Science.gov

Sample records for mercury detection induced

  1. MESSENGER X-Ray Spectrometer Detection of Electron-induced X-ray Fluorescence from Mercury's Surface

    NASA Astrophysics Data System (ADS)

    Starr, R. D.; Nittler, L. R.; Weider, S. Z.; Rhodes, E. A.; Schriver, D.; Schlemm, C. E., II; Solomon, S. C.

    2011-12-01

    The X-Ray Spectrometer (XRS) onboard the MESSENGER spacecraft measures elemental abundances on the surface of Mercury by detecting fluorescent X-ray emissions induced on the planet's surface by the incident solar X-ray flux. The most prominent fluorescent lines are the Kα lines from the elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The XRS began orbital observations on 23 March 2011 and has observed X-ray fluorescence from the surface of the planet during both "quiet" Sun and flaring conditions whenever a sunlit portion of Mercury has been within the XRS field of view. XRS can detect the characteristic X-rays of Mg, Al, and Si during quiet-Sun conditions, but solar flares are required to produce measureable signals from the elements of higher atomic number such as S, Ca, Ti, and Fe. Nevertheless, X-ray fluorescence up to the Ca fluorescent line (3.69 keV) has been detected from Mercury's surface at times when the XRS field of view included only unlit portions of the planet or during quiet-Sun illumination. To date, seven such events have been detected and are identified as electron-induced X-ray emission produced by ~1-10 keV electrons interacting with Mercury's surface. Electrons in this energy range were detected by the XRS during the three Mercury flybys, and since the beginning of orbital operations electrons of this same energy range have been detected by XRS during almost every orbit. These electron events last from minutes to tens of minutes. Electron transport models suggest that a large percentage of these quasi-trapped electrons do not complete even a single orbit about Mercury before impacting the surface. Knowledge of the precipitating electron distribution at the planet's surface makes it possible to infer surface composition from the measured fluorescent spectra, providing additional measurement opportunities for the XRS.

  2. Candidate Reactions for Mercury Detection Induced by Neutron and Alpha Particles

    SciTech Connect

    Toth, James J.; Wittman, Richard S.; Schenter, Robert E.; Cooper, John A.

    2007-03-21

    This paper summarizes modeling of mercury to activated states with alpha particles, neutrons, or deuterons, and the spectral emission from the activated products. Activation can occur with a source such as 242Cf , 241Am-Be, a neutron generator, or a particle accelerator, and the activation products measured if sufficient signal is provided. Identification and measurement of mercury by prompt gamma emission, generated by bombardment with neutrons is reported. Activation product reactions of (α, xn) (d, xn) (n,γ) and (n,p) are screened as candidate reactions. Initial calculations indicate the potential use of either alpha, or 14 MeV neutron activation to assess part per billion concentrations of mercury in the gaseous phase. Ultimately, data from sample analysis of ambient conditions flue gas will be used to assess mercury detection sensitivity and specificity under typical operating conditions.

  3. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Chao-Wei; Chang, Hsiang-Yu; Chang, Jia-Yaw; Huang, Chih-Ching

    2012-10-01

    In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic activity to a catalase-like activity. Based on this phenomenon, we developed a new method for detecting mercury ions through their deposition on bimetallic Pt/Au NPs to switch the catalytic activity of Pt/Au NPs. Pt/Au NPs could be easily prepared through reduction of Au3+ and Pt4+ by sodium citrate in a one-pot synthesis. The peroxidase catalytic activity of the Pt/Au NPs was controlled by varying the ratios of Pt to Au. The Pt0.1/Au NPs (prepared with a [Au3+]/[Pt4+] molar ratio of 9.0/1.0) showed excellent oxidation catalysis for H2O2-mediated oxidation of Amplex® Red (AR) to resorufin. The oxidized product of AR, resorufin, fluoresces more strongly (excitation/emission wavelength maxima ca. 570/585 nm) than AR alone. The peroxidase catalytic activity of Pt0.1/Au NPs was switched to catalase-like activity in the presence of mercury ions in a 5.0 mM tris(hydroxymethyl)aminomethane (Tris)-borate solution (pH 7.0) through the deposition of Hg on the particle surfaces owing to the strong Hg-Au metallic bond. The catalytic activity of Hg-Pt0.1/Au NPs is superior (by at least 5-fold) to that of natural catalase (from bovine liver). Under optimal solution conditions [5.0 mM Tris-borate (pH 7.0), H2O2 (50 mM), and AR (10 μM)] and in the presence of the masking agents polyacrylic acid and tellurium nanowires, the Pt0.1/Au NPs allowed the selective detection of inorganic mercury (Hg2+) and methylmercury ions (MeHg+) at concentrations as low as several nanomolar. This simple, fast, and cost-effective system enabled selective determination of the spiked concentrations of Hg2+ and MeHg+ in tap, pond, and stream waters.In this study, bimetallic platinum/gold nanoparticles (Pt/Au NPs) were found to exhibit peroxidase-like activity, and the deposition of mercury was found to switch the enzymatic

  4. Detecting potassium on Mercury

    NASA Technical Reports Server (NTRS)

    Killen, R. M.; Potter, A. E.; Morgan, T. H.

    1991-01-01

    A critical comment on the work of A.L. Sprague et al. (1990) is presented. It is argued that, in attributing an enhanced emission in the potassium D lines on Oct. 14, 1987 in the equatorial region of Mercury to a diffusion source centered on Caloris Basin, Sprague et al. misinterpreted the data. Sprague et al. present a reply, taking issue with the commenters.

  5. Localized surface plasmon resonance mercury detection system and methods

    DOEpatents

    James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.

    2016-03-22

    A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.

  6. Deployment of a sequential two-photon laser-induced fluorescence sensor for the detection of gaseous elemental mercury at ambient levels: fast, specific, ultrasensitive detection with parts-per-quadrillion sensitivity

    NASA Astrophysics Data System (ADS)

    Bauer, D.; Everhart, S.; Remeika, J.; Tatum Ernest, C.; Hynes, A. J.

    2014-12-01

    The operation of a laser-based sensor for gas-phase elemental mercury, Hg(0), is described. It utilizes sequential two-photon laser excitation with detection of blue-shifted laser-induced fluorescence (LIF) to provide a highly specific detection scheme that precludes detection of anything other than atomic mercury. It has high sensitivity, fast temporal resolution, and can be deployed for in situ measurements in the open atmosphere with essentially no perturbation of the environment. An ambient sample can also be pulled through a fluorescence cell, allowing for standard addition calibrations of the concentration. No type of preconcentration is required and there appears to be no significant interferences from other atmospheric constituents, including gas-phase oxidized mercury species. As a consequence, it is not necessary to remove oxidized mercury, commonly referred to as reactive gaseous mercury (RGM), from the air sample. The instrument has been deployed as part of an instrument intercomparison and compares well with conventional instrumentation that utilizes preconcentration on gold followed by analysis using cold-vapor atomic fluorescence spectroscopy (CVAFS). Currently, the achievable detection sensitivity is ~ 15 pg m-3 (~ 5 × 104 atoms cm-3, ~ 2 ppq) at a sampling rate of 0.1 Hz, i.e., averaging 100 shots with a 10 Hz laser system. Preliminary results are described for a 50 Hz instrument that utilizes a modified excitation sequence and has monitored ambient elemental mercury with an effective sampling rate of 10 Hz. Additional work is required to produce the precision necessary to perform eddy correlation measurements. Addition of a pyrolysis channel should allow for the measurement of total gaseous mercury (TGM) and hence RGM (by difference) with good sensitivity and time resolution.

  7. Colorimetric detection of mercury species based on functionalized gold nanoparticles.

    PubMed

    Chen, Ling; Li, Jinhua; Chen, Lingxin

    2014-09-24

    The speciation analysis of heavy metal pollutants is very important because different species induce different toxicological effects. Nanomaterial-assisted optical sensors have achieved rapid developments, displaying wide applications to heavy metal ions but few to metal speciation analysis. In this work, a novel colorimetric nanosensor strategy for mercury speciation was proposed for the first time, based on the analyte-induced aggregation of gold nanoparticles (Au NPs) with the assistance of a thiol-containing ligand of diethyldithiocarbamate (DDTC). Upon the addition of mercury species, because Hg-DDTC was more stable than Cu-DDTC, a place-displacement between Hg species and Cu(2+) would occur, and thereby the functionalized Au NPs would aggregate, resulting in a color change. Moreover, by virtue of the masking effect of ethylenediaminetetraacetic acid (EDTA), the nanosensor could readily discriminate organic mercury and inorganic mercury (Hg(2+)), and it is thus anticipated to shed some light on the colorimetric sensing of organic mercury. So, a direct, simple colorimetric assay for selective determination of Hg species was obtained, presenting high detectability, such as up to 10 nM for Hg(2+) and 15 nM for methylmercury. Meanwhile, the strategy offered excellent selectivity toward mercury species against other metal ions. The simple, rapid, and sensitive label-free colorimetric sensor for the determination of Hg species provided an attractive alternative to conventional methods, which usually involve sophisticated instruments, complicated processes, and long periods of time. More importantly, by using mercury as a model, an excellent nanomaterial-based optical sensing platform can be developed for speciation analysis of trace heavy metals, which can lead to nanomaterials stability change through smart functionalization and reasonable interactions.

  8. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    PubMed

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement. PMID:26836525

  9. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    PubMed

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  10. Mercury-induced autoimmunity in mice.

    PubMed

    Nielsen, Jesper Bo; Hultman, Per

    2002-10-01

    We have studied the effect of gender, genetics, and toxicokinetics on immune parameters in mercury-induced autoimmunity in mice. Data strongly suggest that the mechanism for mercury-induced autoimmunity involves modification of the autoantigen fibrillarin by mercury followed by a T-cell-dependent immune response driven by the modified fibrillarin. Mice with different H-2 haplotypes were treated with (203)HgCl(2) in a dose of 0.5-16 mg Hg/L drinking water for 10 weeks. Whole-body accumulation and renal accumulation of mercury were assessed. Serum antinuclear antibodies were used to evaluate the autoimmune response, and serum immunoglobulin E (IgE) to study effects on T-helper cells of type 2. Strains with a susceptible H-2 haplotype developed autoantibodies to the nucleolar protein fibrillarin (AFA) in a dose-dependent pattern within 2 weeks. The substantially lower whole-body and organ mercury level needed to induce AFA in the susceptible A.SW strain compared with the H-2 congenic B10.S strain demonstrates that genetic factors outside the H-2 region modify the autoimmune response. Mouse strains without the susceptible haplotype did not develop any autoimmune reaction irrespective of dose and organ deposition of mercury. In susceptible mouse strains, males and females had different thresholds for induction of autoimmune reactions. In susceptible strains, serum IgE increased dose dependently and reached a maximum after 1-2.5 weeks. A susceptible H-2 haplotype is therefore a prerequisite for the autoimmune response. Mercury exposure will modulate the response, qualitatively through the existence of dose-related thresholds for autoimmune response and quantitatively as increasing doses cause increasing autoimmune response. Further, gender and non-H-2 genes modulate both the induction and subsequent development of AFA. Induction of IgE seems not to be mechanistically linked to the AFA response.

  11. Conductometric Sensors for Detection of Elemental Mercury Vapor

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Homer, M. L.; Shevade, A. V.; Lara, L. M.; Yen, S.-P. S.; Kisor, A. K.; Manatt, K. S.

    2008-01-01

    Several organic and inorganic materials have been tested for possible incorporation into a sensing array in order to add elemental mercury vapor to the suite of chemical species detected. Materials have included gold films, treated gold films, polymer-carbon composite films, gold-polymer-carbon composite films and palladium chloride sintered films. The toxicity of mercury and its adverse effect on human and animal health has made environmental monitoring of mercury in gas and liquid phases important (1,2). As consumer products which contain elemental mercury, such as fluorescent lighting, become more widespread, the need to monitor environments for the presence of vapor phase elemental mercury will increase. Sensors in use today to detect mercury in gaseous streams are generally based on amalgam formation with gold or other metals, including noble metals and aluminum. Recently, NASA has recognized a need to detect elemental mercury vapor in the breathing atmosphere of the crew cabin in spacecraft and has requested that such a capability be incorporated into the JPL Electronic Nose (3). The detection concentration target for this application is 10 parts-per-billion (ppb), or 0.08 mg/m3. In order to respond to the request to incorporate mercury sensing into the JPL Electronic Nose (ENose) platform, it was necessary to consider only conductometric methods of sensing, as any other transduction method would have required redesign of the platform. Any mercury detection technique which could not be incorporated into the existing platform, such as an electrochemical technique, could not be considered.

  12. Subnanogram determination of inorganic and organic mercury by helium-microwave induced plasma-atomic emission spectrometry

    SciTech Connect

    Fukushi, K. ); Willie, S.N.; Sturgeon, R.E. )

    1993-02-01

    Inorganic and organic mercury were determined by helium-microwave induced plasma-atomic emission spectrometry following cold vapor generation. Whereas only inorganic mercury was reduced by stannous ion in an acidic medium, both inorganic and organic mercury (total mercury) were reduced by stannous ion in the presence of cupric ion in a basic medium. Organic mercury was determined as the difference between total and inorganic mercury. Detection limits for inorganic and organic mercury were 11 and 10 pg, respectively. The accuracy of the proposed method was verified through the determination of inorganic, total and organic mercury in two marine biological standard reference materials, DORM-1 and TORT-1. 21 refs., 1 fig., 4 tabs.

  13. Detecting Airborne Mercury by Use of Palladium Chloride

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Jewell, April; Manatt, Kenneth; Torres, Julia; Soler, Jessica; Taylor, Charles

    2009-01-01

    Palladium chloride films have been found to be useful as alternatives to the gold films heretofore used to detect airborne elemental mercury at concentrations of the order of parts per billion (ppb). Somewhat more specifically, when suitably prepared palladium chloride films are exposed to parts-per-billion or larger concentrations of airborne mercury, their electrical resistances change by amounts large enough to be easily measurable. Because airborne mercury adversely affects health, it is desirable to be able to detect it with high sensitivity, especially in enclosed environments in which there is a risk of leakage of mercury from lamps or other equipment. The detection of mercury by use of gold films involves the formation of gold/mercury amalgam. Gold films offer adequate sensitivity for detection of airborne mercury and could easily be integrated into an electronic-nose system designed to operate in the temperature range of 23 to 28 C. Unfortunately, in order to regenerate a gold-film mercury sensor, one must heat it to a temperature of 200 C for several minutes in clean flowing air. In preparation for an experiment to demonstrate the present sensor concept, palladium chloride was deposited from an aqueous solution onto sets of gold electrodes and sintered in air to form a film. Then while using the gold electrodes to measure the electrical resistance of the films, the films were exposed, at a temperature of 25 C, to humidified air containing mercury at various concentrations from 0 to 35 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury in room-temperature air at concentrations of at least 2.5 ppb and can readily be regenerated at temperatures <40 C.

  14. Mercury

    SciTech Connect

    Vilas, F.; Chapman, C.R.; Matthews, M.S.

    1988-01-01

    Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.

  15. Detection of concealed mercury with thermal neutrons

    SciTech Connect

    Bell, Z.W.

    1994-08-18

    In the United States today, governments at all levels and the citizenry are paying increasing attention to the effects, both real and hypothetical, of industrial activity on the environment. Responsible modem industries, reflecting this heightened public and regulatory awareness, are either substituting benign materials for hazardous ones, or using hazardous materials only under carefully controlled conditions. In addition, present-day environmental consciousness dictates that we deal responsibly with legacy wastes. The decontamination and decommissioning (D&D) of facilities at which mercury was used or processed presents a variety of challenges. Elemental mercury is a liquid at room temperature and readily evaporates in air. In large mercury-laden buildings, droplets may evaporate from one area only to recondense in other cooler areas. The rate of evaporation is a function of humidity and temperature; consequently, different parts of a building may be sources or sinks of mercury at different times of the day or even the year. Additionally, although mercury oxidizes in air, the oxides decompose upon heating. Hence, oxides contained within pipes or equipment, may be decomposed when those pipes and equipment are cut with saws or torches. Furthermore, mercury seeps through the pores and cracks in concrete blocks and pads, and collects as puddles and blobs in void spaces within and under them.

  16. Mercury heavy-metal-induced physiochemical changes and genotoxic alterations in water hyacinths [Eichhornia crassipes (Mart.)].

    PubMed

    Malar, Srinivasan; Sahi, Shivendra Vikram; Favas, Paulo J C; Venkatachalam, Perumal

    2015-03-01

    Mercury heavy metal pollution has become an important environmental problem worldwide. Accumulation of mercury ions by plants may disrupt many cellular functions and block normal growth and development. To assess mercury heavy metal toxicity, we performed an experiment focusing on the responses of Eichhornia crassipes to mercury-induced oxidative stress. E. crassipes seedlings were exposed to varying concentrations of mercury to investigate the level of mercury ions accumulation, changes in growth patterns, antioxidant defense mechanisms, and DNA damage under hydroponics system. Results showed that plant growth rate was significantly inhibited (52 %) at 50 mg/L treatment. Accumulation of mercury ion level were 1.99 mg/g dry weight, 1.74 mg/g dry weight, and 1.39 mg/g dry weight in root, leaf, and petiole tissues, respectively. There was a decreasing trend for chlorophyll a, b, and carotenoids with increasing the concentration of mercury ions. Both the ascorbate peroxidase and malondialdehyde contents showed increased trend in leaves and roots up to 30 mg/L mercury treatment and slightly decreased at the higher concentrations. There was a positive correlation between heavy metal dose and superoxide dismutase, catalase, and peroxidase antioxidative enzyme activities which could be used as biomarkers to monitor pollution in E. crassipes. Due to heavy metal stress, some of the normal DNA bands were disappeared and additional bands were amplified compared to the control in the random amplified polymorphic DNA (RAPD) profile. Random amplified polymorphic DNA results indicated that genomic template stability was significantly affected by mercury heavy metal treatment. We concluded that DNA changes determined by random amplified polymorphic DNA assay evolved a useful molecular marker for detection of genotoxic effects of mercury heavy metal contamination in plant species.

  17. Mercury

    MedlinePlus

    ... of the lungs Medicine to remove mercury and heavy metals from the body INORGANIC MERCURY For inorganic mercury ... Baum CR. Mercury: Heavy metals and inorganic agents. In: Shannon MW, ... Haddad and Winchester's Clinical Management of Poisoning and ...

  18. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  19. Development of ELISA for detection of mercury based on specific monoclonal antibodies against mercury-chelate.

    PubMed

    Zhang, Yi; Li, Xiaobing; Liu, Guowen; Wang, Zhe; Kong, Tao; Tang, Jiajia; Zhag, Peng; Yang, Wei; Li, Dongna; Liu, Lei; Xie, Guanghong; Wang, Jianguo

    2011-12-01

    Immunoassays for heavy metals offer an alternative approach to traditional techniques for detection of mercury. In this study, a mercury-chelate was prepared with 1-(4-aminobenzyl) ethylenediamine-N,N,N',N'-tetraacetic acid (aminobenzyl-EDTA). The resulting complex was linked to keyhole limpet hemocyanin (KLH) or bovine serum albumin via the amino group and used as the immunizing antigen or detection antigen, respectively. BALB/c mice were immunized with KLH-aminobenzyl-EDTA-Hg and spleen cells from BALB/C mice were fused with Sp2/0 cells. One cell line (5F7) produced monoclonal antibodies with preferential selectivity and sensitivity for aminobenzyl-EDTA-Hg. This cell line had an affinity constant of 4.31 × 10(9) L/mol and its cross-reactivity (CR) with other metals was <2%. The antibody was used for competitive indirect ELISA (CI-ELISA) for Hg(2+) measurements. The detection range was 0.087-790.4 μg/L and the lower limit of detection was 0.042 μg/L. The concentrations of mercury in environmental water samples obtained by CI-ELISA correlated well with graphite furnace atomic absorption spectrometry (GFAAS), and the mean recovery was 88.82% to 104.64%. These results indicate that this method could be used for monitoring mercury of water.

  20. Mercury species induced frequency-shift of molecular orientational transformation based on SERS.

    PubMed

    Chen, Lei; Zhao, Yue; Wang, Yaxin; Zhang, Yongjun; Liu, Yang; Han, Xiao Xia; Zhao, Bing; Yang, Jinghai

    2016-08-01

    We proposed a novel readout method based on a peculiar phenomenon in which the vibrational frequencies of a SERS-active probe (dimethyldithiocarbamic acid sodium salt, DASS) can be affected when there is mercury species. Compared to the SERS intensity-dependent quantitative determination method, SERS frequency-shift-based methods have several advantages: smaller standard deviation, perfect linear relationship, and higher accuracy and sensitivity. In addition, the SERS frequency-shift-based method was not affected by irreproducible aggregation of the SERS substrate and instrumental factors, which greatly improved the application prospect of SERS-based detection. The DASS-modified silver nanoparticles produced a highly sensitive sensor specific to mercury species. Upon the addition of a solution of mercury species to the chip, the mercury species specifically binds to the sulfur atoms, which induces a frequency shift of the band at 1374 cm(-1). The detection limit of the proposed method for Hg(2+) is as low as 10(-8) M. In addition, the proposed method exhibited the same phenomenon for organic mercury. Moreover, these results suggest that the proposed platform possesses the potential for sensitive, selective, and high-throughput on-site mercury pollution monitoring in resource-constrained settings. PMID:27273584

  1. MESSENGER observations of induced magnetic fields in Mercury's core

    NASA Astrophysics Data System (ADS)

    Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Korth, Haje; Hauck, Steven A.; Heyner, Daniel; Phillips, Roger J.; Winslow, Reka M.; Solomon, Sean C.

    2016-03-01

    Orbital data from the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft allow investigation of magnetic fields induced at the top of Mercury's core by time-varying magnetospheric fields. We used 15 Mercury years of observations of the magnetopause position as well as the magnetic field inside the magnetosphere to establish the presence and magnitude of an annual induction signal. Our results indicate an annual change in the internal axial dipole term, g10, of 7.5 to 9.5 nT. For negligible mantle conductivity, the average annual induction signal provides an estimate of Mercury's core radius to within ±90 km, independent of geodetic results. Larger induction signals during extreme events are expected but are challenging to identify because of reconnection-driven erosion. Our results indicate that the magnetopause reaches the dayside planetary surface 1.5-4% of the time.

  2. Review of PIXE Mercury Detection Research at the Louisiana Accelerator Center

    NASA Astrophysics Data System (ADS)

    Gillan, C.; Hollerman, W. A.; Lentz, M.; Glass, G. A.; Greco, R. R.; Liao, C.; Doyle, T. W.; Lewis, T. E.

    2003-12-01

    Particle Induced X-Ray Emission (PIXE) is non-destructive and allows the simultaneous analysis of elements in solid, liquid, and gas samples. When incident energetic ions strike a target, inner shell electrons of these atoms are ejected as they acquire energy from the incident particle. Outer shell electrons then fill vacancies in the inner shell caused by the ionization. This de-excitation is accompanied by the emission of an Auger electron or x-ray. The ratio of the x-ray production to the probability of ejection of an Auger electron is the fluorescence yield, which ranges from a value of nearly 100% for heavy elements to as low a few percent for light elements. The energy of the emitted x-rays depends on the specific elements present in the target. Since each target element has its own set of characteristic energies in the x-ray spectrum, identifying and determining the concentration of elements is possible. Typically 1-3 MeV ions (usually protons) from a small electrostatic accelerator are used for PIXE analysis. This technique is fast and sensitive; typical limits of detection fall below the ng/cm2 region in the case of surface analysis, or ng/mg (ppm) in the case of concentration measurements. PIXE is two orders of magnitude more sensitive than similar electron-based analysis techniques. Over the last several years, the authors have been using PIXE to detect low concentrations of mercury in tree ring samples. For example, southern magnolia (magnolia grandiflora) tree samples, with known concentrations of mercury, were analyzed using PIXE. Recent published results from these measurements indicate that the average mercury absorption percentage was found to be 85+/- 4%. The distribution of mercury was found to be reasonably homogeneous over the sample surface. However, small variations in mercury concentration are most likely caused by the structure of cellulose in the wood. Mercury in the samples appears to be stable to a total integrated charge of 10

  3. Mercury

    MedlinePlus

    Mercury is an element that is found in air, water and soil. It has several forms. Metallic mercury is a shiny, silver-white, odorless liquid. If ... with other elements to form powders or crystals. Mercury is in many products. Metallic mercury is used ...

  4. Nanomaterial-based approaches for the detection and speciation of mercury.

    PubMed

    Xu, Xiaohan; Li, Yu-Feng; Zhao, Jiating; Li, Yunyun; Lin, Jing; Li, Bai; Gao, Yuxi; Chen, Chunying

    2015-12-01

    Mercury is toxic with widespread contamination. Highly sensitive and selective approaches for mercury analysis are desired. Although conventional techniques are accurate and sensitive in the determination of mercury, these procedures are time-consuming, labor-intensive and dependent heavily on expensive instrumentation. In recent years, nanomaterial-based approaches have been proved to be effective alternatives in the detection and speciation of mercury. In this review, the development of different nanomaterial-based approaches was summarized, as well as their utilization for the detection of mercury in environmental and biological samples, such as gold nanomaterials, carbon nanomaterials, quantum dots and so on. Moreover, the speciation of mercury using nanomaterials was also reviewed.

  5. Solution cathode glow discharge induced vapor generation of mercury and its application to mercury speciation by high performance liquid chromatography-atomic fluorescence spectrometry.

    PubMed

    He, Qian; Zhu, Zhenli; Hu, Shenghong; Jin, Lanlan

    2011-07-15

    A novel solution cathode glow discharge (SCGD) induced vapor generation was developed as interface to on-line couple high-performance liquid chromatography (HPLC) with atomic fluorescence spectrometry (AFS) for the speciation of inorganic mercury (Hg(2+)), methyl-mercury (MeHg) and ethyl-mercury (EtHg). The decomposition of organic mercury species and the reduction of Hg(2+) could be completed in one step with this proposed SCGD induced vapor generation system. The vapor generation is extremely rapid and therefore is easy to couple with flow injection (FI) and HPLC. Compared with the conventional HPLC-CV-AFS hyphenated systems, the proposed HPLC-SCGD-AFS system is very simple in operation and eliminates auxiliary redox reagents. Parameters influencing mercury determination were optimized, such as concentration of formic acid, discharge current and argon flow rate. The method detection limits for HPLC-SCGD-AFS system were 0.67 μg L(-1) for Hg(2+), 0.55 μg L(-1) for MeHg and 1.19 μg L(-1) for EtHg, respectively. The developed method was validated by determination of certified reference material (GBW 10029, tuna fish) and was further applied for the determination of mercury in biological samples. PMID:21641599

  6. Lack of graft-versus-host-like pathology in mercury-induced autoimmunity of Brown Norway rats.

    PubMed

    Bigazzi, P E; Kosuda, L L; Hannigan, M O; Whalen, B; Greiner, D L

    2003-11-01

    The repeated administration of mercury to Brown Norway (BN) rats induces the production of autoantibodies to laminin 1 and other autoantigens, accompanied by renal deposition of immunoglobulins and a membranous glomerulonephropathy. A graft-versus-host-like (GVHL) syndrome, characterized by widespread necrotizing leukocytoclastic vasculitis of the bowel, skin, and other tissues, has also been observed after mercury treatment of BN rats. These findings have suggested that the autoimmunity caused by the administration of mercury to BN rats may result as a xenobiotic-induced GVHL effect under the control of OX22+ T lymphocytes. However, previous studies of mercury-induced autoimmunity have never reported any evidence of GVHL lesions. Therefore, we have carefully examined various tissues from a large group of BN rats injected with HgCl(2) to identify possible areas of inflammatory reactions that may have been unnoticed in previous investigations. In addition, we have determined by flow cytometry whether exposure to mercury results in percentage and numerical alterations of OX22+ or other lymphocyte subpopulations in lymphoid organs of HgCl(2)-treated BN rats. The present article confirms that mercury induces autoimmune responses to laminin 1 but does not corroborate the hypothesis of a GVHL syndrome regulated by OX22+ lymphocytes. First, changes in OX22+ cells during treatment with HgCl(2) were infrequent and had no significant correlation with the kinetics of autoimmune responses to laminin 1. Second, we detected no GVHL lesions in skin and intestine of mercury-treated BN rats.

  7. Microbial availability of mercury: effective detection and organic ligand effect using a whole-cell bioluminescent bioreporter.

    PubMed

    Xu, Xianghua; Oliff, Kathryn; Xu, Tingting; Ripp, Steven; Sayler, Gary; Zhuang, Jie

    2015-12-01

    A luxCDABE-based genetically engineered bacterial bioreporter (Escherichia coli ARL1) was used to detect bioavailable ionic mercury (Hg(II)) and investigate the effects of humic acids and ethylenediaminetetraacetic acid (EDTA) on the bioavailability of mercury in E. c oli. Results showed that the E. c oli ARL1 bioreporter was sensitive to mercury, with a detection limit of Hg(II) of 0.5 µg/L and a linear dose/response relationship up to 2000 µg Hg(II)/L. Humic acids and EDTA decreased the Hg(II)-induced bioluminescent response of strain ARL1, suggesting that the two organic ligands reduced the bioavailability of Hg(II) via complexation with Hg(II). Compared with traditional chemical methods, the use of E. c oli ARL1 is a cost-effective, rapid, and reliable approach for measuring aqueous mercury at very low concentrations and thus has potential for applications in field in situ monitoring.

  8. Impact-induced compositional variations on Mercury

    NASA Astrophysics Data System (ADS)

    Rivera-Valentin, E. G.; Barr, A. C.

    2013-12-01

    The surface of Mercury shows unexpected spectral variations spatially associated with crater and basin ejecta (the so-called 'low-reflectance material' or LRM; [1]). The low reflectance is suggested to be caused by a native darkening agent at depth that has been excavated and redeposited onto the surface [1]. Although LRM is generally associated with crater ejecta, it is not found within the ejecta blankets of many large impact craters, perhaps suggesting that the subsurface source is heterogeneous [2]. We have developed a 3-D Monte Carlo model of impact cratering, excavation, and ejecta blanket deposition. Our simulations of the effect of early impacts onto Mercury show that if the LRM originates from depth to cover ~15% of Mercury's surface [2], its source is ~30 km deep. Considering the estimated mercurian crustal thickness of 50 km [3] this implies the darkening agent is most probably located within a chemically distinct lower crust. Simulations show that repeated and overlapping impacts redistribute the darkening agent away from the basin source and create a weak association between crater size and LRM abundance. Thus subsurface heterogeneity is not required to produce the weak association between crater size and LRM abundance within crater ejecta; this is a natural consequence of overlapping impacts. Our results can elucidate the new high-resolution compositional mapping of Mercury's heavily cratered terrain and provide insight into subsurface composition. Acknowledgements: This work is supported by the Center for Lunar Origin and Evolution through the NASA Lunar Science Institute NNA09DB32A. References: [1] Denevi and Robinson, 2008, Icarus 197, 239-246. [2] Denevi et al., 2009, Science 324, 613-618. [3] Smith et al., 2012, Science 336, 214-217.

  9. Semi-continuous detection of mercury in gases

    DOEpatents

    Granite, Evan J.; Pennline, Henry W.

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  10. Mercury's Exosphere During MESSENGER's Second Flyby: Detection of Magnesium and Distinct Distributions of Neutral Species

    NASA Technical Reports Server (NTRS)

    McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.

    2009-01-01

    During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.

  11. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation

    PubMed Central

    2010-01-01

    Background Mercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies. Results Hepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations. Conclusion Mercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling pathway, gluconeogenesis, and

  12. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations.

    PubMed

    Wiggers, Giulia Alessandra; Furieri, Lorena Barros; Briones, Ana María; Avendaño, María Soledad; Peçanha, Franck Maciel; Vassallo, Dalton Valentim; Salaices, Mercedes; Alonso, María Jesús

    2016-03-01

    Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development. PMID:26945730

  13. Speciation of mercury in human whole blood by capillary gas chromatography with a microwave-induced plasma emission detector system following complexometric extraction and butylation.

    PubMed

    Bulska, E; Emteborg, H; Baxter, D C; Frech, W; Ellingsen, D; Thomassen, Y

    1992-03-01

    Methyl- and inorganic mercury were extracted from human whole blood samples, as their diethyldithiocarbamate complexes, into toluene and butylated by using a Grignard reagent. The mercury species were then separated by gas chromatography (on a 12 m non-polar DB-1 capillary column) and detected by a microwave-induced plasma atomic emission spectrometric (GC-MPD) system. The accuracy and precision of the proposed method were established by the analysis of Seronorm lyophilized human whole blood standards for methyl- and inorganic mercury. No statistical difference (t-test) between the sum of these two species determined by the GC-MPD based method and the recommended total mercury concentrations in the Seronorm samples was observed. Results for the determination of methyl- and inorganic mercury in 60 controls and 90 previously occupationally exposed (to inorganic mercury) workers are presented to illustrate the practical utility of the proposed method. No significantly elevated inorganic mercury concentrations between the two groups were evident.

  14. Detecting Airborne Mercury by Use of Gold Nanowires

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Shevade, Abhijit; Kisor, Adam; Homer, Margie; Soler, Jessica; Mung, Nosang; Nix, Megan

    2009-01-01

    Like the palladium chloride (PdCl2) films described in the immediately preceding article, gold nanowire sensors have been found to be useful for detecting airborne elemental mercury at concentrations on the order of parts per billion (ppb). Also like the PdCl2 films, gold nanowire sensors can be regenerated under conditions much milder than those necessary for regeneration of gold films that have been used as airborne-Hg sensors. The interest in nanowire sensors in general is prompted by the expectation that nanowires of a given material covering a given surface may exhibit greater sensitivity than does a film of the same material because nanowires have a greater surface area. In preparation for experiments to demonstrate this sensor concept, sensors were fabricated by depositing gold nanowires, variously, on microhotplate or microarray sensor substrates. In the experiments, the electrical resistances were measured while the sensors were exposed to air at a temperature of 25 C and relative humidity of about 30 percent containing mercury at various concentrations from 2 to 70 ppb (see figure). The results of this and other experiments have been interpreted as signifying that sensors of this type can detect mercury at ppb concentrations in room-temperature air and can be regenerated by exposure to clean flowing air at temperatures <40 C.

  15. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  16. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of...

  17. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    SciTech Connect

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-12-31

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results showed that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2--10 ppb.

  18. Detection of mercury compounds using invertase-glucose oxidase-based biosensor

    NASA Astrophysics Data System (ADS)

    Amine, A.; Cremisini, C.; Palleschi, G.

    1995-10-01

    Mercury compounds have been determined with an electrochemical biosensor based on invertase inhibition. When invertase is in the presence of mercury its activity decreases; this causes a decrease of glucose production which is monitored by the glucose sensor and correlated to the concentration of mercury in solution. Parameters as pH, enzyme concentration, substrate concentration, and reaction and incubation time were optimized. Mercury compounds determination using soluble or immobilized invertase were reported. Results show that the inhibition was competitive and reversible. Mercury compounds can be detected directly in aqueous solution in the range 2 - 10 ppb.

  19. Oxidation of elemental mercury by chlorine: Gas phase, Surface,and Photo-induced reaction pathways

    SciTech Connect

    Yan, Nai-Qiang; Liu, Shou-Heng; Chang, Shih-Ger

    2004-10-22

    Accurate oxidation rate constants of mercury gas are needed for determining its dispersion and lifetime in the atmosphere. They would also help in developing a technology for the control of mercury emissions from coal-fired power plants. However, it is difficult to establish the accurate rate constants primarily due to the fact that mercury easily adsorbs on solid surface and its reactions can be catalyzed by the surface. We have demonstrated a procedure that allows the determination of gas phase, surface-induced, and photo-induced contributions in the kinetic study of the oxidation of mercury by chlorine gas. The kinetics was studied using reactors with various surface to volume ratios. The effect of the surface and the photo irradiation on the reaction was taken into consideration. The pressure dependent study revealed that the gas phase oxidation was a three-body collision process. The third order rate constant was determined to be 7.5({+-}0.2) x 10{sup -39} mL{sup 2} molecules{sup -2}s{sup -1} with N{sub 2} as the third body at 297 {+-} 1 K. The surface induced reaction on quartz window was second order and the rate constant was 2.7 x 10{sup -17} mL{sup 2} molecules{sup -1} cm{sup -2} sec. Meanwhile, the 253.7 nm photon employed for mercury detection was found to accelerate the reaction. The utilization efficiency of 253.7 nm photon for Hg{sup 0} oxidation was 6.7 x 10{sup -4} molecules photon{sup -1} under the conditions employed in this study.

  20. High-performance flexible graphene aptasensor for mercury detection in mussels.

    PubMed

    An, Ji Hyun; Park, Seon Joo; Kwon, Oh Seok; Bae, Joonwon; Jang, Jyongsik

    2013-12-23

    Mercury (Hg) is highly toxic but has been widely used for numerous domestic applications, including thermometers and batteries, for decades, which has led to fatal outcomes due to its accumulation in the human body. Although many types of mercury sensors have been developed to protect the users from Hg, few methodologies exist to analyze Hg(2+) ions in low concentrations in real world samples. Herein, we describe the fabrication and characterization of liquid-ion gated field-effect transistor (FET)-type flexible graphene aptasensor with high sensitivity and selectivity for Hg. The field-induced responses from the graphene aptasensor had excellent sensing performance, and Hg(2+) ions with very low concentration of 10 pM could be detected, which is 2-3 orders of magnitude more sensitive than previously reported mercury sensors using electrochemical systems. Moreover, the aptasensor showed a highly specific response to Hg(2+) ions in mixed solutions. The flexible graphene aptasensor showed a very rapid response, providing a signal in less than 1 s when the Hg(2+) ion concentration was altered. Specificity to Hg(2+) ions was demonstrated in real world samples (in this case samples derived from mussels). The aptasensor was fabricated by transferring chemical vapor deposition (CVD)-grown graphene onto a transparent flexible substrate, and the structure displayed excellent mechanical durability and flexiblility. This graphene-based aptasensor has potential for detecting Hg exposure in human and in the environment.

  1. 7 CFR 201.58c - Detection of captan, mercury, or thiram on seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Detection of captan, mercury, or thiram on seed. 201.58c Section 201.58c Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL... Detection of captan, mercury, or thiram on seed. The bioassay method may be used according to the...

  2. 7 CFR 201.58c - Detection of captan, mercury, or thiram on seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Detection of captan, mercury, or thiram on seed. 201.58c Section 201.58c Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL... Detection of captan, mercury, or thiram on seed. The bioassay method may be used according to the...

  3. 7 CFR 201.58c - Detection of captan, mercury, or thiram on seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Detection of captan, mercury, or thiram on seed. 201.58c Section 201.58c Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL... Detection of captan, mercury, or thiram on seed. The bioassay method may be used according to the...

  4. 7 CFR 201.58c - Detection of captan, mercury, or thiram on seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Detection of captan, mercury, or thiram on seed. 201.58c Section 201.58c Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL... Detection of captan, mercury, or thiram on seed. The bioassay method may be used according to the...

  5. 7 CFR 201.58c - Detection of captan, mercury, or thiram on seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Detection of captan, mercury, or thiram on seed. 201.58c Section 201.58c Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL... Detection of captan, mercury, or thiram on seed. The bioassay method may be used according to the...

  6. Gender Related Differences in Kidney Injury Induced by Mercury

    PubMed Central

    Hazelhoff, María H.; Bulacio, Romina P.; Torres, Adriana M.

    2012-01-01

    The aim of this study was to determine if there are sex-related differences in the acute kidney injury induced by HgCl2 since female rats express lower levels of renal Oat1 and Oat3 (transporters involved in renal uptake of mercury) as compared with males. Control males and females and Hg-treated male and female Wistar rats were employed. Animals were treated with HgCl2 (4 mg/kg body weight (b.w.), intraperitoneal (i.p.)) 18 h before the experiments. HgCl2 induced renal impairment both in male and female rats. However, female rats showed a lower renal impairment than male rats. The observed increase in kidney weight/body weight ratio seen in male and female rats following HgCl2 treatment was less in the female rats. Urine volume and creatinine clearance decreased and Oat5 urinary excretion increased in both males and females, but to a lesser degree in the latter. Urinary alkaline phosphatase (AP) activity and histological parameters were modified in male but not in female rats after HgCl2 administration. These results indicate that the lower Oat1 and Oat3 expression in the kidney of females restricts Hg uptake into renal cells protecting them from this metal toxicity. These gender differences in renal injury induced by mercury are striking and also indicate that Oat1 and Oat3 are among the main transporters responsible for HgCl2-induced renal injury. PMID:22949877

  7. Locus ceruleus neurons in people with autism contain no histochemically-detectable mercury.

    PubMed

    Pamphlett, Roger; Kum Jew, Stephen

    2016-02-01

    Exposure to environmental mercury has been proposed to play a part in autism. Mercury is selectively taken up by the human locus ceruleus, a region of the brain that has been implicated in autism. We therefore looked for the presence of mercury in the locus ceruleus of people who had autism, using the histochemical technique of autometallography which can detect nanogram amounts of mercury in tissues. In addition, we sought evidence of damage to locus ceruleus neurons in autism by immunostaining for hyperphosphorylated tau. No mercury was found in any neurons of the locus ceruleus of 6 individuals with autism (5 male, 1 female, age range 16-48 years). Mercury was present in locus ceruleus neurons in 7 of 11 (64%) age-matched control individuals who did not have autism, which is significantly more than in individuals with autism. No increase in numbers of locus ceruleus neurons containing hyperphosphorylated tau was detected in people with autism. In conclusion, most people with autism have not been exposed early in life to quantities of mercury large enough to be found later in adult locus ceruleus neurons. Human locus ceruleus neurons are sensitive indicators of mercury exposure, and mercury appears to remain in these neurons indefinitely, so these findings do not support the hypothesis that mercury neurotoxicity plays a role in autism.

  8. Colorimetric detection of mercury ions based on plasmonic nanoparticles.

    PubMed

    Du, Jianjun; Jiang, Lin; Shao, Qi; Liu, Xiaogang; Marks, Robert S; Ma, Jan; Chen, Xiaodong

    2013-05-27

    The development of rapid, specific, cost-effective, and robust tools in monitoring Hg(2+) levels in both environmental and biological samples is of utmost importance due to the severe mercury toxicity to humans. A number of techniques exist, but the colorimetric assay, which is reviewed herein, is shown to be a possible tool in monitoring the level of mercury. These assays allow transforming target sensing events into color changes, which have applicable potential for in-the-field application through naked-eye detection. Specifically, plasmonic nanoparticle-based colorimetric assay exhibits a much better propensity for identifying various targets in terms of sensitivity, solubility, and stability compared to commonly used organic chromophores. In this review, recent progress in the development of gold nanoparticle-based colorimetric assays for Hg(2+) is summarized, with a particular emphasis on examples of functionalized gold nanoparticle systems with oligonucleotides, oligopeptides, and functional molecules. Besides highlighting the current design principle for plasmonic nanoparticle-based colorimetric probes, the discussions on challenges and the prospect of next-generation probes for in-the-field applications are also presented.

  9. Pattern and annual rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury gradient (Ria de Aveiro, Portugal)

    NASA Astrophysics Data System (ADS)

    Coelho, J. P.; Rosa, M.; Pereira, E.; Duarte, A.; Pardal, M. A.

    2006-09-01

    Due to the lack of knowledge regarding annual bioaccumulation rates in estuarine and marine fauna, the main aim of this work was to study the annual mercury bioaccumulation in the well-documented bivalve species Scrobicularia plana along a human induced mercury gradient in the Ria de Aveiro coastal lagoon (Portugal) and in a nearby, non-polluted system (Mondego estuary), parallel to the risks associated with its consumption by humans. Minimum total mercury concentration was as low as 0.019 mg kg -1 (wwt) in 4+ year old organisms in the reference site, where a significant negative correlation ( p < 0.05) was found between total mercury concentrations and size, resulting in negative bioaccumulation rates (detoxification). On the other hand, values reached 1.8 mg kg -1 (wwt) in 3+ year old bivalves from the most contaminated area, where a strong positive correlation with size was found ( p < 0.01) and annual bioaccumulation rates were as high as 0.25 mg kg -1 yr -1. Annual bioaccumulation rates were highly correlated with suspended particulate matter mercury concentrations. Even though the levels of organic mercury contents increased parallel to the contamination gradient, at each sampling station, no increment was found with age, which corresponded to a decrease in organic mercury percentage with age. In terms of ecological management and public health, the ratio of 0.01 consistently found between Scrobicularia plana annual mercury accumulation rates and SPM mercury levels for most sites may permit to roughly estimate S. plana contamination of commercial sized individuals (>2.5 cm) and, if verified and confirmed in other systems, be used as a simple management tool.

  10. Mercury-induced micronuclei in skin fibroblasts of beluga whales

    SciTech Connect

    Gauthier, J.M.; Dubeau, H.; Rassart, E.

    1998-12-01

    Beluga whales (Delphinapterus leucas) inhabiting the St. Lawrence estuary are highly contaminated with environmental pollutants and have a high incidence of cancer. Environmental contaminants may be partly responsible for the high incidence of cancer observed in this population. DNA damage plays an important role in the development of cancer. The micronuclei assay was used to test the genotoxic potential of mercury compounds in skin fibroblasts of an Arctic beluga whale. Both mercuric chloride (Hg) and methylmercury (MeHg) induced a highly significant dose-response increase of micronucleated cells. Statistically significant increases in micronucleated cells were observed for 0.5, 5, and 20 {micro}g/ml Hg and 0.05, 0.5, and 2 {micro}g/ml MeHg when compared to control cultures. Concentrations of 0.5, 5, and 20 {micro}g/ml Hg induced a two-, three- and fourfold increase of micronucleated cells, respectively. Treatment with MeHg was one order of magnitude more potent in inducing micronuclei and in inhibiting cell proliferation than Hg. Although results of this in vitro study do not imply that mercury compounds are involved in the etiology of cancer in St. Lawrence beluga whales, significant increases in micronuclei frequency were found at low concentrations of MeHg that are believed to be comparable to concentrations present in certain whales of this population.

  11. Bioluminescent Probe for Detecting Mercury(II) in Living Mice.

    PubMed

    Jiang, Tianyu; Ke, Bowen; Chen, Hui; Wang, Weishan; Du, Lupei; Yang, Keqian; Li, Minyong

    2016-08-01

    A novel bioluminescence probe for mercury(II) was obtained on the basis of the distinct deprotection reaction of dithioacetal to decanal, so as to display suitable sensitivity and selectivity toward mercury(II) over other ions with bacterial bioluminescence signal. These experimental results indicated such a probe was a novel promising method for mercury(II) bioluminescence imaging in environmental and life sciences ex vivo and in vivo. PMID:27412583

  12. Fluorescent and colorimetric sensors for environmental mercury detection.

    PubMed

    Chen, Guiqiu; Guo, Zhi; Zeng, Guangming; Tang, Lin

    2015-08-21

    Exposure to mercury ions can damage the human brain, the nervous system, the endocrine system, and other biological systems. Much effort has therefore been made to develop real-time monitoring of mercury variations, and many mercury-ion sensors have been reported recently. In this review, mercury-ion sensors reported since 2008 are described and discussed. The sensors are classified as molecular, nanomaterial based, and others. Molecular sensors are based on chemical and hydrogen bond formation, and the other types are based on changes in the materials used.

  13. Dual detection of nitrate and mercury in water using disposable electrochemical sensors.

    PubMed

    Bui, Minh-Phuong N; Brockgreitens, John; Ahmed, Snober; Abbas, Abdennour

    2016-11-15

    Here we report a disposable, cost effective electrochemical paper-based sensor for the detection of both nitrate and mercury ions in lake water and contaminated agricultural runoff. Disposable carbon paper electrodes were functionalized with selenium particles (SePs) and gold nanoparticles (AuNPs). The AuNPs served as a catalyst for the reduction of nitrate ions using differential pulse voltammetry techniques. The AuNPs also served as a nucleation sites for mercury ions. The SePs further reinforced this mercury ion nucleation due to their high binding affinity to mercury. Differential pulse stripping voltammetry techniques were used to further enhance mercury ion accumulation on the modified electrode. The fabricated electrode was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemistry techniques. The obtained results show that the PEG-SH/SePs/AuNPs modified carbon paper electrode has a dual functionality in that it can detect both nitrate and mercury ions without any interference. The modified carbon paper electrode has improved the analytical sensitivity of nitrate and mercury ions with limits of detection of 8.6µM and 1.0ppb, respectively. Finally, the modified electrode was used to measure nitrate and mercury in lake water samples. PMID:27183277

  14. Dual detection of nitrate and mercury in water using disposable electrochemical sensors.

    PubMed

    Bui, Minh-Phuong N; Brockgreitens, John; Ahmed, Snober; Abbas, Abdennour

    2016-11-15

    Here we report a disposable, cost effective electrochemical paper-based sensor for the detection of both nitrate and mercury ions in lake water and contaminated agricultural runoff. Disposable carbon paper electrodes were functionalized with selenium particles (SePs) and gold nanoparticles (AuNPs). The AuNPs served as a catalyst for the reduction of nitrate ions using differential pulse voltammetry techniques. The AuNPs also served as a nucleation sites for mercury ions. The SePs further reinforced this mercury ion nucleation due to their high binding affinity to mercury. Differential pulse stripping voltammetry techniques were used to further enhance mercury ion accumulation on the modified electrode. The fabricated electrode was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and electrochemistry techniques. The obtained results show that the PEG-SH/SePs/AuNPs modified carbon paper electrode has a dual functionality in that it can detect both nitrate and mercury ions without any interference. The modified carbon paper electrode has improved the analytical sensitivity of nitrate and mercury ions with limits of detection of 8.6µM and 1.0ppb, respectively. Finally, the modified electrode was used to measure nitrate and mercury in lake water samples.

  15. Detection and quantification of gas-phase oxidized mercury compounds by GC/MS

    NASA Astrophysics Data System (ADS)

    Jones, Colleen P.; Lyman, Seth N.; Jaffe, Daniel A.; Allen, Tanner; O'Neil, Trevor L.

    2016-05-01

    Most mercury pollution is emitted to the atmosphere, and the location and bioavailability of deposited mercury largely depends on poorly understood atmospheric chemical reactions that convert elemental mercury into oxidized mercury compounds. Current measurement methods do not speciate oxidized mercury, leading to uncertainty about which mercury compounds exist in the atmosphere and how oxidized mercury is formed. We have developed a gas chromatography/mass spectrometry (GC-MS)-based system for identification and quantification of atmospheric oxidized mercury compounds. The system consists of an ambient air collection device, a thermal desorption module, a cryofocusing system, a gas chromatograph, and an ultra-sensitive mass spectrometer. It was able to separate and identify mercury halides with detection limits low enough for ambient air collection (90 pg), but an improved ambient air collection device is needed. The GC/MS system was unable to quantify HgO or Hg(NO3)2, and data collected cast doubt upon the existence of HgO in the gas phase.

  16. Dielectric barrier discharge-plasma induced vaporization and its application to the determination of mercury by atomic fluorescence spectrometry.

    PubMed

    Liu, Zhifu; Zhu, Zhenli; Wu, Qingju; Hu, Shenghong; Zheng, Hongtao

    2011-11-01

    This paper describes a low-temperature dielectric barrier discharge (DBD)-plasma induced vaporization technique using mercury as a model analyte. The evaporation and atomization of dissolved mercury species in the sample solution can be achieved rapidly in one step, allowing mercury to be directly detected by atomic fluorescence spectrometry. The DBD plasma was generated concentrically in-between two quartz tube (outer tube: i.d. 5 mm and o.d. 6 mm, inner tube: i.d. 2 mm and o.d. 3 mm). A copper electrode was embedded inside the inner quartz tube and sample solution was applied onto the outer surface of the inner tube. The effects of operating parameters such as plasma power, plasma gas identity, plasma gas flow rate and interferences from concomitant elements have been investigated. The difference in the sensitivities of Hg(2+), methylmercury (MeHg) and ethylmercury (EtHg) was found to be negligible in the presence of formic acid (≥1% v/v). The analytical performance of the present technique was evaluated under optimized conditions. The limits of detection were calculated to be 0.02 ng mL(-1) for Hg(2+), MeHg and EtHg, and repeatability was 6.2%, 4.9% and 4.3% RSD (n = 11) for 1 ng mL(-1) of Hg(2+), MeHg and EtHg, respectively. This provides a simple mercury detection method for small-volume samples with an absolute limit of detection at femtogram level. The accuracy of the system was verified by the determination of mercury in reference materials including freeze-dried urine ZK020-2, simulated water matrix reference material GBW(E) 080392 and tuna fish GBW10029, and the concentration of mercury determined by the present method agreed well with the reference values. PMID:21935545

  17. Mercury

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.

    1977-01-01

    Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.

  18. Preconcentration and detection of mercury with bioluminescent bioreporter E. coli ARL1.

    PubMed

    Solovyev, Andrey I; Koštejn, Martin; Kuncova, Gabriela; Dostálek, Pavel; Rohovec, Jan; Navrátil, Tomáš

    2015-10-01

    Cell wall envelopes treated with sodium hydroxide and spray-dried were used as mercury sorbents. The sorbent having sorption capacity 17.7 ± 0.1 μmol/g determined was employed for preconcentration of mercury containing 1-10 ng/L. After preconcentration, bioavailable mercury was detected in samples of soil, stream, and tap water via induction of bioluminescence of E. coli ARL1. Iron and manganese at concentrations of tenth microgram per liter interfered bioluminescence detection of mercury. In tap water was detected semiquantitatively 0.127 ± 0.1 nmol/L by the induction of bioluminescence of E. coli ARL1 in medium with tryptone after preconcentration using a method of standard addition.

  19. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... through a detection cell where ultraviolet light at 253.7 nanometers (nm) is directed...

  20. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... through a detection cell where ultraviolet light at 253.7 nanometers (nm) is directed...

  1. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII...; cracks or spalling in cell room floors, pillars, or beams; caustic leaks; liquid mercury accumulations or... through a detection cell where ultraviolet light at 253.7 nanometers (nm) is directed...

  2. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress.

    PubMed

    Montero-Palmero, M Belén; Martín-Barranco, Amanda; Escobar, Carolina; Hernández, Luis E

    2014-01-01

    Understanding the cellular mechanisms of plant tolerance to mercury (Hg) is important for developing phytoremediation strategies of Hg-contaminated soils. The early responses of alfalfa (Medicago sativa) seedlings to Hg were studied using transcriptomics analysis. A Medicago truncatula microarray was hybridized with high-quality root RNA from M. sativa treated with 3 μM Hg for 3, 6 and 24 h. The transcriptional pattern data were complementary to the measurements of root growth inhibition, lipid peroxidation, hydrogen peroxide (H2 O2 ) accumulation and NADPH-oxidase activity as stress indexes. Of 559 differentially expressed genes (DEGs), 91% were up-regulated. The majority of DEGs were shared between the 3 and 6 h (60%) time points, including the 'stress', 'secondary metabolism' and 'hormone metabolism' functional categories. Genes from ethylene metabolism and signalling were highly represented, suggesting that this phytohormone may be relevant for metal perception and homeostasis. Ethylene-insensitive alfalfa seedlings preincubated with the ethylene signalling inhibitor 1-methylcyclopronene and Arabidopsis thaliana ein2-5 mutants confirmed that ethylene participates in the early perception of Hg stress. It modulates root growth inhibition, NADPH-oxidase activity and Hg-induced apoplastic H2 O2 accumulation. Therefore, ethylene signalling attenuation could be useful in future phytotechnological applications to ameliorate stress symptoms in Hg-polluted plants. PMID:24033367

  3. Early transcriptional responses to mercury: a role for ethylene in mercury-induced stress.

    PubMed

    Montero-Palmero, M Belén; Martín-Barranco, Amanda; Escobar, Carolina; Hernández, Luis E

    2014-01-01

    Understanding the cellular mechanisms of plant tolerance to mercury (Hg) is important for developing phytoremediation strategies of Hg-contaminated soils. The early responses of alfalfa (Medicago sativa) seedlings to Hg were studied using transcriptomics analysis. A Medicago truncatula microarray was hybridized with high-quality root RNA from M. sativa treated with 3 μM Hg for 3, 6 and 24 h. The transcriptional pattern data were complementary to the measurements of root growth inhibition, lipid peroxidation, hydrogen peroxide (H2 O2 ) accumulation and NADPH-oxidase activity as stress indexes. Of 559 differentially expressed genes (DEGs), 91% were up-regulated. The majority of DEGs were shared between the 3 and 6 h (60%) time points, including the 'stress', 'secondary metabolism' and 'hormone metabolism' functional categories. Genes from ethylene metabolism and signalling were highly represented, suggesting that this phytohormone may be relevant for metal perception and homeostasis. Ethylene-insensitive alfalfa seedlings preincubated with the ethylene signalling inhibitor 1-methylcyclopronene and Arabidopsis thaliana ein2-5 mutants confirmed that ethylene participates in the early perception of Hg stress. It modulates root growth inhibition, NADPH-oxidase activity and Hg-induced apoplastic H2 O2 accumulation. Therefore, ethylene signalling attenuation could be useful in future phytotechnological applications to ameliorate stress symptoms in Hg-polluted plants.

  4. Ultrasensitive Quantum Dot Fluorescence quenching Assay for Selective Detection of Mercury Ions in Drinking Water

    NASA Astrophysics Data System (ADS)

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg2+ ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  5. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-01-01

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples. PMID:25005836

  6. Ultrasensitive quantum dot fluorescence quenching assay for selective detection of mercury ions in drinking water.

    PubMed

    Ke, Jun; Li, Xinyong; Zhao, Qidong; Hou, Yang; Chen, Junhong

    2014-07-09

    Mercury is one of the most acutely toxic substances at trace level to human health and living thing. Developing a rapid, cheap and water soluble metal sensor for detecting mercury ions at ppb level remains a challenge. Herein, a metal sensor consisting of MPA coated Mn doped ZnSe/ZnS colloidal nanoparticles was utilized to ultrasensitively and selectively detect Hg(2+) ions with a low detection limit (0.1 nM) over a dynamic range from 0 to 20 nM. According to strong interaction between thiol(s) and mercury ions, mercaptopropionic acid (MPA) was used as a highly unique acceptor for mercury ions in the as-obtained ultrasensitive sensor. In the presence of mercury ions, colloidal nanoparticles rapidly agglomerated due to changes of surface chemical properties, which results in severe quenching of fluorescent intensity. Meanwhile, we find that the original ligands are separated from the surface of colloidal nanoparticles involving strongly chelation between mercury ion and thiol(s) proved by controlled IR analysis. The result shows that the QD-based metal ions sensor possesses satisfactory precision, high sensitivity and selectivity, and could be applied for the quantification analysis of real samples.

