NASA Technical Reports Server (NTRS)
Dominque, Deborah L.; Chapman, Clark R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Orlando, Thomas M.; Schriver, David;
2011-01-01
Understanding the composition of Mercury's crust is key to comprehending the formation of the planet. The regolith, derived from the crustal bedrock, has been altered via a set of space weathering processes. These processes are the same set of mechanisms that work to form Mercury's exosphere, and are moderated by the local space environment and the presence of an intrinsic planetary magnetic field. The alterations need to be understood in order to determine the initial crustal compositions. The complex interrelationships between Mercury's exospheric processes, the space environment, and surface composition are examined and reviewed. The processes are examined in the context of our understanding of these same processes on the lunar and asteroid regoliths. Keywords: Mercury (planet) Space weathering Surface processes Exosphere Surface composition Space environment 3
2004-07-21
KENNEDY SPACE CENTER, FLA. - MESSENGER, a NASA Discovery mission. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) mission is a scientific investigation of the planet Mercury. MESSENGER will be launched in the summer of 2004 and will enter Mercury orbit in March of 2011, after one Earth flyby, two flybys of Venus, and three of Mercury along the way. The flyby and orbital phases of the mission will provide global mapping and detailed characterization of the planet's surface, interior, atmosphere and magnetosphere.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
NASA Technical Reports Server (NTRS)
Domingue, Deborah L.; Chapman, Clark. R.; Killen, Rosemary M.; Zurbuchen, Thomas H.; Gilbert, Jason A.; Sarantos, Menelaos; Benna, Mehdi; Slavin, James A.; Schriver, David; Travnicek, Pavel M.;
2014-01-01
Mercury's regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury's exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury's regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury's regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury's regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury's dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury's relatively featureless visible-near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size less than 45 micron) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury's surface composition.
In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.
2014-01-01
The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.
Observations of Al, Fe and Ca(+) in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Bida, Thomas A.; Killen, Rosemary M.
2011-01-01
We report 5-(sigma) tangent column detections of Al and Fe, and strict 3-(sigma) tangent column upper limits for Ca(+) in Mercury's exosphere obtained using the HIRES spectrometer on the Keck I telescope. These are the first direct detections of Al and Fe in Mercury's exosphere. Our Ca(-) observation is consistent with that reported by The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft.
MESSENGER's first Mercury flyby: A summary of scientific observations
NASA Astrophysics Data System (ADS)
Solomon, Sean C.; McNutt, Ralph L.; Boynton, William V.; Evans, Larry G.; Head, James W.; Krimigis, Stamatios M.; Murchie, Scott; Phillips, Roger J.; Slavin, James A.; Zuber, Maria T.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, developed under NASA's Discovery Program, will be the first probe to orbit the planet Mercury in March 2011. Launched in August 2004, MESSENGER successfully completed the first of three flybys of Mercury in January 2008. The Mercury Dual Imaging System acquired an 11-color mosaic of part of the hemisphere not seen by Mariner 10, including the entire Caloris basin; several large monochrome mosaics at a range of resolutions; a series of color frames designed for photometric analysis; and inbound and outbound movies. The Mercury Atmospheric and Surface Composition Spectrometer obtained the first high-resolution spectral reflectance measurements (at ultraviolet to near-infrared wavelengths) of surface composition, conducted limb scans of exospheric species, and mapped the composition and structure of the tail region. The Magnetometer measured Mercury's internal field at low latitudes and documented the major plasma boundaries of Mercury's magnetosphere. The Energetic Particle and Plasma Spectrometer made the first measurements of low-energy ions in Mercury's magnetosphere. The Mercury Laser Altimeter carried out the first space altimetric profile of the planet. Other instruments in the payload provided baseline measurements that will aid in the interpretation of data from the mission orbital phase. Together, the MESSENGER flyby observations have begun to advance our understanding of the innermost planet.
NASA Technical Reports Server (NTRS)
1999-01-01
MESSENGER is a scientific mission to Mercury. Understanding this extraordinary planet and the forces that have shaped it is fundamental to understanding the processes that have governed the formation, evolution, and dynamics of the terrestrial planets. MESSENGER is a MErcury Surface, Space ENvironment, GEochemistry and Ranging mission to orbit Mercury for one Earth year after completing two flybys of that planet following two flybys of Venus. The necessary flybys return significant new data early in the mission, while the orbital phase, guided by the flyby data, enables a focused scientific investigation of this least-studied terrestrial planet. Answers to key questions about Mercury's high density, crustal composition and structure, volcanic history, core structure, magnetic field generation, polar deposits, exosphere, overall volatile inventory, and magnetosphere are provided by an optimized set of miniaturized space instruments. Our goal is to gain new insight into the formation and evolution of the solar system, including Earth. By traveling to the inner edge of the solar system and exploring a poorly known world, MESSENGER fulfills this quest.
NASA Astrophysics Data System (ADS)
Plainaki, Christina; Mura, Alessandro; Milillo, Anna; Orsini, Stefano; Livi, Stefano; Mangano, Valeria; Massetti, Stefano; Rispoli, Rosanna; De Angelis, Elisabetta
2017-06-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations of the seasonal variability of Mercury's Ca exosphere are consistent with the general idea that the Ca atoms originate from the bombardment of the surface by particles from comet 2P/Encke. The generating mechanism is believed to be a combination of different processes including the release of atomic and molecular surface particles and the photodissociation of exospheric molecules. Considering different generation and loss mechanisms, we perform simulations with a 3-D Monte Carlo model based on the exosphere generation model by Mura et al. (2009). We present for the first time the 3-D spatial distribution of the CaO and Ca exospheres generated through the process of micrometeoroid impact vaporization, and we show that the morphology of the latter is consistent with the available MESSENGER/Mercury Atmospheric and Surface Composition Spectrometer observations. The results presented in this paper can be useful in the exosphere observations planning for BepiColombo, the upcoming European Space Agency-Japanese Aerospace Exploration Agency mission to Mercury.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Workers at Astrotech Space Operations facilities near KSC get ready to attach an overhead crane to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft before lifting. They are moving it to a turnover fixture that will rotate it for prelaunch testing. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Astrophysics Data System (ADS)
Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.
2018-05-01
Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.
Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.
Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W
2005-03-20
A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.
Can Silicon-Smelting Contribute to the Low O/Si Ratio on the Surface of Mercury?
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Vander Kaaden, K. E.; Hogancamp, J.; Archer, P. D., Jr.; Boyce, J. W.
2018-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. Among the many discoveries about Mercury made by MESSENGER, several surprising compositional characteristics of the surface were observed. These discoveries include elevated sulfur abundances (up to 4 wt.%), elevated abundances of graphitic carbon (0-4.1 wt.% across the surface with an additional 1-3 wt.% graphite above the global average in low reflectance materials), low iron abundances (less than 2 wt.%), and low oxygen abundances (O/Si weight ratio of 1.20+/-0.1). These exotic characteristics likely have important implications for the thermochemical evolution of Mercury and point to a planet that formed under highly reducing conditions. In the present study, we focus specifically on the low O/Si ratio of Mercury, which is anomalous compared to all other planetary materials. A recent study that considered the geochemical implications of the low O/Si ratio reported that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. They further postulated that the origin of the metal is best explained by a combination of space weathering and graphite-induced smelting that was facilitated by interaction of graphite with boninitic and komatiitic parental liquids. The goal of the present study is to assess the plausibility of smelting on Mercury through experiments run at the conditions that McCubbin et al. indicated would be favorable for Si-smelting.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft after completing rotation on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers again rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers begin to rotate the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers complete rotation of the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers check the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft as it rotates on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
Workshop on Mercury: Space Environment, Surface, and Interior
NASA Technical Reports Server (NTRS)
2001-01-01
This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. The Scientific Organizing Committee consisted of Mark Robinson (Northwestern University), Marty Slade (Jet Propulsion Laboratory), Jim Slavin (NASA Goddard Space Flight Center), Sean Solomon (Carnegie Institution), Ann Sprague (University of Arizona), Paul Spudis (Lunar and Planetary Institute), G. Jeffrey Taylor (University of Hawai'i), Faith Vilas (NASA Johnson Space Center), Meenakshi Wadhwa (The Field Museum), and Thomas Watters (National Air and Space Museum). Logistics, administrative, and publications support were provided by the Publications and Program Services Departments of the Lunar and Planetary Institute.
NASA Technical Reports Server (NTRS)
Pokorny, Petr; Sarantos, Menelaos; Janches, Diego
2017-01-01
Combining dynamical models of dust from Jupiter-family comets and Halley-type comets, we demonstrate that the seasonal variation of the dust/meteoroid environment at Mercury is responsible for producing the dawn-dusk asymmetry in Mercury's exosphere observed by the MESSENGER spacecraft. Our latest models, calibrated recently from ground-based and space-borne measurements, provide unprecedented statistics that enable us to study the longitudinal and latitudinal distribution of meteoroids impacting Mercury's surface. We predict that the micrometeoroid impact vaporization source is expected to undergo significant motion on Mercury's surface toward the nightside during Mercury's approach to aphelion and toward the dayside when the planet is approaching the Sun.
Mineralogy of the Mercurian Surface
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Nittler, Larry R.; Peplowski, Patrick N.; Weider, Shoshana Z.; Evans, Larry R.; Frank, Elizabeth A.; McCoy, Timothy
2016-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited Mercury for four years until April 2015, revealing its structure, chemical makeup, and compositional diversity. Data from the mission have confirmed that Mercury is a compositional end-member among the terrestrial planets. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) on board MESSENGER provided the first detailed geochemical analyses of Mercury's surface. These instruments have been used in conjunction with the Neutron Spectrometer and the Mercury Dual Imaging System to classify numerous geological and geochemical features on the surface of Mercury that were previously unknown. Furthermore, the data have revealed several surprising characteristics about Mercury's surface, including elevated S abundances (up to 4 wt%) and low Fe abundances (less than 2.5 wt%). The S and Fe abundances were used to quantify Mercury's highly reduced state, i.e., between 2.6 and 7.3 log10 units below the Iron-Wustite (IW) buffer. This fO2 is lower than any of the other terrestrial planets in the inner Solar System and has important consequences for the thermal and magmatic evolution of Mercury, its surface mineralogy and geochemistry, and the petrogenesis of the planet's magmas. Although MESSENGER has revealed substantial geochemical diversity across the surface of Mercury, until now, there have been only limited efforts to understand the mineralogical and petrological diversity of the planet. Here we present a systematic and comprehensive study of the potential mineralogical and petrological diversity of Mercury.
Mapping the Topography of Mercury with MESSENGER Laser Altimetry
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.
2012-01-01
The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.
NASA Astrophysics Data System (ADS)
Gillis-Davis, J. J.; Blewett, D. T.; Lawrence, D. J.; Izenberg, N. R.; McClintock, W. E.; Holsclaw, G. M.; Domingue, D. L.
2009-12-01
Production and accumulation of submicroscopic metallic iron (SMFe) is a principal mechanism by which surfaces of airless silicate bodies in the Solar System, exposed to the space weathering environment, experience spectral modification. Micrometeorite impact vaporization and solar-wind sputtering produce coatings of vapor-deposited SMFe. Both processes can be more intense on Mercury and, as a result, more efficient at creating melt and vapor. In addition, Ostwald ripening may cause SMFe particles to grow larger due to the high surface temperatures on Mercury (as great as 450°C). Spectral effects on the ultraviolet-visible-near-infrared continuum change with the amount and size of SMFe present. Thus, the physical properties and abundance of iron in Mercury’s regolith can be understood by comparing spectral data from controlled space-weathering experiments with spectra from MESSENGER’s Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Knowledge of SMFe size and abundance may provide information on the space weathering conditions under which it was produced or subsequently modified. Reflectance spectra of laboratory-produced samples with varying SMFe grain sizes (average grain sizes of 8, 15, 35, and 40 nm) and iron compositions (from 0.005 to 3.8 wt% Fe as SMFe) are compared with MASCS disk-integrated reflectance from the first flyby of Mercury and will be compared with observations of spectral end members targeted for the third flyby. We compare spectra from 300 nm to 1400 nm wavelength, scaled to 1 at 700 nm, from the laboratory and MASCS. This comparison between laboratory and remote-sensing spectra reveals an excellent match with observations of Mercury for samples with an average iron metal grain size of 8 nm and 1.65 wt% FeO and 15 nm and 0.13 wt% Fe. These average grain sizes of the SMFe component are larger than the average grain size determined for lunar soil samples using transmission electron microscopy (3 nm in rims and 10-15 nm in agglutinates) but are smaller than values obtained from lunar spectra with the methods used here (15-25 nm). We can also infer that silicates in Mercury's high reflectance plains are potentially iron poor, precluding thick vapor deposits coating - both spectral data sets lack a 1-μm absorption and the experimental iron particles are suspended in an iron-free silica gel. Thus, our conclusion on the basis of spectral comparison is that SMFe on Mercury is potentially smaller than on the Moon and that Ostwald ripening is not a major influence on the surface of Mercury. The absence of pronounced darkening of the equatorial regions of Mercury in images from Mariner 10 and MESSENGER's Mercury Dual Imaging System supports also suggest an apparent lack of Ostwald ripening.
A Low O/Si Ratio on the Surface of Mercury: Evidence for Silicon Smelting?
NASA Astrophysics Data System (ADS)
McCubbin, Francis M.; Vander Kaaden, Kathleen E.; Peplowski, Patrick N.; Bell, Aaron S.; Nittler, Larry R.; Boyce, Jeremy W.; Evans, Larry G.; Keller, Lindsay P.; Elardo, Stephen M.; McCoy, Timothy J.
2017-10-01
Data from the Gamma-Ray Spectrometer (GRS) that flew on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft indicate that the O/Si weight ratio of Mercury's surface is 1.2 ± 0.1. This value is lower than any other celestial surface that has been measured by GRS and suggests that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. The origin of the metal is best explained by a combination of space weathering and graphite-induced smelting. The smelting process would have been facilitated by interaction of graphite with boninitic and komatiitic parental liquids. Graphite entrained at depth would have reacted with FeO components dissolved in silicate melt, resulting in the production of up to 0.4-0.9 wt % CO from the reduction of FeO to Fe0—CO production that could have facilitated explosive volcanic processes on Mercury. Once the graphite-entrained magmas erupted, the tenuous atmosphere on Mercury prevented the buildup of CO over the lavas. The partial pressure of CO would have been sufficiently low to facilitate reaction between graphite and SiO2 components in silicate melts to produce CO and metallic Si. Although exotic, Si-rich metal as a primary smelting product is hypothesized on Mercury for three primary reasons: (1) low FeO abundances of parental magmas, (2) elevated abundances of graphite in the crust and regolith, and (3) the presence of only a tenuous atmosphere at the surface of the planet within the 3.5-4.1 Ga timespan over which the planet was resurfaced through volcanic processes.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers adjust wires on the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft during rotation on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers make adjustments to the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now resting on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Astrotech Space Operations facilities near KSC, workers remove protective covers from the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft now resting on the turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- At Astrotech Space Operations facilities near KSC, workers help while an overhead crane lowers the Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft onto a turnover fixture. Workers will perform the propulsion system phasing test firing gas through the thrusters in order to verify that the right thrusters fire when expected as part of prelaunch testing at the site. Launch is scheduled for May 11 from Pad 17-B, Cape Canaveral Air Force Station. The spacecraft will fly past Venus three times and Mercury twice before starting a year-long orbital study of Mercury in July 2009.
Return to Mercury: a global perspective on MESSENGER's first Mercury flyby.
Solomon, Sean C; McNutt, Ralph L; Watters, Thomas R; Lawrence, David J; Feldman, William C; Head, James W; Krimigis, Stamatios M; Murchie, Scott L; Phillips, Roger J; Slavin, James A; Zuber, Maria T
2008-07-04
In January 2008, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft became the first probe to fly past the planet Mercury in 33 years. The encounter revealed that Mercury is a dynamic system; its liquid iron-rich outer core is coupled through a dominantly dipolar magnetic field to the surface, exosphere, and magnetosphere, all of which interact with the solar wind. MESSENGER images confirm that lobate scarps are the dominant tectonic landform and record global contraction associated with cooling of the planet. The history of contraction can be related to the history of volcanism and cratering, and the total contractional strain is at least one-third greater than inferred from Mariner 10 images. On the basis of measurements of thermal neutrons made during the flyby, the average abundance of iron in Mercury's surface material is less than 6% by weight.
NASA Technical Reports Server (NTRS)
1972-01-01
The physical properties of the planet Mercury, its surface, and atmosphere are presented for space vehicle design criteria. The mass, dimensions, mean density, and orbital and rotational motions are described. The gravity field, magnetic field, electromagnetic radiation, and charged particles in the planet's orbit are discussed. Atmospheric pressure, temperature, and composition data are given along with the surface composition, soil mechanical properties, and topography, and the surface electromagnetic and temperature properties.
MESSENGER Searches for Less Abundant or Weakly Emitting Species in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Vervack, Ronald J., Jr.; McClintock, William E.; Killen, Rosemary M.; Sprague, Ann L.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos
2011-01-01
Mercury's exosphere is composed of material that originates at the planet's surface, whether that material is native or delivered by the solar wind and micrometeoroids. Many exospheric species have been detected by remote sensing, including H and He by Mariner 10, Na, K, and Ca by ground-based observations, and H, Na, Ca, Mg, and Ca+ by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Other exospheric species, including Fe, AI, Si, 0, S, Mn, CI, Ti, OH, and their ions, are expected to be present on the basis of MESSENGER surface measurements and models of Mercury's surface chemistry. Here we report on searches for these species made with the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). No obvious signatures of the listed species have yet been observed in Mercury's exosphere by the UVVS as of this writing. It is possible that detections are elusive because the optimum regions of the exosphere have not been sampled. The Sun-avoidance constraints on MESSENGER place tight limits on instrument boresight directions, and some regions are probed infrequently. If there are strong spatial gradients in the distribution of weakly emitting species, a high-resolution sampling of specific regions may be required to detect them. Summing spectra over time will also aid in the ability to detect weaker emission. Observations to date nonetheless permit strong upper limits to be placed on the abundances of many undetected species, in some cases as functions of time and space. As those limits are lowered with time, the absence of detections can provide insight into surface composition and the potential source mechanisms of exospheric material.
The Mercury Laser Altimeter Instrument for the MESSENGER Mission
NASA Technical Reports Server (NTRS)
Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.
2006-01-01
The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.
2004-07-27
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft is ready for installation of the fairing, a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Seen on the left is one of the solar panels on the spacecraft. On the right is part of the heat-resistant, ceramic-cloth sunshade that will protect the spacecraft’s instruments as MESSENGER orbits the Mercury where the surface reaches a high temperature near 840 degrees Fahrenheit and the solar intensity can be 11 times greater than on Earth. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
First In-Situ Observations of Exospheric Response to CME Impact at Mercury
NASA Astrophysics Data System (ADS)
Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinksi, J. M.; Tracy, P. J.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.
2018-05-01
We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. These results have implications for understanding exosphere generation and loss processes, as well space weathering of the planet's surface.
Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations
NASA Technical Reports Server (NTRS)
Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.
2014-01-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variation but there is little or no year-to-year variation; we do not see the episodic variability reported by ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere is about 1200 K, much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.
Mercury's Seasonal Sodium Exosphere: MESSENGER Orbital Observations
NASA Technical Reports Server (NTRS)
Cassidy, Timothy A.; Merkel, Aimee W.; Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Sarantos, Menelaos
2014-01-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) Ultraviolet and Visible Spectrometer (UVVS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury provides the first close-up look at the planet's sodium exosphere. UVVS has observed the exosphere from orbit almost daily for over 10 Mercury years. In this paper we describe and analyze a subset of these data: altitude profiles taken above the low-latitude dayside and south pole. The observations show spatial and temporal variations, but there are no obvious year-to-year variations in most of the observations. We do not see the episodic variability reported by some ground-based observers. We used these altitude profiles to make estimates of sodium density and temperature. The bulk of the exosphere, at about 1200 K, is much warmer than Mercury's surface. This value is consistent with some ground-based measurements and suggests that photon-stimulated desorption is the primary ejection process. We also observe a tenuous energetic component but do not see evidence of the predicted thermalized (or partially thermalized) sodium near Mercury's surface temperature. Overall we do not see the variable mixture of temperatures predicted by most Monte Carlo models of the exosphere.
Small-scale turbulence detected in Mercury's magnetic field
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-11-01
With its closest approach a mere 46 million kilometers from the Sun, the blast of the solar wind was supposed to wash away any chance that Mercury could hold on to a magnetic field—an idea rejected by the observations of the Mariner 10 spacecraft in 1974. Though Mercury was shown to harbor a weak magnetic field (one-hundredth the strength of Earth's), its structure, behavior, and interactions with the solar wind remained heavily debated, yet untested, until the 14 January 2008 approach of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) orbiter. Using a continuous scalogram analysis—a novel statistical technique in space research—Uritsky et al. analyzed the high-resolution magnetic field strength observations taken by MESSENGER as it flew within a few hundred kilometers of the planet's surface. The authors found turbulence in Mercury's magnetosphere, which they attributed to small-scale interactions between the solar wind plasma and the magnetic field. At large spatial and temporal scales the solar wind can be thought of as a fluid with some magnetic properties—a domain well explained by the theories of magnetohydrodynamics.
Exploring Mercury's Surface in UltraViolet from Orbit
NASA Astrophysics Data System (ADS)
Izenberg, N.
2017-12-01
The MESSENGER Mission's Ultraviolet and Visible Spectrometer (UVVS) component of its Mercury Atmosphere and Surface Composition Spectrometer (MASCS) instrument obtained approximately 4600 point observations of Mercury's surface in middle ultraviolet (MUV; 210 nm - 300 nm) and far ultraviolet (FUV; 119.1 - 122.5 nm and 129.2 - 131.5 nm) wavelengths over the course of its orbital mission, mostly in Mercury's southern hemisphere. Given the very low (<1 to 2 wt %) average abundance of iron in the silicates of Mercury observed by multiple MESSENGER instruments, the near- to middle-ultraviolet wavelengths encompassing the oxygen metal charge transfer band (<400 nm), which is more sensitive to the presence of iron than the classic 1 micron absorption band, provides potentially useful additional compositional insight into the top layer of Mercury's regolith. The presence of nano- and microphase carbon also has potentially significant expression in the ultraviolet, and the interplay and variation between carbon and iron in mercury surface materials is an active area of investigation. Analysis of middle-UV surface reflectance and parameters appear to support the presence of varying amounts of carbon in different spectral or geologic units on Mercury. Far-UV reflectance data is currently under-utilized, but analysis of lunar surface by the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) indicate that the data are sensitive to both composition and space weathering. The far-UV reflectance from MASCS may provide similar information for the Mercury surface, complementing results from longer wavelengths. MESSENGER data products for surface reflectance include middle-UV reflectance spectra, ultraviolet far-UV reflectance values, combined middle-UV through near-infrared spectra (210 nm - 1450 nm), a global `spectral cube' of near-UV to near-IR, and an upcoming UV spectral cube.
2004-07-02
KENNEDY SPACE CENTER, FLA. - A worker (left) at Astrotech Space Operations in Titusville, Fla., questions another worker about the oxygen connection in his protective suit before spacecraft propellant loading of the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket, bound for Mercury, is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, Boeing workers complete the installation of the fairing around the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft. The fairing is a molded structure that fits flush with the outside surface of the upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Astrophysics Data System (ADS)
McClintock, W. E.; Benna, M.; Burger, M. H.; Cassidy, T.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Sprague, A. L.; Vervack, R. J.
2012-12-01
Prior to the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, Mercury's surface-bounded exosphere was known to contain H and He, observed by Mariner 10, as well as Na, K, and Ca, observed from the ground. The exosphere is the interface between the planet's surface and the surrounding space environment. Its composition and structure are controlled by interactions among the surface, magnetosphere, solar wind, sunlight, and impacting meteoroids. When species are liberated from the surface with sufficient energy, they can be accelerated by solar radiation pressure to form an anti-sunward tail. During three flybys en route to orbit, the Ultraviolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) aboard MESSENGER discovered Mg in the tail and detected Ca+ in a narrow region centered ~ 2.5 Mercury radii anti-sunward of the planet's terminator. UVVS began routine orbital observations of both the dayside and nightside exosphere on March 29, 2011. It regularly measures altitude profiles for all previously detected neutral species with the exception of He and K. The former has no emission features within the UVVS wavelength range (115-600 nm), and the latter has only one relatively weak feature there. A single component of Ca is usually observed at lower altitudes (~2000 km) and exhibits the strong equatorial, dawn enhancement observed during the flybys. Mg distributions exhibit two components. The more energetic component has been detected at high altitudes, up to 4000 km above the surface on both the dayside and nightside, and shows a dawn enhancement similar to Ca. Dayside distributions of Na exhibit two components with e-folding heights comparable to profiles above the poles obtained during the third flyby. Concentrations of all three species exhibit seasonal variability. The best studied of these is Na, for which maximum dayside density occurs at a Mercury true anomaly angle of 180°. UVVS also observes H. It is less well studied than Ca, Mg, and Na because signal from the exospheric H is often contaminated by emission from interplanetary hydrogen and sunlight reflected from the surface. O has also been detected near the subsolar point, but its emission is too weak for routine study. UVVS observations also include wavelength scans for neutral species that are known or are predicted to be present in the surface materials (e.g., Si, Al, S, Mn, Fe, and OH), but emissions from these species are not sufficiently bright for detection with current operational scenarios. The UVVS team uses a variety of techniques to relate exosphere composition and structure to source processes, including tomographic inversion and Monte Carlo modeling. Correlations of Mercury's neutral exosphere composition and structure with direct measurements of the space environment from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide further insight into source processes.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Inside the environmental curtain suspended around the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft while in the mobile service tower at Launch Complex 17-B, Cape Canaveral Air Force Station, a worker removes the protective material wrapped around MESSENGER. Visible at right is the sunshade that will protect MESSENGERs instruments during exposure to the sun as it orbits Mercury. Scheduled to launch Aug. 2, MESSENGER will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. It is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. Processing is being done at Astrotech Space Operations in Titusville, Fla.
Seasonal variations of Mercury's magnesium dayside exosphere from MESSENGER observations
NASA Astrophysics Data System (ADS)
Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.
2017-01-01
The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, ∼17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of ∼6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5 cm-3 to 50 cm-3 and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1 × 105 cm-2 s-1 to 8 × 105 cm-2 s-1.
Seasonal Variations of Mercury's Magnesium Dayside Exosphere from MESSENGER Observations
NASA Technical Reports Server (NTRS)
Merkel, Aimee W.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; McClintock, William E.; Sarantos, Menelaos; Burger, Matthew H.; Killen, Rosemary M.
