHA) skin-swelling test to assay the effect of two modes of mercury exposure. Some finches received exposure to mercury only after reaching sexual maturity, while others were maintained on a mercury-dosed diet throughout life, including development. Each bird received one of five dietary concentrations of methylmercury cysteine (0.0, 0.3, 0.6, 1.2 or 2.4 ppm). In contrast to a study on wild songbirds at a mercury-contaminated site, we detected no relationship between mercury level and immunological response to PHA, regardless of mode of exposure. This result represents the first major difference found by our laboratory between wild birds exposed to environmental mercury and captive birds experimentally exposed to mercury.

  3. Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study

    USGS Publications Warehouse

    Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.; ,

    2005-01-01

    Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.

  4. Phytoremediation of ionic and methylmercury pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    2010-04-28

    Our long-term goal is to enable highly productive plant species to extract, resist, detoxify, and sequester the toxic elemental pollutants, like the heavy metal mercury. Our current working hypothesis is that transgenic plants controlling the transport, chemical speciation, electrochemical state. volatilization, and aboveground binding of mercury will: a) tolerate mercury and grow rapidly in mercury contaminated environments; b) prevent methylmercury from entering the food chain; c) remove mercury from polluted soil and water; and d) hyperaccumulate mercury in aboveground tissues for later harvest. Progress toward these specific aims is reported: to increase the transport of mercury into roots and tomore » aboveground vegetative organs; to increase biochemical sinks and storage for mercury in leaves; to increase leaf cell vacuolar storage of mercury; and to demonstrate that several stacked transgenes, when functioning in concert, enhance mercury resistance and hyperaccumulation to high levels.« less

  5. Mercury in soils of the agro-industrial zone of Zima city (Irkutsk oblast)

    NASA Astrophysics Data System (ADS)

    Butakov, E. V.; Kuznetsov, P. V.; Kholodova, M. S.; Grebenshchikova, V. I.

    2017-11-01

    Data on mercury concentrations in soils of the agro-industrial zone of Zima city in Irkutsk oblast are discussed. It is shown that mercury concentrations in the plow horizon of studied soils exceed background values. The distribution pattern of mercury in soils of the investigated area is characterized. The revealed mercury anomalies are allocated to the industrial zone of the Sayanskkhimprom plant. The combined analysis of data on mercury concentrations in the plow and subplow horizons and on the chemical composition of snow indicates that mercury enters the soil mainly with atmospheric precipitation and is present there in the adsorbed form. The correlation analysis indicates that the local thermal power station plays a significant role as the source of mercury emission to the atmosphere. Close relationships between mercury concentrations and concentrations of mobile forms of elements attest to the presence of mobile organomineral mercury compounds in the studied soils.

  6. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  7. Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT

    NASA Astrophysics Data System (ADS)

    Staats, M. F.; Langner, H.; Moore, J. N.

    2010-12-01

    The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, <0.05 mg/kg to the main stem of the river, >5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.

  8. Mercury in traditional medicines: Is cinnabar toxicologically similar to common mercurials?

    PubMed Central

    Liu, Jie; Shi, Jing-Zheng; Yu, Li-Mei; Goyer, Robert A.; Waalkes, Michael P.

    2009-01-01

    Mercury is a major toxic metal ranking top in the Toxic Substances List. Cinnabar (contains mercury sulfide) has been used in traditional medicines for thousands years as an ingredient in various remedies, and 40 cinnabar-containing traditional medicines are still used today. Little is known about toxicology profiles or toxicokinetics of cinnabar and cinnabar-containing traditional medicines, and the high mercury content in these Chinese medicines raises justifiably escalations of public concern. This minireview searched the available database of cinnabar, compared cinnabar with common mercurials, such as mercury vapor, inorganic mercury, and organic mercury, and discusses differences in their bioavailability, disposition, and toxicity. The analysis showed that cinnabar is insoluble and poorly absorbed from the gastrointestinal tract. Absorbed mercury from cinnabar is mainly accumulated in kidney, resembling the disposition pattern of inorganic mercury. Heating cinnabar results in release of mercury vapor, which in turn can produce toxicity similar to inhalation of these vapors. The doses of cinnabar required to produce neurotoxicity are thousands 1000 times higher than methyl mercury. Following long-term use of cinnabar, renal dysfunction may occur. Dimercaprol and succimer are effective chelation therapies for general mercury intoxication including cinnabar. Pharmacology studies of cinnabar suggest sedative and hypnotic effects, but the therapeutic basis of cinnabar is still not clear. In summary, cinnabar is chemically inert with a relatively low toxic potential when taken orally. In risk assessment, cinnabar is less toxic than many other forms of mercury, but the rationale for its inclusion in traditional Chinese medicines remains to be fully justified. PMID:18445765

  9. Measurement of atmospheric mercury species with manual sampling and analysis methods in a case study in Indiana

    USGS Publications Warehouse

    Risch, M.R.; Prestbo, E.M.; Hawkins, L.

    2007-01-01

    Ground-level concentrations of three atmospheric mercury species were measured using manual sampling and analysis to provide data for estimates of mercury dry deposition. Three monitoring stations were operated simultaneously during winter, spring, and summer 2004, adjacent to three mercury wet-deposition monitoring stations in northern, central, and southern Indiana. The monitoring locations differed in land-use setting and annual mercury-emissions level from nearby sources. A timer-controlled air-sampling system that contained a three-part sampling train was used to isolate reactive gaseous mercury, particulate-bound mercury, and elemental mercury. The sampling trains were exchanged every 6 days, and the mercury species were quantified in a laboratory. A quality-assurance study indicated the sampling trains could be held at least 120 h without a significant change in reactive gaseous or particulate-bound mercury concentrations. The manual sampling method was able to provide valid mercury concentrations in 90 to 95% of samples. Statistical differences in mercury concentrations were observed during the project. Concentrations of reactive gaseous and elemental mercury were higher in the daytime samples than in the nighttime samples. Concentrations of reactive gaseous mercury were higher in winter than in summer and were highest at the urban monitoring location. The results of this case study indicated manual sampling and analysis could be a reliable method for measurement of atmospheric mercury species and has the capability for supplying representative concentrations in an effective manner from a long-term deposition-monitoring network. ?? 2007 Springer Science+Business Media B.V.

  10. DIETARY METHYL MERCURY EXPOSURE IN AMERICAN KESTRELS; PILOT STUDY

    EPA Science Inventory

    Anthropogenic mercury emissions have increased atmospheric mercury levels about threefold since the advent of industrial activity. Atmospheric deposition is the primary source of mercury in the environment hence mercury contamination has increased in similar fashion. Methyl mercu...

  11. The Use of Bacteria for Remediation of Mercury Contaminated Groundwater

    EPA Science Inventory

    Many processes of mercury transformation in the environment are bacteria mediated. Mercury properties cause some difficulties of remediation of mercury contaminated environment. Despite the significance of the problem of mercury pollution, methods of large scale bioremediation ...

  12. The effect of mercury chloride and methyl mercury on brain microsomal Na+-K+-ATPase after partial delipidisation with Lubrol.

    PubMed

    Magour, S; Mäser, H; Greim, H

    1987-03-01

    The microsomal Na+-K+-ATPase of rat brain was inhibited by mercury chloride and methyl mercury. The IC50 was 6.5 X 10(-7) M for mercury chloride and 3.5 X 10(-6) M for methyl mercury. The inhibition was of a non-competitive type with respect to ATP. The non-ionic detergent Lubrol potentiated the inhibitory effect of both mercurials. It is concluded that Lubrol removes the bulk lipids present outside the catalytic center of the enzyme. Consequently, the enzyme will become more sensitive to the inhibition by both mercurials.

  13. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  14. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  15. Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application.

    PubMed

    Sinha, Arvind; Khare, Sunil Kumar

    2012-02-01

    The effective microbial remediation of the mercury necessitates the mercury to be trapped within the cells without being recycled back to the environment. The study describes a mercury bioaccumulating strain of Enterobacter sp., which remediated mercury from the medium simultaneous to its growth. The transmission electron micrographs and electron dispersive X-ray analysis revealed the accumulation of remediated mercury as nano-size particles in the cytoplasm as well as on the cell wall. The Enterobacter sp. in the present work was able to accumulate mercury, without being engineered in its native form. The possibility of recovering the accumulated mercury from the cells is also indicated. The applicability of the alginate immobilized cells in removing mercury from synthetic and complex industrial effluent in a batch mode was amply demonstrated. The initial load of 7.3 mg l(-1) mercury in the industrial effluent was completely removed in 72 h. The cells immobilized in calcium alginate were similarly effective in the complete removal of 5 mg l(-1) HgCl(2) of mercury from the synthetic effluent in less than 72 h. The immobilized cells could be reused for multiple cycles.

  16. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  17. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 1. Mercury.

    PubMed

    Zhao, Shilin; Duan, Yufeng; Chen, Lei; Li, Yaning; Yao, Ting; Liu, Shuai; Liu, Meng; Lu, Jianhong

    2017-10-01

    Hazardous trace elements (HTEs), especially mercury, emitted from coal-fired power plants had caused widespread concern worldwide. Field test on mercury emissions at three different loads (100%, 85%, 68% output) using different types of coal was conducted in a 350 MW pulverized coal combustion power plant equipped with selective catalytic reduction (SCR), electrostatic precipitator and fabric filter (ESP + FF), and wet flue gas desulfurization (WFGD). The Ontario Hydro Method was used for simultaneous flue gas mercury sampling for mercury at the inlet and outlet of each of the air pollutant control device (APCD). Results showed that mercury mass balance rates of the system or each APCD were in the range of 70%-130%. Mercury was mainly distributed in the flue gas, followed by ESP + FF ash, WFGD wastewater, and slag. Oxidized mercury (Hg 2+ ) was the main form of mercury form in the flue gas emitted to the atmosphere, which accounted for 57.64%-61.87% of total mercury. SCR was favorable for elemental mercury (Hg 0 ) removal, with oxidation efficiency of 50.13%-67.68%. ESP + FF had high particle-bound mercury (Hg p ) capture efficiency, at 99.95%-99.97%. Overall removal efficiency of mercury by the existing APCDs was 58.78%-73.32%. Addition of halogens or oxidants for Hg 0 conversion, and inhibitors for Hg 0 re-emission, plus the installation of a wet electrostatic precipitator (WESP) was a good way to improve the overall removal efficiency of mercury in the power plants. Mercury emission factor determined in this study was from 0.92 to 1.17 g/10 12 J. Mercury concentration in the emitted flue gas was much less than the regulatory limit of 30 μg/m 3 . Contamination of mercury in desulfurization wastewater should be given enough focus. Copyright © 2017. Published by Elsevier Ltd.

  18. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in other products such as batteries and computer electronics is not recycled and may ultimately be released to the environment.

  19. Use of artificial stream mesocosms to investigate mercury uptake in the South River, Virginia, USA.

    PubMed

    Brent, Robert N; Berberich, David A

    2014-02-01

    Mercury is a globally distributed pollutant that biomagnifies in aquatic food webs. In the United States, 4,769 water bodies fail to meet criteria for safe fish consumption due to mercury bioaccumulation. Although the majority of these water bodies are affected primarily by atmospheric deposition of mercury, legacy contamination from mining or industrial activities also contribute to fish consumption advisories for mercury. The largest mercury impairment in Virginia, a 130-mile stretch of the South and South Fork Shenandoah rivers, is posted with a fish-consumption advisory for mercury contamination that originated from mercuric sulfate discharges from a textile facility in Waynesboro, Virginia, between 1929 and 1950. Although discharges of mercury to the river ceased >60 years ago, mercury levels in fish remain greater than levels safe for human consumption. This is due to the continued cycling of historic mercury in the river and its eventual uptake and biomagnification through aquatic food webs. This study investigated the relative importance of waterborne versus sediment-borne mercury in controlling biological uptake of mercury into the aquatic food web. Twelve artificial stream channels were constructed along the contaminated South River in Crimora, Virginia, and the uncontaminated North River in nearby Port Republic, Virginia, to provide four experimental treatments: a control with no Hg exposure, a Hg in sediment exposure, a Hg in water exposure, and a Hg in sediment and water exposure. After 6 weeks of colonization and growth, algae in each treatment was collected and measured for mercury accumulation. Mercury accumulation in water-only exposures was four times greater than in sediment-only exposures and was equivalent to accumulation in treatments with combined water and sediment exposure. This indicates that mercury in the water column is much more important in controlling biological uptake than mercury in near-field sediments. As a result, future remediation efforts need to focus on strategies that either remove mercury from the water column or decrease flux to the water column.

  20. Mercury in Precipitation in Indiana, January 2004-December 2005

    USGS Publications Warehouse

    Risch, Martin R.; Fowler, Kathleen K.

    2008-01-01

    Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004 and 2005 was in the top 25 percent of the NADP-MDN stations in eastern North America. Mercury concentrations and deposition varied at the five monitoring stations during 2004-2005. Mercury concentrations in wet-deposition samples ranged from 1.2 to 116.6 ng/L and weekly mercury deposition ranged from 0.002 to 1.74 ug/m2. Data from weekly samples exhibited seasonal patterns. During April through September, total mercury concentrations and deposition were higher than the median for all samples. Annual precipitation at four of the five monitoring stations was within 10 percent of normal both years, with the exception of Indiana Dunes, where precipitation was 23 percent below normal in 2005. Episodes of high mercury deposition, which were the top 10 percent of weekly mercury deposition at the five monitoring stations, contributed 39 percent of all mercury deposition during 2004-2005. Mercury deposition more than 1.04 ug/m2 (5 times the mean weekly deposition) was recorded for 12 samples. These episodes of highest mercury deposition were recorded at all five monitoring stations, but the most (7 of 12) were at Clifty Falls and contributed 34.4 percent of the total deposition at that station during 2004-2005. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the five monitoring stations in Indiana. A statistical evaluation of the monitoring data for 2001-2005 indicated several statistically significant temporal trends. A statewide (5-station) decrease (p = 0.007) in mercury deposition and a statewide decrease (p = 0.059) in mercury concentration were shown. Decreases in mercury deposition (p = 0.061 and p = 0.083) were observed at Roush Lake and Bloomington. A statistically significant trend was not observed for precipitation at the five monitoring stations during this 5-year period. A potential explanation for part of the statewide decrease in mercury concentration and mercury deposition was a 2

  1. Planet Mercury

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.

    This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.

    Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.

  2. Methylmercury and elemental mercury differentially associate with blood pressure among dental professionals

    PubMed Central

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri

    2013-01-01

    Methylmercury-associated effects on the cardiovascular system have been documented though discrepancies exist, and most studied populations experience elevated methylmercury exposures. No paper has investigated the impact of low-level elemental (inorganic) mercury exposure on cardiovascular risk in humans. The purpose of this study was to increase understanding of the association between mercury exposure (methylmercury and elemental mercury) and blood pressure measures in a cohort of dental professionals that experience background exposures to both mercury forms. Dental professionals were recruited during the 2010 Michigan Dental Association Annual Convention. Mercury levels in hair and urine samples were analyzed as biomarkers of methylmercury and elemental mercury exposure, respectively. Blood pressure (systolic, diastolic) was measured using an automated device. Distribution of mercury in hair (mean, range: 0.45, 0.02–5.18 μg/g) and urine (0.94, 0.03–5.54 μg/L) correspond well with the US National Health and Nutrition Examination Survey. Linear regression models revealed significant associations between diastolic blood pressure (adjusted for blood pressure medication use) and hair mercury (n = 262, p = 0.02). Urine mercury results opposed hair mercury in many ways. Notably, elemental mercury exposure was associated with a significant systolic blood pressure decrease (n = 262, p = 0.04) that was driven by the male population. Associations between blood pressure and two forms of mercury were found at exposure levels relevant to the general population, and associations varied according to type of mercury exposure and gender. PMID:22494934

  3. Feather growth influences blood mercury level of young songbirds.

    PubMed

    Condon, Anne M; Cristol, Daniel A

    2009-02-01

    Dynamics of mercury in feathers and blood of free-living songbirds is poorly understood. Nestling eastern bluebirds (Sialia sialis) living along the mercury-contaminated South River (Virginia, USA) had blood mercury levels an order of magnitude lower than their parents (nestling: 0.09 +/- 0.06 mg/kg [mean +/- standard deviation], n = 156; adult: 1.21 +/- 0.57 mg/kg, n = 86). To test whether this low blood mercury was the result of mercury sequestration in rapidly growing feathers, we repeatedly sampled free-living juveniles throughout the period of feather growth and molt. Mean blood mercury concentrations increased to 0.52 +/- 0.36 mg/kg (n = 44) after the completion of feather growth. Some individuals had reached adult blood mercury levels within three months of leaving the nest, but levels dropped to 0.20 +/- 0.09 mg/kg (n = 11) once the autumn molt had begun. Most studies of mercury contamination in juvenile birds have focused on recently hatched young with thousands of rapidly growing feathers. However, the highest risk period for mercury intoxication in young birds may be during the vulnerable period after fledging, when feathers no longer serve as a buffer against dietary mercury. We found that nestling blood mercury levels were not indicative of the extent of contamination because a large portion of the ingested mercury ended up in feathers. The present study demonstrates unequivocally that in songbirds blood mercury level is influenced strongly by the growth and molt of feathers.

  4. Mercury mass flow in iron and steel production process and its implications for mercury emission control.

    PubMed

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming

    2016-05-01

    The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.

  5. Phytoremediation of Ionic and Methyl Mercury Pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meagher, Richard B.

    Phytoremediation is defined as the use of plants to extract, resist, detoxify, and/or sequester toxic environmental pollutants. The long-term goal of the proposed research is to develop and test highly productive, field-adapted plant species that have been engineered for the phytoremediation of mercury. A variety of different genes, which should enable plants to clean mercury polluted sites are being tested as tools for mercury phytoremediation, first in model laboratory plants and then in potential field species. Several of these genes have already been shown to enhance mercury phytoremediation. Mercury pollution is a serious, world-wide problem affecting the health of humanmore » and wildlife populations. Environmentally, the most serious mercury threat is the production of methylmercury (CH3Hg+) by native bacteria at mercury contaminated wetland sites. Methylmercury is inherently more toxic than metallic (Hg(0)) or ionic (Hg(II)) mercury, and because methylmercury is prolifically biomagnified up the food chain, it poses the most immediate danger to animal populations. We have successfully engineered two model plants, Arabidopsis and tobacco, to use the bacterial merB gene to convert methylmercury to less toxic ionic mercury and to use the bacterial merA gene to further detoxify ionic mercury to the least toxic form of mercury, metallic mercury. Plants expressing both MerA and MerB proteins detoxify methylmercury in two steps to the metallic form. These plants germinate, grow, and set seed at normal growth rates on levels of methylmercury or ionic mercury that are lethal to normal plants. Our newest efforts involve engineering plants with several additional bacterial and plant genes that allow for higher levels of mercury resistance and mercury hyperaccumulation. The potential for these plants to hyperaccumulate mercury was further advanced by developing constitutive, aboveground, and root-specific gene expression systems. Our current strategy is to engineer plants to control the chemical speciation, electrochemical state, transport, and aboveground binding of mercury in order to manage this toxicant. To advance this mercury phytoremediation strategy, our planned research focuses on the following Specific Aims: (1) to increase the transport of mercury to aboveground tissue; (2) to identify small mercury binding peptides that enhance hyperaccumulation aboveground; (3) to test the ability of multiple genes acting together to enhance resistance and hyperaccumulation; (4) to construct a simple molecular system for creating male/female sterility, allowing engineered grass, shrub, and tree species to be released indefinitely at contaminated sites; (5) to test the ability of transgenic cottonwood and rice plants to detoxify ionic mercury and prevent methylmercury release from contaminated sediment; and (6) to initiate field testing with transgenic cottonwood and rice for the remediation of methylmercury and ionic mercury. The results of these experiments will enable the phytoremediation of methyl- and ionic mercury by a wide spectrum of deep-rooted, fast-growing plants adapted to diverse environments. We have made significant progress on all six of these specific aims as summarized below.« less

  6. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, Mark W.; George, William A.

    1987-04-28

    A process for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg.sub.2 Cl.sub.2 and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury.

  7. Characteristics and distributions of atmospheric mercury emitted from anthropogenic sources in Guiyang, southwestern China

    EPA Science Inventory

    Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant,...

  8. A MODELLING FRAMEWORK FOR MERCURY CYCLING IN LAKE MICHIGAN

    EPA Science Inventory

    A time-dependent mercury model was developed to describe mercury cycling in Lake Michigan. The model addresses dynamic relationships between net mercury loadings and the resulting concentrations of mercury species in the water and sediment. The simplified predictive modeling fram...

  9. Selenium:Mercury Molar Ratios in Freshwater Fish from Tennessee: Individual, Species, and Geographical Variations have Implications for Management

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, C.; Donio, M.; Pittfield, T.

    2014-01-01

    Vertebrates, including humans, can experience adverse effects from mercury consumed in fish. Humans often prefer large predatory fish that bioaccumulate high mercury levels. Recent attention has focused on the role of selenium countering mercury toxicity, but there is little research on the selenium:mercury molar ratios in freshwater fish. We examine selenium:mercury molar ratios in freshwater fish from Tennessee at Poplar Creek which receives ongoing inputs of mercury from the Department of Energy’s Oak Ridge Y-12 facility. Our objective was to determine variation of the ratios within species that might affect the protectiveness of selenium against mercury toxicity. Within species, the ratio was correlated significantly and positively with fish length only for two species. There was great individual variation in the selenium:mercury molar ratio within each species, except striped bass. The lack of a clear relationship between the selenium:mercury molar ratio and fish length, and the intraspecific variation, suggests that it would be difficult to use the molar ratio in predicting either the risk from mercury toxicity or in devising consumption advisories. PMID:22456727

  10. Effects of Holocene climate change on mercury deposition in Elk Lake, Minnesota: The importance of eolain transport in the mercury cycle

    USGS Publications Warehouse

    Cannon, W.F.; Dean, W.E.; Bullock, J.H.

    2003-01-01

    Sediments in Elk Lake, Minnesota, consist of 10,400 varve layers that provide a precise chronology for Holocene fluctuations in climate and biota recorded in the strata. Progressively greater concentrations and accumulation rates of mercury since ca. A.D. 1875 reflect deposition of anthropogenic mercury additions to the atmosphere. Within the Holocene record are numerous short intervals in which mercury concentrations and accumulation rates exceed the modern values. The highest mercury concentrations formed ca. 8 ka, coincident with a rapid change from cool, moist conditions to warm, dry conditions. A related change in flora from pine forest to prairie caused destruction of organic forest soils and the release of mercury that had been sequestered in them, resulting in a short- lived pulse of mercury to the lake. Accumulation rates of mercury were highest during the 4 k.y. mid-Holocene dry interval and show a correlation with periods of rapid deposition of eolian dust. The mercury was probably bound to wind-borne mineral particles, which were derived from an unidentified mercury-rich source region west of Elk Lake.

  11. Mercury in the Sudbury River (Massachusetts, USA): pollution history and a synthesis of recent research

    USGS Publications Warehouse

    Wiener, J.G.; Shields, P.J.

    2000-01-01

    We review the transport, fate, and bioavailability of mercury in the Sudbury River, topics addressed in the following five papers. Mercury entered the river from an industrial complex (site) that operated from 1917 to 1978. Rates of mercury accumulation in sediment cores from two reservoirs just downstream from the site decreased soon after industrial operations ended and have decreased further since capping of contaminated soils at the site in 1991. The reservoirs contained the most contaminated sediments (some exceeding 50 mu g Hg.g dry weight(-1)) and were depositional sinks for total mercury. Methyl mercury concentrations in biota did not parallel concentrations of total mercury in the sediments to which organisms were exposed, experimentally or as residents. Contaminated wetlands within the floodplain about 25 km downstream from the site produced and exported methyl mercury from inorganic mercury that had originated from the site. Natural burial processes have gradually decreased the quantity of sedimentary mercury available for methylation within the reservoirs, whereas mercury in the lesser contaminated wetlands farther downstream has remained more available for transport, methylation, and entry into food webs.

  12. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  13. Mercury: Aspects of its ecology and environmental toxicity. [physiological effects of mercury compound contamination of environment

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.

    1973-01-01

    A study was conducted to determine the effects of mercury pollution on the environment. The possible sources of mercury contamination in sea water are identified. The effects of mercury on food sources, as represented by swordfish, are analyzed. The physiological effects of varying concentrations of mercury are reported. Emphasis is placed on the situation existing in the Hawaiian Islands.

  14. Mercury Exposure in Young Children Living in New York City

    PubMed Central

    Jeffery, Nancy; Kieszak, Stephanie; Fritz, Pat; Spliethoff, Henry; Palmer, Christopher D.; Parsons, Patrick J.; Kass, Daniel E.; Caldwell, Kathy; Eadon, George; Rubin, Carol

    2007-01-01

    Residential exposure to vapor from current or previous cultural use of mercury could harm children living in rental (apartment) homes. That concern prompted the following agencies to conduct a study to assess pediatric mercury exposure in New York City communities by measuring urine mercury levels: New York City Department of Health and Mental Hygiene’s (NYCDOHMH) Bureau of Environmental Surveillance and Policy, New York State Department of Health/Center for Environmental Health (NYSDOHCEH), Wadsworth Center’s Biomonitoring Program/Trace Elements Laboratory (WC-TEL), and Centers for Disease Control and Prevention (CDC). A previous study indicated that people could obtain mercury for ritualistic use from botanicas located in Brooklyn, Manhattan, and the Bronx. Working closely with local community partners, we concentrated our recruiting efforts through health clinics located in potentially affected neighborhoods. We developed posters to advertise the study, conducted active outreach through local partners, and, as compensation for participation in the study, we offered a food gift certificate redeemable at a local grocer. We collected 460 urine specimens and analyzed them for total mercury. Overall, geometric mean urine total mercury was 0.31 μg mercury/l urine. One sample was 24 μg mercury/l urine, which exceeded the (20 μg mercury/l urine) NYSDOH Heavy Metal Registry reporting threshold for urine mercury exposure. Geometric mean urine mercury levels were uniformly low and did not differ by neighborhood or with any clinical significance by children’s ethnicity. Few parents reported the presence of mercury at home, in a charm, or other item (e.g., skin-lightening creams and soaps), and we found no association between these potential sources of exposure and a child’s urinary mercury levels. All pediatric mercury levels measured in this study were well below a level considered to be of medical concern. This study found neither self-reported nor measured evidence of significant mercury use or exposure among participating children. Because some participants were aware of the possibility that they could acquire and use mercury for cultural or ritualistic purposes, community education about the health hazards of mercury should continue. PMID:17957474

  15. Estimation and mapping of wet and dry mercury deposition across northeastern North America

    USGS Publications Warehouse

    Miller, E.K.; Vanarsdale, A.; Keeler, G.J.; Chalmers, A.; Poissant, L.; Kamman, N.C.; Brulotte, R.

    2005-01-01

    Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems. ?? 2005 Springer Science+Business Media, Inc.

  16. Mercury-induced oxidative stress in Indian mustard (Brassica juncea L.).

    PubMed

    Shiyab, Safwan; Chen, Jian; Han, Fengxiang X; Monts, David L; Matta, Fank B; Gu, Mengmeng; Su, Yi; Masad, Motasim A

    2009-10-01

    Mercury, a potent neurotoxin, is released to the environment in significant amounts by both natural processes and anthropogenic activities. No natural hyperaccumulator plant has been reported for mercury phytoremediation. Few studies have been conducted on the physiological responses of Indian mustard, a higher biomass plant with faster growth rates, to mercury pollution. This study investigated the phytotoxicity of mercury to Indian mustard (Brassica juncea L.) and mercury-induced oxidative stress in order to examine the potential application of Indian mustard to mercury phytoremediation. Two common cultivars (Florida Broadleaf and Longstanding) of Indian mustard were grown hydroponically in a mercury-spiked solution. Plant uptake, antioxidative enzymes, peroxides, and lipid peroxidation under mercury stress were investigated. Antioxidant enzymes (catalase, CAT; peroxidase, POD; and superoxide dismutase, SOD) were the most sensitive indices of mercury-induced oxidative response of Indian mustard plants. Indian mustard effectively generated an enzymatic antioxidant defense system (especially CAT) to scavenge H(2)O(2), resulting in lower H(2)O(2) in shoots with higher mercury concentrations. These two cultivars of Indian mustard demonstrated an efficient metabolic defense and adaptation system to mercury-induced oxidative stress. A majority of Hg was accumulated in the roots and low translocations of Hg from roots to shoots were found in two cultivars of Indian mustard. Thus Indian mustard might be a potential candidate plant for phytofiltration/phytostabilization of mercury contaminated waters and wastewater.

  17. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils.

    PubMed

    Worthington, Max J H; Kucera, Renata L; Albuquerque, Inês S; Gibson, Christopher T; Sibley, Alexander; Slattery, Ashley D; Campbell, Jonathan A; Alboaiji, Salah F K; Muller, Katherine A; Young, Jason; Adamson, Nick; Gascooke, Jason R; Jampaiah, Deshetti; Sabri, Ylias M; Bhargava, Suresh K; Ippolito, Samuel J; Lewis, David A; Quinton, Jamie S; Ellis, Amanda V; Johs, Alexander; Bernardes, Gonçalo J L; Chalker, Justin M

    2017-11-16

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury-rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  18. MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES

    EPA Science Inventory

    The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. However, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some...

  19. AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS

    EPA Science Inventory

    CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...

  20. MERCURY REDUCTION IN PRODUCTS AND PROCESSES: A REVIEW OF THE ELECTRICAL AND ELECTRONIC INDUSTRIES

    EPA Science Inventory

    The electrical and electronics industries have significantly reduced the amount of mercury from various products and processes. owever, the unique electromechanical and photoelectronic properties of mercury and mercury compounds have made replacement of mercury difficult in some ...

  1. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  2. Investigating Atmospheric Mercury with the U.S. Geological Survey Mobile Mercury Laboratory

    USGS Publications Warehouse

    Kolker, Allan

    2007-01-01

    Atmospheric mercury is thought to be an important source of mercury present in fish, resulting in numerous local, statewide, tribal, and province-wide fish consumption advisories in the United States and Canada (U.S. Environmental Protection Agency, 2007a). To understand how mercury occurs in the atmosphere and its potential to be transferred from the atmosphere to the biosphere, the U.S. Geological Survey (USGS) has been investigating sources and forms of atmospheric mercury, especially in locations where the amount of mercury deposited from precipitation is above average.

  3. Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans

    NASA Astrophysics Data System (ADS)

    McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.

    2012-12-01

    Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid-profile concentration maxima, however, the depth of the maxima are more varied than the total mercury profiles (150 - 700m). Also, our observed distribution of methylated mercury highly correlated with organic carbon remineralization rates (OCRR) in the North Pacific and Indian Oceans. Interestingly, we find the highest methylated mercury concentrations in the Southern Ocean, suggesting the possibility of unique mechanisms for methylmercury production, preservation, and degradation in polar ecosystems such as cold water temperatures, extended periods of sea ice cover, and annual atmospheric mercury depletion events. We are using these data to better link oceanic production of bioaccumulative mercury to models for atmospheric and oceanic transport and bioaccumulation. This will ultimately lead to a better understanding of mercury levels in consumable fish and shell fish.

  4. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke).

    PubMed

    Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen; Zhao, Changming

    2018-01-01

    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg 2+ ) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg -1 mercury. The MDA (malondialdehyde) content increased whereas and the P n (net photosynthetic rate), F v ∕ F m (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg -1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate-low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.

  5. Assessing the difference of tolerance and phytoremediation potential in mercury contaminated soil of a non-food energy crop, Helianthus tuberosus L. (Jerusalem artichoke)

    PubMed Central

    Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen

    2018-01-01

    This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde) content increased whereas and the Pn (net photosynthetic rate), Fv∕Fm (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol. PMID:29404218

  6. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review.

    PubMed

    Sikkema, Joel K; Alleman, James E; Ong, Say Kee; Wheelock, Thomas D

    2011-09-15

    The USEPA's 2010 mercury rule, which would reduce emissions from non-hazardous waste burning cement manufacturing facilities by an estimated 94%, represents a substantial regulatory challenge for the industry. These regulations, based on the performance of facilities that benefit from low concentrations of mercury in their feedstock and fuel inputs (e.g., limestone concentration was less than 25 ppb at each facility), will require non-compliant facilities to develop innovative controls. Control development is difficult because each facility's emissions must be assessed and simple correlation to mercury concentrations in limestone or an assumption of 'typically observed' mercury concentrations in inputs are unsupported by available data. Furthermore, atmospheric emissions are highly variable due to an internal control mechanism that captures and loops mercury between the high-temperature kiln and low-temperature raw materials mill. Two models have been reported to predict emissions; however, they have not been benchmarked against data from the internal components that capture mercury and do not distinguish between mercury species, which have different sorption and desorption properties. Control strategies include technologies applied from other industries and technologies developed specifically for cement facilities. Reported technologies, listed from highest to lowest anticipated mercury removal, include purge of collected dust or raw meal, changes in feedstocks and fuels, wet scrubbing, cleaning of mercury enriched dust, dry sorbent injection, and dry and semi-dry scrubbing. The effectiveness of these technologies is limited by an inadequate understanding of sorption, desorption, and mercury species involved in internal loop mercury control. To comply with the mercury rule and to improve current mercury control technologies and practices, research is needed to advance fundamental knowledge regarding mercury species sorption and desorption dynamics on materials within cement facilities. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Increasing rates of atmospheric mercury deposition in midcontinental North America

    USGS Publications Warehouse

    Swain, Edward B.; Engstrom, Daniel R.; Brigham, Mark E.; Henning, Thomas A.; Brezonik, P.L.

    1992-01-01

    Mercury contamination of remote lakes has been attributed to increasing deposition of atmospheric mercury, yet historic deposition rates and inputs from terrestrial sources are essentially unknown. Sediments of seven headwater lakes in Minnesota and Wisconsin were used to reconstruct regional modern and preindustrial deposition rates of mercury. Whole-basin mercury fluxes, determined from lake-wide arrays of dated cores, indicate that the annual deposition of atmospheric mercury has increased from 3.7 to 12.5 micrograms per square meter since 1850 and that 25 percent of atmospheric mercury deposition to the terrestrial catchment is exported to the lake. The deposition increase is similar among sites, implying regional or global sources for the mercury entering these lakes.

  8. Form of Dietary Methylmercury does not Affect Total Mercury Accumulation in the Tissues of Zebra Finch.

    PubMed

    Varian-Ramos, Claire W; Whitney, Margaret; Rice, Gary W; Cristol, Daniel A

    2017-07-01

    Exposure to mercury in humans, other mammals, and birds is primarily dietary, with mercury in the methylated form and bound to cysteine in the tissues of prey items. Yet dosing studies are generally carried out using methylmercury chloride. Here we tested whether the accumulation of total mercury in zebra finch blood, egg, muscle, liver, kidney or brain differed depending on whether dietary mercury was complexed with chloride or cysteine. We found no effect of form of mercury on tissue accumulation. Some previous studies have found lower accumulation of mercury in tissues of animals fed complexed mercury. Much remains to be understood about what happens to ingested mercury once it enters the intestines, but our results suggest that dietary studies using methylmercury chloride in birds will produce similar tissue accumulation levels to those using methylmercury cysteine.

  9. Deposition and cycling of sulfur controls mercury accumulation in Isle Royale fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul E. Drevnick; Donald E. Canfield; Patrick R. Gorski

    2007-11-01

    Mercury contamination of fish is a global problem. Consumption of contaminated fish is the primary route of methylmercury exposure in humans and is detrimental to health. Newly mandated reductions in anthropogenic mercury emissions aim to reduce atmospheric mercury deposition and thus mercury concentrations in fish. However, factors other than mercury deposition are important for mercury bioaccumulation in fish. In the lakes of Isle Royale, U.S.A., reduced rates of sulfate deposition since the Clean Air Act of 1970 have caused mercury concentrations in fish to decline to levels that are safe for human consumption, even without a discernible decrease in mercurymore » deposition. Therefore, reductions in anthropogenic sulfur emissions may provide a synergistic solution to the mercury problem in sulfate-limited freshwaters. 71 refs., 3 figs., 1 tab.« less

  10. Planet Mercury

    NASA Image and Video Library

    1999-06-12

    The first image of Mercury acquired by NASA's Mariner 10 in 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments. This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth. Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage. http://photojournal.jpl.nasa.gov/catalog/PIA00437

  11. The Texarkana mercury incident.

    PubMed

    Lowry, L K; Rountree, P P; Levin, J L; Collins, S; Anger, W K

    1999-10-01

    In November 1997, 2 teenagers allegedly removed a large amount of metallic mercury from an abandoned sign plant and distributed the material among friends. One teenager developed symptoms and admitted playing with mercury to his physician. His blood mercury was elevated. In February 1998, faculty from the University of Texas Health Center at Tyler conducted an investigation that included in-depth evaluations on 10 patients with urine mercury concentrations up to 100 micrograms/L. Exposure pathways and timelines were reconstructed from records assembled by the Arkansas State Health Department epidemiologist. Mercury contamination was found among teenagers, children, and adults who came in contact with the metal. Biomarkers of exposure documented reduction in mercury concentrations after these persons were removed from their homes and sources of mercury. Neurobehavioral assessment, including assessment of tremor, failed to establish a relationship between mercury exposure and performance.