  7. Novel biomarkers of mercury-induced autoimmune dysfunction: a cross-sectional study in Amazonian Brazil.

    PubMed

    Motts, Jonathan A; Shirley, Devon L; Silbergeld, Ellen K; Nyland, Jennifer F

    2014-07-01

    Mercury is a ubiquitous environmental contaminant, causing both neurotoxicity and immunotoxicity. Given its ability to amalgamate gold, mercury is frequently used in small-scale artisanal gold mining. We have previously reported that elevated serum titers of antinuclear autoantibodies (ANA) are associated with mercury exposures of miners in gold mining. The goal of this project was to identify novel serum biomarkers of mercury-induced immunotoxicity and autoimmune dysregulation. We conducted an analysis of serum samples from a cross-sectional epidemiological study on miners working in Amazonian Brazil. In proteomic screening analyses, samples were stratified based on mercury concentrations and ANA titer and a subset of serum samples (N=12) were profiled using Immune Response Biomarker Profiling ProtoArray protein microarray for elevated autoantibodies. Of the up-regulated autoantibodies in the mercury-exposed cohort, potential target autoantibodies were selected based on relevance to pro-inflammatory and macrophage activation pathways. ELISAs were developed to test the entire sample cohort (N=371) for serum titers to the highest of these autoantibodies (anti-glutathione S-transferase alpha, GSTA1) identified in the high mercury/high ANA group. We found positive associations between elevated mercury exposure and up-regulated serum titers of 3760 autoantibodies as identified by ProtoArray. Autoantibodies identified as potential novel biomarkers of mercury-induced immunotoxicity include antibodies to the following proteins: GSTA1, tumor necrosis factor ligand superfamily member 13, linker for activation of T cells, signal peptide peptidase like 2B, stimulated by retinoic acid 13, and interferon induced transmembrane protein. ELISA analyses confirmed that mercury-exposed gold miners had significantly higher serum titers of anti-GSTA1 autoantibody [unadjusted odds ratio=89.6; 95% confidence interval: 27.2, 294.6] compared to emerald miners (referent population). Mercury

  8. Novel biomarkers of mercury-induced autoimmune dysfunction: a Cross-sectional study in Amazonian Brazil

    PubMed Central

    Motts, Jonathan A.; Shirley, Devon L.; Silbergeld, Ellen K.; Nyland, Jennifer F.

    2014-01-01

    Mercury is an ubiquitous environmental contaminant, causing both neurotoxicity and immunotoxicity. Given its ability to amalgamate gold, mercury is frequently used in small-scale artisanal gold mining. We have previously reported that elevated serum titers of antinuclear autoantibodies (ANA) are associated with mercury exposures of miners in gold mining. The goal of this project was to identify novel serum biomarkers of mercury-induced immunotoxicity and autoimmune dysregulation. We conducted an analysis of serum samples from a cross-sectional epidemiological study on miners working in Amazonian Brazil. In proteomic screening analyses, samples were stratified based on mercury concentrations and ANA titer and a subset of serum samples (N=12) were profiled using Immune Response Biomarker Profiling ProtoArray protein microarray for elevated autoantibodies. Of the up-regulated autoantibodies in the mercury-exposed cohort, potential target autoantibodies were selected based on relevance to pro-inflammatory and macrophage activation pathways. ELISAs were developed to test the entire sample cohort (N=371) for serum titers to the highest of these autoantibodies (anti-glutathione S-transferase alpha, GSTA1) identified in the high mercury/high ANA group. We found positive associations between elevated mercury exposure and up-regulated serum titers of 3760 autoantibodies as identified by ProtoArray. Autoantibodies identified as potential novel biomarkers of mercury-induced immunotoxicity include antibodies to the following proteins: GSTA1, tumor necrosis factor ligand superfamily member 13, linker for activation of T cells, signal peptide peptidase like 2B, stimulated by retinoic acid 13, and interferon induced transmembrane protein. ELISA analyses confirmed that mercury-exposed gold miners had significantly higher serum titers of anti-GSTA1 autoantibody [unadjusted odds ratio = 89.6; 95% confidence interval: 27.2, 294.6] compared to emerald miners (referent population

  9. An oligonucleotide-functionalized carbon nanotube chemiresistor for sensitive detection of mercury in saliva.

    PubMed

    Wordofa, Dawit N; Ramnani, Pankaj; Tran, Thien-Toan; Mulchandani, Ashok

    2016-04-25

    Divalent mercuric (Hg(2+)) ion and monomethyl mercury (CH3Hg(+)) are two forms of mercury that are known to be highly toxic to humans. In this work, we present a highly selective, sensitive and label-free chemiresistive biosensor for the detection of both, Hg(2+) and CH3Hg(+) ions using DNA-functionalized single-walled carbon nanotubes (SWNTs). The SWNTs were functionalized with the capture oligonucleotide, polyT, using a linker molecule. The polyT was hybridized with polyA to form a polyT:polyA duplex. Upon exposure to mercury ions, the polyT:polyA duplex dehybridizes and a T-Hg(2+)-T duplex is formed. This structure switch leads to the release of polyA from the SWNT surface and correspondingly a change in the resistance of the chemiresistive biosensor is observed, which is used to quantify the mercury ion concentration. The biosensor showed a wide dynamic range of 0.5 to 100 nM for the detection of CH3Hg(+) ions in buffer solution with a sensitivity of 28.34% per log (nM) of CH3Hg(+). Finally, real world application of the biosensor was demonstrated by the detection of Hg(2+) and CH3Hg(+) ions in simulated saliva samples spiked with a known concentration of mercury ions. PMID:26902487

  10. [Mercury poisoning].

    PubMed

    Bensefa-Colas, L; Andujar, P; Descatha, A

    2011-07-01

    Mercury is a widespread heavy metal with potential severe impacts on human health. Exposure conditions to mercury and profile of toxicity among humans depend on the chemical forms of the mercury: elemental or metallic mercury, inorganic or organic mercury compounds. This article aims to reviewing and synthesizing the main knowledge of the mercury toxicity and its organic compounds that clinicians should know. Acute inhalation of metallic or inorganic mercury vapours mainly induces pulmonary diseases, whereas chronic inhalation rather induces neurological or renal disorders (encephalopathy and interstitial or glomerular nephritis). Methylmercury poisonings from intoxicated food occurred among some populations resulting in neurological disorders and developmental troubles for children exposed in utero. Treatment using chelating agents is recommended in case of symptomatic acute mercury intoxication; sometimes it improves the clinical effects of chronic mercury poisoning. Although it is currently rare to encounter situations of severe intoxication, efforts remain necessary to decrease the mercury concentration in the environment and to reduce risk on human health due to low level exposure (dental amalgam, fish contamination by organic mercury compounds…). In case of occupational exposure to mercury and its compounds, some disorders could be compensated in France. Clinicians should work with toxicologists for the diagnosis and treatment of mercury intoxication.

  11. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher.

    PubMed

    Chen, Si-Han; Wang, Yong-Sheng; Chen, Yun-Sheng; Tang, Xian; Cao, Jin-Xiu; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-01-01

    A novel dual-channel strategy for the detection of metallothioneins (MTs) and Hg(2+) has been developed based on a mercury-mediated aptamer beacon (MAB) using thymidine-mercury-thymidine complex as a quencher for the first time. In the presence of Hg(2+), the T-rich oligonucleotide with a 6-carboxyfluorescein (TRO-FAM) can form an aptamer beacon via the formation of T-Hg(2+)-T base pairs, which results in a fluorescence quenching of the sensing system owing to the fluorescence resonance energy transfer (FRET) from the fluorophore of FAM to the terminated T-Hg(2+)-T base pair. The addition of MTs into this solution leads to the disruption of the T-Hg(2+)-T complex, resulting in an increase of the fluorescent signal of the system. In the optimizing condition, ΔF was directly proportional to the concentrations ranging from 5.63 nM to 0.275 μM for MTs, and 14.2 nM to 0.30 μM for Hg(2+) with the detection limits of 1.69 nM and 4.28 nM, respectively. The proposed dual-channel method avoids the label steps of a quencher in common molecular beacon strategies, without tedious procedure or the requirement of sophisticated equipment, and is rapid, inexpensive and sensitive.

  12. Modification of mercury-induced biochemical alterations by Triticum Aestivum Linn in rats.

    PubMed

    Lakshmi, B V S; Sudhakar, M; Nireesha, G

    2014-01-01

    The present investigation has been undertaken to evaluate role of Wheat grass extract in modifying mercury-induced biochemical alterations in albino rats. Mercuric chloride 5 mg/kg body weight i.p. was given on 11, 13 & 15th day of the experiment. Wheat grass extract (400 mg/kg) and Quercetin (10 mg/kg) were administered 10 days before mercuric chloride administration and continued up to 30 days after mercuric chloride administration. The animals were sacrificed on 1, 15 and 30 days, the activity of serum alkaline and acid phosphatase and the iron, calcium, BUN, creatinine, SGPT, SGOT, total bilirubin, total protein levels were measured. Tissue lipid peroxidation content, glutathione (GSH) level, anti-oxidant enzymes- CAT and GR were measured. Hematological indices were also estimated. Mercury intoxication causes significant increase (P < 0.001) in calcium level, acid phosphatase, BUN, creatinine, SGOT, SGPT, total bilirubin, lipid peroxidation content and significant decrease in iron level, alkaline phosphatase, total protein, and CAT, GR and glutathione level. Wheat grass extract pre- and post-treatment ameliorated mercury-induced alterations in terms of biochemical and hematological parameters. Concomitant treatment of Wheatgrass extract with Mercury showed prominent recovery and normal architecture with mild residual degeneration in the tissues. Thus from present investigation, it can be concluded that Wheat grass extract pre- and post-treatment with HgCl2 significantly modulate or modify mercury-induced biochemical alteration in albino rats. PMID:26215012

  13. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  14. Sensitive determination method for mercury ion, methyl-, ethyl-, and phenyl-mercury in water and biological samples using high-performance liquid chromatography with chemiluminescence detection.

    PubMed

    Kodamatani, Hitoshi; Matsuyama, Akito; Saito, Keiitsu; Kono, Yuriko; Kanzaki, Ryo; Tomiyasu, Takashi

    2012-01-01

    A sensitive determination method for mercury speciation analysis was developed. Four mercury species, mercury ion, methylmercury, ethylmercury, and phenylmercury, were complexed with emetine-dithiocarbamate (emetine-CS(2)), and then injected onto a HPLC instrument coupled with a tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection system. The emetine-CS(2) complexing agent was effectively used to measure the concentration in addition to serving as a separation and detection reagent. The calibration curves for these mercury complexes were linear in the range of 0.050 - 10 μg L(-1) (as Hg). The limit of detection for (emetine-CS(2))(2)Hg, emetine-CS(2)-methylmercury, emetine-CS(2)-ethylmercury, and emetine-CS(2)-phenylmercury were 30, 17, 21, and 22 ng L(-1), respectively. The sensitivity of this method enables the determination of mercury species in water samples at sub-ppb levels. Furthermore, the method was applied to biological samples in combination with acid leaching and liquid-liquid extraction using emetine-CS(2) as an extraction reagent. The determination results were in good agreement with the values of the certified reference materials.

  15. SUNLIGHT AND IRON(III)-INDUCED PHOTOCHEMICAL PRODUCTION OF DISSOLVED GASEOUS MERCURY IN FRESHWATER. (R827632)

    EPA Science Inventory

    Mechanistic understanding of sunlight-induced natural processes for
    production of dissolved gaseous mercury (DGM) in freshwaters has remained
    limited, and few direct field tests of the mechanistic hypotheses are available.
    We exposed ferric iron salt-spiked fresh s...

  16. Detection and spatial mapping of mercury contamination in water samples using a smart-phone.

    PubMed

    Wei, Qingshan; Nagi, Richie; Sadeghi, Kayvon; Feng, Steve; Yan, Eddie; Ki, So Jung; Caire, Romain; Tseng, Derek; Ozcan, Aydogan

    2014-02-25

    Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs <40 g, we quantified mercury(II) ion concentration in water samples by using a two-color ratiometric method employing light-emitting diodes (LEDs) at 523 and 625 nm, where a custom-developed smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼ 3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time.

  17. Detection and spatial mapping of mercury contamination in water samples using a smart-phone.

    PubMed

    Wei, Qingshan; Nagi, Richie; Sadeghi, Kayvon; Feng, Steve; Yan, Eddie; Ki, So Jung; Caire, Romain; Tseng, Derek; Ozcan, Aydogan

    2014-02-25

    Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs <40 g, we quantified mercury(II) ion concentration in water samples by using a two-color ratiometric method employing light-emitting diodes (LEDs) at 523 and 625 nm, where a custom-developed smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼ 3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time. PMID:24437470

  18. Direct determination of mercury in white vinegar by matrix assisted photochemical vapor generation atomic fluorescence spectrometry detection

    NASA Astrophysics Data System (ADS)

    Liu, Qingyang

    2010-07-01

    This paper proposes the use of photochemical vapor generation with acetic acid as sample introduction for the direct determination of ultra-trace mercury in white vinegars by atomic fluorescence spectrometry. Under ultraviolet irradiation, the sample matrix (acetic acid) can reduce mercury ion to atomic mercury Hg 0, which is swept by argon gas into an atomic fluorescence spectrometer for subsequent analytical measurements. The effects of several factors such as the concentration of acetic acid, irradiation time, the flow rate of the carrier gas and matrix effects were discussed and optimized to give detection limits of 0.08 ng mL -1 for mercury. Using the experimental conditions established during the optimization (3% v/v acetic acid, 30 s irradiation time and 20 W mercury lamp), the precision levels, expressed as relative standard deviation, were 4.6% (one day) and 7.8% (inter-day) for mercury ( n = 9). Addition/recovery tests for evaluation of the accuracy were in the range of 92-98% for mercury. The method was also validated by analysis of vinegar samples without detectable amount of Hg spiked with aqueous standard reference materials (GBW(E) 080392 and GBW(E) 080393). The results were also compared with those obtained by acid digestion procedure and determination of mercury by ICP-MS. There was no significant difference between the results obtained by the two methods based on a t-test (at 95% confidence level).

  19. Rapid methods to detect organic mercury and total selenium in biological samples

    PubMed Central

    2011-01-01

    Background Organic mercury (Hg) is a global pollutant of concern and selenium is believed to afford protection against mercury risk though few approaches exist to rapidly assess both chemicals in biological samples. Here, micro-scale and rapid methods to detect organic mercury (< 1.5 ml total sample volume, < 1.5 hour) and total selenium (Se; < 3.0 ml total volume, < 3 hour) from a range of biological samples (10-50 mg) are described. Results For organic Hg, samples are digested using Tris-HCl buffer (with sequential additions of protease, NaOH, cysteine, CuSO4, acidic NaBr) followed by extraction with toluene and Na2S2O3. The final product is analyzed via commercially available direct/total mercury analyzers. For Se, a fluorometric assay has been developed for microplate readers that involves digestion (HNO3-HClO4 and HCl), conjugation (2,3-diaminonaphthalene), and cyclohexane extraction. Recovery of organic Hg (86-107%) and Se (85-121%) were determined through use of Standard Reference Materials and lemon shark kidney tissues. Conclusions The approaches outlined provide an easy, rapid, reproducible, and cost-effective platform for monitoring organic Hg and total Se in biological samples. Owing to the importance of organic Hg and Se in the pathophysiology of Hg, integration of such methods into established research monitoring efforts (that largely focus on screening total Hg only) will help increase understanding of Hg's true risks. PMID:21232132

  20. Sensitive Detection of Elemental Mercury Vapor by Gold Nanoparticle Decorated Carbon Nanotube Sensors

    PubMed Central

    McNicholas, Thomas P.; Zhao, Kang; Yang, Changheng; Hernandez, Sandra C.; Mulchandani, Ashok; Myung, Nosang V.; Deshusses, Marc A.

    2011-01-01

    Low-cost, low power consumption gas sensors that can detect or quantify various gas analytes are of increasing interest for various applications ranging from mobile health, to environmental exposure assessment and homeland security. In particular miniature gas sensors based on nanomaterials that can be manufactured in the form of sensor arrays present great potential for the development of portable monitoring devices. In this study, we demonstrate that a chemiresistive nanosensor comprised of single walled carbon nanotubes decorated with gold nanoparticles has impressive sensitivity to elemental mercury (Hg) gas concentrations, with a lower detection limit as low as 2 ppbv. Furthermore, this nanosensor was found to regenerate, though slowly, without any additional recovery steps. Finally, the mercury vapor sensing mechanism allowed for direct investigations into the origin of Surface Enhanced Raman Scattering (SERS) in carbon nanotubes decorated with Au nanoparticles. PMID:21922036

  1. Mercury Induces the Externalization of Phosphatidyl-Serine in Human Renal Proximal Tubule (HK-2) Cells

    PubMed Central

    Sutton, Dwayne J.; Tchounwou, Paul B.

    2007-01-01

    The underlying mechanism for the biological activity of inorganic mercury is believed to be the high affinity binding of divalent mercuric cations to thiols of sulfhydryl groups of proteins. A comprehensive analysis of published data indicates that inorganic mercury is one of the most environmentally abundant toxic metals, is a potent and selective nephrotoxicant that preferentially accumulates in the kidneys, and is known to produce cellular injury in the kidneys. Binding sites are present in the proximal tubules, and it is in the epithelial cells of these tubules that toxicants such as inorganic mercury are reabsorbed. This can affect the enzymatic activity and the structure of various proteins. Mercury may alter protein and membrane structure and function in the epithelial cells and this alteration may result in long term residual effects. This research was therefore designed to evaluate the dose-response relationship in human renal proximal tubule (HK-2) cells following exposure to inorganic mercury. Cytotoxicity was evaluated using the MTT assay for cell viability. The Annexin-V assay was performed by flow cytometry to determine the extent of phosphatidylserine externalization. Cells were exposed to mercury for 24 hours at doses of 0, 1, 2, 3, 4, 5, and 6 μg/mL. Cytotoxicity experiments yielded a LD50 value of 4.65 ± 0.6 μg/mL indicating that mercury is highly toxic. The percentages of cells undergoing early apoptosis were 0.70 ± 0.03%, 10.0 ± 0.02%, 11.70 ± 0.03%, 15.20 ± 0.02%, 16.70 ± 0.03%, 24.20 ±0.02%, and 25.60 ± 0.04% at treatments of 0, 1, 2, 3, 4, 5, and 6 μg/mL of mercury respectively. This indicates a dose-response relationship with regard to mercury-induced cytotoxicity and the externalization of phosphatidylserine in HK-2 cells. PMID:17617677

  2. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection

    PubMed Central

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world’s attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg2+ ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  3. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-07-29

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.

  4. Integrating a DNA Strand Displacement Reaction with a Whispering Gallery Mode Sensor for Label-Free Mercury (II) Ion Detection.

    PubMed

    Wu, Fengchi; Wu, Yuqiang; Niu, Zhongwei; Vollmer, Frank

    2016-01-01

    Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species. PMID:27483277

  5. Direct Measurement of Trace Elemental Mercury in Hydrocarbon Matrices by Gas Chromatography with Ultraviolet Photometric Detection.

    PubMed

    Gras, Ronda; Luong, Jim; Shellie, Robert A

    2015-11-17

    We introduce a technique for the direct measurement of elemental mercury in light hydrocarbons such as natural gas. We determined elemental mercury at the parts-per-trillion level with high precision [<3% RSD (n = 20 manual injection)] using gas chromatography with ultraviolet photometric detection (GC-UV) at 254 nm. Our approach requires a small sample volume (1 mL) and does not rely on any form of sample preconcentration. The GC-UV separation employs an inert divinylbenzene porous layer open tubular column set to separate mercury from other components in the sample matrix. We incorporated a 10-port gas-sampling valve in the GC-UV system, which enables automated sampling, as well as back flushing capability to enhance system cleanliness and sample throughput. Total analysis time is <2 min, and the procedure is linear over a range of 2-83 μg/m(3) [correlation coefficient of R(2) = 0.998] with a measured recovery of >98% over this range.

  6. Mercury-induced biochemical and proteomic changes in rice roots.

    PubMed

    Chen, Yun-An; Chi, Wen-Chang; Huang, Tsai-Lien; Lin, Chung-Yi; Quynh Nguyeh, Thi Thuy; Hsiung, Yu-Chywan; Chia, Li-Chiao; Huang, Hao-Jen

    2012-06-01

    Mercury (Hg) is a serious environmental pollution threats to the planet. Accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. We investigated cellular, biochemical and proteomic changes in rice roots under Hg stress. Root growth rate was decreased and Hg, reactive oxygen species (ROS), and malondialdehyde (MDA) content and lipoxygenase activity were increased significantly with increasing Hg concentration in roots. We revealed a time-dependent alteration in total glutathione content and enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POD) during Hg stress. 2-D electrophoresis revealed differential expression of 25 spots with Hg treatment of roots: 14 spots were upregulated and 11 spots downregulated. These differentially expressed proteins were identified by ESI-MS/MS to be involved in cellular functions including redox and hormone homeostasis, chaperone activity, metabolism, and transcription regulation. These results may provide new insights into the molecular basis of the Hg stress response in plants. PMID:22522577

  7. Mercury-induced genotoxicity in marine diatom (Chaetoceros tenuissimus).

    PubMed

    Sarker, Subhodeep; Desai, Somashekhar R; Verlecar, Xivanand N; Sarker, Munmun Saha; Sarkar, A

    2016-02-01

    In this paper, we present an evaluation of genotoxic responses in marine diatom, Chaetoceros tenuissimus, isolated from Kandla Creek (lat 23.03° N, long 70.22° E), Gujarat, India, in terms of impairment of DNA integrity as a function of their exposure to elevated levels of mercury (Hg) under laboratory conditions. DNA integrity in C. tenuissimus was determined by partial alkaline unwinding assay. To our knowledge, this is the first such genotoxicity study to be conducted on marine diatom cultures towards understanding the relationship between Hg toxicity and DNA damage. Furthermore, we studied the impact of Hg on the growth of C. tenuissimus as a function of their exposure to enhanced levels of Hg in terms of decreasing chlorophyll a (chl a) concentrations. The data show the genotoxic effect of Hg on the growth of C. tenuissimus as well as DNA integrity to a great extent. Based on the results of our investigations, it is suggested that C. tenuissimus can be used as sentinel species for bio-monitoring of pollution due to genotoxic contaminants.

  8. Hair Mercury Levels Detection in Fishermen from Sicily (Italy) by ICP-MS Method after Microwave-Assisted Digestion

    PubMed Central

    Giangrosso, Giuseppe; Cammilleri, Gaetano; Macaluso, Andrea; Vella, Antonio; D'Orazio, Nicolantonio; Graci, Stefania; Lo Dico, Gianluigi Maria; Galvano, Fabio; Giangrosso, Margherita; Ferrantelli, Vincenzo

    2016-01-01

    A number of ninety-six hair samples from Sicilian fishermen were examined for total mercury detection by an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The mercury levels obtained were compared with mercury levels of 96 hair samples from a control group, in order to assess potential exposure to heavy metals of Sicilian fishermen due to fish consumption and closeness to industrial activities. Furthermore, the mercury levels obtained from hair samples were sorted by sampling area in order to verify the possible risks linked to the different locations. The overall mean concentration in the hair of the population of fishermen was 6.45 ± 7.03 μg g−1, with a highest value in a fisherman of Sciacca (16.48 μg g−1). Hair mercury concentration in fishermen group was significantly higher than in control group (p < 0.01). There was no significant difference in hair total mercury concentrations between sampling areas (p > 0.05). The results of this study indicate a greater risk of exposure to mercury in Sicilian fishermen, in comparison to the control population, due to the high consumption of fish and the close relationship with sources of exposure (ports, dumps, etc.). PMID:27127456

  9. Hair Mercury Levels Detection in Fishermen from Sicily (Italy) by ICP-MS Method after Microwave-Assisted Digestion.

    PubMed

    Giangrosso, Giuseppe; Cammilleri, Gaetano; Macaluso, Andrea; Vella, Antonio; D'Orazio, Nicolantonio; Graci, Stefania; Lo Dico, Gianluigi Maria; Galvano, Fabio; Giangrosso, Margherita; Ferrantelli, Vincenzo

    2016-01-01

    A number of ninety-six hair samples from Sicilian fishermen were examined for total mercury detection by an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method. The mercury levels obtained were compared with mercury levels of 96 hair samples from a control group, in order to assess potential exposure to heavy metals of Sicilian fishermen due to fish consumption and closeness to industrial activities. Furthermore, the mercury levels obtained from hair samples were sorted by sampling area in order to verify the possible risks linked to the different locations. The overall mean concentration in the hair of the population of fishermen was 6.45 ± 7.03 μg g(-1), with a highest value in a fisherman of Sciacca (16.48 μg g(-1)). Hair mercury concentration in fishermen group was significantly higher than in control group (p < 0.01). There was no significant difference in hair total mercury concentrations between sampling areas (p > 0.05). The results of this study indicate a greater risk of exposure to mercury in Sicilian fishermen, in comparison to the control population, due to the high consumption of fish and the close relationship with sources of exposure (ports, dumps, etc.). PMID:27127456

  10. Selective detection of elemental mercury vapor using a surface acoustic wave (SAW) sensor.

    PubMed

    Kabir, K M Mohibul; Sabri, Ylias M; Matthews, Glenn I; Jones, Lathe A; Ippolito, Samuel J; Bhargava, Suresh K

    2015-08-21

    The detection of elemental mercury (Hg(0)) within industrial processes is extremely important as it is the first major step in ensuring the efficient operation of implemented mercury removal technologies. In this study, a 131 MHz surface acoustic wave (SAW) delay line sensor with gold electrodes was tested towards Hg(0) vapor (24 to 365 ppbv) with/without the presence of ammonia (NH3) and humidity (H2O), as well as volatile organic compounds (VOCs) such as acetaldehyde (MeCHO), ethylmercaptan (EM), dimethyl disulfide (DMDS) and methyl ethyl ketone (MEK), which are all common interfering gas species that co-exist in many industrial applications requiring mercury monitoring. The developed sensor exhibited a detection limit of 0.7 ppbv and 4.85 ppbv at 35 and 55 °C, respectively. Furthermore, a repeatability of 97% and selectivity of 92% in the presence of contaminant gases was exhibited by the sensor at the chosen operating temperature of 55 °C. The response magnitude of the developed SAW sensor towards different concentrations of Hg(0) vapor fitted well with the Langmuir extension isotherm (otherwise known as loading ratio correlation (LRC)) which is in agreement with our basic finite element method (FEM) work where an LRC isotherm was observed for a simplified model of the SAW sensor responding to different Hg contents deposited on the Au based electrodes. Overall, the results indicate that the developed SAW sensor can be a potential solution for online selective detection of low concentrations of Hg(0) vapor found in industrial stack effluents.

  11. Mercury-induced autoimmune glomerulonephritis in inbred rats. I. Kinetics and species specificity of autoimmune responses.

    PubMed

    Michaelson, J H; McCoy, J P; Hirszel, P; Bigazzi, P E

    1985-01-01

    The nephropathy observed in rats after administration of mercuric chloride can be used to clarify the mechanisms underlying renal autoimmunity induced by chemicals. As a necessary preliminary step in the study of this animal model, we have investigated the kinetics and species-specificity of autoimmune responses to renal antigens. By a recently developed enzyme-linked immunosorbent assay (ELISA), circulating autoantibodies to the glomerular basement membrane of the kidney (anti-GBM) have been detected within 8 days after the initiation of mercuric chloride treatment. Anti-GBM antibodies reach a peak by 15 days and then decrease rapidly in the following 2 weeks. Extensive cross-reactions between rat and human GBM antigens have been detected by ELISA, indicating a high degree of conservation of some renal autoantigens and suggesting certain similarities between the autoimmune response induced in rats by mercuric chloride and that observed in human glomerulonephritis caused by anti-GBM. Dose-response studies have been performed to ascertain whether anti-GBM responses are correlated with massive kidney damage and release of renal antigens. We have noted that a wide range of levels of mercuric chloride are capable of stimulating the production of anti-GBM and that animals receiving this chemical in as low a concentration as 0.02 mg/100 g body weight (i.e. a dose ten times lower than those causing massive nephrotoxic effects) still have anti-GBM specifically bound to their kidneys. Thus, it is possible that the administration of mercury compounds to BN rats results in kidney autoimmunity not only because of the release of renal autoantigens, but also through the activation of specific lymphocytes and/or disruption of regulatory networks. Finally, we have observed that both BN and MAXX rats produce anti-GBM after mercuric chloride treatment, while M520 rats do not. Since the MAXX strain was initially obtained from a cross of BN and Lewis rats and shares antigens of the

  12. Determination of methyl mercury by aqueous phase Eehylation, followed by gas chromatographic separation with cold vapor atomic fluorescence detection

    USGS Publications Warehouse

    De Wild, John F.; Olsen, Mark L.; Olund, Shane D.

    2002-01-01

    A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations

  13. Determination of organic mercury species in soils by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Hempel, M; Hintelmann, H; Wilken, R D

    1992-03-01

    Reversed-phase high-performance liquid chromatography with ultraviolet detection was optimized for the simultaneous separation and quantification of nine organic mercury compounds: methyl-, ethyl-, phenyl-, methoxyethyl-, ethoxyethyl-, benzoic and tolylmercury, mersalylic acid and nitromersol. The nine compounds were successfully separated on octadecylsilane columns (200 x 3 mm i.d.) by gradient elution with a methanol-water mixture ranging from 30 to 50% v/v. The detection limits for the various compounds are in the range 7.0-95.1 micrograms dm-3. For the extraction of five organomercurials from spiked soils, eight different extraction solutions were tested to differentiate between the total content and the available/soluble fraction of the analytes. Ammonium acetate solutions (1 mol dm-3) and water proved to be suitable agents for the estimation of the available and soluble fractions of methyl-, ethyl-, benzoic, methoxyethyl- and ethoxyethylmercury. For the determination of the total content of methyl- and benzoic mercury in soils, solutions of potassium iodide (1 mol dm-3)-ascorbic acid (0.1 mol dm-3) and oxalic acid (1 mol dm-3) provided recoveries in the ranges 53-81%. None of the solutions tested is suitable for the extraction of ethyl-, methoxyethyl- and ethoxyethylmercury.

  14. Ultrasensitive and highly selective detection of bioaccumulation of methyl-mercury in fish samples via Ag⁰/Hg⁰ amalgamation.

    PubMed

    Deng, Li; Li, Yan; Yan, Xiuping; Xiao, Jun; Ma, Cheng; Zheng, Jing; Liu, Shaojun; Yang, Ronghua

    2015-02-17

    Methylmercury (CH3Hg(+)), the common organic source of mercury, is well-known as one of the most toxic compounds that is more toxic than inorganic or elemental mercury. In seabeds, the deposited Hg(2+) ions are converted into CH3Hg(+) by bacteria, where they are subsequently consumed and bioaccumulated in the tissue of fish, and finally, to enter the human diet, causing severe health problems. Therefore, sensitive and selective detection of bioaccumulation of CH3Hg(+) in fish samples is desirable. However, selective assay of CH3Hg(+) in the mercury-containing samples has been seriously hampered by the difficulty to distinguish CH3Hg(+) from ionic mercury. We report here that metal amalgamation, a natural phenomenon occurring between mercury atoms and certain metal atoms, combining with DNA-protected silver nanoparticles, can be used to detect CH3Hg(+) with high sensitivity and superior selectivity over Hg(2+) and other heavy metals. In our proposed approach, discrimination between CH3Hg(+) and Hg(2+) ions was realized by forming Ag/Hg amalgam with a CH3Hg(+)-specific scaffold. We have found that Ag/Hg amalgam can be formed on a CH3Hg(+)-specific DNA template between silver atoms and mercury atoms but cannot between silver atoms and CH3Hg(+). With a dye-labeled DNA strand, the sensor can detect CH3Hg(+) down to the picomolar level, which is >125-fold sensitive over Hg(2+). Moreover, the presence of 50-fold Hg(2+) and 10(6)-fold other metal ions do not interfere with the CH3Hg(+) detection. The results shown herein have important implications for the fast, easy, and selective detection and monitoring of CH3Hg(+) in environmental and biological samples. PMID:25609026

  15. Detection of mercury and other undetermined materials in skin biopsies of endemic pemphigus foliaceus.

    PubMed

    Abréu Vélez, Ana María; Warfvinge, Gunnar; Herrera, Walter Leon; Abréu Vélez, Clara Eugenia; Montoya M, Fernando; Hardy, David M; Bollag, Wendy B; Hashimoto, Ken

    2003-10-01

    A novel variant of endemic pemphigus foliaceus (EPF) was described among individuals in an area surrounding El Bagre, Colombia, South America. The population in this rural mining community is exposed to high environmental levels of mercury, used for gold extraction, as well as other minerals, metalloids, and trace elements (e.g., quartz, rutile, granite, magnetite, and almenite) and ultraviolet radiation. Fifty control subjects and fifty EPF patients in the endemic area were examined for the presence of mercury in skin biopsies and hair, using autometallographic and mass spectroscopic analyses, respectively. Simultaneously, serum levels of IgE were measured, and cutaneous tests for hypersensitivity reactions were performed. Using autometallography, mercuric sulfides/selenides were detected in 14 of 51 skin biopsies distributed similarly in the control and patient groups. However, significantly higher serum IgE levels and mercury concentrations in hair, urine, and nails were found in patients compared with controls. Microscopic analysis revealed mercuric sulfides/selenides concentrated within and around the sweat gland epithelium, as well as in dendritic cells. Five skin biopsies from EPF patients and five from controls that tested positive for the presence of mercuric sulfides/selenides by autometallography were randomly selected for electron microscopic analysis. This analysis revealed a mixed electron-dense and electron-light material closely associated with desmosomes in patients. However, there were intracellular vesicles containing an amalgam of electron-dense and electron-light materials only in the EPF patients. Thus, EPF-affected individuals are exposed to high levels of environmental mercuric sulfides/selenides and other elements. This is the first study reporting mercuric sulfides/selenides in skin biopsies from people living in a focus of EPF, and these compounds may play a role in the pathogenesis of autoimmunity.

  16. Detection of mercury and other undetermined materials in skin biopsies of endemic pemphigus foliaceus.

    PubMed

    Abréu Vélez, Ana María; Warfvinge, Gunnar; Herrera, Walter Leon; Abréu Vélez, Clara Eugenia; Montoya M, Fernando; Hardy, David M; Bollag, Wendy B; Hashimoto, Ken

    2003-10-01

    A novel variant of endemic pemphigus foliaceus (EPF) was described among individuals in an area surrounding El Bagre, Colombia, South America. The population in this rural mining community is exposed to high environmental levels of mercury, used for gold extraction, as well as other minerals, metalloids, and trace elements (e.g., quartz, rutile, granite, magnetite, and almenite) and ultraviolet radiation. Fifty control subjects and fifty EPF patients in the endemic area were examined for the presence of mercury in skin biopsies and hair, using autometallographic and mass spectroscopic analyses, respectively. Simultaneously, serum levels of IgE were measured, and cutaneous tests for hypersensitivity reactions were performed. Using autometallography, mercuric sulfides/selenides were detected in 14 of 51 skin biopsies distributed similarly in the control and patient groups. However, significantly higher serum IgE levels and mercury concentrations in hair, urine, and nails were found in patients compared with controls. Microscopic analysis revealed mercuric sulfides/selenides concentrated within and around the sweat gland epithelium, as well as in dendritic cells. Five skin biopsies from EPF patients and five from controls that tested positive for the presence of mercuric sulfides/selenides by autometallography were randomly selected for electron microscopic analysis. This analysis revealed a mixed electron-dense and electron-light material closely associated with desmosomes in patients. However, there were intracellular vesicles containing an amalgam of electron-dense and electron-light materials only in the EPF patients. Thus, EPF-affected individuals are exposed to high levels of environmental mercuric sulfides/selenides and other elements. This is the first study reporting mercuric sulfides/selenides in skin biopsies from people living in a focus of EPF, and these compounds may play a role in the pathogenesis of autoimmunity. PMID:14501287

  17. A Luminescent Hypercrosslinked Conjugated Microporous Polymer for Efficient Removal and Detection of Mercury Ions.

    PubMed

    Xiang, Lu; Zhu, Yunlong; Gu, Shuai; Chen, Dongyang; Fu, Xian; Zhang, Yindong; Yu, Guipeng; Pan, Chunyue; Hu, Yuehua

    2015-09-01

    A hypercrosslinked conjugated microporous polymer (HCMP-1) with a robustly efficient absorption and highly specific sensitivity to mercury ions (Hg(2+)) is synthesized in a one-step Friedel-Crafts alkylation of cost-effective 2,4,6-trichloro-1,3,5-triazine and dibenzofuran in 1,2-dichloroethane. HCMP-1 has a moderate Brunauer-Emmett-Teller specific surface (432 m(2) g(-1)), but it displays a high adsorption affinity (604 mg g(-1)) and excellent trace efficiency for Hg(2+). The π-π* electronic transition among the aromatic heterocyclic rings endows HCMP-1 a strong fluorescent property and the fluorescence is obviously weakened after Hg(2+) uptake, which makes the hypercrosslinked conjugated microporous polymer a promising fluorescent probe for Hg(2+) detection, owning a super-high sensitivity (detection limit 5 × 10(-8) mol L(-1)). PMID:26088466

  18. Climate induced thermocline change has an effect on the methyl mercury cycle in small boreal lakes.

    PubMed

    Verta, Matti; Salo, Simo; Korhonen, Markku; Porvari, Petri; Paloheimo, Anna; Munthe, John

    2010-08-01

    We conducted a whole-lake experiment by manipulating the stratification pattern (thermocline depth) of a small polyhumic, boreal lake (Halsjärvi) in southern Finland and studying the impacts on lake mercury chemistry. The experimental lake was compared to a nearby reference site (Valkea-Kotinen Lake). During the first phase of the experiment the thermocline of Halsjärvi was lowered in order to simulate the estimated increase in wind speed and in total lake heat content (high-change climate scenario). The rate of methyl mercury (MeHg) production during summer stagnation (May-August) was calculated from water profiles before the treatment (2004), during treatment (2005, 2006) and after treatment (2007). We also calculated fluxes of MeHg from the epilimnion and from the hypolimnion to the sediments using sediment traps. Experimental mixing with a submerged propeller caused a 1.5-2 m deepening of the thermocline and oxycline. Methyl mercury production occurred mostly in the oxygen free layers in both lakes. In the experimental lake there was no net increase in MeHg during the experiment and following year; whereas the reference lake showed net production for all years. We conclude that the new exposed epilimnetic sediments caused by a lowering of the thermocline were a major sink for MeHg in the epilimnion. The results demonstrate that in-lake MeHg production can be manipulated in small lakes with anoxic hypolimnia during summer. The climate change induced changes in small boreal lakes most probably affect methyl mercury production and depend on the lake characteristics and stratification pattern. The results support the hypothesis that possible oxygen related changes caused by climate change are more important than possible temperature changes in small polyhumic lakes with regularly occurring oxygen deficiency in the hypolimnion.

  19. Exploiting the higher specificity of silver amalgamation: selective detection of mercury(II) by forming Ag/Hg amalgam.

    PubMed

    Deng, Li; Ouyang, Xiangyuan; Jin, Jianyu; Ma, Cheng; Jiang, Ying; Zheng, Jing; Li, Jishan; Li, Yinhui; Tan, Weihong; Yang, Ronghua

    2013-09-17

    Heavy metal ion pollution poses severe risks in human health and the environment. Driven by the need to detect trace amounts of mercury, this article demonstrates, for the first time, that silver/mercury amalgamation, combining with DNA-protected silver nanoparticles (AgNPs), can be used for rapid, easy and reliable screening of Hg(2+) ions with high sensitivity and selectivity over competing analytes. In our proposed approach, Hg(2+) detection is achieved by reducing the mercury species to elemental mercury, silver atoms were chosen as the mercury atoms' acceptors by forming Ag/Hg amalgam. To signal fluorescently this silver amalgamation event, a FAM-labeled ssDNA was employed as the signal reporter. AgNPs were grown on the DNA strand that resulted in greatly quenching the FAM fluorescence. Formation of Ag/Hg amalgam suppresses AgNPs growth on the DNA, leading to fluorescence signal increase relative to the fluorescence without Hg(2+) ions, as well as marked by fluorescence quenching. This FAM fluorescence enhancement can be used for detection of Hg(2+) at the a few nanomolar level. Moreover, due to excellent specificity of silver amalgamation with mercury, the sensing system is highly selective for Hg(2+) and does not respond to other metal ions with up to millimolar concentration levels. This sensor is successfully applied to determination of Hg(2+) in tap water, spring water and river water samples. The results shown herein have important implications in the development of new fluorescent sensors for the fast, easy, and selective detection and quantification of Hg(2+) in environmental and biological samples. PMID:23937672

  20. LP/LIF STUDY OF THE FORMATION AND CONSUMPTION OF MERCURY (I) CHLORIDE: KINETICS OF MERCURY CHLORINATION

    EPA Science Inventory

    The laser photolysis/laser induced flourescence (LP/LIF) technique has been applied to studies of gas-phase mercury (Hg) chlorination. Mercury (I) chloride (HgCl) has been detected via LIF at 272 nm from reactions of elemental Hg and Cl atoms generated from the 193 nm photolysis ...

  1. Protective effect of Bacopa monniera on methyl mercury-induced oxidative stress in cerebellum of rats.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Christinal, Johnson; Anusha, Chandran

    2012-08-01

    Methyl mercury (MeHg) is a ubiquitous environmental pollutant leading to neurological and developmental deficits in animals and human beings. Bacopa monniera (BM) is a perennial herb and is used as a nerve tonic in Ayurveda, a traditional medicine system in India. The objective of the present study was to investigate whether Bacopa monniera extract (BME) could potentially inhibit MeHg-induced toxicity in the cerebellum of rat brain. Male Wistar rats were administered with MeHg orally at a dose of 5 mg/kg b.w. for 21 days. Experimental rats were given MeHg and also administered with BME (40 mg/kg, orally) for 21 days. After the treatment period, we observed that MeHg exposure significantly inhibited the activities of superoxide dismutase, catalase, glutathione peroxidase, and increased the glutathione reductase activity in cerebellum. It was also found that the level of thiobarbituric acid-reactive substances was increased with the concomitant decrease in the glutathione level in MeHg-induced rats. These alterations were prevented by the administration of BME. Behavioral interference in the MeHg-exposed animals was evident through a marked deficit in the motor performance in the rotarod task, which was completely recovered to control the levels by BME administration. The total mercury content in the cerebellum of MeHg-induced rats was also increased which was measured by atomic absorption spectrometry. The levels of NO(2) (-) and NO(3) (-) in the serum were found to be significantly increased in the MeHg-induced rats, whereas treatment with BME significantly decreased their levels in serum to near normal when compared to MeHg-induced rats. These findings strongly implicate that BM has potential to protect brain from oxidative damage resulting from MeHg-induced neurotoxicity in rat.

  2. Determination of mercury in biological samples by cold vapor atomic absorption spectrometry following cloud point extraction with salt-induced phase separation.

    PubMed

    Dittert, Ingrid M; Maranhão, Tatiane A; Borges, Daniel L G; Vieira, Mariana A; Welz, Bernhard; Curtius, Adilson J

    2007-07-31

    Method development for the pre-concentration of mercury in human hair, dogfish liver and dogfish muscle samples using cloud-point extraction and cold vapor atomic absorption spectrometry is demonstrated. Before the extraction, the samples were submitted to microwave-assisted digestion in a mixture of H(2)O(2) and HNO(3). Cloud point extraction was carried out using 0.5% (m/v) ammonium O,O-diethyldithiophosphate (DDTP) as the chelating agent and 0.3% (m/v) Triton X-114 as the non-ionic surfactant. Phase separation was induced after the addition of Na(2)SO(4) to a final concentration of 0.2 mol L(-1). Aliquots of the final extract were transferred to PTFE tubes and NaBH(4) and HCl were added. The mercury vapor was driven to a non-heated quartz tube for measuring the absorbance. The results obtained with salt-induced phase separation were in good agreement with the certified values at a 95% confidence level. An enrichment factor of 10 allowed a detection limit of 0.4 ng g(-1) to be obtained, which demonstrates the high sensitivity of the proposed procedure for the determination of mercury at trace levels.

  3. Colorimetric detection of mercury ion based on unmodified gold nanoparticles and target-triggered hybridization chain reaction amplification

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Yang, Xiaohan; Yang, Xiaohai; Liu, Pei; Wang, Kemin; Huang, Jin; Liu, Jianbo; Song, Chunxia; Wang, Jingjing

    2015-02-01

    A novel unmodified gold nanoparticles (AuNPs)-based colorimetric strategy for label-free, specific and sensitive mercury ion (Hg2+) detection was demonstrated by using thymine-Hg2+-thymine (T-Hg2+-T) recognition mechanism and hybridization chain reaction (HCR) amplification strategy. In this protocol, a structure-switching probe (H0) was designed to recognize Hg2+ and then propagated a chain reaction of hybridization events between two other hairpin probes (H1 and H2). In the absence of Hg2+, all hairpin probes could stably coexist in solution, the exposed sticky ends of hairpin probes were capable of stabilizing AuNPs. As a result, salt-induced AuNPs aggregation could be effectively prevented. In the presence of Hg2+, thymine bases of H0 could specifically interact with Hg2+ to form stable T-Hg2+-T complex. Consequently, the hairpin structure of H0 probe was changed. As H1/H2 probes were added, the HCR process could be triggered and nicked double-helixes were formed. Since it was difficult for the formed nicked double-helixes to inhibit salt-induced AuNPs aggregation, a red-to-blue color change was observed in the colloid solution as the salt concentration increased. With the elegant amplification effect of HCR, a detection limit of around 30 nM was achieved (S/N = 3), which was about 1-2 orders of magnitudes lower than that of previous unmodified AuNPs-based colorimetric methods. By using the T-Hg2+-T recognition mechanism, high selectivity was also obtained. As an unmodified AuNPs-based colorimetric strategy, the system was simple in design, convenient in operation, and eliminated the requirements of separation processes, chemical modifications, and sophisticated instrumentations.

  4. Photo-induced cold vapor generation with low molecular weight alcohol, aldehyde, or carboxylic acid for atomic fluorescence spectrometric determination of mercury.

    PubMed

    Han, Chunfang; Zheng, Chengbin; Wang, Jun; Cheng, Guanglei; Lv, Yi; Hou, Xiandeng

    2007-06-01

    With UV irradiation, Hg(2+) in aqueous solution can be converted into Hg(0) cold vapor by low molecular weight alcohols, aldehydes, or carboxylic acids, e.g., methanol, formaldehyde, acetaldehyde, glycol, 1,2-propanediol, glycerol, acetic acid, oxalic acid, or malonic acid. It was found that the presence of nano-TiO(2) more or less improved the efficiency of the photo-induced chemical/cold vapor generation (photo-CVG) with most of the organic reductants. The nano-TiO(2)-enhanced photo-CVG systems can be coupled to various analytical atomic spectrometric techniques for the determination of ultratrace mercury. In this work, we evaluated the application of this method to the atomic fluorescence spectrometric (AFS) determination of mercury in cold vapor mode. Under the optimized experimental conditions, the instrumental limits of detection (based on three times the standard deviation of 11 measurements of a blank solution) were around 0.02-0.04 microg L(-1), with linear dynamic ranges up to 15 microg L(-1). The interference of transition metals and the mechanism of the photo-CVG are briefly discussed. Real sample analysis using the photo-CVG-AFS method revealed that it was promising for water and geological analysis of ultralow levels of mercury.

  5. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-01

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA.

  6. Aggregation induced emission enhancement from Bathophenanthroline microstructures and its potential use as sensor of mercury ions in water.

    PubMed

    Mazumdar, Prativa; Das, Debasish; Sahoo, Gobinda Prasad; Salgado-Morán, Guillermo; Misra, Ajay

    2014-04-01

    Bathophenanthroline (BA) microstructures of various morphologies have been synthesized using a reprecipitation method. The morphologies of the particles are characterized using optical and scanning electron microscopy (SEM) methods. An aqueous dispersion of BA microstructures shows aggregation induced emission enhancement (AIEE) compared to BA in a good solvent, THF. This luminescent property of aggregated BA hydrosol is used for the selective detection of trace amounts of mercury ion (Hg(2+)) in water. It is observed that Hg(2+) ions can quench the photoluminescence (PL) intensity of BA aggregates even at very low concentrations, compared to other heavy metal ions e.g. nickel (Ni(2+)), manganese (Mn(2+)), cadmium (Cd(2+)), cobalt (Co(2+)), copper (Cu(2+)), ferrous (Fe(2+)) and zinc (Zn(2+)). This strong fluorescence quenching of aggregated BA in the presence of Hg(2+) ions has been explained as a complex interplay between the ground state complexation between BA and Hg(2+) ions and external heavy atom induced perturbation by Hg(2+) ions on the excited states of the fluorophore BA. PMID:24569390

  7. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice

    PubMed Central

    Al-Attar, Atef M.

    2011-01-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) were detected in heavy metals-treated mice. Histopathologically, the liver sections from heavy metals-treated mice showed severe changes including disarrangement of hepatic strands, rupture in hepatocytes, advanced hepatocellular necrosis, dilation and congestion of blood vessels with hemorrhage, dense lymphocytic infiltration round the central vein and dark stained hepatocytic nuclei indicating cell pycnosis. Administration of vitamin E at a dose of 50 IU/kg body weight, five times weekly improved the observed biochemical and histopathological changes induced by these heavy metals intoxication. Hence, the results of this study suggest that vitamin E protects against these heavy metals-induced liver injury and the attenuating effect of vitamin E may be due to its antioxidant activity. PMID:23961152

  8. Vitamin E attenuates liver injury induced by exposure to lead, mercury, cadmium and copper in albino mice.

    PubMed

    Al-Attar, Atef M

    2011-10-01

    Water pollution is the contamination of water resources by harmful wastes or toxins. Both community and private sources of drinking water are susceptible to a myriad of chemical contaminants. Heavy metals pollution of surface water can create health risks. The present study was aimed to investigate the effect of vitamin E supplementation on male mice exposed to a mixture of some heavy metals (lead, mercury, cadmium and copper) in their drinking water for seven weeks. Significant increases of blood alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT) were detected in heavy metals-treated mice. Histopathologically, the liver sections from heavy metals-treated mice showed severe changes including disarrangement of hepatic strands, rupture in hepatocytes, advanced hepatocellular necrosis, dilation and congestion of blood vessels with hemorrhage, dense lymphocytic infiltration round the central vein and dark stained hepatocytic nuclei indicating cell pycnosis. Administration of vitamin E at a dose of 50 IU/kg body weight, five times weekly improved the observed biochemical and histopathological changes induced by these heavy metals intoxication. Hence, the results of this study suggest that vitamin E protects against these heavy metals-induced liver injury and the attenuating effect of vitamin E may be due to its antioxidant activity. PMID:23961152

  9. Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification.

    PubMed

    Wang, Yonghong; Jiang, Lun; Leng, Qinggang; Wu, Yaohui; He, Xiaoxiao; Wang, Kemin

    2016-03-15

    In this work, we design a new simple and highly sensitive strategy for electrochemical detection of glutathione (GSH) via mercury ion (Hg(2+)) triggered hybridization chain reaction (HCR) signal amplification. It is observed that in the absence of GSH, a specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination can fold into hairpin structures. While in the presence of GSH, it thus can be chelated with Hg(2+), resulting in Hg(2+) released from the T-Hg(2+)-T hairpin complex which then forms into ssDNA structure to further hybridize with the surface-immobilized capture DNA probe on the gold electrode with a sticky tail left. The presence of two hairpin helper probes through HCR leads to the formation of extended dsDNA superstructure on the electrode surface, which therefore causes the intercalation of numerous electroactive species ([Ru(NH3)6](3+)) into the dsDNA grooves, followed by a significantly amplified signal output whose intensity is related to the concentration of the GSH. Taking advantage of merits of enzyme-free amplification power of the HCR, the inherent high sensitivity of the electrochemical technique, and label-free detection which utilizes an electroactive species as a signaling molecule that binds to the anionic phosphate backbone of DNA strands via electrostatic force, not only does the proposed strategy enable sensitive detection of GSH, but show high selectivity against other amino acid, making our method a simple and sensitive addition to the amplified GSH detection. PMID:26528805

  10. A Metal-Organic Framework/DNA Hybrid System as a Novel Fluorescent Biosensor for Mercury(II) Ion Detection.

    PubMed

    Wu, Lan-Lan; Wang, Zhuo; Zhao, Shu-Na; Meng, Xing; Song, Xue-Zhi; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2016-01-11

    Mercury(II) ions have emerged as a widespread environmental hazard in recent decades. Despite different kinds of detection methods reported to sense Hg(2+) , it still remains a challenging task to develop new sensing molecules to replenish the fluorescence-based apparatus for Hg(2+) detection. This communication demonstrates a novel fluorescent sensor using UiO-66-NH2 and a T-rich FAM-labeled ssDNA as a hybrid system to detect Hg(2+) sensitively and selectively. To the best of our knowledge, it has rarely been reported that a MOF is utilized as the biosensing platform for Hg(2+) assay. PMID:26555340

  11. Detection of the spatiotemporal trends of mercury in Lake Erie fish communities: a Bayesian approach.

    PubMed

    Azim, M Ekram; Kumarappah, Ananthavalli; Bhavsar, Satyendra P; Backus, Sean M; Arhonditsis, George

    2011-03-15

    The temporal trends of total mercury (THg) in four fish species in Lake Erie were evaluated based on 35 years of fish contaminant data. Our Bayesian statistical approach consists of three steps aiming to address different questions. First, we used the exponential and mixed-order decay models to assess the declining rates in four intensively sampled fish species, i.e., walleye (Stizostedion vitreum), yellow perch (Perca flavescens), smallmouth bass (Micropterus dolomieui), and white bass (Morone chrysops). Because the two models postulate monotonic decrease of the THg levels, we included first- and second-order random walk terms in our statistical formulations to accommodate nonmonotonic patterns in the data time series. Our analysis identified a recent increase in the THg concentrations, particularly after the mid-1990s. In the second step, we used double exponential models to quantify the relative magnitude of the THg trends depending on the type of data used (skinless-boneless fillet versus whole fish data) and the fish species examined. The observed THg concentrations were significantly higher in skinless boneless fillet than in whole fish portions, while the whole fish portions of walleye exhibited faster decline rates and slower rates of increase relative to the skinless boneless fillet data. Our analysis also shows lower decline rates and higher rates of increase in walleye relative to the other three fish species examined. The food web structural shifts induced by the invasive species (dreissenid mussels and round goby) may be associated with the recent THg trends in Lake Erie fish.

  12. Surface plasmon resonance sensing detection of mercury and lead ions based on conducting polymer composite.

    PubMed

    Abdi, Mahnaz M; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb(2+) and Hg(2+) ions. The Pb(2+) ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb(2+) compared to Hg(2+). The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system.

  13. Surface Plasmon Resonance Sensing Detection of Mercury and Lead Ions Based on Conducting Polymer Composite

    PubMed Central

    Abdi, Mahnaz M.; Abdullah, Luqman Chuah; Sadrolhosseini, Amir R.; Mat Yunus, Wan Mahmood; Moksin, Mohd Maarof; Tahir, Paridah Md.

    2011-01-01

    A new sensing area for a sensor based on surface plasmon resonance (SPR) was fabricated to detect trace amounts of mercury and lead ions. The gold surface used for SPR measurements were modified with polypyrrole-chitosan (PPy-CHI) conducting polymer composite. The polymer layer was deposited on the gold surface by electrodeposition. This optical sensor was used for monitoring toxic metal ions with and without sensitivity enhancement by chitosan in water samples. The higher amounts of resonance angle unit (ΔRU) were obtained for PPy-CHI film due to a specific binding of chitosan with Pb2+ and Hg2+ ions. The Pb2+ ion bind to the polymer films most strongly, and the sensor was more sensitive to Pb2+ compared to Hg2+. The concentrations of ions in the parts per million range produced the changes in the SPR angle minimum in the region of 0.03 to 0.07. Data analysis was done by Matlab software using Fresnel formula for multilayer system. PMID:21931763

  14. Using L-arginine-functionalized gold nanorods for visible detection of mercury(II) ions.

    PubMed

    Guan, Jiehao; Wang, Yi-Cheng; Gunasekaran, Sundaram

    2015-04-01

    A rapid and simple approach for visible determination of mercury ions (Hg(2+) ) in aqueous solutions was developed based on surface plasmon resonance phenomenon using L-arginine-functionalized gold nanorods (AuNRs). At pH greater than 9, the deprotonated amine group of L-arginine on the AuNRs bound with Hg(2+) leading to the side-by-side assembly of AuNRs, which was verified by transmission electron microscopy images. Thus, when Hg(2+) was present in the test solution, a blue shift of the typical longitudinal plasmon band of the AuNRs was observed in the ultra violet-visible-near infrared (UV-Vis-NIR) spectra, along with a change in the color of the solution, which occurred within 5 min. After carefully optimizing the potential factors affecting the performance, the L-arginine/AuNRs sensing system was found to be highly sensitive to Hg(2+) , with the limit of detection of 5 nM (S/N = 3); it is also very selective and free of interference from 10 other metal ions (Ba(2+) , Ca(2+) , Cd(2+) , Co(2+) , Cs(+) , Cu(2+) , K(+) , Li(+) , Ni(2+) , Pb(2+) ). The result suggests that the L-arginine-functionalized AuNRs can potentially serve as a rapid, sensitive, and easy-to-use colorimetric biosensor useful for determining Hg(2+) in food and environmental samples. PMID:25754066

  15. Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction.

    PubMed

    Wolf, Matthew B; Baynes, John W

    2007-02-01

    We investigated the ability of cadmium and mercury ions to cause endothelial dysfunction in bovine pulmonary artery endothelial cell monolayers. Exposure of monolayers for 48 h to metal concentrations greater than 3-5 microM produced profound cytotoxicity (increased lactate dehydrogenase leakage), a permeability barrier failure, depletion of glutathione and ATP and almost complete inhibition of the activity of key thiol enzymes, glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, metal concentrations less than 1-2 microM induced increases in glutathione and thiol-enzyme activities with minimal changes in LDH leakage, barrier function and ATP content. At shorter incubation times (24 h or less), high concentrations of cadmium caused glutathione induction rather than depletion. Thus, oxidative stress and cytotoxicity induced by lower concentrations of the metal ions stimulate compensatory responses, including increased synthesis of glutathione, which presumably preserved the activity of key thiol enzymes, however these responses were not sustainable at higher metal ion concentrations. We conclude, while high concentrations of heavy metals are cytotoxic, lower concentration induce a compensatory protective response, which may explain threshold effects in metal-ion toxicity.