2017-01-01
The Ultraviolet and Visible Spectrometer channel of the Mercury Atmospheric and Surface Composition Spectrometer instrument aboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft made near-daily observations of solar-scattered resonant emission from magnesium in Mercury's exosphere during the mission's orbital phase (March 2011-April 2015, approx.17 Mercury years). In this paper, a subset of these data (March 2013-April 2015) is described and analyzed to illustrate Mg's spatial and temporal variations. Dayside altitude profiles of emission are used to make estimates of the Mg density and temperature. The main characteristics of the Mg exosphere are (a) a predominant enhancement of emission in the morning (6 am-10 am) near perihelion, (b) a bulk temperature of approx. 6000 K, consistent with impact vaporization as the predominant ejection process, (c) a near-surface density that varies from 5/cu cm to 50/cu cm and (d) a production rate that is strongest in the morning on the inbound leg of Mercury's orbit with rates ranging from 1×10(exp 5)/sq cm/s to 8×10(exp 5)/sq cm/s.
2004-07-19
KENNEDY SPACE CENTER, FLA. - Workers at Astrotech Space Operations in Titusville, Fla., place a protective cover around the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft at Astrotech Space Operations in Titusville, Fla. Bagging the Mercury-bound MESSENGER precedes its placement in a transportation canister for the journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-07-27
KENNEDY SPACE CENTER, FLA. - On Launch Pad 17-B at Cape Canaveral Air Force Station, the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft is seen atop the Delta II upper stage booster (middle) and the Delta II launch vehicle below. The spacecraft is ready for installation of the fairing, a molded structure that fits flush with the outside surface of the upper stage booster and forms an aerodynamically smooth joint, protecting the spacecraft during launch. Seen on the right is one of the solar panels on the spacecraft. On the left is the heat-resistant, ceramic-cloth sunshade that will protect the spacecraft’s instruments as MESSENGER orbits the Mercury where the surface reaches a high temperature near 840 degrees Fahrenheit and the solar intensity can be 11 times greater than on Earth. MESSENGER is scheduled to launch Aug. 2 and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers secure NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
NASA Astrophysics Data System (ADS)
McClintock, W. E.; Bradley, E. T.; Izenberg, N. R.; Killen, R. M.; Kochte, M. C.; Lankton, M. R.; Mouawad, N.; Sprague, A. L.; Vervack, R. J.
2008-12-01
Mercury's surface-bound exosphere is the interface between the planet's surface and the external stimuli that interact with it. Its composition and structure are controlled by surface, magnetosphere, and solar-wind processes. Prior to the MESSENGER mission the exosphere was known to contain H, He, and O from Mariner 10 observations, as well as Na, K, and Ca that were discovered during ground-based observations. Na has been extensively studied since its discovery in 1985, including observations of a neutral Na tail first reported in 2002. Undetected species, including Mg, Fe, Al, and S, are also expected to exist in the exosphere. MESSENGER's initial flyby of Mercury, which occurred on January 14, 2008, offered the first opportunity to measure the planet's neutral tail from space. As the spacecraft approached the planet from the nightside, the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) scanned the tail beginning at altitudes of 24,500 km behind Mercury's nightside surface and covering a region of space approximately three planet diameters tall and centered on the Sun-Mercury line. The UVVS measured emissions from Na during the entire observation. It also observed neutral hydrogen beginning approximately 5,000 km above the nightside surface. The spatial distributions of both species were seen to be asymmetric, with enhanced densities occurring in the northern hemisphere. UVVS observations of Ca, which were made as the spacecraft traversed the nightside exosphere, exhibited enhanced emission toward the dawn terminator, with north-south behavior similar to that of Na and H. These observations suggest that the relatively high-energy source processes that give rise to species observed in the tail were localized near the northern and morning hemispheres during the flyby. This inference is supported by magnetic field observations made with the MESSENGER Magnetometer, which observed a strong radial component of the interplanetary magnetic field (Bx) directed antisunward after MESSENGER passed outside the magnetosphere. This magnetic field orientation is expected to result in a greater number of open field lines in the northern hemisphere, preferentially allowing solar wind plasma to impinge upon the surface in that region.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Shipped in an air-conditioned transportation van from NASA’s Goddard Space Flight Center in Greenbelt, Md., NASA’s MESSENGER spacecraft, the first Mercury orbiter, arrives at the Astrotech Space Operations processing facilities near KSC. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be offloaded and taken into a high bay clean room. After the spacecraft is removed from its shipping container, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Astrophysics Data System (ADS)
McClintock, W. E.; Burger, M. H.; Cassidy, T. A.; Killen, R. M.; Merkel, A. W.; Sarantos, M.; Solomon, S. C.; Vervack, R. J., Jr.
2015-12-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS), on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, conducted orbital observations of Mercury's dayside and nightside exosphere from 29 March 2011 to the end of the mission on 30 April 2015. Over slightly more than four Earth-years, MASCS measured emission profiles versus altitude for calcium (Ca), sodium (Na), and magnesium (Mg) at a daily cadence. These species exhibit different spatial distributions, suggesting distinct source processes. MASCS observed seasonal variations in all three species that are remarkably repeatable from one Mercury year to the next, and did so consistently during the entire 17-Mercury-year duration of the orbital phase of the mission. Whereas MASCS has characterized the seasonal variation, it has provided, at best, only weak evidence for the episodic behavior observed in ground-based studies of Na. Joint analyses of MASCS observations and surface precipitation patterns for energetic particles inferred from observations by the Energetic Particle Spectrometer (EPS) and the Fast Imaging Plasma Spectrometer (FIPS) on MESSENGER have not yielded clear correlations. This lack of correlation may be due in part to the MASCS observational geometries. MASCS has conducted a number of searches for other, weakly emitting species. Hydrogen data from the orbital phase are consistent with profiles observed during MESSENGER's flybys of Mercury. Oxygen detections have proven elusive, and the previously reported observation with a brightness of 4 R may only be an upper limit. Ongoing analysis of weak species data suggests that additional species are present.
Oxygen Depletion on the Surface of Mercury: Evidence of Silicon Smelting?
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Vander Kaaden, K. E.; Peplowski, P. N.; Bell, A. S.; Evans, L. G.; Nittler, L. R.; Boyce, J. W.; Keller, L. P.; McCoy, T. J.
2017-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. The X-Ray Spectrometer (XRS) and Gamma-Ray Spectrometer (GRS) onboard MESSENGER provided the first detailed chemical analyses of Mercury's surface. Among the many discoveries included several surprising characteristics about the surface of Mercury, including elevated S abundances (up to 4 percent by weight), low Fe abundances (less than 4 percent by weight), and relatively low O abundances (O/Si ratio of 1.40 plus or minus 0.03). The surface chemistry as determined by MESSENGER has been used to identify up to nine distinct geochemical terranes on Mercury. Numerous modeling and experimental efforts have been undertaken to infer the mineralogy and petrology of mercurian lavas and surface materials. However, all of these efforts have presumed valence states for each of the elements according to the following: Si4+, Ti4+, Al3+, Cr2+, Fe2+, Mn2+, Mg2+, Ca2+, Na+, K+, S2-, Cl-. Based on these valence assignments, cations are charged balanced with the anions O2-, S2-, and Cl- and the compositions are recast in terms of oxides, sulfides, and chlorides. Based on these assumptions, the geochemical terranes that have been identified on Mercury yield O/Si wt. ratios ranging from 1.61 to 1.84, which is substantially higher than the preliminary O/Si ratio of 1.40 plus or minus 0.03 determined by the MESSENGER GRS]. We have re-evaluated the O/Si ratio using the entire MESSENGER dataset to reassess its implications for the geochemistry of Mercury.
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
Evidence from numerical experiments for a feedback dynamo generating Mercury's magnetic field.
Heyner, Daniel; Wicht, Johannes; Gómez-Pérez, Natalia; Schmitt, Dieter; Auster, Hans-Ulrich; Glassmeier, Karl-Heinz
2011-12-23
The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.
NASA Technical Reports Server (NTRS)
Goudge, Timothy A.; Head, James W.; Kerber, Laura; Blewett, David T.; Denevi, Brett W.; Domingue, Deborah L.; Gillis-Davis, Jeffrey J.; Gwinner, Klaus; Helbert, Joern; Holsclaw, Gregory M.;
2014-01-01
We present new observations of pyroclastic deposits on the surface of Mercury from data acquired during the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. The global analysis of pyroclastic deposits brings the total number of such identified features from 40 to 51. Some 90% of pyroclastic deposits are found within impact craters. The locations of most pyroclastic deposits appear to be unrelated to regional smooth plains deposits, except some deposits cluster around the margins of smooth plains, similar to the relation between many lunar pyroclastic deposits and lunar maria. A survey of the degradation state of the impact craters that host pyroclastic deposits suggests that pyroclastic activity occurred on Mercury over a prolonged interval. Measurements of surface reflectance by MESSENGER indicate that the pyroclastic deposits are spectrally distinct from their surrounding terrain, with higher reflectance values, redder (i.e., steeper) spectral slopes, and a downturn at wavelengths shorter than approximately 400nm (i.e., in the near-ultraviolet region of the spectrum). Three possible causes for these distinctive characteristics include differences in transition metal content, physical properties (e.g., grain size), or degree of space weathering from average surface material on Mercury. The strength of the near-ultraviolet downturn varies among spectra of pyroclastic deposits and is correlated with reflectance at visible wavelengths. We suggest that this interdeposit variability in reflectance spectra is the result of either variable amounts of mixing of the pyroclastic deposits with underlying material or inherent differences in chemical and physical properties among pyroclastic deposits.
Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.
2009-01-01
The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the Mobile Service Tower begins to roll back from the pad, revealing the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) spacecraft aboard a Delta II rocket, Model 7925-H with heavy lift capability. MESSENGER is ready for liftoff on Aug. 2 at 2:16 a.m. EDT and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. On Launch Pad 17-B at Cape Canaveral Air Force Station, the Mobile Service Tower rolls back revealing the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry and Ranging) spacecraft aboard a Delta II rocket, model 7925-H with heavy lift capability. MESSENGER is ready for liftoff on Aug. 2 at 2:16 a.m. EDT and is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2014-11-20
President Barack Obama congratulates MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, after awarding him the National Medal of Science, the nation's top scientific honor,Thursday, Nov. 20, 2014 during a ceremony in the East Room of the White House in Washington. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-08-03
KENNEDY SPACE CENTER, FLA. - Wrapped in clouds of smoke, the Boeing Delta II rocket with its MESSENGER spacecraft on top climbs free as it lifts off on time at 2:15:56 a.m. EDT from Launch Pad 17-B, Cape Canaveral Air Force Station. MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) is on a seven-year, 4.9-billion-mile journey to the planet Mercury. The spacecraft will fly by Earth, Venus and Mercury several times, as well as circling the sun 15 times, to burn off energy before making its final approach to the inner planet on March 18, 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Technical Reports Server (NTRS)
Talpe, Matthieu, J.; Zuber, Maria T.; Neumann, Gregory A.; Mazarico, Erwan; Solomon, Sean C.; Vilas, Faith
2012-01-01
Earth-based radar images dating back two decades show that the floors of some polar craters on Mercury host radar-bright deposits that have been proposed to consist of frozen volatiles. Several hypotheses have been put forth to explain their source, including volcanic outgassing, chemical sputtering, and deposition of exogenous water ice. Calculations show that volatiles are thermally stable in permanently shadowed areas. An earlier study of the depths of north polar craters determined with photoclinometric techniques applied to Mariner 10 images yielded the conclusion that the mean ratio of crater depth d to rim-crest diameter D for craters hosting polar deposits is two-thirds that of the mean ratio for a comparable population of neighboring craters lacking such deposits. This result could be explained by (though doesn't require) the presence of a thick layer of volatiles within the polar deposit-hosting craters. Here we use altimetric profiles and topographic maps obtained by the Mercury Laser Altimeter (MLA) to revisit this analysis. MLA is an instrument on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has been orbiting Mercury since March 2011. MLA transmits a 1064-nm laser pulse at 8 Hz during MESSENGER's trajectory over Mercury s surface. The MLA illuminates surface areas averaging between 15 m and 100 m in diameter, spaced approx 400 m apart along the spacecraft ground track. The radial precision of individual measurements is <1 m, and the current accuracy with respect to Mercury s center of mass is better than 20 m. As of mid-December 2011, MLA coverage had reached to 15 S and has yielded a comprehensive map of the topography of Mercury s northern hemisphere. The MLA data are used here to quantify the shapes of craters in the north polar region and to avoid the shadowing bias of photoclinometric techniques.
Mercury: Photomosaic of the Shakespeare Quadrangle of Mercury (Southern Half) H-3
NASA Technical Reports Server (NTRS)
1974-01-01
This computer generated photomosaic from Mariner 10 is of the southern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the upper edge to the left of center. This portion of the quadrangle covers the geographic region from 20 to 45 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.
Well defined bright streaks or ray systems radiating away from craters constitute another distinctive feature of the Mercurian surface, remarkably similar to the Moon. The rays cut across and are superimposed on all other surface features, indicating that the source craters are the youngest topographic features on the surface of Mercury.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury,NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers prepare for contact of NASA’s MESSENGER spacecraft with a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers verify the correct placement of NASA’s MESSENGER spacecraft on a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers prepare to move NASA’s MESSENGER spacecraft onto a test stand using an overhead crane. There, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers check for the correct alignment of NASA’s MESSENGER spacecraft as it is lowered onto a test stand. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers lower NASA’s MESSENGER spacecraft onto a test stand using an overhead crane. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, the attachment of NASA’s MESSENGER spacecraft to a test stand is complete. The spacecraft is now ready for employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, to begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-03-22
KENNEDY SPACE CENTER, FLA. -- At the Astrotech Space Operations processing facilities, workers monitor NASA’s MESSENGER spacecraft as it is lowered onto a test stand by an overhead crane. Once in place, employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will begin final processing for launch, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched aboard a Boeing Delta II rocket no earlier than July 30 on a six-year mission to study the planet Mercury.
2004-07-19
KENNEDY SPACE CENTER, FLA. - Workers from the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. get ready to “bag” the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft in the background at Astrotech Space Operations in Titusville, Fla. Placing a protective cover around the Mercury-bound MESSENGER precedes its placement in a transportation canister for the journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by APL.
2004-07-19
KENNEDY SPACE CENTER, FLA. - Workers from the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., begin placing a protective cover around the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft at Astrotech Space Operations in Titusville, Fla. Bagging the Mercury-bound MESSENGER precedes its placement in a transportation canister for the journey to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by APL.
Tomographic Reconstruction of Mercury's Exosphere from MESSENGER Flyby Data
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; McClintock, William E.; Slavin, James A.; Solomon, Sean C.; Vervack, Ronald J., Jr.
2011-01-01
The exosphere of Mercury is among the best-studied examples of a common type of atmosphere, a surface-bounded exosphere. Mercury's exosphere was probed in 2008-2009 with Ultraviolet and Visible Spectrometer (UVVS) measurements obtained during three planetary flybys by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [1-3]. The measurements detailed the distribution of two previously known metallic constituents of Mercury's exosphere, Na and Ca, and indicated the presence in the gas phase of yet another metallic species, Mg. Such measurements can answer fundamental scientific questions regarding the relative importance of possible source and loss processes for exospheric species ejected from a surface boundary [4]. The trajectory of MESSENGER during the last of its three flybys provided the best spatial coverage prior to orbit insertion. The measurements by MESSENGER of Na, Ca, and Mg during the third flyby have been analyzed with a novel tomographic method. This approach maximizes the amount of information that can be extracted from line-of-sight measurements because it yields three-dimensional distributions of neutrals consistent with the data.
Carbon on Mercury's Surface - Origin, Distribution, and Concentration
NASA Technical Reports Server (NTRS)
Klima, Rachel L.; Blewett, David T.; Denevi, Brett W.; Ernst, Carolyn M.; Murchie, Scott L.; Peplowski, Patrick N.; Perera, Virange; Vander Kaaden, Kathleen
2018-01-01
Distinctive low-reflectance material (LRM) was first observed on Mercury in Mariner 10 flyby images. Visible to near-infrared reflectance spectra of LRM are flatter than the average reflectance spectrum of Mercury, which is strongly red sloped (increasing in reflectance with wavelength). From Mariner 10 and early MErcury, Surface, Space, ENvironment, GEochemistry, and Ranging (MESSENGER) flyby observations, it was suggested that a higher content of ilmenite, ulvospinel, carbon, or iron metal could cause both the characteristic dark, flat spectrum of LRM and the globally low reflectance of Mercury. Once MESSENGER entered orbit, low Fe and Ti abundances measured by the X-Ray and Gamma-Ray Spectrometers ruled out ilmenite, and ulvospinel as important surface constituents and implied that LRM was darkened by a different phase, such as carbon or small amounts of micro- or nanophase iron or iron sulfide dispersed in a silicate matrix. Low-altitude thermal neutron measurements of three LRM-rich regions confirmed an enhancement of 1-3 weight-percent carbon over the global abundance, supporting the hypothesis that LRM is darkened by carbon.
Petrology and Geochemistry of Mercury
NASA Astrophysics Data System (ADS)
Weider, Shoshana Z.
2018-04-01
Although having knowledge of a terrestrial planet's chemistry is fundamental to understanding the origin and composition of its rocks, until recently, the geochemistry of Mercury—the Solar System's innermost planet—was largely unconstrained. Without the availability of geological specimens from Mercury, studying the planet's surface and bulk composition relies on remote sensing techniques. Moreover, Mercury's proximity to the Sun makes it difficult to study with Earth/space-based telescopes, or with planetary probes. Indeed, to date, only NASA's Mariner 10 and MESSENGER missions have been sent to Mercury. The former made three "flyby" encounters of Mercury between 1974 and 1975, but did not carry any instrument to make geochemical or mineralogical measurements of the surface. Until the MESSENGER flyby and orbital campaigns (2008–2015), therefore, knowledge of Mercury's chemical composition was severely limited and consisted of only a few facts. For example, it has long been known that Mercury has the highest uncompressed density of all the terrestrial planets (and thus a disproportionately large iron core). In addition, Earth-based spectral reflectance observations indicated a dark surface, largely devoid of iron within silicate minerals. To improve understanding of Mercury's geochemistry, the MESSENGER payload included a suite of geochemical sensing instruments: namely the X-Ray Spectrometer, Gamma-Ray Spectrometer, and Neutron Spectrometer. Indeed, the datasets obtained from these instruments (as well as from other complementary instruments) during MESSENGER's 3.5-year orbital mission allow a much more complete picture of Mercury's geochemistry to be drawn, and quantitative abundance estimates for several major rock-forming elements in Mercury's crust are now available. Overall, the MESSENGER data reveal a surface that is rich in Mg, but poor in Al and Ca, compared with typical terrestrial and lunar crustal materials. Mercury's surface also contains high concentrations of the volatile elements Na, S, K, and Cl. Furthermore, the total surface Fe abundance is now known to be <2 wt%, and the planet's low reflectance is thought to be primarily caused by the presence of C (in graphite) at a level of >1 wt%. Such data are key to constraining models for Mercury's formation and early evolution. Large-scale spatial variations in the MESSENGER geochemical datasets have also led to the designation of several geochemical "terrains" across Mercury's surface, which do not always align to otherwise mapped geological regions. Based on the MESSENGER geochemical results, several recent petrological experiments and calculations have been, and continue to be, performed to study Mercury's surface mineralogy. The results show that there are substantial differences in the precise mineral compositions and abundances among the different terrains, but Mercury's surface appears to be dominated by Mg-rich olivines and pyroxenes, as well as plagioclase and sulphide phases. Depending on the classification scheme used, Mercury's ultramafic surface rocks can thus be described as similar in nature to terrestrial boninites, andesites, norites, or gabbros.
MERTIS: the thermal infrared imaging spectrometer onboard of the Mercury Planetary Orbiter
NASA Astrophysics Data System (ADS)
Zeh, T.; Peter, G.; Walter, I.; Kopp, E.; Knollenberg, J.; Helbert, J.; Gebhardt, A.; Weber, I.; Hiesinger, Harry
2017-11-01
The MERTIS instrument is a thermal infrared imaging spectrometer onboard of ESA's cornerstone mission BepiColombo to Mercury. MERTIS has four goals: the study of Mercury's surface composition, identification of rock-forming minerals, mapping of the surface mineralogy, and the study of the surface temperature variations and thermal inertia. MERTIS will provide detailed information about the mineralogical composition of Mercury's surface layer by measuring the spectral emittance in the spectral range from 7-14 μm at high spatial and spectral resolution. Furthermore MERTIS will obtain radiometric measurements in the spectral range from 7-40 μm to study the thermo-physical properties of the surface material. The MERTIS detector is based on an uncooled micro-bolometer array providing spectral separation and spatial resolution according to its 2-dimensional shape. The operation principle is characterized by intermediate scanning of the planet surface and three different calibration targets - free space view and two on-board black body sources. In the current project phase, the MERTIS Qualification Model (QM) is under a rigorous testing program. Besides a general overview of the instrument principles, the papers addresses major aspects of the instrument design, manufacturing and verification.
A comprehensive study of Mercury and MESSENGER orbit determination
NASA Astrophysics Data System (ADS)
Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.
2016-10-01
The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass. Several test cases illuminate results on the estimation of PPN parameters.
A Test of General Relativity with MESSENGER Mission Data
NASA Astrophysics Data System (ADS)
Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Nicholas, J. B.; Rowlands, D. D.; Smith, D. E.; Zuber, M. T.; Solomon, S. C.
2016-12-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft initiated collection of scientific data from the innermost planet during its first flyby of Mercury in January 2008. After two additional Mercury flybys, MESSENGER was inserted into orbit around Mercury on 18 March 2011 and operated for more than four Earth years through 30 April 2015. Data acquired during the flyby and orbital phases have provided crucial information on the formation and evolution of Mercury. The Mercury Laser Altimeter (MLA) and the radio science system, for example, obtained geodetic observations of the topography, gravity field, orientation, and tides of Mercury, which helped constrain its surface and deep interior structure. X-band radio tracking data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, as well as refinement of the planet's obliquity and estimation of the tidal Love number k2. These geophysical parameters are derived from the range-rate observables that measure precisely the motion of the spacecraft in orbit around the planet. However, the DSN stations acquired two other kinds of radio tracking data, range and delta-differential one-way ranging, which also provided precise measurements of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession, which was used by Einstein as confirmation of general relativity (GR) because of its inconsistency with the effects predicted from classical Newtonian theory. MESSENGER data allow the estimation of the GR parameterized post-Newtonian (PPN) coefficients γ and β. Furthermore, determination of Mercury's orbit also allows estimation of the gravitational parameter (GM) and the flattening (J2) of the Sun. We modified our orbit determination software, NASA GSFC's GEODYN II, to enable simultaneous orbit integration of both MESSENGER and the planet Mercury. The combined estimation of both orbits leads to a more accurate estimation of Mercury's gravity field, orientation, and tides. Results for these geophysical parameters, GM and J2 for the Sun, and the PPN parameters constitute updates for all of these quantities.
The low-degree shape of Mercury
NASA Astrophysics Data System (ADS)
Perry, Mark E.; Neumann, Gregory A.; Phillips, Roger J.; Barnouin, Olivier S.; Ernst, Carolyn M.; Kahan, Daniel S.; Solomon, Sean C.; Zuber, Maria T.; Smith, David E.; Hauck, Steven A.; Peale, Stanton J.; Margot, Jean-Luc; Mazarico, Erwan; Johnson, Catherine L.; Gaskell, Robert W.; Roberts, James H.; McNutt, Ralph L.; Oberst, Juergen
2015-09-01
The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Elevation measurements of the northern hemisphere acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, combined with 378 occultations of radio signals from the spacecraft in the planet's southern hemisphere, reveal the low-degree shape of Mercury. Mercury's mean radius is 2439.36 ± 0.02 km, and there is a 0.14 km offset between the planet's centers of mass and figure. Mercury is oblate, with a polar radius 1.65 km less than the mean equatorial radius. The difference between the semimajor and semiminor equatorial axes is 1.25 km, with the long axis oriented 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is also oblate and elongated, but it deviates from a sphere by a factor of 10 less than Mercury's shape, implying compensation of elevation variations on a global scale.
NASA Astrophysics Data System (ADS)
Burger, M. H.; Killen, R. M.; M, N.; Sarantos, M.; Crider, D. H.; Vervak, R. J.
2009-04-01
Mercury has a tenuous exosphere created by the combined effects of solar radiation and micrometeoroid bombardment on the surface and the interaction of the solar wind with Mercury's magnetic field and surface. Observations of this exosphere provide essential data necessary for understanding the composition and evolution of Mercury's surface, as well as the interaction between Mercury's magnetosphere with the solar wind. The sodium component of the exosphere has been well observed from the ground (see review by Killen et al., 2007). These observations have revealed a highly variable and inhomogeneous exosphere with emission often peaking in the polar regions. Radiation acceleration drives exospheric escape producing a sodium tail pointing away from the sun which has been detected up to 1400 Mercury radii from the planet (Potter et al. 2002; Baumgardner et al. 2008). Calcium has also been observed in Mercury's exosphere showing a distribution distinct from sodium, although also variable (Killen et al. 2005). During the first two encounters with Mercury by MESSENGER, observations of the exosphere were made by the UltraViolet and Visible Spectrometer (UVVS) channel of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS). Sodium and calcium emission were detected during both flybys, and magnesium was detected for the first time in Mercury's exosphere during the second flyby. The spatial distributions of these species showed significant, unexpected differences which suggest differences in the mechanisms responsible for releasing them from the surface. We present a Monte-Carlo model of sodium, magnesium, and calcium in Mercury's exosphere. The important source mechanisms for ejecting these species from the surface are sputtering by solar wind ions, photon-stimulated desorption, and micrometeoroid impact vaporization. Thermal desorption on the dayside does not supply enough energy to significantly populate the exosphere, although it does play a role in redistributing volatiles over the surface. In addition, atomic calcium can be produced from the dissociation of Ca-bearing molecules, such as CaO, which can be formed in impact vapors. The primary loss processes are the escape of neutrals ejected with sufficient energy and photoionization. The former process is supplemented by radiation pressure which accelerates neutrals anti-sunward such that escaping neutrals form a tail pointing away from the sun. Because Mercury's heliocentric distance and radial velocity vary during its orbit, both loss processes are functions of Mercury's true anomaly. We also consider the spatial distribution of the surface source. Impact vaporization is roughly isotropic over the surface, although there may be a leading/trailing asymmetry in the impact rate due to Mercury's orbital motion. Sputtering is confined to regions where the solar wind can impact the surface, which is shielded somewhat by the internal magnetic field. The surface regions vulnerable depend on the solar wind conditions. References: Baumgardner et al., GRL, 35, L03201, 2008. Killen, R.M. et al., Space Sci. Rev. 132, 433-509, 2007. Killen, R.M. et al., Icarus, 173, 300-311, 2005. Potter et al., Meteoritics & Planetary Sci., 37, 1165, 2002.