  12. Modelling of the mercury loss in fluorescent lamps under the influence of metal oxide coatings

    NASA Astrophysics Data System (ADS)

    Santos Abreu, A.; Mayer, J.; Lenk, D.; Horn, S.; Konrad, A.; Tidecks, R.

    2016-11-01

    The mercury transport and loss mechanisms in the metal oxide coatings of mercury low pressure discharge fluorescent lamps have been investigated. An existing model based on a ballistic process is discussed in the context of experimental mercury loss data. Two different approaches to the modeling of the mercury loss have been developed. The first one is based on mercury transition rates between the plasma, the coating, and the glass without specifying the underlying physical processes. The second one is based on a transport process driven by diffusion and a binding process of mercury reacting to mercury oxide inside the layers. Moreover, we extended the diffusion based model to handle multi-component coatings. All approaches are applied to describe mercury loss experiments under the influence of an Al 2 O 3 coating.

  13. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  14. Methods for dispensing mercury into devices

    DOEpatents

    Grossman, M.W.; George, W.A.

    1987-04-28

    A process is described for dispensing mercury into devices which requires mercury. Mercury is first electrolytically separated from either HgO or Hg[sub 2]Cl[sub 2] and plated onto a cathode wire. The cathode wire is then placed into a device requiring mercury. 2 figs.

  15. 40 CFR 63.8190 - What emission limitations must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... this section that applies to you. (1) New or reconstructed mercury cell chlor-alkali production facility. Emissions of mercury are prohibited from a new or reconstructed mercury cell chlor-alkali...

  16. 40 CFR 63.8190 - What emission limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... this section that applies to you. (1) New or reconstructed mercury cell chlor-alkali production facility. Emissions of mercury are prohibited from a new or reconstructed mercury cell chlor-alkali...

  17. 40 CFR 63.8190 - What emission limitations must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... this section that applies to you. (1) New or reconstructed mercury cell chlor-alkali production facility. Emissions of mercury are prohibited from a new or reconstructed mercury cell chlor-alkali...

  18. 40 CFR 63.8190 - What emission limitations must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell... this section that applies to you. (1) New or reconstructed mercury cell chlor-alkali production facility. Emissions of mercury are prohibited from a new or reconstructed mercury cell chlor-alkali...

  19. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  20. Use of Saccharomyces cerevisiae To Reduce the Bioaccessibility of Mercury from Food.

    PubMed

    Jadán-Piedra, Carlos; Baquedano, Marta; Puig, Sergi; Vélez, Dinoraz; Devesa, Vicenta

    2017-04-05

    Food is the main pathway of exposure to inorganic mercury [Hg(II)] and methylmercury (CH 3 Hg). Intestinal absorption of these mercury species is influenced by their chemical form, the luminal pH, and the composition of the diet. In this regard, strategies have been proposed for reducing mercury absorption using dietary components. This study evaluates the capacity of Saccharomyces cerevisiae to reduce the amount of mercury solubilized after gastrointestinal digestion that is available for intestinal absorption (bioaccessibility). The results show that S. cerevisiae strains reduce mercury bioaccessibility from aqueous solutions of Hg(II) (89 ± 6%) and CH 3 Hg (83 ± 4%), and from mushrooms (19-77%), but not from seafood. The formation of mercury-cysteine or mercury-polypeptide complexes in the bioaccessible fraction may contribute to the reduced effect of yeasts on mercury bioaccessibility from seafood. Our study indicates that budding yeasts could be useful for reducing the extent of intestinal absorption of mercury present in water and some food matrices.

  1. Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Duan, Y. F.; Zhao, C. S.

    Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.

  2. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  3. Accumulation route and chemical form of mercury in mushroom species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minagawa, K.; Sasaki, T.; Takizawa, Y.

    1980-09-01

    Some papers were published on several species of fungi having more accumulating abilities of mercury than other land plants and a relatively small part of mercury being present as methylmercury in most species (Stegnar et al. 1973, Stijve and Roschnik 1974). But, little information is available regarding the routes of mercury in fungi, and also no report on mercury speciation (chemical form and complexation) in them have been published, apart from methylmercury. In order to evaluate accurately their biological characteristics such as absorption, excretion, accumulation and toxicity (The Task Group on Metal Interaction 1978), the mercury speciation present in mushrooms,more » regardless of edible or nonedible, should be identified. In this report, we present (1) contents of total and methylmercury in mushrooms near the acetaldehyde factory which had the mounds of sludge containing mercury, (2) data or exposure experiment of mercury vapor to raw mushrooms (Shiitake) on the market, and (3) data on mercury speciation of mercury other than methylmercury.« less

  4. Elevated mercury levels in a wintering population of common eiders (Somateria mollissima) in the northeastern United States.

    PubMed

    Meattey, Dustin E; Savoy, Lucas; Beuth, Josh; Pau, Nancy; O'Brien, Kathleen; Osenkowski, Jason; Regan, Kevin; Lasorsa, Brenda; Johnson, Ian

    2014-09-15

    In North America and Europe, sea ducks are important indicators of ecological health and inshore marine pollution. To explore spatial variation in mercury accumulation in common eiders in the northeastern United States, we compared concentrations of total mercury in common eider blood at several New England locations between 1998 and 2013. Eider food items (mollusks) were collected and analyzed to determine if mercury concentrations in eider blood were indicative of local mercury bioavailability. Eiders from Plum Island Sound, MA had a significantly higher mean blood mercury concentration (0.83 μg/g) than those in other locations. Mean mercury levels in this population were also nearly three times higher than any blood mercury concentrations reported for common eiders in published literature. We observed consistent patterns in eider blood mercury and blue mussel mercury concentrations between sites, suggesting a tentative predictive quality between the two species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Determination of mercury in fish tissue using a minianalyzer based on cold vapor atomic absorption spectrometry at the 184.9 nm line.

    PubMed

    Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian

    2007-09-01

    A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.

  6. The low-degree shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen

    2015-09-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.

  7. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  8. Preliminary report on a population that received a heavy exposure to methyl mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clarkson, T.W.; Smith, J.C.; Bakir, F.

    1973-01-01

    An epidemic of methyl mercury poisoning due to the consumption of homemade bread prepared from wheat treated with a methyl mercury fungicide occurred in Iraq in the winter of 1971-1972, with 6530 cases admitted to hospitals. Four hundred and fifty nine died in hosptials. Observations on 16 patients over a period of 60 days indicated a median clearance half-time from blood of approximately 70 days. Concentrations of total mercury in milk averaged 5% of the mercury in simultaneously collected samples of whole blood. Concentrations of total mercury in urine samples did not correlate with concentrations of mercury in blood. Inorganicmore » mercury accounted for the following average percentages of total mercury: 22% in plasma, 40% in milk and 73% in urine. Studies of dose-response relationships indicated that toxic effects of methyl mercury became clinically detectable at body burdens in the range of 0.05-0.8 mg Hg/kg body weight. 8 references, 4 figures.« less

  9. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less

  10. Removal of Mercury from Chloralkali Electrolysis Wastewater by a Mercury-Resistant Pseudomonas putida Strain

    PubMed Central

    von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W.-D.; Wagner-Döbler, I.

    1999-01-01

    A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater. PMID:10583977

  11. Endoscopic management of massive mercury ingestion

    PubMed Central

    Zag, Levente; Berkes, Gábor; Takács, Irma F; Szepes, Attila; Szabó, István

    2017-01-01

    Abstract Rationale: Ingestion of a massive amount of metallic mercury was thought to be harmless until the last century. After that, in a number of cases, mercury ingestion has been associated with appendicitis, impaired liver function, memory deficits, aspiration leading to pneumonitis and acute renal failure. Treatment includes gastric lavage, giving laxatives and chelating agents, but rapid removal of metallic mercury with gastroscopy has not been used. Patient concerns: An 18-year-old man was admitted to our emergency department after drinking 1000 g of metallic mercury as a suicide attempt. Diagnosis: Except from mild umbilical tenderness, he had no other symptoms. Radiography showed a metallic density in the area of the stomach. Intervention: Gastroscopy was performed to remove the mercury. One large pool and several small droplets of mercury were removed from the stomach. Outcomes: Blood and urine mercury levels of the patient remained low during hospitalization. No symptoms of mercury intoxication developed during the follow-up period. Lessons: Massive mercury ingestion may cause several symptoms, which can be prevented with prompt treatment. We used endoscopy to remove the mercury, which shortened the exposure time and minimized the risk of aspiration. This is the first case where endoscopy was used for the management of mercury ingestion. PMID:28562544

  12. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains.

    PubMed

    Al-Ghouti, Mohammad A; Abuqaoud, Reem H; Abu-Dieyeh, Mohammed H

    2016-03-01

    The spent fluorescent lamps (SFLs) are being classified as a hazardous waste due to having mercury as one of its main components. Mercury is considered the second most toxic heavy metal (arsenic is the first) with harmful effects on animal nervous system as it causes different neurological disorders. In this research, the mercury from phosphor powder was leached, then bioremediated using bacterial strains isolated from Qatari environment. Leaching of mercury was carried out with nitric and hydrochloric acid solutions using two approaches: leaching at ambient conditions and microwave-assisted leaching. The results obtained from this research showed that microwave-assisted leaching method was significantly better in leaching mercury than the acid leaching where the mercury leaching efficiency reached 76.4%. For mercury bio-uptake, twenty bacterial strains (previously isolated and purified from petroleum oil contaminated soils) were sub-cultured on Luria Bertani (LB) plates with mercury chloride to check the bacterial tolerance to mercury. Seven of these twenty strains showed a degree of tolerance to mercury. The bio-uptake capacities of the promising strains were investigated using the mercury leached from the fluorescent lamps. Three of the strains (Enterobacter helveticus, Citrobacter amalonaticus, and Cronobacter muytjensii) showed bio-uptake efficiency ranged from 28.8% to 63.6%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  14. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    DOE PAGES

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; ...

    2017-08-30

    Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkalai plant operation, metallurgy, and areas of agriculture in which mercuryrich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low-cost mercury sorbents made solely from sulfur and unsaturated cooking oils.more » A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by-product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury-capturing polymers can be synthesised entirely from waste and supplied on multi-kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry.« less

  15. Assessing elemental mercury vapor exposure from cultural and religious practices.

    PubMed

    Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M

    2001-08-01

    Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users.

  16. Assessing elemental mercury vapor exposure from cultural and religious practices.

    PubMed Central

    Riley, D M; Newby, C A; Leal-Almeraz, T O; Thomas, V M

    2001-01-01

    Use of elemental mercury in certain cultural and religious practices can cause high exposures to mercury vapor. Uses include sprinkling mercury on the floor of a home or car, burning it in a candle, and mixing it with perfume. Some uses can produce indoor air mercury concentrations one or two orders of magnitude above occupational exposure limits. Exposures resulting from other uses, such as infrequent use of a small bead of mercury, could be well below currently recognized risk levels. Metallic mercury is available at almost all of the 15 botanicas visited in New York, New Jersey, and Pennsylvania, but botanica personnel often deny having mercury for sale when approached by outsiders to these religious and cultural traditions. Actions by public health authorities have driven the mercury trade underground in some locations. Interviews indicate that mercury users are aware that mercury is hazardous, but are not aware of the inhalation exposure risk. We argue against a crackdown by health authorities because it could drive the practices further underground, because high-risk practices may be rare, and because uninformed government intervention could have unfortunate political and civic side effects for some Caribbean and Latin American immigrant groups. We recommend an outreach and education program involving religious and community leaders, botanica personnel, and other mercury users. PMID:11564612

  17. The price of gold: mercury exposure in the Amazonian rain forest.

    PubMed

    Branches, F J; Erickson, T B; Aks, S E; Hryhorczuk, D O

    1993-01-01

    Concern has surfaced over the recent discovery of human mercury exposure throughout the tropical rain forest of South America's Amazon River Basin. The probable source of mercury has been traced to gold mines located within the interior. The mining process involves the extraction of gold from ore by burning off a mercury additive, resulting in vaporization of elemental mercury into the surrounding environment. The purpose of this case series is to document mercury levels in miners and local villagers presenting with a history of exposure, or signs and symptoms consistent with mercury toxicity. Over a five year period (1986-91), the whole blood and urine mercury levels of 55 Brazilian patients demonstrating signs and symptoms consistent with mercury exposure were collected. Thirty-three (60%) of the subjects had direct occupational exposure to mercury via gold mining and refining. Whole blood mercury levels ranged from 0.4-13.0 micrograms/dL (mean 3.05 micrograms/dL). Spot urine levels ranged 0-151 micrograms/L (mean = 32.7 micrograms/L). Occupational mercury exposure is occurring in the Amazon River Basin. Interventions aimed at altering the gold mining process while protecting the workers and surrounding villagers from the source of exposure are essential. The impact of the gold mining industry on general environmental contamination has not been investigated.

  18. Temporal and geographic trends in mercury concentrations in muscle tissue in five species of Hudson River, USA, fish.

    PubMed

    Levinton, Jeffrey S; Pochron, Sharon T

    2008-08-01

    We analyzed a New York (USA) state database of mercury concentrations in muscle tissue for five species of fish (striped bass, yellow perch, largemouth bass, smallmouth bass, and carp) over a range of locations in the Hudson River (USA) between 1970 and 2004. We used regression models to discern temporal and geographic change in the fish while controlling for a positive correlation between mercury concentration and body mass. Mercury concentrations significantly increased in fish from New York Harbor waters to the mid-Hudson River. Striped bass and yellow perch showed a shallower increase in mercury concentration with river mile than did carp, largemouth bass, and smallmouth bass. Mercury concentrations declined over the 34-year period. These results imply that a geographically restricted source of mercury may be spread throughout the watershed by toxin-laden dispersing species. The increase of mercury toward the north may relate to a point source in the mid-Hudson River, or it may indicate mercury released from the Adirondack watershed. The decline of mercury over three decades corresponds to a reduction of various inputs in the region. The temporal and geographic pattern of mercury in sediments corresponds to the geographic trend of mercury in fish.

  19. Implications of mercury speciation in thiosulfate treated plants.

    PubMed

    Wang, Jianxu; Feng, Xinbin; Anderson, Christopher W N; Wang, Heng; Zheng, Lirong; Hu, Tiandou

    2012-05-15

    Mercury uptake was induced in two cultivars of Brassica juncea under field conditions using thiosulfate. Analysis was conducted to better understand the mechanism of uptake, speciation of mercury in plants, and redistribution of mercury in the soil. Plant mercury and sulfur concentrations were increased after thiosulfate treatment, and a linear correlation between mercury and sulfur was observed. Mercury may be absorbed and transported in plants as the Hg-thiosulfate complex. The majority of mercury in treated plant tissues (two cultivars) was bound to sulfur in a form similar to β-HgS (66-94%). Remaining mercury was present in forms similar to Hg-cysteine (1-10%) and Hg-dicysteine (8-28%). The formation of β-HgS may relate to the transport and assimilation of sulfate in plant tissues. Mercury-thiosulfate complex could decompose to mercuric and sulfate ions in the presence of free protons inside the plasma membrane, while sulfide ions would be produced by the assimilation of sulfate. The concomitant presence of mercuric ions and S(2-) would precipitate β-HgS. The mercury concentration in the rhizosphere decreased in the treated relative to the nontreated soil. The iron/manganese oxide and organic-bound fractions of soil mercury were transformed to more bioavailable forms (soluble and exchangeable and specifically sorbed) and taken up by plants.

  20. High Throughput Determination of Mercury in Tobacco and Mainstream Smoke from Little Cigars

    PubMed Central

    Fresquez, Mark R.; Gonzalez-Jimenez, Nathalie; Gray, Naudia; Watson, Clifford H.; Pappas, R. Steven

    2015-01-01

    A method was developed that utilizes a platinum trap for mercury from mainstream tobacco smoke which represents an improvement over traditional approaches that require impingers and long sample preparation procedures. In this approach, the trapped mercury is directly released for analysis by heating the trap in a direct mercury analyzer. The method was applied to the analysis of mercury in the mainstream smoke of little cigars. The mercury levels in little cigar smoke obtained under Health Canada Intense smoking machine conditions ranged from 7.1 × 10−3 mg/m3 to 1.2 × 10−2 mg/m3. These air mercury levels exceed the chronic inhalation Minimal Risk Level corrected for intermittent exposure to metallic mercury (e.g., 1 or 2 hours per day, 5 days per week) determined by the Agency for Toxic Substances and Disease Registry. Multivariate statistical analysis was used to assess associations between mercury levels and little cigar physical design properties. Filter ventilation was identified as the principal physical parameter influencing mercury concentrations in mainstream little cigar smoke generated under ISO machine smoking conditions. With filter ventilation blocked under Health Canada Intense smoking conditions, mercury concentrations in tobacco and puff number (smoke volume) were the primary physical parameters that influenced mainstream smoke mercury concentrations. PMID:26051388

  1. Distribution and assessment of residual mercury from gold mining in Changbai Mountain Range Northeastern China

    NASA Astrophysics Data System (ADS)

    Meng, D.; Wang, N.; Ai, J. C.; Zhang, G.; Liu, X. J.

    2016-08-01

    Gold mining was first initiated in Jiapigou area, Huadian city of Northeastern China about 200 years ago. Before 2006, the mercury amalgamation technique was used in the gold mining process, which led to severe mercury contamination. The aim of this paper is to explore the influences of residual mercury on the environment media after eliminating the amalgamation process to extract gold. The mercury concentrations of the atmosphere and the soil were determined in autumn of 2011 and spring of 2012. The soil environmental quality was assessed by the index of geoaccumulation. The results indicated that the maximum value of gaseous mercury was 25ng•m-3 in autumn and 19.5ng•m-3 in spring; the maximum value of mercury in the soil was 2.06mg•kg-1 in autumn and 2.51mg•kg-1in spring. It can be seen that the peak concentrations of the gaseous mercury happened at the gold mine area and tailings, while the peak mercury concentrations in the soil were located at the places near the mining sites and the residential area in the valley. Furthermore, the regression analysis of the total mercury contents between the atmosphere and the soil showed a significant correlation, which indicated that there was certain circulation of the mercury between the regional atmosphere and soil. In general, after the elimination of the amalgamation technique in gold extraction, the distance to the mercury source, the special conditions of hilly weather and landforms and the mercury exchange flux are the main factors of mercury contamination.

  2. Mercury Exposure and Heart Diseases

    PubMed Central

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system. PMID:28085104

  3. Mercury Exposure and Heart Diseases.

    PubMed

    Genchi, Giuseppe; Sinicropi, Maria Stefania; Carocci, Alessia; Lauria, Graziantonio; Catalano, Alessia

    2017-01-12

    Environmental contamination has exposed humans to various metal agents, including mercury. It has been determined that mercury is not only harmful to the health of vulnerable populations such as pregnant women and children, but is also toxic to ordinary adults in various ways. For many years, mercury was used in a wide variety of human activities. Nowadays, the exposure to this metal from both natural and artificial sources is significantly increasing. Recent studies suggest that chronic exposure, even to low concentration levels of mercury, can cause cardiovascular, reproductive, and developmental toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, and carcinogenicity. Possible biological effects of mercury, including the relationship between mercury toxicity and diseases of the cardiovascular system, such as hypertension, coronary heart disease, and myocardial infarction, are being studied. As heart rhythm and function are under autonomic nervous system control, it has been hypothesized that the neurotoxic effects of mercury might also impact cardiac autonomic function. Mercury exposure could have a long-lasting effect on cardiac parasympathetic activity and some evidence has shown that mercury exposure might affect heart rate variability, particularly early exposures in children. The mechanism by which mercury produces toxic effects on the cardiovascular system is not fully elucidated, but this mechanism is believed to involve an increase in oxidative stress. The exposure to mercury increases the production of free radicals, potentially because of the role of mercury in the Fenton reaction and a reduction in the activity of antioxidant enzymes, such as glutathione peroxidase. In this review we report an overview on the toxicity of mercury and focus our attention on the toxic effects on the cardiovascular system.

  4. Annual emissions of mercury to the atmosphere from natural sources in Nevada and California

    USGS Publications Warehouse

    Coolbaugh, M.F.; Gustin, M.S.; Rytuba, J.J.

    2002-01-01

    The impact of natural source emissions on atmospheric mercury concentrations and the biogeochemical cycle of mercury is not known. To begin to assess this impact, mercury emissions to the atmosphere were scaled up for three areas naturally enriched in mercury: the Steamboat Springs geothermal area, Nevada, the New Idria mercury mining district, California, and the Medicine Lake volcano, California. Data used to scale up area emissions included mercury fluxes, measured in-situ using field flux chambers, from undisturbed and disturbed geologic substrates, and relationships between mercury emissions and geologic rock types, soil mercury concentrations, and surface heat flux. At select locations mercury fluxes were measured for 24 h and the data were used to adjust fluxes measured at different times of the day to give an average daily flux. This adjustment minimized daily temporal variability, which is observed for mercury flux because of light and temperature effects. Area emissions were scaled spatially and temporally with GIS software. Measured fluxes ranged from 0.3 to approximately 50 ng m-2 h-1 at undisturbed sites devoid of mercury mineralization, and to greater than 10,000 ng m-2 h-1 from substrates that were in areas of mercury mining. Area-averaged fluxes calculated for bare soil at Steamboat Springs, New Idria, and Medicine Lake of 181, 9.2, and 2 ng m-2 h-1, respectively, are greater than fluxes previously ascribed to natural non-point sources, indicating that these sources may be more significant contributors of mercury to the atmosphere than previously realized.

  5. Impact of fetal and childhood mercury exposure on immune status in children.

    PubMed

    Hui, Lai Ling; Chan, Michael Ho Ming; Lam, Hugh Simon; Chan, Peggy Hiu Ying; Kwok, Ka Ming; Chan, Iris Hiu Shuen; Li, Albert Martin; Fok, Tai Fai

    2016-01-01

    Mercury exposure have been shown to affect immune status in animals as reflected by cytokine expression. It is unclear whether low levels of exposure during fetal and/or childhood periods could impact on immune status in humans. To test the hypothesis that fetal and childhood mercury exposure is associated with childhood cytokine profiles and to investigate whether childhood selenium levels interact with any of the associations found. Children were recruited from a previously established birth cohort between the ages of 6-9 years for assessment and measurement of blood mercury, selenium and cytokine profile (interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13 and TNF-alpha). Multivariable linear regression models were used to assess the adjusted association of cord blood mercury concentration and current mercury concentrations with levels of the cytokine levels. We tested whether the association with current mercury level varied by current selenium level and cord blood mercury level. IL-10 was negatively associated with current blood mercury concentration. The effect was greatest in cases with low cord blood mercury and low current selenium concentrations. None of the other cytokine levels were associated with either cord blood or current blood mercury concentrations, except that cord blood mercury was negatively associated with IL-6. Childhood mercury exposure was negatively associated with childhood IL-10 levels. It is postulated that while selenium is protective, low levels of fetal mercury exposure may increase the degree of this negative association during childhood. Further studies into the clinical significance of these findings are required. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study

    USGS Publications Warehouse

    Hintelmann, H.; Harris, R.; Heyes, A.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.; Rudd, J.W.M.; Scott, K.J.; St. Louis, V.L.

    2002-01-01

    The METAALICUS (Mercury Experiment To Assess Atmospheric Loading In Canada and the US) project is a whole ecosystem experiment designed to study the activity, mobility, and availability of atmospherically deposited mercury. To investigate the dynamics of mercury newly deposited onto a terrestrial ecosystem, an enriched stable isotope of mercury (202Hg) was sprayed onto a Boreal forest subcatchment in an experiment that allowed us, for the first time, to monitor the fate of "new" mercury in deposition and to distinguish it from native mercury historically stored in the ecosystem. Newly deposited mercury was more reactive than the native mercury with respect to volatilization and methylation pathways. Mobility through runoff was very low and strongly decreased with time because of a rapid equilibration with the large native pool of "bound" mercury. Over one season, only ???8% of the added 202Hg volatilized to the atmosphere and less than 1% appeared in runoff. Within a few months, approximately 66% of the applied 202Hg remained associated with above ground vegetation, with the rest being incorporated into soils. The fraction of 202Hg bound to vegetation was much higher than seen for native Hg (<5% vegetation), suggesting that atmospherically derived mercury enters the soil pool with a time delay, after plants senesce and decompose. The initial mobility of mercury received through small rain events or dry deposition decreased markedly in a relatively short time period, suggesting that mercury levels in terrestrial runoff may respond slowly to changes in mercury deposition rates.

  7. Understanding the mercury reduction issue: the impact of mercury on the environment and human health.

    PubMed

    Kao, Richard T; Dault, Scott; Pichay, Teresa

    2004-07-01

    Mercury has been used in both medicine and dentistry for centuries. Recent media attention regarding the increased levels of mercury in dietary fish, high levels of mercury in air emissions, and conjecture that certain diseases may be caused by mercury exposure has increased public awareness of the potential adverse health effects of high doses of mercury. Dentistry has been criticized for its continued use of mercury in dental amalgam for both public health and environmental reasons. To address these concerns, dental professionals should understand the impact of the various levels and types of mercury on the environment and human health. Mercury is unique in its ability to form amalgams with other metals. Dental amalgam--consisting of silver, copper, tin, and mercury--has been used as a safe, stable, and cost-effective restorative material for more than 150 years. As a result of this use, the dental profession has been confronted by the public on two separate health issues concerning the mercury content in amalgam. The first issue is whether the mercury amalgamated with the various metals to create dental restorations poses a health issue for patients. The second is whether the scraps associated with amalgam placement and the removal of amalgam restorations poses environmental hazards which may eventually have an impact on human health. Despite the lack of scientific evidence for such hazards, there is growing pressure for the dental profession to address these health issues. In this article, the toxicology of mercury will be reviewed and the impact of amalgam on health and the environment will be examined.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.

    The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, andmore » the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.« less

  9. Temporal and spatial distribution of waterborne mercury in a gold miner's river.

    PubMed

    Picado, Francisco; Bengtsson, Göran

    2012-10-26

    We examined the spatial and temporal (hourly) variation of aqueous concentrations of mercury in a gold miner's river to determine factors that control transport, retention, and export of mercury. The mercury flux was estimated to account for episodic inputs of mercury through mining tailings, variations in flow rate, and the partitioning of mercury between dissolved and particulate phases. Water samples were collected upstream and downstream of two gold mining sites in the Artiguas river, Nicaragua. The samples were analyzed for dissolved and suspended mercury, total solids, dissolved organic carbon, and total iron in water. Water velocity was also measured at the sampling sites. We found that mercury was mainly transported in a suspended phase, with a temporal pattern of diurnal peaks corresponding to the amalgamation schedules at the mining plants. The concentrations decreased with distance from the mining sites, suggesting dilution by tributaries or sedimentation of particle-bound mercury. The lowest total mercury concentrations in the water were less than 0.1 μg l(-1) and the highest concentration was 5.0 μg l(-1). The mercury concentrations are below the present WHO guidelines of 6 μg l(-1) but are considered to lead to a higher risk to aquatic bacteria and fish in the stream than to humans. The aqueous concentrations exceed the hazard endpoints for both groups by a probability of about 1%. Particulate mercury accounted for the largest variation of mercury fluxes, whereas dissolved mercury made up most of the long-range transport along the stream. The estimated total mass of mercury retained due to sedimentation of suspended solids was 2.7 kg per year, and the total mass exported downstream from the mining area was 1.6 kg per year. This study demonstrates the importance of the temporal and spatial resolution of observations in describing the occurrence and fate of mercury in a river affected by anthropogenic activities.

  10. Mercury in waters, soils, and sediments of the New Jersey Coastal Plain: A comparison of regional distribution and mobility with the mercury contamination at the William J. Hughes Technical Center, Atlantic County, New Jersey

    USGS Publications Warehouse

    Barringer, Julia L.; Szabo, Zoltan; Reilly, Pamela A.

    2012-01-01

    Mercury in soils, surface water, and groundwater at the William J. Hughes Technical Center , Atlantic County, New Jersey, has been found at levels that exceed established background concentrations in Coastal Plain waters, and, in some cases, New Jersey State standards for mercury in various media. As of 2012, it is not known whether this mercury is part of regional mercury contamination or whether it is related to former military activities. Regionally, groundwater supplying about 700 domestic wells in the New Jersey Coastal Plain is contaminated with mercury that appears to be derived from anthropogenic inputs, such as agricultural pesticide use and atmospheric deposition. High levels of mercury occasionally are found in Coastal Plain soils, but disturbance during residential development on former agricultural land is thought to have mobilized any mercury applied during farming, a hypothesis borne out by experiments leaching mercury from soils. In the unsewered residential areas with mercury-contaminated groundwater, septic-system effluent is believed to create reducing conditions in which mercury sorbed to subsoils is mobilized to groundwater. In comparing the levels of mercury found in soils, sediments, streamwater, and groundwater at the William J. Hughes Technical Center site with those found regionally, mercury concentrations in groundwater in the region are, in some cases, substantially higher than those found in groundwater at the William J. Hughes Technical Center site. Nevertheless, concentrations of mercury in streamwater at the site are, in some instances, higher than most found regionally. The mercury contents in soils and sediment at the William J. Hughes Technical Center site are substantially higher than those found to date (2012) in the region, indicating that a source other than regional sources may be present at the site.

  11. Determination of Mercury Daily Intake and Hair-to-Blood Mercury Concentration Ratio in People Resident of the Coast of the Persian Gulf, Iran.

    PubMed

    Okati, Narjes; Esmaili-Sari, Abbas

    2018-01-01

    The objectives of this study were to understand the mercury daily intake and hair-to-blood mercury ratio in fishermen and non-fishermen families in the coast of the Persian Gulf in Iran. The mean mercury concentration in the hair of fishermen and non-fishermen families was 5.76 and 2.27 μg/g, respectively. The mean mercury concentrations of RBCs were obtained for fishermen families and non-fishermen families: 35.96 and 17.18 μg/L, respectively. Hair mercury concentrations in 17% of people were higher than 10 μg/g, the No Observed Adverse Effects Level set by the World Health Organization. 78% of people had a blood mercury value > 5.8 μg/L, the standard level set by the U.S. Environmental Protection Agency. A significant correlation (r = 0.94, p = 0.000) was seen between log hair and RBCs mercury concentrations. The mean mercury daily intake for fishermen and non-fishermen families was 0.42 and 0.20 µg/kg BW per day, respectively. The mean mercury daily intake of fishermen families was higher than the provisional tolerable daily intake (0.23 µg/kg BW per day) suggested by the Joint Expert Committee on Food Additives. Mercury daily intake significantly correlated with fish consumption (r = 0.50, p = 0.000) and log hair mercury (r = 0.88, p = 0.000). The total mean of hair-to-blood mercury concentration ratio was 306. We conclude that the use of mercury concentrations in the hair and RBCs could have been suitable biomarkers for predicting mercury exposure of people with a high rate of fish consumption.

  12. Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1998-01-01

    Adult mallards (Anas platyrhynchos) were fed a control diet or diets containing 10 ppm mercury as methylmercury chloride, 10 ppm selenium as seleno-DL-methionine, or 10 ppm mercury plus 10 ppm selenium. One of 12 adult males fed 10 ppm mercury died and 8 others suffered from paralysis of their legs by the time the study was terminated. However, when the diet contained 10 ppm selenium in addition to the 10 ppm mercury, none of 12 males became sick. In contrast to the protective effect of selenium against mercury poisoning in males, selenium plus mercury was worse than selenium or mercury alone for some measurements of reproductive success. Both selenium and mercury lowered duckling production through reductions in hatching success and survival of ducklings, but the combination of mercury plus selenium was worse than either mercury or selenium alone. Controls produced an average of 7.6 young per female, females fed 10 ppm selenium produced an average of 2.8 young, females fed 10 ppm mercury produced 1.1 young, and females fed both mercury and selenium produced 0.2 young. Teratogenic effects also were worse for the combined mercury plus selenium treatment; deformities were recorded in 6.1% of the embryos of controls, 16.4% for methylmercury chloride, 36.2% for selenomethionine, and 73.4% for the combination of methylmercury chloride and selenomethionine. The presence of methylmercury in the diet greatly enhanced the storage of selenium in tissues. The livers of males fed 10 ppm selenium contained a mean of 9.6 ppm selenium, whereas the livers of males fed 10 ppm selenium plus 10 ppm mercury contained a mean of 114 ppm selenium. However, selenium did not enhance the storage of mercury. The results show that mercury and selenium may be antagonistic to each other for adults and synergistic to young, even within the same experiment.

  13. 21 CFR 880.2920 - Clinical mercury thermometer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...

  14. 21 CFR 880.2920 - Clinical mercury thermometer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...

  15. 21 CFR 880.2920 - Clinical mercury thermometer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...

  16. 21 CFR 880.2920 - Clinical mercury thermometer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Clinical mercury thermometer. 880.2920 Section 880... Devices § 880.2920 Clinical mercury thermometer. (a) Identification. A clinical mercury thermometer is a... mercury. (b) Classification. Class II (special controls). The device is exempt from the premarket...

  17. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  18. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  19. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  20. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  1. 40 CFR Appendix Xiii to Part 266 - Mercury Bearing Wastes That May Be Processed in Exempt Mercury Recovery Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are exempt mercury-bearing materials with less than 500 ppm of 40 CFR Part 261, appendix VIII organic... tank sludge 13. Mercury cell process solids 14. Recoverable levels of mercury contained in soil [59 FR...

  2. EDITORIAL: Mercury-free discharges for lighting

    NASA Astrophysics Data System (ADS)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this special issue. These initiatives may in time offer realistic alternatives for mercury-containing discharge lamps as the efficiency gap with existing products is getting smaller. At the same time, new applications for radiation sources are becoming more important, and in some of them the presence of mercury has other disadvantages besides the environmental aspects. Since in most cases mercury is used in the form of a saturated vapour, the mercury pressure is dependent on the ambient temperature, which means that mercury-containing lamps often show a slow increase to the steady-state light output or a strongly reduced output in cold environments, which is undesirable in many applications. For this reason also, different options for light sources without mercury are being investigated, and a number of them can be found in this special issue. This collection of papers gives a good overview of the different technologies that are currently being investigated as alternatives to existing lamp technologies, and will surely inspire others to reduce the use of mercury for lighting applications.

  3. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  4. Mercury Pollution Near A Chlor-Alkali Plant In Northern Kazakhstan

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water is contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  5. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    EPA Science Inventory

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  6. SENSITIVITY OF THE CMAQ MERCURY MODEL TO GAS-PHASE OXIDATION CHEMISTRY

    EPA Science Inventory

    Simulations of the Community Multi-scale Air Quality (CMAQ) model for mercury have shown the vast majority of the mercury deposited in the United States to be in the form of oxidized mercury. However, most of this simulated oxidized mercury was the result of atmospheric oxidatio...

  7. INVESTIGATION OF THE LIGHT ENHANCED EMISSION OF MERCURY FROM NATURALLY ENRICHED SUBSTRATES. (R827622E02)

    EPA Science Inventory

    Incident radiation has been reported to facilitate mercury release from soils. In this study the influence of light on mercury emissions from substrates amended with pure synthetic mercury species, and from naturally and anthropogenically mercury-enriched substrates were inves...

  8. A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan

    EPA Science Inventory

    A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...

  9. An Analysis of Simulated Wet Deposition of Mercury from the North American Mercury Model Intercomparison Study

    EPA Science Inventory

    A previous intercomparison of atmospheric mercury models in North America has been extended to compare simulated and observed wet deposition of mercury. Three regional-scale atmospheric mercury models were tested; CMAQ, REMSAD and TEAM. These models were each employed using thr...

  10. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark [Silver Spring, MD; Heiser, John [Bayport, NY; Kalb, Paul [Wading River, NY

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  11. Aquatic Ecosystem Exposure Associated with Atmospheric Mercury Deposition: Importance of Watershed and Water Body Hot Spots and Hot Moments

    EPA Science Inventory

    Atmospheric deposition of divalent mercury (Hg(II)) is often the primary driving force for mercury contamination in fish tissue, resulting in mercury exposure to wildlife and humans. Transport and transformation of the deposited mercury into the environmentally relevant form, met...

  12. A Non-Mercury Thermometer Alternative for Use in Older Melting Point Apparatuses

    ERIC Educational Resources Information Center

    Ongley, Lois K.; Kern, Clayton S.; Woods, Barry W.

    2008-01-01

    The State of Maine seeks to eliminate most mercury use. This includes removing mercury thermometers from secondary schools and discouraging Hg use in other educational institutions. Alternatives to mercury thermometers in chemical laboratory work include non-mercury thermometers, temperature probes, and thermocouples. In organic chemistry mercury…

  13. Mineral resource of the month: mercury

    USGS Publications Warehouse

    Brooks, William E.