  16. Sensing Mercury for Biomedical and Environmental Monitoring

    PubMed Central

    Selid, Paul D.; Xu, Hanying; Collins, E. Michael; Face-Collins, Marla Striped; Zhao, Julia Xiaojun

    2009-01-01

    Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury. PMID:22346707

  17. MESSENGER observations of Mercury's exosphere: detection of magnesium and distribution of constituents.

    PubMed

    McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R

    2009-05-01

    Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes. PMID:19407195

  18. Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury

    SciTech Connect

    Gill, Randall; Lanni, Lydia; Jen, K.-L. Catherine; McCabe, Michael J.; Rosenspire, Allen

    2015-01-01

    In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures. - Highlights: • Inorganic mercury (Hg{sup 2+}) interferes with CD95 mediated cell death in Jurkat T cells • DHA restores the ability of CD95 to signal cell death in Hg{sup 2+} intoxicated T cells • The restoration of CD95 mediated cell death by DHA is correlated with increased activation of Caspase 3.

  19. Murine genotype influences the specificity, magnitude and persistence of murine mercury-induced autoimmunity.

    PubMed

    Hultman, P; Turley, S J; Eneström, S; Lindh, U; Pollard, K M

    1996-04-01

    Genetic factors are major contributors in determining the susceptibility to systemic autoimmune diseases. We studied the influence of genotype on systemic autoimmunity by treating female mice of the H-2s strains SJL/N, SJL/J, A.SW, and B10.S with mercuric chloride (HgCl2) for 10 weeks and then following autoantibody and tissue immune deposits during the subsequent 12 months. All strains developed antinucleolar antibodies (ANoA) of the IgG class which reacted in immunoblotting with a 34-kDa nucleolar protein identified as fibrillarin. The titre of ANoA attained after 10 weeks' treatment varied from 1:1,280 to 1:20,480 in the order: A.SW > SJL > > B10.S. Following cessation of HgCl2 treatment ANoA and antifibrillarin antibodies (AFA) persisted for up to 12 months, although some B10.S mice showed pronounced reduction not only of their autoantibody titres, but also systemic immune deposits when compared to other H-2s strains. A second set of autoantibodies targeted chromatin and in some mice specifically histones, and were distinguished from the ANoA by a rapid decline after treatment and a susceptibility linked to the non-H-2 genes of the SJL. Tissue levels of mercury remained elevated above untreated controls throughout the study period, suggesting that the mercury detected in lymphoid tissues may provide stimulation of lymphoid cells specific for fibrillarin for a considerable period after exposure has ceased. We conclude that H-2 as well as non-H-2 genetic factors distinctly influence not only the susceptibility to induction of autoimmunity, but also the specificity and magnitude of the response.

  20. Comparison of the Detection Characteristics of Trace Species Using Laser-Induced Breakdown Spectroscopy and Laser Breakdown Time-of-Flight Mass Spectrometry

    PubMed Central

    Wang, Zhenzhen; Deguchi, Yoshihiro; Yan, Junjie; Liu, Jiping

    2015-01-01

    The rapid and precise element measurement of trace species, such as mercury, iodine, strontium, cesium, etc. is imperative for various applications, especially for industrial needs. The elements mercury and iodine were measured by two detection methods for comparison of the corresponding detection features. A laser beam was focused to induce plasma. Emission and ion signals were detected using laser-induced breakdown spectroscopy (LIBS) and laser breakdown time-of-flight mass spectrometry (LB-TOFMS). Multi-photon ionization and electron impact ionization in the plasma generation process can be controlled by the pressure and pulse width. The effect of electron impact ionization on continuum emission, coexisting molecular and atomic emissions became weakened in low pressure condition. When the pressure was less than 1 Pa, the plasma was induced by laser dissociation and multi-photon ionization in LB-TOFMS. According to the experimental results, the detection limits of mercury and iodine in N2 were 3.5 ppb and 60 ppb using low pressure LIBS. The mercury and iodine detection limits using LB-TOFMS were 1.2 ppb and 9.0 ppb, which were enhanced due to different detection features. The detection systems of LIBS and LB-TOFMS can be selected depending on the condition of each application. PMID:25769051

  1. [Determination of trace mercury in wastewater by a flow injection analysis composed of immobilized ionic liquid enrichment and colorimetric detection].

    PubMed

    Zhang, Jun; Mao, Li-li; Yang, Gui-peng; Gao, Xian-chi; Tang, Xu-li

    2010-07-01

    Amberlite XAD-7 resin was modified by room temperature ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate, [C6 mim]PF6) coating through a maceration method, gaining a new sort of hydrophobic adsorbent for the solid phase extraction mini-column. Trace inorganic mercury in wastewater samples was preconcentrated and determined by flow injection online mini-column sampling coupled with spectrophotometric determination. In acid medium, dithizone was employed as chelator with cetyltrimethylammonium bromide (CTMAB) to form a red neutral mercury-dithizone complex, which could be extracted quantificationally by solid phase extraction technique on the mini-column. Under the optimized conditions, the linearity and the detection limit of the proposed method were found to be 0.35 to 50.0 microg x L(-1) Hg2+ and 0.067 microg x L(-1) Hg2+, respectively. The enrichment factor of 25 times could be achieved with a 50 mL sampling volume and the developed procedure was successfully applied for the determination of mercury in the certified reference material (GSBZ50016-90) and the spiked dock wastewater samples with the recovery of 99%-103%. PMID:20828014

  2. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways

    SciTech Connect

    Aguado, Andrea; Galán, María; Zhenyukh, Olha; Wiggers, Giulia A.; Roque, Fernanda R.; Redondo, Santiago; Peçanha, Franck; Martín, Angela; Fortuño, Ana; Cachofeiro, Victoria; Tejerina, Teresa; Salaices, Mercedes; and others

    2013-04-15

    Mercury exposure is known to increase cardiovascular risk but the underlying cellular mechanisms remain undetermined. We analyzed whether chronic exposure to HgCl{sub 2} affects vascular structure and the functional properties of vascular smooth muscle cells (VSMC) through oxidative stress/cyclooxygenase-2 dependent pathways. Mesenteric resistance arteries and aortas from Wistar rats treated with HgCl{sub 2} (first dose 4.6 mg kg{sup −1}, subsequent doses 0.07 mg kg{sup −1} day{sup −1}, 30 days) and cultured aortic VSMC stimulated with HgCl{sub 2} (0.05–5 μg/ml) were used. Treatment of rats with HgCl{sub 2} decreased wall thickness of the resistance and conductance vasculature, increased the number of SMC within the media and decreased SMC nucleus size. In VSMCs, exposure to HgCl{sub 2}: 1) induced a proliferative response and a reduction in cell size; 2) increased superoxide anion production, NADPH oxidase activity, gene and/or protein levels of the NADPH oxidase subunit NOX-1, the EC- and Mn-superoxide dismutases and cyclooxygenase-2 (COX-2); 3) induced activation of ERK1/2 and p38 MAPK. Both antioxidants and COX-2 inhibitors normalized the proliferative response and the altered cell size induced by HgCl{sub 2}. Blockade of ERK1/2 and p38 signaling pathways abolished the HgCl{sub 2}-induced Nox1 and COX-2 expression and normalized the alterations induced by mercury in cell proliferation and size. In conclusion, long exposure of VSMC to low doses of mercury activates MAPK signaling pathways that result in activation of inflammatory proteins such as NADPH oxidase and COX-2 that in turn induce proliferation of VSMC and changes in cell size. These findings offer further evidence that mercury might be considered an environmental risk factor for cardiovascular disease. - Highlights: ► Chronic HgCl{sub 2} exposure induces vascular remodeling. ► HgCl{sub 2} induces proliferation and decreased cell size in vascular smooth muscle cells. ► HgCl{sub 2} induces

  3. Functional relevance of activated beta1 integrins in mercury-induced nephritis.

    PubMed

    Escudero, E; Martín, A; Nieto, M; Nieto, E; Navarro, E; Luque, A; Cabañas, C; Sánchez-Madrid, F; Mampaso, F

    2000-06-01

    Cell adhesion through different adhesion molecules is a crucial event in the inflammatory response. Integrins can only bind and mediate cellular adhesion after their activation by different specific stimuli. The state of beta1 integrin activation can be assessed by a group of monoclonal antibodies (HUTS) that selectively recognize beta1 integrins in their active form. A similar activated epitope in the rat was defined using the anti-human monoclonal antibody HUTS-21, which recognizes an activation-dependent epitope on the beta1 chain. It was found that the divalent cations Mn(2+) and Hg(2+) were able to induce in vitro the activation of beta1 integrins on rat lymphocytes. The Hg(2+) cation induces an autoimmune disease in the Brown Norway rat characterized by synthesis and glomerular deposits of anti-glomerular basement membrane antibodies, proteinuria, and interstitial nephritis. Using the mercury model of nephritis, it was found that the expression of HUTS-21 epitope is induced in vivo in rat lymphocytes, and its appearance is correlated with the other parameters at the onset of the disease. In addition, the administration of HUTS-21 monoclonal antibody to HgCl(2)-treated rats offered evidence of its protective effects (1) against infiltration of renal interstitium by leukocytes, and (2) in the reduction of anti-glomerular basement membrane synthesis and glomerular deposition. Nevertheless, urinary protein values remained unaffected. These results demonstrate a key role of beta1-activated integrins in both leukocyte cell-cell interactions and leukocyte infiltration pathway mechanism, and also indicate that leukocyte migration may have less importance in the development of this disease than previously thought.

  4. SCR atmosphere induced reduction of oxidized mercury over CuO-CeO2/TiO2 catalyst.

    PubMed

    Li, Hailong; Wu, Shaokang; Wu, Chang-Yu; Wang, Jun; Li, Liqing; Shih, Kaimin

    2015-06-16

    CuO-CeO2/TiO2 (CuCeTi) catalyst synthesized by a sol-gel method was employed to investigate mercury conversion under a selective catalytic reduction (SCR) atmosphere (NO, NH3 plus O2). Neither NO nor NH3 individually exhibited an inhibitive effect on elemental mercury (Hg(0)) conversion in the presence of O2. However, Hg(0) conversion over the CuCeTi catalyst was greatly inhibited under SCR atmosphere. Systematic experiments were designed to investigate the inconsistency and explore the in-depth mechanisms. The results show that the copresence of NO and NH3 induced reduction of oxidized mercury (Hg(2+), HgO in this study), which offset the effect of catalytic Hg(0) oxidation, and hence resulted in deactivation of Hg(0) conversion. High NO and NH3 concentrations with a NO/NH3 ratio of 1.0 facilitated Hg(2+) reduction and therefore lowered Hg(0) conversion. Hg(2+) reduction over the CuCeTi catalyst was proposed to follow two possible mechanisms: (1) direct reaction, in which NO and NH3 react directly with HgO to form N2 and Hg(0); (2) indirect reaction, in which the SCR reaction consumed active surface oxygen on the CuCeTi catalyst, and reduced species on the CuCeTi catalyst surface such as Cu2O and Ce2O3 robbed oxygen from adjacent HgO. Different from the conventionally considered mechanisms, that is, competitive adsorption responsible for deactivation of Hg(0) conversion, this study reveals that oxidized mercury can transform into Hg(0) under SCR atmosphere. Such knowledge is of fundamental importance in developing efficient and economical mercury control technologies for coal-fired power plants.

  5. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    SciTech Connect

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  6. Detection of mercury in the 411-year-old beard hairs of the astronomer Tycho Brahe by elemental analysis in electron microscopy.

    PubMed

    Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj

    2012-10-01

    Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities. PMID:23025649

  7. Detection of mercury in the 411-year-old beard hairs of the astronomer Tycho Brahe by elemental analysis in electron microscopy.

    PubMed

    Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj

    2012-10-01

    Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities.

  8. Patterns of urban mercury contamination detected by bioindication with terrestrial isopods.

    PubMed

    Pedrini-Martha, Veronika; Sager, Manfred; Werner, Richard; Dallinger, Reinhard

    2012-08-01

    Mercury (Hg) is a trace element with high toxicological impact on potential receptors, including human beings. Global Hg emissions are predicted to increase significantly during the next 40 years. After emission, the metal is transported by air currents and precipitations, leading to increasing depositions even in areas far from emission sources. In the terrestrial environment, Hg is subjected to redistribution and transformation into different inorganic and metal-organic species that are taken up by vegetation and soil organisms. In the present study, the woodlouse (Porcellio scaber) was used as a biological indicator of total Hg pollution in the city of Dornbirn (province of Vorarlberg), Austria. Woodlice were collected from 30 sampling points scattered over the city area, 25 of them situated within a rectangular transect crossing the city area from west-northwest to east-southeast, starting near the Rheintal motorway and ending at the slopes of the Bregenzer Wald hills. In addition to woodlice, soil substrate samples were collected at nine of the selected sampling points. Total Hg concentrations were measured in isopod tissues and soil substrate samples by means of an Hg analyzer. Total Hg concentrations in isopod tissues were significantly correlated with Hg soil contents (P < 0.05). Moreover, a gradient of increasing Hg concentrations was observed in isopod samples along the transect across Dornbirn, with the lowest concentrations detected in woodlouse samples near the Rheintal motorway and the highest levels toward the ascending slopes of the Bregenzer Wald hills. This gradient of increasing Hg concentrations across the city matches a concomitant increase in wet precipitations along the same direction, indicating that deposition by wet precipitation may be an important source for Hg contamination in the city of Dornbirn. Overall, the degree of Hg contamination across the study area can be regarded as rather low, i.e., comparable with concentrations observed

  9. Immunogenetically controlled autoimmune reactions induced by mercury, gold and D-penicillamine in laboratory animals: a review from the vantage point of premarketing safety studies.

    PubMed

    Balazs, T

    1987-09-01

    Mercury and gold salts as well as d-penicillamine can cause glomerulonephritis by an autoimmune mechanism in man. The susceptibility to this effect of these chemicals is controlled by the genes of the major histocompatibility complex (MHC). The presence of certain alleles confers sensitivity. The role of MHC-linked genes has been demonstrated also in the rat and mouse in the development of autoimmunity induced by these chemicals. While Brown Norway rats and ASW mice were sensitive, several other strains were resistant. Also an interaction of MHC with background genes has been shown in determination of the response to HgCl2. In conventional toxicity studies, use of a single inbred strain of laboratory animals obviously handicaps the detection of a reaction of this nature.

  10. Cathepsin B regulates the appearance and severity of mercury-induced inflammation and autoimmunity.

    PubMed

    Toomey, Christopher B; Cauvi, David M; Hamel, John C; Ramirez, Andrea E; Pollard, K Michael

    2014-12-01

    Susceptibility and resistance to systemic autoimmunity are genetically regulated. This is particularly true for murine mercury-induced autoimmunity (mHgIA) where DBA/2J mice are considered resistant to disease including polyclonal B cell activation, autoantibody responses, and immune complex deposits. To identify possible mechanisms for the resistance to mHgIA, we exposed mHgIA sensitive B10.S and resistant DBA/2J mice to HgCl2 and assessed inflammation and pro-inflammatory responses at the site of exposure and subsequent development of markers of systemic autoimmunity. DBA/2J mice showed little evidence of induration at the site of exposure, expression of proinflammatory cytokines, T cell activation, or autoantibody production, although they did exhibit increased levels of total serum IgG and IgG1. In contrast B10.S mice developed significant inflammation together with increased expression of inflammasome component NLRP3, proinflammatory cytokines IL-1β, TNF-α, and IFN-γ, hypergammaglobulinemia, splenomegaly, CD4(+) T-cell activation, and production of autoantibodies. Inflammation in B10.S mice was associated with a selective increase in activity of cysteine cathepsin B but not cathepsins L or S. Increased cathepsin B activity was not dependent on cytokines required for mHgIA but treatment with CA-074, a cathepsin B inhibitor, led to transient reduction of local induration, expression of inflammatory cytokines, and subsequent attenuation of the systemic adaptive immune response. These findings demonstrate that sensitivity to mHgIA is linked to an early cathepsin B regulated inflammatory response which can be pharmacologically exploited to abrogate the subsequent adaptive autoimmune response which leads to disease.

  11. Detecting and managing fisheries-induced evolution.

    PubMed

    Kuparinen, Anna; Merilä, Juha

    2007-12-01

    Exploitation of fish populations can induce evolutionary responses in life histories. For example, fisheries targeting large individuals are expected to select for early maturation at smaller sizes, leading to reduced fecundity and thus also reduced fisheries yield. These predicted phenotypic shifts have been observed in several fish stocks, but disentangling the environmental and genetic causes behind them has proved difficult. Here, we review recent studies investigating phenotypic shifts in exploited populations and strategies for minimizing fisheries-induced evolution. Responses to selective harvesting will depend on species-specific life-history traits, and on community-level and environmental processes. Therefore, the detection of fisheries-induced evolution and successful fish stock management requires routine population monitoring, and a good understanding of genetics, relevant ecological processes and changing environmental conditions.

  12. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.

    PubMed

    Smolinska, Beata

    2015-03-01

    Phytoextraction of mercury-contaminated soils is a new strategy that consists of using the higher plants to make the soil contaminant nontoxic. The main problem that occurs during the process is the low solubility and bioavailability of mercury in soil. Therefore, some soil amendments can be used to increase the efficiency of the Hg phytoextraction process. The aim of the investigation was to use the commercial compost from municipal green wastes to increase the efficiency of phytoextraction of mercury-contaminated soil by Lepidium sativum L. plants and determine the leaching of Hg after compost amendment. The result of the study showed that Hg can be accumulated by L. sativum L. The application of compost increased both the accumulation by whole plant and translocation of Hg to shoots. Compost did not affect the plant biomass and its biometric parameters. Application of compost to the soil decreased the leaching of mercury in both acidic and neutral solutions regardless of growing medium composition and time of analysis. Due to Hg accumulation and translocation as well as its potential leaching in acidic and neutral solution, compost can be recommended as a soil amendment during the phytoextraction of mercury-contaminated soil.

  13. A Comparative Electrochemical Behaviour Study and Analytical Detection of the p-Nitrophenol Using Silver Solid Amalgam, Mercury, and Silver Electrodes

    PubMed Central

    De Souza, Djenaine; Mascaro, Lucia H.; Fatibello-Filho, Orlando

    2011-01-01

    This work reports a comparative electrochemical behaviour study and p-nitrophenol analytical detection using silver solid amalgam, hanging dropping mercury, and silver electrodes. For this, square wave voltammetry was employed, where the analytical responses and the redox mechanisms could be compared for reduction processes of 4-nitrophenol by analysis of the voltammetric responses. The analytical performance of the electrode was evaluated and detection and quantification limits, recovery percentages, repeatability, and reproducibility for the silver solid amalgam and hanging dropping mercury electrodes presented similar values; the results presented for the silver electrode indicated worse analytical parameters than the other electrodes. The results indicate that the silver solid amalgam electrode can be considered a suitable tool and an interesting alternative for the analytical determination of 4-nitrophenol, as well as for the determination of other biological and environmentally interesting compounds that present analytical responses on mercury surfaces. PMID:21647286

  14. A highly sensitive and selective competition assay for the detection of cysteine using mercury-specific DNA, Hg and Sybr Green I.

    PubMed

    Xu, Hui; Gao, Shuli; Liu, Quanwen; Pan, Dun; Wang, Lihua; Ren, Shuzhen; Ding, Min; Chen, Jingwen; Liu, Gang

    2011-01-01

    We here report a rapid, sensitive, selective and label-free fluorescence detection method for cysteine (Cys). The conformation of mercury-specific DNA (MSD) changes from a random coil form to a hairpin structure in the presence of Hg2+ due to the formation of a thymine-Hg2+ -thymine (T-Hg2+ -T) complex. Cys can selectively coordinate with Hg2+ and extract it from the thymine-Hg2+ -thymine complex. The hairpin structure dehybridizes and the fluorescence intensity of Sybr Green I (SG) decreases upon addition of Cys because SG efficiently discriminates mercury-specific DNA and mercury-specific DNA/Hg2+ complex. The detection can be finished within 5 min with high sensitivity and selectivity. In addition, we can obtain variable dynamic ranges for Cys by changing the concentration of MSD/Hg2+.

  15. Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media.

    PubMed

    Huang, Wei; Zhu, Xiang; Wua, Dayu; He, Cheng; Hu, Xiaoyue; Duan, Chunying

    2009-12-21

    In virtue of the sulfurphilic nature of Hg(2+), three new sensors RN1, RN2 and RST1 that combine a thiophene group and one or two rhodamine choromophores, or a thiospirolactam rhodamine chromophore, were designed and prepared for the selective detection of Hg(2+) in aqueous media, respectively. These sensors all displayed good brightness and fluorescence enhancement following Hg(2+) coordination with limits of detection for Hg(2+) at the ppb level. Thus, they have the potential for distinguishing between safe and toxic levels of inorganic mercury in drinking water. RN1 exhibited chromogenic and fluorogenic selectivity over alkali, alkaline earth metals, divalent first-row transition metal ions as well as heavy metals, but the presence of Cu(2+) had a small but significant influence on the absorption detection of Hg(2+). Compared to RN1, the introduction of sufficient sulfur atoms could increase the binding capability of RST1 towards Hg(2+) relative to the sensor RN1, but decrease its Hg specific ability. The existence of some heavy and transition metal ions, such as Pb(2+), Ag(+), Cu(2+) enhance the silent absorption spectra of RST1. Spectral evidence and X-ray structural investigations of the mercury complex revealed a possible 1:2 complexation behaviour between the Hg(2+) ion and the sensor RN1 or RST1. Sensor RN2 which contains two rhodamine carboxhydrazone arms exhibited better selectivity, compared to those of RN1 and RST1. The addition of Cu(2+) only caused a small interference for the absorption detection of Hg(2+) under the same conditions, demonstrating the efficiency of the robust bis-chelating mode with regard to the selectivity for Hg(2+).

  16. Using group-specific PCR to detect predation of mayflies (Ephemeroptera) by wolf spiders (Lycosidae) at a mercury-contaminated site.

    PubMed

    Northam, Weston T; Allison, Lizabeth A; Cristol, Daniel A

    2012-02-01

    Bioaccumulation of contaminants can occur across ecosystem boundaries via transport by emergent aquatic insects. In the South River, Virginia, USA, aquatic mercury has contaminated songbirds nesting in adjacent riparian forests. Spiders contribute the majority of mercury to these songbirds' diets. We tested the hypothesis that massive annual mayfly emergences provide a vector for mercury from river sediments to the Lycosid spiders most frequently eaten by contaminated songbirds. We designed mayfly-specific PCR primers that amplified mtDNA from 76% of adult mayflies collected at this site. By combining this approach with an Agilent 2100 electrophoresis system, we created a highly sensitive test for mayfly predation by Lycosids, commonly known as wolf spiders. In laboratory spider feeding trials, mayfly DNA could be detected up to 192h post-ingestion; however, we detected no mayfly predation in a sample of 110 wolf spiders collected at the site during mayfly emergence. We suggest that mayfly predation is not an important mechanism for dietary transfer of mercury to wolf spiders and their avian predators at the South River. Instead, floodplain soil should be considered as a potential proximate source for mercury in the terrestrial food web.

  17. Egg white hydrolysate promotes neuroprotection for neuropathic disorders induced by chronic exposure to low concentrations of mercury.

    PubMed

    Rizzetti, Danize Aparecida; Fernandez, Francisca; Moreno, Silvia; Uranga Ocio, José Antonio; Peçanha, Franck Maciel; Vera, Gema; Vassallo, Dalton Valentim; Castro, Marta Miguel; Wiggers, Giulia Alessandra

    2016-09-01

    This study aims to investigate whether the egg white hydrolysate (EWH) acts on the neuropathic disorders associated with long-term Mercury (Hg) exposure in rats. 8- week-old male Wistar rats were treated for 60 days with: a) Control - saline solution (i.m.); b) Mercury - HgCl2 (1st dose 4.6μg/kg, subsequent doses 0.07μg/kg/day, i.m.); c) Hydrolysate - EWH (1g/kg/day, gavage); d) Mercury and Hydrolysate. Mechanical allodynia was assessed using Von Frey Hairs test; heat hyperalgesia by the plantar test; catalepsy by a modification of the "ring test" and spontaneous locomotor activity by a photocell activity chambers. Analyses were performed at 0, 30 and 60 days of treatment. Brain and plasma MDA, plasma NPSH and TNF-α determination and skin immunohistochemistry were performed at 60 days. Hg induced a reduction in mechanical sensitivity threshold at 30 and 60 days and in thermal sensitivity threshold at 60 days. At the end of treatment catalepsy was developed, but there was not significant alteration in spontaneous locomotor activity. Hg also increased brain and plasma MDA, plasma NPSH and TNF-α levels and the number of Merkel cell-neurite complex in the skin. EWH prevented the development of mechanical allodynia, thermal hyperalgesia and catalepsy induced by Hg and the increase in MDA concentration in brain and plasma and in the number of Merkel cell-neurite complex in the skin. In conclusion, EWH promotes neuroprotection against the toxic effects caused by Hg, demonstrating a beneficial therapeutic potential. PMID:27350078

  18. ISA - An Accelerometer to Detect the Disturbing Accelerations Acting on the Mercury Planetary Orbiter of the BepiColombo ESA Cornerstone Mission to Mercury: on Ground Calibration

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Nozzoli, S.; Santoli, F.; Fois, M.; Persichini, M.

    2006-06-01

    To reach the ambitious goals of the Radio Science Experiment of the BepiColombo space mission to Mercury, among which the planet structure and rotation and test Einstein's theory of General Relativity (GR) to an unprecedented accuracy, an accelerometer has been selected to fly on-board the MPO (Mercury Planetary Orbiter), the main spacecraft of the two to be placed around the innermost planet of our solar system around 2017. The key role of the on-board accelerometer is to remove from the list of unknowns the non-gravitational accelerations that disturbs the pure gravitational orbit of the MPO spacecraft in the strong radiation environment of Mercury. In this way the ``corrected'' orbit of the MPO may be regarded as a geodesic in the field of Mercury. Then, thanks to the very precise tracking from Earth, the possibility to study Mercury's center-of-mass around the Sun and estimate several parameters related to the planet structure and verify the theory of GR. The selected accelerometer named ISA (Italian Spring Accelerometer) is an high sensitive instrument with an intrinsic noise of 10-10 g⊕ / Hz (with g⊕ ≅ 9.8 m / s2) in the frequency band 3 . 10-5 -10-1 Hz. ISA is a three axis accelerometer with a characteristic configuration, in order to minimize the disturbing accelerations due to the gravity-gradients and the apparent forces on the Nadir pointing MPO spacecraft. Because of the complex and strong radiation environment of Mercury, the modelling of the non-gravitational acceleration is quite difficult, while, with the use of ISA accelerometer we are able to gain a factor 100 in accuracy. In this brief paper we will focus on the characteristics of the ISA accelerometer, on its positioning on-board the MPO and in particularly to the techniques for on ground calibration, avoiding the effects of the Earth gravity.

  19. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils.

    PubMed

    Qian, J; Skyllberg, U; Tu, Q; Bleam, W F; Frech, W

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO4 and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g(-1), calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times above the

  20. Visual detection of mercury(II) based on recognition of the G-quadruplex conformational transition by a cyanine dye supramolecule.

    PubMed

    Chen, Hongbo; Zhang, Xiufeng; Sun, Hongxia; Sun, Xiaoran; Shi, Yunhua; Xu, Shujuan; Tang, Yalin

    2015-11-01

    A supramolecular probe for visual detection of mercury (Hg) has been designed by using a cyanine dye and AS1411 G-quadruplexes, which exhibits an obvious color change from red to blue in response to an increased level of Hg(2+). The supramolecular probe exhibits high selectivity and sensitivity towards Hg(2+) and is promising for the detection of environmental samples with the naked eye. PMID:26359517

  1. Mercury induced haemocyte alterations in the terrestrial snail Cantareus apertus as novel biomarker.

    PubMed

    Leomanni, Alessandro; Schettino, Trifone; Calisi, Antonio; Lionetto, Maria Giulia

    2016-01-01

    The aim of the present work was to study the response of a suite of cellular and biochemical markers in the terrestrial snail Cantareus apertus exposed to mercury in view of future use as sensitive tool suitable for mercury polluted soil monitoring and assessment. Besides standardized biomarkers (metallothionein, acetylcholinesterase, and lysosomal membrane stability) novel cellular biomarkers on haemolymph cells were analyzed, including changes in the spread cells/round cells ratio and haemocyte morphometric alterations. The animals were exposed for 14 days to Lactuca sativa soaked for 1h in HgCl2 solutions (0.5 e 1 μM). The temporal dynamics of the responses were assessed by measurements at 3, 7 and 14 days. Following exposure to HgCl2 a significant alteration in the relative frequencies of round cells and spread cells was evident, with a time and dose-dependent increase of the frequencies of round cells with respect to spread cells. These changes were accompanied by cellular morphometric alterations. Concomitantly, a high correspondence between these cellular responses and metallothionein tissutal concentration, lysosomal membrane stability and inhibition of AChE was evident. The study highlights the usefulness of the terrestrial snail C. apertus as bioindicator organism for mercury pollution biomonitoring and, in particular, the use of haemocyte alterations as a suitable biomarker of pollutant effect to be included in a multibiomarker strategy. PMID:26811906

  2. Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II).

    PubMed

    Ding, San-Yuan; Dong, Ming; Wang, Ya-Wen; Chen, Yan-Tao; Wang, Huai-Zhen; Su, Cheng-Yong; Wang, Wei

    2016-03-01

    Heavy metal ions are highly toxic and widely spread as environmental pollutants. New strategies are being developed to simultaneously detect and remove these toxic ions. Herein, we take the intrinsic advantage of covalent organic frameworks (COFs) and develop fluorescent COFs for sensing applications. As a proof-of-concept, a thioether-functionalized COF material, COF-LZU8, was "bottom-up" integrated with multifunctionality for the selective detection and facile removal of mercury(II): the π-conjugated framework as the signal transducer, the evenly and densely distributed thioether groups as the Hg(2+) receptor, the regular pores facilitating the real-time detection and mass transfer, together with the robust COF structure for recycle use. The excellent sensing performance of COF-LZU8 was achieved in terms of high sensitivity, excellent selectivity, easy visibility, and real-time response. Meanwhile, the efficient removal of Hg(2+) from water and the recycling of COF-LZU8 offers the possibility for practical applications. In addition, X-ray photoelectron spectroscopy and solid-state NMR investigations verified the strong and selective interaction between Hg(2+) and the thioether groups of COF-LZU8. This research not only demonstrates the utilization of fluorescent COFs for both sensing and removal of metal ions but also highlights the facile construction of functionalized COFs for environmental applications. PMID:26878337

  3. Specific detection of mercury(II) irons using AlGaAs/InGaAs high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Wang, Chengyan; Zhang, Yang; Guan, Min; Cui, Lijie; Ding, Kai; Zhang, Bintian; Lin, Zhang; Huang, Feng; Zeng, Yiping

    2015-09-01

    As one of the most environmentally important cations, mercury(II) iron has the biological toxicity which impacts wild life ecology and human health heavily. A Hg2+ biosensor based on AlGaAs/InGaAs high electron mobility transistors with high sensitivity and short response time is demonstrated experimentally. To achieve highly specific detection of Hg2+, an one-end thiol-modified ssDNA with lots of T thymine is immobilized to the Au-coated gate area of the high electron mobility transistors by a covalent modification method. The introduction of Hg2+ to the gate of the high electron mobility transistors affects surface charges, which leads to a change in the concentration of the two-dimensional electron gas in the AlGaAs/InGaAs high electron mobility transistors. Thus, the saturation current curves can be shifted with the modification of the gate areas and varied concentrations of Hg2+. Under the bias of 100 mV, a detection limit for the Hg2+ as low as10 nM is achieved. Successful detection with minute quantity of the sample indicates that the sensor has great potential in practical screening for a wide population. In addition, the dimension of the active area of the sensor is 20×50 μm2 and that of the entire sensor chip is 1×2 mm2, which make the Hg2+ biosensor portable.

  4. Detection and Quantification of Unbound Phytochelatin 2 in Plant Extracts of Brassica napus Grown with Different Levels of Mercury1

    PubMed Central

    Iglesia-Turiño, Santiago; Febrero, Anna; Jauregui, Olga; Caldelas, Cristina; Araus, Jose Luis; Bort, Jordi

    2006-01-01

    The mercury (Hg) accumulation mechanism was studied in rape (Brassica napus) plants grown under a Hg concentration gradient (0 μm–1,000 μm). Hg mainly accumulated in roots. Therefore, the presence of phytochelatins (PCs) was studied in the roots of the plants. The high stability of the PC-Hg multicomplexes (mPC-nHg) seems to be the main reason for the lack of previous Hg-PC characterization studies. We propose a modification of the method to detect and quantify unbound PC of Hg in plant extracts via high-performance liquid chromatography coupled to electrospray tandem mass spectrometry and inductively coupled plasma mass spectrometry in parallel. We separated the PC from the Hg by adding the chelating agent sodium 2,3-dimercaptopropanesulfonate monohydrate. We only detected the presence of PC after the addition of the chelating agent. Some multicomplexes mPC-nHg could be formed but, due to their large sizes, could not be detected. In this study, only PC2 was observed in plant samples. Hg accumulation was correlated with PC2 concentration (r2 = 0.98). PMID:16920879

  5. Laser-Induced Incandescence: Detection Issues

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.

    1996-01-01

    Experimental LII (laser-induced incandescence) measurements were performed in a laminar gasjet flame to test the sensitivity of different LII signal collection strategies to particle size. To prevent introducing a particle size dependent bias in the LII signal, signal integration beginning with the excitation laser pulse is necessary . Signal integration times extending to 25 or 100 nsec after the laser pulse do not produce significant differences in radial profiles of the LII signal due to particle size effects with longer signal integration times revealing a decreased sensitivity to smaller primary particles. Long wavelength detection reduces the sensitivity of the LII signal to primary particle size. Excitation of LII using 1064 nm light is recommended to avoid creating photochemical interferences thus allowing LII signal collection to occur during the excitation pulse without spectral interferences.

  6. Target-induced formation of gold amalgamation on DNA-based sensing platform for electrochemical monitoring of mercury ion coupling with cycling signal amplification strategy.

    PubMed

    Chen, Jinfeng; Tang, Juan; Zhou, Jun; Zhang, Lan; Chen, Guonan; Tang, Dianping

    2014-01-31

    Heavy metal ion pollution poses severe risks in human health and environmental pollutant, because of the likelihood of bioaccumulation and toxicity. Driven by the requirement to monitor trace-level mercury ion (Hg(2+)), herein we construct a new DNA-based sensor for sensitive electrochemical monitoring of Hg(2+) by coupling target-induced formation of gold amalgamation on DNA-based sensing platform with gold amalgamation-catalyzed cycling signal amplification strategy. The sensor was simply prepared by covalent conjugation of aminated poly-T(25) oligonucleotide onto the glassy carbon electrode by typical carbodiimide coupling. Upon introduction of target analyte, Hg(2+) ion was intercalated into the DNA polyion complex membrane based on T-Hg(2+)-T coordination chemistry. The chelated Hg(2+) ion could induce the formation of gold amalgamation, which could catalyze the p-nitrophenol with the aid of NaBH4 and Ru(NH3)6(3+) for cycling signal amplification. Experimental results indicated that the electronic signal of our system increased with the increasing Hg(2+) level in the sample, and has a detection limit of 0.02nM with a dynamic range of up to 1000nM Hg(2+). The strategy afforded exquisite selectivity for Hg(2+) against other environmentally related metal ions. In addition, the methodology was evaluated for the analysis of Hg(2+) in spiked tap-water samples, and the recovery was 87.9-113.8%. PMID:24439499

  7. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    PubMed Central

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-01-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage. PMID:26559602

  8. Mercury and Your Health

    MedlinePlus

    ... the Risk of Exposure to Mercury Learn About Mercury What is Mercury What is Metallic mercury? Toxicological Profile ToxFAQs Mercury Resources CDC’s National Biomonitoring Program Factsheet on Mercury ...

  9. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    PubMed

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  10. Experimental cross-sections for proton induced nuclear reactions on mercury up to 65 MeV

    NASA Astrophysics Data System (ADS)

    Hermanne, A.; Tárkányi, F.; Takács, S.; Ditrói, F.; Szücs, Z.; Brezovcsik, K.

    2016-07-01

    Cross-sections for formation of activation products induced by protons on natural mercury targets were measured. Results for 196m,196g,197g(cum), 198m,198g,199g(cum), 200g(cum), 201,202Tl, 194g(cum), 195g(cum), 196g(cum), 198m,199g(cum) Au and 195m,197m,203Hg are presented up to 65 MeV incident particle energy, many of these for the first time. The experimental data are compared with literature values and with the predictions of the TALYS 1.6 code (results taken from TENDL-2015 on-line library), thick target yields were derived and possible applications in biomedical sciences are discussed.

  11. ESTIMATING THE SIZE OF LATE VENEER IMPACTORS FROM IMPACT-INDUCED MIXING ON MERCURY

    SciTech Connect

    Rivera-Valentin, E. G.; Barr, A. C.

    2014-02-10

    Late accretion of a ''veneer'' of compositionally diverse planetesimals may introduce chemical heterogeneity in the mantles of the terrestrial planets. The size of the late veneer objects is an important control on the angular momenta, eccentricities, and inclinations of the terrestrial planets, but current estimates range from meter-scale bodies to objects with diameters of thousands of kilometers. We use a three-dimensional global Monte Carlo model of impact cratering, excavation, and ejecta blanket formation to show that evidence of mantle heterogeneity can be preserved within ejecta blankets of mantle-exhuming impacts on terrestrial planets. Compositionally distinct provinces implanted at the time of the late veneer are most likely to be preserved in bodies whose subsequent geodynamical evolution is limited. Mercury may have avoided intensive mixing by solid-state convection during much of its history. Its subsequent bombardment may have then excavated evidence of primordial mantle heterogeneity introduced by the late veneer. Simple geometric arguments can predict the amount of mantle material in the ejecta blanket of mantle-exhuming impacts, and deviations in composition relative to geometric predictions can constrain the length-scale of chemical heterogeneities in the subsurface. A marked change in the relationship between mantle and ejecta composition occurs when chemically distinct provinces are ∼250 km in diameter; thus, evidence of bombardment by thousand-kilometer-sized objects should be readily apparent from the variation in compositions of ejecta blankets in Mercury's ancient cratered terrains.

  12. Embryo malposition as a potential mechanism for mercury-induced hatching failure in bird eggs

    USGS Publications Warehouse

    Herring, G.; Ackerman, J.T.; Eagles-Smith, C. A.

    2010-01-01

    We examined the prevalence of embryo malpositions and deformities in relation to total mercury (THg) and selenium (Se) concentrations in American avocet (Recurvirostra americana), black-necked stilt (Himantopus mexicanus), and Forster's tern (Sterna forsteri) eggs in San Francisco Bay (CA, USA) during 2005 to 2007. Overall, 11% of embryos were malpositioned in eggs ???18 d of age (n=282) and 2% of embryos were deformed in eggs ???13 d of age (n=470). Considering only those eggs that failed to hatch (n=62), malpositions occurred in 24% of eggs ???18 d of age and deformities occurred in 7% of eggs ???13 d of age. The probability of an embryo being malpositioned increased with egg THg concentrations in Forster's terns, but not in avocets or stilts. The probability of embryo deformity was not related to egg THg concentrations in any species. Using a reduced dataset with both Se and THg concentrations measured in eggs (n=87), we found no interaction between Se and THg on the probability of an embryo being malpositioned or deformed. Results of the present study indicate that embryo malpositions were prevalent in waterbird eggs that failed to hatch and the likelihood of an embryo being malpositioned increased with egg THg concentrations in Forster's terns. We hypothesize that malpositioning of avian embryos may be one reason for mercury-related hatching failure that occurs late in incubation, but further research is needed to elucidate this potential mechanism. ?? 2010 SETAC.

  13. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    PubMed

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°. PMID:24733263

  14. Application of polypyrrole multi-walled carbon nanotube composite layer for detection of mercury, lead and iron ions using surface plasmon resonance technique.

    PubMed

    Sadrolhosseini, Amir Reza; Noor, A S M; Bahrami, Afarin; Lim, H N; Talib, Zainal Abidin; Mahdi, Mohd Adzir

    2014-01-01

    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.

  15. Role of RT6{sup +} T lymphocytes in mercury-induced renal autoimmunity: Experimental manipulations of {open_quotes}susceptible{close_quotes} and {open_quotes}resistant{close_quotes} rats

    SciTech Connect

    Kosuda, L.L.; Hosseinzadeh, H.; Bigazzi, P.E.; Greiner, D.L. |

    1994-12-31

    Brown Norway (BN) rats, {open_quotes}susceptible{close_quotes} to the autoimmune effects of mercury, experience a decrease of peripheral RT6.2{sup +} T lymphocytes after the injection of relatively low doses of mercury chloride. This change coincides with the appearance of circulating autoantibodies to renal antigens (e.g., laminin). Lewis (LEW) rats, {open_quotes}resistant{close_quotes} to the autoimmune effects of mercury, do not show significant decreases of RT6{sup +} T cells. It is possible that BN rats are particularly sensitive to stress induced by mercury and that secretion of adrenocortical hormones decreases levels of RT6{sup +} T cells in this rat strain. Alternatively, mercury may induce a graft-versus-host-like syndrome in BN rats, resulting in higher levels of corticosteroids capable of affecting RT6{sup +} lymphocytes. To eliminate the possible influence of adrenocortical hormones, we have adrenalectomized BN rats prior to administration of mercury. Autoimmune responses to renal antigens were not affected by this experimental manipulation. Similarly, adrenalectomized rats exposed to mercury showed a significant decrease of RT6{sup +} T lymphocytes in cervical lymph nodes. Overall, these observations do not support the hypothesis that increases in adrenocortical hormones play a major role in mercury-induced changes of RT6{sup +} T cells. We have also explored whether experimental depletion of RT6{sup +} T lymphocytes would result in autoimmunity. Gamma irradiation of BN rats led to a decrease of RT6{sup +} T splenocytes, but by itself (i.e., without exposure to mercury) did not cause autoimmune responses to renal antigens. In addition, gamma-irradiated BN rats treated with mercury had autoimmune responses similar to those observed in mercury-treated nonirradiated controls. 38 refs., 4 tabs.

  16. Inorganic mercury attenuates CD95-mediated apoptosis by interfering with formation of the death inducing signaling complex.

    PubMed

    McCabe, Michael J; Whitekus, Michael J; Hyun, Joogyung; Eckles, Kevin G; McCollum, Geniece; Rosenspire, Allen J

    2003-07-15

    Inorganic mercury (Hg2+) modulates several lymphocyte signaling pathways and has been implicated as an environmental factor linked to autoimmune disease. From the standpoint that autoimmune diseases represent disorders of cell accumulation, in which dysregulated apoptosis may be one mechanism leading to the accumulation of autoreactive lymphocytes, we have been investigating the influences of Hg2+ on CD95-mediated apoptosis. We demonstrate here that low and noncytotoxic concentrations of Hg2+ impair CD95 agonist-induced apoptosis in representative Type-I and Type-II T cell lines. Hg2+ treatment blocks the CD95 agonist-induced activation of initiator and effector caspases as well as the association between CD95 and the signaling adaptor, FADD. CD95 multimerization does not appear to be affected by Hg2+. Thus, the Hg2+ sensitive step within the CD95 death pathway is localized to the level of the death inducing signaling complex (DISC). Disruption of proper DISC formation may be a biochemical mechanism whereby Hg2+ contributes to autoimmune disease.

  17. Extensive halogen-induced mercury oxidations in the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Obrist, D.; Peleg, M.; Matveev, V.; Luria, M.

    2009-12-01

    Reactive halogen species not only influence ozone (O3) budgets of the troposphere and its oxidation capacity, but also play a major role in oxidation of atmospheric mercury (Hg) leading to so-called Atmospheric Mercury Depletion Events (AMDEs) in the polar boundary layer. During AMDEs, the dominant (>95%), relatively inert Hg0 is converted to highly reactive oxidized Hg2+ which subsequently is removed from the atmosphere by deposition. We report data from a four week measurement campaign at the Dead Sea in Israel, in summer 2009 where we concurrently measured all major atmospheric mercury forms—Hg0 and two operationally defined oxidized Hg2+ species—and bromine oxide (BrO) by means of active long-path differential absorption optical spectroscopy (LP-DOAS). Our results show massive (up to 90%) daytime conversions of Hg0 to oxidized Hg2+ in the presence of high BrO levels under temperatures as high as 45 deg C. Some of the highest oxidized Hg2+ concentrations observed in the Earth’s atmosphere, up to 136 ppqv, were accompanied by strong depletions of Hg0, down to 22 ppqv or 10 % of the global tropospheric background Hg0 concentration. Anti-correlations of Hg0 to Hg2+ show that only ~75% of converted Hg is recovered, indicating substantial deposition of the underlying surface. Hg0 depletions and Hg2+ enhancements temporally coincided well with BrO production and near-complete ozone destruction, with no apparent time lags between any of these processes. The observed O3 and BrO patterns are consistent with almost daily catalytic destruction of ozone by halogens (BrO and/or Br) well described in the Dead Sea Basin. The corresponding destruction of Hg0 and production of Hg2+ strongly indicates that these halogens are also responsible for observed temperate AMDE. Substantial Hg2+ production occurring at BrO levels well below 10 pptv suggests that halogen-driven Hg oxidation may be widespread under across the marine boundary layer where low levels of halogens have

  18. Microseismic Techniques for Detecting Induced Seismicity Hazard

    NASA Astrophysics Data System (ADS)

    Matzel, E.; White, J. A.; Templeton, D. C.; Pyle, M. L.; Morency, C.; Zhang, Z.; Trainor Guitton, W.

    2014-12-01

    Induced seismicity is inherently associated with underground fluid injections and poses a risk for geologic carbon sequestration efforts, enhanced geothermal systems and shale gas development. If fluids are injected in proximity to a pre-existing fault or fracture system, the resulting elevated pressures can trigger dynamic earthquake slip, which could damage surface structures and create new migration pathways. The goal of this research is to develop a fundamentally better approach to geological site characterization and early hazard detection. We combine innovative techniques for analyzing microseismic data with a physics-based inversion model to forecast microseismic cloud evolution. The key challenge is that faults at risk of slipping are often too small to detect during the site characterization phase. A natural response to fluid injection is the creation of microseismicity. Often thousands of microquakes are associated with an injection well. These microquakes are not of concern, as they are too small to be felt at the surface. However, they effectively illuminate the subsurface, allowing us to monitor plume growth and identify previously hidden faults. Precise seismic measurements on these microquakes is key. Using ambient noise correlation we create sharp images of the subsurface. These images together with Bayesian techniques dramatically improve the precision with which microquakes are located. Matched field processing increases the range of magnitudes that can be identified. The virtual seismometer method lights up the seismically active region, allowing us to monitor the evolution of the seismicity, measure changes in the style of faulting, sort microseisms by location and magnitude, and to identify previously un-observed fault zones. Finally, using a hydromechanical inversion, we create a model of the pressure field that is consistent with the microseismic data. We use timing information about the microseismic cloud evolution to estimate major flow

  19. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie E.; McCoy, J. Torin; Garcia, Hector D.; James, John T.

    2009-01-01

    Many of the operational and payload lighting units used in various spacecraft contain elemental mercury. If these devices were damaged on-orbit, elemental mercury could be released into the cabin. Although there are plans to replace operational units with alternate light sources, such as LEDs, that do not contain mercury, mercury-containing lamps efficiently produce high quality illumination and may never be completely replaced on orbit. Therefore, exposure to elemental mercury during spaceflight will remain possible and represents a toxicological hazard. Elemental mercury is a liquid metal that vaporizes slowly at room temperature. However, it may be completely vaporized at the elevated operating temperatures of lamps. Although liquid mercury is not readily absorbed through the skin or digestive tract, mercury vapors are efficiently absorbed through the respiratory tract. Therefore, the amount of mercury in the vapor form must be estimated. For mercury releases from lamps that are not being operated, we utilized a study conducted by the New Jersey Department of Environmental Quality to calculate the amount of mercury vapor expected to form over a 2-week period. For longer missions and for mercury releases occurring when lamps are operating, we conservatively assumed complete volatilization of the available mercury. Because current spacecraft environmental control systems are unable to remove mercury vapors, both short-term and long-term exposures to mercury vapors are possible. Acute exposure to high concentrations of mercury vapors can cause irritation of the respiratory tract and behavioral symptoms, such as irritability and hyperactivity. Chronic exposure can result in damage to the nervous system (tremors, memory loss, insomnia, etc.) and kidneys (proteinurea). Therefore, the JSC Toxicology Group recommends that stringent safety controls and verifications (vibrational testing, etc.) be applied to any hardware that contains elemental mercury that could yield

  20. Observations and modeling of bromine induced mercury oxidation in the tropical free troposphere during TORERO

    NASA Astrophysics Data System (ADS)

    Coburn, Sean; Wang, Siyuan; terSchure, Arnout; Evans, Matt; Volkamer, Rainer

    2013-04-01

    The Tropical Ocean tRoposphere Exchange experiment TORERO (Jan/Feb 2012) probed air-sea exchange of very short lived halogens and organic carbon species over the full tropospheric air column above the eastern tropical Pacific Ocean. It is well known that halogens influence the oxidative capacity in the marine boundary layer, but their distribution and abundance is less clear in the tropical free troposphere, where most of tropospheric ozone mass resides, and about 80% of the global methane destruction occurs. The oxidation of elemental mercury (GEM) by halogens (i.e., bromine) further forms gaseous oxidized mercury (GOM), and this oxidation is accelerated at the low temperatures in the free troposphere compared to the boundary layer. Free tropospheric halogen radical abundances are thus of particular importance to understand the entry pathways for GOM deposition from the free troposphere to ecosystem, and the subsequent bio-accumulation of this neurotoxin. This presentation summarizes new observational evidence for halogen vertical distributions over the full tropospheric air column, and their abundance in the tropical troposphere, at mid-latitudes in the Northern and Southern hemisphere. BrO and IO were measured simultaneously by the CU Airborne MAX-DOAS instrument, and organic halogen precursors were measured by online GC-MS (TOGA) during 22 research flights aboard the NSF/NCAR GV aircraft. We employ atmospheric box modeling constrained by observations of gas-phase hydrocarbons, aerosols, photolysis frequencies, and meterological parameters measured aboard the plane to test the observed BrO and IO abundances, and evaluate the rate of GEM oxidation in light of recent updates about the stability of the Hg-Br adduct, and it's fate (Goodsite et al., 2012; Dibble et al., 2012). Finally, we compare our measurements with output from the GEOS-Chem model for selected case studies.

  1. Determination of cytochrome c and other heme proteins using the reduction wave of mercury protoporphyrin IX groups generated by a hydroxylamine induced replacement reaction.

    PubMed

    Luo, Dengbai; Huang, Jinxiang

    2009-03-01

    We have found that in the presence of hydroxylamine, the heme prosthetic group of the heme protein adsorbed at the mercury electrode surface reacts with mercury ion produced by the electrochemical oxidation of mercury and is quantitatively converted into the mercury protoporphyrin IX group using single-sweep polarography. As a result, the small redox peak P(0) of the heme prosthetic group at about -0.46 V (vs SCE) disappears and a large new reduction peak P of mercury protoporphyrin IX group at -0.89 V comes out in a pH 9.6 NaHCO(3)-Na(2)CO(3) solution. Peak P is extremely sensitive to heme protein concentration. On the basis of the reduction peak P, a unique electrochemical method for heme protein assays is constructed. For the cytochrome c determination, the peak height is linearly proportional to the concentration in the range of 0.005-15 mg L(-1) (correlation coefficient 0.999). The detection limit is 0.003 mg L(-1). In contrast with peak P(0), the detection limit of cytochrome c is only 0.6 mg L(-1). The voltammograms of heme proteins in the absence and presence of hydroxylamine can serve as a reliable qualitative analytical method. The chemical reaction is peculiar to the heme prosthetic group. Without hydroxylamine it cannot occur. Thereby the method is highly specific and free from interference. The performance takes only a few minutes. These advantages make the method attractive for heme protein detecting.

  2. Application of a DNA-based luminescence switch-on method for the detection of mercury(II) ions in water samples from Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Hong-Zhang; Leung, Ka-Ho; Fu, Wai-Chung; Shiu-Hin Chan, Daniel; Leung, Chung-Hang; Ma, Dik-Lung

    2012-12-01

    Mercury is a highly toxic environmental contaminant that damages the endocrine and central nervous systems. In view of the contamination of Hong Kong territorial waters with anthropogenic pollutants such as trace heavy metals, we have investigated the application of our recently developed DNA-based luminescence methodology for the rapid and sensitive detection of mercury(II) ions in real water samples. The assay was applied to water samples from Shing Mun River, Nam Sang Wai and Lamma Island sea water, representing natural river, wetland and sea water media, respectively. The results showed that the system could function effectively in real water samples under conditions of low turbidity and low metal ion concentrations. However, high turbidity and high metal ion concentrations increased the background signal and reduced the performance of this assay.

  3. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    PubMed

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles.

  4. Development of a set of bacterial biosensors for simultaneously detecting arsenic and mercury in groundwater.

    PubMed

    Huang, Chi-Wei; Yang, Shih-Hung; Sun, Man-Wai; Liao, Vivian Hsiu-Chuan

    2015-07-01

    There is a growing need for effective and inexpensive environmental monitoring strategies for assessing heavy metal contamination levels. We developed a set of bacterial biosensors to simultaneously detect multiple bioavailable heavy metals (As(III) and Hg(II)). The biosensors provide a choice of the two reporter systems, luxCDABE and gfp, combined with metal responsive regulatory elements (ars and mer for As(III) and Hg(II), respectively). The results showed that the induction of the luxCDABE-based constructs was more sensitive than that of the gfp-based constructs for the detection of As(III) and Hg(II). In addition, both the luminescent and fluorescent biosensors readily distinguished As and Hg concentrations in groundwater samples to meet the groundwater quality standards. Due to the potentially complicated chemicals present in environmental samples, using a set of bacterial biosensors with different reporter genes to simultaneously determine the bioavailable proportions of heavy metals is desirable.

  5. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions.

    PubMed

    Zhang, Ling; Chang, Haixin; Hirata, Akihiko; Wu, Hongkai; Xue, Qi-Kun; Chen, Mingwei

    2013-05-28

    Precisely probing heavy metal ions in water is important for molecular biology, environmental protection, and healthy monitoring. Although many methods have been reported in the past decade, developing a quantitative approach capable of detecting sub-ppt level heavy metal ions with high selectivity is still challenging. Here we report an extremely sensitive and highly selective nanoporous gold/aptamer based surface enhanced resonance Raman scattering (SERRS) sensor. The optical sensor has an unprecedented detection sensitivity of 1 pM (0.2 ppt) for Hg(2+) ions, the most sensitive Hg(2+) optical sensor known so far. The sensor also exhibits excellent selectivity. Dilute Hg(2+) ions can be identified in an aqueous solution containing 12 metal ions as well as in river water and underground water. Moreover, the SERRS sensor can be reused without an obvious loss of the sensitivity and selectivity even after 10 cycles. PMID:23590120

  6. Label free and high specific detection of mercury ions based on silver nano-liposome

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Eepsita; Pradhan, Nilotpala; Pradhan, Arun K.; Pradhan, Pallavi

    2016-06-01

    Herein, we report an eco-friendly, mild and one-pot approach for synthesis of silver nanoparticles via a lipopeptide biosurfactant - CHBS. The biosurfactant forms liposome vesicles when dispersed in an aqueous medium. The amino acid groups of the biosurfactant assists in the reduction of Ag+ ions leading to the production of homogeneous silver nanoparticles, encapsulated within the liposome vesicle, as confirmed from TEM analysis. Rate of synthesis and size of particle were greatly dependent on pH and reaction temperature. Kinetic analysis suggests the involvement of an autocatalytic reaction and the observed rate constant (kobs) was found to decrease with temperature, suggesting faster reaction with increasing temperature. Furthermore, the silver nanoparticles served as excellent probes for highly selective and sensitive recognition of Hg2 + ions. Interaction with Hg2 + ions results in an immediate change in colour of nanoparticle solution form brownish red to milky white. With increasing Hg2 + ions concentration, a gradual disappearance of SPR peak was observed. A linear relationship (A420/660) with an R2 value of 0.97 was observed in the range of 20 to 100 ppm Hg2 + concentration. Hg2 + ions are reduced to their elemental forms which thereby interact with the vesicles, leading to aggregation and precipitation of particles. The detection method avoids the need of functionalizing ligands and favours Hg2 + detection in aqueous samples by visible range spectrophotometry and hence can be used for simple and rapid analysis.

  7. High-power, photofission-inducing bremsstrahlung source for intense pulsed active detection of fissile material

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Mosher, D.; Allen, R. J.; Commisso, R. J.; Cooperstein, G.; Hinshelwood, D. D.; Jackson, S. L.; Murphy, D. P.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Swanekamp, S. B.; Weber, B. V.

    2014-06-01

    Intense pulsed active detection (IPAD) is a promising technique for detecting fissile material to prevent the proliferation of special nuclear materials. With IPAD, fissions are induced in a brief, intense radiation burst and the resulting gamma ray or neutron signals are acquired during a short period of elevated signal-to-noise ratio. The 8 MV, 200 kA Mercury pulsed-power generator at the Naval Research Laboratory coupled to a high-power vacuum diode produces an intense 30 ns bremsstrahlung beam to study this approach. The work presented here reports on Mercury experiments designed to maximize the photofission yield in a depleted-uranium (DU) object in the bremsstrahlung far field by varying the anode-cathode (AK) diode gap spacing and by adding an inner-diameter-reducing insert in the outer conductor wall. An extensive suite of diagnostics was fielded to measure the bremsstrahlung beam and DU fission yield as functions of diode geometry. Delayed fission neutrons from the DU proved to be a valuable diagnostic for measuring bremsstrahlung photons above 5 MeV. The measurements are in broad agreement with particle-in-cell and Monte Carlo simulations of electron dynamics and radiation transport. These show that with increasing AK gap, electron losses to the insert and outer conductor wall increase and that the electron angles impacting the bremsstrahlung converter approach normal incidence. The diode conditions for maximum fission yield occur when the gap is large enough to produce electron angles close to normal, yet small enough to limit electron losses.

  8. Mycobacteria, but not mercury, induces metallothionein (MT) protein in striped bass, Morone saxitilis, phagocytes, while both stimuli induce MT in channel catfish, Ictalurus punctatus, phagocytes.

    PubMed

    Regala, R P; Rice, C D

    2004-01-01

    Recent advances in molecular immunology indicate that the expression of inducible pro-inflammatory proteins is increased in vertebrates in response to both infectious disease agents and various xenobiotics. For example, iNOS, COX-2, and CYP1A are induced by both inflammation and AhR ligands. Moreover, the expression of these proteins in response to stimuli varies among individuals within populations. Little is known of the differences among fish in the inducibility of proinflammatory proteins in response to both infectious agents and xenobiotics. Through random screening of a striped bass, Morone saxitilis, peritoneal macrophage cDNA library, a full length metallothionein (MT) gene was cloned and sequenced. MT is a low-molecular weight (6-8 kDa), cysteine-rich metal binding protein. Metals are required by pathogenic bacteria for growth, and by the host defense system by serving as a catalyst for the generation of reactive oxygen intermediates (ROIs) by phagocytes. A recombinant striped bass MT (rMT) was expressed and purified, then used to generate a specific mAb (MT-16). MT protein expression was followed in freshly isolated striped bass and channel catfish, Ictalurus punctatus, phagocytes after in vitro exposure to the naturally occurring intracellular pathogen Mycobacteria fortuitum or to 0.1 and 1 microM mercury (Hg), as HgCl(2). MT expression was increased by 24 h in both channel catfish and striped bass phagocytes as a result of exposure to M. fortuitum cells. On the other hand, MT was induced by Hg in channel catfish cells, but not those of striped bass. These results indicate that metal homeostasis in phagocytes is different between catfish and striped bass. In addition, these data suggest that care should be taken to distinguish between inflammation-induced vs. metal-induced MT when using MT expression as a biomarker of metal exposure.