Future observations of and missions to Mercury
NASA Technical Reports Server (NTRS)
Stern, Alan S.; Vilas, Faith
1988-01-01
Key scientific objectives of Mercury explorations are discussed, and the methods by which remote observations of Mercury can be carried out from earth and from space are examined. Attention is also given to the scientific rationale and technical concepts for missions to Mercury. It is pointed out that multiple Venus-Mercury encounter trajectories exist which, through successive gravity assists, reduce mission performance requirements to levels deliverable by available systems, such as Titan-Centaur, Atlas-Centaur, and Shuttle/TOS. It is shown that a single launch in July of 1994, using a Titan-Centaur combination, could place a 1477-kg payload into orbit around Meercury. The components of a Mercury-orbiter payload designed to study surface geology and geochemistry, atmospheric composition and structure, the local particle and fields environment, and solid-body rotation dynamics are listed.
Evidence for Surface and Subsurface Ice Inside Micro Cold-Traps on Mercury's North Pole
NASA Technical Reports Server (NTRS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2017-01-01
The small obliquity of Mercury causes topographic depressions located near its poles to cast persistent shadows. Many [1, 9, 15] have shown these permanently shadowed regions (PSRs) may trap water ice for geologic time periods inside cold-traps. More recently, direct evidence for the presence of water ice deposits inside craters was remotely sensed in RADAR [5] and visible imagery [3]. Albedo measurements (reflectence at 1064 nm) obtained by the MErcury Space ENviroment GEochemistry and Ranging Laser Altimeter (MLA) found unusually bright and dark areas next to Mercury's north pole [7]. Using a thermal illumination model, Paige et al. [8] found the bright deposits are correlated with surface cold-traps, and the dark deposits are correlated with subsurface cold-traps. They suggested these anomalous deposits were brought to the surface by comets and were processed by the magnetospheric radiation flux, removing hydrogen and mixing C-N-O-S atoms to form a variety of molecules which will darken with time. Here we use a thermal illumination model to find the link between the cold-trap area fraction of a rough surface and its albedo. Using this link and the measurements obtained by MESSENGER we derive a surface and a subsurface ice distribution map on Mercury's north pole below the MESSENGER spatial resolution, approximately 500 m. We find a large fraction of the polar ice on Mercury resides inside micro cold-traps (of scales 10 - 100 m) distributed along the inter-crater terrain.
Aubrite and Impact Melt Enstatite Chondrite Meteorites as Potential Analogs to Mercury
NASA Technical Reports Server (NTRS)
Wilbur, Z. E.; Udry, A.; Mccubbin, Francis M.; McCubbin, F. M.; Combs, L. M.; Rahib, R. R.; McCoy, C.; McCoy, T. J.
2018-01-01
The MESSENGER (MErcury Sur-face, Space ENvironment, GEochemistry and Ranging) orbiter measured the Mercurian surface abundances of key rock-forming elements to help us better understand the planet's surface and bulk geochemistry. A major discovery is that the Mercurian surface and interior are characterized by an extremely low oxygen fugacity (ƒO2; Iron-Wüstite (IW) -7.3 to IW-2.6. This is supported by low Fe and high S abundances on the surface. This low ƒO2 causes a different elemental partioning from what is observed on Earth. Using surface composition, it was shown that the Mercurian surface mainly consists of normative plagioclase, pyroxene, olivine, and exotic sulfides, such as niningerite ((Mg,Mn, Fe)S) and oldhamite (CaS).
2014-11-20
President Barack Obama delivers remarks at the National Medals of Science and National Medals of Technology and Innovation Awards Ceremony, Thursday, Nov. 20, 2014 in the East Room of the White House in Washington. MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, was awarded the National Medal of Science, the nation's top scientific honor, at the ceremony. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)
2014-11-20
President Barack Obama, right, and MESSENGER Principal Investigator, director of Columbia University's Lamont-Doherty Earth Observatory, Sean Solomon, listen as a citation is read prior to the President bestowing the National Medal of Science, the nation's top scientific honor to Solomon, Thursday, Nov. 20, 2014 during a ceremony in the East Room of the White House in Washington. MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) is a NASA-sponsored scientific investigation of the planet Mercury and the first space mission designed to orbit the planet closest to the Sun. Photo Credit: (NASA/Bill Ingalls)
2004-07-06
KENNEDY SPACE CENTER, FLA. - Workers in the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station, check the progress of the Boeing Delta II Heavy second-stage engine as it descends toward the first stage. The Delta is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is ready for lifting up the mobile service tower at Pad 17-B, Cape Canaveral Air Force Station. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Mercury's Sodium Exosphere: Observations during the MESSENGER Orbital Phase
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; Cassidy, Timothy A.; Vervack, Ronald J., Jr.; Burger, Matthew H.; Merkel, Aimee W.; Sarantos, Menelaos; Sprague, Ann L.; McClintock, William E.; Benna, Mehdi; Solomon, Sean C.
2012-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered into orbit about Mercury on March 18,2011. We now have approximately five Mercury years of data from orbit. Prior to the MESSENGER mission, Mercury's surface-bounded exosphere was known to contain H, He, Na. K, and Ca. The Ultraviolet and Visible Spectrometer (UVVS) began routine orbital observations of both the dayside and nightside exosphere on March 29. 2011, measuring altitude profiles for all previously detected neutral species except for He and K. We focus here on what we have learned about the sodium exosphere: its spatial, seasonal, and sporadic variation. Observations to date permit delineation of the relative roles of photon-stimulated desorption (PSD) and impact vaporization (IV) from seasonal and spatial effects, as well as of the roles of ions both as sputtering agents and in their possible role to enhance the efficiency of PSD. Correlations of Mercury's neutral sodium exosphere with measurements from MESSENGER's Magnetometer (MAG) and Energetic Particle and Plasma Spectrometer (EPPS) provide insight into the roles of ions and electrons. Models incorporating MAG observations provide a basis for identifying the location and area of the surface exposed to solar wind plasma, and EPPS observations reveal episodic populations of energetic electrons in the magnetosphere and the presence of planetary He(+), 0(+), and Na(+),
Calcium in Mercury's Exosphere: Modeling MESSENGER Data
NASA Technical Reports Server (NTRS)
Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee; Vervack, Ronald J.; Sarantos, Menelaos; Sprague, Ann L.
2011-01-01
Mercury is surrounded by a surface-bounded exosphere comprised of atomic species including hydrogen, sodium, potassium, calcium, magnesium, and likely oxygen. Because it is collisionless. the exosphere's composition represents a balance of the active source and loss processes. The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface. Space ENvironment. GEochemistry. and Ranging (MESSENGER) spacecraft has made high spatial-resolution observations of sodium, calcium, and magnesium near Mercury's surface and in the extended, anti-sunward direction. The most striking feature of these data has been the substantial differences in the spatial distribution of each species, Our modeling demonstrates that these differences cannot be due to post-ejection dynamics such as differences in photo-ionization rate and radiation pressure. but instead point to differences in the source mechanisms and regions on the surface from which each is ejected. The observations of calcium have revealed a strong dawn/dusk asymmetry. with the abundance over the dawn hemisphere significantly greater than over the dusk. To understand this asymmetry, we use a Monte Carlo model of Mercury's exosphere that we developed to track the motions of exospheric neutrals under the influence of gravity and radiation pressure. Ca atoms can be ejected directly from the surface or produced in a molecular exosphere (e.g., one consisting of CaO). Particles are removed from the system if they stick to the surface or escape from the model region of interest (within 15 Mercury radii). Photoionization reduces the final weighting given to each particle when simulating the Ca radiance. Preliminary results suggest a high temperature ( I-2x 10(exp 4) K) source of atomic Ca concentrated over the dawn hemisphere. The high temperature is consistent with the dissociation of CaO in a near-surface exosphere with scale height <= 100 km, which imparts 2 eV to the freshly produced Ca atom. This source region and energy are consistent with data from the three MESSENGER flybys; whether this holds true for the data obtained in orbit is under investigation.
NASA Technical Reports Server (NTRS)
Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.
2017-01-01
Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.
Distribution, Statistics, and Resurfacing of Large Impact Basins on Mercury
NASA Technical Reports Server (NTRS)
Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Chapman, Clark R.; Murchie, Scott L.; Neumann, Gregory A.; Oberst, Juergen; Prockter, Louise M.; Smith, David E.; Solomon, Sean C.;
2012-01-01
The distribution and geological history of large impact basins (diameter D greater than or equal to 300 km) on Mercury is important to understanding the planet's stratigraphy and surface evolution. It is also informative to compare the density of impact basins on Mercury with that of the Moon to understand similarities and differences in their impact crater and basin populations [1, 2]. A variety of impact basins were proposed on the basis of geological mapping with Mariner 10 data [e.g. 3]. This basin population can now be re-assessed and extended to the full planet, using data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Note that small-to- medium-sized peak-ring basins on Mercury are being examined separately [4, 5]; only the three largest peak-ring basins on Mercury overlap with the size range we consider here. In this study, we (1) re-examine the large basins suggested on the basis of Mariner 10 data, (2) suggest additional basins from MESSENGER's global coverage of Mercury, (3) assess the size-frequency distribution of mercurian basins on the basis of these global observations and compare it to the Moon, and (4) analyze the implications of these observations for the modification history of basins on Mercury.
NASA Astrophysics Data System (ADS)
2001-07-01
Exploring Mercury PhD student Mark Bentley explains how and why he got involved Mark Bentley is studying for a PhD in planetary science. He is helping to design and build instruments for a forthcoming ESA mission to explore the surface of Mercury. Mark Bentley Space has excited and inspired me for as long as I can remember; my earliest memory of this is being allowed to stay up 'really late' to watch the Space Shuttle Columbia land in 1981, at the age of five. Science in general has always interested me. Although I probably didn't recognize it as such at the time, my fascination with collecting all sorts of equipment (or as my parents called it, 'junk') and finding out what made them tick was an early demonstration of this. At school it seemed natural to take science subjects (Physics, Chemistry and Maths A-levels) and then to consider University though physics was not my first thought. I was all set for the respectable career of computer science, not realizing that my space interests could lead anywhere, until I flicked through the first prospectus I received. By luck it was from Leicester University, and while computer science was offered it also had something called 'Physics with Space Science and Technology'. The rest, as they say, is history... After graduating I spent the following two years working for a UK company developing satellite simulators. But then I started thinking about doing a PhD attracted by the flexibility of directing my own research. I knew that I wanted something that involved space science and the element of discovery, but also something that looked at the engineering and technology of a space mission. The timing was fortuitous shortly after I committed myself to a PhD, the European Space Agency announced the selection of BepiColombo, a mission to Mercury, as one of its 'Cornerstone' (large scale) missions. Here was a mission big on science (no spacecraft has ever orbited Mercury, let alone landed on it) and technology as well! So that takes me to where I am now in my first year at the Planetary and Space Sciences Research Institute of the Open University in Milton Keynes. If everything goes according to plan, three years later I will be Dr Bentley and know a whole lot more about Mercury! So what am I now? A physicist at heart, but I guess 'planetary scientist' is more accurate... The great thing about studying the planets is that the field can be stretched to encompass just about any aspect of science you care to choose from biology, through engineering, to physics and more. Planetary science fits well with the modern 'trend' for multidisciplinary research as well as being on the leading edge of modern science, and one of the most international areas of study. In studying our solar system we aim to learn more about the processes that formed the planets and ultimately life itself. For the foreseeable future the nine major bodies and their associated moons are our only glimpse back in time to the early life of our corner of the Universe. Over the past few decades, a relatively short period of time, we have expanded our understanding of the planets by orders of magnitude. Instruments like the Hubble Space Telescope have enabled more and more detailed images of both the near and far, whilst robotic space probes have extended scientists' senses to the far corners of the solar system. The two least studied planets lie at the two extreme ends of our system. Pluto sits at the outer edges of the solar system, a small icy ball that astronomers even argue about calling a planet. Mercury, messenger of the Gods, is a relative inferno, closer to the Sun than any other body. Mercury is not an easy target for spacecraft. Tucked deep in the Sun's gravitational well, any mission must lose about 60% of its orbital energy in order to match Mercury's orbit. The only spacecraft to visit Mercury to date was Mariner 10, a NASA mission flown in the mid-70s. It had far too much energy to enter orbit and could just make several quick passes, leaving an incomplete image of only half of the planet. This, and observations made from Earth, provide almost all of our knowledge of Mercury. Earth observations, however, are hampered by the planet's proximity to the Sun, making observations possible only at dawn and dusk. A mosaic of images of Mercury from the NASA Mariner 10 spacecraft. ©NASA In the mid-80s improved radar equipment allowed high resolution mapping of surface features from the Earth. Amongst the results were two tantalising mysteries: a large dome feature, similar in some ways to shield volcanoes seen on Mars, observed on the unimaged side of the planet and complex scattering of returned radar from distinct areas around the poles, suggesting that water ice may exist in craters there. Both NASA and the European Space Agency (ESA) are now planning missions to Mercury. The US team are using a newly discovered trajectory that will allow them to reach Mercury using traditional chemical propulsion, incorporating various planetary flybys so-called 'gravity assist' manoeuvres. The European team, on the other hand, has proposed a much more complex mission. In order to get to Mercury, ESA have adopted a novel technology knows as 'solar electric propulsion' (SEP). The basic principle is that electrical energy is produced using solar cells, and this is used to accelerate ions of gas, producing a continuous, if low thrust. The upshot is that the mission is much less constrained by the alignment of the planets and other trajectory concerns and can complete the journey in only two and a half years. BepiColombo, ESA's Mercury mission, will actually consist of three spacecraft! The planetary orbiter will stay close to Mercury and perform remote sensing and mapping of the surface environment. The magnetospheric orbiter, now going to be built by the Institute for Space and Astronautical Science (ISAS) in Japan, will fly in a highly eccentric orbit that takes it from within a few hundred kilometres of the surface to a distance of several planetary radii. This means it will fly in and out of the magnetosphere, the magnetic 'bubble' formed by interaction of the planetary magnetic field with the solar wind. The third and final element is termed the 'MSE' the Mercury Surface Element, or in plain terms a lander, and this is where my research comes in. There is only so much that remote observation can tell us about a planet. The only true way of verifying what we are seeing is to literally go and 'dig the dirt'. The lander on BepiColombo is designed to do just that, using inflated airbags to cushion its descent to the surface. This 'soft landing' will take place in the polar regions of Mercury, where the surface temperature is moderate—between -50 and +70 °C at the sub-solar point at Mercury's closest approach to the Sun the temperature can reach over 400 °C! It is the potential for making these surface measurements that forms my PhD research. There are a whole series of fundamental questions that scientists would like to answer about Mercury. For example: why is the planet much denser than the other 'terrestrial' bodies? And how has such a small planet got a magnetic field? The answers to these questions need data from several complementary sources. The first step is to identify the science goals, then look at what measurements could be made to resolve or constrain these questions, and finally consider the physics of obtaining this data. My project focuses on the surface and sub-surface material on the planet. The surface of Mercury, like the Moon, has been shaped by the impacts upon it and this is still very much in evidence from images of the planet. Craters of many different sizes are evident over most of the surface. These impacts also break up rocks on the surface and produce a finer distribution of particles, known as regolith. The stratigraphy of this material can therefore tell us something about the change in impact environment over time. A conceptual design of the BepiColombo Mercury Surface Element (lander) ©ESA. Conceptual image of the BepiColombo spacecraft at Mercury ©ESA. As well as being interesting in its own right, the regolith also interacts with almost all other aspects of the Mercurian environment. By analysing the regolith we will be able to find out about Mercury's thin atmosphere and also (because the magnetosphere affects the amount of solar wind hitting the planet's surface) changes in the magnetosphere. Planets like the Earth and Jupiter rely on an electrically conductive ionosphere to close the current systems generated by the magnetosphere. Some researchers believe that on Mercury these currents could flow through, or very close to, the surface itself! Designing and building instruments to work in an environment like the surface of Mercury is one of the major challenges I face. Not only must they be capable of surviving extremes of temperature and vibration they must also be small enough to fit into a total lander payload mass of just 7 kg and complete their investigations within the one week expected lifetime of the MSE. In order to take measurements in more than one place, the lander must be equipped with some limited form of mobility. A 'micro-rover' will be carried and deployed after landing, a miniature tracked vehicle that will carry instruments (probably an alpha x-ray spectrometer) to specific target rocks and areas around the lander. To keep things simple the rover will be physically and electronically connected to the lander by a flexible tether. The lander will also carry a 'mole', a slender cylinder (currently being developed for the Beagle-2 Mars lander) with an internal hammering mechanism. Once pushed into the top layer of soil the mole will be able to drive itself down, pushing aside or breaking small rocks, to a depth of several metres, taking measurements as it goes. Over the past few months we have been studying some of the instruments which could be carried by the mole. Concentrating on just one of these it is easy to see how quickly you run into problems! If the MSE lands near the poles, one of the most fascinating activities would be to look for evidence of water ice. In recent years researchers looking at life on the Earth have shown that if water is present, even in the most inhospitable of environments, life often finds a way to survive. The possibility of water on any planet is therefore an exciting prospect! One possible way to look for ice either at or near the surface is to extract a sample using the mole as it penetrates the regolith, heat it at a constant rate and record the amount of energy used to maintain that rate. This technique, differential scanning calorimetry, can observe phase changes in materials and so help to identify them. The technical challenges of performing even this simplistic analysis task are quite daunting. We have to design and build a sample acquisition mechanism that can withstand launch and landing and work at extreme temperatures, heat a sample down a borehole and reject excess heat and the electronics must fit into a 2 cm diameter by 50 cm long mole. So although BepiColombo will not launch until 2009 and will not arrive at Mercury until 2012, there's more than enough work to keep me busy until then!
Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C
2015-05-22
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Johnson, Catherine L.; Hauck, , Steven A.
2016-11-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission yielded a wealth of information about the innermost planet. For the first time, visible images of the entire planet, absolute altimetry measurements and a global gravity field, measurements of Mercury's surface composition, magnetic field, exosphere, and magnetosphere taken over more than four Earth years are available. From these data, two overarching themes emerge. First, multiple data sets and modeling efforts point toward a dynamic ancient history. Signatures of graphite in the crust suggest solidification of an early magma ocean, image data show extensive volcanism and tectonic features indicative of subsequent global contraction, and low-altitude measurements of magnetic fields reveal an ancient magnetic field. Second, the present-day Mercury environment is far from quiescent. Convective motions in the outer core support a modern magnetic field whose strength and geometry are unique among planets with global magnetic fields. Furthermore, periodic and aperiodic variations in the magnetosphere and exosphere have been observed, some of which couple to the surface and the planet's deep interior. Finally, signatures of geologically recent volatile activity at the surface have been detected. Mercury's early history and its present-day environment have common elements with the other inner solar system bodies. However, in each case there are also crucial differences and these likely hold the key to further understanding of Mercury and terrestrial planet evolution. MESSENGER's exploration of Mercury has enabled a new view of the innermost planet, and more importantly has set the stage for much-needed future exploration.
NASA Technical Reports Server (NTRS)
Sarantos, Menelaos; McClintock, Bill; Vervack, Ron, Jr.; Killen, Rosemary; Merkel, Aimee; Slavin, James; Solomon, Sean C.
2011-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered orbit about Mercury on March 18, 2011. Since then, the Ultraviolet and Visible Spectrometer (UVVS) onboard this spacecraft has been observing Mercury's collisionless exosphere. We present measurements by MESSENGER UVVS of the sodium, calcium, and magnesium distributions that were obtained during multiple passes through the tail over a period of one month. Global maps of the exosphere were constructed daily from such measurements using a recently developed tomographic technique. During this period, Mercury moved towards the Sun from being about 0.44 astronomical units (AU) to approximately 0.32 AU from the Sun. Hence, our reconstructions provide information about the three-dimensional structure of the exosphere, the source processes for these species, and their dependence with orbital distance during the entire in-leg of Mercury's orbit.
2015-02-04
In this image, Mercury's horizon cuts a striking edge against the stark blackness of space. On the right, sunlight harshly brings the landscape into relief while on the left, the surface is shrouded in the darkness of night. This image was acquired as part of MDIS's limb imaging campaign. Once per week, MDIS captures images of Mercury's limb, with an emphasis on imaging the southern hemisphere limb. These limb images provide information about Mercury's shape and complement measurements of topography made by the Mercury Laser Altimeter (MLA) of Mercury's northern hemisphere. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. In the mission's more than three years of orbital operations, MESSENGER has acquired over 250,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
MESSENGER: The Discovery Mission to Mercury
NASA Astrophysics Data System (ADS)
McNutt, R. L.; Solomon, S. C.; Gold, R. E.; Domingue, D. L.
2004-12-01
NASA's MErcury, Surface, Space ENvironment, GEochenistry, and Ranging (MESSENGER) spacecraft, launched on 3 August 2004, has begun its voyage to initiate a new era in our understanding of the terrestrial planets. The mission, spacecraft, and payload are designed to answer six fundamental questions regarding the innermost planet: What planetary formational processes led to Mercury's high metal/silicate ratio? What is the geological history of Mercury? What are the nature and origin of Mercury's magnetic field? What are the structure and state of Mercury's core? What are the radar-reflective materials at Mercury's poles? What are the important volatile species and their sources and sinks on and near Mercury? Planet formational hypotheses will be tested by measuring the surface abundances of major elements by X-ray and gamma-ray spectrometry. The geological history will be determined from high-resolution color imaging of the heavily cratered highlands, intercrater plains, and smooth plains. MESSENGER will provide detailed views of both the Caloris basin and its antipodal terrain. Topographic, mineralogical, and elemental abundance data will be used to seek evidence of volcanic features and units. Measurement of Mercury's magnetic field and its interaction with the solar wind will distinguish the intrinsic dipole and quadrupole components while separating these from the current systems driven by solar-wind-induced convection. The structure of the internal field will put constraints on dynamo models. Such models will also be constrained by measuring Mercury's libration to determine the extent of a fluid outer core. Both water ice and sulfur have been postulated as major constituents of the high-radar-backscatter polar deposits. MESSENGER will combine gamma-ray and neutron spectrometry of the surface with ultraviolet spectrometry and in situ particle measurements to detect both neutral and charged species originating from the surface. Such measurements will address the sources and sinks of volatiles and their couplings with the surface on a global basis as well as the nature of the polar deposits. To broaden scientific participation in the mission, the MESSENGER project is working with NASA to establish a Participating Scientist Program. The MESSENGER team is also continuing its informal interaction with members of the BepiColombo project to maximize the overall scientific return from both missions.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the mobile service tower at Launch Complex 17-B, Cape Canaveral Air Force Station, workers move a panel into place above the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft. The overhead panel will suspend an environmental curtain around the spacecraft while in the tower before encapsulation. Scheduled to launch Aug. 2, MESSENGER will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. It is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md. Processing is being done at Astrotech Space Operations in Titusville, Fla
2004-07-06
KENNEDY SPACE CENTER, FLA. - On Pad 17-B, Cape Canaveral Air Force Station, workers move the Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, inside the mobile service tower. The engine will be mated with the first stage of the Delta II, which is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-07-06
KENNEDY SPACE CENTER, FLA. - - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, approaches the top of the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. The engine will be mated with the first stage of the Delta II, which is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Spectroscopy of sulfides in the simulated environment of Mercury and their detection from the orbit
NASA Astrophysics Data System (ADS)
Varatharajan, I.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-09-01
In order to detect the mineral diversity on the planet's surface, it is essential to study the spectral variations along broad wavelength range in their respective simulated laboratory conditions. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) mission to Mercury discovered that irrespective of its formation closest to the sun, Mercury in rich in volatiles than previously expected especially S (4 wt%). S in the Mercury interior can be brought to the surface through volcanic activity as slag deposits in Mercury hollows and pyroclasts. However, the complete spectral library of sulfide minerals in vacuum conditions at Mercury's daytime temperature in the wide spectral range (0.2-100 µm) is still missing. This affects our detectability and understanding of distribution, abundance, and type of sulfides on Mercury using spectral datasets in the past missions to Mercury. In the case of Mercury, the effect of thermal weathering in the spectral behavior of these sulfides must be studied carefully for their effective detection. In the study, we thermally processed the fresh synthetic sulfides by heating them slowly upto 500 ºC in vacuum and during the process, we measured the thermal radiance/emissivity of these sulfides in the thermal infrared spectral region (TIR: 7-14 µm) at the interval of every 100 ºC. After this, we collectively measured the spectral reflectance of fresh and heated synthetic sulfides at wide spectral range (0.2-100 µm) at four different phase angles, 26º, 40º, 60º, 80º. Therefore, this study facilitates the detection of sulfides by past and future missions to Mercury by any spectrometer of any spectral range. The synthetic sulfides used in the study includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Thus, the emissivity measurements in the study will support the The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA BepiColombo mission to Mercury which will study the surface mineralogy at wavelength range of 7-14 μm at spatial resolution of 500 m/pixel. The measured reflectance of these sulfides in 0.2-100 µm at various phase angles will support the measurements from past (MDIS, MASCS on MESSENGER) and future missions (SIMBIO-SYS/VIHI on BepiColombo) to Mercury.
Dark Material at the Surface of Polar Crater Deposits on Mercury
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.
2012-01-01
Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (<110 K). Thermal models [6,7] incorporating direct and scattered radiation, Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface (<0.5 m depth) could survive for > 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.
Mercury: Photomosaic of the Michelangelo Quadrangle H-12
NASA Technical Reports Server (NTRS)
2000-01-01
The Michelangelo Quadrangle, which lies in Mercury's southern polar region, was named in memory of the famous Italian artist. The Mercurian surface is heavily marred by numerous impact craters. Ejecta deposits, seen as bright lines or rays, radiate outward from the point of impact, along the planet's surface indicating the source craters are young topographical features. The rays found on Mercury are similar to ones found on the surface of Earth's moon.
Several large lobate scarps, steep and long escarpments which usually show a largely lobate outline on a scale of a few to tens of kilometers, are clearly visible in the lower left side of the image slicing through a variety of terrains including several large impact craters.The Image Processing Lab at NASA's Jet Propulsion Laboratory produced this photomosaic using computer software and techniques developed for use in processing planetary data. The images used to construct the Michelangelo Quadrangle were taken during Mariner 10's second flyby of Mercury.The Mariner 10 spacecraft was launched in 1974. The spacecraft took images of Venus in February 1974 on the way to three encounters with Mercury in March and September 1974 and March 1975. The spacecraft took more than 7,000 images of Mercury, Venus, the Earth and the Moon during its mission. The Mariner 10 Mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science in Washington, D.C.From Orbit, Looking toward Mercury's Horizon
2017-12-08
NASA image acquired: March 29, 2011 MESSENGER acquired this image of Mercury's horizon as the spacecraft was moving northward along the first orbit during which MDIS was turned on. Bright rays from Hokusai can be seen running north to south in the image. MDIS frequently acquired images that contained Mercury's horizon during the mission's three Mercury flybys. (Visit these links to see examples of horizon images from Mercury flyby 1, Mercury flyby 2, and Mercury flyby 3.) However, now that MESSENGER is in orbit about Mercury, views of Mercury's horizon in the images will be much less common. The field of view for MDIS will generally be filled with Mercury's surface as the instrument maps out the planet's geology in high resolution, stereo, and color. Occasionally, in order to obtain images of a certain portion of Mercury's surface, the horizon will also be visible. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
Magnetic mineralogy of the Mercurian lithosphere
NASA Astrophysics Data System (ADS)
Strauss, B. E.; Feinberg, J. M.; Johnson, C. L.