    2006-01-01

    The ore of mercury, cinnabar, is soft and dark red, and native mercury is one of a few metals that is liquid at room temperatures. Cinnabar from Almaden, Spain, the world’s oldest producing mercury mine, was used during Roman times, and the chemical symbol for mercury (Hg) is from "hydrargyrum," from the Greek word meaning liquid silver. Cinnabar and mercury are associated with some hydrothermal mineral deposits and occur in fine-grained or sedimentary and volcanic rocks near hot springs or volcanic centers. Mercury may be recovered as a byproduct of processing copper, gold, lead-zinc or silver.

  14. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  15. Does thimerosal or other mercury exposure increase the risk for autism? A review of current literature.

    PubMed

    Schultz, Stephen T

    2010-01-01

    This report reviews current literature regarding the association of the pharmaceutical preservative thimerosal and other mercury exposures with the risk for autism. The evidence presented here does not support a causal association between autism and mercury exposure from the preservative thimerosal. The risk for autism from other mercury exposures such as from dental amalgam restorations or environmental mercury release into the atmosphere is ambiguous. Since mercury is a known neurotoxin, more research should be done to ensure that mercury exposure from any source does not contribute to autism.

  16. Method and apparatus for controlling the flow rate of mercury in a flow system

    DOEpatents

    Grossman, Mark W.; Speer, Richard

    1991-01-01

    A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.

  17. Oxidation of mercury by bromine in the subtropical Pacific free troposphere

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Ambrose, J. L.; Jaffe, D. A.; Shah, V.; Jaeglé, L.; Stutz, J.; Festa, J.; Spolaor, M.; Tsai, C.; Selin, N. E.; Song, S.; Zhou, X.; Weinheimer, A. J.; Knapp, D. J.; Montzka, D. D.; Flocke, F. M.; Campos, T. L.; Apel, E.; Hornbrook, R.; Blake, N. J.; Hall, S.; Tyndall, G. S.; Reeves, M.; Stechman, D.; Stell, M.

    2015-12-01

    Mercury is a global toxin that can be introduced to ecosystems through atmospheric deposition. Mercury oxidation is thought to occur in the free troposphere by bromine radicals, but direct observational evidence for this process is currently unavailable. During the 2013 Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks campaign, we measured enhanced oxidized mercury and bromine monoxide in a free tropospheric air mass over Texas. We use trace gas measurements, air mass back trajectories, and a chemical box model to confirm the origin and chemical history of the sampled air mass. We find the presence of elevated oxidized mercury to be consistent with oxidation of elemental mercury by bromine atoms in this subsiding upper tropospheric air mass within the subtropical Pacific High, where dry atmospheric conditions are conducive to oxidized mercury accumulation. Our results support the role of bromine as the dominant oxidant of mercury in the upper troposphere.

  18. Mercury enrichment and its effects on atmospheric emissions in cement plants of China

    NASA Astrophysics Data System (ADS)

    Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming

    2014-08-01

    The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.

  19. Mercury bioaccumulation in organisms from three Puerto Rican estuaries.

    PubMed

    Burger, J; Cooper, K; Saliva, J; Gochfeld, D; Lipsky, D; Gochfeld, M

    1992-09-01

    We analyzed mercury levels in shrimp (Palaemonetes sp.), Blue Crabs (Callinectes sp.), fish (Tarpon Megalops atlantica and Tilapia Tilapia mossambica), lizards (Ameiva exsul), Cattle Egret (Bubulcus ibis) and Moorhen (Gallinula chloropus) in three estuaries in Puerto Rico in 1988. There were no quantifiable concentrations greater than the method detection limit of mercury in shrimp, crabs and lizards from any site. Mercury levels were also below detection limits in Tilapia, except for specimens collected at Frontera Creek, allegedly contaminated with mercury. However, mercury levels ranged from 92-238 μg/kg (wet weight) in Tarpon, a predaceous fish that feeds on smaller fish. Few of the birds had detectable levels of mercury. Our results indicate relatively low concentrations of mercury in biota collected in all of the three estuaries at most trophic levels, although 10 of 12 Tarpon fillet samples from Frontera had detectable mercury compared to 3 of 12 fillet samples for the other two lagoons.

  20. Using Wet-FGD systems for mercury removal.

    PubMed

    Díaz-Somoano, Mercedes; Unterberger, Sven; Hein, Klaus R G

    2005-09-01

    A plan to control mercury emissions to the atmosphere and to establish mercury emission limits has recently been elaborated by the European Commission, making it necessary to devise an efficient and cost effective mercury removal technology. Towards this end wet flue gas desulfurization units appear as a promising option for multi-pollutant control. However, more investigation on mercury removal and a greater mercury removal efficiency are required to achieve this objective. In the present work scrubber chemistry and the application of various solid additives to enhance mercury removal in wet scrubbers is evaluated. The results obtained show a significant correlation between mercury removal efficiency and the pH of the scrubber slurry and SO2 concentration. A weaker correlation was observed between oxygen or slurry concentration and removal efficiency. Finally several solid oxides were found to be effective additives for enhancing mercury capture in wet scrubbers.

  1. Effects of low dietary levels of methyl mercury on mallard reproduction

    USGS Publications Warehouse

    Heinz, G.

    1974-01-01

    Mallard ducks were fed a control diet or a diet containing 0.5 ppm or 3 ppm mercury (as methylmercury dicyandiamide). Health of adults and reproductive success were studied. The dietary level of 3 ppm mercury had harmful effects on reproduction, although it did not appear to affect the health of the adults during the 12 months of dosage. Ducks that were fed the diet containing 0.5 ppm mercury reproduced as well as controls, and ducklings from parents fed 0.5 ppm mercury grew faster in the first week of life than did controls....The greatest harm to reproduction associated with the diet containing 3 ppm mercury was an increase in duckling mortality, but reduced egg laying and increased embryonic mortality also occurred....During the peak of egg laying, eggs laid by controls tended to be heavier than eggs laid by ducks fed either level of mercury; however, there seemed to be no eggshell thinning associated with mercury treatment. Levels of mercury reached about 1 ppm in eggs from ducks fed a dietary dosage of 0.5 ppm mercury and between 6 and 9 ppm in the eggs from ducks fed 3 ppm mercury.

  2. Trophic accumulation and depuration of mercury by blue crabs (Callinectes sapidus) and pink shrimp (Penaeus duorarum).

    PubMed

    Evans, D W; Kathman, R D; Walker, W W

    2000-06-01

    Mercury concentrations in blue crabs (Callinectes sapidus) collected from an area of mercury-contaminated sediments in Lavaca Bay, TX, USA, are more than an order of magnitude greater than concentrations in penaeid shrimp from the same area. Laboratory feeding experiments using mercury-contaminated fish as food showed that both blue crabs and pink shrimp (Penaeus duorarum) could accumulate mercury concentrations comparable to those in their food in 28 days. Calculated mercury assimilation efficiencies averaged 76% for blue crabs and 72% for pink shrimp. Significant depuration of mercury by blue crabs was not observed during a subsequent 28-day period, but pink shrimp lost mercury at a rate of about 0.012 day-1. Model calculations predict biomagnification factors of mercury of about two to three at steady state for both species. The large difference in observed concentrations of mercury in field-collected blue crabs and penaeid shrimp does not result from differences in efficiency of mercury assimilation from their food or from differences in excretion rates. It is more likely the result of differences in residence times in the contaminated area and of differences in feeding habits.

  3. Unexpectedly high mercury concentration in commercial fish feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, H.; Cech, J. Jr.

    1995-12-31

    Unexpectedly high mercury was found in a commercial fish pellet which has been widely used to feed fish in laboratory and fish farm settings. Researchers working with fish in mercury studies need to know that fish pellets contain mercury and consider the pellets, influence in their results. Mean mercury concentration in the commercial fish pellet was 47.4 ug/g (ranging from 35 to 56 ug Hg/g). Total mercury (T-Hg) in the blood of Sacramento blackfish (orthodon microlepidotus), fed the commercial feed for 8 months, was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Mean blood T-Hg reached a steady state at 41more » ug Hg/L (ranging from 34 to 51 ug Hg/L) during 5 months of feeding after capture from Clear Lake in California. The accumulation of mercury in blood followed a monoexponential pattern, in accordance with a one-compartment model. There were great variations in mercury levels in blood between individual fishes. The mercury concentrations in the blood did not tend to increase with the growth of the fish. In summary, feed sources of mercury need to be considered in mercury exposure experiments.« less

  4. First field-based atmospheric observation of the reduction of reactive mercury driven by sunlight

    NASA Astrophysics Data System (ADS)

    de Foy, Benjamin; Tong, Yindong; Yin, Xiufeng; Zhang, Wei; Kang, Shichang; Zhang, Qianggong; Zhang, Guoshuai; Wang, Xuejun; Schauer, James J.

    2016-06-01

    Hourly speciated measurements of atmospheric mercury made in a remote, high-altitude site in the Tibetan Plateau revealed the first field observations of the reduction of reactive mercury in the presence of sunlight in the atmosphere. Measurements were collected over four winter months on the shore of Nam Co Lake in the inland Tibetan Plateau. The data was analyzed to identify sources and atmospheric transformations of the speciated mercury compounds. The absence of local anthropogenic sources provided a unique opportunity to examine chemical transformations of mercury. An optimization algorithm was used to determine the parameters of a chemical box model that would match the measured reactive mercury concentrations. This required the presence of a photolytic reduction reaction previously observed in laboratory studies and in power plant plumes. In addition, the model estimated the role of vertical mixing in diluting reactive gaseous mercury during the day, and the role of bromine chemistry in oxidizing gaseous elemental mercury to produce reactive gaseous mercury. This work provides further evidence of the need to add the photolytic reduction reaction of oxidized mercury into atmospheric transport models in order to better simulate mercury deposition.

  5. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-05-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.

  6. Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants

    PubMed Central

    Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi

    2017-01-01

    Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI’s food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks. PMID:28484233

  7. Physiological model for the pharmacokinetics of methyl mercury in the growing rat.

    PubMed

    Farris, F F; Dedrick, R L; Allen, P V; Smith, J C

    1993-03-01

    We describe a physiological pharmacokinetic model for methyl mercury and its metabolite mercuric mercury in the growing rat. Demethylation appears to occur in both host tissues and gastrointestinal flora with elimination dominated by biliary secretion of inorganic mercury and by transport of methyl mercury into the gut lumen followed by substantial bacterial metabolism. Biliary transport of both organic and inorganic mercury is modeled in terms of the known secretion of glutathione from the hepatic pool. At 98 days following an oral tracer dose of 203Hg-labeled methyl mercury chloride, 65% of the administered dose had been recovered in the feces as inorganic mercury and 15% as organic mercury. Urinary excretion is a minor elimination route, accounting for less than 4% of the dose as methyl mercury and 1% of the dose as inorganic mercury. Irreversible incorporation of the mercurials into hair is a significant route of elimination. Ten percent of the administered dose was contained in the hair shed during the 98 days and over 12% of the dose (almost 90% of the body burden) remained in the hair at the end of that time period. Apparent ingestion of hair by the rats during grooming represents a novel form of toxin recirculation. Transport of both chemical species between blood and tissues is bidirectional and symmetric with relatively slow movement into and out of the brain. Transport mechanisms for both mercurial species are discussed in the context of capillary transport physiology and the blood-brain barrier to small molecules and proteins.

  8. C60 reduces the bioavailability of mercury in aqueous solutions.

    PubMed

    Shi, Wen-Juan; Menn, Fu-Min; Xu, Tingting; Zhuang, Zibo T; Beasley, Clara; Ripp, Steven; Zhuang, Jie; Layton, Alice C; Sayler, Gary S

    2014-01-01

    The effects of C60 on mercury bioavailability and sorption were investigated at different C60 dosages, reaction times, and pH ranges using the merR::luxCDABE bioluminescent bioreporter Escherichia coli ARL1. The results demonstrated that the bioavailability of mercury (Hg(2+)) decreased with increasing C60 dosage. Approximately 30% of aqueous mercury became biologically unavailable 2h after interaction with C60 at a mass ratio of C60 to mercury as low as 0.01. However, this reduction in bioavailability plateaued at a mass ratio of C60 to mercury of 10 with a further increase in C60 concentrations resulting in only a 20% additional decrease in bioavailability. If this reduction in bioluminescence output is attributable to mercury sorption on C60, then each one log-order increase in C60 concentration resulted in a 0.86 log-order decrease in the mercury partitioning coefficient (Kd). This relationship implies the presence of high mercury-affinitive sites on C60. The length of reaction time was found to play a more important role than C60 dosage in reducing Hg(2+) bioavailability, suggesting an overall slow kinetics of the C60-Hg interactions. In addition, lowering the pH from 7.2 to 5.8 decreased mercury bioavailability due likely to the increase in mercury's association with C60. These results suggest that C60 may be useful in capturing soluble mercury and thus reducing mercury biotoxicity. Published by Elsevier Ltd.

  9. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. IV. Bioconcentration of mercury in in situ aquatic and terrestrial plants at Ganjam, India.

    PubMed

    Lenka, M; Panda, K K; Panda, B B

    1992-02-01

    In situ aquatic and terrestrial plants including a few vegetable and crop plants growing in and around a chloralkali plant at Ganjam, India were analyzed for concentrations of root and shoot mercury. The aquatic plants found to bioconcentrate mercury to different degrees included Marsilea spp., Spirodela polyrhiza, Jussiea repens, Paspalum scrobiculatam, Pistia stratiotes, Eichhornia crassipes, Hygrophila schulli, Monochoria hastata and Bacopa monniera. Among wild terrestrial plants Chloris barbata, Cynodon dactylon, Cyperus rotundus and Croton bonplandianum were found growing on heavily contaminated soil containing mercury as high as 557 mg/kg. Analysis of mercury in root and shoot of these plants in relation to the mercury levels in soil indicated a significant correlation between soil and plant mercury with the exception of C. bonplandianum. Furthermore, the tolerance to mercury toxicity was highest with C. barbata followed by C. dactylon and C. rotundus, in that order. The rice plants analyzed from the surrounding agricultural fields did not show any significant levels of bioconcentrated mercury. Of the different vegetables grown in a contaminated kitchen garden with mercury level at 8.91 mg/kg, the two leafy vegetables, namely cabbage (Brassica oleracea) and amaranthus (Amaranthus oleraceous), were found to bioconcentrate mercury at statistically significant levels. The overall study indicates that the mercury pollution is very much localized to the specific sites in the vicinity of the chloralkali plant.

  10. Multi-model study of mercury dispersion in the atmosphere: vertical and interhemispheric distribution of mercury species

    NASA Astrophysics Data System (ADS)

    Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola

    2017-06-01

    Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.

    The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders ofmore » magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.« less

  12. The Mercury Problem in Artisanal and Small‐Scale Gold Mining

    PubMed Central

    2018-01-01

    Abstract Mercury‐dependent artisanal and small‐scale gold mining (ASGM) is the largest source of mercury pollution on Earth. In this practice, elemental mercury is used to extract gold from ore as an amalgam. The amalgam is typically isolated by hand and then heated—often with a torch or over a stove—to distill the mercury and isolate the gold. Mercury release from tailings and vaporized mercury exceed 1000 tonnes each year from ASGM. The health effects on the miners are dire, with inhaled mercury leading to neurological damage and other health issues. The communities near these mines are also affected due to mercury contamination of water and soil and subsequent accumulation in food staples, such as fish—a major source of dietary protein in many ASGM regions. The risks to children are also substantial, with mercury emissions from ASGM resulting in both physical and mental disabilities and compromised development. Between 10 and 19 million people use mercury to mine for gold in more than 70 countries, making mercury pollution from ASGM a global issue. With the Minamata Convention on Mercury entering force this year, there is political motivation to help overcome the problem of mercury in ASGM. In this effort, chemists can play a central role. Here, the problem of mercury in ASGM is reviewed with a discussion on how the chemistry community can contribute solutions. Introducing portable and low‐cost mercury sensors, inexpensive and scalable remediation technologies, novel methods to prevent mercury uptake in fish and food crops, and efficient and easy‐to‐use mercury‐free mining techniques are all ways in which the chemistry community can help. To meet these challenges, it is critical that new technologies or techniques are low‐cost and adaptable to the remote and under‐resourced areas in which ASGM is most common. The problem of mercury pollution in ASGM is inherently a chemistry problem. We therefore encourage the chemistry community to consider and address this issue that affects the health of millions of people. PMID:29314284

  13. Mercury and halogens in coal--Their role in determining mercury emissions from coal combustion

    USGS Publications Warehouse

    Kolker, Allan; Quick, Jeffrey C.; Senior, Connie L.; Belkin, Harvey E.

    2012-01-01

    Mercury is a toxic pollutant. In its elemental form, gaseous mercury has a long residence time in the atmosphere, up to a year, allowing it to be transported long distances from emission sources. Mercury can be emitted from natural sources such as volcanoes, or from anthropogenic sources, such as coal-fired powerplants. In addition, all sources of mercury on the Earth's surface can re-emit it from land and sea back to the atmosphere, from which it is then redeposited. Mercury in the atmosphere is present in such low concentrations that it is not considered harmful. Once mercury enters the aquatic environment, however, it can undergo a series of biochemical transformations that convert a portion of the mercury originally present to methylmercury, a highly toxic organic form of mercury that accumulates in fish and birds. Many factors contribute to creation of methylmercury in aquatic ecosystems, including mercury availability, sediment and nutrient load, bacterial influence, and chemical conditions. In the United States, consumption of fish with high levels of methylmercury is the most common pathway for human exposure to mercury, leading the U.S. Environmental Protection Agency (EPA) to issue fish consumption advisories in every State. The EPA estimates that 50 percent of the mercury entering the atmosphere in the United States is emitted from coal-burning utility powerplants. An EPA rule, known as MATS (for Mercury and Air Toxics Standards), to reduce emissions of mercury and other toxic pollutants from powerplants, was signed in December 2011. The rule, which is currently under review, specifies limits for mercury and other toxic elements, such as arsenic, chromium, and nickel. MATS also places limits on emission of harmful acid gases, such as hydrochloric acid and hydrofluoric acid. These standards are the result of a 2010 detailed nationwide program by the EPA to sample stack emissions and thousands of shipments of coal to coal-burning powerplants. The United States is the only nation to have collected such detailed information for mercury in both its coal and its utility emissions.

  14. Signs and symptoms of mercury-exposed gold miners.

    PubMed

    Bose-O'Reilly, Stephan; Bernaudat, Ludovic; Siebert, Uwe; Roider, Gabriele; Nowak, Dennis; Drasch, Gustav

    2017-03-30

    Gold miners use mercury to extract gold from ore adding liquid mercury to the milled gold-containing ore. This results in a mercury-gold compound, called amalgam. Miners smelt this amalgam to obtain gold, vaporizing it and finally inhaling the toxic mercury fumes. The objective was to merge and analyze data from different projects, to identify typical signs and symptoms of chronic inorganic mercury exposure. Miners and community members from various artisanal small-scale gold mining areas had been examined (Philippines, Mongolia, Tanzania, Zimbabwe, Indonesia). Data of several health assessments were pooled. Urine, blood and hair samples were analyzed for mercury (N = 1252). Questionnaires, standardized medical examinations and neuropsychological tests were used. Participants were grouped into: Controls (N = 209), living in an exposed area (N = 408), working with mercury as panners (N = 181), working with mercury as amalgam burners (N = 454). Chi2 test, linear trend test, Mann-Whitney test, Kruskal-Wallis test, correlation coefficient, Spearman's rho, and analysis of variance tests were used. An algorithm was used to define participants with chronic mercury intoxication. Mean mercury concentrations in all exposed subgroups were elevated and above threshold limits, with amalgam burners showing highest levels. Typical symptoms of chronic metallic mercury intoxication were tremor, ataxia, coordination problems, excessive salivation and metallic taste. Participants from the exposed groups showed poorer results in different neuropsychological tests in comparison to the control group. Fifty-four percent of the high-exposed group (amalgam burners) were diagnosed as being mercury-intoxicated, compared to 0% within the control group (Chi2 p < 0.001). Chronic mercury intoxication, with tremor, ataxia and other neurological symptoms together with a raised body burden of mercury was clinically diagnosed in exposed people in artisanal small-scale mining areas. The mercury exposure needs to be urgently reduced. Health care systems need to be prepared for this emerging problem of chronic mercury intoxication among exposed people. Int J Occup Med Environ Health 2017;30(2):249-269. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Reactive Gaseous Mercury Formation Over The North Pacific Ocean: Influence Of Environmental Parameters On Elemental Mercury Oxidation In The Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Laurier, F. J.

    2002-12-01

    Global mercury models have identified wet and dry particle deposition and evasion of dissolved gaseous mercury from the ocean and from land as key controls over global mercury cycling (1,2). Recent ocean studies (3,4) however, have indicated that estimated mercury evasion rates from the ocean substantially exceed estimated deposition. Oxidized reactive gaseous mercury species (RGHg) are now known to play a major role in the global mercury cycle (2,5). RGHg species are water-soluble, exhibit a much shorter atmospheric lifetime than elemental mercury, and contribute to a large extent to atmospheric mercury deposition (2,3,6). Although recent global mercury models have accounted for the dry deposition of RGHg derived from point source emissions (6,7), the formation and deposition of RGHg in remote areas have not been incorporated. We suggest that the oxidation of elemental mercury over the ocean, by gas phase or heterogeneous reactions, is an important part the global mercury cycle. In agreement with previous studies (3,8,9) our recent data from atmospheric collections over the North Pacific Ocean support the notion of enhanced oxidation in the marine boundary layer. Our results show an inverse correlation between RGHg production and ozone, and a diurnal cycle with highest concentrations during periods of highest UV irradiation. In addition, the relationship between RGHg and other parameters measured during the cruise will be discussed. Our results clearly show that RGHg deposition to the ocean must be an important Hg source, and a crucial part of the global Hg cycle. (1) Mason R.P., Fitzgerald W.F., and Morel F.M.M. (1994), The biogeochemical cycling of elemental mercury: Anthropogenic influences, Geochim. Cosmochim. Acta, 58: 3191-3198 (2) Shia R.L., Seigneur C., Pai P., Ko M., and Sze N.-D. (1999), Global simulation of atmospheric mercury concentrations and deposition fluxes, J. Geophy. Res., 104(D19), 23, 747-23, 760 (3) Mason, R.P., Lawson N.M., and Sheu G.-R. (2001), Mercury in the Atlantic Ocean: factors controlling air-sea exchange of mercury and its distribution in the upper water, Deep-Sea Res. II, 2829-2853 (4) Lamborg, C.H., Rolfus K.R., and Fitzgerald W.F. (1999), The atmospheric cycling and air-sea exchange of mercury species in the south and equatorial Atlantic Ocean, Deep-Sea Res. II, 957-977 (5) Lindberg S.E., Brooks S., Lin C.-J., Scott K. J., Landis M. S., Stevens R.K., Goodsite M., and Richter A. (2002), Dynamic oxidation of gaseous mercury in the arctic troposphere at polar sunrise, Environ. Sci. Technol., 1245-1256 (6) Bullock O.R. (2000), Modeling assessment of transport and deposition patterns of anthropogenic mercury air emissions in the United States and Canada, Sci Total Environ., 259(1-3), 145-157 (7) Xu X., Yang X., Miller d.R., Helble J.J., and Carley R.J. (2000), a regional scale modelling study of atmospheric transport and formation of mercury. II. Simulation results for the northeast United states, Atmos. Environ., 34: 4945-4955 (8) Sheu G.-R. (2001), Speciation and distribution of atmospheric mercury: Significance of reactive gaseous mercury in the global mercury cycle. PhD. thesis, University of Maryland, College park, pp. 170 (9) Guentzel J.L., Landing W.M., Gill G.A., and Pollman C.D. (2001), Processes influencing rainfall deposition of mercury in Florida, Environ. Sci. Technol., 35: 863-873

  16. Occupational exposure to airborne mercury during gold mining operations near El Callao, Venezuela.

    PubMed

    Drake, P L; Rojas, M; Reh, C M; Mueller, C A; Jenkins, F M

    2001-04-01

    The National Institute for Occupational Safety and Health (NIOSH) recently conducted a cross-sectional study during gold mining operations near El Callao, Venezuela. The purpose of the study was to assess mercury exposures and mercury-related microdamage to the kidneys. The study consisted of concurrent occupational hygiene and biological monitoring, and an examination of the processing techniques employed at the different mining facilities. Mercury was used in these facilities to remove gold by forming a mercury-gold amalgam. The gold was purified either by heating the amalgam in the open with a propane torch or by using a small retort. Thirty-eight workers participated in this study. Some participants were employed by a large mining company, while others were considered "informal miners" (self-employed). Mercury exposure was monitored by sampling air from the workers' breathing zones. These full-shift air samples were used to calculate time-weighted average (TWA) mercury exposure concentrations. A questionnaire was administered and a spot urine sample was collected. Each urine sample was analyzed for mercury, creatinine, and N-acetyl-beta-D-glucosaminidase (NAG). The range for the 8-h TWA airborne mercury exposure concentrations was 0.1 to 6,315 micrograms/m3, with a mean of 183 micrograms/m3. Twenty percent of the TWA airborne mercury exposure measurements were above the NIOSH recommended exposure limit (REL) of 50 micrograms/m3, and 26% exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 25 micrograms/m3. The mean urine mercury concentration was 101 micrograms/g creatinine (microgram/g-Cr), and the data ranged from 2.5 to 912 micrograms/g-Cr. Forty-two percent of the study participants had urine mercury concentrations that exceeded the ACGIH biological exposure index (BEI) of 35 micrograms/g-Cr. Urinary NAG excretion is considered a biological marker of preclinical, nonspecific microdamage to the kidney's proximal tubule cells. The mean urine NAG concentration was 3.6 International Units/g-Cr (IU/g-Cr) with a range of 0.5 to 11.5 IU/g-Cr. Three workers had urine NAG levels in excess of the reference values. Correlation analyses found statistically significant correlations between airborne mercury exposure and urine mercury level (P = 0.01), and between urine mercury level and urine NAG excretion (P = 0.01). In addition, the airborne mercury exposure data and urine mercury data were segregated by job tasks. A Wilcoxon rank sum test revealed significant correlations between tasks and mercury exposure (P = 0.03), and between tasks and urine mercury level (P = 0.02). The tasks with the highest mean airborne mercury exposures were "burning the mercury-gold amalgam" and "gold refining/smelting". Recommendations were provided for improving the retort design to better contain mercury, for ventilation in the gold shops, and for medical surveillance and educational programs.

  17. Migration And Entrapment Of Mercury In The Subsurface

    NASA Astrophysics Data System (ADS)

    M, D.; Nambi, I. M.

    2009-12-01

    Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.

  18. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it; Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it; Dini, F., E-mail: fdiniprotisti@gmail.com

    2013-08-15

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters thatmore » we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is different from bare soil. ► Light enhances mercury emissions and is the main parameter driving the process. ► The presence of wild vegetation covering the soil reduces mercury emission. ► Vegetative covers could be a solution to reduce atmospheric mercury pollution.« less

  19. The fate of Mercury in Arctic regions: New understanding of atmospheric chemical processes and mercury stability in snow.

    NASA Astrophysics Data System (ADS)

    Steffen, A.; Ferrari, C.; Dommergue, A.; Scherz, T.; Lawson, G.; Leiatch, R.

    2006-12-01

    Mercury is a known toxic pollutant in the Arctic environment. Atmospheric mercury depletion events (AMDEs) have been studied in the Arctic since 1995. While advances in understanding this newly discovered cycling of mercury in the atmosphere have been made, much of the chemistry and the impact of this annually reoccurring event to the Arctic ecosystem are not well understood. Four years of continuous measurements at Alert, Canada of so-called reactive gaseous mercury (RGM) and mercury associated to particles (PHg) coupled with ongoing snow sampling have produced new information on the atmospheric chemistry and deposition of these mercury species to the Arctic. A distinct pattern during the springtime period in the distribution of these atmospheric mercury species has emerged. This pattern is characterized by the predominance of PHg concentration at the onset of the AMDEs. During the latter part of the AMDE season, there is an obvious swicth in the speciation of mercury to RGM as the main component during AMDEs. This swicth from PHg to RGM is clearly linked to a significant increase of mercury in the snow. In addition, concentrations of PHg are clearly linked with particles in the air that are primarily associated with Arctic haze. Recently, similar results have also been observed in Ny-Alesund (Svalbard). Further observations indicate that once deposited, the deposited mercury appears to evolve chemically in the snow. This change in mercury may impact the transfer of mercury to the environment during snow melt. These first time observed links between atmospheric conditions and subsequent deposition of mercury may help to ascertain the conditions throughout the Arctic as to when significant deposition of mercury will occur. It is proposed that should the concentration of atmospheric particles increase in the Arctic due to long range transport from emission sources, an increase in the deposition of mercury to this environment will increase during the springtime period. Additionally, information from these data demonstrates that the primary product of the oxidation of gaseous elemental mercury (GEM) is RGM which will associate to the particles and exist as PHg when these particles are available in the atmosphere. The oxidation of GEM is, therefore, a result of homogeneous chemistry. Results from this ongoing study and the impacts of this pollutant to the Arctic environment will be presented.

  20. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms.

    PubMed

    Hoque, Enamul; Fritscher, Johannes

    2016-10-01

    Here, we report about a unique aquatic fungus Mucor hiemalisEH8 that can remove toxic ionic mercury from water by intracellular accumulation and reduction into elemental mercury (Hg 0 ). EH8 was isolated from a microbial biofilm grown in sulfidic-reducing spring water sourced at a Marching's site located downhill from hop cultivation areas with a history of mercury use. A thorough biodiversity survey and mercury-removal function analyses were undertaken in an area of about 200 km 2 in Bavaria (Germany) to find the key biofilm and microbe for mercury removal. After a systematic search using metal removal assays we identified Marching spring's biofilm out of 18 different sulfidic springs' biofilms as the only one that was capable of removing ionic Hg from water. EH8 was selected, due to its molecular biological identification as the key microorganism of this biofilm with the capability of mercury removal, and cultivated as a pure culture on solid and in liquid media to produce germinating sporangiospores. They removed 99% of mercury from water within 10-48 h after initial exposure to Hg(II). Scanning electron microscopy demonstrated occurrence of intracellular mercury in germinating sporangiospores exposed to mercury. Not only associated with intracellular components, but mercury was also found to be released and deposited as metallic-shiny nanospheres. Electron-dispersive x-ray analysis of such a nanosphere confirmed presence of mercury by the HgM α peak at 2.195 keV. Thus, a first aquatic eukaryotic microbe has been found that is able to grow even at low temperature under sulfur-reducing conditions with promising performance in mercury removal to safeguard our environment from mercury pollution. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. [Distribution characteristics of particulate mercury in aerosol in coastal city].

    PubMed

    Zhang, Fu-Wang; Zhao, Jin-Ping; Chen, Jin-Sheng; Xu, Ya

    2010-10-01

    Particulate mercury, which is bound with aerosol in atmosphere, has a negative impact on human health and the environment, also plays an important role in the biogeochemical process of mercury. In this paper, taking southeast coastal city of Xiamen as research object, the PM2.5, PM10 and TSP were collected in residential, tourism, industrial area and background, respectively, during four seasons (October 2008-September 2009). RA-915 + mercury analyzer was employed to determinate mercury concentration in different size particle matters based on zeeman atomic absorption spectrometry. The results showed that the contents of particulate mercury in different size of aerosol during Winter, Spring were obviously higher than that of Summer, Autumn; the concentrations of particulate mercury in fine particle during Spring, Summer, Autumn and Winter were (51.46 +/- 19.28), (42.41 +/- 12.74), (38.38 +/- 6.08) and (127.23 +/- 33.70) pg/m3, respectively. The experimental data showed that the particulate mercury were mainly distributed in fine particles (PM2.5), which covered 42.48%-67.87%, and it can be concluded that the rate of particulate mercury enrichment in coarse particle was much lower than that of fine particle. The sequence of atmospheric particulate mercury concentration in different functional areas was: background < resident < tourism < industrial area < suburban; which showed characteristics of spatial distribution of particulate mercury was affected by the sampling location. On the whole, Xiamen had a low level of atmospheric particulate mercury; the enrichment of PM2.5 to particulate mercury was significantly higher than that of PM10 and TSP, and showed that fine particle pollution should be tightly controlled to reduce particulate mercury.

  2. Source identification and mass balance studies of mercury in Lake An-dong, S. Korea

    NASA Astrophysics Data System (ADS)

    Han, J.; Byeon, M.; Yoon, J.; Park, J.; Lee, M.; Huh, I.; Na, E.; Chung, D.; Shin, S.; Kim, Y.

    2009-12-01

    In this study, mercury and methylmercury were measured in atmospheric, tributary, open-lake water column, sediment, planktons and fish samples in the catchments area of Lake An-dong, S. Korea. Lake An-dong, an artificial freshwater lake is located on the upstream of River Nak-dong. It has 51.5 km2 of open surface water and 1.33 year of hydraulic residence time. It is a source of drinking water for 0.3 million S. Koreans. Recently, the possibilities of its mercury contamination became an issue since current studies showed that the lake had much higher mercury level in sediment and certain freshwater fish species than any other lakes in S. Korea. This catchments area has the possibilities of historical mercury pollution by the location of more than 50 abandoned gold mines and Young-poong zinc smelter. The objective of this study was to develop a mercury mass balance and identify possible mercury sources in the lake. The results of this study are thus expected to offer valuable insights for the sources of mercury loading through the watershed. In order to estimate the mercury flux, TGM, RGM and particulate mercury were measured using TEKRAN 2537 at the five sites surrounding Lake An-dong from May, 2009 with wet and dry deposition. The fate and transport of mercury in water body were predicted by using EFDC (Environmental Dynamic Fluid Code) and Mercury module in WASP7 (Water quality analysis program) after subsequent distribution into water body, sediments, followed by bioaccumulation and ultimate uptake by humans. The mercury mass balance in Young-poong zinc smelter was also pre-estimated by measuring mercury content in zinc ores, emission gases, sludge, wastewater and products.

  3. Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.

    PubMed

    Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R

    2017-04-01

    Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    USGS Publications Warehouse

    Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B.; Franzreb, Kathleen E.; Simons, Theodore R.

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ 15N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g−1 (range 0.01–3.74 μg g−1). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g−1. Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000–2,000 m). Relative trophic position, calculated from δ 15N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g−1 increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition.

  5. Engineering tobacco to remove mercury from polluted soil.

    PubMed

    Chang, S; Wei, F; Yang, Y; Wang, A; Jin, Z; Li, J; He, Y; Shu, H

    2015-04-01

    Tobacco is an ideal plant for modification to remove mercury from soil. Although several transgenic tobacco strains have been developed, they either release elemental mercury directly into the air or are only capable of accumulating small quantities of mercury. In this study, we constructed two transgenic tobacco lines: Ntk-7 (a tobacco plant transformed with merT-merP-merB1-merB2-ppk) and Ntp-36 (tobacco transformed with merT-merP-merB1-merB2-pcs1). The genes merT, merP, merB1, and merB2 were obtained from the well-known mercury-resistant bacterium Pseudomonas K-62. Ppk is a gene that encodes polyphosphate kinase, a key enzyme for synthesizing polyphosphate in Enterobacter aerogenes. Pcs1 is a tobacco gene that encodes phytochelatin synthase, which is the key enzyme for phytochelatin synthesis. The genes were linked with LP4/2A, a sequence that encodes a well-known linker peptide. The results demonstrate that all foreign genes can be abundantly expressed. The mercury resistance of Ntk-7 and Ntp-36 was much higher than that of the wild type whether tested with organic mercury or with mercuric ions. The transformed plants can accumulate significantly more mercury than the wild type, and Ntp-36 can accumulate more mercury from soil than Ntk-7. In mercury-polluted soil, the mercury content in Ntp-36's root can reach up to 251 μg/g. This is the first report to indicate that engineered tobacco can not only accumulate mercury from soil but also retain this mercury within the plant. Ntp-36 has good prospects for application in bioremediation for mercury pollution.

  6. Mercury-contaminated hydraulic mining debris in San Francisco Bay

    USGS Publications Warehouse

    Bouse, Robin M.; Fuller, Christopher C.; Luoma, Samuel N.; Hornberger, Michelle I.; Jaffe, Bruce E.; Smith, Richard E.

    2010-01-01

    Mercury concentrations in pre-Gold Rush sediment range between 0.03 and 0.08 μg g-1. In core sediments that have characteristics of the gold deposits and were deposited during the time of hydraulic mining, mercury concentrations can be up to 0.45 μg/g. Modern sediment (post-1952 deposition) contains mercury concentrations up to 0.79 μg/g and is likely a mix of hydraulic mining mercury and mercury introduced from other sources.

  7. Solid-phase partitioning of mercury in artisanal gold mine tailings from selected key areas in Mindanao, Philippines, and its implications for mercury detoxification.

    PubMed

    Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B

    2018-03-01

    The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.