  9. Got Mercury?

    NASA Astrophysics Data System (ADS)

    Meyers, Valerie E.; McCoy, Torin J.; Garcia, Hector D.; James, John T.

    2010-09-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed by the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may vaporize completely when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. We estimated mercury vapor releases from stowed lamps during missions lasting ≤ 30 days, whereas we conservatively assumed complete vaporization from stowed lamps during missions lasting > 30 days and from operating lamps regardless of mission duration. The toxicity of mercury and its lack of removal have led Johnson Space Center’s Toxicology Group to recommend stringent safety controls and verifications for hardware containing elemental mercury that could yield airborne mercury vapor concentrations > 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting ≤ 30 days, or concentrations > 0.01 mg/m3 for exposures lasting > 30 days.

  10. Selective and “turn-off” fluorimetric detection of mercury(II) based on coumarinyldithiolane and coumarinyldithiane in aqueous solution

    SciTech Connect

    Guo, Yuan; An, Jing; Tang, Haoyang; Peng, Mengjiao; Suzenet, Franck

    2015-03-15

    Graphical abstract: Visual fluorescence emission of probe 3a. - Highlights: • Five novel coumarin-based fluorescent probes were developed. • A reasonable reaction mechanism was proposed and verified. • All the probes showed excellent optical properties. - Abstract: In this work, five novel coumarin-based fluorescent probes for mercury ions were developed. The recognition of mercury ions was performed via the mercury(II)-promoted desulfurization of the probes and a reasonable reaction mechanism was proposed and verified by thin layer chromatography (TLC), {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and fluorescence intensity measurements. All the probes showed excellent optical properties and exclusively distinguish mercury ions from various metal ions in aqueous solutions at pH 7.4. The linear response of the fluorescence emission intensity for all the probes to the concentration of mercury ions was obtained over a wide range of 0.06–1.5 μM (0.06–0.9 μM for probe 3e). In addition, the biological toxicity and the confocal fluorescence images of probe 3a were also tested on MCF-7 cells.

  11. A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads.

    PubMed

    Bahrami, Azam; Besharati-Seidani, Abbas; Abbaspour, Abdolkarim; Shamsipur, Mojtaba

    2015-03-01

    This work reports the preparation of a voltammetric sensor for selective recognition and sensitive determination of mercury ions using a carbon ionic liquid paste electrode (CILE) impregnated with novel Hg(2+)-ion imprinted polymeric nanobeads (IIP) based on dithizone, as a suitable ligand for complex formation with Hg(2+) ions. The differential pulse anodic stripping voltammetric technique was employed to investigate the performance of the prepared IIP-CILE for determination of hazardous mercury ions. The designed modified electrode revealed linear responses in the ranges of 0.5nM-10nM and 0.08μM-2μM with a limit of detection of 0.1nM (S/N=3). It was found that the peak currents of the modified electrode for Hg(2+) ions were at a maximum value in phosphate buffer of pH4.5. The optimized preconcentration potential and accumulation time were to be -0.9V and 35s, respectively. The applicability of the proposed sensor to mercury determination in waste water samples is reported. PMID:25579915

  12. An Inhibitive Enzyme Assay to Detect Mercury and Zinc Using Protease from Coriandrum sativum

    PubMed Central

    Baskaran, Gunasekaran; Masdor, Noor Azlina; Syed, Mohd Arif; Shukor, Mohd Yunus

    2013-01-01

    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg2+ and Zn2+, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg2+ and Zn2+ exhibited one-phase binding curve with IC50 values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg2+ and Zn2+ in the aquatic environments. PMID:24194687

  13. An inhibitive enzyme assay to detect mercury and zinc using protease from Coriandrum sativum.

    PubMed

    Baskaran, Gunasekaran; Masdor, Noor Azlina; Syed, Mohd Arif; Shukor, Mohd Yunus

    2013-01-01

    Heavy metals pollution has become a great threat to the world. Since instrumental methods are expensive and need skilled technician, a simple and fast method is needed to determine the presence of heavy metals in the environment. In this study, an inhibitive enzyme assay for heavy metals has been developed using crude proteases from Coriandrum sativum. In this assay, casein was used as a substrate and Coomassie dye was used to denote the completion of casein hydrolysis. In the absence of inhibitors, casein was hydrolysed and the solution became brown, while in the presence of metal ions such as Hg²⁺ and Zn²⁺, the hydrolysis of casein was inhibited and the solution remained blue. Both Hg²⁺ and Zn²⁺ exhibited one-phase binding curve with IC₅₀ values of 3.217 mg/L and 0.727 mg/L, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for Hg were 0.241 and 0.802 mg/L, respectively, while the LOD and LOQ for Zn were 0.228 and 0.761 mg/L, respectively. The enzyme exhibited broad pH ranges for activity. The crude proteases extracted from Coriandrum sativum showed good potential for the development of a rapid, sensitive, and economic inhibitive assay for the biomonitoring of Hg²⁺ and Zn²⁺ in the aquatic environments.

  14. Detection of Greenhouse-Gas-Induced Climatic Change

    SciTech Connect

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  15. MESSENGER Observations of Suprathermal Electrons in Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ho, G. C.; Krimigis, S. M.; Starr, R. D.; Vandegriff, J. D.; Baker, D. N.; Gold, R. E.; Anderson, B. J.; Korth, H.; Schriver, D.; McNutt, R. L., Jr.; Solomon, S. C.

    2015-12-01

    The X-Ray Spectrometer (XRS) on the MESSENGER spacecraft, in orbit about Mercury from March 2011 to April 2015, routinely detected fluorescent X-rays induced by low-energy (1-10 keV) electrons. These electrons are in general below the threshold energy response of the Energetic Particle Spectrometer (EPS), one of two sensors on MESSENGER's Energetic Particle and Plasma Spectrometer (EPPS) instrument that measures electrons at energies above 35 keV. Hence, the XRS provided a measure of this lower-energy suprathermal electron population at Mercury. We devised an automated algorithm to select these events from the XRS data set from April 2011 to March 2015 on the basis of the duration, location, and spectral slope of the events. We identified 3102 events in 3900 orbits around Mercury, sampling all Mercury longitudes multiple times over the four-year period. It is evident that these suprathermal electrons were present near the planet at all local times, but the majority were on the nightside of the planet, and a dawn-dusk asymmetry is clearly seen in the data. When the event locations are plotted in simplified B versus L coordinates (where B is the magnitude of the magnetic field, L defines an axisymmetric surface of those lines of magnetic force from the dipole component of Mercury's internal field that intersect the magnetic equator at a distance L RM from the dipole center, and RM is Mercury's radius), several distinct clusters of events can be seen. We infer that all of these are signatures of accelerated electrons being injected from Mercury's tail region to form a quasi-trapped electron distribution at Mercury.

  16. [Effects of gas compositions on the oxidation of gas phase elementary mercury by non-thermal plasma].

    PubMed

    Tang, Ping; Zhu, Tian-le; Li, Huan; Luo, Hong-jing; Li, Jing

    2008-06-01

    The effects of flue gas compositions such as NO, SO2, CO, H2O on elementary mercury oxidation by non-thermal plasma induced by positive streamer discharge were experimentally investigated by using a link tooth wheel-cylinder reactor. The results showed that the oxidation of elementary mercury decreased in the presence of CO2 and NO, which was attributed to the reduction of number of the active radicals reacted with elementary mercury. Adding 670 mg/m3 NO, only 37% elementary mercury was oxidized when the voltage was 9.5 kV. And CO was produced because of the reaction between CO2 and active radicals. The presence of SO2 resulted in an increase of elementary mercury oxidation, and white HgSO4 and Hg2SO4 were formed, little elementary mercury was detected at the outlet of the reactor when the voltage was 10 kV. Similarly, H2O and HCI promoted the oxidation of elementary mercury, which may be due to the formation of oxidative *OH and the presence of Cl- ions. The total mercury concentration dramatically decreased after the discharge reactor because the charging mercury was collected.

  17. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    PubMed Central

    Yasutake, Akira; Cheng, Jin Ping; Kiyono, Masako; Uraguchi, Shimpei; Liu, Xiaojie; Miura, Kyoko; Yasuda, Yoshiaki; Mashyanov, Nikolay

    2011-01-01

    A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0). Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys. PMID:22125423

  18. Simultaneous Automatic Electrochemical Detection of Zinc, Cadmium, Copper and Lead Ions in Environmental Samples Using a Thin-Film Mercury Electrode and an Artificial Neural Network

    PubMed Central

    Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2015-01-01

    In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933). PMID:25558996

  19. Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: integration of time and water metal concentration changes.

    PubMed

    Tran, Damien; Fournier, Elodie; Durrieu, Gilles; Massabuau, Jean-Charles

    2007-07-01

    The objective of the present study was to monitor water-quality assessment by a biological method. Optimum dissolved inorganic mercury sensitivity in the freshwater bivalve Corbicula fluminea was estimated using a combined approach to determine their potentials and limits in detecting contaminants. Detection by bivalves is based on shell closure, a protective strategy when exposed to a water contaminant. To take the rate of spontaneous closures into account, stress associated with fixation by one valve in common valvometers was integrated, and the spontaneous rhythm was associated with daily activity. The response in conditions where the probability of spontaneous closing is the lowest was thus taken into account. To develop dose-response curves, impedance valvometry, in which lightweight impedance electrodes are applied to study free-ranging animals in low-stress conditions, also was used combined with a new analytical approach. The logistic regression dose-response curves take into account variations in both response time and metal concentration in water to significantly improve the methods aiming at determining the optimal sensitivity threshold response. This approach demonstrates that in C. fluminea, inorganic mercury concentrations under the range of 2.0 to 5.1 microg/L (95% confidence interval) cannot be detected within 5 h of addition. PMID:17665698

  20. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network.

    PubMed

    Kudr, Jiri; Nguyen, Hoai Viet; Gumulec, Jaromir; Nejdl, Lukas; Blazkova, Iva; Ruttkay-Nedecky, Branislav; Hynek, David; Kynicky, Jindrich; Adam, Vojtech; Kizek, Rene

    2014-12-30

    In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933).

  1. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection.

    PubMed

    Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y

    1999-04-01

    An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.

  2. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  3. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems. PMID:24429521

  4. Preventive effect of CuCl₂ on behavioral alterations and mercury accumulation in central nervous system induced by HgCl2 in newborn rats.

    PubMed

    Moraes-Silva, L; Siqueira, L F; Oliveira, V A; Oliveira, C S; Ineu, R P; Pedroso, T F; Fonseca, M M; Pereira, M E

    2014-07-01

    This study investigated the benefits of Cu preexposition on Hg effects on behavioral tests, acetylcholinesterase (AChE) activity and Hg, and essential metal contents in the cerebrum and cerebellum of neonate rats. Wistar rats received (subcutaneous) saline or CuCl2 ·2H2O (6.9 mg/kg/day) when they were 3 to 7 days old and saline or HgCl2 (5.0 mg/kg/day) when they were 8 to 12 days old. Mercury exposure reduced the performance of rats in the negative geotaxis (3-13 days) and beaker test (17-20 days), inhibited cerebellum AChE activity (13 days), increased cerebrum and cerebellum Hg (13 days), cerebrum Cu (13 days), and cerebrum and cerebellum Zn levels (33 days). The performance of rats in the tail immersion and rotarod tests as well as Fe and Mg levels were not altered by treatments. Copper prevented all alterations induced by mercury. These results are important to open a new perspective of prevention and/or therapy for mercury exposure.

  5. Novel cellulose polyampholyte-gold nanoparticle-based colorimetric competition assay for the detection of cysteine and mercury(II).

    PubMed

    You, Jun; Hu, Haoze; Zhou, Jinping; Zhang, Lina; Zhang, Yaping; Kondo, Tetsuo

    2013-04-23

    We provide a highly sensitive and selective assay to detect cysteine (Cys) and Hg(2+) in aqueous solutions using Au nanoparticles (NPs) stabilized by carboxylethyl quaternized cellulose (CEQC). This method is based on the thiophilicity of Hg(2+) and Au NPs as well as the unique optical properties of CEQC-stabilized Au NPs. CEQC chains are good stabilizing agents for Au NPs even in a high-salt solution. The addition of Cys results in the aggregation of CEQC-stabilized Au NPs, which induces the visible color change and obvious redshift in UV-visible absorption spectra. On the other hand, Hg(2+) is more apt to interact with thiols than Au NPs; thus, it can remove the Cys and trigger Au NP aggregate redispersion again. By taking advantage of this mechanism, a novel off-on colorimetric sensor has been established for Cys and Hg(2+) detection. This new assay could selectively detect Cys and Hg(2+) with the detection limits as low as 20 and 40 nM in aqueous solutions, respectively.

  6. Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection.

    PubMed

    Hu, Qiufen; Yang, Guangyu; Zhao, Yiyun; Yin, Jiayuan

    2003-03-01

    A new method for the simultaneous determination of seven heavy metal ions in water by solid-phase extraction and reversed-phase high-performance liquid chromatography (RP-HPLC) was developed. The copper, nickel, cobalt, silver, lead, cadmium, and mercury ions were pre-column derivatized with tetra( m-aminophenyl)porphyrin (T m-APP) to form colored chelates. The metal-T m-APP chelates in 100 mL of sample were preconcentrated to 1 mL by solid-phase extraction with a C(18 )cartridge; an enrichment factor of 100 was achieved. The chelates were separated on a Waters Xterra()RP(18) column by gradient elution with methanol (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) and acetone (containing 0.05 mol L(-1) pyrrolidine-acetic acid buffer salt, pH 10.0) as mobile phase at a flow rate of 1.0 mL min(-1) and detected with a photodiode array detector. The detection limits of copper, cobalt, nickel, silver, lead, cadmium, and mercury are 2, 2, 3, 4, 3, 3, and 3 ng L(-1), respectively, in the original sample. The method was also applied to the determination of these metals in water with good results. PMID:12664186

  7. Effects of lipopolysaccharide and chelator on mercury content in the cerebrum of thimerosal-administered mice.

    PubMed

    Minami, Takeshi; Oda, Keisuke; Gima, Naoya; Yamazaki, Hideo

    2007-11-01

    Thimerosal is one of the best-known preservative agents for vaccines in the world but a relationship between its use and autism has long been suspected so that its effects on the brain need more detailed research. We here examined the influence of lipopolysaccharide injury to the blood-brain barrier on the penetration of mercury from thimerosal into mouse cerebrums, as well as the effect of chelator of heavy metals on cerebrum mercury content. Mercury can be expected to be detected in the cerebrum of normal mice, because the metal is present in standard mouse chow. When 60μg/kg of thimerosal was subcutaneously injected into the mouse, the mercury content in the cerebrum was significantly higher 48h after the thimerosal injection with a maximum peak after 72h. In addition, mercury content in the cerebrum was still higher on day 7 than in the control group. When lipopolysaccharide was pre-injected into mice to induce damage on blood-brain barrier, the mercury content in the cerebrum was significantly higher at 24 and 72h after the injection of 12μg/kg of thimerosal compared to the control group, this dose alone does not cause any increase. The mercury content in the cerebrums of mice was decreased to the control group level on day 7 when a chelator, dimercaprol, was administered once a day from days 3 to 6 after a 60μg/kg, s.c. injection. In addition, d-penicillamine as a chelator decreased the mercury contents in the cerebrum after the high dose administration. In conclusion, a physiological dose of thimerosal did not increase the content of mercury in the cerebrum, but levels were increased when damage to the blood-brain barrier occurred in mice injected with thimerosal. In addition, a chelator of heavy metals may be useful to remove mercury from the cerebrum.

  8. Rhodamine functionalized magnetic core-shell nanocomposite: an emission "Off-On" sensing system for mercury ion detection and extraction.

    PubMed

    Shen, Lei; Wu, Yan; Ma, Wuze

    2015-03-01

    This paper reported a core-shell structured composite with superparamagnetic ferroferric oxide as the inner core and silica molecular sieve as the outer shell. A rhodamine based sensing dye was covalently grafted into the highly ordered tunnels of silica molecular sieve, so that mercury ion sensing and extraction could be achieved from this composite. This probe loaded core-shell structure was characterized by electron microscopy images, X-ray diffraction patterns, infrared spectra, thermogravimetry and N2 adsorption/desorption measurement. This composite showed increased emission with increasing mercury ion concentration, along with high sensitivity and good selectivity. Linear response and good regenerating performance were also observed from this composite. PMID:25506652

  9. Mercury-induced dark-state instability and photobleaching alterations of the visual g-protein coupled receptor rhodopsin.

    PubMed

    Morillo, Margarita; Toledo, Darwin; Pérez, Juan Jesús; Ramon, Eva; Garriga, Pere

    2014-07-21

    Mercuric compounds were previously shown to affect the visual phototransduction cascade, and this could result in vision impairment. We have analyzed the effect of mercuric chloride on the structure and stability of the dim light vision photoreceptor rhodopsin. For this purpose, we have used both native rhodopsin immunopurified from bovine retinas and a recombinant mutant rhodopsin carrying several Cys to Ser substitutions in order to investigate the potential binding site of mercury on the receptor. Our results show that mercuric chloride dramatically reduces the stability of dark-state rhodopsin and alters the molecular features of the photoactived conformation obtained upon illumination by eliciting the formation of an altered photointermediate. The thermal bleaching kinetics of native and mutant rhodopsin is markedly accelerated by mercury in a concentration-dependent manner, and its chromophore regeneration ability is severely reduced without significantly affecting its G-protein activation capacity. Furthermore, fluorescence spectroscopic measurements on the retinal release process, ensuing illumination, suggest that mercury impairs complete retinal release from the receptor binding pocket. Our results provide further support for the capacity of mercury as a hazardous metal ion with reported deleterious effect on vision and provide a molecular explanation for such an effect at the rhodopsin photoreceptor level. We suggest that mercury could alter vision by acting in a specific manner on the molecular components of the retinoid cycle, particularly by modifying the ability of the visual photoreceptor protein rhodopsin to be regenerated and to be normally photoactivated by light. PMID:24911398

  10. Got Mercury?

    NASA Technical Reports Server (NTRS)

    Meyers, Valerie; James, John T.; McCoy, Torin; Garcia, Hector

    2010-01-01

    Many lamps used in various spacecraft contain elemental mercury, which is efficiently absorbed through the lungs as a vapor. The liquid metal vaporizes slowly at room temperature, but may be completely vaporized when lamps are operating. Because current spacecraft environmental control systems are unable to remove mercury vapors, we considered short-term and long-term exposures. Using an existing study, we estimated mercury vapor releases from lamps that are not in operation during missions lasting less than or equal to 30 days; whereas we conservatively assumed complete vaporization from lamps that are operating or being used during missions lasing more than 30 days. Based on mercury toxicity, the Johnson Space Center's Toxicology Group recommends stringent safety controls and verifications for any hardware containing elemental mercury that could yield airborne mercury vapor concentrations greater than 0.1 mg/m3 in the total spacecraft atmosphere for exposures lasting less than or equal to 30 days, or concentrations greater than 0.01 mg/m3 for exposures lasting more than 30 days.

  11. Detection of cystic structures using pulsed ultrasonically induced resonant cavitation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Kovach, John S. (Inventor)

    2002-01-01

    Apparatus and method for early detection of cystic structures indicative of ovarian and breast cancers uses ultrasonic wave energy at a unique resonance frequency for inducing cavitation in cystic fluid characteristic of cystic structures in the ovaries associated with ovarian cancer, and in cystic structures in the breast associated with breast cancer. Induced cavitation bubbles in the cystic fluid implode, creating implosion waves which are detected by ultrasonic receiving transducers attached to the abdomen of the patient. Triangulation of the ultrasonic receiving transducers enables the received signals to be processed and analyzed to identify the location and structure of the cyst.

  12. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    PubMed

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  13. Mercury bioaccumulation in organisms from three Puerto Rican estuaries.

    PubMed

    Burger, J; Cooper, K; Saliva, J; Gochfeld, D; Lipsky, D; Gochfeld, M

    1992-09-01

    We analyzed mercury levels in shrimp (Palaemonetes sp.), Blue Crabs (Callinectes sp.), fish (Tarpon Megalops atlantica and Tilapia Tilapia mossambica), lizards (Ameiva exsul), Cattle Egret (Bubulcus ibis) and Moorhen (Gallinula chloropus) in three estuaries in Puerto Rico in 1988. There were no quantifiable concentrations greater than the method detection limit of mercury in shrimp, crabs and lizards from any site. Mercury levels were also below detection limits in Tilapia, except for specimens collected at Frontera Creek, allegedly contaminated with mercury. However, mercury levels ranged from 92-238 μg/kg (wet weight) in Tarpon, a predaceous fish that feeds on smaller fish. Few of the birds had detectable levels of mercury. Our results indicate relatively low concentrations of mercury in biota collected in all of the three estuaries at most trophic levels, although 10 of 12 Tarpon fillet samples from Frontera had detectable mercury compared to 3 of 12 fillet samples for the other two lagoons. PMID:24226951

  14. Dental amalgam, mercury toxicity, and renal autoimmunity.

    PubMed

    Guzzi, Gianpaolo; Fogazzi, Giovanni Battista; Cantù, Mariadele; Minoia, Claudio; Ronchi, Anna; Pigatto, Paolo D; Severi, Gianluca

    2008-01-01

    Chronic exposure to elemental metallic mercury may induce an immunological glomerular disease. Since humans are exposed to mercury vapor (Hg0) from dental amalgam restorations and kidney is an important target organ of mercury vapor and mercury deposition in kidney increases proportionally with the dose, our aim was to test the occurrence of specific antibodies to antiglomerular basement membrane (anti-GBM-IgG) among individuals with adverse effects to mercury from dental amalgam fillings. We selected a group of patients (n=24) with a history of long-term exposure to mercury vapor from mercury-containing amalgam fillings and showing adverse effects that were laboratory confirmed. Enzyme-linked immunosorbent assays (ELISAs) were used to evaluate serum levels of antibodies to anti-GBM-IgG. None of the patients showed evidence of anti-GBM autoimmunity, either in subgroups with strong allergy to mercury or its compounds (i.e., organic mercury) or in those patients who had past thimerosal-containing vaccines coverage (7 of 24). There was no evidence of the presence of circulating anti-GBM antibodies in subjects suffering from adverse events due to long-term exposure to mercury from dental amalgams, even in individuals who presented allergy to mercury.

  15. Identification of elemental mercury in the subsurface

    DOEpatents

    Jackson, Dennis G

    2015-01-06

    An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.

  16. Enhanced biosorption of mercury(II) and cadmium(II) by cold-induced hydrophobic exobiopolymer secreted from the psychrotroph Pseudomonas fluorescens BM07.

    PubMed

    Zamil, Sheikh Shawkat; Choi, Mun Hwan; Song, Jung Hyun; Park, Hyunju; Xu, Ju; Chi, Ki-Whan; Yoon, Sung Chul

    2008-09-01

    The cells of psychrotrophic Pseudomonas fluorescens BM07 were found to secrete large amounts of exobiopolymer (EBP) composed of mainly hydrophobic (water insoluble) polypeptide(s) (as contain approximately 50 mol% hydrophobic amino acids, lacking cysteine residue) when grown on fructose containing limited M1 medium at the temperatures as low as 0-10 degrees C but trace amount at high (30 degrees C, optimum growth) temperature. Two types of nonliving BM07 cells (i.e., cells grown at 30 degrees C and 10 degrees C) as well as the freeze-dried EBP were compared for biosorption of mercury (Hg(II)) and cadmium (Cd(II)). The optimum adsorption pH was found 7 for Hg(II) but 6 for Cd(II), irrespective of the type of biomass. Equilibrium adsorption data well fitted the Langmuir adsorption model. The maximum adsorption (Q(max)) was 72.3, 97.4, and 286.2 mg Hg(II)/g dry biomass and 18.9, 27.0, and 61.5 mg Cd(II)/g dry biomass for cells grown at 30 degrees C and 10 degrees C and EBP, respectively, indicating major contribution of heavy metal adsorption by cold-induced EBP. Mercury(II) binding induced a significant shift of infrared (IR) amide I and II absorption of EBP whereas cadmium(II) binding showed only a very little shift. These IR shifts demonstrate that mercury(II) and cadmium(II) might have different binding sites in EBP, which was supported by X-ray diffraction and differential scanning calorimetric analysis and sorption results of chemically modified biomasses. This study implies that the psychrotrophs like BM07 strain may play an important role in the bioremediation of heavy metals in the temperate regions especially in the inactive cold season. PMID:18679675

  17. Observations of Al, Fe and Ca(+) in Mercury's Exosphere

    NASA Technical Reports Server (NTRS)

    Bida, Thomas A.; Killen, Rosemary M.

    2011-01-01

    We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.

  18. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  19. Mercury toxicity and neurodegenerative effects.

    PubMed

    Carocci, Alessia; Rovito, Nicola; Sinicropi, Maria Stefania; Genchi, Giuseppe

    2014-01-01

    Mercury is among the most toxic heavy metals and has no known physiological role in humans. Three forms of mercury exist: elemental, inorganic and organic. Mercury has been used by man since ancient times. Among the earliest were the Chinese and Romans, who employed cinnabar (mercury sulfide) as a red dye in ink (Clarkson et al. 2007). Mercury has also been used to purify gold and silver minerals by forming amalgams. This is a hazardous practice, but is still widespread in Brazil's Amazon basin, in Laos and in Venezuela, where tens of thousands of miners are engaged in local mining activities to find and purify gold or silver. Mercury compounds were long used to treat syphilis and the element is still used as an antiseptic,as a medicinal preservative and as a fungicide. Dental amalgams, which contain about 50% mercury, have been used to repair dental caries in the U.S. since 1856.Mercury still exists in many common household products around the world.Examples are: thermometers, barometers, batteries, and light bulbs (Swain et al.2007). In small amounts, some organo mercury-compounds (e.g., ethylmercury tiosalicylate(thimerosal) and phenylmercury nitrate) are used as preservatives in some medicines and vaccines (Ballet al. 2001).Each mercury form has its own toxicity profile. Exposure to Hg0 vapor and MeHg produce symptoms in CNS, whereas, the kidney is the target organ when exposures to the mono- and di-valent salts of mercury (Hg+ and Hg++, respectively)occur. Chronic exposure to inorganic mercury produces stomatitis, erethism and tremors. Chronic MeHg exposure induced symptoms similar to those observed in ALS, such as the early onset of hind limb weakness (Johnson and Atchison 2009).Among the organic mercury compounds, MeHg is the most biologically available and toxic (Scheuhammer et a!. 2007). MeHg is neurotoxic, reaching high levels of accumulation in the CNS; it can impair physiological function by disrupting endocrine glands (Tan et a!. 2009).The most

  20. Composition and Detection of Europa's Sputter-Induced Atmosphere

    NASA Astrophysics Data System (ADS)

    Johnson, R. E.; Burger, M. H.; Cassidy, T. A.; Leblanc, F.; Marconi, M. L.; Smyth, W. H.

    2007-12-01

    Europa has an extremely tenuous atmosphere that appears to be marginally collisional, so that species ejected from the surface with sufficient energy have a high probability of escape. Such an atmosphere is often referred to as a surface boundary-layer atmosphere. That is, as at Mercury, the Moon and Ganymede, the interaction of the ambient gas with the surface determines the composition, local column density, and morphology of the atmosphere. Since gas phase species are often more readily identified both in situ and by remote sensing, Europa's atmosphere is of interest as an extension of Europa's surface. Since Europa is imbedded in the Jovian magnetosphere and is not protected from the solar EUV flux, radiolytic, photolytic and stimulated desorption processes populate the atmosphere with atoms and molecules ejected from Europa's surface. These processes are often lumped together using the words 'sputter-produced' atmosphere. Early laboratory sputtering data by Brown, Lanzerotti and co-workers were used to predict the principal atmospheric component, O2, and its average column density. Since H2 loss accompanies the formation and ejection of O2 from ice and H2 escapes readily, the atmospheric formation process also efficiently populates the Jovian magnetosphere. In fact the extension of Europa's atmosphere as a gas torus gravitationally bound to Jupiter and only perturbed by Europa contains more of Europa's ejected surface material than the gravitationally bound atmosphere. In addition to O2, Na and K have been identified. Here we review the modeling of Europa's sputter produced atmosphere and ionosphere. Our principal interest is in the morphology of the atmosphere and the relationship between the composition and Europa's local surface composition. The possibility of detection by an orbiting spacecraft is considered as is the relevance of such detections to Europa's putative subsurface ocean.

  1. Mercury depletion events over Antarctic and Arctic oceans

    NASA Astrophysics Data System (ADS)

    Nerentorp Mastromonaco, M. G.; Gardfeldt, K.; Wangberg, I.; Jourdain, B.; Dommergue, A.; Kuronen, P.; Pirrone, N.; Jacobi, H.

    2013-12-01

    Mercury is a global pollutant and in its elemental form it is spread by air to remote areas far away from point sources. In Antarctic and Arctic regions the airborne mercury may be oxidized, followed by deposition of the metal on land and sea surfaces. It is previously known that during early spring in these regions, processes involving halogen radical photochemistry induce an oxidation of gaseous elemental mercury (GEM) in air. This phenomenon is known as an atmospheric mercury depletion event (AMDE) and is characterized by sudden and remarkable decreases in GEM that occurs within hours or days. All or most part of the GEM in air is transformed into gaseous oxidized mercury (GOM) and particulate mercury (HgP). Equivalent ozone depletion events (ODE) do also occur in Antarctic and Arctic regions and the halogen radical photolytic processes involved for AMDEs and ODEs are interrelated. During two oceanographic campaigns at the Weddell Sea onboard RV Polarstern, ANTXXIX/6 (130608-130812) and ANTXXIX/7 (130814-131016), continuous measurements of GEM, GOM and HgP in air were performed using the Tekran mercury speciation system 1130/35. This is the first time such long time series of GEM-, GOM- and HgP data has been achieved over water in the Antarctic during winter and spring. Several mercury depletion events were detected as early as in the middle of July and are correlated and verified with ozone measurements onboard the ship. The observed depletion events were characterised by sudden major decreases in both GEM and ozone concentrations and highly elevated values of HgP. A depletion event is a local phenomenon but evidences show that traces of such events can be detected far away from its origin. During a spring campaign at the Pallas-Matorova station in northern Finland (68o00'N, 24o14'E), GEM, GOM and HgP were measured during three weeks in April 2012 using the Tekran mercury speciation system 1130/35. Traces of remote AMDEs were observed by sudden decreases of GEM

  2. Laser-induced fluorescence detection of dysplasia in Barrett's esophagus

    NASA Astrophysics Data System (ADS)

    Panjehpour, Masoud; Overholt, Bergein F.; Vo-Dinh, Tuan; Edwards, Donna H.; Buckley, Paul F., III; DeCosta, Joseph F.; Haggitt, Rodger C.

    1996-04-01

    A study was conducted to determine whether laser-induced fluorescence could detect high grade dysplasia in Barrett's esophagus. Four-hundred-ten nm laser light was used to induce autofluorescence of Barrett's mucosa in 36 patients during routine endoscopy. The spectra were analyzed using the Differential Normalized Fluorescence (DNF) Index technique to differentiate high grade dysplasia from either low grade or non-dysplastic mucosa. Each spectrum was classified as either premalignant or benign using two different DNF indices. Analyzing the fluorescence spectra from all patients using one DNF Index, 96% of non- dysplastic Barrett's samples classified as benign tissue. All low grade dysplasia samples classified as benign. Ninety percent of high grade dysplasia samples classified as premalignant. Twenty-eight percent of mixed low grade/focal high grade dysplasia samples classified as premalignant. In summary, high grade dysplasia in Barrett's esophagus patients can be detected by endoscopic laser-induced fluorescence spectroscopy using differential normalized fluorescence technique.

  3. Mercury Contamination

    PubMed Central

    Thompson, Marcella R.

    2013-01-01

    IN BRIEF A residential elemental mercury contamination incident in Rhode Island resulted in the evacuation of an entire apartment complex. To develop recommendations for improved response, all response-related documents were examined; personnel involved in the response were interviewed; policies and procedures were reviewed; and environmental monitoring data were compiled from specific phases of the response for analysis of effect. A significant challenge of responding to residential elemental mercury contamination lies in communicating risk to residents affected py a HazMat spill. An ongoing, open and honest dialogue is emphasized where concerns of the public are heard and addressed, particularly when establishing and/or modifying policies and procedures for responding to residential elemental mercury contamination. PMID:23436951

  4. The free precession and libration of Mercury

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    2005-11-01

    An analysis based on the direct torque equations including tidal dissipation and a viscous core-mantle coupling is used to determine the damping time scales of O(10) years for free precession of the spin about the Cassini state and free libration in longitude for Mercury. The core-mantle coupling dominates the damping over the tides by one to two orders of magnitude for the plausible parameters chosen. The short damping times compared with the age of the Solar System means we must find recent or on-going excitation mechanisms if such free motions are found by the current radar experiments or the future measurement by the MESSENGER and BepiColombo spacecraft that will orbit Mercury. We also show that the average precession rate is increased by about 30% over that obtained from the traditional precession constant because of a spin-orbit resonance induced contribution by the C term in the expansion of the gravitational field. The C contribution also causes the path of the spin during the precession to be slightly elliptical with a variation in the precession rate that is a maximum when the obliquity is a minimum. An observable free precession will compromise the determination of obliquity of the Cassini state and hence of C/MR for Mercury, but a detected free libration will not compromise the determination of the forced libration amplitude and thus the verification of a liquid core.

  5. Detection of early caries by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sasazawa, Shuhei; Kakino, Satoko; Matsuura, Yuji

    2015-07-01

    To improve sensitivity of dental caries detection by laser-induced breakdown spectroscopy (LIBS) analysis, it is proposed to utilize emission peaks in the ultraviolet. We newly focused on zinc whose emission peaks exist in ultraviolet because zinc exists at high concentration in the outer layer of enamel. It was shown that by using ratios between heights of an emission peak of Zn and that of Ca, the detection sensitivity and stability are largely improved. It was also shown that early caries are differentiated from healthy part by properly setting a threshold in the detected ratios. The proposed caries detection system can be applied to dental laser systems such as ones based on Er:YAG-lasers. When ablating early caries part by laser light, the system notices the dentist that the ablation of caries part is finished. We also show the intensity of emission peaks of zinc decreased with ablation with Er:YAG laser light.

  6. Highly Selective Mercury Detection at Partially Oxidized Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Nanocomposite Film Modified Electrode

    NASA Astrophysics Data System (ADS)

    Yasri, Nael; Sundramoorthy, Ashok; Chang, Woo-Jin; Gunasekaran, Sundaram

    2014-12-01

    Partially oxidized graphene flakes (po-Gr) were obtained from graphite electrode by an electrochemical exfoliation method. As-produced po-Gr flakes were dispersed in water with the assistance of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS). The po-Gr flakes and the po-Gr/PEDOT:PSS nanocomposite (po-Gr/PEDOT:PSS) were characterized by Raman spectroscopy, Fourier transform-infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). In addition, we demonstrated the potential use of po-Gr/PEDOT:PSS electrode in electrochemical detection of mercury ions (Hg2+) in water samples. The presence of po-Gr sheets in PEDOT:PSS film greatly enhanced the electrochemical response for Hg2+. Cyclic voltammetry measurements showed a well-defined Hg2+ redox peaks with a cathodic peak at 0.23 V, and an anodic peak at 0.42 V. Using differential pulse stripping voltammetry, detection of Hg2+ was achieved in the range of 0.2 to 14 µM (R2 = 0.991), with a limit of detection (LOD) of 0.19 µM for Hg2+. The electrode performed satisfactorily for sensitive and selective detection of Hg2+ in real samples, and the po-Gr/PEDOT:PSS film remains stable on the electrode surface for repeated use. Therefore, our method is potentially suitable for routine Hg2+ sensing in environmental water samples.

  7. Detection of cocaine induced rat brain activation by photoacoustic tomography

    PubMed Central

    Jo, Janggun; Yang, Xinmai

    2011-01-01

    Photoacoustic tomography (PAT) was used to detect the progressive changes on the cerebral cortex of Sprague Dawley rats after the administration of cocaine hydrochloride. Different concentrations (0, 2.5, and 5.0 mg per kg body) of cocaine hydrochloride in saline solution were injected into Sprague Dawley rats through tail veins. Cerebral cortex images of the animals were continuously acquired by PAT. For continuous observation, PAT system used multi-transducers to reduce the scanning time and maintain a good signal-to-noise ratio (SNR). The obtained photoacoustic images were compared with each other and confirmed that changes in blood volume were induced by cocaine hydrochloride injection. The results demonstrate that PAT may be used to detect the effects of drug abuse-induced brain activation. PMID:21163301

  8. Heat Induced Damage Detection by Terahertz (THz) Radiation

    NASA Astrophysics Data System (ADS)

    Rahani, Ehsan Kabiri; Kundu, Tribikram; Wu, Ziran; Xin, Hao

    2011-06-01

    Terahertz (THz) and sub-terahertz imaging and spectroscopy are becoming increasingly popular nondestructive evaluation techniques for damage detection and characterization of materials. THz radiation is being used for inspecting ceramic foam tiles used in TPS (Thermal Protection System), thick polymer composites and polymer tiles that are not good conductors of ultrasonic waves. Capability of THz electromagnetic waves in detecting heat induced damage in porous materials is investigated in this paper. Porous pumice stone blocks are subjected to long time heat exposures to produce heat induced damage in the block. The dielectric properties extracted from THz TDS (Time Domain Spectroscopy) measurements are compared for different levels of heat exposure. Experimental results show noticeable and consistent change in dielectric properties with increasing levels of heat exposure, well before its melting point.

  9. Mercury, elemental

    Integrated Risk Information System (IRIS)

    Mercury , elemental ; CASRN 7439 - 97 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  10. Mercury's Messenger

    ERIC Educational Resources Information Center

    Chapman, Clark R.

    2004-01-01

    Forty years after Mariner 2, planetary exploration has still only just begun, and many more missions are on drawing boards, nearing the launch pad, or even en route across interplanetary space to their targets. One of the most challenging missions that will be conducted this decade is sending the MESSENGER spacecraft to orbit the planet Mercury.…

  11. A spontaneous hybridoma producing autoanti-idiotypic antibodies that recognize a V kappa-associated idiotope in mercury-induced autoimmunity.

    PubMed

    Guéry, J C; Druet, P

    1990-05-01

    Anti-idiotypic (Id) antibodies have been suggested to play a role in the self regulation process observed in Brown-Norway rats developing mercury-induced autoimmunity. However, the presence of such antibodies has not yet been directly demonstrated. For that purpose, spleen cells from a mercury-injected rat were fused and the resulting hybridomas tested for their anti-Id activity against monoclonal anti-glomerular basement membrane (GBM) antibodies produced in this model. A monoclonal antibody (mAb) was obtained that specifically reacted in an enzyme-linked immunosorbent assay with an anti-GBM mAb and to a much lesser extent with another one produced in the same fusion. In Western blot experiments this autoanti-Id mAb reacted under reducing conditions with the kappa L chains but not with the H chains of the two anti-GBM mAb. It did not react with the kappa L chains of eight other rat mAb. This mAb is therefore an autoanti-Id mAb that recognizes a V kappa-associated Id expressed on two anti-GBM mAb. These results demonstrate that anti-GBM antibodies and their corresponding autoanti-Id antibodies are simultaneously produced during this disease. Whether or not these autoanti-Id antibodies have a regulatory and/or a pathogenic role in this disease remains to be established.

  12. Revealing Mercury

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.; Solomon, S. C.; Head, J. W.; Watters, T. R.; Murchie, S. L.; Robinson, M. S.; Chapman, C. R.; McNutt, R. L.

    2009-04-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, launched in August 2004. En route to insertion into orbit about Mercury in 2011, MESSENGER flies by Mercury three times. The first and second of these encounters were accomplished in January and October of 2008. These flybys viewed portions of Mercury's surface that were not observed by Mariner 10 during its reconnaissance of somewhat less than half of the planet in 1974-1975. All MESSENGER instruments operated during each flyby and returned a wealth of new data. Many of the new observations were focused on the planet's geology, including monochrome imaging at resolutions as high as 100 m/pixel, multispectral imaging in 11 filters at resolutions as high as 500 m/pixel, laser altimetry tracks extending over several thousands of kilometers, and high-resolution spectral measurements of several types of terrain. Here we present an overview of the first inferences on the global geology of Mercury from the MESSENGER observations. Whereas evidence for volcanism was equivocal from Mariner 10 data, the new MESSENGER images and altimetry provide compelling evidence that volcanism was widespread and protracted on Mercury. Color imaging reveals three common spectral units on the surface: a higher-reflectance, relatively red material occurring as a distinct class of smooth plains, typically with distinct embayment relationships interpreted to indicate volcanic emplacement; a lower-reflectance, relatively blue material typically excavated by impact craters and therefore inferred to be more common at depth; and a spectrally intermediate terrain that constitutes much of the uppermost crust. Three more minor spectral units are also seen: fresh crater ejecta, reddish material associated with rimless depressions interpreted to be volcanic centers, and high-reflectance deposits seen in some crater floors. Preliminary measurements of crater size

  13. Label-free SERS study of galvanic replacement reaction on silver nanorod surface and its application to detect trace mercury ion

    PubMed Central

    Wang, Yaohui; Wen, Guiqing; Ye, Lingling; Liang, Aihui; Jiang, Zhiliang

    2016-01-01

    It is significant to explore a rapid and highly sensitive galvanic replacement reaction (GRR) surface enhanced Raman scattering (SERS) method for detection of trace mercury ions. This article was reported a new GRR SERS analytical platform for detecting Hg(II) with label-free molecular probe Victoria blue B (VBB). In HAc-NaCl-silver nanorod (AgNR) substrate, the molecular probe VBB exhibited a strong SERS peak at 1609 cm−1. Upon addition of Hg(II), the GRR occurred between the AgNR and Hg(II), and formed a weak SERS activity of Hg2Cl2 that deposited on the AgNR surfaces to decrease the SERS intensity at 1609 cm−1. The decreased SERS intensity was linear to Hg(II) concentration in the range of 1.25–125 nmol/L, with a detection limit of 0.2 nmol/L. The GRR was studied by SERS, transmission electron microscopy and other techniques, and the GRR mechanism was discussed. PMID:26792071

  14. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    SciTech Connect

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  15. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  16. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

    SciTech Connect

    Hybl, John D.; Tysk, Shane M.; Berry, Shaun R.; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors.However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  17. Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection.

    PubMed

    Hybl, John D; Tysk, Shane M; Berry, Shaun R; Jordan, Michael P

    2006-12-01

    Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

  18. Mercury(II) and methyl mercury speciation on Streptococcus pyogenes loaded Dowex Optipore SD-2.

    PubMed

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Karaman, Isa; Soylak, Mustafa

    2009-09-30

    A solid phase extraction procedure based on speciation of mercury(II) and methyl mercury on Streptococcus pyogenes immobilized on Dowex Optipore SD-2 has been established. Selective and sequential elution with 0.1 mol L(-1) HCl for methyl mercury and 2 mol L(-1) HCl for mercury(II) were performed at pH 8. The determination of mercury levels was performed by cold vapour atomic absorption spectrometry (CVAAS). Optimal analytical conditions including pH, amounts of biosorbent, sample volumes, etc., were investigated. The influences of the some alkaline and earth alkaline ions and some transition metals on the recoveries were also investigated. The capacity of biosorbent for mercury(II) and methyl mercury was 4.8 and 3.4 mg g(-1). The detection limit (3 sigma) of the reagent blank for mercury(II) and methyl mercury was 2.1 and 1.5 ng L(-1). Preconcentration factor was calculated as 25. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of standard reference material (NRCC-DORM 2 Dogfish Muscle). The procedure was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and environmental samples.

  19. Mercury's South Polar Region

    NASA Video Gallery

    This animation shows 89 wide-angle camera (WAC) images of Mercury’s south polar region acquired by the Mercury Dual Imaging System (MDIS) over one complete Mercury solar day (176 Earth days). Thi...

  20. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance. PMID:19891832

  1. Detection of uranium using laser-induced breakdown spectroscopy.

    PubMed

    Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia

    2009-11-01

    The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.

  2. Mercury - Full-disk radar images and the detection and stability of ice at the North Pole

    NASA Technical Reports Server (NTRS)

    Butler, Bryan J.; Muhleman, Duane O.; Slade, Martin A.

    1993-01-01

    The first full-disk radar images of Mercury are discussed. About 77 percent of the surface was imaged at resolutions as good as 150 km. The North Pole was visible at the time of the observations, and the feature with the highest same sense (SS) circular reflectivity in the images is near the nominal polar position. The peak SS reflectivity of this feature is 7.9 percent and the circular polarization ratio through much of it is over one. The diameter of the feature is estimated to be less than about 350 km. The signal strength and polarization characteristics suggest the presence of very clean ices deposited in a relatively short period. The reflectivity of the north polar feature is slightly depressed compared to absolute reflectivities of other ice bodies and regions in the solar system. This may be due to a layer of dust or soil covering the ice. Other prominent features in the unphotographed hemisphere correpond to positions where atmospheric sodium enhancements have been measured from earth. These sites may be large basins similar to the Caloris basin.

  3. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  4. Impact induced delamination detection and quantification with guided wavefield analysis

    NASA Astrophysics Data System (ADS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu; Seebo, Jeffrey P.

    2015-04-01

    This paper studies impact induced delamination detection and quantification methods via guided wavefield data and spatial wavenumber imaging. In this study, the complex geometry impact-like delamination damage in a composite laminate is created through the quasi-static indention technique. To detect and quantify the delamination damage, the guided ultrasonic waves are excited through a piezoelectric actuator, and the guided wavefields are measured by a scanning laser Doppler vibrometer. The acquired guided wavefields contain a wealth of information regarding the wave propagation in the composite plate and complex wave interaction at the delamination region. To process the wavefield data and evaluate the delamination damage, the measured wavefields are analyzed through the spatial wavenumber imaging method which can generate an image containing the dominant local wavenumber at each spatial location. For a proof of concept, the approach is first applied to a single Teflon insert simulating a delamination, and then to the complex geometry impact-like delamination damage. The results show that the spatial wavenumber imaging can not only determine the delamination location, but also provide quantitative information regarding the delamination size and shape. The detection results for the impact induced delamination are compared to an ultrasonic C-scan image and wavenumber images are studied for two different excitation frequencies. Fairly good agreement is observed for portions of the delamination, and differences in wavenumber are observed at the two different frequencies. Results demonstrate that the spatial wavenumber imaging is a promising technique for yielding delamination location and size information.

  5. In situ formation of p-n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-27

    The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p-n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p-n junction was confirmed by P-N conductive type discriminator measurements and current-voltage (I-V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6×10(-9)mol/L. It is expected that the present study can serve as a foundation to the application of p-n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry. PMID:24832992

  6. A CAVITY RINGDOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2002-10-01

    Work on the Cavity Ring-Down (CRD) mercury spectrometer this past quarter concentrated on the actual detection of mercury and the beginning of flue gas interference testing. After obtaining the initial mercury signal detection was done at various pressures and concentrations. The Alexandrite laser system used for the CRD spectrometer has a narrow enough linewidth to spectrally resolve the isotopic structure of mercury. This includes both isotopic frequency shifts as well as hyperfine splittings due to a couple of the odd isotopes of mercury. Initial flue gas inteferent testing concentrated on SO{sub 2}, which is expected to cause the greatest interference with mercury detection due to its absorption of ultra-violet light in the same region as that of the mercury atomic line.

  7. Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro- and micronutrients of soils.

    PubMed

    García-Sánchez, Mercedes; Sípková, Adéla; Száková, Jiřina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel

    2014-01-01

    Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg · kg(-1) Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138

  8. Applications of Organic and Inorganic Amendments Induce Changes in the Mobility of Mercury and Macro- and Micronutrients of Soils

    PubMed Central

    García-Sánchez, Mercedes; Šípková, Adéla; Száková, Jiřina; Kaplan, Lukáš; Ochecová, Pavla; Tlustoš, Pavel

    2014-01-01

    Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg·kg−1 Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils. PMID:25401138

  9. Detecting blast-induced infrasound in wind noise.

    PubMed

    Howard, Wheeler B; Dillion, Kevin L; Shields, F Douglas

    2010-03-01

    Current efforts seek to monitor and investigate such naturally occurring events as volcanic eruptions, hurricanes, bolides entering the atmosphere, earthquakes, and tsunamis by the infrasound they generate. Often, detection of the infrasound signal is limited by the masking effect of wind noise. This paper describes the use of a distributed array to detect infrasound signals from four atmospheric detonations at White Sands Missile Range in New Mexico, USA in 2006. Three of the blasts occurred during times of low wind noise and were easily observed with array processing techniques. One blast was obscured by high wind conditions. The results of signal processing are presented that allowed localization of the blast-induced signals in the presence of wind noise in the array response.

  10. Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, J. A.

    1999-01-01

    Among the major discoveries made by the Mariner 10 mission to the inner planets was the existence of an intrinsic magnetic field at Mercury with a dipole moment of approx. 300 nT R(sup 3, sub M). This magnetic field is sufficient to stand off the solar wind at an altitude of about 1 R(sub M) (i.e. approx. 2439 km). Hence, Mercury possesses a 'magnetosphere' from which the so]ar wind plasma is largely excluded and within which the motion of charged particles is controlled by the planetary magnetic field. Despite its small size relative to the magnetospheres of the other planets, a Mercury orbiter mission is a high priority for the space physics community. The primary reason for this great interest is that Mercury unlike all the other planets visited thus far, lacks a significant atmosphere; only a vestigial exosphere is present. This results in a unique situation where the magnetosphere interacts directly with the outer layer of the planetary crust (i.e. the regolith). At all of the other planets the topmost regions of their atmospheres become ionized by solar radiation to form ionospheres. These planetary ionospheres then couple to electrodynamically to their magnetospheres or, in the case of the weakly magnetized Venus and Mars, directly to the solar wind. This magnetosphere-ionosphere coupling is mediated largely through field-aligned currents (FACs) flowing along the magnetic field lines linking the magnetosphere and the high-latitude ionosphere. Mercury is unique in that it is expected that FACS will be very short lived due to the low electrical conductivity of the regolith. Furthermore, at the earth it has been shown that the outflow of neutral atmospheric species to great altitudes is an important source of magnetospheric plasma (following ionization) whose composition may influence subsequent magnetotail dynamics. However, the dominant source of plasma for most of the terrestrial magnetosphere is the 'leakage'of solar wind across the magnetopause and more

  11. Environmental mercury measurement by immunoassay

    SciTech Connect

    Schweitzer, C.; Carlson, L.; Holmquist, B.; Riddell, M.; Wylie, D.

    1995-12-31

    Immunochemical-based analytical methods are commonly used in the medical diagnostic field, but only recently have they been adapted for field-portable environmental applications. BioNebraska has developed an immunoassay, based upon a novel monoclonal antibody to mercuric ions, for the detection of mercury in environmental samples. The user-friendly BiMelyze Mercury Tube Immunoassay generates semi-quantitative results rapidly and economically relative to traditional analytical methods. In this presentation the authors will demonstrate the use of this method with environmental matrices and discuss ongoing in-house and independent field results. Sample preparation and analysis can be completed in the field for numerous samples in less than 40 minutes. Mercury is first extracted from the sample by digestion using a separate kit available from Bio-Nebraska. The inherent limit of detection for mercuric ions in aqueous samples is 0.25 ppb and 0.5 ppm for soils. The method is highly selective for mercury with essentially no interference by other metals or matrices. Thus, the assay is well-suited for low-cost, real-time, user friendly field screening of mercury in soils, sediment and water producing results that correlate well with traditional analytical methods.

  12. Mercury-induced fragmentation of n-decane and n-undecane in positive mode ion mobility spectrometry.

    PubMed

    Gunzer, F

    2015-09-21

    Ion mobility spectrometry is a well-known technique for trace gas analysis. Using soft ionization techniques, fragmentation of analytes is normally not observed, with the consequence that analyte spectra of single substances are quite simple, i.e. showing in general only one peak. If the concentration is high enough, an extra cluster peak involving two analyte molecules can often be observed. When investigating n-alkanes, different results regarding the number of peaks in the spectra have been obtained in the past using this spectrometric technique. Here we present results obtained when analyzing n-alkanes (n-hexane to n-undecane) with a pulsed electron source, which show no fragmentation or clustering at all. However, when investigating a mixture of mercury and an n-alkane, a situation quite typical in the oil and gas industry, a strong fragmentation and cluster formation involving these fragments has been observed exclusively for n-decane and n-undecane. PMID:26247063

  13. Spectrally resolved laser-induced fluorescence for bioaerosols standoff detection

    NASA Astrophysics Data System (ADS)

    Buteau, Sylvie; Stadnyk, Laurie; Rowsell, Susan; Simard, Jean-Robert; Ho, Jim; Déry, Bernard; McFee, John

    2007-09-01

    An efficient standoff biological warfare detection capability could become an important asset for both defence and security communities based on the increasing biological threat and the limits of the presently existing protection systems. Defence R&D Canada (DRDC) has developed, by the end of the 90s, a standoff bioaerosol sensor prototype based on intensified range-gated spectrometric detection of Laser Induced Fluorescence (LIF). This LIDAR system named SINBAHD monitors the spectrally resolved LIF originating from inelastic interactions with bioaerosols present in atmospheric cells customizable in size and in range. SINBAHD has demonstrated the capability of near real-time detection and classification of bioaerosolized threats at multi-kilometre ranges. In spring 2005, DRDC has initiated the BioSense demonstration project, which combines the SINBAHD technology with a geo-referenced Near InfraRed (NIR) LIDAR cloud mapper. SINBAHD is now being used to acquire more signatures to add in the spectral library and also to optimize and test the new BioSense algorithm strategy. In September 2006, SINBAHD has participated in a two-week trial held at DRDC-Suffield where different open-air wet releases of live and killed bioagent simulants, growth media and obscurants were performed. An autoclave killing procedure was performed on two biological materials (Bacillus subtilis var globigii or BG, and Bacillus thuringiensis or Bt) before being aerosolized, disseminated and spectrally characterized with SINBAHD. The obtained results showed no significant impact of this killing process on their normalised spectral signature in comparison with their live counterparts. Correlation between the detection signals from SINBAHD, an array of slit samplers and a FLuorescent Aerosol Particle Sensor (C-FLAPS) was obtained and SINBAHD's sensitivity could then be estimated. At the 2006 trial, a detection limit of a few tens of Agent Containing Particles per Liter of Air (ACPLA) was obtained

  14. MERCURY RESEARCH STRATEGY.

    EPA Science Inventory

    The USEPA's ORD is pleased to announce the availability of its Mercury Research Strategy. This strategy guides ORD's mercury research program and covers the FY2001-2005 time frame. ORD will use it to prepare a multi-year mercury research implementation plan in 2001. The Mercury R...

  15. Mercury contamination extraction

    DOEpatents

    Fuhrmann, Mark; Heiser, John; Kalb, Paul

    2009-09-15

    Mercury is removed from contaminated waste by firstly applying a sulfur reagent to the waste. Mercury in the waste is then permitted to migrate to the reagent and is stabilized in a mercury sulfide compound. The stable compound may then be removed from the waste which itself remains in situ following mercury removal therefrom.

  16. Innate stimulatory capacity of high molecular weight transition metals Au (gold) and Hg (mercury).

    PubMed

    Rachmawati, Dessy; Alsalem, Inás W A; Bontkes, Hetty J; Verstege, Marleen I; Gibbs, Sue; von Blomberg, B M E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2015-03-01

    Nickel, cobalt and palladium ions can induce an innate immune response by triggering Toll-like receptor (TLR)-4 which is present on dendritic cells (DC). Here we studied mechanisms of action for DC immunotoxicity to gold and mercury. Next to gold (Na3Au (S2O3)2⋅2H2O) and mercury (HgCl2), nickel (NiCl2) was included as a positive control. MoDC activation was assessed by release of the pro-inflammatory mediator IL-8. Also PBMC were studied, and THP-1 cells were used as a substitution for DC for evaluation of cytokines and chemokines, as well as phenotypic, alterations in response to gold and mercury. Our results showed that both Na3Au (S2O3)2⋅2H2O and HgCl2 induce substantial release of IL-8, but not IL-6, CCL2 or IL-10, from MoDc, PBMC, or THP-1 cells. Also gold and, to a lesser extent mercury, caused modest dendritic cell maturation as detected by increased membrane expression of CD40 and CD80. Both metals thus show innate immune response capacities, although to a lower extent than reported earlier for NiCl2, CoCl2 and Na2 [PdCl4]. Importantly, the gold-induced response could be ascribed to TLR3 rather than TLR4 triggering, whereas the nature of the innate mercury response remains to be clarified. In conclusion both gold and mercury can induce innate immune responses, which for gold could be ascribed to TLR3 dependent signalling. These responses are likely to contribute to adaptive immune responses to these metals, as reflected by skin and mucosal allergies.

  17. A simple "molecular beacon"-based fluorescent sensing strategy for sensitive and selective detection of mercury (II).

    PubMed

    Xu, Huifeng; Zhu, Xi; Ye, Hongzhi; Yu, Lishuang; Liu, Xianxiang; Chen, Guonan

    2011-11-28

    A novel fluorescent sensor for the detection of Hg(2+) in aqueous media was developed. The method takes advantages of the highly selective thymine-Hg(2+)-thymine coordination and the sensitive "signal-on" structure-switching molecular beacon.

  18. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples. PMID:27497195

  19. Trifunctional molecular beacon-mediated quadratic amplification for highly sensitive and rapid detection of mercury(II) ion with tunable dynamic range.

    PubMed

    Zhao, Yue; Liu, Huaqing; Chen, Feng; Bai, Min; Zhao, Junwu; Zhao, Yongxi

    2016-12-15

    Analyses of target with low abundance or concentration varying over many orders of magnitude are severe challenges faced by numerous assay methods due to their modest sensitivity and limited dynamic range. Here, we introduce a homogeneous and rapid quadratic polynomial amplification strategy through rational design of a trifunctional molecular beacon, which serves as not only a reporter molecule but also a bridge to couple two stage amplification modules without adding any reaction components or process other than basic linear amplification. As a test bed for our studies, we took mercury(II) ion as an example and obtained a high sensitivity with detection limit down to 200 pM within 30min. In order to create a tunable dynamic range, homotropic allostery is employed to modulate the target specific binding. When the number of metal binding site varies from 1 to 3, signal response is programmed accordingly with useful dynamic range spanning 50, 25 and 10 folds, respectively. Furthermore, the applicability of the proposed method in river water and biological samples are successfully verified with good recovery and reproducibility, indicating considerable potential for its practicality in complex real samples.