2016-11-01
Mercury and Earth are the only inner solar system planets with active, internally generated dynamo magnetic fields. The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission recently detected magnetic fields on Mercury that are consistent with lithospheric magnetization. We investigate the physical and chemical environment of Mercury's lithosphere, past and present, to establish the conditions under which magnetization may have been acquired and modified. Three factors are particularly crucial to the determination of crustal composition and iron mineralogy: redox conditions in the planet's crust and mantle, the iron content of the lithosphere, and, for any remanent magnetization, the temperature profile of the lithosphere and its evolution over time. We explore potential mechanisms for remanence acquisition and alteration on Mercury, whose surface environment is both hot and highly reducing. The long-term thermal history of Mercury's crust plays an important role in the longevity of any remanent crustal magnetization, which may be subject to remagnetization through thermal, viscous, and shock mechanisms. This thermal and compositional framework is used both to constrain plausible candidate minerals that could carry magnetic remanence on Mercury and to evaluate their capacity to acquire and retain sufficient magnetization to be detectable from satellite orbit. We propose that iron metal and its alloys are likely to be the dominant contributors to induced and remanent magnetization in Mercury's lithosphere, with additional contributions from iron silicides, sulfides, and carbides.
NASA Astrophysics Data System (ADS)
Koehn, Patrick Leo
The plasma environment at Mercury is a rich laboratory for studying the interaction of the solar wind with a planet. Three primary populations of ions exist at Mercury: solar wind, magnetospheric particles, and pickup ions. Pickup ions are generated through the ionization of Mercury's exosphere or are sputtered particles from the Mercury surface. A comprehensive mission to Mercury should include a sensor that is able to determine the dynamical properties and composition of all three plasma components. The Fast Imaging Plasma Spectrometer (FIPS) is an instrument to measure the composition of these ion populations and their three-dimensional velocity distribution functions. It is lightweight, fast, and has a very large field of view, and these properties made possible its accommodation within the highly mass- constrained payload of MESSENGER (MErcury: Surface, Space ENvironment, GEochemistry, Ranging) mission, a Mercury orbiter. This work details the development cycle of FIPS, from concept to prototype testing. It begins with science studies of the magnetospheric and pickup ion environments of Mercury, using state-of-the-art computer simulations to produce static and quasi-dynamic magnetospheric systems. Predictions are made of the spatially variable plasma environment at Mercury, and the temporally varying magnetosphere-solar wind interaction is examined. Pickup ion studies provide insights to particle loss mechanisms and the nature of the radar-bright regions at the Hermean poles. These studies produce science requirements for successfully measuring this environment with an orbiting mass spectrometer. With these science requirements in mind, a concept for a new electrostatic analyzer is created. This concept is considered from a theoretical standpoint, and compared with other, similarly performing instruments, both of the past and currently in use. The development cycle continues with instrument simulation, which allows the design to be adjusted to fit within the science requirements of the mission. Finally, a prototype electrostatic is constructed and tested in a space- simulating vacuum chamber system. The results of these tests are compared with the simulation results, and ultimately shown to fit within the science requirements for the MESSENGER mission.
Multiscale geomorphometric modeling of Mercury
NASA Astrophysics Data System (ADS)
Florinsky, I. V.
2018-02-01
Topography is one of the key characteristics of a planetary body. Geomorphometry deals with quantitative modeling and analysis of the topographic surface and relationships between topography and other natural components of landscapes. The surface of Mercury is systematically studied by interpretation of images acquired during the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. However, the Mercurian surface is still little explored by methods of geomorphometry. In this paper, we evaluate the Mercury MESSENGER Global DEM MSGR_DEM_USG_SC_I_V02 - a global digital elevation model (DEM) of Mercury with the resolution of 0.015625° - as a source for geomorphometric modeling of this planet. The study was performed at three spatial scales: the global, regional (the Caloris basin), and local (the Pantheon Fossae area) ones. As the initial data, we used three DEMs of these areas with resolutions of 0.25°, 0.0625°, and 0.015625°, correspondingly. The DEMs were extracted from the MESSENGER Global DEM. From the DEMs, we derived digital models of several fundamental morphometric variables, such as: slope gradient, horizontal curvature, vertical curvature, minimal curvature, maximal curvature, catchment area, and dispersive area. The morphometric maps obtained represent peculiarities of the Mercurian topography in different ways, according to the physical and mathematical sense of a particular variable. Geomorphometric models are a rich source of information on the Mercurian surface. These data can be utilized to study evolution and internal structure of the planet, for example, to visualize and quantify regional topographic differences as well as to refine geological boundaries.
NASA Astrophysics Data System (ADS)
Greger, R.; Rugi, E.; Hausner, Th.; Jahnen, W.; Frei, S.; Pellaton, D.; Mueller, P.; Hollenbach, I.
2017-11-01
This paper gives an overview on the development of a light weighted Cassegrain telescope with a 200 mm optical aperture as one key element of the Laser Altimeter which will fly on the BepiColombo mission to Mercury (BELA).The Receiver Telescope (RTL) collects the light pulse transmitted to Mercury and reflected from the planet's surface. Mercury's challenging thermal environment, the thermo-mechanical stability of the telescope and the stringent instrument's mass budget require the implementation of an innovative design solution to achieve the requested optical performance over an extended temperature range.
NASA Astrophysics Data System (ADS)
Pfyffer, G.; van Hoolst, T.; Dehant, V. M.
2010-12-01
Through its anomalously high uncompressed density implying a metal fraction of 60% or more by mass, Mercury represents an extreme outcome of planetary formation in the inner solar system. The space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the obliquity, the 88-day forced libration, the planetary induced librations and the degree-two coefficients of the gravity field of Mercury. We report here on aspects of the observational strategy of ESA’s BepiColombo mission to determine the libration amplitude and obliquity, taking into account the space as well as the ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission, but a significant constraint is posed by the fact that the planetary surface can only be photographed under very strict illumination conditions. We therefore study the possibility to use the information embedded in the groundtrack crossings (crosstracks) of the BepiColombo laser altimeter (BELA) in addition to the primary photographic data in order to estimate the librations and obliquity of Mercury. An advantage of the laser altimetry data is that it does not depend on the solar incidence angle on the surface nor on the presence of specific surface features as required for the camera data in the camera rotation experiment. Both laser and photographic measurements were simulated in a realistic set-up in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet as a function of the amount of measurements made, the number of different targets and crosstrack points considered and their locations on the surface of the planet. Such an analysis requires the use of an accurate model of the rotation of Mercury, which takes into account longitudinal librations additional to the main 88 day libration due to planetary perturbations on Mercury's orbit. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will only be sufficient to constrain the size and physical state of the core of Mercury if certain conditions are satisfied. If the orbiter follows the ESA baseline mission scenario, and at least 25 landmarks are imaged at least twice over the mission duration (360 days), the annual libration amplitude and obliquity can be determined with sufficient accuracy. Also the Jupiter induced libration amplitude can pose an additional constraint on the interior of the planet. We will discuss the relative contributions of the different methods will enable us to determine the optimum combinations of the observations with consequences for the mission planning and the instrument performances.
Detecting negative ions on board small satellites
NASA Astrophysics Data System (ADS)
Lepri, S. T.; Raines, J. M.; Gilbert, J. A.; Cutler, J.; Panning, M.; Zurbuchen, T. H.
2017-04-01
Recent measurements near comets, planets, and their satellites have shown that heavy ions, energetic neutral atoms, molecular ions, and charged dust contain a wealth of information about the origin, evolution, and interaction of celestial bodies with their space environment. Using highly sensitive plasma instruments, positively charged heavy ions have been used to trace exospheric and surface composition of comets, planets, and satellites as well as the composition of interplanetary and interstellar dust. While positive ions dominate throughout the heliosphere, negative ions are also produced from surface interactions. In fact, laboratory experiments have shown that oxygen released from rocky surfaces is mostly negatively charged. Negative ions and negatively charged nanograins have been detected with plasma electron analyzers in several different environments (e.g., by Cassini and Rosetta), though more extensive studies have been challenging without instrumentation dedicated to negative ions. We discuss an adaptation of the Fast Imaging Plasma Spectrometer (FIPS) flown on MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) for the measurement of negatively charged particles. MESSENGER/FIPS successfully measured the plasma environment of Mercury from 2011 until 2015, when the mission ended, and has been used to map multiple ion species (H+ through Na+ and beyond) throughout Mercury's space environment. Modifications to the existing instrument design fits within a 3U CubeSat volume and would provide a low mass, low power instrument, ideal for future CubeSat or distributed sensor missions seeking, for the first time, to characterize the contribution of negative particles in the heliospheric plasmas near the planets, moons, comets, and other sources.
High-frequency flux transfer events detected near Mercury
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-01-01
The physical process that creates connections between the magnetic fields emanating from the Sun and a planet—a process known as magnetic reconnection—creates a portal through which solar plasma can penetrate the planetary magnetic field. The opening of these portals, known as flux transfer events (FTEs), takes place roughly every 8 minutes at Earth and spawns a rope of streaming plasma that is typically about half of the radius of the Earth. As early as 1985, scientists analyzing the Mariner 10 observations, collected during their 1974-1975 flybys, have known that FTEs also occur at Mercury. However, using the measurements returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft now orbiting Mercury, Slavin et al. found that Mercurial flux transfer events are proportionally much larger, stronger, and more frequent than those at Earth.
Constructional Volcanic Edifices on Mercury: Candidates and Hypotheses of Formation
NASA Astrophysics Data System (ADS)
Wright, Jack; Rothery, David A.; Balme, Matthew R.; Conway, Susan J.
2018-04-01
Mercury, a planet with a predominantly volcanic crust, has perplexingly few, if any, constructional volcanic edifices, despite their common occurrence on other solar system bodies with volcanic histories. Using image and topographical data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we describe two small (<15-km diameter) prominences with shallow summit depressions associated with volcanically flooded impact features. We offer both volcanic and impact-related interpretations for their formation, and then compare these landforms with volcanic features on Earth and the Moon. Though we cannot definitively conclude that these landforms are volcanic, the paucity of constructional volcanic edifices on Mercury is intriguing in itself. We suggest that this lack is because volcanic eruptions with sufficiently low eruption volumes, rates, and flow lengths, suitable for edifice construction, were highly spatiotemporally restricted during Mercury's geological history. We suggest that volcanic edifices may preferentially occur in association with late-stage, postimpact effusive volcanic deposits. The European Space Agency/Japan Aerospace Exploration Agency BepiColombo mission to Mercury will be able to investigate further our candidate volcanic edifices; search for other, as-yet unrecognized edifices beneath the detection limits of MESSENGER data; and test our hypothesis that edifice construction is favored by late-stage, low-volume effusive eruptions.
Google Mercury: The Launch of a New Planet
NASA Astrophysics Data System (ADS)
Hirshon, B.; Chapman, C. R.; Edmonds, J.; Goldstein, J.; Hallau, K. G.; Solomon, S. C.; Vanhala, H.; Weir, H. M.; Messenger Education; Public Outreach Epo Team
2010-12-01
The NASA MESSENGER mission’s Education and Public Outreach (EPO) Team, in cooperation with Google, Inc., has launched Google Mercury, an immersive new environment on the Google Earth platform. Google Mercury features hundreds of surface features, most of them newly revealed by the three flybys of the innermost planet by the MESSENGER spacecraft. As with Google Earth, Google Mercury is available on line at no cost. This presentation will demonstrate how our team worked with Google staff, features we incorporated, how games can be developed within the Google Earth platform, and how others can add tours, games, and other educational features. Finally, we will detail new enhancements to be added once MESSENGER enters into orbit about Mercury in March 2011 and begins sending back compelling images and other global data sets on a daily basis. The MESSENGER EPO Team comprises individuals from the American Association for the Advancement of Science (AAAS); Carnegie Academy for Science Education (CASE); Center for Educational Resources (CERES) at Montana State University (MSU) - Bozeman; National Center for Earth and Space Science Education (NCESSE); Johns Hopkins University Applied Physics Laboratory (JHU/APL); National Air and Space Museum (NASM); Science Systems and Applications, Inc. (SSAI); and Southwest Research Institute (SwRI). Screen shot of Google Mercury as a work in progress
Making Mercury's Core with Light Elements
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent
2016-01-01
Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft showed the surface of Mercury has low FeO abundances (less than 2 wt%) and high S abundances (approximately 4 wt%), suggesting the oxygen fugacity of Mercury's surface materials is somewhere between 3 to 7 log10 units below the IW buffer. The highly reducing nature of Mercury has resulted in a relatively thin mantle and a large core that has the potential to exhibit an exotic composition in comparison to the other terrestrial planets. This exotic composition may extend to include light elements (e.g., Si, C, S). Furthermore, has argued for a possible primary floatation crust on Mercury composed of graphite, which may require a core that is C-saturated. In order to investigate mercurian core compositions, we conducted piston cylinder experiments at 1 GPa, from 1300 C to 1700 C, using a range of starting compositions consisting of various Si-Fe metal mixtures (Si5Fe95, Si10Fe90, Si22Fe78, and Si35Fe65). All metals were loaded into graphite capsules used to ensure C-saturation during the duration of each experimental run. Our experiments show that Fe-Si metallic alloys exclude carbon relative to more Fe-rich metal. This exclusion of carbon commences within the range of 5 to 10 wt% Si. These results indicate that if Mercury has a Si-rich core (having more than approximately 5 wt% silicon), it would have saturated in carbon at low C abundances allowing for the possible formation of a graphite floatation crust as suggested by. These results have important implications for the thermal and magmatic evolution of Mercury.
NASA's MESSENGER Finds New Evidence for Water Ice at Mercury's Poles
2017-12-08
New observations by the MESSENGER spacecraft provide compelling support for the long-held hypothesis that Mercury harbors abundant water ice and other frozen volatile materials in its permanently shadowed polar craters. Three independent lines of evidence support this conclusion: the first measurements of excess hydrogen at Mercury's north pole with MESSENGER's Neutron Spectrometer, the first measurements of the reflectance of Mercury's polar deposits at near-infrared wavelengths with the Mercury Laser Altimeter (MLA), and the first detailed models of the surface and near-surface temperatures of Mercury's north polar regions that utilize the actual topography of Mercury's surface measured by the MLA. These findings are presented in three papers published online today in Science Express. Given its proximity to the Sun, Mercury would seem to be an unlikely place to find ice. But the tilt of Mercury's rotational axis is almost zero — less than one degree — so there are pockets at the planet's poles that never see sunlight. Scientists suggested decades ago that there might be water ice and other frozen volatiles trapped at Mercury's poles. The idea received a boost in 1991, when the Arecibo radio telescope in Puerto Rico detected unusually radar-bright patches at Mercury's poles, spots that reflected radio waves in the way one would expect if there were water ice. Many of these patches corresponded to the location of large impact craters mapped by the Mariner 10 spacecraft in the 1970s. But because Mariner saw less than 50 percent of the planet, planetary scientists lacked a complete diagram of the poles to compare with the images. MESSENGER's arrival at Mercury last year changed that. Images from the spacecraft's Mercury Dual Imaging System taken in 2011 and earlier this year confirmed that radar-bright features at Mercury's north and south poles are within shadowed regions on Mercury's surface, findings that are consistent with the water-ice hypothesis. To read more go to: 1.usa.gov/TtNwM2 Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington/National Astronomy and Ionosphere Center, Arecibo Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Carbon Solubility in Silicon-Iron-Bearing Metals during Core Formation on Mercury
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Ross, D. Kent; Rapp, Jennifer F.; Danielson, Lisa R.; Keller, Lindsay P.; Righter, Kevin
2016-01-01
Recent results obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft showed the surface of Mercury has high S abundances (approximately 4 wt%) and low Iron(II) Oxide abundances (less than 2 wt%). Based on these extreme values, the oxygen fugacity of Mercury's surface materials was estimated to be approximately 3 to 7 log(sub 10) units below the IW buffer (Delta IW-3 to Delta IW-7). This highly reducing nature of the planet has resulted in a large core and relatively thin mantle, extending to only approximately 420 km depth (corresponding to a core-mantle boundary pressure of approximately 4-7 GPa) within the planet. Furthermore, MESSENGER results have suggested the presence of carbon on the surface of the planet. Previous experimental results from have also suggested the possibility of a primary floatation crust on Mercury composed of graphite, produced after a global magma ocean event. With these exotic conditions of this compositional end-member planet, it begs the question, what is the core composition of Mercury? Although no definitive conclusion has been reached, previous studies have made advances towards answering this question. Riner et al. and Chen et al. looked at iron sulfide systems and implemented various crystallization and layered core scenarios to try and determine the composition and structure of Mercury's core. Malavergne et al. examined core crystallization scenarios in the presence of sulfur and silicon. Hauck et al. used the most recent geophysical constraints from the MESSENGER spacecraft to model the internal structure of Mercury, including the core, in a iron-sulfur-silicon system. More recently, Chabot et al. conducted a series of metal-silicate partitioning experiments in a iron-sulfur-silicon system. These results showed the core of Mercury has the potential to contain more than 15 wt% silicon. However, with the newest results from MESSENGER's low altitude campaign, carbon is another potential light element that could be incorporated into Mercury's core. The goal of this study is to determine the carbon concentration at graphite saturation in various silicon-iron bearing metals relevant to possible mercurian core compositions. Future experiments will include the addition of sulfur into these metals.
Space-qualified laser system for the BepiColombo Laser Altimeter.
Kallenbach, Reinald; Murphy, Eamonn; Gramkow, Bodo; Rech, Markus; Weidlich, Kai; Leikert, Thomas; Henkelmann, Reiner; Trefzger, Boris; Metz, Bodo; Michaelis, Harald; Lingenauber, Kay; DelTogno, Simone; Behnke, Thomas; Thomas, Nicolas; Piazza, Daniele; Seiferlin, Karsten
2013-12-20
The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency's Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury's surface.
Experimental Study of Hollow Formation
NASA Astrophysics Data System (ADS)
Parman, S. W.; Orlando, T. M.; Milliken, R. E.; Head, J. W.; Jones, B. M.; Anzures, B. A.
2018-05-01
Hollows are enigmatic features on the surface of Mercury caused by sublimation and/or space weathering. Here we propose a comprehensive experimental study in which candidate hollows materials are exposed to a range of relevant conditions.
NASA Astrophysics Data System (ADS)
Gutschwager, B.; Driescher, H.; Herrmann, J.; Hirsch, H.; Hollandt, J.; Jahn, H.; Kuchling, P.; Monte, C.; Scheiding, M.
2011-08-01
The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) onboard the European-Japanese space mission BepiColombo to Mercury will be launched in 2014. The MERTIS scientific objective is to identify rock-forming minerals and measure surface temperatures by infrared spectroscopy (7 μm to 14 μm) and spectrally unresolved infrared radiometry (7 μm to 40 μm). To achieve this goal, MERTIS utilizes two onboard infrared calibration sources, the MERTIS blackbody at 700 K (MBB7) and the MERTIS blackbody at 300 K (MBB3), together with deep space observations corresponding to 3 K. All three sources can be observed one after the other using a rotating mirror system. The leaders of the project MERTIS are the Westfälische University of Münster, institute for planetary investigation, Mr. Prof. Dr. H. Hiesinger (PI) and the DLR, Institute of Planetary Research Berlin-Adlershof, Mr. Dr. J. Helbert (CoPI). Both blackbody radiators have to fulfill the severe mass, volume, and power restrictions of MERTIS. The radiating area of the MBB3 is based on a structured surface with a high-emissivity space qualified coating. The relatively high emissivity of the coating was further enhanced by a pyramidal surface structure to values over 0.99 in the wavelength range from 5 μm to 10 μm and over 0.95 in the wavelength range from 10 μm to 30 μm. The MBB7 is based on a small commercially available surface emitter in a standard housing. The windowless emitter is an electrically heated resistor, which consists of a platinum structure with a blackened surface on a ceramic body. The radiation of the emitter is expanded and collimated through use of a parabolic mirror. The design requirements and the radiometric and thermometric characterization of these two blackbodies are described in this paper.
How Tiny Collisions Shape Mercury
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
If space rocks are unpleasant to encounter, space dust isnt much better. Mercurys cratered surface tells of billions of years of meteoroid impacts but its thin atmosphere is what reveals its collisional history with smaller impactors. Now new research is providing a better understanding of what were seeing.Micrometeoroids Ho!The inner solar system is bombarded by micrometeoroids, tiny particles of dust (on the scale of a tenth of a millimeter) emitted by asteroids and comets as they make their closest approach to the Sun. This dust doesnt penetrateEarths layers of atmosphere, but the innermost planet of our solar system, Mercury, doesnt have this convenient cushioning.Just as Mercury is affected by the impacts of large meteoroids, its also shaped by the many smaller-scale impacts it experiences. These tiny collisions are thought to vaporize atoms and molecules from the planets surface, which quickly dissociate. This process adds metals to Mercurys exosphere, the planets extremely tenuous atmosphere.Modeling PopulationsDistribution of the directions from which meteoroids originate before impacting Mercurys surface, as averaged over its entire orbit. Local time of 12 hr corresponds to the Sun-facing side. A significant asymmetry is seen between the dawn (6 hrs) and dusk (18 hrs) rates. [Pokorn et al. 2017]The metal distribution in the exosphere provides a way for us to measure the effect of micrometeoroid impacts on Mercury but this only works if we have accurate models of the process. A team of scientists led by Petr Pokorn (The Catholic University of America and NASA Goddard SFC) has now worked to improve our picture of micrometeoroid impact vaporization on Mercury.Pokorn and collaborators argue that two meteoroid populations Jupiter-family comets (short-period) and Halley-type comets (long-period) contribute the dust for the majority of micrometeoroid impacts on Mercury. The authors model the dynamics and evolution of these two populations, reproducing the distribution of directions from which micrometeoroids strike Mercury during its yearly orbit.Schematic of Mercury in its orbit around the Sun. The dawn side leads the orbital motion, while the dusk side trails it.Geometry of an OrbitMercurys orbit is unique in our solar system: it circles the Sun twice for every three rotations on its own axis so if you were on Mercury, youd see a single day pass over the span of two years. As with all prograde planets, the edge leading the Mercurys orbit marks the dawn terminator, while the edge trailing the planets orbital motion marks the dusk terminator.Pokorn and collaborators find a significant asymmetry in the impact vaporization that occurs on Mercurys dawn side versus its dusk side. This is due to impact geometry (since the dusk side is shielded from impacts in the direction of motion) and seasonal variation of the dust/meteoroid environment around the planet. The authors show that the source of impact vaporization shifts toward the nightside as Mercury approaches aphelion, and toward the dayside when the planet approaches the Sun.Importance of Long-Period CometsSeasonal variations of the relative vaporization rate from the authors model (black line) compared to measurements of Mercurys exospheric abundance of Ca. The contribution of long-period comets is shown by the blue line. [Pokorn et al. 2017]The dawn/dusk asymmetry and the seasonal variations predicted by the model are all nicely consistent NASAs MESSENGER spacecraft observations of the metal distribution in Mercurys exosphere.What makes Pokorn and collaborators model work so well? Their inclusion of the long-period, Halley-type comets is key: the high impact velocity of the micrometeoroids produced by this family play a significant role in shaping the impact vaporization rate of Mercurys surface.This work successfully demonstrates that we can use measurements of Mercurys exosphere as a unique tool to constrain the dust population in the inner solar system.CitationPetr Pokorn et al 2017 ApJL 842 L17. doi:10.3847/2041-8213/aa775d
2004-07-06
KENNEDY SPACE CENTER, FLA. - The Boeing Delta II Heavy second-stage engine, the Aerojet AJ10-118K, is lifted up the mobile service tower on Pad 17-B, Cape Canaveral Air Force Station. At right can be seen the first stage of the Delta II and the nine Solid Rocket Boosters surrounding it. The Delta II is the launch vehicle for the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, scheduled to lift off Aug. 2. Bound for Mercury, the spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; McCoy, T. J.
2016-01-01
Meteorites from the Moon, Mars, and many types of asteroid bodies have been identified among our global inventory of meteorites, however samples of Mercury and Venus have not been identified. The absence of mercurian and venusian meteorites could be attributed to an inability to recognize them in our collections due to a paucity of geochemical information for Venus and Mercury. In the case of mercurian meteorites, this possibility is further supported by dynamical calculations that suggest mercurian meteorites should be present on Earth at a factor of 2-3 less than meteorites from Mars [1]. In the present study, we focus on the putative mineralogy of mercurian meteorites using data obtained from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which has provided us with our first quantitative constraints on the geochemistry of planet Mercury. We have used the MESSENGER data to compile a list of mineralogical and geochemical characteristics that a meteorite from Mercury is likely to exhibit.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank;
2012-01-01
Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.
The gravity field and orientation of Mercury after the MESSENGER mission
NASA Astrophysics Data System (ADS)
Mazarico, E.; Genova, A.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.; Solomon, S. C.
2015-12-01
After more than four years in orbit about Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft impacted the planet's surface north of Shakespeare crater (54.44° N, 210.12° E,) on 30 April 2015. One of the main goals of the mission was to determine the gravity field of Mercury in order to learn about Mercury's interior. Together with ground-based radar measurements of the obliquity and forced librations, MESSENGER-derived gravity models helped revise models of Mercury's interior. Nevertheless, the refinement of Mercury's orientation with the latest data from MESSENGER can further improve the interior modeling of the planet. The last eight months of the mission provided a special opportunity to conduct low-altitude measurements, with extensive radio tracking coverage below 200 km altitude north of ~30°N. MESSENGER's Mercury Laser Altimeter (MLA) mapped the topography of Mercury's northern hemisphere with a sub-meter vertical precision, an along-track sampling of ~500 m, and a longitudinal resolution (~0.1°) limited by the number of spacecraft orbits (~4,000). The combination of gravity and topography helps determine crustal thickness and interior properties. Altimetric ranges provide geodetic constraints to improve the spacecraft orbit determination, and thus the gravity field model. In particular, whereas the MESSENGER spacecraft was not tracked at each periapsis passage, MLA operated nearly continuously (outside of thermally challenging periods). From an analysis of the entire radiometric and altimetric datasets acquired by MESSENGER, a new gravity field to degree and order 100 has been obtained, resolving features down to ~75 km horizontal scale. The altimetric data help reduce the uncertainties in the determination of the pole position. A reanalysis of the Mercury flybys also constrains the spin rate over the longest available time span.
NASA Technical Reports Server (NTRS)
Smith, R. E. (Compiler); West, G. S. (Compiler)
1983-01-01
Guidelines on space and planetary environment criteria for use in space vehicle development are provided. Information is incorporated in the disciplinary areas of atmospheric and ionospheric properties, radiation, geomagnetic field, astrodynamic constants, and meteoroids for the Earth's atmosphere above 90 km, interplanetary space, and the atmosphere and surfaces (when available) of the Moon and the planets (other than Earth) of this solar system. The Sun, Terrestrial Space, the Moon, Mercury, Venus, and Mars are covered.