  8. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Global Mercury Pathways in the Arctic Ecosystem

    NASA Astrophysics Data System (ADS)

    Lahoutifard, N.; Lean, D.

    2003-12-01

    The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.

  10. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources.

    PubMed

    Manolopoulos, Helen; Snyder, David C; Schauer, James J; Hill, Jason S; Turner, Jay R; Olson, Mark L; Krabbenhoft, David P

    2007-08-15

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m(-3) for elemental mercury (Hg0) and 38 300 pg m(-3) for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NO(x) were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NO(x) ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site.

  11. Advances in understanding the renal transport and toxicity of mercury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalups, R.K.; Lash, L.H.

    1994-01-01

    As a result of industrialization and changes in the environment during the twentieth century, humans and animals are exposed to numerous chemical forms of mercury, including elemental mercury vapor (Hg[sup 0]), inorganic mercurous (Hg[sup +]) and mercuric (Hg[sup 2+]) compounds, and organic mercuric (R-Hg[sup +] or R-Hg-R; where R represents any organic ligand) compounds. The risk of exposure and subsequent intoxication is of increasing concern because of the steadily increasing deposition of mercury in the environment (Fitzgerald Clarkson, 1991). All forms of mercury have nephrotoxic effects, although disposition and toxicity of mercury in tissues can vary depending on the chemicalmore » form of mercury. For example, the initial toxic effects of both elemental mercury and organic forms of mercury are observed in the nervous system. This is due to their lipophilicity, which allows them to cross the blood-brain barrier. At later times, hepatotoxicity and nephrotoxicity can develop. With inorganic mercurous or mercuric salts, the most prominent effect is nephrotoxicity. Until recently, little was known about the mechanisms involved in the nephropathy induced by mercury. The purpose of this article is to review recent data on the intrarenal accumulation and disposition, nephrotoxicity, and target site specificity of mercury, and factors that modify or alter renal injury induced by mercury. 170 refs., 7 figs.« less

  12. Mercury in Arctic Marine Ecosystems: Sources, Pathways, and Exposure

    PubMed Central

    Kirk, Jane L.; Lehnherr, Igor; Andersson, Maria; Braune, Birgit M.; Chan, Laurie; Dastoor, Ashu P.; Durnford, Dorothy; Gleason, Amber L.; Loseto, Lisa L.; Steffen, Alexandra; St. Louis, Vincent L.

    2014-01-01

    Mercury in the Arctic is an important environmental and human health issue. The reliance of Northern Peoples on traditional foods, such as marine mammals, for subsistence means that they are particularly at risk from mercury exposure. The cycling of mercury in Arctic marine systems is reviewed here, with emphasis placed on the key sources, pathways and processes which regulate mercury levels in marine food webs and ultimately the exposure of human populations to this contaminant. While many knowledge gaps exist limiting our ability to make strong conclusions, it appears that the long range transport of mercury from Asian emissions is an important source of atmospheric Hg to the Arctic and that mercury methylation resulting in monomethylmercury production (an organic form of mercury which is both toxic and bioaccumulated) in Arctic marine waters is the principal source of mercury incorporated into food webs. Mercury concentrations in biological organisms have increased since the onset of the industrial age and are controlled by a combination of abiotic factors (e.g., monomethylmercury supply), food web dynamics and structure, and animal behavior (e.g., habitat selection and feeding behavior). Finally, although some Northern Peoples have high mercury concentrations of mercury in their blood and hair, harvesting and consuming traditional foods has many nutritional, social, cultural and physical health benefits which must be considered in risk management and communication. PMID:23102902

  13. Sources of speciated atmospheric mercury at a residential neighborhood impacted by industrial sources

    USGS Publications Warehouse

    Manolopoulos, H.; Snyder, D.C.; Schauer, J.J.; Hill, J.S.; Turner, J.R.; Olson, M.L.; Krabbenhoft, D.P.

    2007-01-01

    Speciated measurements of atmospheric mercury plumes were obtained at an industrially impacted residential area of East St. Louis, IL. These plumes were found to result in extremely high mercury concentrations at ground level that were composed of a wide distribution of mercury species. Ground level concentrations as high as 235 ng m-3 for elemental mercury (Hg 0) and 38 300 pg m-3 for reactive mercury species (reactive gaseous (RGM) plus particulate (PHg) mercury) were measured. The highest mercury concentrations observed during the study were associated with plumes that contained high concentrations of all mercury species (Hg 0, RGM, and PHg) and originated from a source located southwest of the sampling site. Variations in proportions of Hg0/RGM/PHg among plumes, with Hg0 dominating some plumes and RGM and/or PHg dominating others, were attributed to differences in emissions from different sources. Correlations between mercury plumes and elevated NOx were not observed; however, a correlation between elevated SO2 and mercury plumes was observed during some but not all plume events. Despite the presence of six coal-fired power plants within 60 km of the study site, wind direction data along with Hg/SO2 and Hg/NOx ratios suggest that high-concentration mercury plumes impacting the St. Louis-Midwest Particle Matter Supersite are attributable to local point sources within 5 km of the site. ?? 2007 American Chemical Society.

  14. Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata).

    PubMed

    Su, Yi; Han, Fengxiang X; Chen, Jian; Sridhar, B B Maruthi; Monts, David L

    2008-01-01

    The objective of this research was to screen and search for suitable plant species to phytoextract mercury-contaminated soil. Our effort focused on using some of the known metal-accumulating wild-type plants since no natural plant species with mercury-hyperaccumulat ing properties has yet been identified. Three plant species were evaluated for their uptake efficiency for mercury: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Four sets of experiments were conducted to evaluate the phytoremediation potential of these three plant species: a pot study with potting mix where mercury was provided daily as HgCl2 solution; experiments with freshly mercury-spiked soil; and a study with aged soils contaminated with different mercury sources (HgCl2, Hg(NO3)2, and HgS). Homemade sunlit chambers were also used to study foliar uptake of Hg from ambient air. Among the three plant species, Chinese brake fern showed the least stress symptoms resulting from mercury exposure and had the highest mercury accumulation. Our results indicate that Chinese brake fern may be a potential candidate for mercury phytoextraction. We found that mercury contamination is biologically available for plant uptake and accumulation, even if the original and predominating mercury form is HgS, and also after multiple phytoremediation cycles.

  15. JV Task 96 - Phase 2 - Investigating the Importance of the Mercury-Selenium Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas Ralston; Laura Raymond

    2008-03-01

    In order to improve the understanding of the mercury issue, it is vital to study mercury's effects on selenium physiology. While mercury present in the environment or food sources may pose health risks, the protective effects of selenium have not been adequately considered in establishing regulatory policy. Numerous studies report that vulnerability to mercury toxicity is inversely proportional to selenium status or level. However, selenium status has not been considered in the development of the reference dosage levels for mercury exposure. Experimental animals fed low-selenium diets are far more vulnerable to mercury toxicity than animals fed normal selenium, and animalsmore » fed selenium-rich diets are even more resistant. Selenium-dependent enzymes in brain and endocrine tissues can be impaired by excessive mercury exposure, apparently because mercury has an extremely high binding affinity for selenium. When selenium becomes bound to mercury, it is unable to participate in the metabolic cycling of selenoprotein synthesis. Because of mercury-dependent impairments of selenoprotein synthesis, various antioxidant and regulatory functions in brain biochemistry are compromised. This report details a 2-year multiclient-funded research program designed to examine the interactions between mercury and selenium in animal models. The studies explored the effects of dietary intakes of toxic amounts of methylmercury and the protective effects of the normal dietary range of selenium in counteracting mercury toxicity. This study finds that the amounts of selenium present in ocean fish are sufficient to protect against far larger quantities of methylmercury than those present in typical seafoods. Toxic effects of methylmercury exposure were not directly proportional to mercury concentrations in blood, brain, or any other tissues. Instead, mercury toxicity was proportional to molar ratios of mercury relative to selenium. In order to accurately assess risk associated with methylmercury or mercury exposures, mercury-selenium ratios appear to be far more accurate and effective in identifying risk and protecting human and environmental health. This study also finds that methylmercury toxicity can be effectively treated by dietary selenium, preventing the death and progressive disabilities that otherwise occur in methylmercury-treated subjects. Remarkably, the positive response to selenium therapy was essentially equivalent regardless of whether or not toxic amounts of methylmercury were still administered. The findings of the Physiologically Oriented Integration of Nutrients and Toxins (POINT) models of the effects of mercury and selenium developed in this project are consistent with the hypothesis that mercury toxicity arises because of mercury-dependent inhibition of selenium availability in brain and endocrine tissues. This appears to occur through synergistic effects of mercury-dependent inhibition of selenium transport to these tissues and selective sequestration of the selenium present in the tissues. Compromised transport of selenium to the brain and endocrine tissues would be particularly hazardous to the developing fetus because the rapidly growing tissues of the child have no selenium reserves. Therefore, maternal consumption of foods with high mercury-selenium ratios is hazardous. In summation, methylmercury exposure is unlikely to cause harm in populations that eat selenium-rich diets but may cause harm among populations that consume certain foods that have methylmercury present in excess of selenium.« less

  16. Mercury Poisoning Linked to Skin Products

    MedlinePlus

    ... products, injunctions, and, in some situations, criminal prosecution. Dangers of Mercury Exposure to mercury can have serious health consequences. The danger isn’t just to people who use mercury- ...

  17. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  18. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  19. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  20. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  1. 21 CFR 862.3600 - Mercury test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Mercury test system. 862.3600 Section 862.3600....3600 Mercury test system. (a) Identification. A mercury test system is a device intended to measure mercury, a heavy metal, in human specimens. Measurements obtained by this device are used in the diagnosis...

  2. Global and Local Contributions to Mercury Concentrations in Lake Michigan and Impact on Fish Consumption Advisories

    EPA Science Inventory

    LM2-Mercury, a mercury species mass balance model developed for Lake Michigan, was used to assess mercury cycling in Lake Michigan. A calibrated model (including a hindcast) was used to predict mercury concentrations in the lake based on various sensitivity and management scenari...

  3. Current approaches of the management of mercury poisoning: need of the hour

    PubMed Central

    2014-01-01

    Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360

  4. Multidrug Efflux Transporters Limit Accumulation of Inorganic, but Not Organic, Mercury in Sea Urchin Embryos

    PubMed Central

    Bošnjak, Ivana; Uhlinger, Kevin R.; Heim, Wesley; Smital, Tvrtko; Franekić-Čolić, Jasna; Coale, Kenneth; Epel, David; Hamdoun, Amro

    2011-01-01

    Mercuric compounds are persistent global pollutants that accumulate in marine organisms and in humans who consume them. While the chemical cycles and speciation of mercury in the oceans are relatively well described, the cellular mechanisms that govern which forms of mercury accumulate in cells and why they persist are less understood. In this study we examined the role of multidrug efflux transport in the differential accumulation of inorganic (HgCl2) and organic (CH3HgCl) mercury in sea urchin (Strongylocentrotus purpuratus) embryos. We found that inhibition of MRP/ABCC-type transporters increases intracellular accumulation of inorganic mercury but had no effect on accumulation of organic mercury. Similarly, pharmacological inhibition of metal conjugating enzymes by ligands GST/GSH significantly increases this antimitotic potency of inorganic mercury, but had no effect on the potency of organic mercury. Our results point to MRP-mediated elimination of inorganic mercury conjugates as a cellular basis for differences in the accumulation and potency of the two major forms of mercury found in marine environments. PMID:19924972

  5. Public health consequences of mercury spills: Hazardous Substances Emergency Events Surveillance system, 1993-1998.

    PubMed Central

    Zeitz, Perri; Orr, Maureen F; Kaye, Wendy E

    2002-01-01

    We analyzed data from states that participated in the Hazardous Substances Emergency Events Surveillance (HSEES) system maintained by the Agency for Toxic Substances and Disease Registry to describe the public health consequences of mercury releases. From 1993 through 1998, HSEES captured 406 events in which mercury was the only substance released. Schools and universities, private residences, and health care facilities were the most frequent locations involved in mercury events, and human error was the contributing factor for most of the releases. Fourteen persons experienced adverse health effects as a result of the releases. An additional 31 persons had documented elevated levels of mercury in the blood. No fatalities resulted. Evacuations were ordered in 90 (22%) of the events, and the length of evacuation ranged from 1 hr to 46 days. Mercury spills have a significant public health impact and economic burden. Some actions that could potentially lessen the consequences of mercury spills are to switch to mercury-free alternatives, train people in the safe handling and disposal of mercury, and keep mercury securely stored when it is necessary to have it on hand. PMID:11836139

  6. Mercury in the nation's streams - Levels, trends, and implications

    USGS Publications Warehouse

    Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.

    2014-01-01

    Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution.Three key factors determine the level of mercury contamination in fish - the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas.In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present.Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations.This report summarizes selected stream studies conducted by the U.S. Geological Survey (USGS) since the late 1990s, while also drawing on scientific literature and datasets from other sources. Previous national mercury assessments by other agencies have focused largely on lakes. Although numerous studies of mercury in streams have been conducted at local and regional scales, recent USGS studies provide the most comprehensive, multimedia assessment of streams across the United States, and yield insights about the importance of watershed characteristics relative to mercury inputs. Information from other environments (lakes, wetlands, soil, atmosphere, glacial ice) also is summarized to help understand how mercury varies in space and time.

  7. Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: Potential protection on mercury toxicity by selenium

    PubMed Central

    Burger, Joanna; Gochfeld, Michael; Jeitner, Christian; Donio, Mark; Pittfield, Taryn

    2014-01-01

    A number of factors affect the consumption risk from mercury in fish, including mercury levels, seasonal patterns of mercury concentrations, human consumption patterns, and sensitive populations (e.g. pregnant women, fetuses, young children, and yet unknown genetic factors). Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for saltwater fish. We examine levels of mercury and selenium in several species of fish and seabirds from the Aleutians (Alaska), determine selenium:mercury molar ratios, and examine species-specific and individual variation in the ratios as a means of exploring the use of the ratio in risk assessment and risk management. Variation among species was similar for mercury and selenium. There was significant inter-specific and intraspecific variation in selenium:mercury molar ratios for fish, and for birds. The mean selenium:mercury molar ratios for all fish and bird species were above 1, meaning there was an excess of selenium relative to mercury. It has been suggested that an excess of selenium confers some protective advantage for salt water fish, although the degree of excess necessary is unclear. The selenium:mercury molar ratio was significantly correlated negatively with total length for most fish species, but not for dolly varden. Some individuals of Pacific cod, yellow irish lord, rock greenling, Pacific halibut, dolly varden, and to a lesser extent, flathead sole, had selenium:mercury ratios below 1. No bird muscle had an excess of mercury (ratio below 1), and only glaucous-winged gull and pigeon guillemot had ratios between 1 and 5. There was a great deal of variation in selenium:mercury molar ratios within fish species, and within bird species, making it difficult and impractical to use these ratios in risk assessment or management, for fish advisories, or for consumers, particularly given the difficulty of interpreting the ratios. PMID:22664537

  8. Characterization and recovery of mercury from spent fluorescent lamps.

    PubMed

    Jang, Min; Hong, Seung Mo; Park, Jae K

    2005-01-01

    Fluorescent lamps rely on mercury as the source of ultraviolet radiation for the production of visible light. Partitioning of mercury among vapor phase, loose phosphor powders produced during breaking and washing steps, glass matrices, phosphor powders attached on the glass and aluminum end caps was examined from simulated laboratory lamp recycling tests for different types of spent and new fluorescent lamps. Mercury concentrations in lamp glasses taken from commercial lamp recyclers were also analyzed for comparison with the simulated results of spent and new lamps of different types. The mercury content of the glass from spent lamps was highly variable depending on the lamp type and manufacturer; the median values of the mercury concentration in glasses for spent 26- (T8) and 38-mm (T12) diameter fluorescent lamps were approximately 30 and 45 microg/g, respectively. The average mercury concentration of samples taken from recycler A was 29.6 microg/g, which was about 64% of median value measured from the spent T12 lamps. Over 94% of total mercury in lamps remained either as a component of phosphor powders attached inside the lamp or in glass matrices. New T12 lamps had a higher partitioning percentage of elemental mercury in the vapor phase (0.17%) than spent T12 lamps (0.04%), while spent lamps had higher partitioning percentages of mercury resided on end-caps and phosphor powders detached from the breaking and washing steps. The TCLP values of simulated all lamp-glasses and samples obtained from recyclers were higher than the limit of LDR standard (0.025 mg/L). After investigating acid treatment and high temperature treatment as mercury reclamation techniques, it was found that heating provided the most effective mercury capture. Although the initial mercury concentrations of individual sample were different, the mercury concentrations after 1 h exposure at 100 degrees C were below 4 mug/g for all samples (i.e., <1% remaining). Therefore, it is recommended that heating be used for recovering mercury from spent fluorescent lamps.

  9. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  10. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase.

    PubMed

    Ruiz, Oscar N; Alvarez, Derry; Gonzalez-Ruiz, Gloriene; Torres, Cesar

    2011-08-12

    The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications.

  11. Characterization of mercury bioremediation by transgenic bacteria expressing metallothionein and polyphosphate kinase

    PubMed Central

    2011-01-01

    Background The use of transgenic bacteria has been proposed as a suitable alternative for mercury remediation. Ideally, mercury would be sequestered by metal-scavenging agents inside transgenic bacteria for subsequent retrieval. So far, this approach has produced limited protection and accumulation. We report here the development of a transgenic system that effectively expresses metallothionein (mt-1) and polyphosphate kinase (ppk) genes in bacteria in order to provide high mercury resistance and accumulation. Results In this study, bacterial transformation with transcriptional and translational enhanced vectors designed for the expression of metallothionein and polyphosphate kinase provided high transgene transcript levels independent of the gene being expressed. Expression of polyphosphate kinase and metallothionein in transgenic bacteria provided high resistance to mercury, up to 80 μM and 120 μM, respectively. Here we show for the first time that metallothionein can be efficiently expressed in bacteria without being fused to a carrier protein to enhance mercury bioremediation. Cold vapor atomic absorption spectrometry analyzes revealed that the mt-1 transgenic bacteria accumulated up to 100.2 ± 17.6 μM of mercury from media containing 120 μM Hg. The extent of mercury remediation was such that the contaminated media remediated by the mt-1 transgenic bacteria supported the growth of untransformed bacteria. Cell aggregation, precipitation and color changes were visually observed in mt-1 and ppk transgenic bacteria when these cells were grown in high mercury concentrations. Conclusion The transgenic bacterial system described in this study presents a viable technology for mercury bioremediation from liquid matrices because it provides high mercury resistance and accumulation while inhibiting elemental mercury volatilization. This is the first report that shows that metallothionein expression provides mercury resistance and accumulation in recombinant bacteria. The high accumulation of mercury in the transgenic cells could present the possibility of retrieving the accumulated mercury for further industrial applications. PMID:21838857

  12. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  13. Effects of methyl mercury exposure on pancreatic beta cell development and function.

    PubMed

    Schumacher, Lauren; Abbott, Louise C

    2017-01-01

    Methyl mercury is an environmental contaminant of worldwide concern. Since the discovery of methyl mercury exposure due to eating contaminated fish as the underlying cause of the Minamata disaster, the scientific community has known about the sensitivity of the developing central nervous system to mercury toxicity. Warnings are given to pregnant women and young children to limit consumption of foods containing methyl mercury to protect the embryonic, fetal and postnatally developing central nervous system. However, evidence also suggests that exposure to methyl mercury or various forms of inorganic mercury may also affect development and function of other organs. Numerous reports indicate a worldwide increase in diabetes, particularly type 2 diabetes. Quite recently, methyl mercury has been shown to have adverse effects on pancreatic beta (β) cell development and function, resulting in insulin resistance and hyperglycemia and may even lead to the development of diabetes. This review discusses possible mechanisms by which methyl mercury exposure may adversely affect pancreatic β cell development and function, and the role that methyl mercury exposure may have in the reported worldwide increase in diabetes, particularly type 2 diabetes. While additional information is needed regarding associations between mercury exposure and specific mechanisms of the pathogenesis of diabetes in the human population, methyl mercury's adverse effects on the body's natural sources of antioxidants suggest that one possible therapeutic strategy could involve supplementation with antioxidants. Thus, it is important that additional investigation be undertaken into the role of methyl mercury exposure and reduced pancreatic β cell function. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Mercury contamination of aquatic ecosystems

    USGS Publications Warehouse

    Krabbenhoft, David P.; Rickert, David A.

    1995-01-01

    Mercury has been well known as an environmental pollutant for several decades. As early as the 1950's it was established that emissions of mercury to the environment could have serious effects on human health. These early studies demonstrated that fish and other wildlife from various ecosystems commonly attain mercury levels of toxicological concern when directly affected by mercury-containing emissions from human-related activities. Human health concerns arise when fish and wildlife from these ecosystems are consumed by humans. During the past decade, a new trend has emerged with regard to mercury pollution. Investigations initiated in the late 1980's in the northern-tier states of the U.S., Canada, and Nordic countries found that fish, mainly from nutrient-poor lakes and often in very remote areas, commonly have high levels of mercury. More recent fish sampling surveys in other regions of the U.S. have shown widespread mercury contamination in streams, wet-lands, reservoirs, and lakes. To date, 33 states have issued fish consumption advisories because of mercury contamination. These continental to global scale occurrences of mercury contamination cannot be linked to individual emissions of mercury, but instead are due to widespread air pollution. When scientists measure mercury levels in air and surface water, however, the observed levels are extraordinarily low. In fact, scientists have to take extreme precautions to avoid direct contact with water samples or sample containers, to avert sample contamination (Fig 3). Herein lies an apparent discrepancy: Why do fish from some remote areas have elevated mercury concentrations, when contamination levels in the environment are so low?

  15. Mercury Contamination from Historic Gold Mining in California

    USGS Publications Warehouse

    Alpers, Charles N.; Hunerlach, Michael P.

    2000-01-01

    Mercury contamination from historic gold mines represents a potential risk to human health and the environment. This fact sheet provides background information on the use of mercury in historic gold mining and processing operations in California, and describes a new USGS project that addresses the potential risks associated with mercury from these sources, with emphasis on historic hydraulic mining areas. Miners used mercury (quicksilver) to recover gold throughout the western United States at both placer (alluvial) and hardrock (lode) mines. The vast majority of mercury lost to the environment in California was from placer-goldmines, which used hydraulic, drift, and dredging methods. At hydraulic mines, placer ores were broken down with monitors (or water cannons, fig. 1) and the resulting slurry was directed throughsluices and drainage tunnels, where goldparticles combined with liquid mercury to form gold?mercury amalgam. Loss ofmercury in this process was 10 to 30 percent per season (Bowie, 1905), resulting in highly contaminated sediments at mine sites (fig. 2). Elevated mercury concentrations in present-day mine waters and sediments indicate thathundreds to thousands of pounds of mercury remain at each of the many sites affected by hydraulic mining. High mercury levels in fish, amphibians, and invertebrates downstream of the hydraulic mines are a consequence of historic mercury use. On the basis of USGS studies and other recent work, a better understanding is emerging of mercury distribution, ongoing transport, transformation processes, and the extent of biological uptake in areas affected by historic gold mining. This information will be useful to agencies responsible for prudent land and resource management and for protecting public health.

  16. Seasonal distribution of bird populations at the Patuxent Research Refuge

    USGS Publications Warehouse

    Hoffman, D.J.; Henny, C.J.; Hill, E.F.; Keith, J.A.; Grove, R.A.

    2000-01-01

    High concentrations of mercury from past mining activities have accumulated in the food chain of fish-eating birds nesting along the mid to lower Carson River. Activities of nine plasma and tissue enzymes, and concentrations of other plasma and tissue constituents were measured for black-crowned night-heron, Nycticorax nycticorax, (BCNH) and snowy egret, Egretta thula, (SE) nestlings from two high mercury sites and one low mercury site. Geometric mean blood Hg concentrations for BCNHs at the high mercury sites were 2.6 and 2.8 ppm (ww) and 0.6 ppm at the low mercury site. Blood concentrations for SEs were 3.6 and 1.9 ppm at the high mercury sites and 0.7 ppm at the low mercury site. In BCNHs plasma glutathione peroxidase (GSH peroxidase) activity was lower in both high mercury sites relative to the low mercury site. Butyryl cholinesterase (BuChe), ALT, glutathione reductase (GSSG-reductase) and LDH-L activities were lower in one high mercury site. In SEs significant differences were lower BuChe and LDH-L, but elevated GGT activities. Evidence of renal stress in both species at high mercury sites included increased plasma uric acid, blood urea nitrogen, and creatinine concentrations as well as oxidative stress in the kidney tissue itself where oxidized glutathione increased. A number of the mercury site-related effects, including decreased plasma GSH-peroxidase and hepatic G-6-PDH activities, higher GSSG-reductase activity, and lower hepatic concentrations of reduced thiols have been reported in methylmercury feeding studies with great egrets and mallards. These findings suggest the utility of herons and egrets for monitoring mercury sites.

  17. Reproduction in mallards exposed to dietary concentrations of methylmercury

    USGS Publications Warehouse

    Heinz, Gary H.; Hoffman, David J.; Klimstra, Jon D.; Stebbins, Katherine R.

    2010-01-01

    The purpose of this experiment was to use mallards (Anas platyrhynchos) tested under controlled conditions to determine how much harm to reproduction resulted from various concentrations of mercury in eggs. Breeding pairs of mallards were fed a control diet or diets containing 1, 2, 4, or 8 μg/g mercury, as methylmercury chloride. Mean concentrations of mercury in eggs laid by parents fed 0, 1, 2, 4, or 8 μg/g mercury were 0.0, 1.6, 3.7, 5.9, and 14 μg/g mercury on a wet-weight basis. There were no signs of mercury poisoning in the adults, and fertility and hatching success of eggs were not affected by mercury. Survival of ducklings and the number of ducklings produced per female were reduced by the 4 and 8-μg/g dietary mercury treatments (that resulted in 5.9 and 14 μg/g mercury in their eggs, respectively). Ducklings from parents fed the various mercury diets were just as heavy as controls at hatching, but by 6 days of age ducklings whose parents had been fed 4 or 8 μg/g mercury weighed less than controls. Because we do not know if absorption of mercury from our diets would be the same as absorption from natural foods, the mercury concentrations we report in eggs may be more useful in extrapolating to possible harmful effects in nature than are the dietary levels we fed. We conclude that mallard reproduction does not appear to be particularly sensitive to methylmercury.

  18. An evaluation of a reagentless method for the determination of total mercury in aquatic life

    USGS Publications Warehouse

    Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.

    2006-01-01

    Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.

  19. Thirty-five year review of a mercury monitoring service for Scottish dental practices.

    PubMed

    Duncan, A; O'Reilly, D Stj; McDonald, E B; Watkins, T R; Taylor, M

    2011-02-12

    To review a long-standing mercury monitoring service offered to staff in dental practices in Scotland. During the first 20 years of the service, dentists and their staff were contacted by letter and invited to participate. Respondents were asked to collect samples of head hair, pubic hair, fingernail and toenail for analysis of mercury. After 1995, head hair samples were collected initially and further samples were only measured if head hair mercury was elevated. At the start of this scheme many staff, including administrative staff, had systemic exposure to mercury (defined as increased mercury in all four samples). Incidents of exposure have decreased over the 35 years and are now very rare. Male staff were found to have higher mercury concentrations than female staff and dentists tended to have higher concentrations than other staff. Staff working in dental practices more than five years old had small but discernable increases in head hair mercury concentration. In recent years the use of reusable capsules such as Dentomats has been associated with a slight but statistically significant increase in head hair mercury concentrations when compared to the use of encapsulated amalgam systems. Staff wearing open-toed footwear had significantly higher toenail mercury concentrations compared to those who wore shoes. Exposure of staff to mercury in Scottish dental practices is currently now very low. This is probably as a result of increased awareness to the toxicity of mercury and improved methods of preparing amalgam. It may be possible to reduce exposure further, although probably only slightly, by upgrading practices and using encapsulated mercury amalgam.

  20. Mercury contamination in bank swallows and double-crested cormorants from the Carson River, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, R.; Brewer, R.; Peterson, S.C.

    1995-12-31

    An ecological risk assessment was performed in conjunction with a remedial investigation at the Carson River Mercury Site (CRMS) in northwestern Nevada. Large quantities of mercury used in the processing of gold and silver during mining operations in the mid to late 1800s are distributed throughout the Carson River ecosystem. Previous investigations indicated elevated levels of mercury in soil, sediment, water, and the aquatic food chain. Bird exposure to mercury was determined by measuring total mercury and monomethyl mercury in blood and feather samples from 15 unfledged double-crested cormorants (Phalacrocorax auritus), and in blood, feather, and liver samples from 18more » juvenile bank swallows (Riparia riparia) at both the CRMS and uncontaminated background locations. Monomethyl mercury accounted for 90 to 98% of the total mercury in the samples. Total mercury concentrations in bird tissues collected at the CRMS were significantly higher than at background locations. Average total mercury concentrations (wet weight) for the swallow blood, liver, and feather samples collected at the CRMS were 2.63, 3.96, and 2.01 mg/kg, respectively; compared with 0.74, 1,03, and 1.84 mg/kg, respectively at the background area. Average total mercury concentrations for cormorant samples collected at the CRMS were 17.07 mg/kg for blood, and 105.1 1 mg/kg for feathers. Cormorant samples collected at the background location had average total mercury concentrations of 0.49 mg/kg for blood and 8.99 mg/kg for feathers. Results are compared with published residue-effects levels to evaluate avian risks.« less

  1. Reduction of Mercury to the Elemental State by a Yeast

    PubMed Central

    Brunker, Richard L.; Bott, Thomas L.

    1974-01-01

    A yeast of the genus Cryptococcus has been isolated from a stream and was shown to be capable of reducing mercury to the elemental state. The organism grows in Wickerham broth supplemented with high concentrations of mercury (II) chloride (180 mg of mercury per liter) and will metabolize [14C]glucose in this medium as do cells in the absence of mercury. Mercury was associated with the cell wall and membrane, and in vacuoles within the cytoplasm. Images PMID:4364461

  2. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  3. Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury.

    PubMed

    Pamphlett, Roger; Kum Jew, Stephen

    2016-02-01

    Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16-48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64%) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.

  4. Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.

    PubMed

    Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J

    2007-05-15

    The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.

  5. Decadal Declines of Mercury in Adult Bluefish (1972-2011) from the Mid-Atlantic Coast of the U.S.A.

    PubMed

    Cross, Ford A; Evans, David W; Barber, Richard T

    2015-08-04

    Concentrations of total mercury were measured in muscle of adult bluefish (Pomatomus saltatrix) collected in 2011 off North Carolina and compared with similar measurements made in 1972. Concentrations of mercury decreased by 43% in the fish between the two time periods, with an average rate of decline of about 10% per decade. This reduction is similar to estimated reductions of mercury observed in atmospheric deposition, riverine input, seawater, freshwater lakes, and freshwater fish across northern North America. Eight other studies between 1973 and 2007 confirm the decrease in mercury levels in bluefish captured in the Mid-Atlantic Bight. These findings imply that (1) reductions in the release of mercury across northern North America were reflected rather quickly (decades) in the decline of mercury in adult bluefish; (2) marine predatory fish may have been contaminated by anthropogenic sources of mercury for over 100 years; and (3) if bluefish are surrogates for other predators in the Mid-Atlantic Bight, then a reduction in the intake of mercury by the fish-consuming public has occurred. Finally, with global emissions of mercury continuing to increase, especially from Asia, it is important that long-term monitoring programs be conducted for mercury in marine fish of economic importance.

  6. Foraging and fasting can influence contaminant concentrations in animals: an example with mercury contamination in a free-ranging marine mammal.

    PubMed

    Peterson, Sarah H; Ackerman, Joshua T; Crocker, Daniel E; Costa, Daniel P

    2018-02-14

    Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals ( Mirounga angustirostris ) before and after lengthy at sea foraging trips ( n = 89) or fasting periods on land ( n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events. © 2018 The Author(s).

  7. Foraging and fasting can influence contaminant concentrations in animals: an example with mercury contamination in a free-ranging marine mammal

    USGS Publications Warehouse

    Peterson, Sarah; Ackerman, Joshua T.; Crocker, Daniel E.; Costa, Daniel P.

    2018-01-01

    Large fluctuations in animal body mass in relation to life-history events can influence contaminant concentrations and toxicological risk. We quantified mercury concentrations in adult northern elephant seals (Mirounga angustirostris) before and after lengthy at sea foraging trips (n = 89) or fasting periods on land (n = 27), and showed that mercury concentrations in blood and muscle changed in response to these events. The highest blood mercury concentrations were observed after the breeding fast, whereas the highest muscle mercury concentrations were observed when seals returned to land to moult. Mean female blood mercury concentrations decreased by 30% across each of the two annual foraging trips, demonstrating a foraging-associated dilution of mercury concentrations as seals gained mass. Blood mercury concentrations increased by 103% and 24% across the breeding and moulting fasts, respectively, demonstrating a fasting-associated concentration of mercury as seals lost mass. In contrast to blood, mercury concentrations in female's muscle increased by 19% during the post-breeding foraging trip and did not change during the post-moulting foraging trip. While fasting, female muscle mercury concentrations increased 26% during breeding, but decreased 14% during moulting. Consequently, regardless of exposure, an animal's contaminant concentration can be markedly influenced by their annual life-history events.

  8. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish

    USGS Publications Warehouse

    Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.

    2015-01-01

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  9. Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils

    PubMed Central

    Worthington, Max J. H.; Kucera, Renata L.; Albuquerque, Inês S.; Gibson, Christopher T.; Sibley, Alexander; Slattery, Ashley D.; Campbell, Jonathan A.; Alboaiji, Salah F. K.; Muller, Katherine A.; Young, Jason; Adamson, Nick; Gascooke, Jason R.; Jampaiah, Deshetti; Sabri, Ylias M.; Bhargava, Suresh K.; Ippolito, Samuel J.; Lewis, David A.; Quinton, Jamie S.; Ellis, Amanda V.; Johs, Alexander; Bernardes, Gonçalo J. L.

    2017-01-01

    Abstract Mercury pollution threatens the environment and human health across the globe. This neurotoxic substance is encountered in artisanal gold mining, coal combustion, oil and gas refining, waste incineration, chloralkali plant operation, metallurgy, and areas of agriculture in which mercury‐rich fungicides are used. Thousands of tonnes of mercury are emitted annually through these activities. With the Minamata Convention on Mercury entering force this year, increasing regulation of mercury pollution is imminent. It is therefore critical to provide inexpensive and scalable mercury sorbents. The research herein addresses this need by introducing low‐cost mercury sorbents made solely from sulfur and unsaturated cooking oils. A porous version of the polymer was prepared by simply synthesising the polymer in the presence of a sodium chloride porogen. The resulting material is a rubber that captures liquid mercury metal, mercury vapour, inorganic mercury bound to organic matter, and highly toxic alkylmercury compounds. Mercury removal from air, water and soil was demonstrated. Because sulfur is a by‐product of petroleum refining and spent cooking oils from the food industry are suitable starting materials, these mercury‐capturing polymers can be synthesised entirely from waste and supplied on multi‐kilogram scales. This study is therefore an advance in waste valorisation and environmental chemistry. PMID:28763123

  10. Contribution of Shellfish Consumption to Lower Mercury Health Risk for Residents in Northern Jiaozhou Bay, China.

    PubMed

    Zhang, Lei; Zhang, Lei

    2015-01-01

    Fish and marine mammal consumption are an important pathway for human exposure to mercury. The low mercury content in shellfish poses a low mercury health risk to people who consume shellfish. The objectives of this study are to detect mercury concentrations in different species of shellfish and to calculate the mercury health risk from shellfish consumption among traditional residents near northern Jiaozhou Bay. A total of 356 shellfish samples, which comprised 7 species from 5 different places in northern Jiaozhou Bay, were collected from April to June in 2012. The average mercury content in the collected shellfish ranged from 0.024 mg·kg(-1) to 0.452 mg·kg(-1). A total of 44 shellfish samples (12.36%) had mercury levels exceeding the national pollution-free aquatic products limit (0.3 mg·kg(-1)). Generally, the viscus had the highest mercury content among all parts of the shellfish. A positive correlation between mercury content and total weight/edible part weight was found in most species of the collected shellfish. The results showed that shellfish consumption resulted in the lower risk of mercury exposure to residents based on the calculation of daily intake (DI) and target hazard quotient (THQ).

  11. Experimental dosing of wetlands with coagulants removes mercury from surface water and decreases mercury bioaccumulation in fish.

    PubMed

    Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M

    2015-05-19

    Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.

  12. Mercury burdens in Chinese mitten crabs (Eriocheir sinensis) in three tributaries of southern San Francisco Bay, California, USA

    USGS Publications Warehouse

    Hui, C.A.; Rudnick, D.; Williams, E.