  20. Electrochemical detection of DNA binding by tumor suppressor p53 protein using osmium-labeled oligonucleotide probes and catalytic hydrogen evolution at the mercury electrode.

    PubMed

    Němcová, Kateřina; Sebest, Peter; Havran, Luděk; Orság, Petr; Fojta, Miroslav; Pivoňková, Hana

    2014-09-01

    In this paper, we present an electrochemical DNA-protein interaction assay based on a combination of protein-specific immunoprecipitation at magnetic beads (MBIP) with application of oligonucleotide (ON) probes labeled with an electroactive oxoosmium complex (Os,bipy). We show that double-stranded ONs bearing a dT20 tail labeled with Os,bipy are specifically recognized by the tumor suppressor p53 protein according to the presence or absence of a specific binding site (p53CON) in the double-stranded segment. We demonstrate the applicability of the Os,bipy-labeled probes in titration as well as competition MBIP assays to evaluate p53 relative affinity to various sequence-specific or structurally distinct unlabeled DNA substrates upon modulation of the p53-DNA binding by monoclonal antibodies used for the immunoprecipitation. To detect the p53-bound osmium-labeled probes, we took advantage of a catalytic peak yielded by Os,bipy-modified DNA at the mercury-based electrodes, allowing facile determination of subnanogram quantities of the labeled oligonucleotides. Versatility of the electrochemical MBIP technique and its general applicability in studies of any DNA-binding protein is discussed.

  1. A novel voltammetric sensor for sensitive detection of mercury(II) ions using glassy carbon electrode modified with graphene-based ion imprinted polymer.

    PubMed

    Ghanei-Motlagh, Masoud; Taher, Mohammad Ali; Heydari, Abolfazl; Ghanei-Motlagh, Reza; Gupta, Vinod K

    2016-06-01

    In this paper, a novel strategy was proposed to prepare ion-imprinted polymer (IIP) on the surface of reduced graphene oxide (RGO). Polymerization was performed using methacrylic acid (MAA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, 2,2'-((9E,10E)-1,4-dihydroxyanthracene-9,10-diylidene) bis(hydrazine-1-carbothioamide) (DDBHCT) as the chelating agent and ammonium persulfate (APS) as initiator, via surface imprinted technique. The RGO-IIP was characterized by means of Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The electrochemical procedure was based on the accumulation of Hg(II) ions at the surface of a modified glassy carbon electrode (GCE) with RGO-IIP. The prepared RGO-IIP sensor has higher voltammetric response compared to the non-imprinted polymer (NIP), traditional IIP and RGO. The RGO-IIP modified electrode exhibited a linear relationship toward Hg(II) concentrations ranging from 0.07 to 80 μg L(-1). The limit of detection (LOD) was found to be 0.02 μg L(-1) (S/N=3), below the guideline value from the World Health Organization (WHO). The applicability of the proposed electrochemical sensor to determination of mercury(II) ions in different water samples was reported. PMID:27040231

  2. Geothermal hazards - Mercury emission

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Siegel, B. Z.

    1975-01-01

    Enthusiasm for intensified geothermal exploration may induce many participants to overlook a long-term potential toxicity hazard possibly associated with the tapping of magmatic steam. The association of high atmospheric Hg levels with geothermal activity has been established both in Hawaii and Iceland, and it has been shown that mercury can be introduced into the atmosphere from fumaroles, hot springs, and magmatic sources. These arguments, extended to thallium, selenium, and other hazardous elements, underscore the need for environmental monitoring in conjunction with the delivery of magmatic steam to the surface.

  3. Mercury and health care.

    PubMed

    Rustagi, Neeti; Singh, Ritesh

    2010-08-01

    Mercury is toxic heavy metal. It has many characteristic features. Health care organizations have used mercury in many forms since time immemorial. The main uses of mercury are in dental amalgam, sphygmomanometers, and thermometers. The mercury once released into the environment can remain for a longer period. Both acute and chronic poisoning can be caused by it. Half of the mercury found in the atmosphere is human generated and health care contributes the substantial part to it. The world has awakened to the harmful effects of mercury. The World Health Organization and United Nations Environmental Programme (UNEP) have issued guidelines for the countries' health care sector to become mercury free. UNEP has formed mercury partnerships between governments and other stakeholders as one approach to reducing risks to human health and the environment from the release of mercury and its compounds to the environment. Many hospitals are mercury free now.

  4. Mercury and health care

    PubMed Central

    Rustagi, Neeti; Singh, Ritesh

    2010-01-01

    Mercury is toxic heavy metal. It has many characteristic features. Health care organizations have used mercury in many forms since time immemorial. The main uses of mercury are in dental amalgam, sphygmomanometers, and thermometers. The mercury once released into the environment can remain for a longer period. Both acute and chronic poisoning can be caused by it. Half of the mercury found in the atmosphere is human generated and health care contributes the substantial part to it. The world has awakened to the harmful effects of mercury. The World Health Organization and United Nations Environmental Programme (UNEP) have issued guidelines for the countries’ health care sector to become mercury free. UNEP has formed mercury partnerships between governments and other stakeholders as one approach to reducing risks to human health and the environment from the release of mercury and its compounds to the environment. Many hospitals are mercury free now. PMID:21120080

  5. Detecting Single-Nucleotide Substitutions Induced by Genome Editing.

    PubMed

    Miyaoka, Yuichiro; Chan, Amanda H; Conklin, Bruce R

    2016-01-01

    The detection of genome editing is critical in evaluating genome-editing tools or conditions, but it is not an easy task to detect genome-editing events-especially single-nucleotide substitutions-without a surrogate marker. Here we introduce a procedure that significantly contributes to the advancement of genome-editing technologies. It uses droplet digital polymerase chain reaction (ddPCR) and allele-specific hydrolysis probes to detect single-nucleotide substitutions generated by genome editing (via homology-directed repair, or HDR). HDR events that introduce substitutions using donor DNA are generally infrequent, even with genome-editing tools, and the outcome is only one base pair difference in 3 billion base pairs of the human genome. This task is particularly difficult in induced pluripotent stem (iPS) cells, in which editing events can be very rare. Therefore, the technological advances described here have implications for therapeutic genome editing and experimental approaches to disease modeling with iPS cells.

  6. Mariner 10 mercury encounter.

    PubMed

    Dunne, J A

    1974-07-12

    Mariner 10's closet approach to Mercury on 29 March 1974 occurred on the dark side of the planet at a range of approximately 700 kilometers. The spacecraft trajectory passed through the shadows of both the sun and Earth. Experiments conducted included magnetic fields, plasma and charged particle studies of the solar wind interaction region, television photography, extreme ultraviolet spectroscopy of the atmosphere, the detection of infrared thermal radiation from the surface, and a dual-frequency radio occultation in search of an ionosphere. PMID:17810505

  7. Fluorescent sensor for mercury

    DOEpatents

    Wang, Zidong; Lee, Jung Heon; Lu, Yi

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  8. Mercury vapour suppression by various liquid media.

    PubMed

    Sutow, E J; Foong, W C; Rizkalla, A S; Jones, D W; Power, N L

    1994-09-01

    Fresh and used photographic fixer, Merconvap and water were evaluated for their ability to suppress the vapourization of mercury. Mercury vapour concentration above the four test storage liquids was measured at various times between 10 min and 335 days, using a mercury vapour measuring instrument. The data were analysed using a Student-Newman-Keuls multiple comparison test (P = 0.05). The results showed that fresh and used fixer and Merconvap suppressed the vapourization of mercury to below the detection limit of the measuring instrument (0.01 mg/m3). Water was much less effective compared with the other liquids and showed an increase in mercury vapour concentration with log t. PMID:7996339

  9. Aerospect operations criteria for Mercury thresholds

    NASA Technical Reports Server (NTRS)

    Katz, S.

    1979-01-01

    The hazards anticipated from a large scale mercury spill during a possible failure in the preflight and early flight stages of the Space Shuttle were studied. Toxicity thresholds were investigated as well as other consequences of mercury interacting with the environment. Three sites of mercury spill were investigated: land, water, and atmosphere. A laboratory study of interactions between mercury vapor and ozone in a low pressure, high ultraviolet radiation environment approximated the conditions of a mercury vapor release in the ozone layer region of the stratosphere. Clear evidence of an interaction leading to the destruction of ozone by conversion to oxygen was obtained. The impact of a spill on the Earth's environment and methods of early detection of a developing hazard wave of primary concern in the study.

  10. Temporal variation of Mercury's sodium density

    NASA Astrophysics Data System (ADS)

    Fusegawa, Ayaka; Dairoku, Hayato; Kameda, Shingo; Kagitani, Masato; Okano, Shoichi

    2013-04-01

    Mercury has a thin atmosphere. In the past, Mercury has been observed by Mariner 10 and MESSENGER, and ground-based observations have also been carried out. H, He, O, Na, Mg, K, and Ca were detected in its atmosphere. Solar-photon-stimulated desorption, sputtering by impacting solar particles, and meteoroid vaporization are considered to be the source processes of Mercury's exosphere. However, the primary process among these three processes is unknown as yet. The resonance scattering constitutes exospheric emission. The NaD emission is well suited for study by ground-based observations because of its high intensity. Past observations have shown that the temporal variation and north-south asymmetry of intensity of sodium emission. We have observed Mercury's sodium exosphere at the Haleakala Observatory in Hawaii since April 2011. The observations were performed using a 40 cm Schmidt-Cassegrain telescope, a high-dispersion spectrograph, and a CCD camera. We determined the temporal variation of the sodium density using the observational data. It is possible that the temporal variation of the sodium density is caused by variation of solar wind magnetic field if solar wind ion sputtering is the primary source process of Mercury's exosphere. To verify this assumption, we checked the temporal variation of solar wind magnetic field observed by MESSENGER, and then we compared these variations with our observational result. CMEs toward Mercury probably cause the increase of the sodium density. Potter et al. (1999) suggested that the total amount of sodium on Mercury increased monotonically during several days of observation after CMEs occurred on the same side of the Sun as Mercury. We observed Mercury's sodium exosphere on November 23, 2011 when MESSENGER observed variation of solar wind magnetic field, which indicated CMEs arrived at Mercury. However, our results have not shown large variation of the sodium density like that of Potter et al. (1999). From these results, we

  11. Advances in understanding the renal transport and toxicity of mercury

    SciTech Connect

    Zalups, R.K. ); Lash, L.H. )

    1994-01-01

    As a result of industrialization and changes in the environment during the twentieth century, humans and animals are exposed to numerous chemical forms of mercury, including elemental mercury vapor (Hg[sup 0]), inorganic mercurous (Hg[sup +]) and mercuric (Hg[sup 2+]) compounds, and organic mercuric (R-Hg[sup +] or R-Hg-R; where R represents any organic ligand) compounds. The risk of exposure and subsequent intoxication is of increasing concern because of the steadily increasing deposition of mercury in the environment (Fitzgerald Clarkson, 1991). All forms of mercury have nephrotoxic effects, although disposition and toxicity of mercury in tissues can vary depending on the chemical form of mercury. For example, the initial toxic effects of both elemental mercury and organic forms of mercury are observed in the nervous system. This is due to their lipophilicity, which allows them to cross the blood-brain barrier. At later times, hepatotoxicity and nephrotoxicity can develop. With inorganic mercurous or mercuric salts, the most prominent effect is nephrotoxicity. Until recently, little was known about the mechanisms involved in the nephropathy induced by mercury. The purpose of this article is to review recent data on the intrarenal accumulation and disposition, nephrotoxicity, and target site specificity of mercury, and factors that modify or alter renal injury induced by mercury. 170 refs., 7 figs.

  12. Mercury Quick Facts: Health Effects of Mercury Exposure

    MedlinePlus

    Mercury Quick Facts Health Effects of Mercury Exposure What is Elemental Mercury? Elemental (metallic) mercury is the shiny, silver-gray metal found in thermometers, barometers, and thermostats and other ...

  13. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry.

    PubMed

    Qiu, Zhenli; Shu, Jian; Jin, Guixiao; Xu, Mingdi; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-03-15

    A simple, low-cost transducer with glucometer readout was designed for sensitive detection of mercury(II) (Hg(2+)), coupling with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and invertase-functionalized gold-dendrimer nanospheres for the signal amplification. Initially, nanogold-encapsulated poly(amidoamine) dendrimers (Au DENs) were synthesized by in-situ reduction of gold(III). Thereafter, the as-prepared Au DENs were utilized for the labeling of invertase and T-rich signal DNA probe. In the presence of target Hg(2+), the functionalized Au DENs were conjugated to capture DNA probe-modified electrode via T-Hg(2+)-T coordination chemistry. Accompanying the Au DENs, the labeled invertase could hydrolyze sucrose into glucose, which could be quantitatively monitored by an external personal glucometer (PGM). The PGM signal increased with the increasing target Hg(2+) in the sample. Under the optimal conditions, our designed sensing platform exhibited good PGM responses toward target Hg(2+), and allowed the detection of Hg(2+) at a concentration as low as 4.2 pM. This sensing system also displayed remarkable specificity relative to target Hg(2+) against other competing ions, and could be applied for reliable monitoring of spiked Hg(2+) into the environmental water samples with satisfactory results. With the advantages of cost-effectiveness, simplicity, portability, and convenience, our strategy provides a tremendous potential to be a promising candidate for point-of-use monitoring of non-glucose targets by the public. PMID:26496222

  14. Invertase-labeling gold-dendrimer for in situ amplified detection mercury(II) with glucometer readout and thymine-Hg(2+)-thymine coordination chemistry.

    PubMed

    Qiu, Zhenli; Shu, Jian; Jin, Guixiao; Xu, Mingdi; Wei, Qiaohua; Chen, Guonan; Tang, Dianping

    2016-03-15

    A simple, low-cost transducer with glucometer readout was designed for sensitive detection of mercury(II) (Hg(2+)), coupling with thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and invertase-functionalized gold-dendrimer nanospheres for the signal amplification. Initially, nanogold-encapsulated poly(amidoamine) dendrimers (Au DENs) were synthesized by in-situ reduction of gold(III). Thereafter, the as-prepared Au DENs were utilized for the labeling of invertase and T-rich signal DNA probe. In the presence of target Hg(2+), the functionalized Au DENs were conjugated to capture DNA probe-modified electrode via T-Hg(2+)-T coordination chemistry. Accompanying the Au DENs, the labeled invertase could hydrolyze sucrose into glucose, which could be quantitatively monitored by an external personal glucometer (PGM). The PGM signal increased with the increasing target Hg(2+) in the sample. Under the optimal conditions, our designed sensing platform exhibited good PGM responses toward target Hg(2+), and allowed the detection of Hg(2+) at a concentration as low as 4.2 pM. This sensing system also displayed remarkable specificity relative to target Hg(2+) against other competing ions, and could be applied for reliable monitoring of spiked Hg(2+) into the environmental water samples with satisfactory results. With the advantages of cost-effectiveness, simplicity, portability, and convenience, our strategy provides a tremendous potential to be a promising candidate for point-of-use monitoring of non-glucose targets by the public.

  15. Laser-induced fluorescence spectroscopy in tissue local necrosis detection

    NASA Astrophysics Data System (ADS)

    Cip, Ondrej; Buchta, Zdenek; Lesundak, Adam; Randula, Antonin; Mikel, Bretislav; Lazar, Josef; Veverkova, Lenka

    2014-03-01

    The recent effort leads to reliable imaging techniques which can help to a surgeon during operations. The fluorescence spectroscopy was selected as very useful online in vivo imaging method to organics and biological materials analysis. The presented work scopes to a laser induced fluorescence spectroscopy technique to detect tissue local necrosis in small intestine surgery. In first experiments, we tested tissue auto-fluorescence technique but a signal-to-noise ratio didn't express significant results. Then we applied a contrast dye - IndoCyanine Green (ICG) which absorbs and emits wavelengths in the near IR. We arranged the pilot experimental setup based on highly coherent extended cavity diode laser (ECDL) used for stimulating of some critical areas of the small intestine tissue with injected ICG dye. We demonstrated the distribution of the ICG exciter with the first file of shots of small intestine tissue of a rabbit that was captured by high sensitivity fluorescent cam.

  16. Detection of earthquake induced radon precursors by Hilbert Huang Transform

    NASA Astrophysics Data System (ADS)

    Barman, Chiranjib; Ghose, Debasis; Sinha, Bikash; Deb, Argha

    2016-10-01

    Continuous measurement of radon-222 concentration in soil was carried out across duration of one year at a geologically faulted area having high regional heat flow to detect anomalies caused by seismic activities. The data reveals a range of periodicities present in the radon time series. To identify seismic induced radon changes we treat the time series data through various filtering methods to remove inherent periodicities. The Ensemble Empirical Mode Decomposition (EEMD) is deployed to decompose the signal into its characteristic modes. Hilbert Huang Transform (HHT) is applied for the first time on the physically significant modes obtained by EEMD to represent time-energy-frequency of the recorded soil radon time series. After removing the periodic and quasi-periodic constituents from the original time series, the simulated result shows a forceful correlation in recorded radon-222 anomalies with regional and local seismic events.

  17. Hot electron induced NIR detection in CdS films

    PubMed Central

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-01-01

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm2. The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications. PMID:26965055

  18. Mercury after three MESSENGER flybys

    NASA Astrophysics Data System (ADS)

    Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Prockter, Louise M.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Murchie, Scott L.; Nittler, Larry R.; Phillips, Roger J.; Zuber, Maria T.

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) space-craft, developed under NASA's Discovery Program, is the first space probe to visit the planet Mercury in more than 30 years. MESSENGER flew by the innermost planet twice in 2008 and once last fall. The flybys confirmed that Mercury's internal magnetic field is dominantly dipolar, with a vector moment closely aligned with the spin axis. MESSENGER detected mag-nesium in Mercury's exosphere, demonstrated that Mercury's anti-sunward neutral tail contains multiple species, and revealed that the distributions of sodium, calcium, and magnesium in the exosphere and tail vary differently with latitude, time of day, and Mercury's position in or-bit, signatures of multiple source processes. MESSENGER's laser altimeter showed that the equatorial topographic relief of Mercury exceeds 5 km, revealed an equatorial ellipticity aligned with the ellipticity in Mercury's gravitational potential, and documented the form of numer-ous impact craters and fault scarps. MESSENGER images provided evidence for widespread volcanism, and candidate sites for volcanic centers were identified. In addition, newly imaged lobate scarps and other tectonic landforms support the hypothesis that Mercury contracted globally in response to interior cooling. The ˜1500-km-diameter Caloris basin, viewed in its entirety for the first time by MESSENGER, was the focus for concentrations of volcanic cen-ters, some with evidence of pyroclastic deposits, and widespread contractional and extensional deformation; smooth plains interior and exterior to the basin are demonstrably younger than the basin-forming event. The ˜700-km-diameter Rembrandt basin, less volcanically infilled than Caloris, was likewise a focus for concentrated magmatic and deformational activity. A ˜290-km-diameter basin contains interior plains that are among the youngest volcanic material on the planet. The nearly global observations of Mercury surface units

  19. Mercury and silver induce B cell activation and anti-nucleolar autoantibody production in outbred mouse stocks: are environmental factors more important than the susceptibility genes in connection with autoimmunity?

    PubMed

    Abedi-Valugerdi, M

    2009-01-01

    Environmental and predisposing genetic factors are known to play a crucial role in the development of systemic autoimmune diseases. With respect to the role of environmental factors, it is not known how and to what extent they contribute to the initiation and exacerbation of systemic autoimmunity. In the present study, I considered this issue and asked if environmental factors can induce autoimmunity in the absence of specific susceptible genes. The development of genetically controlled mercury- and silver-induced B cell activation and anti-nucleolar autoantibodies (ANolA) production in genetically heterozygous outbred Institute of Cancer Research (ICR), Naval Medical Research Institute (NMRI) and Black Swiss mouse stocks were analysed. Four weeks of treatment with both mercury and silver induced a strong B cell activation characterized by increased numbers of splenic antibody-secreting cells of at least one or more immunoglobulin (Ig) isotype(s) in all treated stocks. The three stocks also exhibited a marked increase in the serum IgE levels in response to mercury, but not silver. More importantly, in response to mercury a large numbers of ICR (88%), NMRI (96%) and Black Swiss (100%) mice produced different levels of IgG1 and IgG2a ANolA (a characteristic which is linked strictly to the H-2 genes). Similarly, but at lower magnitudes, treatment with silver also induced the production of IgG1 and IgG2a ANolA in 60% of ICR, 75% of NMRI and 100% of Black Swiss mice. Thus, the findings of this study suggest that long-term exposure to certain environmental factors can activate the immune system to produce autoimmunity per se, without requiring specific susceptible genes.

  20. Exercise-induced Myocardial Ischemia Detected by Cardiopulmonary Exercise Testing

    PubMed Central

    Chaudhry, Sundeep; Arena, Ross; Wasserman, Karlman; Hansen, James E.; Lewis, Gregory D.; Myers, Jonathan; Chronos, Nicolas; Boden, William E.

    2010-01-01

    Cardiopulmonary exercise testing (CPET) is a well-accepted physiologic evaluation technique in patients diagnosed with heart failure and in individuals presenting with unexplained dyspnea on exertion. Several variables obtained during CPET, including oxygen consumption relative to heart rate (VO2/HR or O2-pulse) and work rate (VO2/Watt) provide consistent, quantitative patterns of abnormal physiologic responses to graded exercise when left ventricular dysfunction is caused by myocardial ischemia. This concept paper describes both the methodology and clinical application of CPET associated with myocardial ischemia. Initial evidence indicates left ventricular dysfunction induced by myocardial ischemia may be accurately detected by an abnormal CPET response. CPET testing may complement current non-invasive testing modalities that elicit inducible ischemia. It provides a physiologic quantification of the work rate, heart rate and O2 uptake at which myocardial ischemia develops. In conclusion, the potential value of adding CPET with gas exchange measurements is likely to be of great value in diagnosing and quantifying both overt and occult myocardial ischemia and its reversibility with treatment. PMID:19231322

  1. Pollen embryogenesis to induce, detect, and analyze mutants

    SciTech Connect

    Constantin, M.J.

    1981-01-01

    The development of fully differentiated plants from individual pollen grains through a series of developmental phases that resemble embryogenesis beginning with the zygote was demonstrated during the mid-1960's. This technology opened the door to the use of haploid plants (sporophytes with the gametic number of chromosomes) for plant breeding and genetic studies, biochemical and metabolic studies, and the selection of mutations. Although pollen embryogenesis has been demonstrated successfully in numerous plant genera, the procedure cannot as yet be used routinely to generate large populations of plants for experiments. Practical results from use of the technology in genetic toxicology research to detect mutations have failed to fully realize the theoretical potential; further developments of the technology could overcome the limitations. Pollen embryogenesis could be used to develop plants from mutant pollen grains to verify that genetic changes are involved. Through either spontaneous or induced chromosome doubling, these plants can be made homozygous and used to analyze genetically the mutants involved. The success of this approach will depend on the mutant frequency relative to the fraction of pollen grains that undergo embryogenesis; these two factors will dictate population size needed for success. Research effort is needed to further develop pollen embryogenesis for use in the detection of genotoxins under both laboratory and in situ conditions.

  2. Photon-induced positron annihilation for standoff bomb detection

    NASA Astrophysics Data System (ADS)

    Bradley, D. A.; Hashim, S.; Cabello, J.; Wells, K.; Dunn, W. L.

    2010-07-01

    We describe an approach to detect improvised explosive devices (IEDs) by using photon-induced positron annihilation radiation (PIPAR). This system relies on back-scattered γ photons from the target and surrounding objects following exposure to high energy X-rays from a betatron. In this work we simulate the use of Bremsstrahlung source operating at 3.5 MeV, with a scintillation detector, working in PIPAR mode, in order to reduce noise produced by undesired back-scattering from the surrounding objects. In this paper, we describe the basic imaging method and preliminary results on simulating a suitable betatron source. Two types of X-ray filters copper (Cu) and aluminium (Al), have been used in the simulation to observe their differences in the deposited energy spectrum in the iron target. It was found that the use of iron target in conjunction with 2 mm Al filter is capable of detecting annihilation γ photons. An initiated experiment with an interlaced source also shows promise.

  3. Impact Induced Delamination Detection and Quantification With Guided Wavefield Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu; Seebo, Jeffrey P.

    2015-01-01

    This paper studies impact induced delamination detection and quantification by using guided wavefield data and spatial wavenumber imaging. The complex geometry impact-like delamination is created through a quasi-static indentation on a CFRP plate. To detect and quantify the impact delamination in the CFRP plate, PZT-SLDV sensing and spatial wavenumber imaging are performed. In the PZT-SLDV sensing, the guided waves are generated from the PZT, and the high spatial resolution guided wavefields are measured by the SLDV. The guided wavefield data acquired from the PZT-SLDV sensing represent guided wave propagation in the composite laminate and include guided wave interaction with the delamination damage. The measured guided wavefields are analyzed through the spatial wavenumber imaging method, which generates an image containing the dominant local wavenumber at each spatial location. The spatial wavenumber imaging result for the simple single layer Teflon insert delamination provided quantitative information on delamination damage size and location. The location of delamination damage is indicated by the area with larger wavenumbers in the spatial wavenumber image. The impact-like delamination results only partially agreed with the damage size and shape. The results also demonstrated the dependence on excitation frequency. Future work will further investigate the accuracy of the wavenumber imaging method for real composite damage and the dependence on frequency of excitation.

  4. Exposure to mercury alters early activation events in fish leukocytes.

    PubMed Central

    MacDougal, K C; Johnson, M D; Burnett, K G

    1996-01-01

    Although fish in natural populations may carry high body burdens of both organic and inorganic mercury, the effects of this divalent metal on such lower vertebrates is poorly understood. In this report, inorganic mercury in the form of mercuric chloride (HgCl2) is shown to produce both high-dose inhibition and low-dose activation of leukocytes in a marine teleost fish, Sciaenops ocellatus. Concentrations of inorganic mercury > or = 10 microM suppressed DNA synthesis and induced rapid influx of radiolabeled calcium, as well as tyrosine phosphorylation of numerous cellular proteins. Lower concentrations (0.1-1 microM) of HgCl2 that activated cell growth also induced a slow sustained rise in intracellular calcium in cells loaded with the calcium indicator dye fura-2, but did not produce detectable tyrosine phosphorylation of leukocyte proteins. These studies support the possibility that subtoxic doses of HgCl2 may inappropriately activate teleost leukocytes, potentially altering the processes that regulate the magnitude and specificity of the fish immune response to environmental pathogens. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. PMID:8930553

  5. DNA derived fluorescent bio-dots for sensitive detection of mercury and silver ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Song, Ting; Zhu, Xuefeng; Zhou, Shenghai; Yang, Guang; Gan, Wei; Yuan, Qunhui

    2015-08-01

    Inspired by the high affinity between heavy metal ions and bio-molecules as well as the low toxicity of carbon-based quantum dots, we demonstrated the first application of a DNA derived carbonaceous quantum dots, namely bio-dots, in metal ion sensing. The present DNA-derived bio-dots contain graphitic carbon layers with 0.242 nm lattice fringes, exhibit excellent fluorescence property and can be obtained via a facile hydrothermal preparation procedure. Hg(II) and Ag(I) are prone to be captured by the bio-dots due to the existence of residual thymine (T) and cytosine (C) groups, resulting in a quenched fluorescence while other heavy metal ions would cause negligible changes on the fluorescent signals of the bio-dots. The bio-dots could be used as highly selective toxic-free biosensors, with two detecting linear ranges of 0-0.5 μM and 0.5-6 μM for Hg(II) and one linear range of 0-10 μM for Ag(I). The detection limits (at a signal-to-noise ratio of 3) were estimated to be 48 nM for Hg(II) and 0.31 μM for Ag(I), respectively. The detection of Hg(II) and Ag(I) could also be realized in the real water sample analyses, with satisfying recoveries ranging from 87% to 100%.

  6. "Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion.

    PubMed

    Hu, Ying; Meng, Lingjie; Lu, Qinghua

    2014-04-22

    It is a significant issue to overcome the concentration-quenching effect of the small fluorescent probes and maintain the high fluorescent efficiency at high concentration for sensitive and selective fluorescent mark or detection. We developed a new strategy to "isolate" and "fasten" porphyrin moieties in a highly cross-linked poly(tetraphenylporphyrin-co-cyclotriphosphazene) (TPP-PZS) by the polycondensation of hexachlorocyclotriphosphazene (HCCP) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-(OH)4) in a suitable solvent. The resulting TPP-PZS particles were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), (31)P nuclear magnetic resonance (NMR), and ultraviolet and visible (UV-vis) absorption spectra. Remarkably, TPP-PZS particles obtained in acetone emitted a bright red fluorescence both in powder state and in solution because the aggregation of porphyrin moieties in "H-type" (face-to-face) and "J-type" (edge-to-edge) was effectively blocked. The fluorescent TPP-PZS particles also showed superior resistance to photobleaching, and had a high sensitivity and selectivity for the detection of Hg(2+) ions. The TPP-PZS particles were therefore used as an ideal material for preparing test strips to quickly detect/monitor the Hg(2+) ions in a facile way.

  7. Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress.

    PubMed Central

    Barkay, T; Olson, B H

    1986-01-01

    The effects of mercury contamination of lake sediments on the phenotypic and genotypic mercury resistance of the indigenous heterotrophic aerobic bacterial communities were investigated. Strong positive correlations between mercury sediment concentration and the frequency of the gene coding for mercury volatilization (mer) (r = 0.96) or the phenotypic mercury resistance (r = 0.86) of the studied communities suggested that the inheritance via selection or genetic exchange of the mer gene had promoted bacterial adaptation to mercury. Failure to detect the mer gene in one mercury-contaminated sediment where phenotypic expression was low suggested that other mechanisms of resistance may partially determine the presence of mercury-resistant organisms in mercury-contaminated sediment or that the mercury in this particular sediment was very chemically limited in its availability to the microorganisms. PMID:3753001

  8. Synthesis of C-glycosyl triazolyl quinoline-based fluorescent sensors for the detection of mercury ions.

    PubMed

    Wang, Linfang; Jin, Jianzhong; Zhao, Linwei; Shen, Hongyun; Shen, Chao; Zhang, Pengfei

    2016-10-01

    A series of novel C-glycosyl triazolyl quinoline-based fluorescent sensors have been synthesized via click chemistry. It was found that novel sensors exhibited good selectivity for Hg(2+) over many other metal ions. The glucose framework was introduced to increase the water-solubility of the fluorescent sensors and broaden its application for the detection of Hg(II) in the water-solubility biological systems. The mechanism of the chemodosimetric behavior of the sensors has been attributed to a binding mode of triazolyl quinoline with Hg(2+) which has been characterized by a number of spectroscopic techniques.

  9. Potentiation of arsenic-induced cytotoxicity by sulfur amino acid deprivation (SAAD) through activation of ERK1/2, p38 kinase and JNK1: the distinct role of JNK1 in SAAD-potentiated mercury toxicity.

    PubMed

    Son, M H; Kang, K W; Lee, C H; Kim, S G

    2001-04-01

    Sulfur amino acid deficiency occurs in certain pathophysiological situations (e.g. protein-calorie malnutrition). Previous studies revealed that sulfur amino acid deprivation (SAAD) activated MAP kinases and potentiated cadmium-induced cytotoxicity by activation of ERK1/2 in conjunction with p38 kinase or JNK. The present study was designed to determine susceptibility of cells to a variety of heavy metals in combination with SAAD. Viability was assessed in H4IIE cells treated with sodium arsenite, mercuric chloride, sodium selenite, lead acetate, chromium trioxide or manganese chloride. SAAD potentiated the cytotoxicity of H4IIE cells by arsenic or mercury (i.e. EC50, 19 and 5 microM in SAAD vs. 401 and 42 microM in control medium, respectively). TUNEL assays revealed that the potentiated arsenic or mercury toxicity involved apoptotic cell death. Lead or selenite moderately elicited cell death, which was not enhanced by SAAD. Chromium or manganese caused no significant cytotoxicity. Treatment of cells with U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene] an ERK1/2 inhibitor or SB203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole] a p38 kinase inhibitor effectively prevented SAAD-potentiated arsenic toxicity. The potentiated arsenic toxicity was also inhibited in cells stably expressing a dominant negative mutant of c-Jun N-terminal kinase 1 [JNK1(-)]. The inhibitors of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 kinase failed to prevent mercury-induced toxicity enhanced by SAAD. JNK1(-) cells were minimally susceptible to mercury in SAAD medium. These results demonstrated that SAAD potentiated cytotoxicity induced by arsenic or mercury and that activation of ERK1/2, p38 kinase and JNK1 was responsible for the potentiated arsenic toxicity, whereas the mercury toxicity enhanced by SAAD was mediated with the activity of JNK1.

  10. A Lyman Alpha Light Source and Diagnostic for Detecting Exposed Water Frost in ``Permanently Shadowed" Terrains of Mercury and the Moon.

    NASA Astrophysics Data System (ADS)

    Stern, S. A.

    2004-05-01

    At the poles of both the Moon and Mercury there exist cold trap regions that are believed to contain volatiles of various kinds, most notably including H2O ice. The stability of these volatiles relies on the fact that the cold traps are devoid of direct sunlight, which would otherwise warm the surface temperatures in these regions to levels which would sublimate away the volatiles on timescapes that are short compared to the age of the solar system. All observational evidence for the accumulation of volatiles in the lunar and Mercurian cold traps is indirect (e.g., in the form of ice-like radar backscatter signatures [and in the case of the Moon anomalously high concentrations of H in the uppermost regolith]). As a result of the very darkness which allows the cold traps to retain volatiles, it is widely thought that there is no light in the cold traps-- thus making them impossible to observe without active (e.g., radar) illumination. This dilema has also prevented the direct, definitive spectrosopic identification of volatiles in the Mercurian and lunar polar cold traps. Here I will quantitatively describe a new technique for directly observing the interior of these so-called, ``permanently shadowed terrains" by orbiting spacecraft around these two bodies, and determining if exposed H2O-ice exists there. The technique relies on two facts: (i) resonantly scattered Lyα at 1216 Å from the interplanetary medium provides a clearly detectable (if monochromatic) lightsource that illuminates the cold traps and (ii) H2O-ice displays a characteristic and well-known absorption feature in the far UV.

  11. Global Trends in Mercury Management

    PubMed Central

    Choi, Kyunghee

    2012-01-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  12. Global trends in mercury management.

    PubMed

    Kim, Dae-Seon; Choi, Kyunghee

    2012-11-01

    The United Nations Environmental Program Governing Council has regulated mercury as a global pollutant since 2001 and has been preparing the mercury convention, which will have a strongly binding force through Global Mercury Assessment, Global Mercury Partnership Activities, and establishment of the Open-Ended Working Group on Mercury. The European Union maintains an inclusive strategy on risks and contamination of mercury, and has executed the Mercury Export Ban Act since December in 2010. The US Environmental Protection Agency established the Mercury Action Plan (1998) and the Mercury Roadmap (2006) and has proposed systematic mercury management methods to reduce the health risks posed by mercury exposure. Japan, which experienced Minamata disease, aims vigorously at perfection in mercury management in several ways. In Korea, the Ministry of Environment established the Comprehensive Plan and Countermeasures for Mercury Management to prepare for the mercury convention and to reduce risks of mercury to protect public health. PMID:23230466

  13. New Jersey mercury regulations

    SciTech Connect

    Elias, D.F.; Corbin, W.E.

    1996-12-31

    Mercury, or quicksilver, and its major ore cinnabar (HgS) have been known for thousands of years. Health effects from mercury such as dementia were known as early as the late 19th century ({open_quotes}mad as a hatter{close_quotes}). In the 1960`s and 1970`s, reported levels of mercury in tuna reawakened public awareness of mercury pollution. In the 1970`s, major epidemics of acute mercury poisoning were reported in Japan and Iraq. These incidents highlighted the extreme health risks, such as kidney damage, birth defects, and death, associated with severe mercury poisoning. Fetuses and young children are particularly vulnerable since mercury poisoning can damage growing neural tissues. Recently, the perception of mercury as a dangerous pollutant has been on the rise. Advisories warning the public to avoid or reduce the consumption of freshwater fish caught in specific waterbodies due to mercury contamination have been issued in numerous states. The discovery of mercury in {open_quotes}pristine{close_quotes} lakes in the United States, Canada, and Scandinavia, remote from industry and any known mercury sources, has focused attention on atmospheric emissions of mercury as potential significant sources of mercury.

  14. Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies

    NASA Technical Reports Server (NTRS)

    Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.; Orlando, Thomas M.; Sprague, Ann L.; Blewett, David T.; Gillis-Davis, Jeffrey J.; Feldman, William C.; Lawrence, David J.; Ho, George C.; Ebel, Denton S.; Nittler, Larry R.; Vilas, Faith; Pieters, Carle M.; Solomon, Sean C.; Johnson, Catherine L.; Winslow, Reka M..; Helbert, Jorn; Peplowski, Patrick N.; Weider, Shoshana Z.; Mouawad, Nelly; Izenberg, Noam R.; McClintock, William E.

    2014-01-01

    nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size less than 45 micron) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.

  15. APPLICATIONS OF CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION TO GROUND WATER MIGRATION STUDIES

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of groundwater migration based on laser-induced fluorescence (LIF) detection and traditional spectrofluorimetry. The detection limits of injected dye-fluorescent whitening agent (tinopal) in the low parts per tr...

  16. CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION OF FLUORESCEIN AS A GROUNDWATER MIGRATION TRACER

    EPA Science Inventory

    Capillary electrophoresis (CE) has been applied to the determination of the groundwater migration tracer dye fluorescein based on laser-induced fluorescence (LIF) detection and compared to determinations obtained with traditional spectrofluorimetry. Detection limits of injected d...

  17. Mechanisms of mercury bioremediation.

    PubMed

    Essa, A M M; Macaskie, L E; Brown, N L

    2002-08-01

    Mercury is one of the most toxic heavy metals, and has significant industrial and agricultural uses. These uses have led to severe localized mercury pollution. Mercury volatilization after its reduction to the metallic form by mercury-resistant bacteria has been reported as a mechanism for mercury bioremediation [Brunke, Deckwer, Frischmuth, Horn, Lunsdorf, Rhode, Rohricht, Timmis and Weppen (1993) FEMS Microbiol. Rev. 11, 145-152; von Canstein, Timmis, Deckwer and Wagner-Dobler (1999) Appl. Environ. Microbiol. 65, 5279-5284]. The reduction/volatilization system requires to be studied further, in order to eliminate the escape of the metallic mercury into the environment. Recently we have demonstrated three different mechanisms for mercury detoxification in one organism, Klebsiella pneumoniae M426, which may increase the capture efficiency of mercury.

  18. T-screen and yeast assay for the detection of the thyroid-disrupting activities of cadmium, mercury, and zinc.

    PubMed

    Li, Jian; Liu, Yun; Kong, Dongdong; Ren, Shujuan; Li, Na

    2016-05-01

    In the present study, a two-hybrid yeast bioassay and a T-screen were used to screen for the thyroid receptor (TR)-disrupting activity of select metallic compounds (CdCl2, ZnCl2, HgCl2, CuSO4, MnSO4, and MgSO4). The results reveal that none of the tested metallic compounds showed TR-agonistic activity, whereas ZnCl2, HgCl2, and CdCl2 demonstrated TR antagonism. For the yeast assay, the dose-response relationship of these metallic compounds was established, and the concentrations producing 20 % of the maximum effect of ZnCl2, HgCl2, and CdCl2 were 9.1 × 10(-5), 3.2 × 10(-6), and 1.2 × 10(-6) mol/L, respectively. The T-screen also supported the finding that ZnCl2, HgCl2, and CdCl2 decreased the cell proliferation at concentrations ranging from 10(-6) to 10(-4) mol/L. Furthermore, the thyroid-disrupting activity of metallic compounds in environmental water samples collected from the Guanting Reservoir, Beijing, China was evaluated. Solid-phase extraction was used to separate the organic extracts, and a modified two-hybrid yeast bioassay revealed that the metallic compounds in the water samples could affect thyroid hormone-induced signaling by decreasing the binding of the thyroid hormone. The addition of ethylenediaminetetraacetic acid (30 mg/L) could eliminate the effects. Thus, the cause(s) of the thyroid toxicity in the water samples appeared to be partly related to the metallic compounds.

  19. Detection of sister chromatid exchanges induced by volatile genotoxicants

    SciTech Connect

    Tucker, J.D.; Xu, J.; Stewart, J.; Baciu, P.C.; Ong, T.M.

    1986-01-01

    To test the recently developed method of exposing cells to volatile compounds, phytohemagglutinin-stimulated human peripheral lymphocyte cultures were exposed to gaseous methyl bromide, ethylene oxide, and propylene oxide, as well as diesel exhaust. The cultures were placed in sterile dialysis tubing and inserted into enclosed flasks containing additional culture medium. The test compounds (in gaseous state) were diluted with air and bubbled through the flasks for various lengths of time. The cells were then washed and incubated for a total of 75 h. The harvest was performed according to established procedures, and second-division cells were scored for induction of sister chromatid exchanges (SCEs). The SCE frequency was more than doubled in the cultures treated with ethylene oxide and propylene oxide; methyl bromide also induced SCEs. Cultures treated with diesel exhaust showed an increase in the SCE frequency in cells from two of four donors tested. These results further substantiate the use of this method for detecting the induction of SCEs by airborne genotoxins.

  20. Inhibition by probenecid of 2,3-dimercaptopropane sulfonate (DMPS) induced excretion of mercury from the isolated perfused rat kidney (IPRK)

    SciTech Connect

    Klotzbach, J.M.; Diamond, G.L.

    1986-03-01

    DMPS is a complexing agent that is being considered for use in the treatment of heavy metal poisoning. In rats, DMPS undergoes renal tubular secretion by a probenecid (PRB) sensitive mechanism. The goal of this study was to determine the role of tubular secretion in the DMPS-induced excretion of mercury from the kidneys. Male Long-Evans rats were injected with HgCl/sub 2/ (100 ..mu..g Hg/kg, ip) and 48 hr later were perfused for 30 min at 38/sup 0/C with a Krebs-Ringer bicarbonate solution containing 4.5% polyvinylpyrrolidone, a mixture of metabolic substrates, inulin (0.8 mg/ml) and DMPS (23 ..mu..M). The renal excretory clearance of ultrafilterable DMPS (CD) exceeded the simultaneously measured clearance of inulin (CI); DMPS-to-inulin clearance ratio (CD/CI) = 6.06 +/- 1.80 (n = 3), indicating net tubular secretion of DMPS. Under these conditions, 26.8 +/- 4.6% (n = 4) of the Hg burden was removed from the kidneys and excreted exclusively in the urine. In the absence of DMPS, no Hg was removed from the kidney. PRB (230 ..mu..M) completely inhibited net tubular secretion of DMPS (CD/CI = 0.87 +/- 0.07, n = 3) and in the presence of PRB and DMPS, only 3.2 +/- 1.0% (n = 4) of the renal Hg burden was removed and excreted in urine. Thus, tubular secretion of DMPS is important for the DMPS-induced excretion of Hg from the kidney.

  1. Fragmentation of mercury compounds under ultraviolet light irradiation

    SciTech Connect

    Kokkonen, E.; Hautala, L.; Jänkälä, K.; Huttula, M.; Löytynoja, T.

    2015-08-21

    Ultraviolet light induced photofragmentation of mercury compounds is studied experimentally with electron energy resolved photoelectron-photoion coincidence techniques and theoretically with computational quantum chemical methods. A high resolution photoelectron spectrum using synchrotron radiation is presented. Fragmentation of the molecule is studied subsequent to ionization to the atomic-mercury-like d orbitals. State dependent fragmentation behaviour is presented and specific reactions for dissociation pathways are given. The fragmentation is found to differ distinctly in similar orbitals of different mercury compounds.

  2. Intake of methyl mercury by the population of Mumbai, India.

    PubMed

    Pandit, G G; Jha, S K; Tripathi, R M; Krishnamoorthy, T M

    1997-10-20

    Reversed phase high performance liquid chromatography (HPLC) with ultra violet detection (UV) was optimised for separation and quantification of methyl mercury in coastal sediment and fish samples. The extraction efficiency of methyl mercury from sediment and biological samples was found to be 56% with a detection limit of 0.5 ng for a 200 microliters sample volume. The concentrations of methyl mercury and the relative fractions with respect to total mercury were distinctly lower, 5.9-65.5 ng/g (3-8%) in sediment compared to biological samples, 20.4-344.5 ng/g dry wt. (33-97%). The daily intake of methyl mercury by the Mumbai population through marine food is about 0.5 microgram forming 62% of the total mercury intake from this route.

  3. Dental amalgam and mercury

    SciTech Connect

    Mackert, J.R. Jr. )

    1991-08-01

    This paper looks at the issues of the current amalgam controversy: the daily dose of mercury from amalgam, hypersensitivity to mercury, claims of adverse effects from amalgam mercury and alleged overnight 'cures.' In addition, the toxicity and allergenicity of the proposed alternative materials are examined with the same kind of scrutiny applied by the anti-amalgam group to dental amalgam. 100 references.

  4. Mercury Surveillance Program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background on mercury exposure is presented including forms, sources, permissible exposure limits, and physiological effects. The purpose of the Mercury Surveillance Program at LeRC is outlined, and the specifics of the Medical Surveillance Program for Mercury Exposure at LeRC are discussed.

  5. A simple mercury vapor detector for geochemical prospecting

    USGS Publications Warehouse

    Vaughn, William W.

    1967-01-01

    The detector utilizes a large-volume atomic-absorption technique for quantitative determinations of mercury vapor thermally released from crushed rock. A quartz-enclosed noble-metal amalgamative stage, which is temperature controlled and is actuated by a radio-frequency induction heater, selectively traps the mercury and eliminates low-level contamination. As little as 1 part per billion of mercury can be detected in a 1-gram sample in a 1-minute analytical period.

  6. Detection of Mercury in Human Organs and Hair in a Case of a Homicidal Poisoning of a Woman Autopsied 6 Years After Death.

    PubMed

    Lech, Teresa

    2015-09-01

    In the described case of the death of a 53-year-old woman, no toxicological examination was performed directly after death (only an anatomopathological autopsy), although symptoms of serious gastrointestinal disturbances had been present (the woman had been hospitalized twice in the course of several months). It was assumed that the cause of death was myocardial infarction. Five years later, some new circumstances came to light which suggested that somebody could have administered some poison (metals, cyanides) to the woman. Toxicological analysis of postmortem samples from the corpse, exhumed 6 years after death by order of the public prosecutor's office, revealed high tissue mercury contents in biological material (cold vapor atomic absorption spectrometry): small intestine, 1516 ng/g; large intestine, 487 ng/g; liver, 1201 ng/g; heart muscle, 1023 ng/g; and scalp hair, 227 ng/g. In samples of soil from places near the coffin, negligible traces of mercury were found (0.5-1.5 ng/g); contamination by mercury from the environment was ruled out. The presented case is a rare example of recognition of mercury poisoning on the basis of the results of analysis of biological material from an exhumed cadaver.

  7. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples. Copyright 2004 by ISA.

  8. Measuring mercury and other elemental components in tree rings

    USGS Publications Warehouse

    Gillan, C.; Hollerman, W.A.; Doyle, T.W.; Lewis, T.E.

    2004-01-01

    There has been considerable interest in measuring heavy metal pollution, such as mercury, using tree ring analysis. Since 1970, this method has provided a historical snapshot of pollutant concentrations near hazardous waste sites. Traditional methods of analysis have long been used with heavy metal pollutants such as mercury. These methods, such as atomic fluorescence and laser ablation, are sometimes time consuming and expensive to implement. In recent years, ion beam techniques, such as Particle Induced X-Ray Emission (PIXE), have been used to measure large numbers of elements. Most of the existing research in this area has been completed for low to medium atomic number pollutants, such as titanium, cobalt, nickel, and copper. Due to the reduction of sensitivity, it is often difficult or impossible to use traditional low energy (few MeV) PIXE analysis for pollutants with large atomic numbers. For example, the PIXE detection limit for mercury was recently measured to be about 1 ppm for a spiked Southern Magnolia wood sample [ref. 1]. This presentation will compare PIXE and standard chemical concentration results for a variety of wood samples.

  9. Mercury pollution in China

    SciTech Connect

    Gui-Bin Jiang; Jian-Bo Shi; Xin-Bin Feng

    2006-06-15

    With a long history of mercury mining and use and a rapidly growing economy that relies heavily on coal for heat and energy, China faces an enormous challenge to reduce pollution from this toxic metal. The authors delineate what is known about the extent of the problem, regulatory steps are being taken to reduce mercury pollution, and next steps for environmental researchers. It addresses issues of mercury pollution from mercury and gold mining, coal combustion and the chemical industry. Data on dietary intake of mercury is also reported. 50 refs., 2 figs., 2 photos.

  10. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    PubMed

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples.

  11. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    PubMed

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-03-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples. PMID:26717850

  12. Ethanol potentiation of methyl mercury toxicity: a preliminary report. [Rats

    SciTech Connect

    Turner, C.J.; Bhatnagar, M.K.; Yamashiro, S.

    1981-03-01

    The ability of ethanol to affect hindlimb ataxia and body weight changes induced by methyl mercury was studied in rats. Animals treated with either water or ethanol increased in body weight during the experiment and showed no impairment of hindlimb movement. Rats treated with methyl mercury also increased in body weight but developed moderate hindlimb ataxia. Animals treated with ethanol and methyl mercury initially gained but subsequently lost weight and exhibited severe hindlimb ataxia. The results provide evidence that ethanol can potentiate methyl mercury toxicity in rats and, by implication, in humans.

  13. Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining (1)H NMR metabolomics and conventional biochemical assays.

    PubMed

    Cappello, Tiziana; Brandão, Fátima; Guilherme, Sofia; Santos, Maria Ana; Maisano, Maria; Mauceri, Angela; Canário, João; Pacheco, Mário; Pereira, Patrícia

    2016-04-01

    Oxidative stress has been described as a key pathway to initiate mercury (Hg) toxicity in fish. However, the mechanisms underlying Hg-induced oxidative stress in fish still need to be clarified. To this aim, environmental metabolomics in combination with a battery of conventional oxidative stress biomarkers were applied to the gills of golden grey mullet (Liza aurata) collected from Largo do Laranjo (LAR), a confined Hg contaminated area, and São Jacinto (SJ), selected as reference site (Aveiro Lagoon, Portugal). Higher accumulation of inorganic Hg and methylmercury was found in gills of fish from LAR relative to SJ. Nuclear magnetic resonance (NMR)-based metabolomics revealed changes in metabolites related to antioxidant protection, namely depletion of reduced glutathione (GSH) and its constituent amino acids, glutamate and glycine. The interference of Hg with the antioxidant protection of gills was corroborated through oxidative stress endpoints, namely the depletion of glutathione peroxidase and superoxide dismutase activities at LAR. The increase of total glutathione content (reduced glutathione+oxidized glutathione) at LAR, in parallel with GSH depletion aforementioned, indicates the occurrence of massive GSH oxidation under Hg stress, and an inability to carry out its regeneration (glutathione reductase activity was unaltered) or de novo synthesis. Nevertheless, the results suggest the occurrence of alternative mechanisms for preventing lipid peroxidative damage, which may be associated with the enhancement of membrane stabilization/repair processes resulting from depletion in the precursors of phosphatidylcholine (phosphocholine and glycerophosphocholine), as highlighted by NMR spectroscopy. However, the observed decrease in taurine may be attributable to alterations in the structure of cell membranes or interference in osmoregulatory processes. Overall, the novel concurrent use of metabolomics and conventional oxidative stress endpoints demonstrated to be

  14. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 μ gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North

  15. Total and methylated mercury in Arctic multiyear sea ice.

    PubMed

    Beattie, Sarah A; Armstrong, Debbie; Chaulk, Amanda; Comte, Jérôme; Gosselin, Michel; Wang, Feiyue

    2014-05-20

    Mercury is one of the primary contaminants of concern in the Arctic marine ecosystem. While considerable efforts have been directed toward understanding mercury cycling in the Arctic, little is known about mercury dynamics within Arctic multiyear sea ice, which is being rapidly replaced with first-year ice. Here we report the first study on the distribution and potential methylation of mercury in Arctic multiyear sea ice. Based on three multiyear ice cores taken from the eastern Beaufort Sea and McClure Strait, total mercury concentrations ranged from 0.65 to 60.8 pM in bulk ice, with the highest values occurring in the topmost layer (∼40 cm) which is attributed to the dynamics of particulate matter. Methylated mercury concentrations ranged from below the method detection limit (<0.1 pM) to as high as 2.64 pM. The ratio of methylated to total mercury peaked, up to ∼40%, in the mid to bottom sections of the ice, suggesting the potential occurrence of in situ mercury methylation. The annual fluxes of total and methylated mercury into the Arctic Ocean via melt of multiyear ice are estimated to be 420 and 42 kg yr(-1), respectively, representing an important and changing source of mercury and methylmercury into the Arctic Ocean marine ecosystem.

  16. Mercury exposure, serum antinuclear/antinucleolar antibodies, and serum cytokine levels in mining populations in Amazonian Brazil: A cross-sectional study

    PubMed Central

    Gardner, Renee M.; Nyland, Jennifer F.; Silva, Ines A.; Ventura, Ana Maria; Souza, Jose Maria de; Silbergeld, Ellen K.

    2010-01-01

    Mercury is an immunotoxic substance that has been shown to induce autoimmune disease in rodent models, characterized by lymphoproliferation, overproduction of immunoglobulin (IgG and IgE), and high circulating levels of autoantibodies directed at antigens located in the nucleus (anti-nuclear autoantibodies, or ANA) or the nucleolus (anti-nucleolar autoantibodies, or ANoA). We have reported elevated levels of ANA and ANoA in human populations exposed to mercury in artisanal gold mining, though other confounding variables that may also modulate ANA/ANoA levels were not well-controlled. The goal of this study is to specifically test whether occupational and environmental conditions (other than mercury exposure) that are associated with artisanal gold mining affect the prevalence of markers of autoimmune dysfunction. We measured ANA, ANoA, and cytokine concentrations in serum and compared results from mercury-exposed artisanal gold miners to those from diamond and emerald miners working under similar conditions and with similar socioeconomic status and risks of infectious disease. Mercury-exposed gold miners had higher prevalence of detectable ANA and ANoA and higher titers of ANA and ANoA as compared to diamond and emerald miners with no occupational mercury exposure. Also, mercury-exposed gold-miners with detectable ANA or ANoA in serum had significantly higher concentrations of pro-inflammatory cytokines IL-1β, TNF-α, and IFN-γ in serum as compared to the diamond and emerald miners. This study provides further evidence that mercury exposure may lead to autoimmune dysfunction and systemic inflammation in affected populations. PMID:20176347

  17. Determination of mercury(II) in aquatic plants using quinoline-thiourea conjugates as a fluorescent probe.

    PubMed

    Feng, Guodong; Ding, Yuanyuan; Gong, Zhiyong; Dai, Yanna; Fei, Qiang

    2013-01-01

    In this study, a quinoline-thiourea conjugate (1-phenyl-3-(quinoline-8-yl) thiourea, PQT) was synthesized and used as a fluorescence sensor to detect mercury ion. The observation is coincident with the well-documented phenomenon that a thiocarbonyl-containing group on a fluorochrome quenches the fluorescence due to the heavy atom effect of the S atom. The large fluorescence enhancement of PQT in the buffered MeCN-water mixture (1/1 v/v; HEPES 100 mM; pH 8.0) was caused by the Hg(2+) induced transformation of the thiourea function into a urea group. As such, protic solvents can be ascribed to hydrogen bond formation on the carbonyl oxygen to reduce the internal conversion rate. The fluorescence intensity of PQT was enhanced quantitatively with an increase in the concentration of mercury ion. The limit of detection of Hg(2+) was 7.5 nM. The coexistence of other metal ions with mercury had no obvious influence on the detection of mercury. A quinolone-thiourea conjugate was used as a fluorescent probe to detect Hg(2+) in aquatic plants and the experimental results were satisfactory. PMID:23842417

  18. Mercury's complex exosphere: results from MESSENGER's third flyby.

    PubMed

    Vervack, Ronald J; McClintock, William E; Killen, Rosemary M; Sprague, Ann L; Anderson, Brian J; Burger, Matthew H; Bradley, E Todd; Mouawad, Nelly; Solomon, Sean C; Izenberg, Noam R

    2010-08-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal altitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere. PMID:20647427

  19. Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby

    NASA Technical Reports Server (NTRS)

    Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Anderson, Brian J.; Burger, Matthew H.; Bradley, E. Todd; Mouawad, Nelly; Solomon, Sean C.; Izenberg, Noam R.

    2010-01-01

    During MESSENGER's third flyby of Mercury, the Mercury Atmospheric and Surface Composition Spectrometer detected emission from ionized calcium concentrated 1 to 2 Mercury radii tailward of the planet. This measurement provides evidence for tailward magnetospheric convection of photoions produced inside the magnetosphere. Observations of neutral sodium, calcium, and magnesium above the planet's north and south poles reveal attitude distributions that are distinct for each species. A two-component sodium distribution and markedly different magnesium distributions above the two poles are direct indications that multiple processes control the distribution of even single species in Mercury's exosphere,

  20. Ultrasensitive detection of target analyte-induced aggregation of gold nanoparticles using laser-induced nanoparticle Rayleigh scattering.

    PubMed

    Lin, Jia-Hui; Tseng, Wei-Lung

    2015-01-01

    Detection of salt- and analyte-induced aggregation of gold nanoparticles (AuNPs) mostly relies on costly and bulky analytical instruments. To response this drawback, a portable, miniaturized, sensitive, and cost-effective detection technique is urgently required for rapid field detection and monitoring of target analyte via the use of AuNP-based sensor. This study combined a miniaturized spectrometer with a 532-nm laser to develop a laser-induced Rayleigh scattering technique, allowing the sensitive and selective detection of Rayleigh scattering from the aggregated AuNPs. Three AuNP-based sensing systems, including salt-, thiol- and metal ion-induced aggregation of the AuNPs, were performed to examine the sensitivity of laser-induced Rayleigh scattering technique. Salt-, thiol-, and metal ion-promoted NP aggregation were exemplified by the use of aptamer-adsorbed, fluorosurfactant-stabilized, and gallic acid-capped AuNPs for probing K(+), S-adenosylhomocysteine hydrolase-induced hydrolysis of S-adenosylhomocysteine, and Pb(2+), in sequence. Compared to the reported methods for monitoring the aggregated AuNPs, the proposed system provided distinct advantages of sensitivity. Laser-induced Rayleigh scattering technique was improved to be convenient, cheap, and portable by replacing a diode laser and a miniaturized spectrometer with a laser pointer and a smart-phone. Using this smart-phone-based detection platform, we can determine whether or not the Pb(2+) concentration exceed the maximum allowable level of Pb(2+) in drinking water.