2004-07-12
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech Space Operations in Titusville, Fla., work on the back side of the MESSENGER spacecraft, mating it with the Payload Assist Module, the Boeing Delta II third stage, below. The white panel seen here is the heat-resistant, ceramic cloth sunshade that will enable MESSENGER to operate at room temperature. MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. It is expected to enter Mercury orbit in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Libration and obliquity of Mercury from the BepiColombo radio science and camera experiments
NASA Astrophysics Data System (ADS)
Pfyffer, G.; van Hoolst, T.; Dehant, V.
2008-12-01
Mercury is the most enigmatic among the terrestrial planets, but the space missions MESSENGER and BepiColombo are expected to advance largely our knowledge of the structure, formation, and evolution of Mercury. In particular, insight into Mercury's deep interior will be obtained from observations of the 88-day forced libration, the obliquity and the degree-two coefficients of the gravity field of Mercury. Of those quantities, the libration is the most difficult to measure and will hence be a limiting factor We report here on aspects of the observational strategy to determine the libration amplitude and obliquity, taking into account the space and ground segment of the experiment. Repeated photographic measurements of selected target positions on the surface of Mercury are central to the strategy to determine the obliquity and libration in the frame of the BepiColombo mission. We simulated these measurements in order to estimate the accuracy of the reconstruction of the orientation and rotational motion of the planet, as a function of the amount of measurements made, the number of different targets considered and their locations on the surface of the planet. From this study, we determine criteria for the distribution and number of target positions to maximize the accuracy on the orientation and rotation determination, from which the obliquity and libration are extracted. We take into account the errors arising from the relative positions of the spacecraft, Mercury and the Earth. We consider various error sources such as the solar thermal influence on the spacecraft bus and the Earth based tracking constraint near solar conjunctions of Mercury. The accuracy on the retrieved parameters is then interpreted in terms of accuracy on the constraints on the interior structure of the planet. Our simulations show that the achievable level of accuracy on the libration amplitude and obliquity will be sufficient to constrain Mercury interior structure models, if the orbiter follows the ESA baseline mission scenario and at least 50 landmarks are imaged at least twice over the mission duration, the libration amplitude can be determined in two Mercury years (176 days) with an accuracy of 3 arcsec or better, which is sufficient to constrain the size and physical state of the planetary core.
Sodium Ion Dynamics in the Magnetospheric Flanks of Mercury
NASA Astrophysics Data System (ADS)
Aizawa, Sae; Delcourt, Dominique; Terada, Naoki
2018-01-01
We investigate the transport of planetary ions in the magnetospheric flanks of Mercury. In situ measurements from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft show evidences of Kelvin-Helmholtz instability development in this region of space, due to the velocity shear between the downtail streaming flow of solar wind originating protons in the magnetosheath and the magnetospheric populations. Ions that originate from the planet exosphere and that gain access to this region of space may be transported across the magnetopause along meandering orbits. We examine this transport using single-particle trajectory calculations in model Magnetohydrodynamics simulations of the Kelvin-Helmholtz instability. We show that heavy ions of planetary origin such as Na+ may experience prominent nonadiabatic energization as they
First in-situ observations of exospheric response to CME impact at Mercury
NASA Astrophysics Data System (ADS)
Raines, J. M.; Wallace, K. L.; Sarantos, M.; Jasinski, J. M.; Tracy, P.; Dewey, R. M.; Weberg, M. J.; Slavin, J. A.
2017-12-01
We present the first in-situ observations of enhancements to Mercury's He exosphere generated by CME impact. We analyzed both plasma and magnetic field measurements from the Mercury Surface Space Environment, Geochemistry and Mapping (MESSENGER) spacecraft over a 60-hour period as a coronal mass ejection (CME) passed by the planet. We identified the shock, magnetic cloud and cavity regions of the moderate intensity CME while MESSENGER was in the solar wind. Inside the magnetosphere just after the CME shock passage, we observed a very active dayside magnetosphere, as evident from the high flux plasma parcels passing through the dayside and a broad northern magnetospheric cusp with exceptionally high planetary ion content. All of these signatures indicate substantial reconnection at the dayside magnetopause, making conditions that were excellent for solar wind access to Mercury's surface. The CME appeared to have been particularly enriched in He2+, causing the observed density of solar wind He2+ in the cusp to rise above 0.1 cm-3 and putting it in the top 1% of the over 3200 cusps analyzed. As the low-density CME cavity passed over the planet on the next orbit, the magnetosphere appeared much quieter, with smoother magnetic fields and a smaller, less intense northern cusp but with greatly enhanced He+ content. The elevated He+ observed density continued to increase on subsequent cusp crossings, peaking at 0.1 cm-3 36 hours after CME impact, the highest observed throughout the entire MESSENGER mission. We suggest that the enhancement in He+ indicates an increase to the neutral He exosphere density from the He-enriched CME, a phenomenon observed at the moon, possibly acting as follows: Increased access to the surface from CME-enhanced reconnection, combined with high He2+ flux, enhanced surface implantation. Neutral He atoms were then liberated at an increased rate by surface processes supplying the exosphere, causing a gradual increase in He exosphere density. This led to an increase in He+ abundance through photoionization and charge exchange, which, after acceleration on the dayside, was measured by MESSENGER. These first in-situ observations of exospheric response to CME impact at Mercury have implications for understanding exosphere generation and loss processes, as well space weathering of the planet's surface.
Space Weathering in the Mercurian Environment
NASA Technical Reports Server (NTRS)
Noble, S. K.; Pieters, C. M.
2001-01-01
Space weathering processes are known to be important on the Moon. These processes both create the lunar regolith and alter its optical properties. Like the Moon, Mercury has no atmosphere to protect it from the harsh space environment and therefore it is expected that it will also incur the effects of space weathering. However, there are many important differences between the environments of Mercury and the Moon. These environmental differences will almost certainly affect the weathering processes and the products of those processes. It should be possible to observe the effects of these differences in Vis (visible)/NIR (near infrared) spectra of the type expected to be returned by MESSENGER. More importantly, understanding these weathering processes and their consequences is essential for evaluating the spectral data returned from MESSENGER and other missions in order to determine the mineralogy and the Fe content of the Mercurian surface. Additional information is contained in the original extended abstract.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is secure after transfer to the work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, NASA’s MESSENGER spacecraft is lifted off the pallet for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, workers check the placement of NASA’s MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers move NASA’s MESSENGER spacecraft into a high bay clean room. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane moves NASA’s MESSENGER spacecraft toward a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities, an overhead crane lowers NASA’s MESSENGER spacecraft onto a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft is revealed. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Compiling Mercury relief map using several data sources
NASA Astrophysics Data System (ADS)
Zakharova, Maria; Lazarev, Evgeniy
2015-04-01
There are several data of Mercury topography obtained as the result of processing materials collected by two spacecrafts - the Mariner-10 and the MESSENGER during their Mercury flybys. The history of the visual mapping of the Mercury begins at the recent times as the first significant observations were made during the latter half of the 20th century, whereas today we have no data with 100% coverage for the entire surface of the Mercury except the global mosaic composed of the images acquired by MESSENGER. The Mercury relief map has been created with the help of four different types of data: - global mosaic with 100% coverage of Mercury's surface created by using MESSENGER orbital images (30% of the final map); - Digital Terrain Models obtained by the treating stereo images made during the Mariner 10's flybys (10% of the map) (Cook and Robinson, 2000); - Digital Terrain Models obtained from images acquired during the Messenger flybys (20% of the map) (F. Preusker et al., 2011); - the data sets produced by the MESSENGER Mercury Laser Altimeter (MLA) (40 % of the map). The main objective of this work is to collect, combine and process the existing data and then to merge them correctly for one single map compiling. The final map is created in the Lambert azimuthal Equal area projection and mainly shows the hypsometric features of the planet. It represents two hemispheres - western and eastern. In order not to divide data sources the eastern hemisphere takes an interval from 50 degrees east longitude to 130 degrees west longitude and the western one takes respectively the interval from 130 degrees west longitude to 50 degrees east longitude. References: Global mosaics of Mercury's surface. Available mosaics include one created prior to MESSENGER's orbital operations, high resolution versions that use MESSENGER's orbital images that are available in NASA's Planetary Data System (PDS) (http://messenger.jhuapl.edu/the_mission/mosaics.html). Cook, A.C., Robinson, M.S., 2000. Mariner 10 stereo image coverage of Mercury. J. Geophys. Res. 105, 9429-9443. Preusker, F., Oberst, J., Head, J.W., Watters, T.R., Robinson, M.S., Zuber, M.T., Solomon, S.C., 2010. Stereo topographic models of Mercury after three MESSENGER flybys. Planetary and Space Science 59 (2011), 1910-1917. The MLA is a time-of-flight laser rangefinder that uses direct detection and pulse-edge timing to determine precisely the range from the MESSENGER spacecraft to Mercury's surface (http://pds-geosciences.wustl.edu/missions/messenger/mla.htm).
NASA Astrophysics Data System (ADS)
Tsang, C.; Caspi, A.; DeForest, C. E.; Durda, D. D.; Steffl, A.; Lewis, J.; Wiseman, J.; Collier, J.; Mallini, C.; Propp, T.; Warner, J.
2017-12-01
The Great American Eclipse of 2017 provided an excellent opportunity for heliophysics research on the solar corona and dynamics that encompassed a large number of research groups and projects, including projects flown in the air and in space. Two NASA WB-57F Canberra high altitude research aircraft were launched from NASA's Johnson Space Center, Ellington Field into the eclipse path. At an altitude of 50,000ft, and outfitted with visible and near-infrared cameras, these aircraft provided increased duration of observations during eclipse totality, and much sharper images than possible on the ground. Although the primary mission goal was to study heliophysics, planetary science was also conducted to observe the planet Mercury and to search for Vulcanoids. Mercury is extremely challenging to study from Earth. The 2017 eclipse provided a rare opportunity to observe Mercury under ideal astronomical conditions. Only a handful of near-IR thermal images of Mercury exist, but IR images provide critical surface property (composition, albedo, porosity) information, essential to interpreting lower resolution IR spectra. Critically, no thermal image of Mercury currently exists. By observing the nightside surface during the 2017 Great American Eclipse, we aimed to measure the diurnal temperature as a function of local time (longitude) and attempted to deduce the surface thermal inertia integrated down to a few-cm depth below the surface. Vulcanoids are a hypothesized family of asteroids left over from the formation of the solar system, in the dynamically stable orbits between the Sun and Mercury at 15-45 Rs (4-12° solar elongation). Close proximity to the Sun, plus their small theoretical sizes, make Vulcanoid searches rare and difficult. The 2017 eclipse was a rare opportunity to search for Vulcanoids. If discovered these unique, highly refractory and primordial bodies would have a significant impact on our understanding of solar system formation. Only a handful of deep searches have been conducted. Our observations will only be the second time ever a search for Vulcanoids will have been conducted in the NIR. In this presentation, I will review our NASA flight program, and focus on the planetary science observations that came from the Great American Eclipse of 2017.
NASA Technical Reports Server (NTRS)
Gault, D. E.; Burns, J. A.; Cassen, P.; Strom, R. G.
1977-01-01
Prior to the flight of the Mariner 10 spacecraft, Mercury was the least investigated and most poorly known terrestrial planet (Kuiper 1970, Devine 1972). Observational difficulties caused by its proximity to the Sun as viewed from Earth caused the planet to remain a small, vague disk exhibiting little surface contrast or details, an object for which only three major facts were known: 1. its bulk density is similar to that of Venus and Earth, much greater than that of Mars and the Moon; 2. its surface reflects electromagnetic radiation at all wavelengths in the same manner as the Moon (taking into account differences in their solar distances); and 3. its rotation period is in 2/3 resonance with its orbital period. Images obtained during the flyby by Mariner 10 on 29 March 1974 (and the two subsequent flybys on 21 September 1974 and 16 March 1975) revealed Mercury's surface in detail equivalent to that available for the Moon during the early 1960's from Earth-based telescopic views. Additionally, however, information was obtained on the planet's mass and size, atmospheric composition and density, charged-particle environment, and infrared thermal radiation from the surface, and most significantly of all, the existence of a planetary magnetic field that is probably intrinsic to Mercury was established. In the following, this new information is summarized together with results from theoretical studies and ground-based observations. In the quantum jumps of knowledge that have been characteristic of "space-age" exploration, the previously obscure body of Mercury has suddenly come into sharp focus. It is very likely a differentiated body, probably contains a large Earth-like iron-rich core, and displays a surface remarkably similar to that of the Moon, which suggests a similar evolutionary history.
Monte Carlo Modeling of Sodium in Mercury's Exosphere During the First Two MESSENGER Flybys
NASA Technical Reports Server (NTRS)
Burger, Matthew H.; Killen, Rosemary M.; Vervack, Ronald J., Jr.; Bradley, E. Todd; McClintock, William E.; Sarantos, Menelaos; Benna, Mehdi; Mouawad, Nelly
2010-01-01
We present a Monte Carlo model of the distribution of neutral sodium in Mercury's exosphere and tail using data from the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during the first two flybys of the planet in January and September 2008. We show that the dominant source mechanism for ejecting sodium from the surface is photon-stimulated desorption (PSD) and that the desorption rate is limited by the diffusion rate of sodium from the interior of grains in the regolith to the topmost few monolayers where PSD is effective. In the absence of ion precipitation, we find that the sodium source rate is limited to approximately 10(exp 6) - 10(exp 7) per square centimeter per second, depending on the sticking efficiency of exospheric sodium that returns to the surface. The diffusion rate must be at least a factor of 5 higher in regions of ion precipitation to explain the MASCS observations during the second MESSENGER f1yby. We estimate that impact vaporization of micrometeoroids may provide up to 15% of the total sodium source rate in the regions observed. Although sputtering by precipitating ions was found not to be a significant source of sodium during the MESSENGER flybys, ion precipitation is responsible for increasing the source rate at high latitudes through ion-enhanced diffusion.
Mercury accumulation in periphyton of eight river ecosystems
Bell, A.H.; Scudder, B.C.
2007-01-01
In 2003, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program and U.S. Environmental Protection Agency studied total mercury (THg) and methylmercury (MeHg) concentrations in periphyton at eight rivers in the United States in coordination with a larger USGS study on mercury cycling in rivers. Periphyton samples were collected using trace element clean techniques and NAWQA sampling protocols in spring and fall from targeted habitats (streambed surface-sediment, cobble, or woody snags) at each river site. A positive correlation was observed between concentrations of THg and MeHg in periphyton (r2 = 0.88, in log-log space). Mean MeHg and THg concentrations in surface-sediment periphyton were significantly higher (1,333 ng/m2 for MeHg and 53,980 ng/m2 for THg) than cobble (64 ng/m2 for MeHg and 1,192 ng/m2 for THg) or woody snag (71 ng/m2 for MeHg and 1,089 ng/m2 for THg) periphyton. Concentrations of THg in surface-sediment periphyton had a strong positive correlation with concentrations of THg in sediment (dry weight). The ratio of MeHg:THg in surface-sediment periphyton increased with the ratio of MeHg:THg in sediment. These data suggest periphyton may play a key role in mercury bioaccumulation in river ecosystems. ?? 2007 American Water Resources Association.
Remote X-ray fluorescence experiments for future missions to Mercury
NASA Astrophysics Data System (ADS)
Clark, P. E.; Trombka, J. I.
1997-01-01
To date, the only deep space mission to Mercury, Mariner 10, as well as ground-based observations have failed to provide direct measurements of that planet's composition. Such measurements are fundamental for the understanding of Mercury's origin and the inner solar system's history. The spin-stabilized Mercury Orbiter proposed for launch in the first or second decade of the twenty-first century as part of the ESA's Horizon 2000-plus plan could address this problem by including the X-ray spectrometer proposed here. X-ray spectrometers act as detectors for the X-ray emission induced by the solar flux incident on planetary surfaces. This emission is strongly dependent on the chemical composition of the surface as well as on the solar spectrum. Characteristic fluorescent lines, the most prominent being the K-alpha lines, are of sufficient intensity for major elements (Mg, Al, Si, Ca, Fe) to allow orbital measurement by remote X-ray detectors. The X-ray spectrometers described here will all have established heritage for space missions by 2000. These instruments have previously flown, are being flown as part of the NASA NEAR (Near Earth Asteroid Rendezvous) or Clark SSTI (Small Science and Technology Initiative) missions, or are now under development as part of NASA Facility Instrument Development Program. The instrument package would probably consist of an array of solid state detectors for surface measurements, as well as one which would act as a solar monitor. Calculations of anticipated results have been done for a variety of orbital and instrument configurations, and a variety of lunar soil compositions which could be analogous: anorthositie gabbro bearing soils from lunar highlands (Apollo 16), high-Mg basalt-rich soils from a KREEP-bearing area (Apollo 15), and mare basalt bearing soils (Apollo 12). The mission being considered here should result in maps of abundances of major elements, including Mg, Al, Si, Ca, and Fe, for much of Mercury's surface, with resolutions ranging from tens to hundreds of kilometers depending on the element, the orbital eccentricity and altitude of the spacecraft.
Solar wind controls on Mercury's magnetospheric cusp
NASA Astrophysics Data System (ADS)
He, Maosheng; Vogt, Joachim; Heyner, Daniel; Zhong, Jun
2017-06-01
This study assesses the response of the cusp to solar wind changes comprehensively, using 2848 orbits of MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observation. The assessment entails four steps: (1) propose and validate an approach to estimate the solar wind magnetic field (interplanetary magnetic field (IMF)) for MESSENGER's cusp transit; (2) define an index σ measuring the intensity of the magnetic disturbance which significantly peaks within the cusp and serves as an indicator of the cusp activity level; (3) construct an empirical model of σ as a function of IMF and Mercury's heliocentric distance rsun, through linear regression; and (4) use the model to estimate and compare the polar distribution of the disturbance σ under different conditions for a systematic comparison. The comparison illustrates that the disturbance peak over the cusp is strongest and widest extending in local time for negative IMF Bx and negative IMF Bz, and when Mercury is around the perihelion. Azimuthal shifts are associated with both IMF By and rsun: the cusp moves toward dawn when IMF By or rsun decrease. These dependences are explained in terms of the IMF Bx-controlled dayside magnetospheric topology, the component reconnection model applied to IMF By and Bz, and the variability of solar wind ram pressure associated with heliocentric distance rsun. The applicability of the component reconnection model on IMF By indicates that at Mercury reconnection occurs at lower shear angles than at Earth.
Insolation and Resulting Surface Temperatures of the Kuiper-Rudaki Study Region on Mercury.
NASA Astrophysics Data System (ADS)
Bauch, Karin E.; Hiesinger, Harald; D'Amore, Mario; Helbert, Jörn; Weinauer, Julia
2016-04-01
The imaging spectrometer MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) is part of the payload of ESA's BepiColombo mission, which is scheduled for launch in 2017 [1]. The instrument consists of an IR-spectrometer and radiometer, which observe the surface in the wavelength range of 7-14 and 7-40μm, respectively. The four scientific objectives are to a) study Mercury's surface composition, b) identify rock-forming minerals, c) globally map the surface mineralogy and d) study surface temperature and thermal inertia [1, 2]. In preparation of the MERTIS experiment, we performed detailed thermal models of the lunar surface, which we extrapolated to Mercury. In order to calculate insolation and surface temperatures, we use a numerical model, which has been described by [7]. Surface temperatures are dependent on the surface and subsurface bulk thermophysical properties, such as bulk density, heat capacity, thermal conductivity, emissivity, topography, and albedo. Lunar and Mercurian surface temperatures show the same general characteristics. Both have very steep temperature gradients at sunrise and sunset, due to the lack of an atmosphere. However, there are major differences due to the orbital characteristics. On Mercury the 3:2 resonant rotation rate and the eccentric orbit causes local noon at longitudes 0° and 180° to coincide with perihelion, which leads to "hot poles". At longitudes 90° and 270° , local noon coincides with aphelion, which results in "cold poles" [8]. At these longitudes brief secondary sunrises and sunsets are visible, when Mercury's orbital angular velocity exceeds the spin rate during perihelion [8]. Here we present diurnal temperature curves of the Kuiper-Rudaki study region, based on thermophysical estimates and MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging [9]) albedo data with a resolution of 1000m/px. Our study region spans more than 90° along the equator, thus allowing us to study both, hot and cold poles along the equator. The region shows smooth plains surrounding crater Rudaki (˜120km), as well as cratered terrain around the prominent crater Kuiper (˜60km) and has been extensively covered by measurements during the MESSENGER mission. Temperatures range from about 100K during the night to 570K (cold pole) and 700K (hot pole) at local noon. The floor of Kuiper crater reaches temperatures of ˜660K at local noon, while those at Rudaki crater are 625K (+/-5K). Due to their higher albedo, the rays of Kuiper crater are about 5K colder than the surrounding regions. These temperature estimates will aid the accurate interpretation of future MERTIS spectra of the region obtained during the BepiColombo mission [10]. References: [1] Hiesinger, H. et al. (2010), PSS 58, 144-165. [2] Helbert, J. et al. (2005), LPSC XXXVI, #1753. [3] Keihm, S.J. and Langseth, M.G. (1973), Proc. Lunar Sci. Conf. 4th, 2503-2513. [4] Lawson, S.L. et al. (2000), JGR 105, E5, 4273-4290. [5] Pieters, C.M. et al. (2009), Science 326, 568-572. [6] Paige, D.A. et al. (2010), Space Sci. Rev 150, 125-160. [7] Bauch, K.E. et al. (2014), PSS 101, 27-36. [8] Vasavada, A. et al. (1999), Icarus 141, 179-193. [9] Solomon, S.C. et al. (2008), Science 321, 59-62. [10] D'Amore et al. (2013), AGU, #P13A-1735.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Kent; Daniel, Anamary; Tachiev, Georgio
2013-07-01
In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less
Ion-Scale Structure in Mercury's Magnetopause Reconnection Diffusion Region
NASA Technical Reports Server (NTRS)
Gershman, Daniel J.; Dorelli, John C.; DiBraccio, Gina A.; Raines, Jim M.; Slavin, James A.; Poh, Gangkai; Zurbuchen, Thomas H.
2016-01-01
The strength and time dependence of the electric field in a magnetopause diffusion region relate to the rate of magnetic reconnection between the solar wind and a planetary magnetic field. Here we use approximately 150 milliseconds measurements of energetic electrons from the Mercury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER) spacecraft observed over Mercury's dayside polar cap boundary (PCB) to infer such small-scale changes in magnetic topology and reconnection rates. We provide the first direct measurement of open magnetic topology in flux transfer events at Mercury, structures thought to account for a significant portion of the open magnetic flux transport throughout the magnetosphere. In addition, variations in PCB latitude likely correspond to intermittent bursts of approximately 0.3 to 3 millivolts per meter reconnection electric fields separated by approximately 5 to10 seconds, resulting in average and peak normalized dayside reconnection rates of approximately 0.02 and approximately 0.2, respectively. These data demonstrate that structure in the magnetopause diffusion region at Mercury occurs at the smallest ion scales relevant to reconnection physics.
Ratio of Sodium to Potassium in the Mercurian Exosphere
NASA Technical Reports Server (NTRS)
Potter, A. E.; Anderson, C. M.; Killen, R. M.; Morgan, T. H.
2001-01-01
Sodium (Na) and Potassium (K) atoms can be seen in the exosphere of Mercury and the Moon because they are extremely efficient at scattering sunlight. These species must be derived from surface materials, so that we might expect the ratio of sodium to potassium to reflect the ratio of these elements in the surface crust. This expectation is approximately born out for the Moon, where the ratio of sodium to potassium in the lunar exosphere averages to be about 6, not too far from the ratio in lunar rocks of 2 to 7. However, the ratio in the Mercury exosphere was found to be in the range 80 to 190, and at least once, as high as 400. The sodium and potassium atoms seen in the Mercury exosphere represent a balance between production from the surface and loss to space. Only if the production efficiencies and loss rates for Na and K were equal, would the ratio of Na to K in the exosphere reflect the ratio in the surface rocks. Since a value of 100 or more for the ratio of sodium to potassium in the surface rocks seems very unlikely, the high values of the observed ratios suggests that either production efficiencies or loss processes for the two elements are not equivalent. It does not seem likely that source processes should be different on the Moon and Mercury by an order of magnitude. This suggests that loss processes rather than source processes are the cause of the difference between the two. The major loss processes for sodium and potassium on Mercury are radiation pressure and trapping of photoions by the solar wind. Radiation pressure can reach 50-70% of surface gravity, and can sweep sodium and potassium atoms off the planet, provided they are sufficiently hot. Photoionization followed by trapping of the ions in the solar wind is the other major loss process. Photoions are accelerated to keV energies in the magnetosphere, and may either intercept the magnetopause, and be lost from the planet, or impact the planetary surface. Ions that impact the surface are neutralized, and are then available for resupply to the exosphere. The loss efficiency depends on characteristics of the magnetosphere that determine the fraction of the ions that are recycled by neutralization on the surface. Over the preceding decade, we have collected sodium and potassium data for Mercury at irregular intervals. We analyzed these data to extract values for the Na/K ratio at a variety of conditions on Mercury. Additional information is contained in the original extended abstract.
Space Weathering of Super-Earths: Model Simulations of Exospheric Sodium Escape from 61 Virgo b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoneda, M.; Berdyugina, S.; Kuhn, J.
Rocky exoplanets are expected to be eroded by space weather in a similar way as in the solar system. In particular, Mercury is one of the dramatically eroded planets whose material continuously escapes into its exosphere and further into space. This escape is well traced by sodium atoms scattering sunlight. Due to solar wind impact, micrometeorite impacts, photo-stimulated desorption and thermal desorption, sodium atoms are released from surface regolith. Some of these released sodium atoms are escaping from Mercury’s gravitational-sphere. They are dragged anti-Sun-ward and form a tail structure. We expect similar phenomena on exoplanets. The hot super-Earth 61 Virmore » b orbiting a G3V star at only 0.05 au may show a similar structure. Because of its small separation from the star, the sodium release mechanisms may be working more efficiently on hot super-Earths than on Mercury, although the strong gravitational force of Earth-sized or even more massive planets may be keeping sodium atoms from escaping from the planet. Here, we performed model simulations for Mercury (to verify our model) and 61 Vir b as a representative super-Earth. We have found that sodium atoms can escape from this exoplanet due to stellar wind sputtering and micrometeorite impacts, to form a sodium tail. However, in contrast to Mercury, the tail on this hot super-Earth is strongly aligned with the anti-starward direction because of higher light pressure. Our model suggests that 61 Vir b seems to have an exo-base atmosphere like that of Mercury.« less
A quasi-hemispheric model of the Hermean's magnetic field
NASA Astrophysics Data System (ADS)
Thebault, E.; Oliveira, J.; Langlais, B.; Amit, H.
2015-10-01
We analyse and process magnetic field measurements provided by the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The vect or magnetic field measurements are modelled with a dedicated regional scheme expanded in space and in time. Compared to the widely used global Spherical Harmonics (SH), the regional approach is particularly well suited because the partial and quasi hemispheric distribution of the MESSENGER data represents no major numerical difficulty. We confirm that the internal magnetic field of Mercury is mostly axisymmetric with a magnetic equator shifted northward. However, we also observe a time dependency in the model that is at present hardly explained only by time variations of the external magnetic fields. We present the major spatial and temporal structures shown by the regional model.