    2005-01-01

    Chinese mitten crabs (Eriocheir sinensis), endemic to Asia, were first reported in the San Francisco Bay in 1992. They are now established in nearly all San Francisco Bay tributaries. These crabs accumulate more metals, such as mercury, than crustaceans living in the water column. Because their predators include fish, birds, mammals and humans, their mercury burdens have an exceptional potential to impact the ecosystem and public health. We sought to elucidate the potential threat of mitten crab mercury burdens in three adjacent streams in southern San Francisco Bay, one of which is known to be contaminated with mercury. Mitten crabs had hepatopancreas concentrations of total mercury and methylmercury that did not differ among streams. The maximum burden we measured was below the action level of 1 ppm recommended by the USEPA. Hepatopancreas concentrations of methylmercury declined with increasing crab size, suggesting a mechanism for mercury excretion and that predators might reduce mercury exposure if they select larger crabs. Because mercury may be heterogeneously distributed among tissues, estimation of the impacts of crab mercury burdens on the environment requires more data on the feeding preferences of predators. Hepatopancreas concentrations of mercury decline with crab size, which may have important consequences for bio-magnification in food webs. ?? 2004 Elsevier Ltd. All rights reserved.

  13. Investigation of a mercury speciation technique for flue gas desulfurization materials.

    PubMed

    Lee, Joo-Youp; Cho, Kyungmin; Cheng, Lei; Keener, Tim C; Jegadeesan, Gautham; Al-Abed, Souhail R

    2009-08-01

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method. Potential candidates of pure mercury standards including mercuric chloride (HgCl2), mercurous chloride (Hg2Cl2), mercury oxide (HgO), mercury sulfide (HgS), and mercuric sulfate (HgSO4) were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg2Cl2 and HgCl2 could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury.

  14. Investigation of a mercury speciation technique for flue gas desulfurization materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.Y.; Cho K.; Cheng L.

    2009-08-15

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidatesmore » of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.« less

  15. [Research on mercury methylation by Geobacter sulfurreducens and its influencing factors].

    PubMed

    Zou, Yan; Si, You-Bin; Yan, Xue; Chen, Yan

    2012-09-01

    Mercury methylation by Geobacter sulfurreducens and the effects of environmental factors were studied under laboratory conditions. The results showed that G. sulfurreducens could grow well in the presence of low concentrations of mercuric chloride, but its growth was inhibited to a certain extent, mainly expressed in the prolonged lag phase. G. sulfurreducens could transform inorganic mercury into methylmercury, and this process was affected by many environmental factors. The efficiency of mercury methylation reached 38% under anaerobic conditions with 1 mg x L(-1) HgCl2 and 0.9% salinity at 35 degrees C, pH 6.0. Increasing the initial HgCl2 concentration or salinity in an appropriate manner improved mercury methylation, but the concentration of methylmercury reduced when the concentrations of HgCl2 and salinity were too high. The efficiency of mercury methylation increased with the increasing temperature in range of 4-35 degrees C. Weakly acidic environment was more beneficial to mercury methylation than acidic, neutral or alkaline conditions. In addition, the efficiency of mercury methylation was also affected by humic acid and cysteine. Humic acid inhibited mercury methyaltion, whereas cysteine could improve the efficiency of mercury methylation. This study provided a direct evidence for mercury methylation mediated by iron-reducing bacteria in the natural aquatic ecosystem.

  16. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  17. Mercury poisoning

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... chap 98. Theobald JL, Mycyk MB. Iron and heavy metals. In: Walls RM, Hockberger RS, Gausche-Hill M, ...

  18. Maternal transfer of mercury to songbird eggs.

    PubMed

    Ackerman, Joshua T; Hartman, C Alex; Herzog, Mark P

    2017-11-01

    We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6-10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R 2  = 0.97) and tree swallows (R 2  = 0.97) and (2) during mid to late incubation for tree swallows (R 2  = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%-107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15-1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R 2  < 0.01). We provide equations to translate mercury concentrations from maternal blood to eggs (and vice versa), which should facilitate comparisons among studies and help integrate toxicity benchmarks into a common tissue. Published by Elsevier Ltd.

  19. Maternal transfer of mercury to songbird eggs

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark

    2017-01-01

    We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6–10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R2 = 0.97) and tree swallows (R2 = 0.97) and (2) during mid to late incubation for tree swallows (R2 = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%–107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15–1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R2 < 0.01). We provide equations to translate mercury concentrations from maternal blood to eggs (and vice versa), which should facilitate comparisons among studies and help integrate toxicity benchmarks into a common tissue.

  20. Glutathione enzyme and selenoprotein polymorphisms associate with mercury biomarker levels in Michigan dental professionals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda

    Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n = 515), and total mercury content wasmore » measured. Average urine (1.06 {+-} 1.24 ug/L) and hair mercury levels (0.49 {+-} 0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5 Prime ), or both (SEPP1 3 Prime UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). -- Highlights: Black-Right-Pointing-Pointer We explore the influence of 15 polymorphisms on urine and hair Hg levels. Black-Right-Pointing-Pointer Urine and hair Hg levels in dental professionals were similar to the US population. Black-Right-Pointing-Pointer GSTT1 and SEPP1 polymorphisms associated with urine Hg levels. Black-Right-Pointing-Pointer Accumulation of Hg in hair following exposure from fish was modified by genotype. Black-Right-Pointing-Pointer GSTP1, GSS, and SEPP1 polymorphisms influenced Hg accumulation in hair.« less

  1. Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: Size, season and geographical effects

    PubMed Central

    Burger, Joanna

    2014-01-01

    Relatively little attention has been devoted to the risks from mercury in saltwater fish, that were caught by recreational fisherfolk. Although the US Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on how mercury levels vary by size, season, or location. This paper examines total mercury levels in muscle of bluefish (Pomatomus saltatrix) collected from coastal New Jersey, mainly by recreational fishermen. Of primary interest was whether there were differences in mercury levels as a function of location, weight and length of the fish, and season, and in what risk mercury posed to the food chain, including people. Selenium was also measured because of its reported protective effects against mercury. Mercury levels averaged 0.35±0.02 (mean and standard error) ppm, and selenium levels averaged 0.37±0.01ppm (N = 206). In this study, 41% of the fish had mercury levels above 0.3 ppm, 20% had levels above 0.5 ppm, and 4% had levels above 1 ppm. Size was highly correlated with mercury levels, but not with selenium. While selenium levels did not vary at all with season, mercury levels decreased significantly. This relationship was not due to differences in the size of fish, since the fish collected in the summer were the smallest, but had intermediate mercury levels. Mercury levels declined from early June until November, particularly for the smaller-sized fish. While there were significant locational differences in mercury levels (but not selenium), these differences could be a result of size. The levels of mercury in bluefish are not sufficiently high to cause problems for the bluefish themselves, based on known adverse health effects levels, but are high enough to cause potential adverse health effects in sensitive birds and mammals that eat them, and to provide a potential health risk to humans who consume them. Fish larger than 50cm fork length averaged levels above 0.3 ppm, suggesting that eating them should be avoided by pregnant women, children, and others who are at risk. PMID:19643400

  2. Risk to consumers from mercury in bluefish (Pomatomus saltatrix) from New Jersey: Size, season and geographical effects.

    PubMed

    Burger, Joanna

    2009-10-01

    Relatively little attention has been devoted to the risks from mercury in saltwater fish, that were caught by recreational fisherfolk. Although the US Food and Drug Administration has issued advisories based on mercury for four saltwater species or groups of fish, there are few data on how mercury levels vary by size, season, or location. This paper examines total mercury levels in muscle of bluefish (Pomatomus saltatrix) collected from coastal New Jersey, mainly by recreational fishermen. Of primary interest was whether there were differences in mercury levels as a function of location, weight and length of the fish, and season, and in what risk mercury posed to the food chain, including people. Selenium was also measured because of its reported protective effects against mercury. Mercury levels averaged 0.35+/-0.02 (mean and standard error)ppm, and selenium levels averaged 0.37+/-0.01ppm (N=206). In this study, 41% of the fish had mercury levels above 0.3ppm, 20% had levels above 0.5ppm, and 4% had levels above 1ppm. Size was highly correlated with mercury levels, but not with selenium. While selenium levels did not vary at all with season, mercury levels decreased significantly. This relationship was not due to differences in the size of fish, since the fish collected in the summer were the smallest, but had intermediate mercury levels. Mercury levels declined from early June until November, particularly for the smaller-sized fish. While there were significant locational differences in mercury levels (but not selenium), these differences could be a result of size. The levels of mercury in bluefish are not sufficiently high to cause problems for the bluefish themselves, based on known adverse health effects levels, but are high enough to cause potential adverse health effects in sensitive birds and mammals that eat them, and to provide a potential health risk to humans who consume them. Fish larger than 50cm fork length averaged levels above 0.3ppm, suggesting that eating them should be avoided by pregnant women, children, and others who are at risk.

  3. [Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].

    PubMed

    Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng

    2015-12-01

    To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.

  4. Economic implications of mercury exposure in the context of the global mercury treaty: Hair mercury levels and estimated lost economic productivity in selected developing countries.

    PubMed

    Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin

    2016-12-01

    Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to prevent mercury exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Occurrence and transport of total mercury and methyl mercury in the Sacramento River Basin, California

    USGS Publications Warehouse

    Domagalski, Joseph L.

    1999-01-01

    Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a

  6. ECONOMIC AND ENVIRONMENTAL ANALYSIS OF TECHNOLOGIES TO TREAT MERCURY AND DISPOSE IN A WASTE CONTAINMENT FACILITY

    EPA Science Inventory

    The use of mercury in products and processes is decreasing. It is likely that in the future, the supply of mercury will far exceed the demand for mercury. In addition, the Department of Defense (DOD) has stockpiled more than 4,800 tons of mercury that are no longer needed, and th...

  7. Common Covert Chemical and Physical Hazards in School Science Laboratories. Part 2.

    ERIC Educational Resources Information Center

    Roy, Ken

    2000-01-01

    Explains that mercury is a dangerous substance to use in school science laboratories and gives several examples of mercury poisoning. Lists some precautions that should be taken in case of mercury spillage in the lab. Advocates using non-mercury laboratory equipment and limiting student access to mercury to prevent dangerous situations. (YDS)

  8. 40 CFR Table 4 to Subpart IIIii of... - Work Practice Standards-Requirements for Mercury Liquid Collection

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Mercury Liquid Collection 4 Table 4 to Subpart IIIII of Part 63 Protection of Environment... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 4 Table 4 to Subpart IIIII of Part 63—Work Practice Standards—Requirements for Mercury Liquid Collection As stated in...

  9. 40 CFR Table 4 to Subpart IIIii of... - Work Practice Standards-Requirements for Mercury Liquid Collection

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Mercury Liquid Collection 4 Table 4 to Subpart IIIII of Part 63 Protection of Environment... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 4 Table 4 to Subpart IIIII of Part 63—Work Practice Standards—Requirements for Mercury Liquid Collection As stated in...

  10. 40 CFR Table 4 to Subpart IIIii of... - Work Practice Standards-Requirements for Mercury Liquid Collection

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Mercury Liquid Collection 4 Table 4 to Subpart IIIII of Part 63 Protection of Environment... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 4 Table 4 to Subpart IIIII of Part 63—Work Practice Standards—Requirements for Mercury Liquid Collection As stated in...

  11. 76 FR 80331 - Foreign-Trade Subzone 41H Application for Expansion; Mercury Marine (Marine Propulsion Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Application for Expansion; Mercury Marine (Marine Propulsion Products), Fond du Lac and Oshkosh, WI An... of FTZ 41, on behalf of Mercury Marine, operator of Subzone 41H at Mercury Marine's marine propulsion... manufacturing of marine propulsion products at Mercury Marine's facilities located in Fond du Lac and Oshkosh...

  12. DIRECT MERCURY ANALYSIS IN ENVIRONMENTAL SOLIDS BY ICPMS WITH ON-LINE SAMPLE ASHING AND MERCURY PRE-CONCENTRATION USING THE DIRECT MERCURY ANALYZER

    EPA Science Inventory



    A Direct Mercury Analyzer based on sample combustion and mercury concentration by gold amalgamation, followed by atomic absorption determination, was interfaced with a quadrupole and a magnet sector ICPMS. In this paper, we discuss design and operating parameters and eval...

  13. 40 CFR 421.206 - Pretreatment standards for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mercury produced from batteries Lead 0.030 0.014 Mercury 0.016 0.006 (b) Acid wash and rinse water. PSNS... for monthly average mg/kg (pounds per million pounds) of mercury washed and rinsed Lead 0.00056 0.00026 Mercury 0.00030 0.00012 (c) Furnance wet air pollution control. PSNS for the Secondary Mercury...

  14. Apparatus and method for removing mercury vapor from a gas stream

    DOEpatents

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  15. Indicators: Sediment Mercury

    EPA Pesticide Factsheets

    Sediment mercury is mercury that has become embedded into the bottom substrates of aquatic ecosystems. Mercury is a common pollutant of aquatic ecosystems and it can have a substantial impact on both human and wildlife health.

  16. Spatial and Ontogenetic Variation in Mercury in Lake Superior Basin Sea Lamprey (Petromyzon marinus).

    PubMed

    Moses, Sara K; Polkinghorne, Christine N; Mattes, William P; Beesley, Kimberly M

    2018-01-01

    Mercury concentrations were measured in eggs, larvae, and adult spawning-phase sea lampreys (Petromyzon marinus) collected in tributaries of Lake Superior to investigate spatial and ontogenetic variation. There were significant differences in mercury concentrations between all three life stages, with levels highest in adults (mean = 3.01 µg/g), followed by eggs (mean = 0.942 µg/g), and lowest in larvae (mean = 0.455 µg/g). There were no significant differences in mercury concentrations by location for any life stage or by sex in adults. Mercury was not correlated with adult or larval lamprey length or mass. Mercury levels in adult lampreys exceeded U.S. and Canadian federal guidelines for human consumption. Mercury concentrations in all life stages exceeded criteria for the protection of piscivorous wildlife, posing a threat to local fish, birds, and mammals. High mercury levels in adult lampreys combined with their semelparous life history make them a potential source of lake-derived mercury to spawning streams.

  17. Mercury elimination rates for adult northern pike Esox lucius: evidence for a sex effect

    USGS Publications Warehouse

    Madenjian, Charles P.; Blanchfield, Paul J.; Hrenchuk, Lee E.; Van Walleghem, Jillian L. A.

    2014-01-01

    We examined the effect of sex on mercury elimination in fish by monitoring isotope-enriched mercury concentrations in the muscle tissue of three adult female and three adult male northern pike Esox lucius, which had accumulated the isotope-enriched mercury via a whole-lake manipulation and were subsequently moved to a clean lake. Mercury elimination rates for female and male northern pike were estimated to be 0.00034 and 0.00073 day−1, respectively. Thus, males were capable of eliminating mercury at more than double the rate than that of females. To the best of our knowledge, our study represents the first documentation of mercury elimination rates varying between the sexes of fish. This sex difference in elimination rates should be taken into account when comparing mercury accumulation between the sexes of fish from the same population. Further, our findings should eventually lead to an improved understanding of mechanisms responsible for mercury elimination in vertebrates.

  18. Impact of intense rains and flooding on mercury riverine input to the coastal zone.

    PubMed

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Saniewski, Michał; Gębka, Karolina; Szubska, Marta; Wochna, Agnieszka

    2018-02-01

    The aim of the present research was to determine the impact of intense rains and flooding on mercury riverine input to the coastal zone. This study focused on four small rivers (Reda, Zagórska Struga, Płutnica, Gizdepka), typical of the Southern Baltic region, with no significant mercury sources. Samples were collected for 16months during average flow conditions and during selected meteorological events: floods, downpours, thaws and droughts. Results showed decreased retention of mercury during intense rainfalls, thus demonstrating mercury elution from the catchment. Floods and melting snow also have a tremendous impact on the outflow of mercury from the catchment. Development of urban infrastructure and farmlands increases the outflow of mercury from the catchment too, making such areas a significant source of mercury in the river. On the other hand, areas with natural character, predominated by forests, stimulate retention of mercury that reaches them through dry and wet atmospheric deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Legacy source of mercury in an urban stream-wetland ecosystem in central North Carolina, USA.

    PubMed

    Deonarine, Amrika; Hsu-Kim, Heileen; Zhang, Tong; Cai, Yong; Richardson, Curtis J

    2015-11-01

    In the United States, aquatic mercury contamination originates from point and non-point sources to watersheds. Here, we studied the contribution of mercury in urban runoff derived from historically contaminated soils and the subsequent production of methylmercury in a stream-wetland complex (Durham, North Carolina), the receiving water of this runoff. Our results demonstrated that the mercury originated from the leachate of grass-covered athletic fields. A fraction of mercury in this soil existed as phenylmercury, suggesting that mercurial anti-fungal compounds were historically applied to this soil. Further downstream in the anaerobic sediments of the stream-wetland complex, a fraction (up to 9%) of mercury was converted to methylmercury, the bioaccumulative form of the metal. Importantly, the concentrations of total mercury and methylmercury were reduced to background levels within the stream-wetland complex. Overall, this work provides an example of a legacy source of mercury that should be considered in urban watershed models and watershed management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transformation of mercury speciation through the SCR system in power plants.

    PubMed

    Yang, Hong-min; Pan, Wei-ping

    2007-01-01

    Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.

  1. Species- and size-specific variability of mercury concentrations in four commercially important finfish and their prey from the northwest Atlantic.

    PubMed

    Staudinger, Michelle D

    2011-04-01

    Total mercury was analyzed as a function of body length, season, and diet in four commercially and recreationally important marine fish, bluefish (Pomatomus saltatrix), goosefish (Lophius americanus), silver hake (Merluccius bilinearis), and summer flounder (Paralichthys dentatus), collected from continental shelf waters of the northwest Atlantic Ocean. Mercury levels in the dorsal muscle tissue of 115 individuals ranged from 0.006 to 1.217 μg/g (wet weight) and varied significantly among species. The relationship between predator length and mercury concentration was linear for bluefish and summer flounder, while mercury levels increased with size at an exponential rate for silver hake and goosefish. Mercury burdens were the highest overall in bluefish, but increased with size at the greatest rate in silver hake. Seasonal differences were detected for bluefish and goosefish with mercury levels peaking during summer and spring, respectively. Prey mercury burdens and predator foraging habits are discussed as the primary factors influencing mercury accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  3. Enhancement of elemental mercury adsorption by silver supported material.

    PubMed

    Khunphonoi, Rattabal; Khamdahsag, Pummarin; Chiarakorn, Siriluk; Grisdanurak, Nurak; Paerungruang, Adjana; Predapitakkun, Somrudee

    2015-06-01

    Mercury, generally found in natural gas, is extremely hazardous. Although average mercury levels are relatively low, they are further reduced to comply with future mercury regulations, which are stringent in order to avoid releasing to the environment. Herein, vapor mercury adsorption was therefore investigated using two kinds of supports, granular activated carbon (GAC) and titanium dioxide (TiO2). Both supports were impregnated by silver (5 and 15 wt.%), before testing against a commercial adsorbent (sulfur-impregnated activated carbon, SAC). The adsorption isotherm, kinetics, and its thermodynamics of mercury adsorption were reported. The results revealed that Langmuir isotherm provided a better fit to the experimental data. Pseudo second-order was applicable to describe adsorption kinetics. The higher uniform Ag dispersion was a key factor for the higher mercury uptake. TiO2 supported silver adsorbent showed higher mercury adsorption than the commercial one by approximately 2 times. Chemisorption of mercury onto silver active sites was confirmed by an amalgam formation found in the spent adsorbents. Copyright © 2015. Published by Elsevier B.V.

  4. Carbon bed mercury emissions control for mixed waste treatment.

    PubMed

    Soelberg, Nick; Enneking, Joe

    2010-11-01

    Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.

  5. Mercury removal from aqueous solutions by zinc cementation.

    PubMed

    Ku, Young; Wu, Ming-Huan; Shen, Yung-Shen

    2002-01-01

    The main purpose of this research is to study the addition effect of the surfactant and other operating factors on the treatment of wastewater containing mercury ions in aqueous solution by cementation with sacrificing metal, zinc. The removal of mercury ions from aqueous solutions by cementation of zinc powder was found to be a function of solution pH and temperature, amount of zinc, concentration of mercury ion, contact time and the addition of several organic surfactants. Cementation of mercury was shown to be a feasible process to achieve a very high degree of mercury removal over a broad operational range within a fairly reasonable contact time. The reaction rate is approximately first order with respect to the concentration of mercury ion in aqueous solution. Among the surfactants used in this study, only the presence of SDS, an anionic surfactant, slightly enhanced the cementation rate of mercury. The presence of CTAB and Triton-X100 retarded the cementation of mercury by zinc.

  6. Mercury contamination study for flight system safety

    NASA Technical Reports Server (NTRS)

    Gorzynski, C. S., Jr.; Maycock, J. N.

    1972-01-01

    The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.

  7. Salt marsh macrophyte Phragmites australis strategies assessment for its dominance in mercury-contaminated coastal lagoon (Ria de Aveiro, Portugal).

    PubMed

    Anjum, Naser A; Ahmad, Iqbal; Válega, Mónica; Pacheco, Mário; Figueira, Etelvina; Duarte, Armando C; Pereira, Eduarda

    2011-08-01

    The dominance of a plant species in highly metal-contaminated areas reflects its tolerance or adaptability potential to these scenarios. Hence, plants with high adaptability and/or tolerance to exceptionally high metal-contaminated scenarios may help protect environmental degradation. The present study aimed to assess the strategies adopted by common reed, Phragmites australis for its dominance in highly mercury-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stand of Phragmites australis were collected in five replicates from mercury-free (reference) and contaminated sites during low tide between March 2006 and January 2007. The sediments’ physico-chemical traits, plant dry mass, uptake, partitioning, and transfer of mercury were evaluated during growing season (spring, summer, autumn, and winter) of P. australis. Redox potential and pH of the sediment around roots were measured in situ using a WTW-pH 330i meter. Dried sediments were incinerated for 4 h at 500°C for the estimation of organic matter whereas plant samples were oven-dried at 60°C till constant weight for plant dry mass determination. Mercury concentrations in sediments and plant parts were determined by atomic absorption spectrometry with thermal decomposition, using an advanced mercury analyzer (LECO 254) and maintaining the accuracy and precision of the analytical methodologies. In addition, mercury bioaccumulation and translocation factors were also determined to differentiate the accumulation of mercury and its subsequent translocation to plant parts in P. australis. P. australis root exhibited the highest mercury accumulation followed by rhizome and leaves during the reproductive phase (autumn). During the same phase, P. australis exhibited ≈5 times less mercury-translocation factor (0.03 in leaf) when compared with the highest mercury bioaccumulation factor for root (0.14). Moreover, seasonal variations differentially impacted the studied parameters. P. australis’ extraordinary ability to (a) pool the maximum mercury in its roots and rhizomes, (b) protect its leaf against mercury toxicity by adopting the mercury exclusion, and (c) adjust the rhizosphere-sediment environment during the seasonal changes significantly helps to withstand the highly mercury-contaminated Ria de Aveiro lagoon. The current study implies that P. australis has enough potential to be used for mercury stabilization and restoration of sediments/soils rich in mercury as well.

  8. Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.

    PubMed

    Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A

    2008-07-15

    At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of interannual variability for 2002-2004 using the optimal configuration. We estimated the uncertainty of the model results to the Hg/Br reaction rate coefficient to be approximately 6%. Springtime is clearly demonstrated as the most active period of mercury exchanges and net surface gain (approximately 46% of annual accumulation) in the Arctic.

  9. Mercury content in soils on the territory of Mezhdurechensk

    NASA Astrophysics Data System (ADS)

    Nicolaenko, A. N.; Osipova, N. A.; Yazikov, E. G.; Matveenko, I. A.

    2016-09-01

    The geochemical features of mercury content and distribution in the zone of coal producers have been studied (Mezhdurechensk town). Mercury content in soil (30 samples) was determined by atomic absorption method using mercury analyzer PA-915+ with pyrolytic device. Mercury content in soil samples changed from 0.12 to 0.17 mg/kg, the average value being 0.057 mg/kg. Within the town territory five zones with mercury elevated concentrations in soil were distinguished. 25-year observation period showed a 2.8 time decrease in average mercury content in soil. The major contribution to soil pollution in the urban territory was made by the two factors: local and regional. The mercury content in soil is affected by the emissions from boilers operating on coal as well as coal dust from the open pits near the town.

  10. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry.

    PubMed

    Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G

    2011-02-15

    Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A 3 Year-Old Male Child Ingested Approximately 750 Grams of Elemental Mercury.

    PubMed

    Uysalol, Metin; Parlakgül, Güneş; Yılmaz, Yasin; Çıtak, Agop; Uzel, Nedret

    2016-07-01

    The oral ingestion of elemental mercury is unlikely to cause systemic toxicity, as it is poorly absorbed through the gastrointestinal system. However, abnormal gastrointestinal function or anatomy may allow elemental mercury into the bloodstream and the peritoneal space. Systemic effects of massive oral intake of mercury have rarely been reported. In this paper, we are presenting the highest single oral intake of elemental mercury by a child aged 3 years. A Libyan boy aged 3 years ingested approximately 750 grams of elemental mercury and was still asymptomatic. The patient had no existing disease or abnormal gastrointestinal function or anatomy. The physical examination was normal. His serum mercury level was 91 µg/L (normal: <5 µg/L), and he showed no clinical manifestations. Exposure to mercury in children through different circumstances remains a likely occurrence.

  12. Sorption of mercury in soils with different humus content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lodenius, M.; Seppaenen, A.; Autio S.

    The strong sorption of mercury to humic matter in soil and water has raised the question about the influence of organic matter of different soil types on the mobilization of mercury from soil. Mercury is normally bound to humic and fulvic acids, which may be released in connection with flooding, draining and ditching. High mercury contents in fish from man-made lakes have been reported mainly from temperated regions. This has been assumed to be a result of the slower metabolism of methyl mercury in cool water but the effect of temperature on the mobilization process is still poorly known. Themore » sorption and leaching of mercury in three different soils was studied in vitro using a mercury concentrations near the natural level. Soil lysimeters were watered with distilled water or artificial acid rain at two temperatures.« less

  13. A global ocean inventory of anthropogenic mercury based on water column measurements.

    PubMed

    Lamborg, Carl H; Hammerschmidt, Chad R; Bowman, Katlin L; Swarr, Gretchen J; Munson, Kathleen M; Ohnemus, Daniel C; Lam, Phoebe J; Heimbürger, Lars-Eric; Rijkenberg, Micha J A; Saito, Mak A

    2014-08-07

    Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.

  14. Risk factors for mercury exposure of children in a rural mining town in northern Chile.

    PubMed

    Ohlander, Johan; Huber, Stella Maria; Schomaker, Michael; Heumann, Christian; Schierl, Rudolf; Michalke, Bernhard; Jenni, Oskar G; Caflisch, Jon; Muñoz, Daniel Moraga; von Ehrenstein, Ondine S; Radon, Katja

    2013-01-01

    Traditional gold mining is associated with mercury exposure. Especially vulnerable to its neurotoxic effects is the developing nervous system of a child. We aimed to investigate risk factors of mercury exposure among children in a rural mining town in Chile. Using a validated questionnaire distributed to the parents of the children, a priori mercury risk factors, potential exposure pathways and demographics of the children were obtained. Mercury levels were measured through analyzing fingernail samples. Logistic regression modeling the effect of risk factors on mercury levels above the 75(th) percentile were made, adjusted for potential confounders. The 288 children had a mean age of 9.6 years (SD = 1.9). The mean mercury level in the study population was 0.13 µg/g (SD 0.11, median 0.10, range 0.001-0.86 µg/g). The strongest risk factor for children's odds of high mercury levels (>75(th) percentile, 0.165 µg/g) was to play inside a house where a family member worked with mercury (OR adjusted 3.49 95% CI 1.23-9.89). Additionally, children whose parents worked in industrial gold mining had higher odds of high mercury levels than children whose parents worked in industrial copper mining or outside mining activities. Mercury exposure through small-scale gold mining might affect children in their home environments. These results may further help to convince the local population of banning mercury burning inside the households.

  15. Distribution of mercury in the environment at Almaden, Spain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrand, S.G.; Huckabee, J.W.; Diaz, F.S.

    1980-10-01

    An ecological survey of the concentration and distribution of mercury in terrestrial and aquatic systems near the mercury mine at Almaden, Spain, was initiated in 1974. Field studies were completed in 1977, and chemical analyses were completed in 1979. Sample collection at Almaden followed a trophic-level approach in which certain compartments were sampled at a given instant in time (fall 1974, fall 1975, spring 1976, fall 1976, spring 1977). Mean total mercury concentration in terrestrial plants (8 taxa combined) ranged from >100 ..mu..g/g within 0.5 km of the mine to 1 ..mu..g/g 20 km distant from the mine. Different plantmore » species had different affinities for mercury, but moss species usually had higher total mercury concentration than vascular plants. Woody plants were lower in mercury concentration than forbs. Total mercury concentration in muscle, brain, kidney, and liver tissue from mice was highest at a station near the stream receiving liquid effluent from the mine (mean total mercury at this station ranging from 0.18 ..mu..g/g in muscle to 4.74 ..mu..g/g in kidney). Approximately 15 to 30% of total mercury in mouse tissue was in the methylated form. Total mercury concentration in muscle tissue from house sparrows varied inversely with distance from the mine, with highest concentrations exceeding 0.1 ..mu..g/g. Approximately 1 to 4% of total mercury in sparrow muscle was in the methylated form.« less

  16. Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan.

    PubMed

    Fang, Guor-Cheng; Lo, Chaur-Tsuen; Cho, Meng-Hsien; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Chao-Yang; Xiao, You-Fu

    2017-08-01

    The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000-2012.

  17. Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.

    PubMed

    Clack, Herek L

    2017-08-01

    Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.

  18. Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells

    NASA Astrophysics Data System (ADS)

    Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi

    2010-06-01

    Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.

  19. Analysis of Halogen-Mercury Reactions in Flue Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paula Buitrago; Geoffrey Silcox; Constance Senior

    2010-01-01

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.« less

  20. Proceedings of the U.S. Geological Survey 2004 Mercury Workshop - Mercury research and its relation to Department of the Interior resource management

    USGS Publications Warehouse

    Colman, John A.

    2007-01-01

    IntroductionAs part of the Department of the Interior (DOI) program Science on the DOI Landscape Initiative, the U.S. Geological Survey (USGS), Eastern Region, held a workshop during August 17–18, 2004, in Reston, VA, on mercury in the environment as it relates to DOI resource management. DOI bureaus manage millions of acres of land and offshore resources subject to mercury deposition and to the effects of mercury on ecosystems and human health. The goals of the workshop were to (1) summarize information on mercury sources and cycling on DOI lands in the eastern United States, (2) learn the perspectives of the DOI bureaus regarding mercury on DOI lands, (3) provide information to DOI land managers about monitoring mercury and minimizing mercury accumulation in wildlife and humans, and (4) consider future directions for mercury monitoring and research on DOI lands. The workshop focused on mercury research as it relates to DOI resource-management issues primarily in the eastern part of the United States (east of the Mississippi River). Topics included the influence of ecosystem setting on mercury biogeochemical transformation, land- and air-management practices as they affect mercury in the environment, mercury source issues, and effects of mercury on humans and wildlife. Mercury research topics were addressed by 24 invited oral presentations and 30 contributed posters. The perspectives of the DOI bureaus and land managers were addressed through a panel of scientists from the DOI resource-management bureaus and a Chippewa Indian Tribe of Minnesota. Discussion at the conclusion of the workshop was directed toward goals and long-term strategies for mercury research that will benefit DOI resource management. The panel, presentations, and discussions were videotaped and are available at the following URL, along with the slides presented: http://www.usgs.gov/mercury/2004workshop/ Abstracts from the presentations and posters are included in this report, together with summaries of each presentation session. The abstracts in this volume that were written by U.S. Geological Survey authors were reviewed and approved for publication by the Survey. Abstracts submitted by researchers from academia and from state and other federal agencies are published as part of these proceedings, but do not necessarily reflect the Survey’s policies and views. The use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  1. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p < 0.001) microbial activities in the soils. The critical mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  2. Simultaneous determination of mercury and organic carbon using a direct mercury analyzer: Mercury profiles in sediment cores from oxbow lakes in the Mississippi Delta

    USDA-ARS?s Scientific Manuscript database

    Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...

  3. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  4. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  5. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  6. 40 CFR Table 3 to Subpart IIIii of... - Work Practice Standards-Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks 3 Table 3 to... Standards—Required Actions for Liquid Mercury Spills and Accumulations and Hydrogen and Mercury Vapor Leaks... cell back into service until the leaking equipment is repaired. 3. A decomposer or hydrogen system...

  7. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.

    PubMed

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-18

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.

  8. Increased mercury emissions from modern dental amalgams.

    PubMed

    Bengtsson, Ulf G; Hylander, Lars D

    2017-04-01

    All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor than the low copper amalgams used before the 1970s. High copper amalgams has been developed with focus on mechanical strength and corrosion resistance, but has been sub-optimized in other aspects, resulting in increased instability and higher emission of mercury vapor. This has not been presented to policy makers and scientists. Both low and high copper amalgams undergo a transformation process for several years after placement, resulting in a substantial reduction in mercury content, but there exist no limit for maximum allowed emission of mercury from dental amalgams. These modern high copper amalgams are nowadays totally dominating the European, US and other markets, resulting in significant emissions of mercury, not considered when judging their suitability for dental restoration.

  9. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-01-01

    A mercury resistant bacterial strain SE2 was isolated from contaminated soil. The 16s rRNA gene sequencing confirms the strain as Sphingopyxis belongs to the Sphingomonadaceae family of the α-Proteobacteria group. The isolate showed high resistance to mercury with estimated concentrations of Hg that caused 50% reduction in growth (EC 50 ) of 5.97 and 6.22mg/L and minimum inhibitory concentrations (MICs) of 32.19 and 34.95mg/L in minimal and rich media, respectively. The qualitative detection of volatilized mercury and the presence of mercuric reductase enzyme proved that the strain SE2 can potentially remediate mercury. ICP-QQQ-MS analysis of the remaining mercury in experimental broths indicated that a maximum of 44% mercury was volatilized within 6hr by live SE2 culture. Furthermore a small quantity (23%) of mercury was accumulated in live cell pellets. While no volatilization was caused by dead cells, sorption of mercury was confirmed. The mercuric reductase gene merA was amplified and sequenced. Homology was observed among the amino acid sequences of mercuric reductase enzyme of different organisms from α-Proteobacteria and ascomycota groups. Copyright © 2016. Published by Elsevier B.V.

  10. Adsorptive behaviour of mercury on algal biomass: competition with divalent cations and organic compounds.

    PubMed

    Carro, Leticia; Barriada, José L; Herrero, Roberto; Sastre de Vicente, Manuel E

    2011-08-15

    Biosorption processes constitute an effective technique for mercury elimination. Sorption properties of native and acid-treated Sargassum muticum have been studied. Effect of pH, initial mercury concentration and contact time studies provided fundamental information about the sorption process. This information was used as the reference values to analyse mercury sorption under competition conditions. Saline effect has shown little influence in sorption, when only electrostatic modifications took place upon salt addition. On the contrary, if mercury speciation dramatically changed owing to the addition of an electrolyte, such as in the case of chloride salt, very large modifications in mercury sorption were observed. Competition with other divalent cations or organic compounds has shown little or none effect on mercury, indicating that a different mechanism is taking place during the removal of these pollutants. Finally, continuous flow experiments have clearly shown that a reduction process is also taking place during mercury removal. This fact is not obvious to elucidate under batch sorption experiments. Scanning Electron Microscopy analysis of the surface of the materials show deposits of mercury(I) and metallic mercury which is indicative of the reduction process proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Determination of mercury distribution inside spent compact fluorescent lamps by atomic absorption spectrometry.

    PubMed

    Rey-Raap, Natalia; Gallardo, Antonio

    2012-05-01

    In this study, spent compact fluorescent lamps were characterized to determine the distribution of mercury. The procedure used in this research allowed mercury to be extracted in the vapor phase, from the phosphor powder, and the glass matrix. Mercury concentration in the three phases was determined by the method known as cold vapor atomic absorption spectrometry. Median values obtained in the study showed that a compact fluorescent lamp contained 24.52±0.4ppb of mercury in the vapor phase, 204.16±8.9ppb of mercury in the phosphor powder, and 18.74±0.5ppb of mercury in the glass matrix. There are differences in mercury concentration between the lamps since the year of manufacture or the hours of operation affect both mercury content and its distribution. The 85.76% of the mercury introduced into a compact fluorescent lamp becomes a component of the phosphor powder, while more than 13.66% is diffused through the glass matrix. By washing and eliminating all phosphor powder attached to the glass surface it is possible to classified the glass as a non-hazardous waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  13. Assessing mercury health effects in gold workers near El Callao, Venezuela.