  1. Mercury's Core

    NASA Astrophysics Data System (ADS)

    Peale, S. J.

    2005-05-01

    In determining Mercury's core structure from its rotational properties, the location of Cassini state 1 is crucial. Convincing radar evidence indicates that the mantle rests on a liquid layer (Margot et al. 2005), but there are no empirical constraints on the moment of inertia C/MR2, which constraints must wait for the determination of the gravitational coefficients J2 and C22 from the MESSENGER orbiting spacecraft, and an accurate determination of the obliquity of the Cassini state. Tidal and core-mantle dissipation drive the spin to the Cassini state with a time scale O(105) years, so the spin should occupy the Cassini state and thereby define its obliquity---unless there has been a recent excitation of a free precession of the spin. Another way the spin might be displaced from the Cassini state is if the variations in the orbital elements, which change the position of the Cassini state, cause the spin axis to lag behind as it attempts to follow the state. Fortunately, the solid angle the spin axis encloses as it precesses around the Cassini state is an adiabatic invariant, and it is conserved if the orbital element variations are slow compared to the precession rate. As the precession period is O(1000) years, and the time scales of orbital parameter variations are O(105) years, the spin axis should remain very close to the Cassini state if it were ever close. But how close is close? The increasing precision of the radar and eventual spacecraft measurements warrants a check on the likely proximity of the spin axis to the Cassini state. By numerically following the positions of the spin axis and Cassini state with orbital parameters varying with time scales and amplitudes comparable to the real variations, we show that the spin should remain within 1″ of the Cassini state once dissipative torques bring it there. The current spin axis position should thus define the Cassini state sufficiently to put reasonably tight constraints on the core structure

  2. Mercury Report-Children's exposure to elemental mercury

    MedlinePlus

    ... PDF - 781KB] En Español [PDF - 6.6MB] What did ATSDR find? For children, most elemental mercury exposures ... that exposed children to elemental mercury. The report did not include a review of mercury exposures from ...

  3. Mercury Calibration System

    SciTech Connect

    John Schabron; Eric Kalberer; Joseph Rovani; Mark Sanderson; Ryan Boysen; William Schuster

    2009-03-11

    U.S. Environmental Protection Agency (EPA) Performance Specification 12 in the Clean Air Mercury Rule (CAMR) states that a mercury CEM must be calibrated with National Institute for Standards and Technology (NIST)-traceable standards. In early 2009, a NIST traceable standard for elemental mercury CEM calibration still does not exist. Despite the vacature of CAMR by a Federal appeals court in early 2008, a NIST traceable standard is still needed for whatever regulation is implemented in the future. Thermo Fisher is a major vendor providing complete integrated mercury continuous emissions monitoring (CEM) systems to the industry. WRI is participating with EPA, EPRI, NIST, and Thermo Fisher towards the development of the criteria that will be used in the traceability protocols to be issued by EPA. An initial draft of an elemental mercury calibration traceability protocol was distributed for comment to the participating research groups and vendors on a limited basis in early May 2007. In August 2007, EPA issued an interim traceability protocol for elemental mercury calibrators. Various working drafts of the new interim traceability protocols were distributed in late 2008 and early 2009 to participants in the Mercury Standards Working Committee project. The protocols include sections on qualification and certification. The qualification section describes in general terms tests that must be conducted by the calibrator vendors to demonstrate that their calibration equipment meets the minimum requirements to be established by EPA for use in CAMR monitoring. Variables to be examined include linearity, ambient temperature, back pressure, ambient pressure, line voltage, and effects of shipping. None of the procedures were described in detail in the draft interim documents; however they describe what EPA would like to eventually develop. WRI is providing the data and results to EPA for use in developing revised experimental procedures and realistic acceptance criteria based on

  4. Mercury Methylation and Detoxification by Novel Microorganisms in Mercury Enriched Mesothermal Springs

    NASA Astrophysics Data System (ADS)

    Gionfriddo, C. M.; Krabbenhoft, D. P.; Stott, M.; Wick, R. R.; Schultz, M. B.; Holt, K. E.; Moreau, J. W.

    2015-12-01

    Hot springs and fumaroles release significant quantities of aqueous and gaseous mercury into the environment. Yet few studies have looked at the microbial underpinnings of mercury transformations in geothermal settings. Recent advancements in culture-independent molecular techniques, such as ultra-high-throughput sequencing, allow us to delve deeply into the functional and phylogenetic make-up of these extreme environments. Here we present results from deep metagenomic sequencing of geothermal microbial communities cycling mercury, focussing on the connections between putative metabolisms and mercury methylation, and the evolution of the mer-operon. Presented are data from two adjacent, acidic (pH<3), mesothermal (33-68 °C) hot springs of the Ngawha geothermal field (New Zealand), extremely enriched in total mercury (>1000 ng L-1), and varying methylmercury concentrations (1-10 ng L-1). Microbial communities of both springs are dominated by mercury resistant acidophilic, sulfur- and iron-cycling microbes: Acidithiobacillus, Thiomonas, and Thermoplasma. Mercury methylation genes (hgcAB) were only detected in the cooler spring (∆T~10 °C), with an order of magnitude greater methylmercury (10 ng L-1). The hgcAB genes have no known closest relatives (<90%), but lowest common ancestor analysis matched members of the Firmicutes and Deltaproteobacteria as well as uncultured environmental bacteria. Our findings show that geothermal microbial communities are capable of a net production of methylmercury, alongside active demethylation-reduction by mer-capable microbes, despite selective pressures from low pH and high mercury levels. However, temperature may be the major limiting factor on mercury biomethylation in geothermal settings, as no hgcAB genes were detected in the spring that was nearly identical in all physio-chemical parameters to its neighbour except for temperature (T >40°C), and methylmercury concentration. We conclude that the relative amount of mercury

  5. Results from a search for fractional charges on mercury drops

    SciTech Connect

    Bland, R.W.; Baden, D.; Joyce, D.C.

    1981-01-01

    Results are presented obtained with an automated Millikan apparatus measuring the charge on mercury drops four to six microns in diameter. No fractional charges have been detected in a sample of 42 micrograms (54,000 drops). About two-thirds of the sample was undistilled native mercury.

  6. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations.

    PubMed

    Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B; Franzreb, Kathleen E; Simons, Theodore R

    2014-03-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ (15)N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g(-1) (range 0.01-3.74 μg g(-1)). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g(-1). Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000-2,000 m). Relative trophic position, calculated from δ (15)N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g(-1) increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition. PMID:24420618

  7. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations

    USGS Publications Warehouse

    Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B.; Franzreb, Kathleen E.; Simons, Theodore R.

    2014-01-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ 15N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g−1 (range 0.01–3.74 μg g−1). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g−1. Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000–2,000 m). Relative trophic position, calculated from δ 15N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g−1 increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition.

  8. Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations.

    PubMed

    Keller, Rebecca Hylton; Xie, Lingtian; Buchwalter, David B; Franzreb, Kathleen E; Simons, Theodore R

    2014-03-01

    Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope δ (15)N. Mercury concentrations (mean ± SE) averaged 0.46 ± 0.02 μg g(-1) (range 0.01-3.74 μg g(-1)). Twelve of 32 species had individuals (7 % of all birds sampled) with mercury concentrations higher than 1 μg g(-1). Mercury concentrations were 17 % higher in juveniles compared to adults (n = 454). In adults, invertivores has higher mercury levels compared to omnivores. Mercury was highest at low-elevation sites near water, however mercury was detected in all birds, including those in the high elevations (1,000-2,000 m). Relative trophic position, calculated from δ (15)N, ranged from 2.13 to 4.87 across all birds. We fitted linear mixed-effects models to the data separately for juveniles and year-round resident adults. In adults, mercury concentrations were 2.4 times higher in invertivores compared to omnivores. Trophic position was the main effect explaining mercury levels in juveniles, with an estimated 0.18 ± 0.08 μg g(-1) increase in feather mercury for each one unit rise in trophic position. Our research demonstrates that mercury is biomagnifying in birds within this terrestrial mountainous system, and further research is warranted for animals foraging at higher trophic levels, particularly those associated with aquatic environments downslope from montane areas receiving high mercury deposition.

  9. Mercury: The World Closest to the Sun.

    ERIC Educational Resources Information Center

    Cordell, Bruce M.

    1984-01-01

    Discusses various topics related to the geology of Mercury including the origin of Mercury's magnetism, Mercury's motions, volcanism, scarps, and Mercury's violent birth and early life. Includes a table comparing Mercury's orbital and physical data to that of earth's. (JN)

  10. Laser-induced fluorescence detection strategies for sodium atoms and compounds in high-pressure combustors

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J. R.; Wise, Michael L.; Smith, Gregory P.

    1993-01-01

    A variety of laser-induced fluorescence schemes were examined experimentally in atmospheric pressure flames to determine their use for sodium atom and salt detection in high-pressure, optically thick environments. Collisional energy transfer plays a large role in fluorescence detection. Optimum sensitivity, at the parts in 10 exp 9 level for a single laser pulse, was obtained with the excitation of the 4p-3s transition at 330 nm and the detection of the 3d-3p fluorescence at 818 nm. Fluorescence loss processes, such as ionization and amplified spontaneous emission, were examined. A new laser-induced atomization/laser-induced fluorescence detection technique was demonstrated for NaOH and NaCl. A 248-nm excimer laser photodissociates the salt molecules present in the seeded flames prior to atom detection by laser-induced fluorescence.

  11. Facile and One Pot Synthesis of Gold Nanoparticles Using Tetraphenylborate and Polyvinylpyrrolidone for Selective Colorimetric Detection of Mercury Ions in Aqueous Medium

    PubMed Central

    Boopathi, Sidhureddy; Senthilkumar, Shanmugam; Phani, Kanala Lakshminarasimha

    2012-01-01

    In this work, we reported for the first time, a facile and one step synthesis of gold nanoparticles from HAuCl4, employing tetraphenylborate as the reducing agent. The synthesis is not only facile but also yields “dumb-bell-shaped”particles. This shape appears to arise from a possible emulsion of the products of oxidation/decomposition of tetraphenylborate by HAuCl4, surrounding the particle. The size and shape of the AuNPs were characterized by Transmission electron microscopy (TEM) and UV-visible Spectroscopy. Interestingly, the addition of polyvinylpyrrolidone (PVP) during the synthesis was found to enhance the stability of the nanoparticle dispersion. The particles synthesized under these conditions assume “spherical” shape with the appearance of only transverse surface plasmon resonance band. The highlight of the observations is that the gold nanoparticles synthesized using tetraphenylborate as reducing agent and PVP as stabilizer are highly stable in alkaline medium, in contrast to the synthesis wherein borohydride is used as reducing agent. The AuNPs synthesized using tetraphenylborate and PVP show their mercury sensing behavior only in the alkaline medium. The color of the nanoparticle dispersion undergoes distinct color change from pink to blue with the addition of mercury ions. They also show dramatic selectivity to mercury ions in presence of other interfering ions, Pb2+, Zn2+ and Ca2+. PMID:22567557

  12. Process for low mercury coal

    DOEpatents

    Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

    1995-04-04

    A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

  13. Process for low mercury coal

    DOEpatents

    Merriam, Norman W.; Grimes, R. William; Tweed, Robert E.

    1995-01-01

    A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

  14. Analytical cytology applied to detection of induced cytogenetic abnormalities

    SciTech Connect

    Gray, J.W.; Lucas, J.; Straume, T.; Pinkel, D.

    1987-08-06

    Radiation-induced biological damage results in formation of a broad spectrum of cytogenetic changes such as translocations, dicentrics, ring chromosomes, and acentric fragments. A battery of analytical cytologic techniques are now emerging that promise to significantly improve the precision and ease with which these radiation induced cytogenetic changes can be quantified. This report summarizes techniques to facilitate analysis of the frequency of occurrence of structural and numerical aberrations in control and irradiated human cells. 14 refs., 2 figs.

  15. The Development and Deployment of a Ground-Based, Laser-Induced Fluorescence Instrument for the In Situ Detection of Iodine Monoxide Radicals

    NASA Technical Reports Server (NTRS)

    Thurlow, M. E.; Co, D. T.; O'Brien, A. S.; Hannun, R. A.; Lapson, L. B.; Hanisco, T. F.; Anderson, J. G.

    2014-01-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 1012. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A23/2 (v = 2) ? X23/2 (v = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  16. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals

    SciTech Connect

    Thurlow, M. E. Hannun, R. A.; Lapson, L. B.; Anderson, J. G.; Co, D. T.; O'Brien, A. S.; Hanisco, T. F.

    2014-04-15

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10{sup 12}. The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A{sup 2}Π{sub 3/2} (v{sup ′} = 2) ← X{sup 2}Π{sub 3/2} (v{sup ″} = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  17. The development and deployment of a ground-based, laser-induced fluorescence instrument for the in situ detection of iodine monoxide radicals.

    PubMed

    Thurlow, M E; Co, D T; O'Brien, A S; Hannun, R A; Lapson, L B; Hanisco, T F; Anderson, J G

    2014-04-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer. Of particular interest are the roles IO plays in the formation of new particles in coastal marine environments and in depletion episodes of ozone and mercury in the Arctic polar spring. This paper describes a ground-based instrument that measures IO at mixing ratios less than one part in 10(12). The IO radical is measured by detecting laser-induced fluorescence at wavelengths longer that 500 nm. Tunable visible light is used to pump the A(2)Π3/2 (v(') = 2) ← X(2)Π3/2 (v(″) = 0) transition of IO near 445 nm. The laser light is produced by a solid-state, Nd:YAG-pumped Ti:Sapphire laser at 5 kHz repetition rate. The laser-induced fluorescence instrument performs reliably with very high signal-to-noise ratios (>10) achieved in short integration times (<1 min). The observations from a validation deployment to the Shoals Marine Lab on Appledore Island, ME are presented and are broadly consistent with in situ observations from European Coastal Sites. Mixing ratios ranged from the instrumental detection limit (<1 pptv) to 10 pptv. These data represent the first in situ point measurements of IO in North America.

  18. Substorms on Mercury?

    NASA Technical Reports Server (NTRS)

    Siscoe, G. L.; Ness, N. F.; Yeates, C. M.

    1974-01-01

    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.

  19. Peru Mercury Inventory 2006

    USGS Publications Warehouse

    Brooks, William E.; Sandoval, Esteban; Yepez, Miguel A.; Howard, Howell

    2007-01-01

    In 2004, a specific need for data on mercury use in South America was indicated by the United Nations Environmental Programme-Chemicals (UNEP-Chemicals) at a workshop on regional mercury pollution that took place in Buenos Aires, Argentina. Mercury has long been mined and used in South America for artisanal gold mining and imported for chlor-alkali production, dental amalgam, and other uses. The U.S. Geological Survey (USGS) provides information on domestic and international mercury production, trade, prices, sources, and recycling in its annual Minerals Yearbook mercury chapter. Therefore, in response to UNEP-Chemicals, the USGS, in collaboration with the Economic Section of the U.S. Embassy, Lima, has herein compiled data on Peru's exports, imports, and byproduct production of mercury. Peru was selected for this inventory because it has a 2000-year history of mercury production and use, and continues today as an important source of mercury for the global market, as a byproduct from its gold mines. Peru is a regional distributor of imported mercury and user of mercury for artisanal gold mining and chlor-alkali production. Peruvian customs data showed that 22 metric tons (t) of byproduct mercury was exported to the United States in 2006. Transshipped mercury was exported to Brazil (1 t), Colombia (1 t), and Guyana (1 t). Mercury was imported from the United States (54 t), Spain (19 t), and Kyrgyzstan (8 t) in 2006 and was used for artisanal gold mining, chlor-alkali production, dental amalgam, or transshipment to other countries in the region. Site visits and interviews provided information on the use and disposition of mercury for artisanal gold mining and other uses. Peru also imports mercury-containing batteries, electronics and computers, fluorescent lamps, and thermometers. In 2006, Peru imported approximately 1,900 t of a wide variety of fluorescent lamps; however, the mercury contained in these lamps, a minimum of approximately 76 kilograms (kg), and in

  20. Riverine source of Arctic Ocean mercury inferred from atmospheric observations

    NASA Astrophysics Data System (ADS)

    Fisher, Jenny A.; Jacob, Daniel J.; Soerensen, Anne L.; Amos, Helen M.; Steffen, Alexandra; Sunderland, Elsie M.

    2012-07-01

    Methylmercury is a potent neurotoxin that accumulates in aquatic food webs. Human activities, including industry and mining, have increased inorganic mercury inputs to terrestrial and aquatic ecosystems. Methylation of this mercury generates methylmercury, and is thus a public health concern. Marine methylmercury is a particular concern in the Arctic, where indigenous peoples rely heavily on marine-based diets. In the summer, atmospheric inorganic mercury concentrations peak in the Arctic, whereas they reach a minimum in the northern mid-latitudes. Here, we use a global three-dimensional ocean-atmosphere model to examine the cause of this Arctic summertime maximum. According to our simulations, circumpolar rivers deliver large quantities of mercury to the Arctic Ocean during summer; the subsequent evasion of this riverine mercury to the atmosphere can explain the summertime peak in atmospheric mercury levels. We infer that rivers are the dominant source of mercury to the Arctic Ocean on an annual basis. Our simulations suggest that Arctic Ocean mercury concentrations could be highly sensitive to climate-induced changes in river flow, and to increases in the mobility of mercury in soils, for example as a result of permafrost thaw and forest fires.

  1. Monitoring the Presence of Ionic Mercury in Environmental Water by Plasmon-Enhanced Infrared Spectroscopy

    PubMed Central

    Hoang, Chung V.; Oyama, Makiko; Saito, Osamu; Aono, Masakazu; Nagao, Tadaaki

    2013-01-01

    We demonstrate the ppt-level single-step selective monitoring of the presence of mercury ions (Hg2+) dissolved in environmental water by plasmon-enhanced vibrational spectroscopy. We combined a nanogap-optimized mid-infrared plasmonic structure with mercury-binding DNA aptamers to monitor in-situ the spectral evolution of the vibrational signal of the DNA induced by the mercury binding. Here, we adopted single-stranded thiolated 15-base DNA oligonucleotides that are immobilized on the Au surface and show strong specificity to Hg2+. The mercury-associated distinct signal is located apart from the biomolecule-associated broad signals and is selectively characterized. For example, with natural water from Lake Kasumigaura (Ibaraki Prefecture, Japan), direct detection of Hg2+ with a concentration as low as 37 ppt (37 × 10−10%) was readily demonstrated, indicating the high potential of this simple method for environmental and chemical sensing of metallic species in aqueous solution. PMID:23405272

  2. Rapid determination of methyl mercury in fish and shellfish: method development.

    PubMed

    Hight, S C; Corcoran, M T

    1987-01-01

    The AOAC official first action method for methyl mercury in fish and shellfish was modified to provide more rapid determination. Methyl mercury is isolated from homogenized, acetone-washed tissue by addition of HCl and extraction by toluene of the methyl mercuric chloride produced. The extract is analyzed by electron capture gas chromatography (GC) on 5% DEGS-PS treated with mercuric chloride solution. The quantitation limit of the method is 0.25 micrograms Hg/g. Swordfish, shark, tuna, shrimp, clams, oysters, and NBS Research Material-50 (tuna) were analyzed for methyl mercury by the AOAC official first action method. All products also were analyzed by the modified method and the AOAC official method for total Hg. In addition, selected extracts obtained with the modified method were analyzed by GC with Hg-selective, microwave-induced helium plasma detection. There was no significant difference between the results for the various methods. Essentially all the Hg present (determined as total Hg) was in the organic form. Coefficients of variation from analyses by the modified method ranged from 1 to 7% for fish and shellfish containing methyl mercury at levels of 0.50-2.30 micrograms Hg/g. The overall average recovery was 100.5%.

  3. Genotoxicity in earthworm after combined treatment of ionising radiation and mercury.

    PubMed

    Ryu, Tae Ho; An, Kwang-Guk; Kim, Jin Kyu

    2014-06-01

    This study was performed to investigate the acute genotoxic effects of mercury and radiation on earthworms (Eisenia fetida). The levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida treated with mercuric chloride (HgCl₂) and ionising radiation (gamma rays) were analysed by means of the comet assay. For detection of DNA damage and repair, E. fetida was exposed to HgCl₂ (0-160 mg kg(-1)) and irradiated with gamma rays (0-50 Gy) in vivo. The increase in DNA damage depended on the concentration of mercury or dose of radiation. The results showed that the more the oxidative stress induced by mercury and radiation the longer the repair time that was required. When a combination of HgCl₂ and gamma rays was applied, the cell damage was much higher than those treated with HgCl₂ or radiation alone, which indicated that the genotoxic effects were increased after the combined treatment of mercury and radiation. PMID:24870361

  4. Identification of mercury and other metals complexes with metallothioneins in dolphin liver by hydrophilic interaction liquid chromatography with the parallel detection by ICP MS and electrospray hybrid linear/orbital trap MS/MS.

    PubMed

    Pedrero, Z; Ouerdane, L; Mounicou, S; Lobinski, R; Monperrus, M; Amouroux, D

    2012-05-01

    A novel analytical procedure for the identification of metal (Hg, Cd, Cu, Zn) complexes with individual metallothionein (MT) isoforms in biological tissues by electrospray MS/MS was developed. The sample preparation was reduced to three rapid steps: the two-fold dilution of the sample cytosol with acetonitrile, the recovery of the supernatant containing MT-complexes by centrifugation and its concentration under nitrogen flow. The replacement of reversed phase HPLC by hydrophilic interaction LC (HILIC) allowed the preservation of the unstable and low abundant metallothionein zinc-mercury mixed complexes (MT-Zn(6)Hg). The MT complexes eluted were detected by ICP MS and identified in terms of molecular mass by electrospray high resolution (100,000) MS. The identification was completed by on line demetallation and the determination of the molecular mass of the apoform, followed by amino acid sequencing in the top-down mode using high energy collision fragmentation (HCD). The method was applied to the identification of MT complexes in a white-sided dolphin (Lagenorhynchus acutus) liver homogenate. The Zn complex of the N-acetylated MT2 isoform was found to be predominant, the presence of mixed complexes with Cd, Cu and, for the first time ever, Hg, was demonstrated. The latter finding has the potential to shed new light on the mercury detoxification mechanism in marine organisms. PMID:22456936

  5. Development on mercury pump for JSNS

    NASA Astrophysics Data System (ADS)

    Kogawa, Hiroyuki; Haga, Katsuhiro; Wakui, Takashi; Futakawa, Masatoshi

    2009-02-01

    A permanent magnet rotating type induction pump (PM pump) was developed to provide mercury to a liquid mercury target system in Japan Spallation Neutron Source (JSNS). Mechanical pumps, such as a gear pump and a centrifugal pump, have risk of leakage of mercury from the seal parts. Induction pumps can avoid mercury leakage because they have no seal parts. The PM pump could be compact compared with a conventional induction pump; however, power loss must be reduced to avoid overheating of the system. Then optimizations for the thickness of mercury duct wall and width of the duct were carried out to reduce heat loss due to the eddy current in the duct generated by the induction, and to reduce flow-induced loss. As for the flow-induced loss, backflow would occur at the outside of the duct because of the difference in the Lorentz force between inside and outside of the duct. Consequently, the developed PM pump could have sufficient performance for the target system in JSNS and operate with low vibration.

  6. Mercury concentrations in tissues of Florida bald eagles

    SciTech Connect

    Wood, P.B.; Wood, J.M.; White, J.H.

    1996-01-01

    We collected 48 blood and 61 feather samples from nestling bald eagles at 42 nests and adult feather samples from 20 nests in north and central Florida during 1991-93. We obtained 32 liver, 10 feather, and 5 blood samples from 33 eagle carcasses recovered in Florida during 1987-93. For nestlings, mercury concentrations in blood (GM = 0.16 ppm wet wt) and feather (GM = 3.23 ppm) samples were correlated (r = 0.69, P = 0.0001). Although nestlings had lower mercury concentrations in feathers than did adults (GM = 6.03 ppm), the feather mercury levels in nestlings and adults from the same nest were correlated (r = 0.63, P < 0.02). Mercury concentrations in blood of captive adult eagles (GM = 0.23 ppm) was similar to Florida nestlings but some Florida nestlings had blood mercury concentrations up to 0.61 ppm, more than twice as high as captive adults. Feather mercury concentrations in both nestlings and adults exceeded those in captive eagles, but concentrations in all tissues were similar to, or lower than, those in bald eagles from other wild populations. Although mercury concentrations in Florida eagles are below those that cause mortality, they are in the range of concentrations that can cause behavioral changes or reduce reproduction. We recommend periodic monitoring of mercury in Florida bald eagles for early detection of mercury increases before negative effects on reproduction occur. 26 refs., 5 figs., 2 tabs.

  7. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling.

  8. Modeling Mercury in Proteins

    SciTech Connect

    Smith, Jeremy C; Parks, Jerry M

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively non-toxic, other forms such as Hg2+ and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg2+ can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg2+ to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed picture and circumvent issues associated with toxicity. Here we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intra-protein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confers mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multi-scale model of environmental mercury cycling.

  9. Modeling Mercury in Proteins.

    PubMed

    Parks, J M; Smith, J C

    2016-01-01

    Mercury (Hg) is a naturally occurring element that is released into the biosphere both by natural processes and anthropogenic activities. Although its reduced, elemental form Hg(0) is relatively nontoxic, other forms such as Hg(2+) and, in particular, its methylated form, methylmercury, are toxic, with deleterious effects on both ecosystems and humans. Microorganisms play important roles in the transformation of mercury in the environment. Inorganic Hg(2+) can be methylated by certain bacteria and archaea to form methylmercury. Conversely, bacteria also demethylate methylmercury and reduce Hg(2+) to relatively inert Hg(0). Transformations and toxicity occur as a result of mercury interacting with various proteins. Clearly, then, understanding the toxic effects of mercury and its cycling in the environment requires characterization of these interactions. Computational approaches are ideally suited to studies of mercury in proteins because they can provide a detailed molecular picture and circumvent issues associated with toxicity. Here, we describe computational methods for investigating and characterizing how mercury binds to proteins, how inter- and intraprotein transfer of mercury is orchestrated in biological systems, and how chemical reactions in proteins transform the metal. We describe quantum chemical analyses of aqueous Hg(II), which reveal critical factors that determine ligand-binding propensities. We then provide a perspective on how we used chemical reasoning to discover how microorganisms methylate mercury. We also highlight our combined computational and experimental studies of the proteins and enzymes of the mer operon, a suite of genes that confer mercury resistance in many bacteria. Lastly, we place work on mercury in proteins in the context of what is needed for a comprehensive multiscale model of environmental mercury cycling. PMID:27497164

  10. Detection of radiation-induced apoptosis using the comet assay.

    PubMed

    Wada, Seiichi; Khoa, Tran Van; Kobayashi, Yasuhiko; Funayama, Tomoo; Yamamoto, Kazuo; Natsuhori, Masahiro; Ito, Nobuhiko

    2003-11-01

    The electrophoresis pattern of apoptotic cells detected by the comet assay has a characteristic small head and spread tail. This image has been referred to as an apoptotic comet, but it has not been previously proven to be apoptotic cells by any direct method. In order to identify this image obtained by the comet assay as corresponding to an apoptotic cell, the frequency of appearance of apoptosis was examined using CHO-K1 and L5178Y cells which were exposed to gamma irradiation. As a method for detecting apoptosis, the terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay was used. When the frequency of appearance of apoptotic cells following gamma irradiation was observed over a period of time, there was a significant increase in appearance of apoptosis when using the TUNEL assay. However, there was only a slight increase when using the comet assay. In order to verify the low frequency of appearance of apoptosis when using the comet assay, we attempted to use the TUNEL assay to stain the apoptotic comets detected in the comet assay. The apoptotic comets were TUNEL positive and the normal comets were TUNEL negative. This indicates that the apoptotic comets were formed from DNA fragments with 3'-hydroxy ends that are generated as cells undergo apoptosis. Therefore, it was understood that the characteristic pattern of apoptotic comets detected by the comet assay corresponds to cells undergoing apoptosis. PMID:14665742

  11. Dual mode signaling responses of a rhodamine based probe and its immobilization onto a silica gel surface for specific mercury ion detection.

    PubMed

    Pal, Ajoy; Bag, Bamaprasad

    2015-09-14

    A 3-aminomethyl-(2-amino-1-pyridyl) coupled amino-ethyl-rhodamine-B based probe (2) exhibited simultaneous chromogenic and fluorogenic dual mode signaling responses in the presence of Hg(II) ions only among all the metal ions investigated in an organic aqueous medium. The spiro-cyclic rhodamine signaling subunit undergoes complexation induced structural transformation to result in absorption and fluorescence modulation. Its complexation induced signaling exhibited reversibility with various contrasting reagents having higher affinity towards Hg(II) ions, such as anions (AcO(-)) and competing chelating agents (En). It also exhibited Hg(II)-specific photophysical signaling responses when immobilized onto a silica gel surface attached through its amino-ethyl-receptor end, owing to its structure-conformational advantages for effective coordination. The surface modified silica appended with 2 (SiR-1), as evaluated through the FTIR spectral pattern, thermogravimetric analysis, FESEM images, elemental analysis, X-ray diffraction, surface area determination and particle size analysis, also exhibited reversible Hg(II)-specific signaling in its suspension state in an aqueous medium, enhancing the probe's utility for practical applications such as the detection, isolation and extraction of Hg(II) ions in the presence of other competitive metal ions.

  12. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  13. Fluorescence biosensing strategy based on mercury ion-mediated DNA conformational switch and nicking enzyme-assisted cycling amplification for highly sensitive detection of carbamate pesticide.

    PubMed

    Wang, Xiuzhong; Hou, Ting; Dong, Shanshan; Liu, Xiaojuan; Li, Feng

    2016-03-15

    Pesticides are of great importance in agricultural and biological fields, but pesticide residues may harm the environment and human health. A highly sensitive fluorescent biosensor for the detection of carbamate pesticide has been developed based on acetylcholinesterase (AChE)-catalyzed hydrolysis product triggered Hg(2+) release coupled with subsequent nicking enzyme-induced cleavage of a duplex DNA for cycling amplification. In this protocol, two DNA probes, an unmodified single-stranded helper DNA probe 1 (HP1) and a quencher-fluorophore probe (QFP) are ingeniously designed. HP1 can be folded into hairpin configuration through T-Hg(2+)-T base pair formation. QFP, labeled with FAM and BHQ1 at its two terminals, contains the recognition sequence and the cleavage site of the nicking enzyme. In the presence of carbamate pesticide, the activity of AChE is inhibited, and the amount of the product containing the thiol group generated by the hydrolysis reaction of acetylthiocholine chloride (ACh) decreases, resulting in the release of a low concentration of Hg(2+). The number of HP1 that can be selectively unfolded would be reduced and the subsequent nicking enzyme-assisted cleavage processes would be affected, resulting in decreased fluorescence signals. The fluorescence intensity further decreases with the increase of the pesticide concentration. Therefore, the pesticide content can be easily obtained by monitoring the fluorescence signal change, which is inversely proportional to the logarithm of the pesticide concentration. The detection limit of aldicarb, the model analyte, is 3.3 μgL(-1), which is much lower than the Chinese National Standards or those previously reported. The as-proposed method has also been applied to detect carbamate pesticide residues in fresh ginger and artificial lake water samples with satisfactory results, which demonstrates that the method has great potential for practical application in biological or food safety field.

  14. Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy

    USGS Publications Warehouse

    Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.

    2000-01-01

    Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis

  15. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2008-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet's miniature magnetosphere since Mariner 10's brief fly-bys in 1974-5. Mercury's magnetosphere is unique in many respects. The magnetosphere of Mercury is the smallest in the solar system with its magnetic field typically standing off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed dri-fi paths for energetic particles and, hence, no radiation belts; the characteristic time scales for wave propagation and convective transport are short possibly coupling kinetic and fluid modes; magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to directly impact the dayside regolith; inductive currents in Mercury's interior should act to modify the solar In addition, Mercury's magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionosphere. This lack of an ionosphere is thought to be the underlying reason for the brevity of the very intense, but short lived, approx. 1-2 min, substorm-like energetic particle events observed by Mariner 10 in Mercury's magnetic tail. In this seminar, we review what we think we know about Mercury's magnetosphere and describe the MESSENGER science team's strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic magnetosphere.

  16. Dynamic duo captures mercury

    SciTech Connect

    Senior, C.; Adams, B.

    2006-02-15

    There is strong evidence that the combination of wet flue gas desulphurisation (FGD) scrubbers and selective catalytic reduction (SCR) can prove a viable and formidable combination for knocking out mercury. This article analyzes the capabilities and limitations of the SCR-FGD combination for mercury compliance, including applicability to different types of coal and issues with scrubber by-products. 3 figs.

  17. Mercury in the environment

    SciTech Connect

    Idaho National Laboratory - Mike Abbott

    2008-08-06

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  18. Mercury and Pregnancy

    MedlinePlus

    ... made when mercury in the air gets into water. The mercury in the air comes from natural sources (such as volcanoes) and man-made sources (such as burning coal and other pollution). You can get methylmercury in your body by ...

  19. Mercury in the environment

    ScienceCinema

    Idaho National Laboratory - Mike Abbott

    2016-07-12

    Abbott works for Idaho National Laboratory as an environmental scientist. Using state-of-thescienceequipment, he continuously samples the air, looking for mercury. In turn, he'll analyzethis long-term data and try to figure out the mercury's point of or

  20. Disintegrating Mercuries

    NASA Astrophysics Data System (ADS)

    Chiang, Eugene

    2015-01-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock. Small enough planets can evaporate completely. We discuss the observations and theory underlying disintegrating planets such as KIC 12557548b --- which may have been stripped down to its iron core. Thermal evaporation models assert that the catastrophic disintegration phase lasts only a small fraction of a planet's life, and therefore predict that for every object like KIC 12557548b, there should be many near-quiescent progenitors with sub-day periods whose hard-surface transits may be detectable. Unresolved issues with the theory of mass loss will be highlighted, including the related inverse problem of in-situ formation of rocky bodies.

  1. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edwards; Kuhr, Werner G.

    1991-04-09

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  2. Means and method for capillary zone electrophoresis with laser-induced indirect fluorescence detection

    DOEpatents

    Yeung, Edward S.; Kuhr, Werner G.

    1996-02-20

    A means and method for capillary zone electrphoresis with laser-induced indirect fluorescence detection. A detector is positioned on the capillary tube of a capillary zone electrophoresis system. The detector includes a laser which generates a laser beam which is imposed upon a small portion of the capillary tube. Fluorescence of the elutant electromigrating through the capillary tube is indirectly detected and recorded.

  3. Prospects for single-molecule detection in liquids by laser-induced fluorescence

    SciTech Connect

    Trkula, M.; Keller, R.A.; Martin, J.C.; Jett, J.H.; Dovichi, N.J.

    1983-01-01

    A laser-induced fluoresence determination of aqueous solutions of rhodamine 6G resulted in a detection limit of 18 attograms, or 22,000 molecules, of rhodamine 6G. These results allow the projection to single-molecule detection with reasonable improvements in the experimental apparatus.

  4. Standoff detection: distinction of bacteria by hyperspectral laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Walter, Arne; Duschek, Frank; Fellner, Lea; Grünewald, Karin M.; Hausmann, Anita; Julich, Sandra; Pargmann, Carsten; Tomaso, Herbert; Handke, Jürgen

    2016-05-01

    Sensitive detection and rapid identification of hazardous bioorganic material with high sensitivity and specificity are essential topics for defense and security. A single method can hardly cover these requirements. While point sensors allow a highly specific identification, they only provide localized information and are comparatively slow. Laser based standoff systems allow almost real-time detection and classification of potentially hazardous material in a wide area and can provide information on how the aerosol may spread. The coupling of both methods may be a promising solution to optimize the acquisition and identification of hazardous substances. The capability of the outdoor LIF system at DLR Lampoldshausen test facility as an online classification tool has already been demonstrated. Here, we present promising data for further differentiation among bacteria. Bacteria species can express unique fluorescence spectra after excitation at 280 nm and 355 nm. Upon deactivation, the spectral features change depending on the deactivation method.

  5. Rapid detection of radiation-induced hydrocarbons in cooked ham.

    PubMed

    Barba, C; Santa-María, G; Herraiz, M; Calvo, M M

    2012-03-01

    Solid phase microextraction (SPME) coupled with either gas chromatography-ionization flame detector (CG-FID) or multidimensional gas chromatography-mass spectrometry (MDGC-MS) was evaluated for its ability to detect volatile hydrocarbons produced during the irradiation of cooked ham. The chromatogram of an irradiated sample obtained using GC-FID showed a complex pattern of peaks, with several co-eluting peaks superimposed, indicating that the method was unlikely to resolve adequately the volatile hydrocarbons formed during irradiation. Using SPME-MDGC-MS 1-tetradecene (C(1-14:1)), n-pentadecane (C(15:0)), 1-hexadecene (C(1-16:1)), n-heptadecane (C(17:0)) and 8-heptadecene (C(8-17:1)) were detected in cooked ham irradiated at 0.5, 2, 4 and 8kGy. This method allows the detection of most n-alkanes and n-alkenes produced during the irradiation of the majority of fatty acids in cooked ham, namely oleic acid, stearic acid and palmitic acid. SPME is rapid and inexpensive and does not require organic solvents. The proposed SPME-MDGC-MS method allows the determination of radiolytic markers in cooked ham in less than 115min. PMID:22100714

  6. Rapid detection of radiation-induced hydrocarbons in cooked ham.

    PubMed

    Barba, C; Santa-María, G; Herraiz, M; Calvo, M M

    2012-03-01

    Solid phase microextraction (SPME) coupled with either gas chromatography-ionization flame detector (CG-FID) or multidimensional gas chromatography-mass spectrometry (MDGC-MS) was evaluated for its ability to detect volatile hydrocarbons produced during the irradiation of cooked ham. The chromatogram of an irradiated sample obtained using GC-FID showed a complex pattern of peaks, with several co-eluting peaks superimposed, indicating that the method was unlikely to resolve adequately the volatile hydrocarbons formed during irradiation. Using SPME-MDGC-MS 1-tetradecene (C(1-14:1)), n-pentadecane (C(15:0)), 1-hexadecene (C(1-16:1)), n-heptadecane (C(17:0)) and 8-heptadecene (C(8-17:1)) were detected in cooked ham irradiated at 0.5, 2, 4 and 8kGy. This method allows the detection of most n-alkanes and n-alkenes produced during the irradiation of the majority of fatty acids in cooked ham, namely oleic acid, stearic acid and palmitic acid. SPME is rapid and inexpensive and does not require organic solvents. The proposed SPME-MDGC-MS method allows the determination of radiolytic markers in cooked ham in less than 115min.

  7. SAMPLING AND ANALYSIS OF MERCURY IN CRUDE OIL

    EPA Science Inventory

    Sampling and analytical procedures used to determine total mercury content in crude oils were examined. Three analytical methods were compared with respect to accuracy, precision and detection limit. The combustion method and a commercial extraction method were found adequate to...

  8. Mercury poisoning in wildlife

    USGS Publications Warehouse

    Heinz, G.H.; Fairbrother, Anne; Locke, Louis N.; Hoff, Gerald L.

    1996-01-01

    Mercury is an intriguing contaminant because it has complex chemical properties, a wide range of harmful effects, and an infinite persistence in the environment. Die-offs of wildlife due to mercury have occurred in many countries, especially before mercury seed dressings were banned. Today, most mercury problems are associated with aquatic environments. Methylmercury, the most toxic chemical form, attacks many organ systems, but damage to the central nervous system is most severe. Harmful wet-weight concentrations of mercury, as methylmercury, in the tissues of adult birds and mammals range from about 8-30 ppm in the brain, 20-60 ppm in liver, 20-60 ppm in kidney, and 15-30 ppm in muscle. Young animals may be more sensitive.

  9. Biomolecular Aspects of Mercury Transformations

    NASA Astrophysics Data System (ADS)

    Johs, A.; Shi, L.; Miller, S. M.; Summers, A. O.; Liang, L.

    2008-12-01

    Bacteria participate significantly in mercury transformation in natural and industrial environments. Previous studies have shown that bacterial mercury resistance is mediated by the mer operon, typically located on transposons or plasmids. It encodes specific genes that facilitate uptake of mercury species, cleavage of organomercurials, and reduction of Hg(II) to Hg(0). Expression of mer operon genes is regulated by MerR, a metal-responsive regulator protein on the level of transcription. In vitro studies have shown that MerR forms a non-transcribing pre-initiation complex with RNA polymerase and the promoter DNA. Binding of Hg(II) induces conformational changes in MerR and other components of the complex resulting in the transcription of mer operon genes. As part of ongoing investigations on allosteric conformational changes induced by Hg(II) in dimeric MerR, and the implications on the binding of RNA polymerase to the promoter of the mer operon, we applied small angle scattering to study the regulatory mechanism of MerR in the presence and absence of Hg(II). Our results show that in the presence of Hg(II) the MerR dimer undergoes a significant reorientation from a compact state to a conformation revealing two distinct domains. Bacterial reduction of Hg(II) can also occur at concentrations too low to induce mer operon functions. Dissimilatory metal reducing bacteria, such as Shewanella and Geobacter are able to reduce Hg(II) in the presence of mineral oxides. This process has been linked to the activity of outer membrane multiheme cytochromes. We isolated and purified a decaheme outer membrane cytochrome OmcA from Shewanella oneidensis MR-1 and characterized its envelope shape in solution by small angle x-ray scattering. Structural features were identified and compared to homology models. These results show that OmcA is an elongated macromolecule consisting of separate modules, which may be connected by flexible linkers.

  10. Getting Mercury out of Schools.

    ERIC Educational Resources Information Center

    1999

    This guide was prepared while working with many Massachusetts schools to remove items that contain mercury and to find suitable alternatives. It contains fact sheets on: mercury in science laboratories and classrooms, mercury in school buildings and maintenance areas, mercury in the medical office and in medical technology classrooms in vocational…

  11. Calorimetric detection of influenza virus induced membrane fusion.

    PubMed

    Nebel, S; Bartoldus, I; Stegmann, T

    1995-05-01

    Membrane fusion induced by the hemagglutinin glycoprotein of influenza virus has been extensively characterized, but the mechanism whereby the protein achieves the merger of the viral and target membrane lipids remains enigmatic. Various lipid intermediate structures have been proposed, and the energies required for their formation predicted. Here, we have analyzed the enthalpies of fusion of influenza with liposomes by titration calorimetry. If a small sample of virus in a weak neutral pH buffer was added to an excess of liposomes at low pH, a two-component reaction was seen, composed of an exothermic reaction and a slower endothermic reaction. The exothermic reaction was the result of acid-base reactions between the neutral pH virus sample and low pH buffer and low-pH-induced changes in the virus. The endothermic reaction was not observed in the absence of liposomes and much reduced if acid-inactivated virus, which had lost its fusion but not its binding activity, was added to liposomes. The endothermic reaction was more temperature dependent than the exothermic reaction; its pH dependence corresponded with that of fusion and its enthalpy was higher if fusion was more extensive. These data indicate that most of the endothermic reaction was due to membrane fusion. The experimentally determined enthalpy of fusion, 0.6-0.7 kcal per mol of viral phospholipids, is much higher than expected on the basis of current theories about the formation of lipid intermediates during membrane fusion.

  12. Nucleotide sequence of a chromosomal mercury resistance determinant from a Bacillus sp. with broad-spectrum mercury resistance. [Mercury reductase

    SciTech Connect

    Wang, Y.; Levinson, H.S.; Mahler, I. ); Moore, M.; Walsh, C. ); Silver, S. )

    1989-01-01

    A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.

  13. Laser-induced breakdown spectroscopy detection of heavy metal in water based on graphite conch method

    NASA Astrophysics Data System (ADS)

    Wang, Chunlong; Liu, Jianguo; Zhao, Nanjing; Shi, Huan; Liu, Lituo; Ma, Mingjun; Zhang, Wei; Chen, Dong; Liu, Jing; Zhang, Yujun; Liu, Wenqing

    2012-10-01

    The laser-induced breakdown spectroscopy emission characteristics of trace heavy metal lead in water is studied based on graphite conch method, with a 1064nm wavelength Nd: YAG laser as excitation source, the echelle spectrometer and ICCD detector are used for spectral separation and high sensitive detection with high resolution and wide spectral range. The delay time 900ns and gate time 1600ns are determined in the experiment. The calibration curve of Pb is plotted based on the different concentration measurement results, and a limit of detection of 0.0138mg / L is obtained for Pb in water. Graphite conch method effectively overcomes the current problems on laser-induced breakdown spectroscopy detection of heavy metal in water. The detection limits and stability are improved. The reference data is provided for further study on the fast measurement of trace heavy metals in water by laser induced breakdown spectroscopy technique.

  14. Enhanced Spore Biomarker Detection Following Laser Induced Lysis

    SciTech Connect

    Wunschel, David S.; Beck, Kenneth M.; Wahl, Karen L.

    2002-12-01

    Matrix assisted laser desorption/ionization (MALDI) has grown in popularity as a means to rapidly analyze proteins directly from bacterial cells. This method provides identifying information by generating protein ?fingerprints? for each organism. However, generating rich protein fingerprints from spores, such as from the genus Bacillus, has proven difficult. We have examined the use of laser energy to induce spore lysis and increase the protein signature complexity. As a measure of lysis, the ions from calcium and dipicolinic acid (DPA) were monitored along with the higher m/z protein ions. DPA is a known marker of eubacterial spores usually as a complex with calcium. This is in contrast to the abundant geogenic calcium complexes with carbonate among other forms. A combination of general bacterial markers, DPA and calcium, and protein fingerprints can be used to provide complementary biomarkers from a single sample preparation.

  15. Mercury contamination of soil as the result of long-term phosphate fertilizer production.

    PubMed

    Mirlean, Nicolai; Baisch, Paulo; Machado, Isabel; Shumilin, Evgueni

    2008-09-01

    This study was aimed at determining the range and spatial distribution of mercury in a geographical area influenced by the emissions of phosphate fertilizers industries in Rio Grande, Brazil. The case study demonstrated that mercury concentrations in a fine fraction of the surface soil close to the fertilizer factory reached levels as high as 800 microg kg(-1). Increased mercury concentrations were detected up to 60 cm below the soil surface. Further, a significant impact of the elevated mercury levels was manifested in a 1-km zone around the factory. Technical grade sulfuric acid employed in superphosphate production is considered the principal source of this mercury contamination. PMID:18587516

  16. The release, tissue distribution and excretion of mercury from experimental amalgam tattoos.

    PubMed Central

    Cox, S. W.; Eley, B. M.

    1986-01-01

    Following the subcutaneous implantation of powdered dental amalgam in guinea pigs, there was an initial extrusion of material from the healing implantation wounds. Longer-term release of mercury from the lesions was demonstrated by linear regression analysis of the mercury contents of implant sites removed after time periods of up to 2 years. Raised mercury levels were detected in the blood, bile, kidneys, liver, spleen and lungs of implanted animals; by far the highest concentrations were found in the renal cortex. Mercury was excreted with the urine and, to a lesser extent, the faeces. The pattern of mercury redistribution resembled that seen following chronic exposure to mercuric compounds. PMID:3801303

  17. Electrochemical determination of inorganic mercury and arsenic--A review.

    PubMed

    Zaib, Maria; Athar, Muhammad Makshoof; Saeed, Asma; Farooq, Umar

    2015-12-15

    Inorganic mercury and arsenic encompasses a term which includes As(III), As(V) and Hg(II) species. These metal ions have been extensively studied due to their toxicity related issues. Different analytical methods are used to monitor inorganic mercury and arsenic in a variety of samples at trace level. The present study reviews various analytical techniques available for detection of inorganic mercury and arsenic with particular emphasis on electrochemical methods especially stripping voltammetry. A detailed critical evaluation of methods, advantages of electrochemical methods over other analytical methods, and various electrode materials available for mercury and arsenic analysis is presented in this review study. Modified carbon paste electrode provides better determination due to better deposition with linear and improved response under studied set of conditions. Biological materials may be the potent and economical alternative as compared to macro-electrodes and chemically modified carbon paste electrodes in stripping analysis of inorganic mercury and arsenic.

  18. Mercury in the ecosystem

    SciTech Connect

    Mitra, S.

    1986-01-01

    This treatise on the environmental dispersion of mercury emphasizes the importance of ''mercury-consciousness'' in the present-day world, where rapidly expanding metallurgical, chemical, and other industrial developments are causing widespread contamination of the atmosphere, soil, and water by this metal and its toxic organic derivatives. Concepts concerning the mechanism of mercury dispersion and methyl-mercury formation in the physico-biological ecosystem are discussed in detail and a substantial body of data on the degree and nature of the mercury contamination of various plants, fish, and land animals by industrial and urban effluents is presented. Various analytical methods for the estimation of mercury in inorganic and organic samples are presented. These serve as a ready guide to the selection of the correct method for analyzing environmental samples. This book is reference work in mercury-related studies. It is written to influence industrial policies of governments in their formulation of control measures to avoid the recurrence of human tragedies such as the well-known Minamata case in Japan, and the lesser known cases in Iraq, Pakistan, and Guatamala.

  19. Mercury's Dynamic Magnetic Tail

    NASA Technical Reports Server (NTRS)

    Slavin, James A.

    2010-01-01

    The Mariner 10 and MESSENGER flybys of Mercury have revealed a magnetosphere that is likely the most responsive to upstream interplanetary conditions of any in the solar system. The source of the great dynamic variability observed during these brief passages is due to Mercury's proximity to the Sun and the inverse proportionality between reconnection rate and solar wind Alfven Mach number. However, this planet's lack of an ionosphere and its small physical dimensions also contribute to Mercury's very brief Dungey cycle, approx. 2 min, which governs the time scale for internal plasma circulation. Current observations and understanding of the structure and dynamics of Mercury's magnetotail are summarized and discussed. Special emphasis will be placed upon such questions as: 1) How much access does the solar wind have to this small magnetosphere as a function of upstream conditions? 2) What roles do heavy planetary ions play? 3) Do Earth-like substorms take place at Mercury? 4) How does Mercury's tail respond to extreme solar wind events such coronal mass ejections? Prospects for progress due to advances in the global magnetohydrodynamic and hybrid simulation modeling and the measurements to be taken by MESSENGER after it enters Mercury orbit on March 18, 2011 will be discussed.

  20. Mercury Metadata Toolset

    SciTech Connect

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additional metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.

  1. Mercury Metadata Toolset

    2009-09-08

    Mercury is a federated metadata harvesting, search and retrieval tool based on both open source software and software developed at Oak Ridge National Laboratory. It was originally developed for NASA, and the Mercury development consortium now includes funding from NASA, USGS, and DOE. A major new version of Mercury (version 3.0) was developed during 2007 and released in early 2008. This Mercury 3.0 version provides orders of magnitude improvements in search speed, support for additionalmore » metadata formats, integration with Google Maps for spatial queries, facetted type search, support for RSS delivery of search results, and ready customization to meet the needs of the multiple projects which use Mercury. For the end users, Mercury provides a single portal to very quickly search for data and information contained in disparate data management systems. It collects metadata and key data from contributing project servers distributed around the world and builds a centralized index. The Mercury search interfaces then allow the users to perform simple, fielded, spatial, and temporal searches across these metadata sources. This centralized repository of metadata with distributed data sources provides extremely fast search results to the user, while allowing data providers to advertise the availability of their data and maintain complete control and ownership of that data.« less

  2. Watershed Management and Mercury Biogeochemical Cycling in Lake Zapotlan, Mexico

    NASA Astrophysics Data System (ADS)

    Malczyk, E. A.; Branfireun, B. A.

    2009-05-01

    Lake Zapotlan is an endorheic subtropical eutrophic lake located in Jalisco State, Mexico. The lake supports a small but important local fishery for carp (Cyprinus sp.) and tilapia (Oreochromis sp.) and is an internationally recognized RAMSAR site. Very little research exists in these regions regarding mercury biogeochemical cycling. The lake receives considerable untreated municipal wastewater discharge that is elevated in inorganic total mercury (250-800 ng Hg/L) and organic methylmercury (3-10 ng CH3Hg+/L). The lake is also located on an active fault zone near an active volcano which may cause natural mercury enrichment. To assess a mercury risk to the commercial fishery we investigated the distribution of total inorganic mercury and organic methylmercury in waters, sediments, and fish tissues of the lake, surrounding wetlands, and incoming waters. Although there were high concentrations of inorganic mercury entering the lake in wastewater and seasonal tributary stream flow inputs, average concentrations in lake surface waters (3 ng Hg/L) and sediments (50 ng Hg/gdw) were relatively low. Average concentrations of total inorganic mercury were an order of magnitude higher in water (70 ng Hg/L) and sediment (245 ng Hg/gdw) in wetlands receiving the wastewater discharges. Mercury loading to the main body of the lake is likely reduced by these wetland buffer zones which allow mercury bound to particulate matter to settle out. A similar pattern was seen with respect to methylmercury concentrations. Average concentrations of methylmercury in lake surface water (below detect) and sediment (0.1 ng/gdw) were lower than in impounded wetlands (1 ng CH3Hg+/L, 0.7 ng CH3Hg+/gdw). Mercury concentrations in tilapia (3.5 ng/g) and carp (8 ng/g) from the commercial catch were found to be low in mercury; likely due to a combination of physiological, biogeochemical, and ecological factors.

  3. Assessment of mercury in the Savannah River Site environment

    SciTech Connect

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  4. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials.

  5. Inorganic: the other mercury.

    PubMed

    Risher, John F; De Rosa, Christopher T

    2007-11-01

    There is a broad array of mercury species to which humans may be exposed. While exposure to methylmercury through fish consumption is widely recognized, the public is less aware of the sources and potential toxicity of inorganic forms of mercury. Some oral and laboratory thermometers, barometers, small batteries, thermostats, gas pressure regulators, light switches, dental amalgam fillings, cosmetic products, medications, cultural/religious practices, and gold mining all represent potential sources of exposure to inorganic forms of mercury. The route of exposure, the extent of absorption, the pharmacokinetics, and the effects all vary with the specific form of mercury and the magnitude and duration of exposure. If exposure is suspected, a number of tissue analyses can be conducted to confirm exposure or to determine whether an exposure might reasonably be expected to be biologically significant. By contrast with determination of exposure to methylmercury, for which hair and blood are credible indicators, urine is the preferred biological medium for the determination of exposure to inorganic mercury, including elemental mercury, with blood normally being of value only if exposure is ongoing. Although treatments are available to help rid the body of mercury in cases of extreme exposure, prevention of exposure will make such treatments unnecessary. Knowing the sources of mercury and avoiding unnecessary exposure are the prudent ways of preventing mercury intoxication. When exposure occurs, it should be kept in mind that not all unwanted exposures will result in adverse health consequences. In all cases, elimination of the source of exposure should be the first priority of public health officials. PMID:18044248

  6. Five hundred years of mercury exposure and adaptation.

    PubMed

    Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto

    2012-01-01

    Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P < 0.001). Thus, evidence of mercury's toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. PMID:22910643

  7. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  8. Five Hundred Years of Mercury Exposure and Adaptation

    PubMed Central

    Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto

    2012-01-01

    Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P < 0.001). Thus, evidence of mercury's toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in. PMID:22910643

  9. Evidence of Mercurial Contamination and Denundation Downstream of New Idria Mercury Mine, San Benito County, California

    NASA Astrophysics Data System (ADS)

    Letsinger, H. E.; Sharma, R. K.; Weinman, B.

    2014-12-01

    California's Central Valley water quality and soils are essential to the survival of the valley's communities and agriculture. Therefore, detection of possible contaminants within the valley streams and soils are paramount to the protection of this land and the people that depend upon it. Here we explore the impact of the contaminated stream beds near the New Idria Mercury Mine site, San Benito County, California. Previous work by Ganguli et al. (2000) has been done in this area to determine the mercury levels associated with the water that flows near the ghost town of New Idria. We performed geochemical analyses on the finer bed sediments from channels draining the area, as well as the coarser sediments taken from along the channel banks, to determine mercury transport downriver from the source. Using a novel application of tau, a mass transfer coefficient typically used in critical zone studies or soil production and weathering rates, we determine downstream weathering, accumulation, and transport of mercury. Our initial geochemical data showed higher tau values upstream as well as within the banks of the contaminated streambed and a greater accumulation of mercury near the pollution source (i.e., mine tailings, (τ ~ 103)). Tau results also show elevated mercurial levels existing downstream, with accumulations in mid- (τ ~ 102) and down-stream (τ ~ 10) reaches. Combining tau results with more traditional indices of chemical weathering (CIA) support consistent overall Hg-weathering processes with low levels of chemical weathering and higher dominance of coupled physical-anthropogenic weathering.

  10. Effects of coadministered sodium selenite on short-term distribution on methyl mercury in the rat

    SciTech Connect

    Thomas, D.J.; Smith, J.C.

    1984-08-01

    Adult male Sprague-Dawley rats received iv injections of 1 ..mu..mole of methyl mercury/kg alone or coadministered with 5 ..mu..mole of sodium selenite/kg. Tissue concentrations of methyl mercury were determined at 5, 20, and 60 min after treatment. Selenite treatment produced a significant increase in cerebral methyl mercury concentrations and a significant decrease in kidney methyl mercury concentrations at all time points. The concentration of methyl mercury in liver was significantly increased by selenite coadministration at 5 and 20 min but at 60 min after injection the concentration was not significantly different from that found in rats receiving methyl mercury alone. Selenite treatment also significantly lowered blood methyl mercury concentrations at all time points. This decrease was associated with a significant decrease in the concentration of methyl mercury in erythrocytes at 5, 20, and 60 min. Plasma methyl mercury levels at 5 min postinjection were slightly higher in selenite-treated rats but were significantly lower in treated animals at 20 and 60 min. Treatment of rats with selenite did not specifically alter the extent of methyl mercury binding to glutathione in the 108,000 g supernatant of cerebrum of in erythrocyte hemolysates. In rats receiving either methyl mercury alone or with selenite, low-molecular-weight methyl mercury complexes could not be detected in plasma 5 min after iv injection.