In-Flight performance of MESSENGER's Mercury dual imaging system
Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.
2009-01-01
The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.
A seasonal feature in Mercury’s exosphere caused by meteoroids from comet Encke
NASA Astrophysics Data System (ADS)
Christou, Apostolos; Killen, Rosemary M.; Burger, Matthew H.
2015-11-01
The planet Mercury is enveloped in a tenuous atmosphere, the result of a delicate balance between poorly understood sources and sinks (Killen et al, 2007). Meteoroid impacts are a contributing source process (eg Wurz et al, 2010), but their importance compared to other production mechanisms is uncertain.Killen and Hahn (2015) found that seasonal variations in Mercury's calcium exosphere as observed by Mercury Atmospheric, and Surface Composition Spectrometer (MASCS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft (Burger et al, 2014) may be attributed to impact vaporization of surface material by the infall of interplanetary dust. However, an additional dust source was required to explain a Ca excess at a True Anomaly Angle (TAA) of 25±5 deg. Killen and Hahn suggested that dust from comet 2P/Encke, crossing Mercury's orbital plane at TAA=45 deg, may be the culprit.We have simulated numerically the stream of meteoroids ejected from Encke in order to identify those particles that impact Mercury at the present epoch and test the Killen and Hahn conjecture. We find that Encke particles evolving solely under the gravity of the major planets and the Sun encounter Mercury at TAA=50-60 deg, well after the peak of the Ca excess emission. This result is independent of the time of ejection. However, the addition of Poynting-Robertson (P-R) drag in our model couples the age and size of the meteoroids to the TAA at encounter, causing smaller, older particles to encounter Mercury progressively earlier in the Hermean year. In particular, mm-sized grains ejected between 10 and 20 kyr ago impact on the nightside hemisphere of Mercury at TAA = 350-30 deg, near the observed peak time of the exospheric feature.During this presentation, we will describe our model results and discuss their implications for the physical mechanism that injects impact-liberated Ca into sunlight as well as the origin and evolution of the Encke stream of meteoroids.Astronomical Research at Armagh Observatory is funded by the Northern Ireland Department of Culture, Arts and Leisure (DCAL).
NASA Technical Reports Server (NTRS)
Power, J. L.
1981-01-01
The subject interface measurements are described for the Ion Auxiliary Propulsion System (IAPS) flight test of two 8-cm thrusters. The diagnostic devices and the effects to be measured include: 1) quartz crystal microbalances to detect nonvolatile deposition due to thruster operation; 2) warm and cold solar cell monitors for nonvolatile and volatile (mercury) deposition; 3) retarding potential ion collectors to characterize the low energy thruster ionic efflux; and 4) a probe to measure the spacecraft potential and thruster generated electron currents to biased spacecraft surfaces. The diagnostics will also assess space environmental interactions of the spacecraft and thrusters. The diagnostic data will characterize mercury thruster interfaces and provide data useful for future applications.
Mercury Quick Facts: Health Effects of Mercury Exposure
... up in tiny cracks and spaces in your house. • • Mercury can vaporize (evaporate) into the air in your house. The vapor cannot be seen or smelled. • • Mercury ... up in tiny cracks and spaces in your house. • • Can vaporize (evaporate) into the air in your ...
A Christmas Crater from Mercury
2017-12-08
Release Date: December 21, 2011 The crater at the center of this image is named Dickens, after Charles Dickens, the English novelist who lived from 1812 to 1870. Among Dickens' famous works is A Christmas Carol, the story of Bob Cratchit, his family, and horrible boss Mr. Scrooge. Scientists studying Mercury might consider the Mariner 10 mission to be Christmas Past, MESSENGER to be Christmas Present, and the European Bepi-Colombo mission to be Christmas Yet To Come. This image was acquired as part of MDIS's high-resolution surface morphology base map. The surface morphology base map will cover more than 90% of Mercury's surface with an average resolution of 250 meters/pixel (0.16 miles/pixel or 820 feet/pixel). Images acquired for the surface morphology base map typically have off-vertical Sun angles (i.e., high incidence angles) and visible shadows so as to reveal clearly the topographic form of geologic features. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E..; McCubbin, Francis M.; Ross, D. Kent; Draper, David S.
2017-01-01
Results from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft have shown elevated abundances of carbon on the surface of Mercury. Furthermore, the X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planet's oxygen fugacity (fO2) is several log10 units below the Iron-Wüstite (IW) buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently than it would under higher fO2. As discussed by Nittler et al. and Hauck et al., under such highly reducing conditions, the majority of the iron partitions into the core. On Mercury, this resulted in a relatively large core and a thin mantle. Using a composition similar to the largest volcanic field on the planet (the northern volcanic plains), Vander Kaaden and McCubbin conducted sink-float experiments to determine the density of melts and minerals on Mercury. They showed that graphite would be the only buoyant mineral in a mercurian magma ocean. Therefore, Vander Kaaden and McCubbin proposed a possible primary flotation crust on the planet composed of graphite. Concurrently, Peplowski et al. used GRS data from MESSENGER to show an average northern hemisphere abundance of C on the planet of 1.4 +/- 0.9 wt%. However, as this result was only at the one-sigma detection limit, possible carbon abundances at the three-sigma detection limit for Mercury range from 0 to 4.1 wt% carbon. Additionally, Murchie et al. investigated the possible darkening agent on Mercury and concluded that coarse-grained graphite could darken high reflectance plains to the low reflectance material. To further test the possibility of elevated abundances of carbon in Mercury's crust, Peplowski et al. used the low-altitude MESSENGER data to show that carbon is the only material consistent with both the visible to near-infrared spectra and the neutron measurements of low reflectance material on Mercury, confirming that C is the primary darkening agent on Mercury. Confirmation of carbon on the planet prompts many questions regarding the role of carbon during the differentiation and evolution of Mercury. Given the elevated abundances of both S and C on Mercury's surface, it begs the question, what is the core composition of the planet? This study seeks to understand the impact of C as a light element on potential core compositions on Mercury.
Simulated MERTIS observation of the Rudaki-Kuiper craters area on Mercury
NASA Astrophysics Data System (ADS)
D'Amore, M.; Helbert, J.; Maturilli, A.; Ferrari, S.; Bauch, K.; D'Incecco, P.; Hiesinger, H.; Head, J. W.; Holsclaw, G. M.; Lorin, D. D.; Denevi, B. W.; Stockstill-Cahill, K. R.
2013-12-01
The MErcury Radiometer and Thermal infrared Imaging Spectrometer (MERTIS) is part of the payload of the BepiColombo mission. The mission is scheduled for launch in 2015 with arrival at Mercury in 2021. To achieve MERTIS's scientific goals the instrument maps the surface of Mercury with a spatial resolution of 500m for the spectrometer channel and 2km for the radiometer channel. MERTIS spans wavelength ranges of 7-14 and 7-40 μm with its two channels. Among it scientific goals, MERTIS will infer rock-forming minerals, map surface composition, and study surface temperature variations on Mercury with an uncooled microbolometer detector. To exploit the full potential of the unique MERTIS dataset, an extensive calibration campaign has been performed. This includes radiometric, spectral, and geometric calibration. In addition we have performed measurement of analog materials at temperatures of up to 500°C - similar to the peak temperatures expected at Mercury - with the MERTIS qualification model in the Planetary Emissivity Laboratory. These measurements allow for the evaluation of the MERTIS performance in direct comparison with the laboratory spectrometer. They also enable the creation of synthetic MERTIS datasets. For this purpose we use data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft as baseline. MESSENGER can provide geological information as well as spectral information in the UV, visible and near-infrared wavelengths range. For a first test we have selected the Kuiper-Rudaki region. The region has been extensively covered by measurements from the MESSENGER spacecraft. Recent analysis of observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) instrument on the MESSENGER spacecraft with an unsupervised hierarchical clustering method shows at global scales two major units: a Polar region (PR) spectrally flat and redder than the equatorial region (ER). The study area is primarily classified as a homogeneous expanse of the equatorial region (ER) cluster. Further clustering shows that the study area belongs to the 'core' ER, in opposition to some smaller patches of a transitional sub-unit, that are transitional region between global ER and the polar region (PR) cluster. Assuming a set of several potential mineralogies for the study area and modeled surface temperature at different local times we can obtain at PEL the spectra in the mid-infrared spectral range. Combining these with our knowledge of the MERTIS performance we can produce simulated MERTIS datasets of the study region at different point of the mission.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare NASA’s MESSENGER spacecraft for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASA’s MESSENGER spacecraft into the building MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift begins lowering NASA’s MESSENGER spacecraft onto the ground. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASA’s MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASA’s MESSENGER spacecraft. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., is offloaded. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - At the Astrotech Space Operations processing facilities near KSC, a lift helps offload NASA’s MESSENGER spacecraft shipped from NASA’s Goddard Space Flight Center in Greenbelt, Md. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Evolution and structure of Mercury's interior from MESSENGER observations
NASA Astrophysics Data System (ADS)
Tosi, Nicola
2015-04-01
During the past four years, the MESSENGER mission (MErcury Surface, Space Environment, GEochemistry and Ranging) has delivered a wealth of information that has been dramatically advancing the understanding of the geological, chemical, and physical state of Mercury. Taking into account the latest constraints on the interior structure, surface composition, volcanic and tectonic history, we employed numerical models to simulate the thermo-chemical evolution of the planet's interior [1]. Typical evolution scenarios that allow the observational constraints to be satisfied consist of an initial phase of mantle heating accompanied by planetary expansion and the production of a substantial amount of partial melt. The evolution subsequent to 2 Ga is characterised by secular cooling that proceeds approximately at a constant rate and implies that contraction should be still ongoing. Most of the models also predict mantle convection to cease after 3-4 Ga, indicating that Mercury may be no longer dynamically active. In addition, the topography, measured by laser altimetry and the gravity field, obtained from radio-tracking, represent fundamental observations that can be interpreted in terms of the chemical and mechanical structure of the interior. The observed geoid-to-topography ratios at intermediate wavelengths are well explained by the isostatic compensation of the topography associated with lateral variations of the crustal thickness, whose mean value can be estimated to be ~35 km, broadly confirming the predictions of the evolution simulations [2]. Finally, we will show that the degree-2 and 4 of the topography and geoid spectra can be explained in terms of the long-wavelength deformation of the lithosphere resulting from deep thermal anomalies caused by the large latitudinal and longitudinal variations in temperature experienced by Mercury's surface. [1] Tosi N., M. Grott, A.-C. Plesa and D. Breuer (2013). Thermo-chemical evolution of Mercury's interior. Journal of Geophysical Research - Planets, 118, 2474-2487. [2] Padovan S., M. Wieczorek, J.-L. Margot, N. Tosi, and S. Solomon (2015). Thickness of the crust of Mercury from geoid-to-topography ratios. Geophysical Research Letters. In press.
Global Structure and Sodium Ion Dynamics in Mercury's Magnetosphere With the Offset Dipole
NASA Astrophysics Data System (ADS)
Yagi, M.; Seki, K.; Matsumoto, Y.; Delcourt, D. C.; Leblanc, F.
2017-11-01
We conducted global magnetohydrodynamics (MHD) simulation of Mercury's magnetosphere with the dipole offset, which was revealed by MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) observations, in order to investigate its global structure under northward interplanetary magnetic field conditions. Sodium ion dynamics originating from the Mercury's exosphere is also investigated based on statistical trajectory tracing in the electric and magnetic fields obtained from the MHD simulations. The results reveal a north-south asymmetry characterized by open field lines around the southern polar region and northward deflection of the plasma sheet in the far tail. The asymmetry of magnetic field structure near the planet drastically affects trajectories of sodium ion and thus their pressure distributions and precipitation pattern onto the planet. Weaker magnetic field strength in the southern hemisphere than in the north increases ion loss by precipitation onto the planetary surface in the southern hemisphere. The "sodium ring," which is formed by high-energy sodium ions drifting around the planet, is also found in the vicinity of the planet. The sodium ring is almost circular under nominal solar wind conditions. The ring becomes partial under high solar wind density, because dayside magnetosphere is so compressed that there is no space for the sodium ions to drift around. In both cases, the sodium ring is formed by sodium ions that are picked up, accelerated in the magnetosheath just outside the magnetopause, and reentered into the magnetosphere due to combined effects of finite Larmor radius and convection electric field in the dawnside magnetosphere.
Space environment and lunar surface processes, 2
NASA Technical Reports Server (NTRS)
Comstock, G. M.
1982-01-01
The top few millimeters of a surface exposed to space represents a physically and chemically active zone with properties different from those of a surface in the environment of a planetary atmosphere. To meet the need or a quantitative synthesis of the various processes contributing to the evolution of surfaces of the Moon, Mercury, the asteroids, and similar bodies, (exposure to solar wind, solar flare particles, galactic cosmic rays, heating from solar radiation, and meteoroid bombardment), the MESS 2 computer program was developed. This program differs from earlier work in that the surface processes are broken down as a function of size scale and treated in three dimensions with good resolution on each scale. The results obtained apply to the development of soil near the surface and is based on lunar conditions. Parameters can be adjusted to describe asteroid regoliths and other space-related bodies.
Navigating the MESSENGER Spacecraft through End of Mission
NASA Astrophysics Data System (ADS)
Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.
2015-12-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and eventually allowed the navigation team to settle on an approach that gave consistently accurate predictions. Thus, final mission success was truly the result of a collaborative effort between members of the science, mission operations, mission design, and navigation teams.
Xu, Haomiao; Yuan, Yong; Liao, Yong; Xie, Jiangkun; Qu, Zan; Shangguan, Wenfeng; Yan, Naiqiang
2017-09-05
[MoS 4 ] 2- clusters were bridged between CoFe layered double hydroxide (LDH) layers using the ion-exchange method. [MoS 4 ] 2- /CoFe-LDH showed excellent Hg 0 removal performance under low and high concentrations of SO 2 , highlighting the potential for such material in S-Hg mixed flue gas purification. The maximum mercury capacity was as high as 16.39 mg/g. The structure and physical-chemical properties of [MoS 4 ] 2- /CoFe-LDH composites were characterized with FT-IR, XRD, TEM&SEM, XPS, and H 2 -TPR. [MoS 4 ] 2- clusters intercalated into the CoFe-LDH layered sheets; then, we enlarged the layer-to-layer spacing (from 0.622 to 0.880 nm) and enlarged the surface area (from 41.4 m 2 /g to 112.1 m 2 /g) of the composite. During the adsorption process, the interlayer [MoS 4 ] 2- cluster was the primary active site for mercury uptake. The adsorbed mercury existed as HgS on the material surface. The absence of active oxygen results in a composite with high sulfur resistance. Due to its high efficiency and SO 2 resistance, [MoS 4 ] 2- /CoFe-LDH is a promising adsorbent for mercury uptake from S-Hg mixed flue gas.
Evaluating an impact origin for Mercury's high-magnesium region
NASA Astrophysics Data System (ADS)
Frank, Elizabeth A.; Potter, Ross W. K.; Abramov, Oleg; James, Peter B.; Klima, Rachel L.; Mojzsis, Stephen J.; Nittler, Larry R.
2017-03-01
During its four years in orbit around Mercury, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft's X-ray Spectrometer revealed a large geochemical terrane in the northern hemisphere that hosts the highest Mg/Si, S/Si, Ca/Si, and Fe/Si and lowest Al/Si ratios on the planet. Correlations with low topography, thin crust, and a sharp northern topographic boundary led to the proposal that this high-Mg region is the remnant of an ancient, highly degraded impact basin. Here we use a numerical modeling approach to explore the feasibility of this hypothesis and evaluate the results against multiple mission-wide data sets and resulting maps from MESSENGER. We find that an 3000 km diameter impact basin easily exhumes Mg-rich mantle material but that the amount of subsequent modification required to hide basin structure is incompatible with the strength of the geochemical anomaly, which is also present in maps of Gamma Ray and Neutron Spectrometer data. Consequently, the high-Mg region is more likely to be the product of high-temperature volcanism sourced from a chemically heterogeneous mantle than the remains of a large impact event.
The Low-Degree Shape of Mercury
NASA Astrophysics Data System (ADS)
Perry, M. E.; Neumann, G. A.; Mazarico, E.; Hauck, S. A., II; Solomon, S. C.; Zuber, M. T.; Smith, D. E.; Phillips, R. J.; Margot, J. L.; Johnson, C. L.; Ernst, C. M.; Oberst, J.
2015-12-01
The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Twenty-five million elevation measurements of the northern hemisphere, acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, were combined with 378 occultation measurements of radio-frequency signals from the spacecraft in the planet's southern hemisphere to reveal the low-degree shape of Mercury. We solved for the spherical-harmonic coefficients through degree and order 128 and found that Mercury's mean radius is 2439.36±0.02 km. The offset between the planet's centers of mass and figure is negligible (40±40 m) along the polar axis and modest (140±50 m) in the equatorial plane. Mercury's spherical-harmonic shape spectrum is dominated by degree 2, and the planet's first-order shape is that of a triaxial ellipsoid with semimajor axes a, b, and c. The polar radius, c, is 1.65 km less than (a+b)/2, and the equatorial difference, a-b, is 1.25 km. The long axis is rotated 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is similarly dominated by degree 2 and well described by a triaxial ellipsoid. The degree-2 geoid and shape are highly correlated, but the power spectral density of the geoid at degree 2 is only 1% of its shape counterpart, implying substantial compensation of elevation variations on a global scale and that Mercury is not in hydrostatic equilibrium.
Mercury sodium exospheric emission as a proxy for solar perturbations transit
NASA Astrophysics Data System (ADS)
Orsini, S.; Mangano, V.; Milillo, A.; Plainaki, C.; Mura, A.; Raines, J. M.; Laurenza, M.; De Angelis, E.; Rispoli, R.; Lazzarotto, F.; Aronica, A.
2017-12-01
The first evidence at Mercury of direct relation between ICME transit and Na exosphere dynamics is presented, suggesting that Na emission, observed from ground, could be a proxy of planetary space weather at Mercury. The link existing between the dayside exosphere Na patterns and the solar wind-magnetosphere-surface interactions is investigated. This goal is pursued by analyzing the Na intensity hourly images, as observed by the ground-based THEMIS solar telescope (Mangano et al., 2015*) during 10 selected periods between 2012 and 2013 (with seeing, σ <2"), when also MESSENGER data were available. Frequently, two-peak patterns of variable intensity are observed, located at high latitudes in both hemispheres. Occasionally, Na signal is instead diffused above the sub-solar region. We compare these different patterns with the in-situ time profiles of proton fluxes and magnetic field data from MESSENGER. Among these 10 cases, only in one occasion the Na signal is diffused above the subsolar region, when the MESSENGER data detect the transit of two ICMEs. The selected cases suggest that the Na emission patterns are well related to the solar wind conditions at Mercury. For corroborating such a result, the ICME propagation from the Sun has been modeled at Mercury location, and space plasma parameters profiles are compared to the observed Na emission. Finally, we conclude that the exospheric Na emission patterns, observed from ground, can be considered as a `natural monitor' of solar disturbances when transiting near Mercury. (*) Mangano, et al., PSS, 115, 102-109, doy: 10.1016/j.pss.2015.04.001, 2015.
Exploring Space Weathering on Mercury Using Global UV-VIS Reflectance Spectroscopy
NASA Astrophysics Data System (ADS)
Izenberg, N. R.; Denevi, B. W.
2018-05-01
We apply UV analysis methods used on lunar LROC data to Mercury to explore space weathering maturity and possibly evidence of shocked minerals. What says the UV // about shock, maturity // on dear Mercury?
Spolaor, Andrea; Angot, Hélène; Roman, Marco; Dommergue, Aurélien; Scarchilli, Claudio; Vardè, Massimiliano; Del Guasta, Massimo; Pedeli, Xanthi; Varin, Cristiano; Sprovieri, Francesca; Magand, Olivier; Legrand, Michel; Barbante, Carlo; Cairns, Warren R L
2018-04-01
The Antarctic Plateau snowpack is an important environment for the mercury geochemical cycle. We have extensively characterized and compared the changes in surface snow and atmospheric mercury concentrations that occur at Dome C. Three summer sampling campaigns were conducted between 2013 and 2016. The three campaigns had different meteorological conditions that significantly affected mercury deposition processes and its abundance in surface snow. In the absence of snow deposition events, the surface mercury concentration remained stable with narrow oscillations, while an increase in precipitation results in a higher mercury variability. The Hg concentrations detected confirm that snowfall can act as a mercury atmospheric scavenger. A high temporal resolution sampling experiment showed that surface concentration changes are connected with the diurnal solar radiation cycle. Mercury in surface snow is highly dynamic and it could decrease by up to 90% within 4/6 h. A negative relationship between surface snow mercury and atmospheric concentrations has been detected suggesting a mutual dynamic exchange between these two environments. Mercury concentrations were also compared with the Br concentrations in surface and deeper snow, results suggest that Br could have an active role in Hg deposition, particularly when air masses are from coastal areas. This research presents new information on the presence of Hg in surface and deeper snow layers, improving our understanding of atmospheric Hg deposition to the snow surface and the possible role of re-emission on the atmospheric Hg concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.
2004-07-14
KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is ready for presentation to the media at Astrotech Space Operations in Titusville, Fla. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
2004-07-14
KENNEDY SPACE CENTER, FLA. - The MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, mated to the Delta II third stage Payload Assist Module, is on display at Astrotech Space Operations in Titusville, Fla., for the media. Spokespersons for the event are Dr. Robert Gold, MESSENGER payload manager with The Johns Hopkins University Applied Physics Laboratory (APL); and Ted Hartka, MESSENGER lead mechanical engineer, APL. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla.
Comparing the Atmospheres of Mercury and the Earth's Moon
NASA Technical Reports Server (NTRS)
Morgan, Thomas H.; Killen, Rosemary M.; Hurley, Dana M.
2012-01-01
The exospheres of Mercury and the Earth's Moon are fundamentally similar, but the differences that do exist between them can help us to develop a better understanding of the processes at work on the two bodies that produce and remove volatiles. The major differences are derived from (1) the different compositions of the two surfaces, (2) the different particle and field em'ironments above the surface of each body (particularly the presence of intrinsic magnetic field of Mercury), and (3) the larger flux of interplanetary dust incident at the orbit of Mercury. The first difference, surface composition, is the most intractable problem, but the most challenging part of that problem, the composition of the Hermean regolith, may be at least partially addressed as the MESSENGER mission completes work over the next year. Much progress has been made with respect to exploring the second difference above--spacecraft such as Helios, Ulysses, WIND, and ACE have measured the solar wind and its composition both in Earth orbit and at distances encompassing the orbit of Mercury. While our knowledge of the solar wind is incomplete, again it is far more detailed than a simple 1/R(sup 2) law would predict. Another problem is that of the flux of charged particles to the surfaces. While Mercury's magnetosphere is the subject of current study with MESSENGER, the influx of charged particles on the Moon has gone beyond a cos (psi) picture, where psi is the solar zenith angle. We know that the influx of ions at the Moon is affected by magnetic anomalies, by craters, and by surface charging. The third external difference is the differing flux of interplanetary dust incident on the two surfaces. In this talk we will consider: (1) the species that one can compare now for these two exospheres (Na, K, and He); (2) the species that you might be able to compare with future measurements (Ca and Mg); arid (3) how intensive ground-based observations of the easiest lunar species to observe from the ground, Na and K, might help us address source processes at work on both surfaces. We will discuss current and planned modeling efforts for both the lunar and Hermean exospheres, and some current and planned observations, both ground-based and space-based.
Localized surface plasmon resonance mercury detection system and methods
James, Jay; Lucas, Donald; Crosby, Jeffrey Scott; Koshland, Catherine P.
2016-03-22
A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.
NASA Astrophysics Data System (ADS)
Zambon, Francesca; Carli, Cristian; Galluzzi, Valentina; Capaccioni, Fabrizio; Filacchione, Gianrico; Giacomini, Lorenza; Massirioni, Matteo; Palumbo, Pasquale
2016-04-01
Mercury has been explored by two spatial missions. Mariner 10 acquired 45% of the surface during three Hermean flybys in 1974, giving a first close view of the planet. The recent MESSENGER mission globally mapped the planet and contributed to understand many unsolved issues about Mercury (Solomon et al., 2007). Nevertheless, even after MESSENGER, Mercury surface composition remains still unclear, and the correlation between morphology and compositional heterogeneity is not yet well understood. Thanks to the Mercury Dual Imaging System (MDIS), onboard MESSENGER, a global coverage of Mercury surface with variable spatial resolution has been done. MDIS is equipped with a Narrow Angle Camera (NAC), dedicated to the high-resolution study of the surface morphology and a Wide Angle Camera (WAC) with 12 filters useful to investigate the surface composition (Hawkins et al., 2007). Several works were focused on the different terrains present on Mercury, in particular, Denevi et al. (2013) observes that ~27% of Hermean surface is covered by volcanic origin smooth plains. These plains show differences in composition associated to spectral slope variation. High-reflectance red plains (HRP), with spectral slope greater than the average and low-reflectance blue plains (LBP), with spectral slope lesser than the average has been identified. This spectral variations could be correlated with different chemical composition. The X-Ray Spectrometer (XRS) data show that HRP-type areas are associated with a low-Fe basalt-like composition, while the LBP are also Fe poor but are rich in Mg/Si and Ca/Si and with lower Al/Si and are interpreted as more ultramafic (Nittler et al., 2011; Weider et al., 2012; Denevi at al., 2013, Weider et al., 2014). In these work we produce high resolution multicolor mosaic to found a possible link between morphology and composition. The spectral properties have been used to define the principal units of Mercury's surface or to characterize other globally distributed distinct spectral units. Therefore, integrating the spectral variability to a well defined morpho-stratigraphic (photo-interpreted) map will permit to improve the geologic map itself, defining sub-units, and associating spectral properties to analogue deposits. We are working to produce quadrangles color mosaics and high resolution color mosaics of smaller areas to define color products (common planetary geologic map) and obtain an "advanced" geologic map. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging data from different instruments provides additional information about lithological composition, contributing to the construction of a more complete geological map (e.g., Giacomini et al., 2012). These work has been done in support of the BepiColombo Mission, which has an innovative Spectrometer and Imagers Integrated Observatory SYStem (SIMBIO-SYS). SIMBIO-SYS is composed by three instruments, the visible-near-infrared imaging spectrometer (VIHI), the high-resolution imager (HRIC) and the stereo imaging system (STC) which will be albe to improve the knowledge of Mercury surface form the geological and compositional point of view. This research was supported by the Italian Space Agency (ASI) within the SIMBIOSYS project (ASI-INAF agreement no. I/022/10/0)
Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity.