    PubMed

    Rojas, M; Drake, P L; Roberts, S M

    2001-02-01

    Mercury exposure and health status were examined in 40 gold workers in the area surrounding El Callao, Venezuela. Concentrations of mercury in workplace air were measured on 3 successive days, and spot urine and hair samples were also taken for analysis. Subjects underwent a physical examination and completed a questionnaire regarding employment history, work activities involving mercury exposure, use of protective clothing and equipment, and frequency of 37 symptoms associated with mercury toxicity. A complete set of health data was collected for 29 of the subjects. Use of protective equipment was limited, and 17.9%, 24.1%, and 48.3% of subjects had mercury concentrations in air, hair, and urine, respectively, above contemporary occupational exposure guidelines. Physical examination found the workers to be generally healthy and without overt symptoms of mercury toxicity. The frequency of psychoneurological, gastrointestinal, cardio-respiratory, and dermal symptoms was unrelated to any of the measures of mercury exposure. Two subjects had modestly elevated urinary levels of N-acetyl beta-D-glucosaminidase. Despite substantial occupational exposure to mercury among a number of the subjects, few adverse health effects were observed that were plausibly related to mercury.

  14. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment.

    PubMed

    Nerentorp Mastromonaco, Michelle G; Gårdfeldt, Katarina; Langer, Sarka; Dommergue, Aurélien

    2016-12-06

    Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L -1 ) to spring (4.7 ng L -1 ) while the average elemental mercury concentration increased from winter (0.07 ng L -1 ) to summer (0.105 ng L -1 ). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.

  15. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    USGS Publications Warehouse

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation.

  16. Distribution and fractionation of mercury in the soils of a unique tropical agricultural wetland ecosystem, southwest coast of India.

    PubMed

    Navya, C; Gopikrishna, V G; Arunbabu, V; Mohan, Mahesh

    2015-12-01

    Mercury biogeochemistry is highly complex in the aquatic ecosystems and it is very difficult to predict. The speciation of mercury is the primary factor controlling its behavior, movement, and fate in these systems. The fluctuating water levels in wetlands could play a major role in the mercury transformations and transport. Hence, the agricultural wetlands may have a significant influence on the global mercury cycling. Kuttanad agricultural wetland ecosystem is a unique one as it is lying below the sea level and most of the time it is inundated with water. To understand the mobility and bioavailability of Hg in the soils of this agricultural wetland ecosystem, the present study analyzed the total mercury content as well as the different fractions of mercury. Mercury was detected using cold vapor atomic fluorescence spectrophotometer. The total mercury content varied from 0.002 to 0.683 mg/kg, and most of the samples are having concentrations below the background value. The percentage of mercury found in the initial three fractions F1, F2, and F3 are more available and it may enhance the methylation potential of the Kuttanad agroecosystem.

  17. Constraining Modern and Historic Mercury Emissions From Gold Mining

    NASA Astrophysics Data System (ADS)

    Strode, S. A.; Jaeglé, L.; Selin, N. E.; Sunderland, E.

    2007-12-01

    Mercury emissions from both historic gold and silver mining and modern small-scale gold mining are highly uncertain. Historic mercury emissions can affect the modern atmosphere through reemission from land and ocean, and quantifying mercury emissions from historic gold and silver mining can help constrain modern mining sources. While estimates of mercury emissions during historic gold rushes exceed modern anthropogenic mercury emissions in North America, sediment records in many regions do not show a strong gold rush signal. We use the GEOS-Chem chemical transport model to determine the spatial footprint of mercury emissions from mining and compare model runs from gold rush periods to sediment and ice core records of historic mercury deposition. Based on records of gold and silver production, we include mercury emissions from North and South American mining of 1900 Mg/year in 1880, compared to modern global anthropogenic emissions of 3400 Mg/year. Including this large mining source in GEOS-Chem leads to an overestimate of the modeled 1880 to preindustrial enhancement ratio compared to the sediment core record. We conduct sensitivity studies to constrain the level of mercury emissions from modern and historic mining that is consistent with the deposition records for different regions.

  18. Mercury transport and human exposure from global marine fisheries.

    PubMed

    Lavoie, Raphael A; Bouffard, Ariane; Maranger, Roxane; Amyot, Marc

    2018-04-30

    Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.

  19. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    PubMed

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  20. Dynamics of mercury in blood and feathers of great skuas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearhop, S.; Ruxton, G.D.; Furness, R.W.

    2000-06-01

    Mercury dynamics in the blood and feathers of captive great skuas, Catharacta skua, were monitored over 56 weeks. Prior to the onset of molt, mercury intake was solely from their maintenance ration of sprats, Sprattus sprattus. For the first half of molt, in addition to mercury intake from sprats, birds were fed different doses of methylmercuric chloride weekly for 20 weeks. During the second half of molt, dosing was stopped and mercury intake was solely from sprats. Blood was sampled throughout the study and feather growth was monitored. Prior to the onset of molt, mercury concentrations increased over the firstmore » 51 to 71 d and appeared to level off after this period. Repeated dosing models based on mammalian pharmacokinetics were, in general, too simplistic to be applicable to the birds in the study. During molt, the elimination of mercury from the blood is probably best described by a three-compartment model. Mercury concentrations in feathers were significantly correlated with those in blood at the time of their growth, suggesting that blood and feathers reflect mercury intake over the same time period. Individuals varied in their ability to excrete ingested mercury into the feathers.« less

  1. Mercury in tunas and blue marlin in the North Pacific Ocean.

    PubMed

    Drevnick, Paul E; Brooks, Barbara A

    2017-05-01

    Models and data from the North Pacific Ocean indicate that mercury concentrations in water and biota are increasing in response to (global or hemispheric) anthropogenic mercury releases. In the present study, we provide an updated record of mercury in yellowfin tuna (Thunnus albacares) caught near Hawaii that confirms an earlier conclusion that mercury concentrations in these fish are increasing at a rate similar to that observed in waters shallower than 1000 m. We also compiled and reanalyzed data from bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans) caught near Hawaii in the 1970s and 2000s. Increases in mercury concentrations in bigeye tuna are consistent with the trend found in yellowfin tuna, in both timing and magnitude. The data available for blue marlin do not allow for a fair comparison among years, because mercury concentrations differ between sexes for this species, and sex was identified (or reported) in only 3 of 7 studies. Also, mercury concentrations in blue marlin may be insensitive to modest changes in mercury exposure, because this species appears to have the ability to detoxify mercury. The North Pacific Ocean is a region of both relatively high rates of atmospheric mercury deposition and capture fisheries production. Other data sets that allow temporal comparisons in mercury concentrations, such as pacific cod (Gadus macrocephalus) in Alaskan waters and albacore tuna (Thunnus alalunga) off the US Pacific coast, should be explored further, to aid in understanding human health and ecological risks and to develop additional baseline knowledge for assessing changes in a region expected to respond strongly to reductions in anthropogenic mercury emissions. Environ Toxicol Chem 2017;36:1365-1374. © 2017 SETAC. © 2017 SETAC.

  2. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.

    PubMed

    Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A

    2017-11-01

    Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.

  3. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    PubMed

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Blood mercury concentrations are associated with decline in liver function in an elderly population: a panel study.

    PubMed

    Lee, Mee-Ri; Lim, Youn-Hee; Lee, Bo-Eun; Hong, Yun-Chul

    2017-03-04

    Mercury is a toxic heavy metal and is known to affect many diseases. However, few studies have examined the effects of mercury exposure on liver function in the general population. We examined the association between blood mercury concentrations and liver enzyme levels in the elderly. We included 560 elderly participants (60 years or older) who were recruited from 2008 to 2010 and followed up to 2014. Subjects visited a community welfare center and underwent a medical examination and measurement of mercury levels up to five times. Analyses using generalized estimating equations model were performed after adjusting for age, sex, education, overweight, alcohol consumption, smoking, regular exercise, high-density lipoproteins cholesterol, and total calorie intake. Additionally, we estimated interaction effects of alcohol consumption with mercury and mediation effect of oxidative stress in the relationship between mercury levels and liver function. The geometric mean (95% confidence interval (CI)) of blood mercury concentrations was 2.81 μg/L (2.73, 2.89). Significant relationships were observed between blood mercury concentrations and the level of liver enzymes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma glutamyl transferase (GGT), after adjusting for potential confounders (P < 0.05). The odds ratios of having abnormal ALT levels were statistically significant in the highest mercury quartile compared to those with the lowest quartile. Particularly, regular alcohol drinkers showed greater effect estimates of mercury on the liver function than non-drinkers groups. There was no mediation effect of oxidative stress in the relationship between blood mercury concentrations and liver function. Our results suggest that blood mercury levels are associated with elevated liver enzymes and interact with alcohol consumption for the association in the elderly.

  5. Biomarkers of mercury exposure in two eastern Ukraine cities

    USGS Publications Warehouse

    Gibb, H.; Haver, C.; Kozlov, K.; Centeno, J.A.; Jurgenson, V.; Kolker, A.; Conko, K.M.; Landa, E.R.; Xu, H.

    2011-01-01

    This study evaluates biomarkers of mercury exposure among residents of Horlivka, a city in eastern Ukraine located in an area with geologic and industrial sources of environmental mercury, and residents of Artemivsk, a nearby comparison city outside the mercury-enriched area. Samples of urine, blood, hair, and nails were collected from study participants, and a questionnaire was administered to obtain data on age, gender, occupational history, smoking, alcohol consumption, fish consumption, tattoos, dental amalgams, home heating system, education, source of drinking water, and family employment in mines. Median biomarker mercury concentrations in Artemivsk were 0.26 ??g/g-Cr (urine), 0.92 ??g/L (blood), 0.42 ??g/g (hair), 0.11 ??g/g (toenails), and 0.09 ??g/g (fingernails); median concentrations in Horlivka were 0.15 ??g/g-Cr (urine), 1.01 ??g/L (blood), 0.14 ??g/g (hair), 0.31 ??g/g (toenails), and 0.31 ??g/g (fingernails). Biomarkers of mercury exposure for study participants from Horlivka and Artemivsk are low in comparison with occupationally exposed workers at a mercury recycling facility in Horlivka and in comparison with exposures known to be associated with clinical effects. Blood and urinary mercury did not suggest a higher mercury exposure among Horlivka residents as compared with Artemivsk; however, three individuals living in the immediate vicinity of the mercury mines had elevated blood and urinary mercury, relative to overall results for either city. For a limited number of residents from Horlivka (N = 7) and Artemivsk (N = 4), environmental samples (vacuum cleaner dust, dust wipes, soil) were collected from their residences. Mercury concentrations in vacuum cleaner dust and soil were good predictors of blood and urinary mercury. Copyright ?? 2011 JOEH, LLC.

  6. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    PubMed

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  7. From Orbit, Looking toward Mercury's Horizon

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 MESSENGER acquired this image of Mercury's horizon as the spacecraft was moving northward along the first orbit during which MDIS was turned on. Bright rays from Hokusai can be seen running north to south in the image. MDIS frequently acquired images that contained Mercury's horizon during the mission's three Mercury flybys. (Visit these links to see examples of horizon images from Mercury flyby 1, Mercury flyby 2, and Mercury flyby 3.) However, now that MESSENGER is in orbit about Mercury, views of Mercury's horizon in the images will be much less common. The field of view for MDIS will generally be filled with Mercury's surface as the instrument maps out the planet's geology in high resolution, stereo, and color. Occasionally, in order to obtain images of a certain portion of Mercury's surface, the horizon will also be visible. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. [Contamination and Ecological Risk Assessment of Mercury in Hengshuihu Wetland, Hebei Province].

    PubMed

    Wang, Nai-shan; Zhang, Man-yin; Cui, Li-juan; Ma, Mu-yuan; Yan, Liang; Mu, Yong-lin; Qin, Peng

    2016-05-15

    Investigation on the concentrations and the distribution characteristics of total mercury in atmosphere, water surface and soil/ sediments of Hengshuihu wetland was carried out based on a uniform set point sampling method. The geoaccumulation index and potential ecological risk index methods were simultaneously used to assess the mercury pollution in Hengshuihu wetland ecosystem. The results showed that: the total mercury content in Hengshuihu wetland atmosphere ranged from 1.0 to 5.0 ng · m⁻³, with an average of (2.9 ± 0.85) ng · m⁻³; the total mercury content in water surface ranged from 0.010 to 0.57 µg · L⁻¹, with the average value of (0.081 ± 0.053) µg · L⁻¹; the total mercury content in soil/sediment ranged from 0.001 0 to 0.058 mg · kg⁻¹, with an average of (0.027 ± 0.013) mg · kg⁻¹. The distribution features of total mercury in Hengshuihu wetland were as follows: the total mercury concentration in surface water of the shore was significantly higher than that in the center (P < 0.05), but the total mercury concentration of sediments in the center of the lake was significantly higher than that at the shore (P < 0.05); the total mercury in the soil of shore had a consistent trend with that in the atmosphere; high concentrations of total mercury pollution were accompanied by severe human activities. The geoaccumulation index showed that mercury pollution in Hengshuihu wetland was at clean level; potential ecological risk index showed mercury contamination had a low ecological risk in Hengshuihu wetland.

  9. The distribution and sea-air transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.

    PubMed

    Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing

    2013-09-01

    The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.

  10. Potential bioavailability of mercury in humus-coated clay minerals.

    PubMed

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils. Copyright © 2015. Published by Elsevier B.V.

  11. Relationship of Blood Mercury Levels to Health Parameters in the Loggerhead Sea Turtle (Caretta caretta)

    PubMed Central

    Day, Rusty D.; Segars, Al L.; Arendt, Michael D.; Lee, A. Michelle; Peden-Adams, Margie M.

    2007-01-01

    Background Mercury is a pervasive environmental pollutant whose toxic effects have not been studied in sea turtles in spite of their threatened status and evidence of immunosuppression in diseased populations. Objectives In the present study we investigate mercury toxicity in loggerhead sea turtles (Caretta caretta) by examining trends between blood mercury concentrations and various health parameters. Methods Blood was collected from free-ranging turtles, and correlations between blood mercury concentrations and plasma chemistries, complete blood counts, lysozyme, and lymphocyte proliferation were examined. Lymphocytes were also harvested from free-ranging turtles and exposed in vitro to methylmercury to assess proliferative responses. Results Blood mercury concentrations were positively correlated with hematocrit and creatine phosphokinase activity, and negatively correlated with lymphocyte cell counts and aspartate amino-transferase. Ex vivo negative correlations between blood mercury concentrations and B-cell proliferation were observed in 2001 and 2003 under optimal assay conditions. In vitro exposure of peripheral blood leukocytes to methylmercury resulted in suppression of proliferative responses for B cells (0.1 μg/g and 0.35 μg/g) and T cells (0.7 μg/g). Conclusions The positive correlation between blood mercury concentration and hematocrit reflects the higher affinity of mercury species for erythrocytes than plasma, and demonstrates the importance of measuring hematocrit when analyzing whole blood for mercury. In vitro immunosuppression occurred at methylmercury concentrations that correspond to approximately 5% of the individuals captured in the wild. This observation and the negative correlation found ex vivo between mercury and lymphocyte numbers and mercury and B-cell proliferative responses suggests that subtle negative impacts of mercury on sea turtle immune function are possible at concentrations observed in the wild. PMID:17938730

  12. Mercury concentration in coal - Unraveling the puzzle

    USGS Publications Warehouse

    Toole-O'Neil, B.; Tewalt, S.J.; Finkelman, R.B.; Akers, D.J.

    1999-01-01

    Based on data from the US Geological Survey's COALQUAL database, the mean concentration of mercury in coal is approximately 0.2 ??gg-1. Assuming the database reflects in-ground US coal resources, values for conterminous US coal areas range from 0.08 ??gg-1 for coal in the San Juan and Uinta regions to 0.22 ??gg-1 for the Gulf Coast lignites. Recalculating the COALQUAL data to an equal energy basis unadjusted for moisture differences, the Gulf Coast lignites have the highest values (36.4 lb of Hg/1012 Btu) and the Hams Fork region coal has the lowest value (4.8 lb of Hg/1012Btu). Strong indirect geochemical evidence indicates that a substantial proportion of the mercury in coal is associated with pyrite occurrence. This association of mercury and pyrite probably accounts for the removal of mercury with the pyrite by physical coal cleaning procedures. Data from the literature indicate that conventional coal cleaning removes approximately 37% of the mercury on an equal energy basis, with a range of 0% to 78%. When the average mercury reduction value is applied to in-ground mercury values from the COALQUAL database, the resulting 'cleaned' mercury values are very close to mercury in 'as-shipped' coal from the same coal bed in the same county. Applying the reduction fact or for coal cleaning to eastern US bituminous coal, reduces the mercury input load compared to lower-rank non-deaned western US coal. In the absence of analytical data on as-shipped coal, the mercury data in the COALQUAL database, adjusted for deanability where appropriate, may be used as an estimator of mercury contents of as-shipped coal. ?? 1998 Published by Elsevier Science Ltd. All rights reserved.

  13. Urinary mercury in people living near point sources of mercury emissions.

    PubMed

    Barregard, Lars; Horvat, Milena; Mazzolai, Barbara; Sällsten, Gerd; Gibicar, Darija; Fajon, Vesna; Dibona, Sergio; Munthe, John; Wängberg, Ingvar; Haeger Eugensson, Marie

    2006-09-01

    As part of the European Mercury Emissions from Chlor Alkali Plants (EMECAP) project, we tested the hypothesis that contamination of ambient air with mercury around chlor alkali plants using mercury cells would increase the internal dose of mercury in people living close to the plants. Mercury in urine (U-Hg) was determined in 225 individuals living near a Swedish or an Italian chlor alkali plant, and in 256 age- and sex-matched individuals from two reference areas. Other factors possibly affecting mercury exposure were examined. Emissions and concentrations of total gaseous mercury (TGM) around the plants were measured and modeled. No increase in U-Hg could be demonstrated in the populations living close to the plants. This was the case also when the comparison was restricted to subjects with no dental amalgam and low fish consumption. The emissions of mercury to air doubled the background level, but contributed only about 2 ng/m(3) to long-term averages in the residential areas. The median U-Hg levels in subjects with dental amalgam were 1.2 microg/g creatinine (micro/gC) in Italy and 0.6 microg/gC in Sweden. In individuals without dental amalgam, the medians were 0.9 microg/gC and 0.2 microg/gC, respectively. The number of amalgam fillings, as well as chewing, fish consumption, and female sex were associated with higher U-Hg. The difference between the countries is probably due to higher fish consumption in Italy, demethylated methyl mercury (MeHg) being partly excreted in urine. Post hoc power calculations showed that if the background mercury exposure is low it may be possible to demonstrate an increase in U-Hg of as little as about 10 ng/m(3) as a contribution to ambient mercury from a point source.

  14. Global mercury emissions from combustion in light of international fuel trading.

    PubMed

    Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu

    2014-01-01

    The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.

  15. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  16. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-01-01

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  17. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, Wilbur O.

    1989-12-05

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  18. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolutionmore » of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)« less

  19. [Concentrations of mercury in ambient air in wastewater irrigated area of Tianjin City and its accumulation in leafy vegetables].

    PubMed

    Zheng, Shun-An; Han, Yun-Lei; Zheng, Xiang-Qun

    2014-11-01

    Gaseous Hg can evaporate and enter the plants through the stomata of plat leaves, which will cause a serious threat to local food safety and human health. For the risk assessment, this study aimed to characterize atmospheric mercury (Hg) as well as its accumulation in 5 leafy vegetables (spinach, edible amaranth, rape, lettuce, allium tuberosum) from sewage-irrigated area of Tianjin City. Bio-monitoring sites were located in paddy (wastewater irrigation for 30 a), vegetables (wastewater irrigation for 15 a) and grass (control) fields. Results showed that after long-term wastewater irrigation, the mean values of mercury content in paddy and vegetation fields were significantly higher than the local background value and the national soil environment quality standard value for mercury in grade I, but were still lower than grade II. Soil mercury contents in the studied control grass field were between the local background value and the national soil environment quality standard grade I . Besides, the atmospheric environment of paddy and vegetation fields was subjected to serious mercury pollution. The mean values of mercury content in the atmosphere of paddy and vegetation fields were 71.3 ng x m(-3) and 39.2 ng x m(-3), respectively, which were markedly higher than the reference gaseous mercury value on the north sphere of the earth (1.5-2.0 ng x m(-3)). The mean value of ambient mercury in the control grass fields was 9.4 ng x m(-3). In addition, it was found that the mercury content in leafy vegetables had a good linear correlation with the ambient total gaseous mercury (the data was transformed into logarithms as the dataset did not show a normal distribution). The comparison among 5 vegetables showed that the accumulations of mercury in vegetables followed this order: spinach > edible amaranth > allium tuberosum > rape > lettuce. Median and mean values of mercury contents in spinach and edible amaranth were greater than the hygienic standard for the allowable limit of mercury in food. Spinach appeared to accumulate more mercury than the other four vegetables, in which the median and mean mercury content were both higher than 20 μg x kg(-1). The mercury concentrations in rape, lettuce and allium tuberosum were lower than the standard. Moreover, test results indicated that the Hg content in leafy vegetables was mainly the gaseous mercury through leaf adsorption but not the Hg particulates. This study clearly manifested that there should be a great concern on the pollution risk of both air-and soil borne mercury when cultivating leafy vegetables in long-term wastewater-irrigated area.

  20. Evaluation of mercury contamination using plant leaves and humus as indicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, R.; Fukuzaki, N.; Hirano, Y.

    Plant leaves and humus were collected from three areas with and without mercury emission sources. Mercury in these samples were determined by cold flameless atomic absorption spectrometry. A part of mercury emitted from the source into the atmosphere is absorbed by plant leaves, and move to humus through fallen leaves. Consequently, plant leaves are able to be used as an indicator for the evaluation of mercury in air at present. Humus is useful for the evaluation of mercury contamination through the air from the past to present.

  1. The three modern faces of mercury.

    PubMed Central

    Clarkson, Thomas W

    2002-01-01

    The three modern "faces" of mercury are our perceptions of risk from the exposure of billions of people to methyl mercury in fish, mercury vapor from amalgam tooth fillings, and ethyl mercury in the form of thimerosal added as an antiseptic to widely used vaccines. In this article I review human exposure to and the toxicology of each of these three species of mercury. Mechanisms of action are discussed where possible. Key gaps in our current knowledge are identified from the points of view both of risk assessment and of mechanisms of action. PMID:11834460

  2. Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007

    USGS Publications Warehouse

    Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.

    2010-01-01

    Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual specimens, and caged mussels. Total mercury concentrations in muscle and liver of English sole from Sinclair Inlet ranked in the upper quarter and third, respectively, of Puget Sound locations. For other species, concentrations from Sinclair Inlet were within the mid-range of locations (for example, Chinook salmon). Total mercury concentrations of the long-lived and higher trophic rockfish in composites and individual specimens from Sinclair Inlet tended to be the highest in Puget Sound. For a given size, sand sole, graceful crab, staghorn sculpin, surf perch, and sea cucumber individuals collected from Sinclair Inlet had higher total mercury concentrations than individuals collected from non-urban estuaries. Total mercury concentrations in individual English sole and ratfish were not significantly different than in individuals of various sizes collected from either urban or non-urban estuaries in Puget Sound. Total mercury concentrations in English sole collected from Sinclair Inlet after the 2000-2001 dredging appear to have lower total mercury concentrations than those collected before (1996) the dredging project. The highest total mercury concentrations of mussels caged in 2002 were not within the Bremerton naval complex, but within the Port Orchard Marina and inner Sinclair Inlet.

  3. The cycling and sea-air exchange of mercury in the waters of the Eastern Mediterranean during the 2010 MED-OCEANOR cruise campaign.

    PubMed

    Fantozzi, L; Manca, G; Ammoscato, I; Pirrone, N; Sprovieri, F

    2013-03-15

    An oceanographic cruise campaign on-board the Italian research vessel Urania was carried out from the 26th of August to the 13th of September 2010 in the Eastern Mediterranean. The campaign sought to investigate the mercury cycle at coastal and offshore locations in different weather conditions. The experimental activity focused on measuring mercury speciation in both seawater and in air, and using meteorological parameters to estimate elemental mercury exchange at the sea-atmosphere interface. Dissolved gaseous mercury (DGM), unfiltered total mercury (UTHg) and filtered total mercury (FTHg) surface concentrations ranged from 16 to 114, 300 to 18,760, and 230 to 10,990pgL(-1), respectively. The highest DGM, UTHg and FTHg values were observed close to Augusta (Sicily), a highly industrialized area of the Mediterranean region, while the lowest values were recorded at offshore stations. DGM vertical profiles partially followed the distribution of sunlight, as a result of the photoinduced transformations of elemental mercury in the surface layers of the water column. However, at some stations, we observed higher DGM concentrations in samples taken from the bottom of the water column, suggesting biological mercury production processes or the presence of tectonic activity. Moreover, two days of continuous measurement at one location demonstrated that surface DGM concentration is affected by solar radiation and atmospheric turbulence intensity. Atmospheric measurements of gaseous elemental mercury (GEM) showed an average concentration (1.6ngm(-3)) close to the background level for the northern hemisphere. For the first time this study used a numerical scheme based on a two-thin film model with a specific parameterization for mercury to estimate elemental mercury flux. The calculated average mercury flux during the entire cruise was 2.2±1.5ngm(-2)h(-1). The analysis of flux data highlights the importance of the wind speed on the mercury evasion from sea surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA

    PubMed Central

    Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn; Gochfeld, Michael

    2015-01-01

    A number of contaminants affect fish health, including mercury and selenium, and the selenium: mercury molar ratio. Recently the protective effects of selenium on methylmercury toxicity have been publicized, particularly for consumption of saltwater fish. Yet the relative ameliorating effects of selenium on toxicity within fish have not been examined, nor has the molar ratio in different tissues, (i.e. brain). We examined mercury and selenium levels in brain, kidney, liver, red and white muscle, and skin and scales in bluefish (Pomatomus saltatrix) from New Jersey to determine whether there were toxic levels of either metal, and we computed the selenium: mercury molar ratios by tissues. Total mercury averaged 0.32 ± 0.02 ppm wet weight in edible muscle and 0.09 ± 0.01 ppm in brain. Selenium concentration averaged 0.37 ± 0.03 in muscle and 0.36 ± 0.03 ppm in brain. There were significant differences in levels of mercury, selenium, and selenium: mercury molar ratios, among tissues. Mercury and selenium levels were correlated in kidney and skin/scales. Mercury levels were highest in kidney, intermediate in muscle and liver, and lowest in brain and skin/scales; selenium levels were also highest in kidney, intermediate in liver, and were an order of magnitude lower in the white muscle and brain. Mercury levels in muscle, kidney and skin/scales were positively correlated with fish size (length). Selenium levels in muscle, kidney and liver were positively correlated with fish length, but in brain; selenium levels were negatively correlated with fish length. The selenium: mercury molar ratio was negatively correlated with fish length for white muscle, liver, kidney, and brain, particularly for fish over 50 cm in length, suggesting that older fish experience less protective advantages of selenium against mercury toxicity than smaller fish, and that consumers of bluefish similarly receive less advantage from eating larger fish. PMID:23202378

  5. Mercury in Nelson's Sparrow Subspecies at Breeding Sites

    PubMed Central

    Winder, Virginia L.; Emslie, Steven D.

    2012-01-01

    Background Mercury is a persistent, biomagnifying contaminant that can cause negative effects on ecosystems. Marshes are often areas of relatively high mercury methylation and bioaccumulation. Nelson's Sparrows (Ammodramus nelsoni) use marsh habitats year-round and have been documented to exhibit tissue mercury concentrations that exceed negative effects thresholds. We sought to further characterize the potential risk of Nelson's Sparrows to mercury exposure by sampling individuals from sites within the range of each of its subspecies. Methodology/Principal Findings From 2009 to 2011, we captured adult Nelson's Sparrows at sites within the breeding range of each subspecies (A. n. nelsoni: Grand Forks and Upham, North Dakota; A. n. alterus: Moosonee, Ontario; and A. n. subvirgatus: Grand Manan Island, New Brunswick) and sampled breast feathers, the first primary feather (P1), and blood for total mercury analysis. Mean blood mercury in nelsoni individuals captured near Grand Forks ranged from 0.84±0.37 to 1.65±1.02 SD ppm among years, between 2.0 and 4.9 times as high as concentrations at the other sites (P<0.01). Breast feather mercury did not vary among sites within a given sampling year (site means ranged from 0.98±0.69 to 2.71±2.93 ppm). Mean P1 mercury in alterus (2.96±1.84 ppm fw) was significantly lower than in any other sampled population (5.25±2.24–6.77±3.51 ppm; P≤0.03). Conclusions/Significance Our study further characterized mercury in Nelson's Sparrows near Grand Forks; we documented localized and potentially harmful mercury concentrations, indicating that this area may represent a biological mercury hotspot. This finding warrants further research to determine if wildlife populations of conservation or recreational interest in this area may be experiencing negative effects due to mercury exposure. We present preliminary conclusions about the risk of each sampled population to mercury exposure. PMID:22384194

  6. Using native epiphytic ferns to estimate the atmospheric mercury levels in a small-scale gold mining area of West Java, Indonesia.

    PubMed

    Kono, Yuriko; Rahajoe, Joeni S; Hidayati, Nuril; Kodamatani, Hitoshi; Tomiyasu, Takashi

    2012-09-01

    Mercury pollution is caused by artisanal and small-scale gold mining (ASGM) operations along the Cikaniki River (West Java, Indonesia). The atmosphere is one of the primary media through which mercury can disperse. In this study, atmospheric mercury levels are estimated using the native epiphytic fern Asplenium nidus complex (A. nidus) as a biomonitor; these estimates shed light on the atmospheric dispersion of mercury released during mining. Samples were collected from 8 sites along the Cikaniki Basin during September-November, 2008 and September-November, 2009. The A. nidus fronds that were attached to tree trunks 1-3m above the ground were collected and measured for total mercury concentration using cold vapor atomic absorption spectrometry (CVAAS) after acid-digestion. The atmospheric mercury was collected using porous gold collectors, and the concentrations were determined using double-amalgam CVAAS. The highest atmospheric mercury concentration, 1.8 × 10(3) ± 1.6 × 10(3) ngm(-3), was observed at the mining hot spot, and the lowest concentration of mercury, 5.6 ± 2.0 ngm(-3), was observed at the remote site from the Cikaniki River in 2009. The mercury concentrations in A. nidus were higher at the mining village (5.4 × 10(3) ± 1.6 × 10(3) ngg(-1)) than at the remote site (70 ± 30 ngg(-1)). The distribution of mercury in A. nidus was similar to that in the atmosphere; a significant correlation was observed between the mercury concentrations in the air and in A. nidus (r=0.895, P<0.001, n=14). The mercury levels in the atmosphere can be estimated from the mercury concentration in A. nidus using a regression equation: log (Hg(A.nidu)/ngg(-1))=0.740 log (Hg(Air)/ngm (-3)) - 1.324. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000.

    PubMed Central

    Mahaffey, Kathryn R; Clickner, Robert P; Bodurow, Catherine C

    2004-01-01

    Blood organic mercury (i.e., methyl mercury) concentrations among 1,709 women who were participants in the National Health and Nutrition Examination Survey (NHANES) in 1999 and 2000 (1999-2000 NHANES) were 0.6 microg/L at the 50th percentile and ranged from concentrations that were nondetectable (5th percentile) to 6.7 microg/L (95th percentile). Blood organic/methyl mercury reflects methyl mercury intake from fish and shellfish as determined from a methyl mercury exposure parameter based on 24-hr dietary recall, 30-day food frequency, and mean concentrations of mercury in the fish/shellfish species reported as consumed (multiple correlation coefficient > 0.5). Blood organic/methyl mercury concentrations were lowest among Mexican Americans and highest among participants who designated themselves in the Other racial/ethnic category, which includes Asians, Native Americans, and Pacific Islanders. Blood organic/methyl mercury concentrations were ~1.5 times higher among women 30-49 years of age than among women 16-29 years of age. Blood mercury (BHg) concentrations were seven times higher among women who reported eating nine or more fish and/or shellfish meals within the past 30 days than among women who reported no fish and/or shellfish consumption in the past 30 days. Blood organic/methyl mercury concentrations greater than or equal to 5.8 microg/L were lowest among Mexican Americans (2.0%) and highest among examinees in the Other racial/ethnic category (21.7%). Based on the distribution of BHg concentrations among the adult female participants in 1999-2000 NHANES and the number of U.S. births in 2000, > 300,000 newborns each year in the United States may have been exposed in utero to methyl mercury concentrations higher than those considered to be without increased risk of adverse neurodevelopmental effects associated with methyl mercury exposure. PMID:15064162

  8. Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2014-01-01

    There are few data on risks to biota and humans from mercury levels in saltwater fish. This paper examines mercury and selenium levels in muscle of 19 species of fish caught by recreational fisherfolk off the New Jersey shore, as a function of species of fish, size, and season, and risk of mercury to consumers. Average mercury levels ranged from 0.01 ppm (wet weight) (Menhaden Brevoortia tyrannus) to 1.83 ppm (Mako Shark Isurus oxyrinchus). There were four categories of mercury levels: very high (only Mako), high (averaging 0.3–0.5 ppm, 3 species), medium (0.14–0.20 ppm, 10 species), and low (below 0.13 ppm, 5 species). Average selenium levels for the fish species ranged from 0.18 ppm to 0.58 ppm, and had lower variability than mercury (coefficient of variation=38.3 vs 69.1%), consistent with homeostatic regulation of this essential element. The correlation between mercury and selenium was significantly positive for five and negative for two species. Mercury levels showed significant positive correlations with fish size for ten species. Size was the best predictor of mercury levels. Selenium showed no consistent relationship to fish length. Over half of the fish species had some individual fish with mercury levels over 0.3 ppm, and a third had fish with levels over 0.5 ppm, levels that pose a human health risk for high end consumers. Conversely several fish species had no individuals above 0.5 ppm, and few above 0.3 ppm, suggesting that people who eat fish frequently, can reduce their risk from mercury by selecting which species (and which size) to consume. Overall, with the exception of shark, Bluefin Tuna (Thunnus thynnus), Bluefish (Pomatomus saltatrix) and Striped Bass (Morone saxatilis), the species sampled are generally medium to low in mercury concentration. Selenium:mercury molar ratios were generally above 1:1, except for the Mako shark. PMID:21292311

  9. The southwestern alaska mercury belt and its relationship to the circum-pacific metallogenic mercury province

    USGS Publications Warehouse

    Gray, J.E.; Gent, C.A.; Snee, L.W.

    2000-01-01

    A belt of small but numerous mercury deposits extends for about 500 km in the Kuskokwim River region of southwestern Alaska. The southwestern Alaska mercury belt is part of widespread mercury deposits of the circumPacific region that are similar to other mercury deposits throughout the world because they are epithermal with formation temperatures of about 200??C, the ore is dominantly cinnabar with Hg-Sb-As??Au geochemistry, and mineralized forms include vein, vein breccias, stockworks, replacements, and disseminations. The southwestern Alaska mercury belt has produced about 1,400 t of mercury, which is small on an international scale. However, additional mercury deposits are likely to be discovered because the terrain is topographically low with significant vegetation cover. Anomalous concentrations of gold in cinnabar ore suggest that gold deposits are possible in higher temperature environments below some of the Alaska mercury deposits. We correlate mineralization of the southwestern Alaska mercury deposits with Late Cretaceous and early Tertiary igneous activity. Our 40Ar/39Ar ages of 70??3 Ma from hydrothermal sericites in the mercury deposits indicate a temporal association of igneous activity and mineralization. Furthermore, we suggest that our geological and geochemical data from the mercury deposits indicate that ore fluids were generated primarily in surrounding sedimentary wall rocks when they were cut by Late Cretaceous and early Tertiary intrusions. In our ore genesis model, igneous activity provided the heat to initiate dehydration reactions and expel fluids from hydrous minerals and formational waters in the surrounding sedimentary wall rocks, causing thermal convection and hydrothermal fluid flow through permeable rocks and along fractures and faults. Our isotopic data from sulfide and alteration minerals of the mercury deposits indicate that ore fluids were derived from multiple sources, with most ore fluids originating from the sedimentary wall rocks.

  10. Trends of anthropogenic mercury emissions from 1970-2008 using the global EDGARv4 database: the role of increasing emission mitigation by the energy sector and the chlor-alkali industry

    NASA Astrophysics Data System (ADS)

    Muntean, M.; Janssens-Maenhout, G.; Olivier, J. G.; Guizzardi, D.; Dentener, F. J.

    2012-12-01

    The Emission Database for Global Atmospheric Research (EDGAR) describes time-series of emissions of man-made greenhouse gases and short-lived atmospheric pollutants from 1970-2008. EDGARv4 is continuously updated to respond to needs of both the scientific community and environmental policy makers. Mercury, a toxic pollutant with bioaccumulation properties, is included in the forthcoming EDGARv4.3 release, thereby enriching the spectrum of multi-pollutant sources. Three different forms of mercury have been distinguished: gaseous elemental mercury (Hg0), divalent mercury compounds (Hg2+) and particulate associated mercury (Hg-P). A complete inventory of mercury emission sources has been developed at country level using the EDGAR technology-based methodology together with international activity statistics, technology-specific abatement measures, and emission factors from EMEP/EEA (2009), USEPA AP 42 and the scientific literature. A comparison of the EDGAR mercury emission data to the widely used UNEP inventory shows consistent emissions across most sectors compared for the year 2005. The different shares of mercury emissions by region and by sector will be presented with special emphasis on the region-specific mercury emission mitigation potential. We provide a comprehensive ex-post analysis of the mitigation of mercury emissions by respectively end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry between 1970 and 2008. Given the local scale impacts of mercury, we have paid special attention to the spatial distribution of emissions. The default EDGAR Population proxy data was only used to distribute emissions from the residential and solid waste incineration sectors. Other sectors use point source data of power plants, industrial plants, gold and mercury mines. The 2008 mercury emission distribution will be presented, which shows emissions hot-spots on a 0.1°x0.1°resolution gridmap.