  11. Perception and automatic detection of wind-induced microphone noise.

    PubMed

    Jackson, Iain R; Kendrick, Paul; Cox, Trevor J; Fazenda, Bruno M; Li, Francis F

    2014-09-01

    Wind can induce noise on microphones, causing problems for users of hearing aids and for those making recordings outdoors. Perceptual tests in the laboratory and via the Internet were carried out to understand what features of wind noise are important to the perceived audio quality of speech recordings. The average A-weighted sound pressure level of the wind noise was found to dominate the perceived degradation of quality, while gustiness was mostly unimportant. Large degradations in quality were observed when the signal to noise ratio was lower than about 15 dB. A model to allow an estimation of wind noise level was developed using an ensemble of decision trees. The model was designed to work with a single microphone in the presence of a variety of foreground sounds. The model outputted four classes of wind noise: none, low, medium, and high. Wind free examples were accurately identified in 79% of cases. For the three classes with noise present, on average 93% of samples were correctly assigned. A second ensemble of decision trees was used to estimate the signal to noise ratio and thereby infer the perceived degradation caused by wind noise. PMID:25190392

  12. Perception and automatic detection of wind-induced microphone noise.

    PubMed

    Jackson, Iain R; Kendrick, Paul; Cox, Trevor J; Fazenda, Bruno M; Li, Francis F

    2014-09-01

    Wind can induce noise on microphones, causing problems for users of hearing aids and for those making recordings outdoors. Perceptual tests in the laboratory and via the Internet were carried out to understand what features of wind noise are important to the perceived audio quality of speech recordings. The average A-weighted sound pressure level of the wind noise was found to dominate the perceived degradation of quality, while gustiness was mostly unimportant. Large degradations in quality were observed when the signal to noise ratio was lower than about 15 dB. A model to allow an estimation of wind noise level was developed using an ensemble of decision trees. The model was designed to work with a single microphone in the presence of a variety of foreground sounds. The model outputted four classes of wind noise: none, low, medium, and high. Wind free examples were accurately identified in 79% of cases. For the three classes with noise present, on average 93% of samples were correctly assigned. A second ensemble of decision trees was used to estimate the signal to noise ratio and thereby infer the perceived degradation caused by wind noise.

  13. Mercury release during autoclave sterilization of amalgam.

    PubMed

    Parsell, D E; Karns, L; Buchanan, W T; Johnson, R B

    1996-05-01

    Natural teeth are an invaluable teaching tool for preclinical instruction in operative dentistry and endodontic techniques. Cavity preparation in teeth containing amalgam restorations is a realistic simulation of an often experienced clinical situation. As various pathogens are contained in saliva, teeth must be disinfected before use by students. The purpose of this study is to indirectly evaluate whether mercury vapor is released from amalgam restorations in such teeth during steam autoclave sterilization. Mercury vapor detection, sample mass changes and x-ray fluorescence data were collected from experimental steam autoclave sterilization of amalgam samples sealed in autoclave bags. All of the data showed evidence of mercury vapor generation coincident to steam autoclave sterilization. Mercury vapor levels within the room where amalgam was exposed to steam autoclave sterilization reached levels that constitute an unnecessary health risk to dental personnel. The volume of amalgam tested simulated that contained in 175 amalgam restored teeth. Initial venting of the autoclave chamber produced mercury vapor concentrations significantly in excess of OSHA vapor concentration ceiling levels. Thus, the use of a steam autoclave for sterilization of amalgam containing teeth for use in preclinical laboratory exercises may be harmful to personnel involved.

  14. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    PubMed

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems. PMID:27439180

  15. Global change and mercury

    USGS Publications Warehouse

    Krabbenhoft, David P.; Sunderland, Elsie M.

    2013-01-01

    More than 140 nations recently agreed to a legally binding treaty on reductions in human uses and releases of mercury that will be signed in October of this year. This follows the 2011 rule in the United States that for the first time regulates mercury emissions from electricity-generating utilities. Several decades of scientific research preceded these important regulations. However, the impacts of global change on environmental mercury concentrations and human exposures remain a major uncertainty affecting the potential effectiveness of regulatory activities.

  16. Mercury/homocysteine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon.

    PubMed

    Stobiecka, Magdalena; Molinero, Anthony A; Chałupa, Agata; Hepel, Maria

    2012-06-01

    A molecular beacon (MB) with stem-loop (hairpin) DNA structure and with attached fluorophore-quencher pair at the ends of the strand has been applied to study the interactions of Hg(2+) ions with a thymine-thymine (T-T) mismatch in Watson-Crick base-pairs and the ligative disassembly of MB·Hg(2+) complex by Hg(2+) sequestration with small biomolecule ligands. In this work, a five base-pair stem with configuration 5'-GGTGG...CCTCC-3' for self-hybridization of MB has been utilized. In this configuration, the four GC base-pair binding energy is not sufficient to hybridize fully at intermediate temperatures and to form a hairpin MB conformation. The T-T mismatch built-in into the stem area can effectively bind Hg(2+) ions creating a bridge, T-Hg-T. We have found that the T-Hg-T bridge strongly enhances the ability of MB to hybridize, as evidenced by an unusually large MB melting temperature shift observed on bridge formation, ΔT(m) = +15.1 ± 0.5 °C, for 100 nM MB in MOPS buffer. The observed ΔT(m) is the largest of the ΔT(m) found for other MBs and dsDNA structures. By fitting the parameters of the proposed model of reversible MB interactions to the experimental data, we have determined the T-Hg-T bridge formation constant at 25 °C, K(1) = 8.92 ± 0.42 × 10(17) M(-1) from mercury(II) titration data and K(1) = 1.04 ± 0.51 × 10(18) M(-1) from the bridge disassembly data; ΔG° = -24.53 ± 0.13 kcal/mol. We have found that the biomarker of oxidative stress and cardiovascular disease, homocysteine (Hcys), can sequester Hg(2+) ions from the T-Hg-T complex and withdraw Hg(2+) ions from MB in the form of stable Hg(Hcys)(2)H(2) complexes. Both the model fitting and independent (1)H NMR results on the thymidine-Hg-Hcys system indicate also the high importance of 1:1 complexes. The high value of K(1) for T-Hg-T bridge formation enables analytical determinations of low concentrations of Hg(2+) (limit of detection LOD = 19 nM or 3.8 ppb, based on 3σ method) and Hcys

  17. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01

    was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  18. Mercury hazards from gold mining to humans, plants, and animals

    USGS Publications Warehouse

    Eisler, R.

    2004-01-01

    Mercury contamination of the environment from historical and ongoing mining practices that rely on mercury amalgamation for gold extraction is widespread. Contamination was particularly severe in the immediate vicinity of gold extraction and refining operations; however, mercury--especially in the form of water-soluble methylmercury--may be transported to pristine areas by rainwater, water currents, deforestation, volatilization, and other vectors. Examples of gold mining-associated mercury pollution are shown for Canada, the United States, Africa, China, the Philippines, Siberia, and South America. In parts of Brazil, for example, mercury concentrations in all abiotic materials, plants, and animals--including endangered species of mammals and reptiles--collected near ongoing mercury-amalgamation gold mining sites were far in excess of allowable mercury levels promulgated by regulatory agencies for the protection of human health and natural resources. Although health authorities in Brazil are unable to detect conclusive evidence of human mercury intoxication, the potential exists in the absence of mitigation for epidemic mercury poisoning of the mining population and environs. In the United States, environmental mercury contamination is mostly from historical gold mining practices, and portions of Nevada remain sufficiently mercury-contaminated to pose a hazard to reproduction of carnivorous fishes and fish-eating birds. Concentrations of total mercury lethal to sensitive representative natural resources range from 0.1 to 2.0 ug/L of medium for aquatic organisms; from 2200 to 31,000 ug/kg body weight (acute oral) and 4000 to 40,000 ug/kg (dietary) for birds; and from 100 to 500 ug/kg body weight (daily dose) and 1000 to 5000 ug/kg diet for mammals. Significant adverse sublethal effects were observed among selected aquatic species at water concentrations of 0.03 to 0.1 ug Hg/L. For some birds, adverse effects--mainly on reproduction--have been associated with total

  19. Ultrasensitive and rapid screening of mercury(II) ions by dual labeling colorimetric method in aqueous samples and applications in mercury-poisoned animal tissues.

    PubMed

    Deng, Yi; Wang, Xin; Xue, Feng; Zheng, Lei; Liu, Jian; Yan, Feng; Xia, Fan; Chen, Wei

    2015-04-01

    Rapid and ultrasensitive detection of trace heavy metal mercury(II) ions (Hg(2+)) are of significant importance due to the induced serious risks for environment and human health. This presented article reports the gold nanoparticle-based dual labeling colorimetric method (Dual-COLO) for ultrasensitive and rapid detection of Hg(2+) using the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) as recognition system and the dual labeling strategy for signal amplification. Both qualitative and quantitative detections of Hg(2+) are achieved successfully in aqueous samples. More importantly, the achieved detection limit of 0.005 ng mL(-1) (0.025 nM) without any instruments is very competitive to other rapid detection methods even ICP-MS based methods. This Dual-COLO method is also applied directly for real water sample monitoring and, more importantly, applied in analysis of mercury poisoned animal tissues and body fluidic samples, indicating a potentially powerful and promising tool for environmental monitoring and food safety control.

  20. Mercury in bald eagle nestlings from South Carolina, USA.

    PubMed

    Jagoe, Charles H; Bryan, A Lawrence; Brant, Heather A; Murphy, Thomas M; Brisbin, I Lehr

    2002-10-01

    Bald eagles (Haliaeetus leucocephalus) may be at risk from contaminants in their diet and young birds may be particularly sensitive to contaminant exposure. To evaluate potential risks from dietary mercury exposure to eagle nestlings in South Carolina (USA), we surveyed mercury concentrations in 34 nestlings over two breeding seasons (1998 and 1999). Samples were also obtained from several post-fledging eagles in the region. Nestling feather mercury ranged from 0.61-6.67 micrograms Hg/g dry weight, nestling down mercury from 0.50-5.05 micrograms Hg/g dry weight, and nestling blood mercury from 0.02-0.25 microgram Hg/g wet weight. We did not detect significant differences in tissue mercury between nestlings from coastal and inland regions in contrast to some other studies of piscivorous birds. Mercury concentrations were much higher in the post fledging birds we sampled. Our data show that nestling eagles in South Carolina are accumulating mercury, and that concentrations in older birds may exceed regulatory guidelines.

  1. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1989-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  2. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1988-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  3. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1991-06-18

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figures.

  4. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, M.W.; George, W.A.

    1989-11-07

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg[sub 2]Cl[sub 2] employing as the electrolyte solution a mixture of HCl and H[sub 2]O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H[sub 2]O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds. 3 figs.

  5. Recovery of mercury from mercury compounds via electrolytic methods

    DOEpatents

    Grossman, Mark W.; George, William A.

    1991-01-01

    A process for electrolytically recovering mercury from mercury compounds is provided. In one embodiment, Hg is recovered from Hg.sub.2 Cl.sub.2 employing as the electrolyte solution a mixture of HCl and H.sub.2 O. In another embodiment, Hg is electrolytically recovered from HgO wherein the electrolyte solution is comprised of glacial acetic acid and H.sub.2 O. Also provided is an apparatus for producing isotopically enriched mercury compounds in a reactor and then transporting the dissolved compounds into an electrolytic cell where mercury ions are electrolytically reduced and elemental mercury recovered from the mercury compounds.

  6. Detection of Explosives Using Differential Laser-Induced Perturbation Spectroscopy with a Raman-based Probe.

    PubMed

    Oztekin, Erman K; Burton, Dallas J; Hahn, David W

    2016-04-01

    Explosives detection is carried out with a novel spectral analysis technique referred to as differential laser-induced perturbation spectroscopy (DLIPS) on thin films of TNT, RDX, HMX, and PETN. The utility of Raman spectroscopy for detection of explosives is enhanced by inducing deep ultraviolet laser perturbation on molecular structures in combination with a differential Raman sensing scheme. Principal components analysis (PCA) is used to quantify the DLIPS method as benchmarked against a traditional Raman scattering probe, and the related photo-induced effects on the molecular structure of the targeted explosives are discussed in detail. Finally, unique detection is observed with TNT samples deposited on commonly available background substrates of nylon and polyester. Overall, the data support DLIPS as a noninvasive method that is promising for screening explosives in real-world environments and backgrounds.

  7. Mercury exposure and children's health.

    PubMed

    Bose-O'Reilly, Stephan; McCarty, Kathleen M; Steckling, Nadine; Lettmeier, Beate

    2010-09-01

    Acute or chronic mercury exposure can cause adverse effects during any period of development. Mercury is a highly toxic element; there is no known safe level of exposure. Ideally, neither children nor adults should have any mercury in their bodies because it provides no physiological benefit. Prenatal and postnatal mercury exposures occur frequently in many different ways. Pediatricians, nurses, and other health care providers should understand the scope of mercury exposures and health problems among children and be prepared to handle mercury exposures in medical practice. Prevention is the key to reducing mercury poisoning. Mercury exists in different chemical forms: elemental (or metallic), inorganic, and organic (methylmercury and ethyl mercury). Mercury exposure can cause acute and chronic intoxication at low levels of exposure. Mercury is neuro-, nephro-, and immunotoxic. The development of the child in utero and early in life is at particular risk. Mercury is ubiquitous and persistent. Mercury is a global pollutant, bio-accumulating, mainly through the aquatic food chain, resulting in a serious health hazard for children. This article provides an extensive review of mercury exposure and children's health.

  8. Mercury cycling in terrestrial watersheds

    USGS Publications Warehouse

    Shanley, James B.; Bishop, Kevin; Banks, Michael S.

    2012-01-01

    This chapter discusses mercury cycling in the terrestrial landscape, including inputs from the atmosphere, accumulation in soils and vegetation, outputs in streamflow and volatilization, and effects of land disturbance. Mercury mobility in the terrestrial landscape is strongly controlled by organic matter. About 90% of the atmospheric mercury input is retained in vegetation and organic matter in soils, causing a buildup of legacy mercury. Some mercury is volatilized back to the atmosphere, but most export of mercury from watersheds occurs by streamflow. Stream mercury export is episodic, in association with dissolved and particulate organic carbon, as stormflow and snowmelt flush organic-rich shallow soil horizons. The terrestrial landscape is thus a major source of mercury to downstream aquatic environments, where mercury is methylated and enters the aquatic food web. With ample organic matter and sulfur, methylmercury forms in uplands as well—in wetlands, riparian zones, and other anoxic sites. Watershed features (topography, land cover type, and soil drainage class) are often more important than atmospheric mercury deposition in controlling the amount of stream mercury and methylmercury export. While reductions in atmospheric mercury deposition may rapidly benefit lakes, the terrestrial landscape will respond only over decades, because of the large stock and slow turnover of legacy mercury. We conclude with a discussion of future scenarios and the challenge of managing terrestrial mercury.

  9. Detection of constitutive and inducible clindamycin resistance of staphlococcus in a rural tertiary care hospital.

    PubMed

    Das, M; Raj, H J; Mandal, S; Mitra, G

    2013-04-01

    Clindamycin has gained immense importance in the treatment of Staphylococcal infections following resistance to Beta-lactam antibiotics, especially after emergence of Methicillin Resistant Staphylococcus aureus. Clindamycin is a valuable treatment option for Staphylococcal isolates that are erythromycin resistant and clindamycin sensitive. However following exposure to erythromycin, clindamycin sensitive strains may lead to constitutive clindamycin resistance and treatment failure. But labeling all erythromycin resistant Staphylococci as clindamycin resistant strain prevents its use in infections caused by true clindamycin sensitive strains. This study aims to detect the presence of inducible clindamycin resistance among clinical isolates of Staphylococci. The detection of inducible clindamycin resistance was performed by D-Test as per the NCCLS guidelines. Among two hundred clinical isolates of Staphylococci studied, there was 24% inducible Clindamycin resistance among all the Staphylococci isolates: 29.4% among Methicillin Resistant Staphylococcus aureus and 21% among Methicillin Sensitive Staphylococcus aureus. It is advisable to include inducible clindamycin resistance testing as part of routine antimicrobial susceptibility testing.

  10. A regenerative electrochemical sensor based on oligonucleotide for the selective determination of mercury(II).

    PubMed

    Han, Donghoon; Kim, Yang-Rae; Oh, Jeong-Wook; Kim, Tae Hyun; Mahajan, Rakesh Kumar; Kim, Jong Seung; Kim, Hasuck

    2009-09-01

    We have developed a selective, sensitive, and re-usable electrochemical sensor for Hg2+ ion detection. This sensor is based on the Hg2+-induced conformational change of a single-stranded DNA (ssDNA) which involves an electroactive, ferrocene-labeled DNA hairpin structure and provides strategically the selective binding of a thymine-thymine mismatch for the Hg2+ ion. The ferrocene-labeled DNA is self-assembled through S-Au bonding on a polycrystalline gold electrode surface and the surface blocked with 3-mercapto-1-propanol to form a mixed monolayer. The modified electrode showed a voltammetric signal due to a one-step redox reaction of the surface-confined ferrocenyl moiety. The 'signal-on' upon mercury binding could be attributed to a change in the conformation of ferrocene-labeled DNA from an open structure to a restricted hairpin structure. The differential pulse voltammetry (DPV) of the modified electrode showed a linear response of the ferrocene oxidation signal with increase of Hg2+ concentration in the range between 0.1 and 2 microM with a detection limit of 0.1 microM. The molecular beacon mercury(II) ion sensor was amenable to regeneration by simply unfolding the ferrocene-labeled DNA in 10 microM cysteine, and could be regenerated with no loss in signal gain upon subsequent mercury(II) ion binding.

  11. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    Mercury has been identified as an important contaminant in the Delta, based on elevated concentrations of methylmercury (a toxic, organic form that readily bioaccumulates) in fish and wildlife. There are health risks associated with human exposure to methylmercury by consumption of sport fish, particularly top predators such as bass species. Original mercury sources were upstream tributaries where historical mining of mercury in the Coast Ranges and gold in the Sierra Nevada and Klamath-Trinity Mountains caused contamination of water and sediment on a regional scale. Remediation of abandoned mine sites may reduce local sources in these watersheds, but much of the mercury contamination occurs in sediments stored in the riverbeds, floodplains, and the Bay- Delta, where scouring of Gold-Rush-era sediment represents an ongoing source.Conversion of inorganic mercury to toxic methylmercury occurs in anaerobic environments including some wetlands. Wetland restoration managers must be cognizant of potential effects on mercury cycling so that the problem is not exacerbated. Recent research suggests that wettingdrying cycles can contribute to mercury methylation. For example, high marshes (inundated only during the highest tides for several days per month) tend to have higher methylmercury concentrations in water, sediment, and biota compared with low marshes, which do not dry out completely during the tidal cycle. Seasonally inundated flood plains are another environment experiencing wetting and drying where methylmercury concentrations are typically elevated. Stream restoration efforts using gravel injection or other reworking of coarse sediment in most watersheds of the Central Valley involve tailings from historical gold mining that are likely to contain elevated mercury in associated fines. Habitat restoration projects, particularly those involving wetlands, may cause increases in methylmercury exposure in the watershed. This possibility should be evaluated.The DRERIP

  12. Mercury CEM Calibration

    SciTech Connect

    John F. Schabron; Joseph F. Rovani; Susan S. Sorini

    2007-03-31

    The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005, requires that calibration of mercury continuous emissions monitors (CEMs) be performed with NIST-traceable standards. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The traceability protocol will be written by EPA. Traceability will be based on the actual analysis of the output of each calibration unit at several concentration levels ranging from about 2-40 ug/m{sup 3}, and this analysis will be directly traceable to analyses by NIST using isotope dilution inductively coupled plasma/mass spectrometry (ID ICP/MS) through a chain of analyses linking the calibration unit in the power plant to the NIST ID ICP/MS. Prior to this project, NIST did not provide a recommended mercury vapor pressure equation or list mercury vapor pressure in its vapor pressure database. The NIST Physical and Chemical Properties Division in Boulder, Colorado was subcontracted under this project to study the issue in detail and to recommend a mercury vapor pressure equation that the vendors of mercury vapor pressure calibration units can use to calculate the elemental mercury vapor concentration in an equilibrium chamber at a particular temperature. As part of this study, a preliminary evaluation of calibration units from five vendors was made. The work was performed by NIST in Gaithersburg, MD and Joe Rovani from WRI who traveled to NIST as a Visiting Scientist.

  13. To Mercury dynamics

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.; Ferrandiz, J. M.

    Present significance of the study of rotation of Mercury considered as a core-mantle system arises from planned Mercury missions. New high accurate data on Mercury's structure and its physical fields are expected from BepiColombo mission (Anselmi et al., 2001). Investigation of resonant rotation of Mercury, begun by Colombo G. (1966), will play here main part. New approaches to the study of Mercury dynamics and the construction of analytical theory of its resonant rotation are suggested. Within these approaches Mercury is considered as a system of two non-spherical interacting bodies: a core and a mantle. The mantle of Mercury is considered as non-spherical, rigid (or elastic) layer. Inner shell is a liquid core, which occupies a large ellipsoidal cavity of Mercury. This Mercury system moves in the gravitational field of the Sun in resonant traslatory-rotary regime of the resonance 3:2. We take into account only the second harmonic of the force function of the Sun and Mercury. For the study of Mercury rotation we have been used specially designed canonical equations of motion in Andoyer and Poincare variables (Barkin, Ferrandiz, 2001), more convenient for the application of mentioned methods. Approximate observational and some theoretical evaluations of the two main coefficients of Mercury gravitational field J_2 and C22 are known. From observational data of Mariner-10 mission were obtained some first evaluations of these coefficients: J_2 =(8± 6)\\cdot 10-5(Esposito et al., 1977); J_2 =(6± 2)\\cdot 10-5and C22 =(1.0± 0.5)\\cdot 10-5(Anderson et al., 1987). Some theoretical evaluation of ratio of these coefficients has been obtained on the base of study of periodic motions of the system of two non-spherical gravitating bodies (Barkin, 1976). Corresponding values of coefficients consist: J_2 =8\\cdot 10-5and C22 =0.33\\cdot 10-5. We have no data about non-sphericity of inner core of Mercury. Planned missions to Mercury (BepiColombo and Messenger) promise to

  14. Automated detection of fecal contamination of apples by multispectral laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Lefcourt, Alan M.; Kim, Moon S.; Chen, Yud-Ren

    2003-07-01

    Animal feces are a suspected source of contamination of apples by disease-causing organisms such as Escherichia coli O157. Laser-induced fluorescence was used to detect different amounts of feces from dairy cows, deer, and a dairy pasture applied to Red Delicious apples. One day after application, detection for 1:2 and 1:20 dilutions was nearly 100%, and for 1:200 dilutions (<15 ng of dry matter) detection was >80%. Detection after apples had been washed and brushed was lowest for pasture feces; detection for 1:2, 1:20, and 1:200 dilutions of feces was 100%, 30%, and 0%, respectively. This technology may encourage development of commercial systems for detecting fecal contamination of apples.

  15. Photoacoustic detection of induced melanoma in vitro using a mouse model

    NASA Astrophysics Data System (ADS)

    Gupta, Sagar; Bhattacharya, Kiran; Newton, Jessica R.; Quinn, Thomas P.; Viator, John A.

    2012-03-01

    Metastasis is a life threatening complex physiological phenomenon that involves the movement of cancer cells from one organ to another by means of blood and lymph. An understanding about metastasis is extremely important to device diagnostic systems to detect and monitor its spread within the body. For the first time we report rapid photoacoustic detection of the induced metastatic melanoma in mice in vitro using photoacoustic flowmetry. A new photoacoustic flow system is developed, that employs photoacoustic excitation coupled with an ultrasound transducer capable of determining the presence of individual, induced mouse melanoma cells (B16/F10) within the circulating system in vitro. Tumor was induced in mice by injecting mouse melanoma cells through tail vein into the C57BL/6 mice. A luciferase based in vivo bioluminescence imaging is performed to confirm the tumor load and multiple metastases in the tumor-induced mice. 1ml of blood obtained through cardiac puncture of the induced metastasized mice was treated to lyse the red blood cells (RBC) and enriched, leaving the induced melanoma in the peripheral blood mononuclear suspension (PBMC). A photoacoustic flowsystem coupled with an ultrasound transducer is used to detect the individual circulating metastatic melanoma cells from the enriched cell suspension.

  16. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.

    1997-01-01

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.

  17. Method and apparatus for monitoring mercury emissions

    DOEpatents

    Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.

    1997-10-21

    A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.

  18. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter

    2002-12-31

    SRD tested a number of different length cavities during this past quarter. Continuous transmission was observed with cavity lengths from 65 to 12 cm. The 65 cm cavity was replaced with a 39 cm cavity for work performed during this quarter. Flue gas components were tested for background absorptions and any interference with the determination of accurate mercury concentrations. Sulfur dioxide was found to absorb fairly strongly in the region of the mercury transition, but the Cavity Ring-Down (CRD) instrument was still able to detect mercury at subparts-per-billion by volume (ppb) levels. Additional flue gases tested included H{sub 2}O, CO, CO{sub 2}, NO, NO{sub 2}. None of these flue gas constituents showed any observable absorption in the ultraviolet region near the atomic mercury transition. Work was also initiated in speciation studies. In particular mercury chloride (HgCl{sub 2}) was tested. A mercury signal was detected from a gas stream containing HgCl{sub 2}. SRD was not able to determine definitively if there exists a spectral shift great enough to separate HgCl{sub 2} from elemental mercury in these initial tests.

  19. Chronic atrophic gastritis in association with hair mercury level.

    PubMed

    Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu

    2014-11-01

    The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy

  20. Chronic atrophic gastritis in association with hair mercury level.

    PubMed

    Xue, Zeyun; Xue, Huiping; Jiang, Jianlan; Lin, Bing; Zeng, Si; Huang, Xiaoyun; An, Jianfu

    2014-11-01

    The objective of this study was to explore hair mercury level in association with chronic atrophic gastritis, a precancerous stage of gastric cancer (GC), and thus provide a brand new angle of view on the timely intervention of precancerous stage of GC. We recruited 149 healthy volunteers as controls and 152 patients suffering from chronic gastritis as cases. The controls denied upper gastrointestinal discomforts, and the cases were diagnosed as chronic superficial gastritis (n=68) or chronic atrophic gastritis (n=84). We utilized Mercury Automated Analyzer (NIC MA-3000) to detect hair mercury level of both healthy controls and cases of chronic gastritis. The statistic of measurement data was expressed as mean ± standard deviation, which was analyzed using Levene variance equality test and t test. Pearson correlation analysis was employed to determine associated factors affecting hair mercury levels, and multiple stepwise regression analysis was performed to deduce regression equations. Statistical significance is considered if p value is less than 0.05. The overall hair mercury level was 0.908949 ± 0.8844490 ng/g [mean ± standard deviation (SD)] in gastritis cases and 0.460198 ± 0.2712187 ng/g (mean±SD) in healthy controls; the former level was significantly higher than the latter one (p=0.000<0.01). The hair mercury level in chronic atrophic gastritis subgroup was 1.155220 ± 0.9470246 ng/g (mean ± SD) and that in chronic superficial gastritis subgroup was 0.604732 ± 0.6942509 ng/g (mean ± SD); the former level was significantly higher than the latter level (p<0.01). The hair mercury level in chronic superficial gastritis cases was significantly higher than that in healthy controls (p<0.05). The hair mercury level in chronic atrophic gastritis cases was significantly higher than that in healthy controls (p<0.01). Stratified analysis indicated that the hair mercury level in healthy controls with eating seafood was significantly higher than that in healthy

  1. Fluorescence dye tagging scheme for mercury quantification and speciation

    DOEpatents

    Jiao, Hong; Catterall, Hannah

    2015-09-22

    A fluorescent dye or fluorophore capable of forming complexes with mercury comprises 6,8-difluoro-7-hydroxy-2-oxo-2H-chromene-3-carboxylate amide, wherein the amide is formed by reacting the succinimidyl ester (Pacific Blue.TM.) with an amino acid containing a thiol group, such as cysteine or glutathione. Mercury complexes of the fluorophore fluoresce when excited by a UV or violet laser diode, and the detected intensity can be calibrated to quantify the concentration of mercury in a sample reacted with the fluorophore.

  2. GEOCHEMICAL FACTORS GOVERNING METHYL MERCURY PRODUCTION IN MERCURY CONTAMINATED SEDIMENTS

    EPA Science Inventory

    Bench scale experiments were conducted to improve our understanding of aquatic mercury transformation processes (biotic and abiotic), specifically those factors which govern the production of methyl mercury (MeHg) in sedimentary environments. The greatest cause for concern regar...

  3. Antioxidative responses and bioaccumulation in Japanese flounder larvae and juveniles under chronic mercury exposure.

    PubMed

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Yin, Xuebo; Dou, Shuozeng

    2010-06-01

    This study investigated the sub-lethal effects of waterborne mercury on growth, bioaccumulation and antioxidative responses of larvae and juveniles of Japanese flounder (Paralichthys olivaceus). Fish were exposed to 0-10 microg Hg(2)(+)L(-1) solutions from embryonic to the juvenile stages for 80 days. Antioxidative responses to mercury exposure were studied in metamorphosing larvae (18 days post hatching, dph), settling larvae (33 dph) and juveniles (78 dph). Results showed that increasing mercury concentration led to increased mercury bioaccumulation and reduced flounder growth. Of the antioxidants investigated, superoxide dismutase (SOD) and catalase (CAT) activities at the three developmental stages were sensitive to mercury exposure and increased with increasing mercury concentration. Glutathione (GSH) content was elevated in metamorphosing larvae, but decreased in juveniles as mercury concentration increased. Glutathione-S-transferase (GST) activity did not significantly vary with mercury concentration in either larvae or juveniles. Mercury exposure did not affect malondialdehyde (MDA) content of larvae, but significantly increased MDA content of juveniles. Results suggest that flounder larvae and juveniles have the potential to manipulate the levels of antioxidants such as SOD, CAT and GSH, which protect flounder from oxidative stress induced by mercury exposure. These antioxidants could serve as biomarkers of mercury contamination in the aquatic environment.

  4. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  5. Mercury pollution in Malaysia.

    PubMed

    Hajeb, Parvaneh; Jinap, S; Ismail, Ahmad; Mahyudin, Nor Ainy

    2012-01-01

    Although several studies have been published on levels of mercury contamination of the environment, and of food and human tissues in Peninsular Malaysia, there is a serious dearth of research that has been performed in East Malaysia (Sabah and Sarawak). Industry is rapidly developing in East Malaysia, and, hence, there is a need for establishing baseline levels of mercury contamination in environmental media in that part of the country by performing monitoring studies. Residues of total mercury and inorganic in food samples have been determined in nearly all previous studies that have been conducted; however, few researchers have analyzed samples for the presence of methlymercury residues. Because methylmercury is the most toxic form of mercury, and because there is a growing public awareness of the risk posed by methylmercury exposure that is associated with fish and seafood consumption, further monitoring studies on methylmercury in food are also essential. From the results of previous studies, it is obvious that the economic development in Malaysia, in recent years, has affected the aquatic environment of the country. Primary areas of environmental concern are centered on the rivers of the west Peninsular Malaysian coast, and the coastal waters of the Straits of Malacca, wherein industrial activities are rapidly expanding. The sources of existing mercury input to both of these areas of Malaysia should be studied and identified. Considering the high levels of mercury that now exists in human tissues, efforts should be continued, and accelerated in the future, if possible, to monitor mercury contamination levels in the coastal states, and particularly along the west Peninsular Malaysian coast. Most studies that have been carried out on mercury residues in environmental samples are dated, having been conducted 20-30 years ago; therefore, the need to collect much more and more current data is urgent. Furthermore, establishing baseline levels of mercury exposure to

  6. Attogram detection limit for aqueous dye samples by laser-induced fluorescence

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Keller, R.A.

    1983-02-18

    A modified flow cytometer has been used to detect attogram quantities of aqueous rhodamine 6G by laser-induced fluorescence analysis. A detection limit of 28 attograms (35,000 molecules) was obtained, nearly two orders of magnitude better than earlier measurements. The detection limit in concentration units was 1.4 x 10/sup -13/ mole per liter. During the 1-second measurement period, the total volume sampled was 0.42 microliter. On average, only half a rhodamine 6G molecule was present in the 6-picoliter probed volume.

  7. Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection

    NASA Astrophysics Data System (ADS)

    Gottfried, Jennifer L.; De Lucia, Frank C.; Munson, Chase A.; Miziolek, Andrzej W.

    2007-12-01

    We have developed a double-pulse standoff laser-induced breakdown spectroscopy (ST-LIBS) system capable of detecting a variety of hazardous materials at tens of meters. The use of a double-pulse laser improves the sensitivity and selectivity of ST-LIBS, especially for the detection of energetic materials. In addition to various metallic and plastic materials, the system has been used to detect bulk explosives RDX and Composition-B, explosive residues, biological species such as the anthrax surrogate Bacillus subtilis, and chemical warfare simulants at 20 m. We have also demonstrated the discrimination of explosive residues from various interferents on an aluminum substrate.

  8. The Distant Sodium Tail of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.; Morgan, T. H.

    2001-01-01

    Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.

  9. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2003-06-30

    Previous work on the detection of mercury using the cavity ring-down (CRD) technique has concentrated on the detection and characterization of the desired mercury transition. Interferent species present in flue gas emissions have been tested as well as a simulated flue gas stream. Additionally, work has been done on different mercury species such as the elemental and oxidized forms. The next phase of the effort deals with the actual sampling system. This sampling system will be responsible for acquiring a sample stream from the flue gas stack, taking it to the CRD cavity where it will be analyzed and returning the gas stream to the stack. In the process of transporting the sample gas stream every effort must be taken to minimize any losses of mercury to the walls of the sampling system as well as maintaining the mercury in its specific state (i.e. elemental, oxidized, or other mercury compounds). SRD first evaluated a number of commercially available sampling systems. These systems ranged from a complete sampling system to a number of individual components for specific tasks. SRD engineers used some commercially available components and designed a sampling system suited to the needs of the CRD instrument. This included components such as a pyrolysis oven to convert all forms of mercury to elemental mercury, a calibration air source to ensure mirror alignment and quality of the mirror surfaces, and a pumping system to maintain the CRD cavity pressure from atmospheric pressure (760 torr) down to about 50 torr. SRD also began evaluating methods for the CRD instrument to automatically find the center of a mercury transition. This procedure is necessary as the instrument must periodically measure the baseline losses of the cavity off of the mercury resonance and then return to the center of the transition to accurately measure the mercury concentration. This procedure is somewhat complicated due to the isotopic structure of the 254 nm mercury transition. As a result of

  10. Mercury speciation analysis in terrestrial animal tissues.

    PubMed

    Berzas Nevado, J J; Rodríguez Martín-Doimeadios, R C; Guzmán Bernardo, F J; Rodríguez Fariñas, N; Patiño Ropero, M J

    2012-09-15

    No previous analytical procedures are available and validated for mercury speciation analysis in terrestrial animal tissues. This analysis is a difficult task both because the expected concentrations are low, since important accumulation process are not likely to occur, and also because there are not commercially available certified reference material. Thus, an analytical methodology has been developed and validated for mercury speciation for the specific case of terrestrial animal tissues. The proposed method is based on the quantitative extraction of the species by closed-vessel microwave assisted heating with an alkaline reagent, followed by ethylation. The ethylated derivatives were then submitted to head-space solid phase microextraction with a 100 μm polidimethylsiloxane-coated fiber, and desorbed onto a gas chromatograph coupled to atomic fluorescence detection via pyrolysis unit (HS-SPME-GC-pyro-AFS). Procedural detection limits were 31.8 ng g(-1) and 52.5 ng g(-1) for CH(3)Hg(+) and Hg(2+), respectively, for liver and 35.3 ng g(-1) and 58.1 ng g(-1) for CH(3)Hg(+) and Hg(2+), respectively, for kidney. These limits of detection are 5.5 and 6 times better than the obtained without solid phase microextraction for CH(3)Hg(+) and Hg(2+), respectively. The methodology was found linear up to 120 μg L(-1) and reproducible from one day to the following. It was validated with certified reference materials NCS ZC 71001 (beef liver) and BCR No 186 (pig kidney) for total mercury, calculated as the sum of species, and with spiked red deer liver and kidney for speciation. Finally, it was applied to the analysis of samples of red deer liver, red deer kidney and wild boar kidney coming from the Almadén's mercury mining area (Ciudad Real, Spain), the longest and largest producer of mercury in the world until its closure in 2002. PMID:22967634

  11. MESSENGER: Exploring Mercury's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Krimigis, Stamatios M.; Acuna, Mario H.; Anderson, Brian J.; Baker, Daniel N.; Koehn, Patrick L.; Korth, Haje; Levi, Stefano; Mauk, Barry H.; Solomon, Sean C.; Zurbuchen, Thomas H.

    2005-01-01

    The MESSENGER mission to Mercury offers our first opportunity to explore this planet s miniature magnetosphere since the brief flybys of Mariner 10. Mercury s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only - 1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. The characteristic time scales for wave propagation and convective transport are short and kinetic and fluid modes may be coupled. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury s interior. In addition, Mercury s magnetosphere is the only one with its defining magnetic flux tubes rooted in a planetary regolith as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, - 1-2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury s magnetic tail. Because of Mercury s proximity to the sun, 0.3 - 0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and re-cycling of neutrals and ions between the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection at the magnetopause and in the tail, and the pick-up of planetary ions all

  12. DETECTION OF A CRITICAL PERIOD NECESSARY FOR ATRAZINE-INDUCED MAMMARY GLAND DELAYS IN RATS

    EPA Science Inventory

    Detection of a Critical Period Necessary for Atrazine-Induced Mammary Gland Delays in Rats.

    Jennifer L. Rayner1 and Suzanne E. Fenton2

    1 University of North Carolina at Chapel Hill, DESE, Chapel Hill, NC, and 2 Reproductive Toxicology Division, USEPA, NHEERL/ORD, R...

  13. Influence of dental biofilm on release of mercury from amalgam exposed to carbamide peroxide.

    PubMed

    Steinberg, Doron; Blank, Ori; Rotstein, Ilan

    2003-10-15

    Tooth bleaching is a popular procedure in modern aesthetic dentistry. Bleaching agents may affect amalgam restorations by altering the release of mercury. The aim of this study was to explore the effect of biofilm-coated amalgam restorations on the release of mercury in the presence of carbamide peroxide. Samples of SDI and Valliant amalgams were submerged for either 14 days or 7 months in buffered KCl after which they were coated with saliva, bacteria, and polysaccharides. The samples were exposed to 10% carbamide peroxide (CP) for 24 h. The amount of mercury released was examined for 120 h. Results showed that most of mercury release occurred within the first 24 h, after which the release rate decreased sharply. After 120 h the release of mercury from the tested samples was minimal and similar to the control group. The presence of biofilm coating on the amalgam samples did not induce the release of mercury but tended to reduce mercury release into the surrounding environment. CP induces the release of mercury from amalgam samples. However, the presence of biofilm did not prevent large amounts of mercury release from amalgam coated with biofilms and exposed to CP. This study indicates that dental biofilm may retard the release of mercury from amalgam restorations.

  14. Determination of mercurous chloride and total mercury in mercury ores

    USGS Publications Warehouse

    Fahey, J.J.

    1937-01-01

    A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.

  15. Detection of drilling-induced delamination in aeronautical composites by noncontact laser ultrasonic method.

    PubMed

    Zhou, Zhenggan; Sun, Guangkai; Chen, Xiucheng; Wang, Jie

    2014-04-20

    A novel application of the laser ultrasonic technique for the detection of drilling-induced delamination in composite components of aircrafts is proposed. Numerous key components of aircrafts are made of composite materials, and drilling is often a final operation during assembly. Drilling-induced delamination significantly reduces the structural reliability, and it is rather difficult to be detected effectively and automatically. The laser ultrasonic technique is a promising method to solve the problem. This paper investigates the characterization of drilling-induced delamination in composites by a noncontact laser ultrasonic method. A carbon fiber reinforced plastic laminate with drilling holes is prepared as a specimen. The characterization of drilling-induced delamination with laser-generated ultrasonic waves is investigated theoretically and experimentally, and the morphology features of the delamination are obtained by laser ultrasonic C-scan testing. The results prove that the laser ultrasonic technique is effective for the detection of drilling-induced delamination in composite components, and it is a feasible solution for evaluating the drilling quality during assembly.

  16. Mercury-selenium interactions in relation to histochemical staining of mercury in the rat liver.

    PubMed

    Baatrup, E; Thorlacius-Ussing, O; Nielsen, H L; Wilsky, K

    1989-02-01

    Selenium has been suggested to enhance the histochemical staining of mercury when sections of tissue are subjected to the silver-enhancement method. In the present study, histochemical staining patterns of mercury in tissue sections of rat livers were compared with the actual content of organic and inorganic Hg in the livers, in both the presence and the absence of Se. Rats were injected intravenously with 5 micrograms of Hg g-1 body weight as methyl [203Hg] mercury chloride (MeHg) or as [203Hg]mercuric chloride (Hg2+). After 2 h, half the rats received an additional intraperitoneal injection of 2 micrograms of Se g-1 body weight as sodium [75Se]selenite. All the rats were killed 1 h later. Homogenized liver samples were prepared for mercury analysis by two different methods: alkaline digestion and ultrasonic disintegration. Quantitative chemical analysis based on benzene extraction of the radioactively labelled Hg compounds showed that the chemical form of mercury, either organic or inorganic, was preserved from its administration to its deposition in the liver. Light and electron microscopy demonstrated that no silver enhancement of Hg occurred when MeHg alone was present in the sections of tissue, whereas MeHg accompanied by Se induced a moderate deposition of silver grains. In contrast, sections containing Hg2+ alone yielded some staining, and the addition of Se increased the staining dramatically. The results of the present study show that acute selenite pretreatment is a prerequisite for the histochemical demonstration of methyl mercury, and greatly increases the staining of inorganic mercury when applying the silver-enhancement method.

  17. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    PubMed Central

    Zhang, Jing; Wu, Huizhe; Chen, Qiuchen; Zhao, Pengfei; Zhao, Haishan; Yao, Weifan; Wei, Minjie

    2015-01-01

    Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A) from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature. PMID:26347880

  18. Gas chromatography coupled with atomic absorption spectrometry — a sensitive instrumentation for mercury speciation

    NASA Astrophysics Data System (ADS)

    Emteborg, Håkan; Sinemus, Hans-Werner; Radziuk, Bernard; Baxter, Douglas C.; Frech, Wolfgang

    1996-07-01

    New instrumentation for the speciation of mercury is described, and is applied to the analysis of natural water samples. The separation of mercury species is effected using gas chromatography of derivatized mercury species on a widebore capillary column. The solvent is vented using a bypass valve and the separated mercury species are pyrolysed on-line at 800°C for production of mercury atoms. These are then detected by atomic absorption spectrometry (AAS) at the 253.7 and 184.9 nm lines simultaneously in a quartz cuvette. The use of the 184.9 nm line provides a more than five-fold increase in sensitivity compared with the conventional 253.7 nm line and an absolute detection limit of 0.5 pg of mercury. The dynamic range of the combined analytical lines provides a linear response over more than three orders of magnitude. A number of organic compounds not containing mercury are also detected following pyrolysis, especially at the 184.9 nm line. These background species must not co-elute at the retention times for methyl- and inorganic mercury, as otherwise a positive interference would result. By maximizing the chromatographic resolution and minimizing the band broadening in the cuvette by use of a make-up gas, the retention times of interest are freed from co-eluting background peaks. The instrumentation has been applied to the determination of ng l -1 concentrations of methyl- and inorganic mercury in Lake Constance, Germany and within the Lake Constance drinking water supply organization, Bodenseewasserversorgung (BWV). The accuracy for the sum of methyl- and inorganic mercury has been assessed by comparison with an independent method for total mercury based on AAS detection implemented at BWV. Relative detection limits using 1 litre water samples and 15 ml injections of the final hexane extract were 0.03 ng l -1 for methylmercury and 0.4 ng l -1 for inorganic mercury based on the 3j criterion.

  19. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu.

    PubMed

    Kukreja, R; Bonetti, S; Chen, Z; Backes, D; Acremann, Y; Katine, J A; Kent, A D; Dürr, H A; Ohldag, H; Stöhr, J

    2015-08-28

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10^{-5}μ_{B} on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott's two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10^{-3}μ_{B} per atom. This reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow. PMID:26371670

  20. X-ray detection of transient magnetic moments induced by a spin current in Cu

    SciTech Connect

    Kukreja, R.; Bonetti, S.; Chen, Z.; Backes, D.; Acremann, Y.; Katine, J.; Kent, A. D.; Durr, H. A.; Ohldag, H.; Stohr, J.

    2015-08-24

    We have used a MHz lock-in x-ray spectromicroscopy technique to directly detect changes in magnetic moment of Cu due to spin injection from an adjacent Co layer. The elemental and chemical specificity of x rays allows us to distinguish two spin current induced effects. We detect the creation of transient magnetic moments of 3×10–5μB on Cu atoms within the bulk of the 28 nm thick Cu film due to spin accumulation. The moment value is compared to predictions by Mott’s two current model. We also observe that the hybridization induced existing magnetic moments at the Cu interface atoms are transiently increased by about 10% or 4×10–3μB per atom. As a result, this reveals the dominance of spin-torque alignment over Joule heat induced disorder of the interfacial Cu moments during current flow.

  1. Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections

    USGS Publications Warehouse

    McClintock, Brett T.; Bailey, Larissa L.; Pollock, Kenneth H.; Simons, Theodore R.

    2010-01-01

    The recent surge in the development and application of species occurrence models has been associated with an acknowledgment among ecologists that species are detected imperfectly due to observation error. Standard models now allow unbiased estimation of occupancy probability when false negative detections occur, but this is conditional on no false positive detections and sufficient incorporation of explanatory variables for the false negative detection process. These assumptions are likely reasonable in many circumstances, but there is mounting evidence that false positive errors and detection probability heterogeneity may be much more prevalent in studies relying on auditory cues for species detection (e.g., songbird or calling amphibian surveys). We used field survey data from a simulated calling anuran system of known occupancy state to investigate the biases induced by these errors in dynamic models of species occurrence. Despite the participation of expert observers in simplified field conditions, both false positive errors and site detection probability heterogeneity were extensive for most species in the survey. We found that even low levels of false positive errors, constituting as little as 1% of all detections, can cause severe overestimation of site occupancy, colonization, and local extinction probabilities. Further, unmodeled detection probability heterogeneity induced substantial underestimation of occupancy and overestimation of colonization and local extinction probabilities. Completely spurious relationships between species occurrence and explanatory variables were also found. Such misleading inferences would likely have deleterious implications for conservation and management programs. We contend that all forms of observation error, including false positive errors and heterogeneous detection probabilities, must be incorporated into the estimation framework to facilitate reliable inferences about occupancy and its associated vital rate parameters.

  2. Application of laser-induced autofluorescence spectra detection in human colorectal cancer screening

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Chia, Teck-Chee; Kwek, Leong Chuan; Diong, Cheong Hoong; Tang, Choong Leong; Choen, Francis S.; Krishnan, S. M.

    2003-10-01

    We investigated 48 normal patients and 25 diseased patients using our laser-induced autofluorescence spectra detection system during their regular colonoscopy. The colon and rectum mucosa autofluorescence were excited by 405 nm continue wavelength laser. We observed that cancer or diseased colorectal mucosa, their autofluorescence spectra are significantly different from normal area. The autofluorescence spectra intensity at about 500 nm was been used for our intensity ratio characteristics intensity for our diagnostic algorithm. The intensity ratios of RI-680/I-500 and RI-630/I-500 were performed to identify the detection area. From experimental result we concluded that both intensity ratios of RI-680/I-500 and RI-630/I-500 as guidelines can detect cancerous and polyps disease completely. Our investigation provided some useful insight for laser induced autofluorescence spectra as a diagnosis technique for clinical application.

  3. Molecular beacon probes for the detection of cisplatin-induced DNA damage.

    PubMed

    Shire, Zahra J; Loppnow, Glen R

    2012-04-01

    Cisplatin (cis-diamminedichloroplatinum(II)) causes crosslinking of DNA at AG and GG sites in cellular DNA, inhibiting replication, and making it a useful anti-cancer drug. Several techniques have been used previously to detect nucleic acid damage but most of these tools are labour-intensive, time-consuming, and/or expensive. Here, we describe a sensitive, robust, and quantitative tool for detecting cisplatin-induced DNA damage by using fluorescent molecular beacon probes (MB). Our results show a decrease of fluorescence in the presence of cisplatin-induced DNA damage, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The decrease in fluorescence upon damage scales with the number of AG and GG sites, indicating the ability of MB to quantitatively detect DNA damage by cisplatin.

  4. Ultrasensitive and selective detection of mercury (II) in serum based on the gold film sensor using a laser scanning confocal imaging-surface plasmon resonance system in real time

    NASA Astrophysics Data System (ADS)

    Liu, Sha; Zhang, Hongyan; Liu, Weimin; Wang, Pengfei

    2015-10-01

    Hg2+ ions are one of the most toxic heavy metal ion pollutants, and are caustic and carcinogenic materials with high cellular toxicity. The Hg2+ ions can accumulate in the human body through the food chain and cause serious and permanent damage to the brain with both acute and chronic toxicity. According to the US Environment Protection Agency (EPA) guidelines, Hg2+ ions must be at concentrations below 1 ng/ml (10 nM) in drinking water. If the Hg2+ ions are higher than 2.5 ng/ml in serum, that will bring mercury poisoning. The traditional testing for Hg2+ ions includes atomic absorption, atomic fluorescence, and inductively coupled plasma mass spectrometry. These methods are usually coupled with gas chromatography, high-performance liquid chromatography, and capillary electrophoresis. However, these instrument-based techniques are rather complicated, time-consuming, costly, and unsuitable for online and portable use. An ultrasensitive and selective detection of mercury (II) in serum was investigated using a laser scanning confocal imaging-surface plasmon resonance system (LSCI-SPR). The detection limit was as low as 0.01 ng/ml for Hg2+ ions in fetal calf serum and that is lower than that was required Hg2+ ions must be at concentrations below 1 ng/ml by the US Environment Protection Agency (EPA) guidelines. This sensor was designed on a T-rich, single-stranded DNA (ssDNA)-modified gold film, which can be individually manipulated using specific T-Hg2+-T complex formation. The quenching intensity of the fluorescence images for rhodamine-labeled ssDNA fitted well with the changes in SPR. The changes varied with the Hg2+ ion concentration, which is unaffected by the presence of other metal ions. A good liner relation was got with the coefficients of 0.9116 in 30% fetal calf serums with the linear part over a range of 0.01 ng/ml to10 ng/ml.

  5. Five Hundred Years of Mercury Exposure and Adaptation

    SciTech Connect

    Lombardi, Guido; Lanzirotti, Antonio; Qualls, Clifford; Socola, Francisco; Ali, Abdul-Mehdi; Appenzeller, Otto

    2012-01-01

    Mercury is added to the biosphere by anthropogenic activities raising the question of whether changes in the human chromatin, induced by mercury, in a parental generation could allow adaptation of their descendants to mercury. We review the history of Andean mining since pre-Hispanic times in Huancavelica, Peru. Despite the persistent degradation of the biosphere today, no overt signs of mercury toxicity could be discerned in present day inhabitants. However, mercury is especially toxic to the autonomic nervous system (ANS). We, therefore, tested ANS function and biologic rhythms, under the control of the ANS, in 5 Huancavelicans and examined the metal content in their hair. Mercury levels varied from none to 1.014 ppm, significantly less than accepted standards. This was confirmed by microfocused synchrotron X-ray fluorescence analysis. Biologic rhythms were abnormal and hair growth rate per year, also under ANS control, was reduced (P<0.001). Thus, evidence of mercury’s toxicity in ANS function was found without other signs of intoxication. Our findings are consistent with the hypothesis of partial transgenerational inheritance of tolerance to mercury in Huancavelica, Peru. This would generally benefit survival in the Anthropocene, the man-made world, we now live in.

  6. Mercury toxicity, molecular response and tolerance in higher plants.

    PubMed

    Chen, Jian; Yang, Zhi Min

    2012-10-01

    Mercury (Hg) contamination in soils has become a great concern as a result of its natural release and anthropogenic activities. This review presents broad aspects of our recent understanding of mercury contamination and toxicology in plants including source of Hg contamination, toxicology, tolerant regulation in plants, and minimization strategy. We first introduced the sources of mercury contamination in soils. Mercury exists in different forms, but ionic mercury (Hg(2+)) is the predominant form in soils and readily absorbed by plants. The second issue to be discussed is the uptake, transport, and localization of Hg(2+) in plants. Mercury accumulated in plants evokes severe phytotoxicity and impairs numerous metabolic processes including nutrient uptake, water status, and photosynthesis. The mechanisms of mercury-induced toxicology, molecular response and gene networks for regulating plant tolerance will be reviewed. In the case of Hg recent much progress has been made in profiling of transcriptome and more importantly, uncovering a group of small RNAs that potentially mediates plant tolerance to Hg. Several newly discovered signaling molecules such as nitric oxide and carbon monoxide have now been described as regulators of plant tolerance to Hg. A recently emerged strategy, namely selection and breeding of plant cultivars to minimize Hg (or other metals) accumulation will be discussed in the last part of the review.

  7. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    NASA Astrophysics Data System (ADS)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  8. Atomic fluorescence determination of mercury in fresh water ecosystems.

    PubMed

    Knox, R; Kammin, W R; Thomson, D

    1995-01-01

    This paper reports on an investigation into determining nanogram/l quantities of mercury in marine and fresh water matrices using a cold vapour generation of mercury, followed by fluorescence detection. Samples were prepared for analysis using a free bromine oxidation technique. A high efficiency gas-liquid separator was used to enhance the detection of mercury. For fresh water, typical method detection limits (MDL) were determined at less than 1 nanogram/l (ng/l). For near shore seawater, the MDL was 1.2 ng/l. Method spikes, which were performed at 20 ng/l, showed mean recoveries within US EPA Contract Laboratory Protocol (CLP) acceptance criteria. System blanks averaged 0.12 ng/l, and recoveries of NIST 1641c diluted to 29.4 ng/l averaged 93.4%. A number of local rivers and streams were sampled, and mercury was determined. All results to date indicate mercury levels below the US EPA chronic water quality criteria for mercury. PMID:18925015

  9. Student Exposure to Mercury Vapors.

    ERIC Educational Resources Information Center

    Weber, Joyce

    1986-01-01

    Discusses the problem of mercury vapors caused by spills in high school and college laboratories. Describes a study which compared the mercury vapor levels of laboratories in both an older and a newer building. Concludes that the mercurial contamination of chemistry laboratories presents minimal risks to the students. (TW)

  10. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  11. Reference Atmosphere for Mercury

    NASA Technical Reports Server (NTRS)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  12. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study

    PubMed Central

    Yang, Huan; Meijer, Hil G. E.; Doll, Robert J.; Buitenweg, Jan R.; van Gils, Stephan A.

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month. PMID:27252644

  13. Mercury in Indiana watersheds: retrospective for 2001-2006

    USGS Publications Warehouse

    Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.

    2010-01-01

    Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that

  14. Detecting drug-induced prolongation of the QRS complex: New insights for cardiac safety assessment

    SciTech Connect

    Cros, C.; Skinner, M.; Moors, J.; Lainee, P.; Valentin, J.P.

    2012-12-01

    Background: Drugs slowing the conduction of the cardiac action potential and prolonging QRS complex duration by blocking the sodium current (I{sub Na}) may carry pro-arrhythmic risks. Due to the frequency-dependent block of I{sub Na}, this study assesses whether activity-related spontaneous increases in heart rate (HR) occurring during standard dog telemetry studies can be used to optimise the detection of class I antiarrhythmic-induced QRS prolongation. Methods: Telemetered dogs were orally dosed with quinidine (class Ia), mexiletine (class Ib) or flecainide (class Ic). QRS duration was determined standardly (5 beats averaged at rest) but also prior to and at the plateau of each acute increase in HR (3 beats averaged at steady state), and averaged over 1 h period from 1 h pre-dose to 5 h post-dose. Results: Compared to time-matched vehicle, at rest, only quinidine and flecainide induced increases in QRS duration (E{sub max} 13% and 20% respectively, P < 0.01–0.001) whereas mexiletine had no effect. Importantly, the increase in QRS duration was enhanced at peak HR with an additional effect of + 0.7 ± 0.5 ms (quinidine, NS), + 1.8 ± 0.8 ms (mexiletine, P < 0.05) and + 2.8 ± 0.8 ms (flecainide, P < 0.01) (calculated as QRS at basal HR-QRS at high HR). Conclusion: Electrocardiogram recordings during elevated HR, not considered during routine analysis optimised for detecting QT prolongation, can be used to sensitise the detection of QRS prolongation. This could prove useful when borderline QRS effects are detected. Analysing during acute increases in HR could also be useful for detecting drug-induced effects on other aspects of cardiac function. -- Highlights: ► We aimed to improve detection of drug-induced QRS prolongation in safety screening. ► We used telemetered dogs to test class I antiarrhythmics at low and high heart rate. ► At low heart rate only quinidine and flecainide induced an increase in QRS duration. ► At high heart rate the effects of two

  15. Geodesy at Mercury with MESSENGER

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.

    2006-01-01

    In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of

  16. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands

    NASA Astrophysics Data System (ADS)

    Koral, Can; De Giacomo, Alessandro; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.

    2016-11-01

    Enhancement of molecular band emission in laser-induced plasmas is important for improving sensitivity and limits of detection in molecular sensing and molecular isotope analysis. In this work we introduce the use of Nanoparticle Enhanced Laser Induced Breakdown (NELIBS) for the enhancement of molecular band emission in laser-induced plasmas, and study the underlying mechanisms responsible for the observed enhancement. The use of Ag nanoparticles leads to an order of magnitude enhancement for AlO (B2Σ+ → Χ+ Σ+) system emission from an Al-based alloy. We demonstrate that the mechanism responsible for the enhancement of molecular bands differs from that of atomic emission, and can be traced down to the increased number of atomic species in NELIBS which lead to AlO molecular formation. These findings showcase the potential of NELIBS as a simple and viable technology for enhancing molecular band emission in laser-induced plasmas.

  17. [Consortium for detection and management of lung damage induced by bleomycin].

    PubMed

    Biya, Josette; Stoclin, Annabelle; Dury, Sandra; Le Pavec, Jérôme; Mir, Olivier; Lazarovici, Julien; Fermé, Christophe; Annereau, Maxime; Ekpe, Kenneth; Massard, Christophe; Michot, Jean-Marie

    2016-01-01

    Bleomycin is a cytotoxic antibiotic and a component of chemotherapy regimens of germ cell tumors and lymphoma. Bleomycin lung injuries occur in 10% of patients, and lead to severe interstitial pneumonia in 3% of patients. Pulmonary toxicity is related to endothelial cells injury induce by free radicals and inflammatory cytokines. Diagnosis of bleomycin-induced lung toxicity is based on the combination of clinical and radiological features, and requires to rule out differential diagnoses including pneumocystis. "Bleomycin-induced pneumonitis" is the most frequent pattern; eosinophilic pneumonitis and organizing pneumonia are rarer. Occurrence of bleomycin lung toxicity requires an immediate and often permanent discontinuation. Treatment is based on steroid. Regular clinical and pulmonary function tests monitoring are mandatory for early detection of bleomycin-induced lung toxicity. PMID:27241272

  18. Preservation of solid mercuric dithizonate samples with polyvinyl chloride for determination of mercury(II) in environmental waters by photochromism-induced photoacoustic spectrometry.