Blewett, David T; Chabot, Nancy L; Denevi, Brett W; Ernst, Carolyn M; Head, James W; Izenberg, Noam R; Murchie, Scott L; Solomon, Sean C; Nittler, Larry R; McCoy, Timothy J; Xiao, Zhiyong; Baker, David M H; Fassett, Caleb I; Braden, Sarah E; Oberst, Jürgen; Scholten, Frank; Preusker, Frank; Hurwitz, Debra M
2011-09-30
High-resolution images of Mercury's surface from orbit reveal that many bright deposits within impact craters exhibit fresh-appearing, irregular, shallow, rimless depressions. The depressions, or hollows, range from tens of meters to a few kilometers across, and many have high-reflectance interiors and halos. The host rocks, which are associated with crater central peaks, peak rings, floors, and walls, are interpreted to have been excavated from depth by the crater-forming process. The most likely formation mechanisms for the hollows involve recent loss of volatiles through some combination of sublimation, space weathering, outgassing, or pyroclastic volcanism. These features support the inference that Mercury's interior contains higher abundances of volatile materials than predicted by most scenarios for the formation of the solar system's innermost planet.
2017-12-08
NASA release date June 21, 2011 The terminator of Mercury, shown here in color, is the line between light and dark, or day and night. On Mercury, three days are equivalent to two years, or in other words, the planet spins around its axis three times for every two orbits around the Sun. The first Mercury year of the MESSENGER mission ended on Monday, June 13, 2011. This image was acquired as part of MDIS's color base map. The color base map is composed of WAC images taken through eight different narrow-band color filters and will cover more than 90% of Mercury's surface with an average resolution of 1 kilometer/pixel (0.6 miles/pixel). The highest-quality color images are obtained for Mercury's surface when both the spacecraft and the Sun are overhead, so these images typically are taken with viewing conditions of low incidence and emission angles. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Infrared and Raman spectroscopy on synthetic glasses as analogues of planetary surfaces.
NASA Astrophysics Data System (ADS)
Weber, Iris; Morlok, Andreas; Klemme, Stephan; Dittmer, Isabelle; Stojic, Aleksandra N.; Hiesinger, Harald; Sohn, Martin; Helbert, Jörn
2015-04-01
One of the fundamental aims of space mission is to understand the physical, chemical, and geologic processes and conditions of planetary formation and evolution. For this purpose, it is important to investigate analog material to correctly interpret the returned spacecraft data, including the spectral information from remote planetary surfaces. For example, mid-infrared spectroscopy provides detailed information on the mineralogical compositions of planetary surfaces via remote sensing. Data is affected by numerous factors such as grain size, illumination geometry, space weathering, and temperature. These features need to be systematically investigated on analog material in terrestrial laboratories in order to understand the mineralogy/composition of a planetary surface. In addition, Raman spectroscopy allows non-destructive analyses of planetary surfaces in the case of a landing mission. Our work at the IRIS (Infrared spectroscopy for Interplanetary Studies) laboratory at the Institut für Planetologie produces spectra for a database of the ESA/JAXA BepiColombo mission to Mercury. Onboard is a mid-infrared spectrometer (MERTIS-Mercury Radiometer and Thermal Infrared Spectrometer). This unique instrument allows us to map spectral features in the 7-14 µm range, with a spatial resolution of ~500 m [1-5]. Comparably, using our Raman spectrometer, we are continuously contributing to the Raman database for upcoming mission, e.g., the Raman Laser Spectrometer (RLS) onboard of ExoMars [6]. Material on the surface of Mercury and the other terrestrial bodies was exposed to heavy impact cratering [4]. Depending on the P/T conditions during the impact, minerals on planetary surfaces can react with the formation of glassy material. Thus, understanding the effects of impact shock and heat on the mineral structure and the resulting corresponding change in the spectral properties is of high interest for the MERTIS project. Here, we present spectral information on the first glass produced, based on the composition of the Ca- and Mg-rich and Al-poor G1 region identified on Mercury with the X-ray spectrometer on MESSENGER [7]. For in situ mid-IR specular reflectance analyses, a Bruker Hyperion 2000 System with a (1000×1000) µm2 sized aperture was used. A Bruker Vertex 70 IR system with a MCT detector was applied for analyses of areas >>1 mm under near vacuum conditions. Raman spectra will be collected with an OceanOptics IDR-Micro-532 spectrometer. Our results show that the micro-FTIR reflectance data of two glassy regions provide a smooth feature that is typical for amorphous materials. Only very weak sharper crystalline bands occur on top of the feature at 10.1-10.2 µm and 10.5-10.6 µm. These bands are probably resulting from crystalline forsterite within a glassy matrix, because the crystalline bands at 10.1 and 10.5 µm are characteristic for nearly pure forsterite [8]. The Christiansen feature is at 8.2 µm. The spectrum of a larger region is basically a 'bulk' spectrum. Achieved under near-vacuum conditions this spectrum displays essentially similar characteristics. References: [1] Maturilli A. (2006) Planet. Space Sci. 54, 1057-1064. [2] Helbert J. and Maturilli A. (2009) Earth Planet. Sci. Lett. 285, 347-354. [3] Benkhoff, J. et al. (2010) Planet. Space Sci. 58, 2-20. [4] Hiesinger H. et al. (2010) Planet. Space Sci. 58, 144-165. [5] Maturilli J. (2008) Planet. Space Sci. 56, 420-425. [6] Vago et al. (2012) Mars Concepts, Houston. [3] Hamilton V.E. (2010) Chem. Erde, 70, 7-33. [7] Charlier B. et al. (2013) Earth Planet. Sci. Lett. 363, 50-60.
MESSENGER View of Mercury's Caloris Basin
2017-12-08
NASA image acquired October 28, 2011 This stunning, and as of yet unnamed, crater lies within the Caloris basin. Its floor provides another example of the beautiful "hollows" found on Mercury and has an etched appearance similar to that found in the crater Tyagaraja. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Happy Little Crater on Mercury
2017-12-08
It looks like even the craters on Mercury have heard of Bob Ross! The central peaks of this complex crater have formed in such a way that it resembles a smiling face. This image is oriented so north is toward the bottom. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
The germanium detector in the gamma-ray spectrometer (GRS) aboard the MESSENGER spacecraft is only the size and weight of a can of peaches but will play a critical role in investigating Mercury, the planet closest to the Sun. The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft travels at about 38 kilometers per second and is named after the scientific goals of the mission. It is the first spacecraft to visit Mercury since 1975. MESSENGER must take an oblique route to approach Mercury so that it does not fly past the planet and fall directly into the Sun. Themore » spacecraft will travel 7.9 billion kilometers, flying by Earth once, Venus twice, and Mercury three times before settling into orbit around this mysterious planet. Of all the terrestrial planets, which include Venus, Earth, and Mars, Mercury is the smallest and the densest; its days are 176 Earth days long, two complete orbits of the planet around the Sun. Temperatures range from a high of 450 C on the Sun side during its long day to a low of -185 C on its night side. By studying this extreme planet, scientists hope to better understand how Earth formed and evolved. The GRS, one of the seven lightweight scientific instruments on MESSENGER, will be used to help scientists determine the abundance of elements in Mercury's crust, including the materials that might be ice at its poles. Livermore engineer Norman Madden led the West Coast team effort to design and build the GRS in a collaboration led by Johns Hopkins University Applied Physics Laboratory (JHUAPL). The team included Lawrence Berkeley and Lawrence Livermore national laboratories as well as University of California at Berkeley (UCB) Space Sciences Laboratory (SSL). The JHUAPL MESSENGER project is a National Aeronautics and Space Administration (NASA) Discovery Mission. Because the detector needs to operate at very low temperatures and MESSENGER is close to the Sun, the thermal design to protect the detector was critical. The detector is kept cool by an electromechanical cryocooler attached to the outside of the device. However, the cryocooler has a limited cooling capacity because of size and weight constraints. To ensure the cryocooler would sufficiently cool the detector, Livermore scientists used SINDA/FLUINT, a commercial program originally developed by NASA, to model the thermal environments that the spectrometer was expected to encounter--during liftoff, in space while en route to Mercury, and in orbit around the planet. Using the data from the model, scientists from Lawrence Livermore and Lawrence Berkeley developed a design that included three closely spaced and highly reflective thermal shields held in place with DuPont KEVLAR{reg_sign} fiber.« less
Lunar and Planetary Science XXXV: Moon and Mercury
NASA Technical Reports Server (NTRS)
2004-01-01
The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.
Mercury: Photomosaic of the Shakespeare Quadrangle (Northern Half) H-3
NASA Technical Reports Server (NTRS)
1974-01-01
This computer generated photomosaic from Mariner 10 is of the northern half of Mercury's Shakespeare Quadrangle, named for the ancient Shakespeare crater located on the lower edge to the left of center. This portion of the quadrangle covers the geographic region from 45 to 70 degrees north latitude and from 90 to 180 degrees longitude. The photomosaic was produced using computer techniques and software developed in the Image Processing Laboratory of NASA's Jet Propulsion Laboratory. The pictures have been high-pass filtered and contrast enhanced to accentuate surface detail, and geometrically transformed into a Lambert conformal projection.
The illuminated surface observed by Mariner 10 as it first approached Mercury is dominated by craters and basins. In marked contrast to this view, the surface photographed after the flyby exhibited features totally different, including large basins and extensive relatively smooth areas with few craters. The most striking feature in this region of the planet is a huge circular basin, 1300 kilometers in diameter, that was undoubtedly produced from a tremendous impact comparable to the event that formed the Imbrium basin on the Moon. This prominent Mercurian structure in the Shakespeare and Tolstoj quadrangles (lower left corner of this image), named Caloris Planitia, is filled with material forming a smooth surface or plain that appears similar in many respects to the lunar maria.The above material was taken from the following publication... Davies, M. E., S. E. Dwornik, D. E. Gault, and R. G. Strom, Atlas of Mercury, NASA SP-423 (1978).The Mariner 10 mission was managed by the Jet Propulsion Laboratory for NASA's Office of Space Science.Comparison of MESSENGER Optical Images with Thermal and Radar Data for the Surface of MERCURY
NASA Astrophysics Data System (ADS)
Blewett, D. T.; Coman, E. I.; Chabot, N. L.; Izenberg, N. R.; Harmon, J. K.; Neish, C.
2010-12-01
Images collected by the MESSENGER spacecraft during its three Mercury flybys cover nearly the entire surface of the planet that was not imaged by Mariner 10. The MESSENGER data now allow us to observe features at optical wavelengths that were previously known only through remote sensing in other portions of the electromagnetic spectrum. For example, the Mariner 10 infrared (IR) radiometer made measurements along a track on the night side of Mercury during the spacecraft's first encounter in 1974. Analysis of the IR radiometer data identified several thermal anomalies that we have correlated to craters with extensive rays or ejecta deposits, including Xiao Zhao and Eminescu. The thermal properties are consistent with a greater exposure of bare rock (exposed in steep walls or as boulders and cobbles) in and around these craters compared with the lower-thermal-inertia, finer-grained regolith of the surrounding older surface. The portion of Mercury not viewed by Mariner 10 has also been imaged by Earth-based radar. The radar backscatter gives information on the wavelength-scale surface roughness. Arecibo S-band (12.6-cm wavelength) radar observations have produced images of Eminescu and also revealed two spectacular rayed craters (Debussy and Hokusai) that have since been imaged by MESSENGER. We are examining radial profiles for these craters, extracted from both the radar images and MESSENGER narrow-angle camera mosaics, that extend from the crater center outwards to a distance of several crater diameters. Comparison of optical and radar profiles for the craters, as well as similar profiles for lunar craters, can provide insight into ejecta deposition, the effect of surface gravity on the cratering process, and space weathering.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare to attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers attach an overhead crane to NASA’s MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Doors are open on the air-conditioned transportation van that carried NASA’s MESSENGER spacecraft from NASA’s Goddard Space Flight Center in Greenbelt, Md., to the Astrotech Space Operations processing facilities near KSC. After offloading, MESSENGER - short for MErcury Surface, Space ENvironment, GEochemistry and Ranging - will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Control Algorithms Charge Batteries Faster
NASA Technical Reports Server (NTRS)
2012-01-01
On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.
The Mercury exosphere after MESSENGER
NASA Astrophysics Data System (ADS)
Killen, Rosemary; McClintock, William; Vervack, Ronald; Merkel, Aimee; Burger, Matthew; Cassidy, Timothy; Sarantos, Menelaos
2016-07-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft observed sodium, calcium and magnesium emisison in Mercury's exosphere on a near-daily basis for >16 Mercury years. The MASCS observations showed that calcium in Mercury's exosphere is persistently concentrated in the dawn hemisphere and is of extreme temperature (>50,000 K). The column abundance varies seasonally, and is extremely repeatable each Mercury year. In addition, the calcium exhibits a persistent maximum not at perihelion but 20° after perihelion, an enhancement that was shown to be coincident with the probable intersection of Mercury's orbit with a dust stream originating at Comet Encke. Any mechanism producing the Mercurian Ca exosphere must explain the facts that the Ca is extremely hot, that it is seen almost exclusively on the dawnside of the planet, and that its content varies seasonally, not sporadically. Energization of the Ca atoms was suggested to originate through dissociation of Ca-bearing molecules ejected by meteoritic impacts. Magnesium was also observed on a daily basis throughout the MESSENGER orbital phase. Mg has its own spatial and temporal pattern, peaking at mid-morning instead of early morning like Ca, and exhibiting a warm thermal profile, about 5000 K, unlike the extreme temperature of Ca which is an order of magnitude hotter. Although Mercury's sodium exosphere has been observed from the ground for many decades, the MASCS observations showed that, like calcium, the sodium exosphere is dominated by seasonal variations, not sporadic variations. However a conundrum exists as to why ground-based observations show highly variable high-latitude variations that eluded the MASCS. The origin of a persistent south polar enhancement has not been explained. The more volatile element, Na, is again colder, about 1200 K, but not thermally accommodated to the surface temperature. A combination of source processes is surmised for this element, dominated by photon-stimulated desorption. Sporadic and high latitude enhancements persistently seen from the Earth have eluded measurement from orbit, possibly due to the geometry of the observations. One discovery still not fully explained is the observation that ionized calcium is almost as dense in the anti-sunward near tail as neutral calcium. The reason is most probably due to magnetospheric convection, but further work is needed to confirm this. Other weakly emitting species such as aluminum were observed sporadically, but most often near the dawn terminator.
Mission provides new findings about Mercury
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-06-01
Mercury once was considered by even some planetary scientists as “an example, to use a phrase coined by a very famous scientist, as ‘one of the burnt-out cinders of the solar system.’ And it is anything but that,” Sean Solomon, who is principal investigator of NASA's Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft, said at a 16 June briefing at NASA headquarters in Washington, D. C. Scientists at the briefing announced significant new findings about the planet's chemical composition, topography, magnetic field, and other features. MESSENGER has now logged more than 1 Mercurian year (about 88 Earth days) as the first satellite in orbit around the closest planet to the Sun, and new understandings are being gleaned from the spacecraft's imaging system, which has already taken more than 20,000 images of Mercury. In addition, the laser altimeter has operated more than 2 million times from orbit thus far, and other instruments are also gathering extensive data about the planet.
2017-12-08
This striking image highlights Petipa crater, which was recently named after Marius Petipa, a French ballet dancer, teacher, and choreographer. The rays eminating from Petipa indicate that it is a relatively fresh crater; over time, these rays will fade as they are subjected to space weathering. North is towards the top of this image. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Poh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei-Jie; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W.
2017-08-01
We analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury's cross-tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of ≈3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawn-dusk current sheet asymmetries. We also report the direct measurement of Mercury's substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be ≈11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be ≈1.2 S, which is similar to earlier results derived from modeling of Mercury's Region 1 field-aligned currents. Hence, Mercury's regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury's highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by field-aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury's duskside current sheet provide explanation for cross-tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be ≈11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and field-aligned currents driven by reconnection-related fast plasma flow.
Mpo - the Bepicolombo Mercury Planetary Orbiter.
NASA Astrophysics Data System (ADS)
Benkhoff, J.
2008-09-01
Introduction: BepiColombo is an interdisciplinary mission to explore the planet Mercury through a partnership between ESA and Japan's Aerospace Exploration Agency (JAXA). From their dedicated orbits two spacecrafts, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be studying the planet and its environment Both orbiter will be launched together on an ARIANE 5. The launch is foreseen for Summer 2014 with arrival in Summer 2020. Solar electric propulsion will be used for the journey to Mercury. In November 2004, the BepiColombo scientific payload has been officially approved. Payload of BepiColombo: The MPO scientific payload comprises eleven instruments/instrument packages; the MMO scientific payload consists of five instruments/instrument packages. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Major effort was put into optimizing the scientific return by defining the payload complement such that individual measurements can be interrelated and complement each other. A detailed overview of the status of BepiColombo will be given with special emphasis on the MPO and its payload complement. BepiColombo factsheet BepiColombo is Europe's first mission to Mercury, the innermost planet of the Solar System, and ESA's first science mission in collaboration with Japan. A satellite 'duo' - consisting of an orbiter for planetary investigation and one for magnetospheric studies - Bepi- Colombo will reach Mercury after a six-year journey towards the inner Solar System, to make the most extensive and detailed study of the planet ever performed so far. BepiColombo will also contribute to the understanding of the history and formation of the inner planets of the Solar System in general, including the Earth. The 'Mercury Planetary Orbiter' (MPO), under ESA's responsibility, will study the surface and the internal composition of the planet at different wavelengths and with different techniques. The Mercury Magnetospheric Orbiter (MMO), under the responsibility of the Japan Aerospace Exploration Agency (ISAS/JAXA), will study the magnetosphere, that is the region of space around the planet that is dominated by its magnetic field. Objectives BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In particular, the mission objectives are: • markedly higher than that of all other terrestrial planets, Moon included • to understand if the core of Mercury is liquid or solid, and if the planet is still tectonically active today • to understand why such a small planet possesses an intrinsic magnetic field, while Venus, Mars and the Moon do not have any, and investigate if Mercury's magnetised environment is characterised by features reminiscent of the aurorae, radiation belts and magnetospheric substorms observed at Earth • to understand why spectroscopic observations not reveal the presence of any iron, while this element is supposedly the major constituent of the planet • to investigate if the permanently shadowed craters of the polar regions contain sulphur or water ice • to observe the yet unseen hemisphere of Mercury • to study the production mechanisms of the exosphere and to understand the interaction between planetary magnetic field and the solar wind in the absence of a ionosphere • to obtain new clues about the composition of the primordial solar nebula and about the formation of the solar system • to test general relativity with improved accuracy, taking advantage of the proximity of the Sun Since and considering that the advance Mercury's perihelion was explained in terms of relativistic spacetime curvature. MPO Scientific Instruments BepiColombo Mercury Planetary Orbiter's and Mercury Magnetospheric Orbiter's instruments were selected in November 2004, by ESA and JAXA respectively. The MPO will carry a highly sophisticated suit of eleven scientific instruments, ten of which will be provided by Principal Investigators through national funding by ESA Member States and one from Russia: BepiColombo Laser Altimeter (BELA) will characterise the topography and surface morphology of Mercury. It will also provide a digital terrain model that, compared with the data from the MORE instrument, will allow to obtain information about the internal structure, the geology, the tectonics, and the age of the planet's surface. The objectives of the Italian Spring Accelerometer (ISA) are strongly connected with those of the MORE experiment. Together the experiments can give information on Mercury's interior structure as well as test Einstein's theory of the General Relativity. Mercury Magnetometer (MPO-MAG) will provide measurements that will lead to the detailed description of Mercury's planetary magnetic field and its source, to better understand the origin, evolution and current state of the planetary interior , as well as the interaction between Mercury's magnetosphere with the planet's itself and with the solar wind. Mercury Thermal Infrared Spectrometer (MERTIS) will provide detailed information about the mineralogical composition of Mercury's surface layer with a high spectral resolution, crucial for selecting the valid model for origin and evolution of the planet. Mercury Gamma ray and Neutron Spectrometer (MGNS) will determine the elemental compositions of the surface and subsurface of Mercury, and will determine the regional distribution of volatile depositions on the polar areas which are permanently shadowed from the Sun. Mercury Imaging X-ray Spectrometer (MIXS) will use the `X-ray fluorescence' analysis method to produce a global map of the surface atomic composition at high spatial resolution. This technique has been also used by the D-CIXS instrument on ESA's SMART-1 mission to the Moon. Mercury Orbiter Radio science Experiment (MORE) will help to determine the gravity field of Mercury as well as the size and physical state of its core. It will provide crucial experimental constraints to models of the planet's internal structure and test theories of gravity with unprecedented accuracy. The Probing of Hermean Exosphere by Ultraviolet Spectroscopy (PHEBUS) spectrometer is devoted to the characterisation of Mercury's exosphere composition and dynamics. It will also search for surface ice layers in permanently shadowed regions of high-latitude craters. Search for Exosphere Refilling and Emitted Neutral Abundances (Neutral and ionised particle analyser) ( SERENA) will study the gaseaous interaction between surface, exosphere, magnetosphere and solar wind. Spectrometers and Imagers for MPO Bepi- Colombo Integrated Observatory System (SYMBIO-SYS) will examine (also in stereo and colour) the surface geology, volcanism, global tectonics, surface age and composition, and geophysics. Solar Intensity X-ray Spectrometer (SIXS will perform measurements of X-rays and particles of solar origin at high time resolution and a very wide field of view.
NASA Technical Reports Server (NTRS)
Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.
2017-01-01
With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition (e.g., Evans et al. 2012; Nittler et al. 201 l; Peplowski et al. 2012; Weider et al. 2012). The high Sand low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3- 7 log units below the Iron-Wiistite (Fe-FeO) oxygen buffer (McCubbin et al. 2012; Zolotov et al. 2013), several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars (Herd 2008; Sharp, McCubbin, and Shearer 2013; Wadhwa 2008). Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). The goal of this study is to conduct experiments at high pressure and temperature conditions to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity.
The Plasma Environment at Mercury
NASA Technical Reports Server (NTRS)
Raines, James M.; Gershman, Daniel J.; Zurbuchen, Thomas H.; Gloeckler, George; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Krimigis, Stamatios M.; Killen, Rosemary M.; Sarantos, Menalos;
2011-01-01
Mercury is the least explored terrestrial planet, and the one subjected to the highest flux of solar radiation in the heliosphere. Its highly dynamic, miniature magnetosphere contains ions from the exosphere and solar wind, and at times may allow solar wind ions to directly impact the planet's surface. Together these features create a plasma environment that shares many features with, but is nonetheless very different from, that of Earth. The first in situ measurements of plasma ions in the Mercury space environment were made only recently, by the Fast Imaging Plasma Spectrometer (FIPS) during the MESSENGER spacecraft's three flybys of the planet in 2008-2009 as the probe was en route to insertion into orbit about Mercury earlier this year. Here. we present analysis of flyby and early orbital mission data with novel techniques that address the particular challenges inherent in these measurements. First. spacecraft structures and sensor orientation limit the FIPS field of view and allow only partial sampling of velocity distribution functions. We use a software model of FIPS sampling in velocity space to explore these effects and recover bulk parameters under certain assumptions. Second, the low densities found in the Mercury magnetosphere result in a relatively low signal-to-noise ratio for many ions. To address this issue, we apply a kernel density spread function to guide removal of background counts according to a background-signature probability map. We then assign individual counts to particular ion species with a time-of-flight forward model, taking into account energy losses in the carbon foil and other physical behavior of ions within the instrument. Using these methods, we have derived bulk plasma properties and heavy ion composition and evaluated them in the context of the Mercury magnetosphere.
Space Flight: The First 30 Years
NASA Technical Reports Server (NTRS)
1991-01-01
A history of space flight from Project Mercury to the Space Shuttle is told from the perspective of NASA flight programs. Details are given on Mercury missions, Gemini missions, Apollo missions, Skylab missions, the Apollo-Soyuz Test Project, and the Space Shuttle missions.
Examining the Possibility of Carbon as a Light Element in the Core of Mercury
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen; McCubbin, Francis M.; Turner, Amber; Ross, D. Kent
2017-01-01
Results from the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft have shown elevated abundances of C on the surface of Mercury. Peplowski et al. used GRS data from MESSENGER to show an average northern hemisphere abundance of C on the planet of 0 to 4.1 wt% C at the three-sigma detection limit. Confirmation of C on the planet prompts many questions regarding the role of C during the differentiation and evolution of Mercury. The elevated abundances of both S and C on Mercury's surface, coupled with the low abundances of iron, suggest that the oxygen fugacity of the planet is several log10 units below the Iron-Wustite buffer. These observations spark questions about the bulk composition of Mercury's core. This experimental study seeks to understand the impact of C as a light element on potential mercurian core compositions. In order to address this question, experiments were conducted at 1 GPa and a variety of temperatures (700 - 1500 C) on metal compositions ranging from Si5Fe95 to Si22Fe78, possibly representative of the mercurian core. All starting metals were completely enclosed in a graphite capsule to ensure C saturation at a given set of run conditions. All elements, including C, were analyzed using electron probe microanalysis. Precautions were taken to ensure accurate measurements of C with this technique including using the LDE2 crystal, the cold finger on the microprobe to minimize contamination and increase the vacuum, and an instrument with no oil based pumps. Based on the superliquidus experimental results in the present study, as Fe-rich cores become more Si-rich, the C content of that core composition will decrease. Furthermore, although C concentration at graphite saturation (CCGS) varies from a liquid to a solid, temperature does not seem to play a substantial role in CCGS, at least at 1 GPa.
Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades
Reddy, M.M.; Aiken, G.R.
2001-01-01
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.
A FRET system built on quartz plate as a ratiometric fluorescence sensor for mercury ions in water.
Liu, Baoyu; Zeng, Fang; Liu, Yan; Wu, Shuizhu
2012-04-07
Due to the hazardous nature of mercury ions, the development of a cost effective, sensitive and field-portable sensor is of high significance for both industry and civilian use. In this work, a FRET-based ratiometric sensor for detecting mercury ions in water was fabricated by depositing a multilayered silica structure on a quartz plate. For the preparation of the film-based sensor, a silica support layer was first deposited on the quartz plate by using the sol-gel spin-coating procedure, and three ultrathin functional layers (donor, spacer and receptor) were then deposited on the support layer by dip-coating in a stepwise manner in toluene solution. As the film-based sensor was placed into an aqueous solution of Hg(2+), the non-fluorescent receptor (a spirolactam rhodamine derivative) on the film surface could form a complex with the mercury ion and act as the acceptor of the energy transfer. Upon excitation, the donor (a nitrobenzoxadiazolyl derivative, NBD) could transfer its excited energy from the donor layer to the acceptor on the film surface via the 'through space' energy transfer process, thus realizing the FRET-based ratiometric sensing for mercury ions. The sensor can selectively detect Hg(2+) in water with the detection limit of 1 μM. This solid film sensor is capable of being easily-portable and visualized detection. This strategy may offer new approaches for constructing other FRET-based solid-state devices.
Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry
NASA Technical Reports Server (NTRS)
Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.;
2014-01-01
Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.
MESSENGER at Mercury: Early Orbital Operations
NASA Technical Reports Server (NTRS)
McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.;
2013-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90% coverage and at least 250 m average resolution, a global color image mosaic at better than 90% coverage and at least 1 km average resolution, and global stereo imaging at better than 80% coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20 deg. S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.