  11. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy.

    PubMed

    Fantozzi, L; Ferrara, R; Dini, F; Tamburello, L; Pirrone, N; Sprovieri, F

    2013-08-01

    Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000ngm(-2)h(-1)) were observed on bare soils during the hours of maximum insulation, while lower values (250ngm(-2)h(-1)) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500ngm(-2)h(-1), which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28°C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Season, molt, and body size influence mercury concentrations in grebes

    USGS Publications Warehouse

    Hartman, Christopher; Ackerman, Joshua T.; Herzog, Mark; Eagles-Smith, Collin A.

    2017-01-01

    We studied seasonal and physiological influences on mercury concentrations in western grebes (Aechmophorus occidentalis) and Clark's grebes (A. occidentalis) across 29 lakes and reservoirs in California, USA. Additionally, at three of these lakes, we conducted a time series study, in which we repeatedly sampled grebe blood mercury concentrations during the spring, summer, and early fall. Grebe blood mercury concentrations were higher among males (0.61 ± 0.12 μg/g ww) than females (0.52 ± 0.10 μg/g ww), higher among Clark's grebes (0.58 ± 0.12 μg/g ww) than western grebes (0.51 ± 0.10 μg/g ww), and exhibited a strong seasonal pattern (decreasing by 60% from spring to fall). Grebe blood THg concentrations exhibited a shallow, inverse U-shaped pattern with body size, and was lowest among the smallest and largest grebes. Further, the relationship between grebe blood mercury concentrations and wing primary feather molt exhibited a shallow U-shaped pattern, where mercury concentrations were highest among birds that had not yet begun molting, decreased approximately 24% between pre-molt and late molt, and increased approximately 19% from late molt to post-molt. Because grebes did not begin molting until mid-summer, lower grebe blood mercury concentrations observed in late summer and early fall were consistent with the onset of primary feather molt. However, because sampling date was a much stronger predictor of grebe mercury concentrations than molt, other seasonally changing environmental factors likely played a larger role than molt in the seasonal variation in grebe mercury concentrations. In the time series study, we found that seasonal trends in grebe mercury concentrations were not consistent among lakes, indicating that lake-specific variation in mercury dynamics influence the overall seasonal decline in grebe blood mercury concentrations. These results highlight the importance of accounting for sampling date, as well as ecological processes that may influence mercury concentrations, when developing monitoring programs to assess site-specific exposure risk of mercury to wildlife.

  13. Methylmercury is the predominant form of mercury in bird eggs: a synthesis

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Schwarzbach, Steven E.

    2013-01-01

    Bird eggs are commonly used in mercury monitoring programs to assess methylmercury contamination and toxicity to birds. However, only 6% of >200 studies investigating mercury in bird eggs have actually measured methylmercury concentrations in eggs. Instead, studies typically measure total mercury in eggs (both organic and inorganic forms of mercury), with the explicit assumption that total mercury concentrations in eggs are a reliable proxy for methylmercury concentrations in eggs. This assumption is rarely tested, but has important implications for assessing risk of mercury to birds. We conducted a detailed assessment of this assumption by (1) collecting original data to examine the relationship between total and methylmercury in eggs of two species, and (2) reviewing the published literature on mercury concentrations in bird eggs to examine whether the percentage of total mercury in the methylmercury form differed among species. Within American avocets (Recurvirostra americana) and Forster’s terns (Sterna forsteri), methylmercury concentrations were highly correlated (R2 = 0.99) with total mercury concentrations in individual eggs (range: 0.03–7.33 μg/g fww), and the regression slope (log scale) was not different from one (m = 0.992). The mean percentage of total mercury in the methylmercury form in eggs was 97% for American avocets (n = 30 eggs), 96% for Forster’s terns (n = 30 eggs), and 96% among all 22 species of birds (n = 30 estimates of species means). The percentage of total mercury in the methylmercury form ranged from 63% to 116% among individual eggs and 82% to 111% among species means, but this variation was not related to total mercury concentrations in eggs, foraging guild, nor to a species life history strategy as characterized along the precocial to altricial spectrum. Our results support the use of total mercury concentrations to estimate methylmercury concentrations in bird eggs.

  14. Special issue on mercury in Canada's North: summary and recommendations for future research.

    PubMed

    Chételat, John; Braune, Birgit; Stow, Jason; Tomlinson, Scott

    2015-03-15

    Important scientific advances have been made over the last decade in identifying the environmental fate of mercury and the processes that control its cycling in the Canadian Arctic. This special issue includes a series of six detailed reviews that summarize the main findings of a scientific assessment undertaken by the Government of Canada's Northern Contaminants Program. It was the first assessment to focus exclusively on mercury pollution in the Canadian Arctic. Key findings, as detailed in the reviews, relate to sources and long-range transport of mercury to the Canadian Arctic, its cycling within marine, freshwater, and terrestrial environments, and its bioaccumulation in, and effects on, the biota that live there. While these accomplishments are significant, the complex nature of the mercury cycle continues to provide challenges in characterizing and quantifying the relationships of mercury sources and transport processes with mercury levels in biota and biological effects of mercury exposure. Of particular concern are large uncertainties in our understanding of the processes that are contributing to increasing mercury concentrations in some Arctic fish and wildlife. Specific recommendations are provided for future research and monitoring of the environmental impacts of anthropogenic mercury emissions, influences of climate change, and the effectiveness of mitigation strategies for mercury in the Canadian Arctic. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  15. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2013-07-01

    There is an emerging consensus that people consuming large amounts of fish with selenium:mercury ratios below 1 are at higher risk from mercury toxicity. As the relative amount of selenium increases compared to mercury, risk may be lowered, but it is unclear how much excess selenium is required. It would be useful if the selenium:mercury ratio was relatively consistent within a species, but this has not been the case in our studies of wild-caught fish. Since most people in developed countries and urban areas obtain their fish and other seafood commercially, we examined selenium:mercury molar ratios in commercial fish purchased in stores and fish markets in central New Jersey and Chicago. There was substantial interspecific and intraspecific variation in molar ratios. Across species the selenium:mercury molar ratio decreased with increasing mean mercury levels, but selenium variation also contributed to the ratio. Few samples had selenium:mercury molar ratios below 1, but there was a wide range in ratios, complicating the interpretation for use in risk management and communication. Before ratios can be used in risk management, more information is needed on mercury:selenium interactions and mutual bioavailability, and on the relationship between molar ratios and health outcomes. Further, people who are selenium deficient may be more at risk from mercury toxicity than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: Variation within species and relevance to risk communication

    PubMed Central

    Burger, Joanna; Gochfeld, Michael

    2015-01-01

    There is an emerging consensus that people consuming large amounts of fish with selenium:mercury ratios below 1 may be at higher risk from mercury toxicity. As the relative amount of selenium increases compared to mercury, risk may be lowered, but it is unclear how much excess selenium is required. It would be useful if the selenium:mercury ratio was relatively consistent within a species, but this has not been the case in our studies of wild-caught fish. Since most people in developed countries and urban areas obtain their fish and other seafood commercially, we examined selenium:mercury molar ratios in commercial fish purchased in stores and fish markets in central New Jersey and Chicago. There was substantial interspecific and intraspecific variation in molar ratios. Across species the selenium:mercury molar ratio decreased with increasing mean mercury levels, but selenium variation also contributed to the ratio. Few samples had selenium:mercury molar ratios below 1, but there was a wide range in ratios, complicating the interpretation for use in risk management and communication. Before ratios can be used in risk management, more information is needed on mercury:selenium interactions and mutual bioavailability, and on the relationship between molar ratios and health outcomes. Further, people who are selenium deficient may be more at risk from mercury toxicity than others. PMID:23541437

  17. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Haiyan; Lin, Hui; Zheng, Wang

    2013-08-04

    Methylmercury is a neurotoxin that poses significant health risks to humans. Some anaerobic sulphate- and iron-reducing bacteria can methylate oxidized forms of mercury, generating methylmercury1-4. One strain of sulphate-reducing bacteria (Desulfovibrio desulfuricans ND132) can also methylate elemental mercury5. The prevalence of this trait among different bacterial strains and species remains unclear, however. Here, we compare the ability of two strains of the sulphate-reducing bacterium Desulfovibrio and one strain of the iron-reducing bacterium Geobacter to oxidise and methylate elemental mercury in a series of laboratory incubations. Experiments were carried out under dark, anaerobic conditions, in the presence of environmentally-relevant concentrations ofmore » elemental mercury. We report differences in the ability of these organisms to oxidise and methylate elemental mercury. In line with recent findings5, we show that Desulfovibrio desulfuricans ND132 can both oxidise and methylate elemental mercury. However, the rate of methylation of elemental mercury is only about one third the rate of methylation of oxidized mercury. We also show that Desulfovibrio alaskensis G20 can oxidise, but not methylate, elemental mercury. Geobacter sulfurreducens PCA is able to oxidise and methylate elemental mercury in the presence of cysteine. We suggest that the activity of methylating and non-methylating bacteria may together enhance the formation of methylmercury in anaerobic environments.« less

  18. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs

    USGS Publications Warehouse

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex

    2016-01-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R2 ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R2 = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R2 = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues.

  19. Maternal transfer of contaminants in birds: Mercury and selenium concentrations in parents and their eggs.

    PubMed

    Ackerman, Joshua T; Eagles-Smith, Collin A; Herzog, Mark P; Hartman, C Alex

    2016-03-01

    We conducted a detailed assessment of the maternal transfer of mercury and selenium to eggs in three bird species (n = 107 parents and n = 339 eggs), and developed predictive equations linking contaminant concentrations in eggs to those in six tissues of the mother (blood, muscle, liver, kidney, breast feathers, and head feathers). Mercury concentrations in eggs were positively correlated with mercury concentrations in each of the mother's internal tissues (R(2) ≥ 0.95), but generally not with feathers. For each species, the proportion of mercury transferred to eggs decreased as mercury concentrations in the mother increased. At the same maternal mercury concentration, the proportion of mercury transferred to eggs differed among species, such that Forster's tern (Sterna forsteri) and black-necked stilt (Himantopus mexicanus) females transferred more methylmercury to their eggs than American avocet (Recurvirostra americana) females. Selenium concentrations in eggs also were correlated with selenium concentrations in the mother's liver (R(2) = 0.87). Furthermore, mercury and selenium concentrations in tern eggs were positively correlated with those in the father (R(2) = 0.84). Incubating male terns had 21% higher mercury concentrations in blood compared to incubating females at the same egg mercury concentration. We provide equations to predict contaminant concentrations in eggs from each of the commonly sampled bird tissues. Published by Elsevier Ltd.

  20. Potential mercury emissions from fluorescent lamps production and obsolescence in mainland China.

    PubMed

    Tan, Quanyin; Li, Jinhui

    2016-01-01

    The use of fluorescent lamps has expanded rapidly all over the world in recent years, because of their energy-saving capability. Consequently, however, mercury emissions from production, breakage, and discard of the lamps are drawing increasing concern from the public. This article focuses on evaluating the amount of mercury used for fluorescent lamp production, as well as the potential mercury emissions during production and breakage, in mainland China. It is expected to provide a comprehensive understanding about the risks present in the mercury from fluorescent lamps, and to know about the impacts of the policies on fluorescent lamps after their implementation. It is estimated that, in 2020, mercury consumption will be about 11.30-15.69 tonnes, a significant reduction of 34.9%-37.4% from that used in 2013, owing to improvement in mercury dosing dosage technology and tighter limitations on mercury content in fluorescent lamps. With these improvements, the amount of mercury remaining in fluorescent lamps and released during production is estimated to be 10.71-14.86 and 0.59-0.83 tonnes, respectively; the mercury released from waste fluorescent lamps is estimated to be about 5.37-7.59 tonnes. Also, a significant reduction to the mercury emission can be expected when a collection and treatment system is well established and conducted in the future. © The Author(s) 2015.

  1. Geochemistry of selected mercury mine-tailings in the Parkfield Mercury District, California

    USGS Publications Warehouse

    Rytuba, James J.; Kotlyar, Boris B.; Wilkerson, Gregg; Olson, Jerry

    2001-01-01

    The Parkfield mercury district is located in the southern part of the California Coast Range mercury mineral belt and contains three silica-carbonate-type mercury deposits that have had significant mercury production. Mercury was first produced in the district in 1873, but the main period of production occurred from 1915-1922. Total production from the district is about 5,000 flasks of mercury (a flask equals 76 pounds of mercury) with most production coming from the Patriquin mine (1,875 flasks), and somewhat less from the King (1,600 flasks) and Dawson (1,470 flasks) mines. Several other small prospects and mines occur in the district but only minor production has come from them. In 1969, Phelan Sulphur Company carried out mineral exploration at the King mine and announced the discovery of 55,000 tons of mercury ore with an average grade of 5.2 pounds per ton. The King mine is located on federal land administered by the U.S. Bureau of Land Management. Several other parcels of federal land are present adjacent to other mines and prospects in the Parkfield district. An environmental assessment of mine sites on and adjacent to federal land was carried out to determine the amount of mercury and other trace metals present in mine wastes and in sediments from streams impacted by past mining.

  2. Mercury contamination of riverine sediments in the vicinity of a mercury cell chlor-alkali plant in Sagua River, Cuba.

    PubMed

    Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel

    2016-06-01

    Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  4. New Mechanisms of Mercury Binding to Peat

    NASA Astrophysics Data System (ADS)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  5. 3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW EAST OF TAILINGS OF MERCURY RETORT. SCOOP FOR EXTRACTING MERCURY VISIBLE IN CENTER OF PHOTOGRAPH. (OCTOBER, 1995) - McCormick Group Mine, Mercury Retort, East slope of Buckskin Mountain, Paradise Valley, Humboldt County, NV

  6. Recovery of mercury from acid waste residues

    DOEpatents

    Greenhalgh, W.O.

    1987-02-27

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  7. The Impact of Impoundment on Mercury Bioaccumulation in Fish Downstream from a Newly Constructed Reservoir, Wujiang River, Southwest China.

    PubMed

    Li, Sixin; Zhou, Lianfeng; Chang, Jianbo; Yang, Zhi; Hu, Juxiang; Hongjun, Wang

    2017-11-01

    Mercury concentrations in fish were investigated downstream from a newly impounded subtropical reservoir in August 2008. After 6-7 months of reservoir impoundment, mean mercury concentration in fish from downstream is significantly increased by 1.9 times. Not only carnivorous fish but also benthic fish had significantly higher total mercury concentrations than others. No significant correlation was found between total mercury concentrations and body length or weight of 13 fish species. Compared with the pre-impoundment, total mercury in fish from downstream is significantly increased by reservoir impoundment, but the increased rate is lower than those in subarctic and temperate areas. Fish samples surpassed the Chinese hygienic standard for tolerances of mercury in foods increased by 4.3%. More attention should be given to fish mercury levels from downstream sites to prevent possible adverse effects on the health of local people.

  8. Mercury content of Illinois soils

    USGS Publications Warehouse

    Dreher, G.B.; Follmer, L.R.

    2004-01-01

    For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.

  9. Method development estimating ambient mercury concentration from monitored mercury wet deposition

    NASA Astrophysics Data System (ADS)

    Chen, S. M.; Qiu, X.; Zhang, L.; Yang, F.; Blanchard, P.

    2013-05-01

    Speciated atmospheric mercury data have recently been monitored at multiple locations in North America; but the spatial coverage is far less than the long-established mercury wet deposition network. The present study describes a first attempt linking ambient concentration with wet deposition using Beta distribution fitting of a ratio estimate. The mean, median, mode, standard deviation, and skewness of the fitted Beta distribution parameters were generated using data collected in 2009 at 11 monitoring stations. Comparing the normalized histogram and the fitted density function, the empirical and fitted Beta distribution of the ratio shows a close fit. The estimated ambient mercury concentration was further partitioned into reactive gaseous mercury and particulate bound mercury using linear regression model developed by Amos et al. (2012). The method presented here can be used to roughly estimate mercury ambient concentration at locations and/or times where such measurement is not available but where wet deposition is monitored.

  10. Mercury Handling for the Target System for a Muon Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graves, Van B; Mcdonald, K; Kirk, H.

    2012-01-01

    The baseline target concept for a Muon Collider or Neutrino Factory is a free-stream mercury jet being impacted by an 8-GeV proton beam. The target is located within a 20-T magnetic field, which captures the generated pions that are conducted to a downstream decay channel. Both the mercury and the proton beam are introduced at slight downward angles to the magnetic axis. A pool of mercury serves as a receiving reservoir for the mercury and a dump for the unexpended proton beam. The impact energy of the remaining beam and jet are substantial, and it is required that splashes andmore » waves be controlled in order to minimize the potential for interference of pion production at the target. Design issues discussed in this paper include the nozzle, splash mitigation in the mercury pool, the mercury containment vessel, and the mercury recirculation system.« less

  11. Mercury from chlor-alkali plants: measured concentrations in food product sugar.

    PubMed

    Dufault, Renee; LeBlanc, Blaise; Schnoll, Roseanne; Cornett, Charles; Schweitzer, Laura; Wallinga, David; Hightower, Jane; Patrick, Lyn; Lukiw, Walter J

    2009-01-26

    Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.

  12. Acute and chronic neuropsychological consequences of mercury vapor poisoning in two early adolescents.

    PubMed

    Yeates, K O; Mortensen, M E

    1994-04-01

    Mercury is an extremely toxic heavy metal that can devastate the central nervous system. The neuropsychological consequences of mercury vapor intoxication have been studied primarily in adults. We present two adolescent half-siblings, ages 13 and 15, who were unintentionally exposed to concentrated mercury vapor for 3 months. Both children participated in neuropsychological evaluations shortly after being diagnosed with mercury toxicity, and again 1 year later. Results from the initial assessments documented functional deficits consistent with diffuse encephalopathy. Upon follow-up, neuropsychological functioning had improved, but deficits remained in visuoperceptual and constructional skills, nonverbal memory, and conceptual abstraction. The deficits persisted despite removal from exposure, return of urinary and blood mercury to acceptable levels, and resolution of neuropsychiatric symptoms. The deficits were similar to, but more severe than, those found in adults suffering from mercury vapor intoxication. The results suggest that the developing brain may be especially vulnerable to mercury vapor toxicity.

  13. Mercury toxicity and antioxidants: Part 1: role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity.

    PubMed

    Patrick, Lyn

    2002-12-01

    Mercury exposure is the second-most common cause of toxic metal poisoning. Public health concern over mercury exposure, due to contamination of fish with methylmercury and the elemental mercury content of dental amalgams, has long been a topic of political and medical debate. Although the toxicology of mercury is complex, there is evidence for antioxidant protection in the prevention of neurological and renal damage caused by mercury toxicity. Alpha-lipoic acid, a coenzyme of pyruvate and alpha-ketoglutarate dehydrogenase, has been used in Germany as an antioxidant and approved treatment for diabetic polyneuropathy for 40 years. Research has attempted to identify the role of antioxidants, glutathione and alpha-lipoic acid specifically, in both mitigation of heavy metal toxicity and direct chelation of heavy metals. This review of the literature will assess the role of glutathione and alpha-lipoic acid in the treatment of mercury toxicity.

  14. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    DOEpatents

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  15. Mercury Toxicity and Treatment: A Review of the Literature

    PubMed Central

    Bernhoft, Robin A.

    2012-01-01

    Mercury is a toxic heavy metal which is widely dispersed in nature. Most human exposure results from fish consumption or dental amalgam. Mercury occurs in several chemical forms, with complex pharmacokinetics. Mercury is capable of inducing a wide range of clinical presentations. Diagnosis of mercury toxicity can be challenging but can be obtained with reasonable reliability. Effective therapies for clinical toxicity have been described. PMID:22235210

  16. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  17. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  18. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  19. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  20. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  1. 40 CFR Table 5 to Subpart IIIii of... - Required Elements of Floor-Level Mercury Vapor Measurement and Cell Room Monitoring Plans

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Mercury Vapor Measurement and Cell Room Monitoring Plans 5 Table 5 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII... and Cell Room Monitoring Plans Your Floor-Level Mercury Vapor Measurement Plan required by § 63.8192(d...

  2. Investigation of Mercury Reduction in Gold Stripping Process at Elevated Temperature

    NASA Astrophysics Data System (ADS)

    Pramudya, Irawan

    Mercury is present in many gold ores. By processing these ores, there is a potential of emitting mercury to the environment. Carbon regeneration kiln stacks have been observed as one of the primary source of mercury emission into the atmosphere. Before it is recycled back into the carbon in leach (CIL) or carbon in columns (CIC), carbon used in the gold extraction process needs to be reactivated thermally. Emission of mercury can be minimized by keeping the mercury left in the carbon low before it goes to the carbon regeneration kiln stacks. The objective of this study is establishing the optimum elution conditions of mercury cyanide from loaded carbon (which includes the eluent, concentration, temperature and elution time) with respect to gold stripping. Several methods such as acid washing (UNR-100, HCl or ethanol/UNR-100) were investigated prior to the stripping process. Furthermore, conventional pressurized Zadra and modified Zadra were also studied with regards to mercury concentration in the solution and vapor state as well as maximizing the gold stripping from industrial loaded carbon. 7% UNR-100 acid washing of loaded carbon at 80°C was able to wash out approximately 90% of mercury while maintaining the gold adsorption on the carbon (selective washing). The addition of alcohol in the UNR-100 acid washing solution was able to enhance mercury washing from 90% to 97%. Furthermore, mercury stripping using conventional pressurized (cyanide-alkaline) Zadra was best performed at 80°C (minimal amount of mercury reduced and volatilized) whereas using the same process only 40% of gold was stripped, which makes this process not viable. When alcohol was added to the stripping solution, at 80°C, 95% of gold was detected in the solution while keeping the reduction and volatilization of mercury low. The outcome of this study provides a better understanding of mercury behavior during the acid washing and stripping processes so that the risk of mercury exposure and contamination can be minimized while maximizing the gold overall recovery.

  3. Mercury-impacted scrap metal: Source and nature of the mercury.

    PubMed

    Finster, Molly E; Raymond, Michelle R; Scofield, Marcienne A; Smith, Karen P

    2015-09-15

    The reuse and recycling of industrial solid wastes such as scrap metal is supported and encouraged both internationally and domestically, especially when such wastes can be used as substitutes for raw material. However, scrap metal processing facilities, such as mini-mills, have been identified as a source of mercury (Hg) emissions in the United States. This research aims to better define some of the key issues related to the source and nature of mercury in the scrap metal waste stream. Overall, it is difficult to pinpoint the key mercury sources feeding into scrap metal recycling facilities, quantify their associated mercury concentrations, or determine which chemical forms are most significant. Potential sources of mercury in scrap metal include mercury switches from discarded vehicles, electronic-based scrap from household appliances and related industrial systems, and Hg-impacted scrap metal from the oil and gas industry. The form of mercury associated with scrap metal varies and depends on the source type. The specific amount of mercury that can be adsorbed and retained by steel appears to be a function of both metallurgical and environmental factors. In general, the longer the steel is in contact with a fluid or condensate that contains measurable concentrations of elemental mercury, the greater the potential for mercury accumulation in that steel. Most mercury compounds are thermally unstable at elevated temperatures (i.e., above 350 °C). As such, the mercury associated with impacted scrap is expected to be volatilized out of the metal when it is heated during processing (e.g., shredding or torch cutting) or melted in a furnace. This release of fugitive gas (Hg vapor) and particulates, as well as Hg-impacted bag-house dust and control filters, could potentially pose an occupational exposure risk to workers at a scrap metal processing facility. Thus, identifying and characterizing the key sources of Hg-impacted scrap, and understanding the nature and extent of associated releases, represent a practical research need that is essential for improving the environmental management of Hg-impacted scrap and assessing measures to protect workers from potential health and safety hazards that might be posed by mercury and Hg-impacted scrap. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River.

    PubMed

    Webb, M A H; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B; Plumlee, M; Wong, C; Gundersen, D T

    2006-04-01

    This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.

  5. Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon.

    PubMed

    Obeid, Pierre J; El-Khoury, Bilal; Burger, Joanne; Aouad, Samer; Younis, Mira; Aoun, Amal; El-Nakat, John Hanna

    2011-01-01

    Fish is an important constituent of the Lebanese diet. However, very little attention in our area is given to bring awareness regarding the effect of the toxicity of mercury (Hg) mainly through fish consumption. This study aimed to report analytical data on total mercury levels in several fish species for the first time in thirty years and to also made individuals aware of the presence and danger from exposure to mercury through fish consumption. Fish samples were selected from local Lebanese markets and fisheries and included 94 samples of which were fresh, frozen, processed, and canned fish. All values were reported as microgram of mercury per gram of fish based on wet weight. The level of mercury ranged from 0.0190 to 0.5700 microg/g in fresh samples, 0.0059 to 0.0665 microg/g in frozen samples, and 0.0305 to 0.1190 microg/g in canned samples. The data clearly showed that higher levels of mercury were detected in local fresh fish as opposed to other types thus placing consumers at higher risk from mercury exposure. Moreover, the data revealed that Mallifa (yellowstripe barracuda/Sphyraena chrysotaenia), Sargous (white seabream/Diplodus sargus), Ghobbos (bogue/Boops boops), and shrimp (Penaeus sp.) were among the types containing the highest amounts of mercury. On the other hand, processed fish such as fish fillet, fish burger, small shrimp and crab are found to contain lower levels of mercury and are associated with lower exposure risks to mercury. Lebanese population should therefore, be aware to consume limited amounts of fresh local fish to minimize exposure to mercury.

  6. Mercury in the atmosphere, snow and melt water ponds in the North Atlantic Ocean during Arctic summer.

    PubMed

    Aspmo, Katrine; Temme, Christian; Berg, Torunn; Ferrari, Christophe; Gauchard, L Pierre-Alexis; Fain, Xavier; Wibetoe, Grethe

    2006-07-01

    Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.

  7. A comparison of mercury levels in feathers and eggs of osprey (Pandion haliaetus) in the North American Great Lakes.

    PubMed

    Hughes, K D; Ewins, P J; Clark, K E

    1997-11-01

    Osprey (Pandion haliaetus) eggs and chick feathers were collected for mercury analysis from nests at four Great Lakes study areas in Ontario (three "naturally formed" lakes in southern Ontario and one reservoir in northern Ontario) and two New Jersey study areas in 1991-1994. Adult osprey feathers were sampled from three Great Lakes study areas in 1991. Feathers sampled from chicks (approximately 28-35 days old) appear to be better indicators of local contaminant conditions since spatial patterns of mercury in known prey, yellow perch (Perca flavescens), also collected in these areas, were more similar to chick feathers than to eggs. Mercury levels were less variable in chick feathers than in eggs. Estimates of biomagnification factors using prey of known size at these areas were also less variable in feathers than in eggs. At naturally formed lakes, no significant correlation in mercury levels between eggs and chick feathers from the same nest was apparent, suggesting that the source of mercury contamination was not the same in these two tissues: mercury levels in eggs reflect mercury acquired on the breeding grounds, wintering grounds, and migratory route; mercury levels in chick feathers reflect local dietary conditions on the breeding grounds. Mercury levels in both osprey eggs and chick feathers were higher at the Ogoki Reservoir than at naturally formed lakes. Adult osprey feathers had higher mercury concentrations than chick feathers. Mercury levels in osprey eggs, chick feathers, and adult feathers did not approach levels associated with toxic reproductive effects.

  8. Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community.

    PubMed

    Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D

    2014-10-01

    Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.

  9. Atmospheric Mercury Transport and Chemistry in Western Canada and the Arctic: Results from the IPY Project INCATPA

    NASA Astrophysics Data System (ADS)

    Cole, A. S.; Steffen, A.; Hung, H.

    2010-12-01

    Elevated levels of mercury and other pollutants are an ongoing threat to the health of Arctic people and wildlife, despite the vast distance that separates the region from major anthropogenic sources of these contaminants. The International Polar Year (IPY) project INterContinental Atmospheric Transport of anthropogenic Pollutants to the Arctic (INCATPA) is investigating the transport of pollutants, specifically persistent organic pollutants and mercury, from source regions to the remote Arctic. Transport from Asia is of particular interest since Asian sources comprise a significant and increasing fraction of global mercury emissions. The INCATPA project is also studying how climate change may affect atmospheric chemistry and transport of these pollutants in the Arctic. Mercury studies under INCATPA have involved concurrent measurements of ambient mercury during the period 2007-2009 at new and ongoing sites in Arctic and Pan-Pacific regions. These data include a first look at ambient mercury levels in areas of western Canada where mercury had not previously been monitored. At some sites, mercury measurements were analyzed along with supplementary data to assess contributions from local and long-distance sources. Long-term Arctic monitoring data were also used to address how climate change may already be affecting mercury chemistry and deposition in this region. As IPY and the INCATPA project wind down, their legacy is a continuation of mercury monitoring at these sites and new international scientific relationships to support growing international cooperation on the delivery of sound science for the development of public policy on mercury.

  10. Multi-decadal Dynamics of Mercury in a Complex Ecosystem

    NASA Astrophysics Data System (ADS)

    Levin, L.

    2016-12-01

    A suite of air quality and watershed models was applied to track the ecosystem contributions of mercury (Hg), as well as arsenic (As), and selenium (Se) from local and global sources to the San Juan River basin in the Four Corners region of the American Southwest. Long-term changes in surface water and fish tissue mercury concentrations were also simulated, out to the year 2074.Atmospheric mercury was modeled using a nested, spatial-scale modeling system comprising GEOS-Chem (global scale) and CMAQ-APT (national and regional) models. Four emission scenarios were modeled, including two growth scenarios for Asian mercury emissions. Results showed that the average mercury deposition over the San Juan basin was 21 µg/m2-y. Source contributions to mercury deposition range from 2% to 9% of total deposition prior to post-2016 U.S. controls for air toxics regulatory compliance. Most of the contributions to mercury deposition in the basin are from non-U.S. sources. Watershed simulations showed power plant contributions to fish tissue mercury never exceeded 0.035% during the 85-year model simulation period, even with the long-term growth in fish tissue mercury over that period. Local coal-fired power plants contributed relatively small fractions to mercury deposition (less than 4%) in the basin; background and non-U.S. anthropogenic sources dominated. Fish-tissue mercury levels are projected to increase through 2074 due to growth projections for non-U.S. emission sources. The most important contributor to methylmercury in the lower reaches of the watershed was advection of MeHg produced in situ at upstream headwater locations.

  11. Mercury Production and Use in Colonial Andean Silver Production: Emissions and Health Implications

    PubMed Central

    Hagan, Nicole A.

    2012-01-01

    Background: Colonial cinnabar mining and refining began in Huancavelica, Peru, in 1564. With a local source of mercury, the amalgamation process was adopted to refine silver in Potosí, Bolivia, in the early 1570s. As a result, large quantities of mercury were released into the environment. Objectives: We used archival, primary, and secondary sources to develop the first estimate of mercury emissions from cinnabar refining in Huancavelica and to revise previous estimates of emissions from silver refining in Potosí during the colonial period (1564–1810). Discussion: Although other estimates of historical mercury emissions have recognized Potosí as a significant source, Huancavelica has been overlooked. In addition, previous estimates of mercury emissions from silver refining under-estimated emissions because of unrecorded (contra-band) production and volatilization of mercury during processing and recovery. Archival descriptions document behavioral and health issues during the colonial period that are consistent with known effects of mercury intoxication. Conclusions: According to our calculations, between 1564 and 1810, an estimated 17,000 metric tons of mercury vapor were emitted from cinnabar smelting in Huancavelica, and an estimated 39,000 metric tons were released as vapor during silver refining operations in Potosí. Huancavelica and Potosí combined contributed > 25% of the 196,000 metric tons of mercury vapor emissions in all of Latin America between 1500 and 1800. The historical record is laden with evidence of mercury intoxication consistent with effects recognized today. Our estimates serve as the foundation of investigations of present-day contamination in Huancavelica and Potosí resulting from historical emissions of mercury. PMID:22334094

  12. An evaluation of mercury levels in Louisiana fish: trends and public health issues.

    PubMed

    Katner, Adrienne; Sun, Mei-Hung; Suffet, Mel

    2010-11-01

    To characterize statewide fish tissue mercury levels in edible finfish the first comprehensive analysis of Louisiana's fish tissue mercury database was conducted. Analyses were based on fifteen years of fish tissue mercury data collected from 368 waterbodies between 1994 and 2008 (n=14,344). The overall objectives of this study were to establish baseline fish tissue mercury levels; and evaluate species-specific temporal and spatial trends in fish tissue mercury levels. Fish tissue mercury levels ranged from 0.001 ppm (the detection limit) to 5.904 ppm for king mackerel; with an overall geometric mean of 0.218 ppm. Ninety-five percent of samples had mercury levels below the FDA's action level of 1.0 ppm for methylmercury in commercial food. Forty-four percent of all samples had mercury levels above the U.S. EPA's methylmercury fish tissue criterion of 0.3 ppm for sportfish. Species of potential concern include cobia, king mackerel, blackfin tuna, greater amberjack, spotted bass, bowfin, largemouth bass and freshwater drum. There was a significant but small decline in statewide length-adjusted largemouth bass mercury levels between 1994-1999 to 2003-2008 (p<0.05). The highest fish mercury levels were observed in Pearl, Calcasieu, Mermentau, Ouachita, Pontchartrain and Sabine basins. Length-adjusted largemouth bass mercury levels were significantly higher in wetlands and rivers/streams vs. lakes; and in wetlands vs. estuaries (p<0.05). Data were analyzed from a public health perspective to make recommendations for optimizing monitoring and outreach. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. [Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau].

    PubMed

    Sun, Xue-jun; Wang, Kang; Guo, Jun-ming; Kang, Shi-chang; Zhang, Guo-shuai; Huang, Jie; Cong, Zhi-yuan; Zhang, Qiang-gong

    2016-02-15

    To investigate the transport of mercury from glacier to runoff in typical inland glacial area in the Tibetan Plateau, we selected Zhadang glacier and Qugaqie river Basin located in the Nyainqentanglha Range region and collected samples from snow pit, glacier melt-water and Qugaqie river water during 15th August to 9'h September 2011. Mercury speciation and concentrations were determined and their distribution and controlling factors in different environmental compartments were analyzed. The results showed that the average THg concentrations were (3.79 +/- 5.12) ng x L(-1), (1.06 +/- 0.77) ng x L(-1) and (1.02 +/- 0.24) ng x L(-1) for glacier snow, glacier melt-water and Qugaqie river water, respectively, all of which were at the global background levels. Particulate-bound mercury accounted for large proportion of mercury in all environmental matrices, while mercury in glacial melt-water was controlled by total suspended particle, and mercury in Qugaqie river water co-varied with runoff. With the increase of temperature, glacier melted and released water as well as mercury into glacier-fed river. Total mercury concentrations in glacier melt water, upstream and downstream peaked at 14:00, 16:00 and after 20:00, respectively, reflecting the process of mercury release from glacier and its subsequent transport in the glacier fed river. The transport of riverine mercury was controlled by multiple factors. Under the context of climate change, glacier ablation and the increasing runoff will play increasingly important roles in mercury release and transport.

  14. Mercury residues in tissues of dead and surviving birds fed methylmercury

    USGS Publications Warehouse

    Finley, M.T.; Stickel, W.H.; Christensen, R.E.

    1979-01-01

    Concentrations of mercury in passerine birds fed diets containing 40 ppm methylmercury were similar in tissues of birds that died from mercury poisoning and in those that were sacrificed after half the group had died. Residues were higher in tissues of birds that died, but the differences were not statistically significant. Residue levels were highest in livers, followed by kidneys and brains. Levels of mercury were similar in breast muscle, carcass, and whole body. Mercury levels were highest in redwinged blackbirds, lowest in grackles, and intermediate in starlings and cowbirds. Mercury concentrations exceeded 20 ppm in all tissues of all species and were similar to levels reported in wild birds known to have died of mercury poisoning.

  15. Impact of the addition of chicken litter on mercury speciation and emissions from coal combustion in a laboratory-scale fluidized bed combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songgeng Li; Shuang Deng; Andy Wu

    Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6more » figs., 5 tabs.« less

  16. Overview of Mercury Magnetospheric Orbiter (MMO) for BepiColombo

    NASA Astrophysics Data System (ADS)

    Murakami, G.; Hayakawa, H.; Fujimoto, M.; BepiColombo Project Team

    2018-05-01

    The next Mercury exploration mission BepiColombo will be launched in October 2018 and will arrive at Mercury in December 2025. We present the current status, science goals, and observation plans of JAXA's Mercury Magnetospheric Orbiter (MMO).