    PubMed

    Lai, E P; Wong, B; Vandernoot, V A

    1993-07-01

    A novel sample preparation technique has been developed to preserve solid mercuric dithizonate [Hg(HDz)(2)] in a matrix of polyvinyl chloride (PVC) for analysis by photochromism-induced photoacoustic spectrometry (PCPAS). This technique, which begins with the extraction of Hg(2+) from water with dithizone, allows for the determination of Hg(2+) in environmental samples. Inclusion of Hg(HDz)(2) within the polymer matrix enhances the PCPAS signal amplitude over that from the bare Hg(HDz)(2) film by almost sixfold. The standard calibration graph of PCPAS signal amplitude as a function of Hg(2+) concentration is linear in the concentration range of 5-100 mug/ml. A lower detection limit can be achieved by using a laser of higher power tuned to a wavelength closer to the maximum absorptivity of the excited Hg(HDz)(2) complex. A study, conducted to monitor the change in PCPAS signal amplitude obtained for the same sample over an extended storage period of 19 days, demonstrates that the PVC protects the integrity of the solid Hg(HDz)(2) sample. Hence, it is potentially feasible to collect environmental samples from a remote area for analysis at a later date.

  19. Mercury vapour exposure during dental student training in amalgam removal

    PubMed Central

    2013-01-01

    Background Amalgam that is used for dental fillings contains approximately 50% elemental mercury. During dental student training, amalgam is often removed by drilling without the use of water spray and suction, which are protective measures in preventing mercury aerosol. In this study we measured mercury vapor levels in ambient air during amalgam removal as is typically performed in dental training. Methods Mercury vapor levels in ambient air were measured in a dental school laboratory during removal of amalgam fillings from artificial teeth set into a dental jaw simulator. Mercury vapor was measured under three conditions (25 measurements each): with the simultaneous use of water spray and suction, with the use of suction only, and with the use of neither suction nor water spray. These three conditions are all used during dental student training. Results were compared to Alberta occupational exposure limits for mercury vapor in order to assess potential occupational risk to students. Analysis of variance testing was used to compare data obtained under the three conditions. Results When water spray and suction were used, mercury vapor levels ranged from 4.0 to 19.0 μg/m3 (arithmetic mean = 8.0 μg/m3); when suction only was used, mercury vapor levels ranged from 14.0 to 999.0 (999.0 μg/m3 represents the high limit detection of the Jerome analyzer) (arithmetic mean = 141.0 μg/m3); when neither suction nor water was used, the vapor levels ranged from 34.0 to 796.0 μg/m3 (arithmetic mean = 214.0 μg/m3). Conclusions The Alberta Occupational Health and Safety threshold limit value for mercury vapor over an eight-hour time-weighted period is 25.0 μg/m3. The absolute ceiling for mercury vapor, not to be exceeded at any time, is 125.0 μg/m3. When both water spray and suction were used, mercury vapor levels were consistently below this threshold. When suction without water spray was used, mercury vapor levels exceeded the safety threshold 8% of

  20. Isotopic Fractionation of Mercury in Great Lakes Precipitation

    NASA Astrophysics Data System (ADS)

    Gratz, L. E.; Keeler, G. J.; Blum, J. D.; Sherman, L. S.

    2009-12-01

    Mercury (Hg) is a hazardous bioaccumulative neurotoxin, and atmospheric deposition is a primary way in which mercury enters terrestrial and aquatic ecosystems. However, the chemical processes and transport regimes that mercury undergoes from emission to deposition are not well understood. Thus the use of mercury isotopes to characterize the biogeochemical cycling of mercury is a rapidly growing area of study. Precipitation samples were collected in Chicago, IL, Holland, MI, and Dexter, MI from April 2007 - October 2007 to begin examining the isotopic fractionation of atmospheric mercury in the Great Lakes region. Results show that mass-dependent fractionation relative to NIST-3133 (MDF - δ202Hg) ranged from -0.8‰ to 0.2‰ (±0.2‰) in precipitation samples, while mass-independent fractionation (MIF - Δ199Hg) varied from 0.1‰ to 0.6‰ (±0.1‰). Although clear urban-rural differences were not observed, this may be due to the weekly collection of precipitation samples rather than collection of individual events, making it difficult to truly characterize the meteorology and source influences associated with each sample and suggesting that event-based collection is necessary during future sampling campaigns. Additionally, total vapor phase mercury samples were collected in Dexter, MI in 2009 to examine isotopic fractionation of mercury in ambient air. In ambient samples δ202Hg ranged from 0.3‰ to 0.5‰ (±0.1‰), however Δ199Hg was not significant. Because mercury in precipitation is predominantly Hg2+, while ambient vapor phase mercury is primarily Hg0, these results may suggest the occurrence of MIF during the oxidation of Hg0 to Hg2+ prior to deposition. Furthermore, although it has not been previously reported or predicted, MIF of 200Hg was also detected. Δ200Hg ranged from 0.0‰ to 0.2‰ in precipitation and from -0.1‰ to 0.0‰ in ambient samples. This work resulted in methodological developments in the collection and processing of

  1. Use of laser-induced ionization to detect soot inception in premixed flames

    NASA Astrophysics Data System (ADS)

    Manzello, Samuel L.; Lee, Eui Ju; Mulholland, George W.

    2005-08-01

    Experimental measurements of laser-induced ionization were performed for ethene-air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced- ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced- ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.

  2. Characterization of single-waterjet-induced thermal profile for antipersonnel land mine detection and discrimination

    NASA Astrophysics Data System (ADS)

    Agarwal, Sanjeev; Mitchell, O. Robert

    2000-08-01

    IR imaging has been used for landmine detection and discrimination by exploiting the variations in temperature profile on the surface, which may be induced by natural phenomenon such as diurnal cycles or using artificial means such as heated waterjets. While the former method has, in general, not been able to reliably detect and discriminate for small antipersonnel mines, the latter suffers from poor response time. Our previous research has shown that, for waterjet induced thermal images, it takes approximately 15 minutes for the profile of the buried object before it is available on the surface. In this paper we explore the possibility of using thermal profile induced by a single heated water jet when viewed directly into the hole created by the waterjet. A heated waterjet, as it penetrates the ground cover, also digs a hole through which the heat radiates out. The spatial and temporal variation of the heat profile in and around the hole has shown to be rich in information about the buried object. Moreover, the response is much faster when compared to the conduction of heat through the soil to the surface. This paper will present the basic phenomenology and characterize such thermal images induced by single heated waterjet. The spatial and temporal variations are used to detect the presence of an object and its material type. Some possibility to measure the depth of the buried object is also explored.

  3. Use of laser-induced ionization to detect soot inception in premixed flames

    SciTech Connect

    Manzello, Samuel L.; Lee, Eui Ju; Mulholland, George W

    2005-08-20

    Experimental measurements of laser-induced ionization were performed for ethene-air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced- ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced- ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.

  4. Follow that mercury!

    SciTech Connect

    Linero, A.A.

    2008-07-01

    The article discusses one technology option for avoiding release of mercury captured by power plant pollution control equipment in order to render it usable in concrete. This is the use of selective catalytic reduction for NOx control and lime spray dryer absorbers (SDA) for SO{sub 2} control prior to particulate collection by fabric filters. In this scenario all mercury removed is trapped in the fabric filter baghouse. The US EPA did not establish mercury emission limits for existing cement plants in the latest regulation 40 CFR 63, Subpart LLL (December 2006) and was sued by the Portland Cement Association because of the Hg limits established for new kilns and by several states and environmental groups for the lack of limits on existing ones. A full version of this article is available on www.acaa-usa.org/AshatWork.htm. 2 figs.

  5. Mercury radar speckle dynamics

    NASA Astrophysics Data System (ADS)

    Holin, Igor V.

    2010-06-01

    Current data reveal that Mercury is a dynamic system with a core which has not yet solidified completely and is at least partially decoupled from the mantle. Radar speckle displacement experiments have demonstrated that the accuracy in spin-dynamics determination for Earth-like planets can approach 10 -5. The extended analysis of space-time correlation properties of radar echoes shows that the behavior of speckles does not prevent estimation of Mercury's instantaneous spin-vector components to accuracy of a few parts in 10 7. This limit can be reached with more powerful radar facilities and leads to constraining the interior in more detail from effects of spin dynamics, e.g., from observation of the core-mantle interplay through high precision monitoring of the 88-day spin-variation of Mercury's crust.

  6. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  7. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  8. Ecological and physiological parameters of mercury and cesium-137 accumulation in the raccoon

    SciTech Connect

    Davis, A.H.

    1981-01-01

    Raccoons from 4 regions in the southeastern Coastal Plain were evaluated for mercury content. Mercury content of hair when used as an indicator of total body mercury content was significantly different among 3 of the 4 areas: Okefenokee Swamp, Eglin Air Force Base, and Sapelo Island on the Georgia Coast. Raccoons from Echols County Georgia were not significantly different from those of the Okefenokee. Mercury in the liver and kidney was significantly different between Okefenokee and Sapelo. There was a strong correlation between the age of the raccoon and the mercury in hair, with older animals having higher concentrations. This relationship was also valid for most other tissues. There was evidence that mercury content in some tissues was correlated with the season and the body condition of the raccoon. Mercury was not transferred through the placenta to the fetal raccoons. There was a strong relationship of mercury content to raccoon behavioral characteristics. Raccoon body weight was slightly different between the areas studied. Cesium-137 values in raccoons were significantly different between the Okefenokee and Sapelo Island. Cesium-137 content was correlated with raccoon age, body weight, and mercury content. Generally non-detectable levels of chlorinated hydrocarbons and PCB were found in Okefenokee raccoons. Mercury concentrations in crayfish were generally low but probably of importance in the raccoon food chain. The biological half life of mercury in brain, gonad, pancreas, spleen, heart, and lung was approximately 52 days. The half-life of mercury in muscle was 35 days. Mercury content of hair, liver, and kidney decreased at very slow rates, with biological half lives of 229, 108, and 138 days. This was probably due to the role of these tissues in clearance of mercury from the body, and to the molting pattern of raccoon hair.

  9. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage.

    PubMed

    El-Yazbi, Amira F; Loppnow, Glen R

    2012-05-13

    Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R(2)=0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  10. Point-of-care platelet function tests: detection of platelet inhibition induced by nonopioid analgesic drugs.

    PubMed

    Scharbert, Gisela; Gebhardt, Kristina; Sow, Zacharia; Duris, Monika; Deusch, Engelbert; Kozek-Langenecker, Sibylle

    2007-12-01

    Detection of platelet inhibition is of clinical relevance in the preinterventional risk-benefit assessment in chronic low-back-pain patients scheduled for invasive pain therapy. We evaluated the sensitivity of various point-of-care platelet function tests for the detection of platelet inhibition induced by nonopioid analgesic drugs. After Institutional Review Board approval and informed consent, citrated whole blood from 40 patients with chronic unspecific low back pain was investigated before and 30 min after intravenous infusion of the study medication consisting of diclofenac 75 mg (plus orphenadrin 30 mg; Neodolpasse; Fresenius Kabi Austria GmbH, Austria), parecoxib 40 mg (Dynastat; Pharmacia Europe EEIG, UK), paracetamol 1 g (Perfalgan; Bieffe Medital S.P.A., Italy), or normal saline in a randomized, cross-over, double-blinded, placebo-controlled study. Platelet function was assessed using the PFA-100 platelet function analyzer and thromboelastometry, as well as impedance aggregometry (in the last 17 patients recruited after it became commercially available). Sensitivity for detecting diclofenac-induced platelet inhibition was 85% for the PFA-100 using epinephrine as agonist and 94% for arachidonic acid-induced impedance aggregometry. ADP-induced platelet function tests, as well as cytochalasin D-modified thromboelastometry were unreliable. All tests had a low incidence of false-positive test results after normal saline. Paracetamol and parecoxib had no significant platelet inhibiting effect. The PFA-100 using epinephrine as agonist and arachidonic acid-induced impedance aggregometry are recommended for the detection of cyclooxygenase-I-inhibiting effects of nonsteroidal anti-inflammatory drugs such as diclofenac. Our findings confirm that a single rescue dose of paracetamol and parecoxib has no antiplatelet effect. PMID:17982319

  11. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  12. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Johnson, R. E.

    2003-08-01

    Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et

  13. Spectrophotometric properties of Mercury

    NASA Astrophysics Data System (ADS)

    Domingue, D.; Vilas, F.; Holsclaw, G. M.; Warell, J.; Izenberg, N. R.; Murchie, S. L.; Denevi, B. W.; Blewett, D. T.; McClintock, W. E.

    2009-12-01

    The MEcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft obtained photometric observations of Mercury during three flybys (14 January 2008, 6 October 2008, 29 September 2009) using both the Mercury Dual Imaging System (MDIS) and the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). The MDIS measurements include disk-integrated phase-curve observations taken in 11 narrow-band filters ranging from 430 to 1010 nm. The MDIS measurements also include disk-resolved photometric observations taken during the first flyby of a 200-km by 400-km region (centered on 1.7°S, 123.5°E, and spanning 5.5° of latitude and 10° of longitude) over a phase-angle range between 51° and 120°. The MASCS measurements include disk-integrated phase-curve observations taken from 300 to 1450 nm at a spectral resolution of 2.5 nm. During the third flyby, targeted type regions were observed at multiple viewing geometries, providing disk-resolved photometric measurements at high spectral resolution. Comparisons with ground-based observations show that the phase behavior determined by analysis of the MDIS and MASCS observations is consistent with previous studies. Reflectance measurements from the first two flybys show no definitive absorption features and a distinctive steep, or “red,” slope with increasing wavelength common to space-weathered rocky surfaces. The MDIS spectra show evidence of phase reddening (increased spectral slope with increasing phase angle), similar to that observed on the Moon. The derived photometric properties indicate a more compact, less porous regolith that is smoother on meter scales than regolith on the Moon or S-type asteroids. Although Mercury is darker than the average lunar nearside, the calculated geometric albedo (reflectance at zero phase) is higher for Mercury than the Moon, implying a greater opposition-surge magnitude. The geometric albedo, coupled with the lower reflectance of immature (younger) units on

  14. Mercury CEM Calibration

    SciTech Connect

    John Schabron; Joseph Rovani; Mark Sanderson

    2008-02-29

    Mercury continuous emissions monitoring systems (CEMS) are being implemented in over 800 coal-fired power plant stacks. The power industry desires to conduct at least a full year of monitoring before the formal monitoring and reporting requirement begins on January 1, 2009. It is important for the industry to have available reliable, turnkey equipment from CEM vendors. Western Research Institute (WRI) is working closely with the Electric Power Research Institute (EPRI), the National Institute of Standards and Technology (NIST), and the Environmental Protection Agency (EPA) to facilitate the development of the experimental criteria for a NIST traceability protocol for dynamic elemental mercury vapor generators. The generators are used to calibrate mercury CEMs at power plant sites. The Clean Air Mercury Rule (CAMR) which was published in the Federal Register on May 18, 2005 requires that calibration be performed with NIST-traceable standards (Federal Register 2007). Traceability procedures will be defined by EPA. An initial draft traceability protocol was issued by EPA in May 2007 for comment. In August 2007, EPA issued an interim traceability protocol for elemental mercury generators (EPA 2007). The protocol is based on the actual analysis of the output of each calibration unit at several concentration levels ranging initially from about 2-40 {micro}g/m{sup 3} elemental mercury, and in the future down to 0.2 {micro}g/m{sup 3}, and this analysis will be directly traceable to analyses by NIST. The document is divided into two separate sections. The first deals with the qualification of generators by the vendors for use in mercury CEM calibration. The second describes the procedure that the vendors must use to certify the generator models that meet the qualification specifications. The NIST traceable certification is performance based, traceable to analysis using isotope dilution inductively coupled plasma/mass spectrometry performed by NIST in Gaithersburg, MD. The

  15. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection

    SciTech Connect

    Tian, Ye; Xue, Boyang; Song, Jiaojian; Lu, Yuan; Zheng, Ronger

    2015-09-14

    Temporal and spatial evolutions of the laser-induced plasma in bulk water are investigated using fast imaging and emission spectroscopic techniques. By tightly focusing a single-pulse nanosecond Nd: YAG laser beam into the bulk water, we generate a strongly expanded plasma with high reproducibility. Such a strong expanding plasma enables us to obtain well-resolved spectral lines by means of position-selective detection; hence, the time-gated detector becomes abdicable. The present results suggest not only a possible non-gated approach for underwater laser-induced breakdown spectroscopy but also give an insight into the plasma generation and expansion in bulk water.

  16. Detection of C-reactive protein based on magnetic nanoparticles and capillary zone electrophoresis with laser-induced fluorescence detection.

    PubMed

    Lin, Yi-Jyun; Yang, Jian-Ying; Shu, Ting-Yu; Lin, Ting-Yu; Chen, Yen-Yi; Su, Mei-Yu; Li, Wen-Jie; Liu, Mine-Yine

    2013-11-01

    A simple and fast method based on magnetic nanoparticles (MNPs) and capillary zone electrophoresis (CZE) with laser-induced fluorescence (LIF) detection was developed for the detection of C-reactive protein (CRP). To optimize the CZE conditions, several factors including buffer compositions, buffer ionic strength, buffer pH, applied voltage and capillary temperature have been examined. The optimal separation buffer selected was a 30 mM sodium phosphate (PB) buffer, pH 8.0. The optimal CE applied voltage and temperature selected were 20 kV and 35°C, respectively. The CZE profile of the MNP-1°Ab-CRP-2°Ab/FITC bioconjugates showed good reproducibility. One major peak was observed for the MNP bioconjugates. The quantitative analysis also showed good results. The coefficient of variation (CV%) for the major peak area was 8.7%, and the CV% for the major peak migration time was 2.5%. The linear range for CRP analysis was 10-150 μg/mL, and the concentration limit of detection (LOD) was 9.2 μg/mL. Non-specific interactions between bovine serum albumin (BSA) and the system can be prevented by including 10% (v/v) of human plasma in the binding buffers. The CE/LIF method might be helpful for analyzing high concentrations of CRP in a patient's plasma after an acute-phase inflammation. This new method demonstrated the possibility of using MNPs and CE/LIF for the detection of proteins, and provided information for the establishment of appropriate CE conditions.

  17. Surface-Induced Hydrogelation for Fluorescence and Naked-Eye Detections of Enzyme Activity in Blood.

    PubMed

    Xu, Tengyan; Liang, Chunhui; Ji, Shenglu; Ding, Dan; Kong, Deling; Wang, Ling; Yang, Zhimou

    2016-07-19

    Fluorescence probes have been widely applied for the detection of important analytes with high sensitivity and specificity. However, they cannot be directly applied for the detection in samples with autofluorescence such as blood. Herein, we demonstrated a simple but effective method of surface-induced self-assembly/hydrogelation for fluorescence detection of an enzyme in biological fluids including blood and cell lysates. The method utilizes an attracting glass surface to induce self-assembly of an enzyme-generating fluorescent probe. After removing the upper solution, the fluorescence turn-on at the glass surface can therefore be used for the detection of enzyme activity. By judging the thickness and color depth of hydrogels at the surface of the glass plates, we could also estimate the enzyme activity by naked eyes. Our study not only expands the application of molecular self-assembly but also provides a useful method that can be applied for direct detection of enzyme activity in complex biological samples such as blood and cell lysates. PMID:27345959

  18. Early detection of oil-induced stress in crops using spectral and thermal responses

    NASA Astrophysics Data System (ADS)

    Emengini, Ebele Josephine; Blackburn, George Alan; Theobald, Julian Charles

    2013-01-01

    Oil pollution is a major source of environmental degradation, and requires accurate monitoring and timely detection for an effective control of its occurrence. This paper examines the potential of a remote sensing approach using the spectral and thermal responses of crops for the early detection of stress caused by oil pollution. In a glasshouse, pot-grown maize was treated with oil at sublethal and lethal applications. Thereafter, leaf thermal, spectral and physiological measurements were taken every two to three days to monitor the development of stress responses. Our results indicate that absolute leaf temperature was a poor indicator of developing stress. However, a derived thermal index (IG) responded consistently in the early stages of physiological damage. Various spectral reflectance features were highly sensitive to oil-induced stress. A narrow-band index using wavelengths in the near-infrared and red-edge region, (R755-R716)/(R755+R716), was optimal for previsual detection of oil-induced stress. This index had a strong linear relationship with photosynthetic rate. This indicates that by detecting vegetation stress, thermal and hyperspectral remote sensing has considerable potential for the timely detection of oil pollution in the environment.

  19. White trash detection of cotton lint with ultraviolet-induced fluorescence imaging method

    NASA Astrophysics Data System (ADS)

    Zhou, Fei; Ding, Tianhuai

    2010-08-01

    White cotton lint trash can not be effectively detected by white light imaging method. It becomes a serious problem in textile industry. Ultraviolet (UV)-induced fluorescence imaging method is based on the principle that different materials have different spectral excitation and emission characteristics. The fluorescence spectroscopy experiment gave reliable evidence that most white trash had much stronger fluorescent effect than that of lint. In order to simultaneously discriminate several kinds of white lint trash, an Optimal Wavelength Selected Model for describing cotton/trash discrimination was developed. It was determined that 342-388 nm was the optimal detection waveband for white trash detection. Imaging results and analysis clearly showed that for both uncovered and covered situation, the gray differences between white trash and lint were significantly improved when illuminated by a type of UV light. It was concluded that UV-induced fluorescence imaging method is a feasible way to detect most white trash. This method can also be used in white trash detection in seed cotton, wool, tealeaf, and tobacco leaf.

  20. A CAVITY RING-DOWN SPECTROSCOPY MERCURY CONTINUOUS EMISSION MONITOR

    SciTech Connect

    Christopher C. Carter, Ph.D.

    2003-04-01

    Accurate reporting of mercury concentration requires a detailed model that includes experimental parameters that vary, such as: pressure, temperature, concentration, absorption cross-section, and isotopic structure etc. During this quarter a theoretical model has been developed to model the 253.7 nm mercury transition. In addition, while testing the interferent species SO{sub 2}, SRD was able to determine the absorption cross-section experimentally and add this to the theoretical model. Assuming that the baseline losses are due to the mirror reflectivity and SO{sub 2}, SRD can now determine the concentrations of both mercury and SO{sub 2} from the data taken. For the CRD instrument to perform as a continuous emission monitor it will be required to monitor mercury concentrations over extended periods of time. The stability of monitoring mercury concentrations over time with the CRD apparatus was tested during the past quarter. During a test which monitored the mercury concentration every 2 seconds it was found that the standard deviation, of a signal from about 1.25 ppb Hg, was only 30 ppt. SRD continued interferent gas testing during this past quarter. This included creating a simulated flue gas composed of the gases tested individually by SRD. The detection limits for mercury, although dependent on the concentration of SO{sub 2} in the simulated gas matrix, remained well below the ppb range. It was determined that for the gases tested the only measurable changes in the baseline level occurred for SO{sub 2} and mercury. Speciation studies continued with mercury chloride (HgCl{sub 2}). This included checking for spectral speciation with both Hg and HgCl{sub 2} present in the CRD cavity. There was no observable spectral shift. Also a pyrolysis oven was incorporated into the gas delivery system both for tests with HgCl{sub 2} as well as atomization of the entire gas stream. The pyrolysis tests conducted have been inconclusive thus far.

  1. Approach to single-molecule detection by laser-induced fluorescence

    SciTech Connect

    Dovichi, N.J.; Martin, J.C.; Jett, J.H.; Trkula, M.; Keller, R.A.

    1983-08-01

    A sheath flow cuvette was evaluated in laser-induced fluorescence determination of aqueous rhodamine 6G. A detection limit of 18 attograms was obtained within a one-second signal integration time. The concentration detection limit was 8.9 x 10/sup -14/ mole per liter. An average of one-half rhodamine 6G molecule was present within the 11 pL excitation volume. However, during the signal integration time a total of 22,000 analyte molecules passed through the excitation in a 0.42 microliter volume.

  2. Evaluation of Background Mercury Concentrations in the SRS Groundwater System

    SciTech Connect

    Looney, B.B.

    1999-03-03

    Mercury analyses associated with the A-01 Outfall have highlighted the importance of developing an understanding of mercury in the Savannah River Site groundwater system and associated surface water streams. This activity is critical based upon the fact that the EPA Ambient Water Quality Criteria (AWQC) for this constituent is 0.012mg/L, a level that is well below conventional detection limits of 0.1 to 0.2 mg/L. A first step in this process is obtained by utilizing the existing investment in groundwater mercury concentrations (20,242 records) maintained in the SRS geographical information management system (GIMS) database. Careful use of these data provides a technically defensible initial estimate for total recoverable mercury in background and contaminated SRS wells.

  3. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence

    SciTech Connect

    Shen, X. K.; Wang, H.; Xie, Z. Q.; Gao, Y.; Ling, H.; Lu, Y. F.

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10{sup 6}(ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry.

  4. Detection of trace phosphorus in steel using laser-induced breakdown spectroscopy combined with laser-induced fluorescence.

    PubMed

    Shen, X K; Wang, H; Xie, Z Q; Gao, Y; Ling, H; Lu, Y F

    2009-05-01

    Monitoring of light-element concentration in steel is very important for quality assurance in the steel industry. In this work, detection in open air of trace phosphorus (P) in steel using laser-induced breakdown spectroscopy (LIBS) combined with laser-induced fluorescence (LIF) has been investigated. An optical parametric oscillator wavelength-tunable laser was used to resonantly excite the P atoms within plasma plumes generated by a Q-switched Nd:YAG laser. A set of steel samples with P concentrations from 3.9 to 720 parts in 10(6) (ppm) were analyzed using LIBS-LIF at wavelengths of 253.40 and 253.56 nm for resonant excitation of P atoms and fluorescence lines at wavelengths of 213.55 and 213.62 nm. The calibration curves were measured to determine the limit of detection for P in steel, which is estimated to be around 0.7 ppm. The results demonstrate the potential of LIBS-LIF to meet the requirements for on-line analyses in open air in the steel industry. PMID:19412215

  5. Method and apparatus for sampling atmospheric mercury

    DOEpatents

    Trujillo, Patricio E.; Campbell, Evan E.; Eutsler, Bernard C.

    1976-01-20

    A method of simultaneously sampling particulate mercury, organic mercurial vapors, and metallic mercury vapor in the working and occupational environment and determining the amount of mercury derived from each such source in the sampled air. A known volume of air is passed through a sampling tube containing a filter for particulate mercury collection, a first adsorber for the selective adsorption of organic mercurial vapors, and a second adsorber for the adsorption of metallic mercury vapor. Carbon black molecular sieves are particularly useful as the selective adsorber for organic mercurial vapors. The amount of mercury adsorbed or collected in each section of the sampling tube is readily quantitatively determined by flameless atomic absorption spectrophotometry.

  6. Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management.

    PubMed

    Mulshine, James L; Avila, Rick; Yankelevitz, David; Baer, Thomas M; Estépar, Raul San Jose; Ambrose, Laurie Fenton; Aldigé, Carolyn R

    2015-05-01

    The Prevent Cancer Foundation Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management was held in New York, NY on May 16 and 17, 2014. The two goals of the Workshop were to define strategies to drive innovation in precompetitive quantitative research on the use of imaging to assess new therapies for management of early lung cancer and to discuss a process to implement a national program to provide high quality computed tomography imaging for lung cancer and other tobacco-induced disease. With the central importance of computed tomography imaging for both early detection and volumetric lung cancer assessment, strategic issues around the development of imaging and ensuring its quality are critical to ensure continued progress against this most lethal cancer. PMID:25898957

  7. Heat induced aggregation of gold nanorods for rapid visual detection of lysozyme.

    PubMed

    Tohidi Moghadam, Tahereh; Ranjbar, Bijan

    2015-11-01

    Gold nanorods have been nominated as propitious candidates for nanobiodiagnostic applications. Herein, a technique has been introduced for rapid visual detection of lysozyme, as its high level of excretion in biological fluids is a characteristic sign of leukemia and kidney disorders. Gold nanorods were biofunctionalized with lysozyme aptamer and characterized with UV-Visible and FTIR spectroscopy, zeta potential analyzer and transmission electron microscopy. Exposure of the nanoprobe to nano molar levels of lysozyme (20 nmol l(-1)) lead to dictated aggregation of the nanostructures at ambient temperature; which was significantly improved by heat induced morphological perturbations and rapid detection by the naked eye (down to pico molar level). Qualitative analysis of Acute myeloid leukemia, Acute lymphocytic leukemia and Lymphoma blood serums showed sensitivity and specificity of the fabricated aptasensor under both temperature conditions. This report encourages utilization of heat-induced aggregation of gold nanorods as a promising nanodiagnostic technique for the emerging nanotechnologies.

  8. Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management.

    PubMed

    Mulshine, James L; Avila, Rick; Yankelevitz, David; Baer, Thomas M; Estépar, Raul San Jose; Ambrose, Laurie Fenton; Aldigé, Carolyn R

    2015-05-01

    The Prevent Cancer Foundation Lung Cancer Workshop XI: Tobacco-Induced Disease: Advances in Policy, Early Detection and Management was held in New York, NY on May 16 and 17, 2014. The two goals of the Workshop were to define strategies to drive innovation in precompetitive quantitative research on the use of imaging to assess new therapies for management of early lung cancer and to discuss a process to implement a national program to provide high quality computed tomography imaging for lung cancer and other tobacco-induced disease. With the central importance of computed tomography imaging for both early detection and volumetric lung cancer assessment, strategic issues around the development of imaging and ensuring its quality are critical to ensure continued progress against this most lethal cancer.

  9. Infrared small target detection via line-based reconstruction and entropy-induced suppression

    NASA Astrophysics Data System (ADS)

    Shang, Ke; Sun, Xiao; Tian, Jinwen; Li, Yansheng; Ma, Jiayi

    2016-05-01

    This paper proposes a novel infrared small target detection method which is composed of two stages. The first stage is implemented by line-based reconstruction for suppressing the background clutter, and the second stage is induced by information entropy for further standing out the targets. Compared with the state-of-the-art approaches, the proposed approach is able to achieve better performance in terms of efficiency and accuracy.

  10. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(I) and mercury(II) in human saliva†

    PubMed Central

    Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin

    2015-01-01

    A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. PMID:26008641

  11. A facile microwave-assisted fabrication of fluorescent carbon nitride quantum dots and their application in the detection of mercury ions.

    PubMed

    Cao, Xiaotong; Ma, Jie; Lin, Yanping; Yao, Bixia; Li, Feiming; Weng, Wen; Lin, Xiuchun

    2015-12-01

    A facile microwave-assisted solvothermal method was used to prepare fluorescent carbon nitride quantum dots (CNQDs) using oleic acid as the reaction media at moderate reaction temperature in a short time (5 min). Citric acid monohydrate and urea were used as the precursors. The as-prepared CNQDs were characterized by multiple analytical techniques. The CNQDs exhibited an uncommon excitation wavelength-dependent fluorescence with two maximum emission peaks at 450 and 540 nm. The CNQDs with a quantum yield of 27.1% could serve as an effective fluorescent sensing platform for label-free sensitive detection of Hg(2+) ions with a detection limit of 0.14 μM. This method was also applied to the detection of Hg(2+) ions in tap water samples.

  12. Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    2003-01-01

    Methylmercury has been suspected as a cause of impaired reproduction in wild birds, but the confounding effects of other environmental stressors has made it difficult to determine how much mercury in the eggs of these wild species is harmful. Even when a sample egg can be collected from the nest of a wild bird and the mercury concentration in that egg compared to the laboratory-derived thresholds for reproductive impairment, additional information on the mercury levels in other eggs from that nest would be helpful in determining whether harmful levels of mercury were present in the clutch. The measurement of mercury levels in chorioallantoic membranes offers a possible way to estimate how much mercury was in a chick that hatched from an egg, and also in the whole fresh egg itself. While an embryo is developing, wastes are collected in a sac called the chorioallantoic membranes, which often remain inside the eggshell and can be collected for contaminant analysis. We fed methylmercury to captive mallards to generate a broad range of mercury levels in eggs, allowed the eggs to hatch normally, and then compared mercury concentrations in the hatchling versus the chorioallantoic membranes left behind in the eggshell. When the data from eggs laid by mercury- treated females were expressed as common logarithms, a linear equation was created by which the concentration of mercury in a duckling could be predicted from the concentration of mercury in the chorioallantoic membranes from the same egg. Therefore, if it were not possible to collect a sample egg from a clutch of wild bird eggs, the collection of the chorioallantoic membranes could be substituted, and the mercury predicted to be in the chick or whole egg could be compared to the thresholds of mercury that have been shown to cause harm in controlled feeding studies with pheasants, chickens, and mallards.

  13. Quantitative Bioimaging to Investigate the Uptake of Mercury Species in Drosophila melanogaster.

    PubMed

    Niehoff, Ann-Christin; Bauer, Oliver Bolle; Kröger, Sabrina; Fingerhut, Stefanie; Schulz, Jacqueline; Meyer, Sören; Sperling, Michael; Jeibmann, Astrid; Schwerdtle, Tanja; Karst, Uwe

    2015-10-20

    The uptake of mercury species in the model organism Drosophila melanogaster was investigated by elemental bioimaging using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The mercury distribution in Drosophila melanogaster was analyzed for the three species mercury(II) chloride, methylmercury chloride, and thimerosal after intoxication. A respective analytical method was developed and applied to the analysis of the entire Drosophila melanogaster first, before a particular focus was directed to the cerebral areas of larvae and adult flies. For quantification of mercury, matrix-matched standards based on gelatin were prepared. Challenges of spatially dissolved mercury determination, namely, strong evaporation issues of the analytes and an inhomogeneous distribution of mercury in the standards due to interactions with cysteine containing proteins of the gelatin were successfully addressed by complexation with meso-2,3-dimercaptosuccinic acid (DMSA). No mercury was detected in the cerebral region for mercury(II) chloride, whereas both organic species showed the ability to cross the blood-brain barrier. Quantitatively, the mercury level in the brain exceeded the fed concentration indicating mercury enrichment, which was approximately 3 times higher for methylmercury chloride than for thimerosal.

  14. Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea.

    PubMed

    Park, Ju-Sung; Jung, So-Young; Son, Yeo-Joon; Choi, Su-Jeong; Kim, Mi-Sun; Kim, Jeong-Gon; Park, So-Hyun; Lee, Sang-Me; Chae, Young-Zoo; Kim, Min-Young

    2011-01-01

    In 2009, a survey of 177 samples of fish and fishery products from the markets in Seoul was carried out to investigate total mercury and organic mercury (methylmercury) concentrations and to establish a correlation, if any, between total and organic mercury levels. Concentrations of total and organic mercury in canned tuna ranged 0.001-2.581 and 0.003-1.307 mg/kg, respectively; those for fish, such as cod or salmon, ranged 0.012-2.529 and 0.021-0.507 mg/kg, respectively. Ethylmercury was not detected. More than 50% of total mercury in the samples existed as organic mercury. The correlation coefficients (r(2)) between total mercury and methylmercury concentrations of fish and fishery products found to have methylmercury were 0.844 and 0.976, respectively, which was statistically significant. There was a higher correlation in fishery products than in fish. Although there was no product in which mercury exceeded the standard set by the Food Code in 2008, with the exception of marlin steak, a processed food, which contained 1.307 mg/kg methylmercury. None exceeded the provisional tolerable weekly intake (PTWI) for mercury. Collectively, the results indicate that fish or fishery products marketed in Seoul, with the exception of marlin, have low levels of total or organic mercury and, thus, intake of these products is not a risk to public health. PMID:24786250

  15. Consistently low mercury concentrations in dolphinfish, Coryphaena hippurus, an oceanic pelagic predator.

    PubMed

    Adams, Douglas H

    2009-08-01

    Compared to total mercury concentrations in other oceanic pelagic and syntopic fish species examined from waters of the southeastern United States (e.g., king mackerel, Scomberomorus cavalla; wahoo, Acanthocybium solanderi; yellowfin tuna, Thunnus albacares; blackfin tuna, T. atlanticus), total mercury concentrations in dolphinfish, Coryphaena hippurus, examined were consistently low. Dorsal-muscle tissue from 385 dolphinfish (317-1395 mm fork length) from Florida offshore waters was analyzed for total mercury content. Total mercury concentration in individual fish ranged from 0.012 to 0.55 mg/kg (wet weight), with a mean of 0.10 mg/kg (+/- 0.089 SD). Compared to mercury concentrations in other similar species, mercury concentrations detected in dolphinfish did not vary widely with respect to fish size, estimated age, or sex. A positive relationship between total mercury concentrations and fish length was observed, indicating that mercury tends to increase moderately over time as dolphinfish grow. Low mercury concentrations in dolphinfish occur on a global scale throughout tropical and subtropical waters. The short life span, rapid growth rate, known physiology, and feeding ecology of dolphinfish are comparable regardless of where they are found, suggesting that the forcing factors that influence mercury concentrations in this species are similar throughout its circumtropical range. PMID:19539279

  16. Plasma microRNAs expression profile in female workers occupationally exposed to mercury

    PubMed Central

    Ding, Enmin; Zhao, Qiuni; Bai, Ying; Xu, Ming; Pan, Liping; Liu, Qingdong; Wang, Bosheng; Song, Xianping; Wang, Jun; Chen, Lin

    2016-01-01

    Background Circulating microRNAs (miRNAs) have attracted interests as non-invasive biomarkers of physiological and pathological conditions. Several studies have examined the potential effects of mercury exposure on miRNAs expression profiles of general population environmentally exposed to mercury. The objective is to identify mercury-related miRNAs of female workers occupationally exposed to mercury. Methods In this case-control study, we used a microarray assay to detect the miRNA expression profiles in pooled plasma samples between (I) chronic mercury poisoning group; (II) mercury absorbing group and (III) control group in the discovery stage. Each group has ten individuals. In addition, we conducted a validation of eight candidate miRNAs in the same 30 workers by quantitative real-time PCR. Results In the discovery stage, eight miRNAs were conformed following our selection criteria. In the validation stage, RT-PCR confirmed up-regulation of miR-92a and miR-486 in the mercury poisoned group (P<0.05) compared to the other two groups. The results were consistent with the microarray analysis. Conclusions Plasma miR-92a-3p and miR-486-5p might prove to be potential biomarkers to indicate responses to mercury exposure. However, further studies are necessary to prove the causal association between miRNAs changes and mercury exposure, and to determine whether these two miRNAs are clear biomarkers to mercury exposure. PMID:27162656

  17. Contribution of Shellfish Consumption to Lower Mercury Health Risk for Residents in Northern Jiaozhou Bay, China

    PubMed Central

    2015-01-01

    Fish and marine mammal consumption are an important pathway for human exposure to mercury. The low mercury content in shellfish poses a low mercury health risk to people who consume shellfish. The objectives of this study are to detect mercury concentrations in different species of shellfish and to calculate the mercury health risk from shellfish consumption among traditional residents near northern Jiaozhou Bay. A total of 356 shellfish samples, which comprised 7 species from 5 different places in northern Jiaozhou Bay, were collected from April to June in 2012. The average mercury content in the collected shellfish ranged from 0.024 mg·kg−1 to 0.452 mg·kg−1. A total of 44 shellfish samples (12.36%) had mercury levels exceeding the national pollution-free aquatic products limit (0.3 mg·kg−1). Generally, the viscus had the highest mercury content among all parts of the shellfish. A positive correlation between mercury content and total weight/edible part weight was found in most species of the collected shellfish. The results showed that shellfish consumption resulted in the lower risk of mercury exposure to residents based on the calculation of daily intake (DI) and target hazard quotient (THQ). PMID:26101470

  18. Sex differences in mercury contamination of birds: testing multiple hypotheses with meta-analysis.

    PubMed

    Robinson, Stacey A; Lajeunesse, Marc J; Forbes, Mark R

    2012-07-01

    The sex of a bird can, in principle, affect exposure and accumulation of mercury. One conventional explanation for sex differences in mercury burden suggests female birds should have lower concentrations than conspecific males, because breeding females can depurate methylmercury to their eggs. However, sex differences in body burden of mercury among birds are not consistent. We used meta-analysis to synthesize 123 male-female comparisons of mercury burden from 50 studies. For breeding birds, males had higher concentrations of mercury than did females, supporting egg depuration as a mechanism. However, the percentage of female body mass represented by a clutch did not significantly predict the magnitude of the sex difference in mercury contamination, as predicted. Furthermore, whether species were semialtrical or altrical versus semiprecocial or precocial also did not explain sex differences in mercury burden. Foraging guild of a species did explain near significant variation in sex differences in mercury burden where piscivores and invertivores showed significant sex differences, but sex differences were not detected for carnivores, herbivores, insectivores, and omnivores. The magnitude and direction of sexual size dimorphism did not explain variation in sex differences in mercury burden among breeding birds. We reveal targeted research directions on mechanisms for sex differences in mercury and confirm that sex is important to consider for environmental risk assessments based on breeding birds.

  19. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(i) and mercury(ii) in human saliva

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Li, Ming; Jurevic, Richard; Cushing, Scott K.; Liu, Yuxin; Wu, Nianqiang

    2015-06-01

    A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids.A surface-enhanced Raman scattering (SERS) biosensor has been developed by incorporating a gold nanohole array with a SERS probe (a gold nanostar@Raman-reporter@silica sandwich structure) into a single detection platform via DNA hybridization, which circumvents the nanoparticle aggregation and the inefficient Raman scattering issues. Strong plasmonic coupling between the Au nanostar and the Au nanohole array results in a large enhancement of the electromagnetic field, leading to amplification of the SERS signal. The SERS sensor has been used to detect Ag(i) and Hg(ii) ions in human saliva because both the metal ions could be released from dental amalgam fillings. The developed SERS sensor can be adapted as a general detection platform for non-invasive measurements of a wide range of analytes such as metal ions, small molecules, DNA and proteins in body fluids. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02142a

  20. Mercury in Precipitation in Indiana, January 2004-December 2005

    USGS Publications Warehouse

    Risch, Martin R.; Fowler, Kathleen K.

    2008-01-01

    Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004

  1. Mercury's core evolution

    NASA Astrophysics Data System (ADS)

    Deproost, Marie-Hélène; Rivoldini, Attilio; Van Hoolst, Tim

    2016-10-01

    Remote sensing data of Mercury's surface by MESSENGER indicate that Mercury formed under reducing conditions. As a consequence, silicon is likely the main light element in the core together with a possible small fraction of sulfur. Compared to sulfur, which does almost not partition into solid iron at Mercury's core conditions and strongly decreases the melting temperature, silicon partitions almost equally well between solid and liquid iron and is not very effective at reducing the melting temperature of iron. Silicon as the major light element constituent instead of sulfur therefore implies a significantly higher core liquidus temperature and a decrease in the vigor of compositional convection generated by the release of light elements upon inner core formation.Due to the immiscibility in liquid Fe-Si-S at low pressure (below 15 GPa), the core might also not be homogeneous and consist of an inner S-poor Fe-Si core below a thinner Si-poor Fe-S layer. Here, we study the consequences of a silicon-rich core and the effect of the blanketing Fe-S layer on the thermal evolution of Mercury's core and on the generation of a magnetic field.

  2. Mercury's South Pole

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Mercury's south pole was photographed by one of Mariner 10's TV cameras as the spacecraft made its second close flyby of the planet September 21. The pole is located inside the large crater (180 kilometers, 110 miles) on Mercury's limb (lower center). The crater floor is shadowed and its far rim, illuminated by the sun, appears to de disconnected from the edge of the planet. Just above and to the right of the South Pole is a double ring basin about 100 kilometers (125 miles) in diameter. A bright ray system, splashed out of a 50 kilometer (30 mile) crater is seen at upper right. The stripe across the top is an artifact introduced during computer processing. The picture (FDS 166902) was taken from a distance of 85,800 kilometers (53,200 miles) less than two hours after Mariner 10 reached its closest point to the planet.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    Image Credit: NASA/JPL/Northwestern University

  3. MERCURY SPECIATION AND CAPTURE

    EPA Science Inventory

    In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...

  4. Magnetosphere of Mercury

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1975-01-01

    A model magnetosphere of Mercury using Mariner 10 data is presented. Diagrams of the bow shock wave and magnetopause are shown. The analysis of Mariner 10 data indicates that the magnetic field of the planet is intrinsic. The magnetic tail and secondary magnetic fields, and the influence of the solar wind are also discussed.

  5. Mercury Shopping Cart Interface

    NASA Technical Reports Server (NTRS)

    Pfister, Robin; McMahon, Joe

    2006-01-01

    Mercury Shopping Cart Interface (MSCI) is a reusable component of the Power User Interface 5.0 (PUI) program described in another article. MSCI is a means of encapsulating the logic and information needed to describe an orderable item consistent with Mercury Shopping Cart service protocol. Designed to be used with Web-browser software, MSCI generates Hypertext Markup Language (HTML) pages on which ordering information can be entered. MSCI comprises two types of Practical Extraction and Report Language (PERL) modules: template modules and shopping-cart logic modules. Template modules generate HTML pages for entering the required ordering details and enable submission of the order via a Hypertext Transfer Protocol (HTTP) post. Shopping cart modules encapsulate the logic and data needed to describe an individual orderable item to the Mercury Shopping Cart service. These modules evaluate information entered by the user to determine whether it is sufficient for the Shopping Cart service to process the order. Once an order has been passed from MSCI to a deployed Mercury Shopping Cart server, there is no further interaction with the user.

  6. Hazards of Mercury.

    ERIC Educational Resources Information Center

    Environmental Research, 1971

    1971-01-01

    Common concern for the protection and improvement of the environment and the enhancement of human health and welfare underscore the purpose of this special report on the hazards of mercury directed to the Secretary's Pesticide Advisory Committee, Department of Health, Education, and Welfare. The report summarizes the findings of a ten-member study…

  7. Detection of DNA damage induced by heavy ion irradiation in the individual cells with comet assay

    NASA Astrophysics Data System (ADS)

    Wada, S.; Natsuhori, M.; Ito, N.; Funayama, T.; Kobayashi, Y.

    2003-05-01

    Investigating the biological effects of high-LET heavy ion irradiation at low fluence is important to evaluate the risk of charged particles. Especially it is important to detect radiation damage induced by the precise number of heavy ions in the individual cells. Thus we studied the relationship between the number of ions traversing the cell and DNA damage produced by the ion irradiation. We applied comet assay to measure the DNA damage in the individual cells. Cells attached on the ion track detector CR-39 were irradiated with ion beams at TIARA, JAERI-Takasaki. After irradiation, the cells were stained with ethidium bromide and the opposite side of the CR-39 was etched. We observed that the heavy ions with higher LET values induced the heavier DNA damage. The result indicated that the amount of DNA damage induced by one particle increased with the LET values of the heavy ions.

  8. Ultrasensitive detection of closely related angiotensin I peptides using capillary electrophoresis with near-infrared laser-induced fluorescence detection.

    PubMed

    Baars, M J; Patonay, G

    1999-02-01

    A novel near-infrared (NIR) fluorescent dye (NN382, LICOR, Inc.) was evaluated as an ultrasensitive peptide-labeling reagent for use with capillary electrophoresis (CE). Six angiotensin I (Ang-I) variants were selected as model peptides for the derivatization and separation studies. The closely related decapeptides were labeled with the NIR dye, separated using CE, and detected by NIR laser-induced fluorescence. Derivatization of the peptides was achieved under aqueous conditions using 2.5-500 pmol of Ang-I in a 50-microL sample (5 x 10(-8)-1 x 10(-5)M), and between 1.3 and 254 amol of the labeled peptides were injected on column. The fluorescence response was linear over a 200-fold range (correlation r > or = 0.9986). The limit of detection (SNR = 3, signal/RMS noise) ranged from 100 to 300 zmol, for the six Ang-I variants. Four of six peptides were resolved from each other and excess dye using capillary zone electrophoresis with a simple 50 mM phosphate run buffer, pH 7.2. Two pairs of coeluting peptides were successfully resolved using micellar electrokinetic chromatography with a nonionic surfactant, Triton X-100. The NIR amine-labeling reagent NN382 is a viable alternative to using visible fluorophores for CE methods requiring high sensitivity. PMID:9989384

  9. Detection of thymocytes apoptosis in mice induced by organochlorine pesticides methoxychlor.

    PubMed

    Fukuyama, T; Kosaka, T; Tajima, Y; Hayashi, K; Shutoh, Y; Harada, T

    2011-03-01

    The thymus has long been known to be vulnerable to atrophy when exposed to variety of stimuli, including hormones, immunosuppressive pharmaceuticals, and environmental chemicals. The organochlorine pesticide methoxychlor (MXC) is an immunosuppressive agent thought to affect thymic atrophy by inducing apoptosis of thymocyte T cells. We sought to develop an experimental protocol to detect in vivo thymocyte apoptosis induced by MXC in Balb/c mice. We treated the mice with 150-400 mg/kg MXC. We then measured thymus weight, cell counts, caspase activity (3/7, 8, and 9), annexin V labeling of phosphatidylserine (PS) and DNA fragmentation. In MXC-treated mice we observed decreases in thymus weight and cell counts and increases in caspase activity (3/7, 8, and 9), annexin V PS labeling and DNA fragmentation. These results suggest that MXC induces thymic atrophy caused by thymocyte apoptosis, and that our protocol may be useful for detecting in vivo thymocyte apoptosis induced by environmental chemicals in short-time.

  10. Nakagami imaging for detecting thermal lesions induced by high-intensity focused ultrasound in tissue.

    PubMed

    Rangraz, Parisa; Behnam, Hamid; Tavakkoli, Jahan

    2014-01-01

    High-intensity focused ultrasound induces focalized tissue coagulation by increasing the tissue temperature in a tight focal region. Several methods have been proposed to monitor high-intensity focused ultrasound-induced thermal lesions. Currently, ultrasound imaging techniques that are clinically used for monitoring high-intensity focused ultrasound treatment are standard pulse-echo B-mode ultrasound imaging, ultrasound temperature estimation, and elastography-based methods. On the contrary, the efficacy of two-dimensional Nakagami parametric imaging based on the distribution of the ultrasound backscattered signals to quantify properties of soft tissue has recently been evaluated. In this study, ultrasound radio frequency echo signals from ex vivo tissue samples were acquired before and after high-intensity focused ultrasound exposures and then their Nakagami parameter and scaling parameter of Nakagami distribution were estimated. These parameters were used to detect high-intensity focused ultrasound-induced thermal lesions. Also, the effects of changing the acoustic power of the high-intensity focused ultrasound transducer on the Nakagami parameters were studied. The results obtained suggest that the Nakagami distribution's scaling and Nakagami parameters can effectively be used to detect high-intensity focused ultrasound-induced thermal lesions in tissue ex vivo. These parameters can also be used to understand the degree of change in tissue caused by high-intensity focused ultrasound exposures, which could be interpreted as a measure of degree of variability in scatterer concentration in various parts of the high-intensity focused ultrasound lesion. PMID:24264647

  11. Mercury(II) and methyl mercury determinations in water and fish samples by using solid phase extraction and cold vapour atomic absorption spectrometry combination.

    PubMed

    Tuzen, Mustafa; Karaman, Isa; Citak, Demirhan; Soylak, Mustafa

    2009-07-01

    A method has been developed for mercury(II) and methyl mercury speciation on Staphylococcus aureus loaded Dowex Optipore V-493 micro-column in the presented work, by using cold vapour atomic absorption spectrometry. Selective and sequential elution with 0.1 molL(-1) HCl for methyl mercury and 2 molL(-1) HCl for mercury(II) were performed at the pH range of 2-6. Optimal analytical conditions including pH, amounts of biosorbent, sample volumes were investigated. The detection limits of the analytes were 2.5 ngL(-1) for Hg(II) and 1.7 ngL(-1) for methyl mercury. The capacity of biosorbent for mercury(II) and methyl mercury was 6.5 and 5.4 mgg(-1), respectively. The validation of the presented procedure is performed by the analysis of standard reference material. The speciation procedure established was successfully applied to the speciation of mercury(II) and methyl mercury in natural water and microwave digested fish samples.

  12. Mercury Information Clearinghouse

    SciTech Connect

    Chad A. Wocken; Michael J. Holmes; Dennis L. Laudal; Debra F. Pflughoeft-Hassett; Greg F. Weber; Nicholas V. C. Ralston; Stanley J. Miller; Grant E. Dunham; Edwin S. Olson; Laura J. Raymond; John H. Pavlish; Everett A. Sondreal; Steven A. Benson

    2006-03-31

    The Canadian Electricity Association (CEA) identified a need and contracted the Energy & Environmental Research Center (EERC) to create and maintain an information clearinghouse on global research and development activities related to mercury emissions from coal-fired electric utilities. With the support of CEA, the Center for Air Toxic Metals{reg_sign} (CATM{reg_sign}) Affiliates, and the U.S. Department of Energy (DOE), the EERC developed comprehensive quarterly information updates that provide a detailed assessment of developments in the various areas of mercury monitoring, control, policy, and research. A total of eight topical reports were completed and are summarized and updated in this final CEA quarterly report. The original quarterly reports can be viewed at the CEA Web site (www.ceamercuryprogram.ca). In addition to a comprehensive update of previous mercury-related topics, a review of results from the CEA Mercury Program is provided. Members of Canada's coal-fired electricity generation sector (ATCO Power, EPCOR, Manitoba Hydro, New Brunswick Power, Nova Scotia Power Inc., Ontario Power Generation, SaskPower, and TransAlta) and CEA, have compiled an extensive database of information from stack-, coal-, and ash-sampling activities. Data from this effort are also available at the CEA Web site and have provided critical information for establishing and reviewing a mercury standard for Canada that is protective of environment and public health and is cost-effective. Specific goals outlined for the CEA mercury program included the following: (1) Improve emission inventories and develop management options through an intensive 2-year coal-, ash-, and stack-sampling program; (2) Promote effective stack testing through the development of guidance material and the support of on-site training on the Ontario Hydro method for employees, government representatives, and contractors on an as-needed basis; (3) Strengthen laboratory analytical capabilities through

  13. [Determination of cadmium and mercury in tobacco leaves samples by CVAAS].

    PubMed

    Shi, Wei-wei; Gan, Wu-er; Su, Qing-de

    2005-07-01

    A new and sensitive method for the determination of cadmium and mercury was developed using nebulous phase reaction, cold vapor atomic absorption spectrometry (CVAAS). This design effectively reduces the loss of cadmium and volatile mercury species in aqueous solution and transfer process. The effects of several experimental parameters of the proposed system were optimized. Using the optimized experimental conditions, detection limits of 21 and 8 ng x L(-1) with RSD of 3.2% and 2.9% (n = 11) were obtained for cadmium and mercury, respectively. This method has been successfully applied to the determination of cadmium and mercury in tobacco leaves samples with the recoveries over 92%.

  14. Mercury induced time-dependent alterations in lipid profiles and lipid peroxidation in different body organs of cat-fish Heteropneustes fossilis

    SciTech Connect

    Bano, Y.; Hasan, M.

    1989-04-01

    The effects of mercuric chloride (HgCl/sub 2/) on lipid profiles and lipid peroxidation in different body organs of fresh water cat-fish Heteropneustes fossilis were studied. The daily exposure of HgCl/sub 2/ 0.2 mg/L for 10, 20 and 30 days depleted the total lipids in brain. But the content of phospholipids enhanced significantly at 30 days. Significant diminution in C/P ratio was discernible with 30 days of exposure following mercury toxicosis. Liver exhibited elevated levels of total lipids, phospholipids, cholesterol and C/P ratio. Interestingly kidney showed marked decrease in the concentration of total lipids, cholesterol and C/P ratio at higher exposure. However, the phospholipid values increased during the longer exposure. The content of total lipids and phospholipids was high in muscle but the level of cholesterol and C/P ratio were depleted. Significant increment in lipid peroxidation was discernible in brain, liver and muscle. In kidney the rate of lipid peroxidation was significantly reduced. The results suggest that exposure of HgCl/sub 2/ enhances the peroxidation of endogenous lipids in brain, liver and muscle. Interestingly the lipid contents are affected differently in different body organs.

  15. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. PMID:25953822

  16. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    PubMed

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data.

  17. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  18. Mercury control in 2009

    SciTech Connect

    Sjostrom, S.; Durham, M.; Bustard, J.; Martin, C.

    2009-07-15

    Although activated carbon injection (ACI) has been proven to be effective for many configurations and is a preferred option at many plants sufficient quantities of powdered activated coking (PAC) must be available to meet future needs. The authors estimate that upcoming federal and state regulations will result in tripling the annual US demand for activated carbon to nearly 1.5 billion lb from approximately 450 million lb. Rapid expansion of US production capacity is required. Many PAC manufacturers are discussing expansion of their existing production capabilities. One company, ADA Carbon Solutions, is in the process of constructing the largest activated carbon facility in North America to meet the future demand for PAC as a sorbent for mercury control. Emission control technology development and commercialization is driven by regulation and legislation. Although ACI will not achieve > 90% mercury control at every plant, the expected required MACT legislation level, it offers promise as a low-cost primary mercury control technology option for many configurations and an important trim technology for others. ACI has emerged as the clear mercury-specific control option of choice, representing over 98% of the commercial mercury control system orders to date. As state regulations are implemented and the potential for a federal rule becomes more imminent, suppliers are continuing to develop technologies to improve the cost effectiveness and limit the balance of plant impacts associated with ACI and are developing additional PAC production capabilities to ensure that the industry's needs are met. The commercialisation of ACI is a clear example of industry, through the dedication of many individuals and companies with support from the DOE and EPRI, meeting the challenge of developing cost-effectively reducing emissions from coal-fired power plants. 7 refs., 1 fig.

  19. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    EPA Science Inventory

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  20. Improved detection of induced seismicity using beamforming techniques: application to traffic light systems

    NASA Astrophysics Data System (ADS)

    Hicks, Stephen; Verdon, James; Kendal, J.-Michael; Hill, Phil

    2016-04-01

    Unconventional methods of hydrocarbon extraction, such as hydraulic fracturing, have the potential to reactivate existing faults, causing induced seismicity. Traffic Light Schemes have been implemented in some regions; these systems ensure that drilling activities are paused or shut-down if seismic events larger than a given magnitude are induced. In particular, the United Kingdom has imposed a traffic light scheme based on magnitude thresholds of Ml = 0.0 and Ml = 0.5 for the amber and red limits, respectively. Therefore, an effective traffic light scheme in the UK requires monitoring arrays capable of detecting events with Ml < 0.0. However, achieving such low detection thresholds can be challenging where ambient noise levels are high, such as in the UK. We have developed an algorithm capable of robustly detecting and locating small magnitude events, which are characterised by very low signal-to-noise ratios using small arrays of surface broadband seismometers. We compute STA/LTA functions for each trace, time shift them by theoretical travel-times for a given event location, and combine them via a linear stack. We test our method using a dataset from a surface array of Güralp 3T broadband seismometers that recorded hydraulic fracturing activities in the central United States. Our beamforming and stacking approach identified a total of 20 events, compared to only 4 events detected by traditional picking methods. We therefore suggest that our approach is suitable for use with low magnitude traffic light schemes, especially in noisy environments.