  17. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  18. Basic Information about Mercury and Air Toxics Standards

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has proposed Mercury and Air Toxics Standards (MATS) for power plants to limit mercury, acid gases and other toxic pollution from power plants. This page describes how federal mercury standards work.

  19. Active methods of mercury removal from flue gases.

    PubMed

    Marczak, Marta; Budzyń, Stanisław; Szczurowski, Jakub; Kogut, Krzysztof; Burmistrz, Piotr

    2018-03-23

    Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year -1 . According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg -1 . The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m -3 for sub-bituminous coal and 17.5 μg m -3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243-277 μg Hg kg -1 , while the largest fraction at only 95 μg Hg kg -1 . The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m -3 . The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m -3 . The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  20. Effects of commonly used cooking practices on total mercury concentration in fish and their impact on exposure assessments.

    PubMed

    Morgan, J N; Berry, M R; Graves, R L

    1997-01-01

    The effects of cooking practices commonly used by Native Americans on total mercury concentrations in fish were investigated. A preparation factor relating mercury concentrations in fish as prepared for consumption to mercury concentration data as measured in typical environmental monitoring programs was calculated. Preparation factors are needed to provide risk assessors with a more accurate estimate of the actual amount of mercury ingested through consumption of contaminated fish. Data on fish preparation and consumption practices of two communities of Chippewa residing on the shores of Lake Superior in northern Wisconsin were used to select practices for study. The most commonly consumed species, walleye and lake trout, were selected. Whitefish livers were also selected for study. Commonly used cooking techniques including panfrying, deep-frying, baking, boiling, and smoking were duplicated in the laboratory. Total mercury concentrations were determined in fish portions before and after cooking and in a portion representative of that analyzed in programs to assess water quality (skin-on fillets). Total mercury was determined by microwave digestion-cold vapor atomic absorption spectroscopy. Mercury concentrations (wet weight basis) in panfried, baked, and boiled walleye fillets and deep-fried and baked whitefish livers ranged from 1.1 to 1.5 times higher than in corresponding raw portions. In lake trout, mercury concentrations were 1.5 to 2.0 times higher in cooked portions than in the raw portion. However, total mercury levels were constant before and after cooking, indicating the concentration effect is caused by weight (moisture and fat) loss. The addition of lemon juice to potentially release mercury from its bound state and promote volatilization did not exert any measurable influence on mercury concentrations in cooked walleye. In some cases mercury concentrations were increased with increased cooking times due to further loss of moisture and fat. Preparation factors (defined as the ratio of mercury concentration in cooked fish to the mercury concentration in the environmental portion) ranged from 1.3 to 2.0. Results suggest that consideration be given to the use of preparation factors in risk assessments, exposure assessments, or issuance of fish advisories where mercury concentration in raw fish tissue are used in conjunction with cooked fish meal sizes.

  1. Prediction of mercury bioavailability to common carp (Cyprinus carpio L.) using the diffusive gradient in thin film technique.

    PubMed

    Pelcová, Pavlína; Vičarová, Petra; Ridošková, Andrea; Dočekalová, Hana; Kopp, Radovan; Mareš, Jan; Poštulková, Eva

    2017-11-01

    The mercury bioaccumulation by common carp (Cyprinus carpio L.) tissues (gills, skin, eyes, scales, muscle, brain, kidneys, liver, and spleen) and the capability of the diffusive gradient in thin film (DGT) technique to predict bioavailability of mercury for individual carp's tissues were evaluated. Carp and DGT units were exposed to increasing concentrations of mercury (Hg 2+ : 0 μg L -1 , 0.5 μg L -1 , 1.5 μg L -1 and 3.0 μg L -1 ) in fish tanks for 14 days. In the uncontaminated fish group, the highest mercury concentration was determined in the muscle tissues and, in fish groups exposed to mercury, the highest mercury concentration was determined in the detoxification (kidneys) and input (gills) organs. A strong and positive correlation between the rate of mercury uptake by the DGT technique and the rate of mercury accumulation by fish tissues (gills, skin, scales, and eyes) was observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Accumulation of Mercury in The Tissues of the Great Cormorant (Phalacrocorax carbo) From Common Carp.

    PubMed

    Kral, Tomas; Blahova, Jana; Doubkova, Veronika; Farkova, Dagmar; Vecerek, Vladimir; Svobodova, Zdenka

    2017-02-01

    The aim of this work is to assess mercury content in the great cormorant in the Třeboň region pond systems (Czech Republic) in terms of its potential to accumulate mercury from common carp. Selected tissues samples were taken from 51 cormorants and 30 common carp. In the food chain the cormorant was found to have the potential to accumulate mercury, where the muscle total mercury was roughly 35 times higher compared to the total mercury content in the carp muscle as its food. A statistically significantly higher overall mercury content (p < 0.01) has been found in the kidney and liver (2.23 ± 0.30, 2.12 ± 0.22 mg/kg) compared to other tissues examined in cormorants. The proportion of muscle methylmercury in the total mercury content of the cormorant was within the range 64.3%-87.3%. The results can help us to gain a better understanding of how mercury is distributed and accumulated in the aquatic food chain.

  3. Questions about Mercury's role in comparative planetary geophysics

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Weidenschilling, S. J.; Davis, D. R.; Greenberg, R.; Leake, M. A.

    1985-01-01

    Problems which have arisen in formulating a mutually consistent picture of Mercury's evolution are outlined. It appears that one or more of the following widely adopted assumptions are wrong about Mercury: (1) its original composition at least approximately resulted from equilibrium condensation; (2) its magnetic field arises from a still-active dynamo; (3) its thermal evolution should have yielded early core formation followed by cooling and a global contraction approaching 20 km in the planet's radius; (4) Mercury's surface is basaltic and the intercrater plains are of volcanic origin. It is suggested that Mercury's role in comparative planetology be reevaluated in the context of an alternative timescale based on the possibility that Mercury was subjected to a continuing source of cratering projectiles over recent aeons, which have not impacted the other terrestrial planets. Although such vulcanoids have not yet been discovered, the evolution of Mercury's orbit due to secular perturbations could well have led to a prolonged period of sweeping out any intra-Mercurian planetesimals that were originally present. Mercury's surface could be younger than previously believed, which explains why Mercury's core is still molten.

  4. Mercury toxicity in the aquatic oligochaete Sparganophilus pearsei: I. Variation in resistance among populations.

    PubMed

    Vidal, D E; Horne, A J

    2003-08-01

    Mercury contamination has become a problem in many San Francisco Bay Area watersheds due to its elevated presence in sediments and aquatic organisms. The present study used laboratory lethal toxicity (LC50) tests to examine the mercury tolerance of aquatic oligochaete worms, Sparganophilus pearsei, from contaminated and uncontaminated areas. The oligochaetes were collected in the following fresh water reservoirs: Sandy Wool (reference area), San Pablo, Lake Anza, Lake Herman, and Guadalupe. These last four reservoirs were contaminated with levels of mercury that ranged from 1.5 to 2 mg/kg (wet weight). Mercury concentrations in sediment and tissue from Sandy Wool were below detection limits and worms from this site were the least tolerant of mercury in laboratory exposures (LC50 = 0.22 mg/L). Worms from the other, more contaminated, reservoirs contained elevated tissue mercury concentrations and were more tolerant in laboratory tests (LC50 = 1.48-2.19 mg/L). The present study demonstrates that different populations of the aquatic oligochaete S. pearsei have developed different tolerances to mercury depending on their previous history of exposure to mercury contamination.

  5. Mercury Test on macroalgae from Burung and Tikus Island, Jakarta

    NASA Astrophysics Data System (ADS)

    Novianty, H.; Herandarudewi, S. M. C.; Suratno

    2018-04-01

    Environmental pollution, caused by the introduction of hazardous substances such as heavy metals into coastal waters, affects not only the condition of the waters but also the source of food that will be contaminated by hazardous metals, one of them is mercury (Hg). Mercury is toxic metal which could cause damage to the human body in certain threshold amounts. The aim of this study was to determin the content of mercury in several species of algae from Burung and Tikus Island, Jakarta. This study was using a descriptive method. The samples were collected from Burung and Tikus Island by simple rundown sampling. Mercury level was measured by NIC3000 mercury analyzer tool. The results showed that none of the mercury levels have passed 0.5 mg/kg (the safety standart level of mercury by SNI (Indonesian National Standard)7387 in 2019) mangrove. From tikus Island had lower total mercury than the ones from Burung Island. Burung Island is located near Pari Island which is a residential area, where pollution is more likely to occur.

  6. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation.

    PubMed

    Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D

    2015-08-15

    The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Phenyl mercuric acetate (PMA): mercury-bearing flexible gymnasium floors in schools--evaluation of hazards and controlled abatement.

    PubMed

    Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris

    2008-06-01

    Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.

  8. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites.

    PubMed

    Khwaja, Mahmood A; Abbasi, Maryam Shabbir

    2014-01-01

    Mercury (Hg), also known as quick silver, is an essential constituent of dental amalgam. It is a toxic substance of global concern. Children are more at risk from mercury poisoning which affects their neurological development and brain. In the past, a number of studies at dental sites in many countries have been carried out and reported. The present report briefly describes and discusses our recent investigations carried out at 34 dental sites (teaching institutions, hospitals and private clinics) in Pakistan. It is evident from the data that at many sites the indoor mercury vapor levels exceed far above the permissible limit recommended for safe physical and mental health. At these sites, public in general and the medical, paramedical staff and vulnerable population in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. To minimize such risk, some of the recommendations are, best in-house environmental practices for occupational health and safety, mercury contaminated waste reduction at source, mercury specific legislation and ratification of Minamata convention on mercury by Pakistan and other world governments at the earliest time possible.

  9. From Midges to Spiders: Mercury Biotransport in Riparian Zones Near the Buffalo River Area of Concern (AOC), USA.

    PubMed

    Pennuto, C M; Smith, M

    2015-12-01

    Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p < 0.001), indicating that mercury depuration is rapid or tissue dilution occurs in these riparian predators. Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.

  10. Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02

    USGS Publications Warehouse

    Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.

    2003-01-01

    Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.

  11. Monitoring and assessment of mercury pollution in the vicinity of a chloralkali plant. III. Concentration and genotoxicity of mercury in the industrial effluent and contaminated water of Rushikulya estuary, India.

    PubMed

    Panda, K K; Lenka, M; Panda, B B

    1992-01-01

    Aquatic mercury pollution of the Rushikulya estuary in the vicinity of the chloralkali plant at Ganjam, India was monitored over a period from October 1987 to May 1989. The concentrations of aquatic mercury in the water samples taken from the effluent channel and from different sites along the course of the estuary covering a distance of 2 km were periodically recorded and ranged from 0 to 0.5 mg/l. The bioconcentration and genotoxicity of aquatic mercury in the samples were assessed by the Allium micronucleus (MNC) assay. The frequency of cells with MNC was highly correlated not only with bioconcentrated mercury (root mercury) but also with the levels of aquatic mercury. The threshold assessment values such as effective concentration fifty (EC50) for root growth, lowest effective concentration tested (LECT), and highest ineffective concentration tested (HICT) for induction of MNC in Allium MNC assay for the present aquatic industrial mercury were determined to be 0.14, 0.06 and 0.02 mg/l, respectively.

  12. Mercury concentration on Enhalus acoroides and Thalassia hemprichii at Seribu Islands

    NASA Astrophysics Data System (ADS)

    Suratno; Irawan, Andri

    2018-02-01

    Mercury is a toxic heavy metal element that can damage embryo development. Although this element is highly toxic, some human activities such as mining and industries are still using it. The uncontrolled usage of this element leads to pollution problem in the environment, which includes the seagrass ecosystem in the coastal area of Seribu Islands. For that, to gather more information about mercury pollution in the seagrass beds of these islands, the concentration of mercury (Hg) was measured in sediment, rhizomes, roots and leaves of two species of seagrass (Enhalus acoroides and Thalassia hemprichii) from Lancang Island, Pari Island and Panggang Island at Seribu Islands, Indonesia in April-May 2017. The highest concentration of mercury was found in sediment on Lancang Island. The concentration of mercury was significantly higher on leaves compare to on roots or rhizomes in E. acoroides on Lancang Island and Panggang Island. T. hemprichii accumulate mercury higher than E. acoroides on Lancang Island. Overall, mercury accumulation on both species ranges at 7.12 - 87.41 ug/kg dw and this shows that they have the potential as bio-indicator of mercury bio accumulation.

  13. Mercury content in marketed cosmetics: analytical survey in Shijiazhuang, China.

    PubMed

    Wang, Li; Zhang, Hong

    2015-01-01

    Mercury is one of the skin-lightening ingredients in cosmetics as mercury ions are thought to inhibit the synthesis of the skin pigment melanin in melanocyte cells. The objective of this study was to evaluate the mercury levels of cosmetics currently marketed in Shijiazhuang, a northern city in China. We collected 146 random cosmetic samples and analyzed for mercury concentrations or levels by cold vapor atomic absorption spectrometry. Among the 146 samples, 134 (91.8%) were positive for mercury, and the concentrations of mercury ranged from not detectable to 592 ng/g. Cosmetic samples for children and babies had the highest detection rate (100%), followed by shampoo and hair conditioner (92.3%) and skin-lightening cream (92.0%). All of them were lower than the acceptable limit (1 μg/g) in China. Cosmetics for skin had the highest mean mercury content (45 ng/g), followed by hair products (42.1 ng/g). The concentrations of mercury detected in samples were lower than the current legal limit in China, indicating it may not pose a risk to consumers.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Shah, H.; Bannochie, C. J.

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less

  15. Mercury Emission Measurement at a CFB Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Pavlish; Jeffrey Thompson; Lucinda Hamre

    2009-02-28

    In response to pending regulation to control mercury emissions in the United States and Canada, several projects have been conducted to perform accurate mass balances at pulverized coal (pc)-fired utilities. Part of the mercury mass balance always includes total gaseous mercury as well as a determination of the speciation of the mercury emissions and a concentration bound to the particulate matter. This information then becomes useful in applying mercury control strategies, since the elemental mercury has traditionally been difficult to control by most technologies. In this instance, oxidation technologies have proven most beneficial for increased capture. Despite many years ofmore » mercury measurement and control projects at pc-fired units, far less work has been done on circulating fluidized-bed (CFB) units, which are able to combust a variety of feedstocks, including cofiring coal with biomass. Indeed, these units have proven to be more problematic because it is very difficult to obtain a reliable mercury mass balance. These units tend to have very different temperature profiles than pc-fired utility boilers. The flexibility of CFB units also tends to be an issue when a mercury balance is determined, since the mercury inputs to the system come from the bed material and a variety of fuels, which can have quite variable chemistry, especially for mercury. In addition, as an integral part of the CFB operation, the system employs a feedback loop to circulate the bed material through the combustor and the solids collection system (the primary cyclone), thereby subjecting particulate-bound metals to higher temperatures again. Despite these issues, CFB boilers generally emit very little mercury and show good native capture. The Energy & Environmental Research Center is carrying out this project for Metso Power in order to characterize the fate of mercury across the unit at Rosebud Plant, an industrial user of CFB technology from Metso. Appropriate solids were collected, and flue gas samples were obtained using the Ontario Hydro method, mercury continuous emission monitors, and sorbent trap methods. In addition, chlorine and fluorine were determined for solids and in the flue gas stream. Results of this project have indicated a very good mercury mass balance for Rosebud Plant, indicating 105 {+-} 19%, which is well within acceptable limits. The mercury flow through the system was shown to be primarily in with the coal and out with the flue gas, which falls outside of the norm for CFB boilers.« less

  16. DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM

    EPA Science Inventory

    To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...

  17. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  18. MERCURY-ATLAS (MA)-9 - SHEPARD, ALAN B., JR. ASTRONAUT - MERCURY CONTROL CENTER (MCC) - CAPE

    NASA Image and Video Library

    1963-05-16

    S63-07857 (15-16 May 1963) --- Astronaut Alan Shepard (left) and Walter C. Williams monitor progress of the Mercury Atlas 9 (MA-9) mission from Mercury Control Center, Cape Canaveral, Florida. Photo credit: NASA

  19. CURRENT METHODS AND RESEARCH STRATEGIES FOR MODELING ATMOSPHERIC MERCURY

    EPA Science Inventory

    The atmospheric pathway of the global mercury cycle is known to be the primary source of mercury contamination to most threatened aquatic ecosystems. Current efforts toward numerical modeling of atmospheric mercury are hindered by an incomplete understanding of emissions, atmosp...

  20. A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY AIR/WATER EXCHANGE PARTNERS

    EPA Science Inventory

    Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury air/water exchange is limited by uncertainties in our understanding of all gaseous a...

  1. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  2. Marine foraging ecology influences mercury bioaccumulation in deep-diving northern elephant seals

    PubMed Central

    Peterson, Sarah H.; Ackerman, Joshua T.; Costa, Daniel P.

    2015-01-01

    Mercury contamination of oceans is prevalent worldwide and methylmercury concentrations in the mesopelagic zone (200–1000 m) are increasing more rapidly than in surface waters. Yet mercury bioaccumulation in mesopelagic predators has been understudied. Northern elephant seals (Mirounga angustirostris) biannually travel thousands of kilometres to forage within coastal and open-ocean regions of the northeast Pacific Ocean. We coupled satellite telemetry, diving behaviour and stable isotopes (carbon and nitrogen) from 77 adult females, and showed that variability among individuals in foraging location, diving depth and δ13C values were correlated with mercury concentrations in blood and muscle. We identified three clusters of foraging strategies, and these resulted in substantially different mercury concentrations: (i) deeper-diving and offshore-foraging seals had the greatest mercury concentrations, (ii) shallower-diving and offshore-foraging seals had intermediate levels, and (iii) coastal and more northerly foraging seals had the lowest mercury concentrations. Additionally, mercury concentrations were lower at the end of the seven-month-long foraging trip (n = 31) than after the two-month- long post-breeding trip (n = 46). Our results indicate that foraging behaviour influences mercury exposure and mesopelagic predators foraging in the northeast Pacific Ocean may be at high risk for mercury bioaccumulation. PMID:26085591

  3. Mercury emissions and species during combustion of coal and waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Yao; Guangqian Luo; Minghou Xu

    2006-10-15

    The behaviors of mercury evolution for three types of coal and three types of dried sewage sludge are studied using a thermogravimetric (TG) analyzer. The mercury speciations in the flue gas from coal and sludge combustion are also analyzed by implementing a horizontal electrically heated tube furnace. Furthermore, the kinetic calculations of mercury oxidizing processes are carried out using the software package CHEMKIN in order to interpret the homogeneous mechanism of mercury oxidization. The results obtained show that the sulfur content in the sludge inhibits the evolution of mercury at low temperature if the Cl concentration is high enough. Chlorinemore » enhances mercury evolution in the coal combustion, whereas there is no relationship when the Cl concentration is high. Fixed carbon content plays a role in depression of the mercury evolution. Formation of oxidized mercury (HgCl{sub 2}) does not relate to the chlorine concentration in the raw coal and sludge. Whereas the ash and sulfur content in the sludge affects the Hg oxidization, kinetic calculations show that HgCl, Cl{sub 2}, and HOCl formation is important in producing the oxidized mercury during combustion of coal and sludge at 873 K. A suitable temperature for Hg oxidization when Cl{sub 2} is the oxidization resource is 700-1200 K. 32 refs., 10 figs., 5 tabs.« less

  4. The potential for Probiotic Bacteria from milkfish intestine in reducing mercury metals in skimmed milk media

    NASA Astrophysics Data System (ADS)

    Dwyana, Zaraswati; Priosambodo, D.; Haedar, N.; Erviani, A. E.; Djabura, A. K.; Sukma, R.

    2018-03-01

    Mercury (Hg) is one of the heavy metals that is harmful to humans. The accumulation of mercury in the body is generally derived from food. Several types of bacteria from intestine of milkfish are known to reduce mercury concentration. People can take advantage of this bacterial ability by eating it through probiotic foods. This research conducted to figure out the potential for probiotic bacteria from milkfish intestine in reducing mercury. Isolation from probiotic bacteria from milkfish intestine conducted with grown the isolates in MRSA medium with addition of 1% CaCO3. Twelve isolate were obtained from milkfish intestine. Mercury resistance tested was performed by measuring cell density using a spectrophotometer at concentrations of 10, 15 and 20 ppm respectively in skim milk media. Probiotic tests (gastric acid, bile salts and antimicrobial activity) for MRSB media was also conducted. Results showed that seven isolate were resistant to mercury in all concentrations and potential as probiotics. All resistant isolate then tested for skim milk media with addition of 5, 10, 20 ppm mercury acetate respectively. Result showed that only one isolated was able to reduce the concentration of mercury (Hg) in all variations on concentration and potential as mercury reducer probiotic bacteria.

  5. A Mass Balance for Mercury in the San Francisco Bay Area

    PubMed Central

    MacLeod, Matthew; McKone, Thomas E.; Mackay, Don

    2008-01-01

    We develop and illustrate a general regional multi-species model that describes the fate and transport of mercury in three forms, elemental, divalent, and methylated, in a generic regional environment including air, soil, vegetation, water and sediment. The objectives of the model are to describes the fate of the three forms of mercury in the environment and determine the dominant physical sinks that remove mercury from the system. Chemical transformations between the three groups of mercury species are modeled by assuming constant ratios of species concentrations in individual environmental media. We illustrate and evaluate the model with an application to describe the fate and transport of mercury in the San Francisco Bay Area of California. The model successfully rationalizes the identified sources with observed concentrations of total mercury and methyl mercury in the San Francisco Bay Estuary. The mass balance provided by the model indicates that continental and global background sources control mercury concentrations in the atmosphere but loadings to water in the San Francisco Bay estuary are dominated by runoff from the Central Valley catchment and re-mobilization of contaminated sediments deposited during past mining activities. The model suggests that the response time of mercury concentrations in the San Francisco Bay estuary to changes in loadings is long, of the order of 50 years. PMID:16190232

  6. Partitioning of mercury in aqueous biphasic systems and on ABEC resins.

    PubMed

    Rogers, R D; Griffin, S T

    1998-06-26

    Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABS) can be utilized to separate and recover metal ions in environmental and hydrometallurgical applications. A concurrent study was conducted comparing the partitioning of mercury between aqueous layers in an ABS [Me-PEG-5000/(NH4)2SO4] and partitioning of mercury from aqueous solutions to aqueous biphasic extraction chromatographic (ABEC-5000) resins. In ammonium sulfate solutions, mercury partitions to the salt-rich phase in ABS, but by using halide ion extractants, mercury will partition to the PEG-rich phase after formation of a chloro, bromo or iodo complex. The efficacy of the extractant increases in the order Cl-

  7. Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal).

    PubMed

    Figueiredo, Neusa L; Canário, João; O'Driscoll, Nelson J; Duarte, Aida; Carvalho, Cristina

    2016-02-01

    Aerobic mercury-resistant bacteria were isolated from the sediments of two highly mercury-polluted areas of the Tagus Estuary (Barreiro and Cala do Norte) and one natural reserve area (Alcochete) in order to test their capacity to transform mercury. Bacterial species were identified using 16S rRNA amplification and sequencing techniques and the results indicate the prevalence of Bacillus sp. Resistance patterns to mercurial compounds were established by the determination of minimal inhibitory concentrations. Representative Hg-resistant bacteria were further tested for transformation pathways (reduction, volatilization and methylation) in cultures containing mercury chloride. Bacterial Hg-methylation was carried out by Vibrio fluvialis, Bacillus megaterium and Serratia marcescens that transformed 2-8% of total mercury into methylmercury in 48h. In addition, most of the HgR bacterial isolates showed Hg(2+)-reduction andHg(0)-volatilization resulting 6-50% mercury loss from the culture media. In summary, the results obtained under controlled laboratory conditions indicate that aerobic Hg-resistant bacteria from the Tagus Estuary significantly affect both the methylation and reduction of mercury and may have a dual face by providing a pathway for pollution dispersion while forming methylmercury, which is highly toxic for living organisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. High levels of maternally transferred mercury disrupt magnetic responses of snapping turtle hatchlings (Chelydra serpentina).

    PubMed

    Landler, Lukas; Painter, Michael S; Coe, Brittney Hopkins; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2017-09-01

    The Earth's magnetic field is involved in spatial behaviours ranging from long-distance migration to non-goal directed behaviours, such as spontaneous magnetic alignment (SMA). Mercury is a harmful pollutant most often generated from anthropogenic sources that can bio-accumulate in animal tissue over a lifetime. We compared SMA of hatchling snapping turtles from mothers captured at reference (i.e., low mercury) and mercury contaminated sites. Reference turtles showed radio frequency-dependent SMA along the north-south axis, consistent with previous studies of SMA, while turtles with high levels of maternally inherited mercury failed to show consistent magnetic alignment. In contrast, there was no difference between reference and mercury exposed turtles on standard performance measures. The magnetic field plays an important role in animal orientation behaviour and may also help to integrate spatial information from a variety of sensory modalities. As a consequence, mercury may compromise the performance of turtles in a wide variety of spatial tasks. Future research is needed to determine the threshold for mercury effects on snapping turtles, whether mercury exposure compromises spatial behaviour of adult turtles, and whether mercury has a direct effect on the magnetoreception mechanism(s) that mediate SMA or a more general effect on the nervous system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection.

    PubMed

    Jones, Andrew P; Hoffmann, Jeffrey W; Smith, Dennis N; Feeley, Thomas J; Murphy, James T

    2007-02-15

    Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal "above and beyond" the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166000/lb Hg removed.

  10. Poultry manure as raw material for mercury adsorbents in gas applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klasson, K.T.; Lima, I.M.; Boihem, L.L.

    2009-09-30

    The quantity of poultry manure generated each year is large, and technologies that take advantage of the material should be explored. At the same time, increased emphasis on the reduction of mercury emissions from coal-fired electric power plants has resulted in environmental regulations that may, in the future, require application of activated carbons as mercury sorbents. The sorbents could be injected into the flue gas stream, where they could adsorb the mercury. The sorbents (now containing mercury) would be removed via filtration or other means from the flue gas. Our preliminary work has demonstrated that activated carbon made from poultrymore » manure can adsorb mercury from air with good efficiency. In laboratory experiments, an activated carbon made from turkey cake manure removed the majority of elemental mercury from a hot air stream. Other activated carbons made from chicken and turkey litter manure were also efficient. In general, unwashed activated carbons made from poultry manure were more efficient in removing mercury than their acid-washed counterparts. The results suggest that the adsorption of mercury was mainly due to chemisorption on the surface of the carbon. Other potential uses for the activated carbons are the removal of mercury from air and natural gas.« less

  11. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    PubMed

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Formation of soluble mercury oxide coatings: Transformation of elemental mercury in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carrie L.; Watson, David B.; Lester, Brian P.

    2015-09-21

    In this study, the impact of mercury (Hg) on human and ecological health has been known for decades. Although a treaty signed in 2013 by 147 nations regulates future large-scale mercury emissions, legacy Hg contamination exists worldwide and small-scale releases will continue. The fate of elemental mercury, Hg(0), lost to the subsurface and its potential chemical transformation that can lead to changes in speciation and mobility are poorly understood. Here, we show that Hg(0) beads interact with soil or manganese oxide solids and X-ray spectroscopic analysis indicates that the soluble mercury coatings are HgO. Dissolution studies show that, after reactingmore » with a composite soil, >20 times more Hg is released into water from the coated beads than from a pure liquid mercury bead. An even larger, >700 times, release occurs from coated Hg(0) beads that have been reacted with manganese oxide, suggesting that manganese oxides are involved in the transformation of the Hg(0) beads and creation of the soluble mercury coatings. Although the coatings may inhibit Hg(0) evaporation, the high solubility of the coatings can enhance Hg(II) migration away from the Hg(0)-spill site and result in potential changes in mercury speciation in the soil and increased mercury mobility.« less

  13. Distribution and speciation of mercury affected by humic acid in mariculture sites at the Pearl River estuary.

    PubMed

    Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun

    2018-05-14

    At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. FGD Additives to Segregate and Sequester Mercury in Solid Byproducts - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Searcy, K; Bltyhe, G M; Steen, W A

    2012-02-28

    Many mercury control strategies for U.S. coal-fired power generating plants involve co-benefit capture of oxidized mercury from flue gases treated by wet flue gas desulfurization (FGD) systems. For these processes to be effective at overall mercury control, the captured mercury must not be re-emitted to the atmosphere or into surface or ground water. The project sought to identify scrubber additives and FGD operating conditions under which mercury re-emissions would decrease and mercury would remain in the liquor and be blown down from the system in the chloride purge stream. After exiting the FGD system, mercury would react with precipitating agentsmore » to form stable solid byproducts and would be removed in a dewatering step. The FGD gypsum solids, free of most of the mercury, could then be disposed or processed for reuse as wallboard or in other beneficial reuse. The project comprised extensive bench-scale FGD scrubber tests in Phases I and II. During Phase II, the approaches developed at the bench scale were tested at the pilot scale. Laboratory wastewater treatment tests measured the performance of precipitating agents in removing mercury from the chloride purge stream. Finally, the economic viability of the approaches tested was evaluated.« less

  15. Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil.

    PubMed

    Sas-Nowosielska, Aleksandra; Galimska-Stypa, Regina; Kucharski, Rafał; Zielonka, Urszula; Małkowski, Eugeniusz; Gray, Laymon

    2008-02-01

    Phytoremediation, an approach that uses plants to remediate contaminated soil through degradation, stabilization or accumulation, may provide an efficient solution to some mercury contamination problems. This paper presents growth chamber experiments that tested the ability of plant species to stabilize mercury in soil. Several indigenous herbaceous species and Salix viminalis were grown in soil collected from a mercury-contaminated site in southern Poland. The uptake and distribution of mercury by these plants were investigated, and the growth and vitality of the plants through a part of one vegetative cycle were assessed. The highest concentrations of mercury were found at the roots, but translocation to the aerial part also occurred. Most of the plant species tested displayed good growth on mercury contaminated soil and sustained a rich microbial population in the rhizosphere. The microbial populations of root-free soil and rhizosphere soil from all species were also examined. An inverse correlation between the number of sulfur amino acid decomposing bacteria and root mercury content was observed. These results indicate the potential for using some species of plants to treat mercury contaminated soil through stabilization rather than extraction. The present investigation proposes a practical cost-effective temporary solution for phytostabilization of soil with moderate mercury contamination as well as the basis for plant selection.

  16. MESSENGER's first Mercury flyby: A summary of scientific observations

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; McNutt, Ralph L.; Boynton, William V.; Evans, Larry G.; Head, James W.; Krimigis, Stamatios M.; Murchie, Scott; Phillips, Roger J.; Slavin, James A.; Zuber, Maria T.

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, will be the first probe to orbit the planet Mercury in March 2011. Launched in August 2004, MESSENGER successfully completed the first of three flybys of Mercury in January 2008. The Mercury Dual Imaging System acquired an 11-color mosaic of part of the hemisphere not seen by Mariner 10, including the entire Caloris basin; several large monochrome mosaics at a range of resolutions; a series of color frames designed for photometric analysis; and inbound and outbound movies. The Mercury Atmospheric and Surface Composition Spectrometer obtained the first high-resolution spectral reflectance measurements (at ultraviolet to near-infrared wavelengths) of surface composition, conducted limb scans of exospheric species, and mapped the composition and structure of the tail region. The Magnetometer measured Mercury's internal field at low latitudes and documented the major plasma boundaries of Mercury's magnetosphere. The Energetic Particle and Plasma Spectrometer made the first measurements of low-energy ions in Mercury's magnetosphere. The Mercury Laser Altimeter carried out the first space altimetric profile of the planet. Other instruments in the payload provided baseline measurements that will aid in the interpretation of data from the mission orbital phase. Together, the MESSENGER flyby observations have begun to advance our understanding of the innermost planet.

  17. Toxic effects of mercury on the cell nucleus of Dictyostelium discoideum.

    PubMed

    Boatti, Lara; Rapallo, Fabio; Viarengo, Aldo; Marsano, Francesco

    2017-02-01

    Governmental agencies (www.epa.gov/mercury) and the scientific community have reported on the high toxicity due to mercury. Indeed, exposure to mercury can cause severe injury to the central nervous system and kidney in humans. Beyond its recognized toxicity, little is known regarding the molecular mechanisms involved in the actions of this heavy metal. Mercury has been also observed to form insoluble fibrous protein aggregates in the cell nucleus. We used D. discoideum to evaluate micronuclei formation and, since mercury is able to induce oxidative stress that could bring to protein aggregation, we assessed nuclear protein carbonylation by Western Blot. We observed a significant increase in micronuclei formation and 14 carbonylated proteins were identified. Moreover, we used isotope-coded protein label (ICPL) and mass spectrometry analysis of proteins obtained by lysis of purified nuclei, before of tryptic digestion to quantify nuclear proteins affected by mercury. In particular, we examined the effects of mercury that associate a classical genotoxic assay to proteomic effects into the nucleus. The data present direct evidences for mercury genotoxicity, nuclear protein carbonylation, quantitative change in core histones, and the involvement of pseudouridine synthase in mercury toxicity. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 417-425, 2017. © 2016 Wiley Periodicals, Inc.

  18. Improved estimates of filtered total mercury loadings and total mercury concentrations of solids from potential sources to Sinclair Inlet, Kitsap County, Washington

    USGS Publications Warehouse

    Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.

    2013-01-01

    Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base. Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (<3 milligrams per kilogram). In contrast, data from the November 2011 study indicated that the concentrations of filtered total mercury in the well located in the central fill area had tidally influenced concentrations of up to 500 nanograms per liter and elevated concentrations of total mercury of solids (29–41 milligrams per kilogram). This suggests that releases from this area, which has not been previously studied in detail, may be substantial. Previous measurements of total mercury of suspended solids in the dry dock discharges revealed high concentration of total mercury when suspended-solids concentrations were low. However, this result could have been owing to bias from sequential sampling during changing suspended‑solids concentrations. Sampling of two dry dock systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.

  19. The role of native lichens in the biomonitoring of gaseous mercury at contaminated sites.

    PubMed

    López Berdonces, Miguel A; Higueras, Pablo L; Fernández-Pascual, Mercedes; Borreguero, Ana M; Carmona, Manuel

    2017-01-15

    Contamination by atmospheric mercury has been assessed in two different areas from Spain (Las Cuevas, Ciudad Real and Flix, Tarragona) using lichens as biomonitors. The relationship established between mercury contents in the soils and the gaseous mercury (GM) was also observed. It was found that the GM is highest in the vicinity of the source and it is dispersed depending on of the distance to the source and the wind directions. The mercury concentration in the gas phase in Flix was higher than that found in Las Cuevas and also higher than the value that the US EPA recommended. The mercury bioaccumulation in the native lichens from genders Ramalina and Xanthoria were used as biomonitors for absorbing mercury in Las Cuevas and Flix, respectively. The mercury uptake by Ramalina was higher than the amount accumulated by Xanthoria, a difference that was mainly due to the lichen characteristics. The content of mercury in lichens in relation to the mercury in gas was fitted by a Freundlich type equation, indicating that the equilibrium between both phases was established. Besides, transplanted Ramalina lichen in Las Cuevas allowed to obtain the kinetic of mercury uptake. A kinetic model of first order based on the equilibrium was proposed and the mass transfer constants for each sampling station were estimated. As it was expected, these values increased with the predominant wind flow direction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mineralogy of the Mercurian Surface

    NASA Technical Reports Server (NTRS)

    Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Nittler, Larry R.; Peplowski, Patrick N.; Weider, Shoshana Z.; Evans, Larry R.; Frank, Elizabeth A.; McCoy, Timothy

    2016-01-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury for four years until April 2015, revealing its structure, chemical makeup, and compositional diversity. Data from the mission have confirmed that Mercury is a compositional end-member among the terrestrial planets. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) on board MESSENGER provided the first detailed geochemical analyses of Mercury's surface. These instruments have been used in conjunction with the Neutron Spectrometer and the Mercury Dual Imaging System to classify numerous geological and geochemical features on the surface of Mercury that were previously unknown. Furthermore, the data have revealed several surprising characteristics about Mercury's surface, including elevated S abundances (up to 4 wt%) and low Fe abundances (less than 2.5 wt%). The S and Fe abundances were used to quantify Mercury's highly reduced state, i.e., between 2.6 and 7.3 log10 units below the Iron-Wustite (IW) buffer. This fO2 is lower than any of the other terrestrial planets in the inner Solar System and has important consequences for the thermal and magmatic evolution of Mercury, its surface mineralogy and geochemistry, and the petrogenesis of the planet's magmas. Although MESSENGER has revealed substantial geochemical diversity across the surface of Mercury, until now, there have been only limited efforts to understand the mineralogical and petrological diversity of the planet. Here we present a systematic and comprehensive study of the potential mineralogical and petrological diversity of Mercury.

Top