MESSENGER at Mercury: Early Orbital Operations
NASA Technical Reports Server (NTRS)
McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.;
2012-01-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA's Discovery Program, was inserted into orbit about the planet Mercury in March 2011. MESSENGER's three flybys of Mercury in 2008-2009 marked the first spacecraft visits to the innermost planet since the Mariner 10 flybys in 1974-1975. The unprecedented orbital operations are yielding new insights into the nature and evolution of Mercury. The scientific questions that frame the MESSENGER mission led to the mission measurement objectives to be achieved by the seven payload instruments and the radio science experiment. Interweaving the full set of required orbital observations in a manner that maximizes the opportunity to satisfy all mission objectives and yet meet stringent spacecraft pointing and thermal constraints was a complex optimization problem that was solved with a software tool that simulates science observations and tracks progress toward meeting each objective. The final orbital observation plan, the outcome of that optimization process, meets all mission objectives. MESSENGER's Mercury Dual Imaging System is acquiring a global monochromatic image mosaic at better than 90%coverage and at least 250 m average resolution, a global color image mosaic at better than 90%coverage and at least 1 km average resolution, and global stereo imaging at better than 80%coverage and at least 250 m average resolution. Higher-resolution images are also being acquired of targeted areas. The elemental remote sensing instruments, including the Gamma-Ray and Neutron Spectrometer and the X-Ray Spectrometer, are being operated nearly continuously and will establish the average surface abundances of most major elements. The Visible and Infrared Spectrograph channel of MESSENGER's Mercury Atmospheric and Surface Composition Spectrometer is acquiring a global map of spectral reflectance from 300 to 1450 nm wavelength at a range of incidence and emission angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 201S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.
2012-02-17
Project Mercury: With Project Mercury, the United States gained its first experience in conducting human space missions that provided scientific and engineering knowledge of astronauts in space. Alan Shepard made history May 5, 1961, as America's first man in space. Less than a year later, John Glenn made the nation’s first orbital flight on Feb. 20, 1962. After two suborbital and three orbital missions, Project Mercury ended with a 22-orbit spaceflight on May 16, 1963. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
2012-02-17
Project Mercury: With Project Mercury, the United States gained its first experience in conducting human space missions that provided scientific and engineering knowledge of astronauts in space. Alan Shepard made history May 5, 1961, as America's first man in space. Less than a year later, John Glenn made the nation’s first orbital flight on Feb. 20, 1962. After two suborbital and three orbital missions, Project Mercury ended with a 22-orbit spaceflight on May 16, 1963. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
Mercury adsorption to gold nanoparticle and thin film surfaces
NASA Astrophysics Data System (ADS)
Morris, Todd Ashley
Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.
Integrity Monitoring of Mercury Discharge Lamps
NASA Technical Reports Server (NTRS)
Tjoelker, Robert L.
2010-01-01
Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN or in space flight, this warning provides notice that a failure may be imminent, and for operators or control algorithm to take action.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - A C-band radar antenna stands ready to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is in place to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
2004-07-31
KENNEDY SPACE CENTER, FLA. - An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASA’s initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band (left) and an X-band radar antenna are positioned to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band (left) and a C-band radar antenna are prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. The antennas are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A C-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and an X-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. An X-band radar antenna is prepared to observe the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) launch. This antenna and a C-band radar antenna are on loan to KSC from the USNS Pathfinder, a U.S. Navy instrumentation ship. They have been installed at site north of Haulover Canal where the National Center for Atmospheric Research previously had a radar for thunderstorm research. NASA is evaluating the pair of radars for their ability to observe possible debris coming from the Space Shuttle during launch, part of NASAs initiative to return the Space Shuttle to flight.
Anyone Else Think This Looks Like the Cookie Monster?
2017-12-08
NASA image acquired August 29, 2012 Ok, so maybe it's just me. But the superposition of younger craters on older craters (in this case two smaller craters upon the rim of an older crater) can result in landforms that appear to resemble more familiar shapes to human eyes. More generally, the Law of Superposition allows scientists to determine which surface features pre- and postdate others, leading to a better understanding of the geological history of different regions of Mercury's surface. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Go here to read more about the MESSENGER mission: www.nasa.gov/mission_pages/messenger/main/index.html Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.
2017-01-01
With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (lvtESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wustite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850 C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approx. 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.
NASA Technical Reports Server (NTRS)
Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.
2017-01-01
With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high Sand low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wtistite (lW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at I GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multianvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-Si02 buffer, which is approximately 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi206) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.
NASA Astrophysics Data System (ADS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Nittler, Larry R.; Peplowski, Patrick N.; Weider, Shoshana Z.; Frank, Elizabeth A.; McCoy, Timothy J.
2017-03-01
Orbital data from the MESSENGER mission to Mercury have facilitated a new view of the planet's structure, chemical makeup, and diverse surface, and have confirmed Mercury's status as a geochemical endmember among the terrestrial planets. In this work, the most recent results from MESSENGER's X-Ray Spectrometer, Gamma-Ray Spectrometer, and Neutron Spectrometer have been used to identify nine distinct geochemical regions on Mercury. Using a variation on the classical CIPW normative mineralogy calculation, elemental composition data is used to constrain the potential mineralogy of Mercury's surface; the calculated silicate mineralogy is dominated by plagioclase, pyroxene (both orthopyroxene and clinopyroxene), and olivine, with lesser amounts of quartz. The range in surface compositions indicate that the rocks on the surface of Mercury are diverse and vary from komatiitic to boninitic. The high abundance of alkalis on Mercury's surface results in several of the nine regions being classified as alkali-rich komatiites and/or boninites. In addition, Mercury's surface terranes span a wide range of SiO2 values that encompass crustal compositions that are more silica-rich than geochemical terranes on the Moon, Mars, and Vesta, but the range is similar to that of Earth. Although the composition of Mercury's surface appears to be chemically evolved, the high SiO2 content is a primitive feature and a direct result of the planet's low oxygen fugacity.
Exploration of Mercury: The MESSENGER Mission
NASA Astrophysics Data System (ADS)
McNutt, Ralph
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 under NASA’s Discovery Program, has been collecting orbital observations of Mercury since March 2011. Elemental remote sensing of Mercury’s surface indicates that the moderately volatile elements Na, K, and S are not depleted relative to other terrestrial planets. Orbital images document widespread evidence for ancient volcanic activity ranging from effusive to explosive eruptions. High-resolution images have revealed the presence of irregular rimless depressions or “hollows” likely produced by the loss to diurnal heating or sputtering of some volatile-rich material. Polar deposits in permanently shadowed high-latitude regions are dominated by water ice on the basis of neutron spectrometry, surface reflectance, and thermal modeling with measured topography; in most locations the ice is covered by 10-30 cm of anomalously dark volatile material postulated to consist of complex organic compounds. The tectonic history of Mercury is dominated by greater planetary contraction than previously recognized; long-wavelength changes in topography postdated the emplacement of large expanses of volcanic plains. Gravity and topography measurements indicate that mascons and crustal thinning are associated with some impact basins. Mercury’s internal magnetic field is that of a dipole offset from the planet’s center by ~0.2 Mercury radii, a geometry difficult to reconcile with existing dynamo models. Magnetospheric measurements have revealed a highly time-variable and spatially structured particle environment. Despite complex feedbacks among the exosphere, magnetosphere, and surface, the large-scale structure of the exosphere - dominated by Na, Ca, and Mg - shows seasonal variations in general agreement with those expected from variations in solar flux with Mercury true anomaly but little variation with changing solar conditions. Energetic electron events are regular features of Mercury’s magnetosphere, but the causative acceleration mechanism remains a topic of study. MESSENGER is now in a second extended mission. Solar gravitational forces reduce the periapsis altitude between successive orbits. Orbit-correction maneuvers will yield four extended intervals when the periapsis altitude will be 15 to 25 km, and once the remaining propellant is consumed the spacecraft will impact the surface in late March 2015. During this low-altitude campaign, the unprecedented high-resolution views of the surface will help elucidate many of the processes that have shaped Mercury’s surface. MESSENGER’s low-altitude observations will also illuminate the consequences of precipitating ions and energetic electrons at Mercury, the response of the exosphere and magnetosphere to solar wind conditions during the declining phase of the solar cycle, and short-wavelength components of the internal magnetic and gravity fields and their implications for crustal magmatism and the mechanical evolution of Mercury’s lithosphere.
NASA Technical Reports Server (NTRS)
Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.
2017-01-01
Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.
Baker, Daniel N; Dewey, Ryan M; Lawrence, David J; Goldsten, John O; Peplowski, Patrick N; Korth, Haje; Slavin, James A; Krimigis, Stamatios M; Anderson, Brian J; Ho, George C; McNutt, Ralph L; Raines, Jim M; Schriver, David; Solomon, Sean C
2016-03-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X-Ray Spectrometer and Gamma-Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near-tail region of Mercury's magnetosphere and are subsequently "injected" onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form "quasi-trapped" populations.
Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02
Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.
2003-01-01
Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.
Jung, Raae; Ahn, Young Sang
2017-08-01
This study aimed to determine mercury concentrations in tree rings and surface soils at distances of 4, 26 and 40 km from a fertilizer plant located in Yeosu City, Korea. Mercury concentrations in all tree rings were low prior to the establishment of the plant in 1977 and became elevated thereafter. The highest average mercury concentration in the tree rings was 11.96 ng g -1 at the Yeosu site located nearest to the plant, with the lowest average mercury concentration of 4.45 ng g -1 at the Suncheon site furthest away from the plant. In addition, the highest mercury content in the surface soil was 108.51 ng cm -3 at the Yeosu site, whereas the lowest mercury content in the surface soil was 31.47 ng cm -3 at the Suncheon site. The mercury levels decreased gradually with increasing distance from the plant.
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
2003-07-22
KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.
NASA Astrophysics Data System (ADS)
He, Ping; Peng, Xiaolong; Zhang, Zhongzhi; Wu, Jiang; Chen, Naichao; Ren, Jianxing
Copper oxide (CuO) is proved to be a potential adsorbent for elemental mercury in the flue gas emitted from coal-fired power plant. However, the O-terminated CuO(110) surface has relatively week adsorption capacity for Hg. In this work, the doped method is applied to enhance the mercury adsorption capacity of O-terminated CuO(110). Mn, Si, Ti, Al and Zn are selected as the doped atom. It is found that only Zn-doped CuO (110) surfaces have the higher adsorption energy than the pure O-terminated CuO(110) surface. The mercury adsorption capacity is a complex issue, which depends on a combination of oxygen and doped element. The results suggest that the lower electropositive doped element is favorable for the improvement of mercury adsorption capacity. However, the lower electronegativity of oxygen atoms does not facilitate the mercury capture, which is different from the organic material. Cu and doped metal element, rather than oxygen atom, mainly determine mercury adsorption capacity of O-terminated CuO(110) surface, which leads to the lower adsorption capacity of the O-terminated CuO(110) surface than the Cu-terminated CuO(110) surface. The conclusions can also offer a valuable reference for the other metal oxide regarding mercury capture.
Modeling dynamic exchange of gaseous elemental mercury at polar sunrise.
Dastoor, Ashu P; Davignon, Didier; Theys, Nicolas; Van Roozendael, Michel; Steffen, Alexandra; Ariya, Parisa A
2008-07-15
At polar sunrise, gaseous elemental mercury (GEM) undergoes an exceptional dynamic exchange in the air and at the snow surface during which GEM can be rapidly removed from the atmosphere (the so-called atmospheric mercury depletion events (AMDEs)) as well as re-emitted from the snow within a few hours to days in the Polar Regions. Although high concentrations of total mercury in snow following AMDEs is well documented, there is very little data available on the redox transformation processes of mercury in the snow and the fluxes of mercury at the air/snow interface. Therefore, the net gain of mercury in the Polar Regions as a result of AMDEs is still an open question. We developed a new version of the global mercury model, GRAHM, which includes for the first time bidirectional surface exchange of GEM in Polar Regions in spring and summer by developing schemes for mercury halogen oxidation, deposition, and re-emission. Also for the first time, GOME satellite data-derived boundary layer concentrations of BrO have been used in a global mercury model for representation of halogen mercury chemistry. Comparison of model simulated and measured atmospheric concentrations of GEM at Alert, Canada, for 3 years (2002-2004) shows the model's capability in simulating the rapid cycling of mercury during and after AMDEs. Brooks et al. (1) measured mercury deposition, reemission, and net surface gain fluxes of mercury at Barrow, AK, during an intensive measurement campaign for a 2 week period in spring (March 25 to April 7, 2003). They reported 1.7, 1.0 +/- 0.2, and 0.7 +/- 0.2 microg m(-2) deposition, re-emission, and net surface gain, respectively. Using the optimal configuration of the model, we estimated 1.8 microg m(-2) deposition, 1.0 microg m(-2) re-emission, and 0.8 microg m(-2) net surface gain of mercury for the same time period at Barrow. The estimated net annual accumulation of mercury within the Arctic Circle north of 66.5 degrees is approximately 174 t with +/-7 t of interannual variability for 2002-2004 using the optimal configuration. We estimated the uncertainty of the model results to the Hg/Br reaction rate coefficient to be approximately 6%. Springtime is clearly demonstrated as the most active period of mercury exchanges and net surface gain (approximately 46% of annual accumulation) in the Arctic.
Sulfur Effect on the Space Weathering of Airless Bodies: Laboratory Simulation
NASA Astrophysics Data System (ADS)
Sasaki, S.; Okazaki, M.; Tanaka, H.; Hiroi, T.
2017-12-01
Space weathering is the main process that should control the change of brightness and color of the surface of airless silicate bodies such and the Moon, Mercury and asteroids. S-type asteroids show more overall depletion and reddening of the spectra, and more weakening of absorption bands than ordinary chondrites. Vapor-deposition through at high-velocity dust impacts as well as implantation of intensive solar wind ions may produce the space weathering rims bearing nano-iron particles (npFe0), responsible for spectral change. Simulation experiments using nanosecond pulse laser successfully produced vapor-deposition type npFe0 to change the optical properties [1]. A small (500m) asteroid Itokawa has a weathered surface, although its surface is rocky (rough terrain) or pebble-rich (smooth terrain). In 2011, HAYABUSA returned the particulate samples from the smooth terrain. The most notable discoveries in Itokawa particles are amorphous space-weathering rims containing npFe0. Sulfur and magnesium abundances suggest the presence of nanophase FeS (and MgS) in addition to npFe0 [2]. The presence of npFeS in asteroidal regolith is compatible with the observation of regolith breccia meteorites. On Mercury, MESSENGER revealed a high sulfur abundance (2wt% on average up to 4wt%), which can account for all of Fe by FeS. Both npFeS and npMgS may play an important role also on the surface of Mercury by lowering albedo. In our laboratory simulation using pulsed laser, spectral changes of olivine samples are facilitated when FeS is mixed (5-10wt%) (Fig.1). Nanophase Fe is confirmed by TEM. The darkening feature is reduced by additional heading at 150C, which would suggest the presence of volatile residue. Mixing of pure sulfur particles showed some, but not significant changes after laser irradiation. We acknowledge A. Miyake and A. Tsuchiyama at Kyoto U. for TEM observation. Ref: [1] S. Sasaki et al.: Nature 410 (2001) 555; [2] T. Noguchi et al.: Science 333 (2011) 1121 Fig. 1. Spectral change after pulse laser irradiation. The vertical axis shows normalized reflectance at 2500 nm-infrared darkening, whereas the horizontal axis shows the spectral slope of reflectance ratio of 1600 nm to 560 nm that would show reddening. Size range of fine FeS is smaller than 45 micron.
The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...
Effects of the Solar Wind Pressure on Mercury's Exosphere: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Travnicek, P. M.; Schriver, D.; Orlando, T. M.; Hellinger, P.
2017-12-01
We study effects of the changed solar wind pressure on the precipitation of hydrogen on the Mercury's surface and on the formation of Mercury's magnetosphere. We carry out a set of global hybrid simulations of the Mercury's magnetosphere with the interplanetary magnetic field oriented in the equatorial plane. We change the solar wind pressure by changing the velocity of injected solar wind plasma (vsw = 2 vA,sw; vsw = 4 vA,sw; vsw = 6 vA,sw). For each of the cases we examine proton and electron precipitation on Mercury's surface and calculate yields of heavy ions released from Mercury's surface via various processes (namely: Photo-Stimulated Desorption, Solar Wind Sputtering, and Electron Stimulated Desorption). We study circulation of the released ions within the Mercury's magnetosphere for the three cases.
SIMBIO-SYS for BepiColombo: status and issues.
NASA Astrophysics Data System (ADS)
Flamini, E.; Capaccioni, F.; Cremonese, G.; Palumbo, P.; Formaro, R.; Mugnuolo, R.; Debei, S.; Ficai Veltroni, I.; Dami, M.; Tommasi, L.; SIMBIO-SYS Team
The SIMBIO-SYS (Spectrometer and Imaging for MPO BepiColombo Integrated Observatory SYStem) is a complex instrument suite part of the scientific payload of the Mercury Planetary Orbiter for the BepiColombo mission, the last of the cornerstone missions of the European Space Agency (ESA) Horizon+ science program. The BepiColombo mission is compose by two scientific satellites on, Mercury Magnetic Orbiter-MMO, realized by the Japanese Space Agency JAXA, devoted to the study of the planet environment and the other, the Mercury Planetary Orbiter realized by ESA, devoted to the detailed study of the Hermean surface and interior. The SIMBIOSYS instrument will provide all the science imaging capability of the Bepicolombo MPO spacecraft. It consists of three channels: the STereo imaging Channel (STC), with broad spectral band in the 400-950 nm range and medium spatial resolution (up to 50 m/px), that will provide Digital Terrain Model of the entire surface of the planet with an accuracy better than 80 m; the High Resolution Imaging Channel HRIC), with broad spectral bands in the 400-900 nm range and high spatial resolution (up to 5 m/px), that will provide high resolution images of about 20% of the surface, and the Visible and near-Infrared Hyperspectral Imaging channel (VIHI), with high spectral resolution (up to 6 nm) in the 400-2000 nm range and spatial resolution up to 100 m/px, it will provide the global covergae at 400 m/px with the spectral information. SIMBIO-SYS will provide unprecedented high-resolution images, the Digital Terrain Model of the entire surface, and the surface composition in wide spectral range, at resolutions and coverage higher than the MESSENGER mission with a full co-alignememt of the three channels. The main scientific objectives can be summarized as follows: Definition of the impact flux in the inner Solar System: based on the impact crater population records Understanding of the accretional model of an end member of the Solar System: based on the type and distribution of mineral species Reconstruction of the surface geology and stratigraphic history: based on the combination of stereo and high- resolution imaging along with compositional information coming from the spectrometer Relative surface age by impact craters population density and distribution: based on the global imaging including the high-resolution mode Surface degradation processes and global resurfacing: derived from the erosional status of the impact crater and ejecta Identification of volcanic landforms and style: using the morphological and compositional information Crustal dynamics and mechanical properties of the lithosphere: based on the identification and classification of tectonic structures from visible images and detailed DTM Surface composition and crustal differentiation: based on the identification and distribution of mineral species as seen by the NIR hyperspectral imager Soil maturity and alteration processes: based on the measure of the spectral slope derived by the hyperspectral imager and the colour capabilities of the stereo camera Determination of moment of inertia of the planet: the high-resolution imaging channel as landmark pairs of surface features that can be observed on the periside as support for the libration experiment Surface-Atmosphere interaction processes and origin of the exosphere: knowledge of the surface composition is also crucial to unambiguously identify the source minerals for each of the constituents of the Mercury.s exosphere The instrument has been realized by Selex-ES under the contract and management of the Italian Space Agency (ASI) that have signed an MoU with CNES for the development of VIHI Proximity Electronics, the Main Electronics, and the instrument final calibration . All the realization and calibration has been carried on under the scientific supervision of the SIMBIO-SYS science team SIMBIOSYS has been delivered to ESA on April 2015 for the final integration on the BepiColombo MPO spacecraft.
Circular polarization of light by planet Mercury and enantiomorphism of its surface minerals.
Meierhenrich, Uwe J; Thiemann, Wolfram H P; Barbier, Bernard; Brack, André; Alcaraz, Christian; Nahon, Laurent; Wolstencroft, Ray
2002-04-01
Different mechanisms for the generation of circular polarization by the surface of planets and satellites are described. The observed values for Venus, the Moon, Mars, and Jupiter obtained by photo-polarimetric measurements with Earth based telescopes, showed accordance with theory. However, for planet Mercury asymmetric parameters in the circular polarization were measured that do not fit with calculations. For BepiColombo, the ESA cornerstone mission 5 to Mercury, we propose to investigate this phenomenon using a concept which includes two instruments. The first instrument is a high-resolution optical polarimeter, capable to determine and map the circular polarization by remote scanning of Mercury's surface from the Mercury Planetary Orbiter MPO. The second instrument is an in situ sensor for the detection of the enantiomorphism of surface crystals and minerals, proposed to be included in the Mercury Lander MSE.
Smooth Plains in Mercury's North
2017-12-08
NASA acquired: March 29, 2011 As the MESSENGER spacecraft passed low over Mercury's north polar region, MDIS used its pivot to capture this image, showing terrain that had not been previously seen by spacecraft. The newly imaged surface is located in Mercury's north polar region, to the north of the bright, rayed crater Hokusai. Looking from the bottom of the image toward the top is looking southward, just as MDIS was doing when this image was acquired. This newly seen terrain shows craters with long shadows, as expected at this high northern latitude. Understanding the interiors of the craters in Mercury's polar regions and any ices they may contain is one of the main science goals of the MESSENGER mission. The long shadows also accentuate the topography of the surface, which includes a number of ridges that resemble those seen on the expansive smooth plains imaged during Mercury flyby 3. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook
NASA Astrophysics Data System (ADS)
Christensen, Ulrich R.; Wicht, Johannes
2008-07-01
A substantial part of Mercury's iron core may be stably stratified because the temperature gradient is subadiabatic. A dynamo would operate only in a deep sublayer. We show that such a situation arises for a wide range of values for the heat flow and the sulfur content in the core. In Saturn the upper part of the metallic hydrogen core could be stably stratified because of helium depletion. The magnetic field is unusually weak in the case of Mercury and unusually axisymmetric at Saturn. We study numerical dynamo models in rotating spherical shells with a stable outer region. The control parameters are chosen such that the magnetic Reynolds number is in the range of expected Mercury values. Because of its slow rotation, Mercury may be in a regime where the dipole contribution to the internal magnetic field is weak. Most of our models are in this regime, where the dynamo field consists mainly of rapidly varying higher multipole components. They can hardly pass the stable conducting layer because of the skin effect. The weak low-degree components vary more slowly and control the structure of the field outside the core, whose strength matches the observed field strength at Mercury. In some models the axial dipole dominates at the planet's surface and in others the axial quadrupole is dominant. Differential rotation in the stable layer, representing a thermal wind, is important for attenuating non-axisymmetric components in the exterior field. In some models that we relate to Saturn the axial dipole is intrinsically strong inside the dynamo. The surface field strength is much larger than in the other cases, but the stable layer eliminates non-axisymmetric modes. The Messenger and Bepi Colombo space missions can test our predictions that Mercury's field is large-scaled, fairly axisymmetric, and shows no secular variations on the decadal time scale.
NASA Technical Reports Server (NTRS)
Korth, Haje; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Solomon, Sean C.; McNutt, Ralph L.
2014-01-01
We assess the statistical spatial distribution of plasma in Mercury's magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of approximately 3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury's offset dipole magnetic field.
Zhang, Gang; Wang, Ning; Ai, Jian-Chao; Zhang, Lei; Yang, Jing; Liu, Zi-Qi
2013-02-01
Jiapigou gold mine, located in the upper Songhua River, was once the largest mine in China due to gold output, where gold extraction with algamation was widely applied to extract gold resulting in severe mercury pollution to ambient environmental medium. In order to study the characteristics of mercury exchange flux between soil (snow) and atmosphere under the snow retention and snow melting control, sampling sites were selected in equal distances along the slope which is situated in the typical hill-valley terrain unit. Mercury exchange flux between soil (snow) and atmosphere was determined with the method of dynamic flux chamber and in all sampling sites the atmosphere concentration from 0 to 150 cm near to the earth in the vertical direction was measured. Furthermore, the impact factors including synchronous meteorology, the surface characteristics under the snow retention and snow melting control and the mercury concentration in vertical direction were also investigated. The results are as follows: During the period of snow retention and melting the air mercury tends to gather towards valley bottom along the slope and an obvious deposit tendency process was found from air to the earth's surface under the control of thermal inversion due to the underlying surface of cold source (snow surface). However, during the period of snow melting, mercury exchange flux between the soil and atmosphere on the surface of the earth with the snow being melted demonstrates alternative deposit and release processes. As for the earth with snow covered, the deposit level of mercury exchange flux between soil and atmosphere is lower than that during the period of snow retention. The relationship between mercury exchange flux and impact factors shows that in snow retention there is a remarkable negative linear correlation between mercury exchange flux and air mercury concentration as well as between the former and the air temperature. In addition, in snow melting mercury exchange flux is remarkably negatively linearly correlated to air mercury concentration and positively linearly correlated to air temperature. Furthermore, there is a general positive linear correlation between mercury exchange flux and soil temperature on the surface of earth after snow melting.
2017-12-08
In this dramatic scene, an unnamed crater in Mercury's northern volcanic plains is bathed in darkness as the sun sits low on the horizon. Rising from the floor of the crater is its central peak, a small mountain resulting from the crater's formation. A central peak is a type of crater morphology that lies between "simple" and "peak ring" in the range of crater morphology on Mercury. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, L.; Ramial, K.; Wilkinson, P.
Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less
Surface composition of Mercury from reflectance spectrophotometry
NASA Technical Reports Server (NTRS)
Vilas, Faith
1988-01-01
The controversies surrounding the existing spectra of Mercury are discussed together with the various implications for interpretations of Mercury's surface composition. Special attention is given to the basic procedure used for reducing reflectance spectrophotometry data, the factors that must be accounted for in the reduction of these data, and the methodology for defining the portion of the surface contributing the greatest amount of light to an individual spectrum. The application of these methodologies to Mercury's spectra is presented.
The Role of Carbon in Exotic Crust Formation on Mercury
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; McCubbin, Francis M.
2018-01-01
The terrestrial planets that comprise our inner Solar System, including the Moon, are all rocky bodies that have differentiated into a crust, mantle, and core. Furthermore, all of these bodies have undergone various igneous processes since their time of primary crust formation. These processes have resurfaced each of these bodies, at least in part, resulting in the production of a secondary crust, to which Mercury is no exception. From its first flyby encounter with Mercury on January 14, 2008, the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft collected data on the structure, chemical makeup, and density of the planet among other important characteristics. The X-Ray Spectrometer on board MESSENGER measured elevated abundances of sulfur and low abundances of iron, suggesting the planets oxygen fugacity (fO2) is several log10 units below the Iron-Wustite buffer. Similar to the role of other volatiles (e.g. sulfur) on highly reducing planetary bodies, carbon is expected to behave differently in an oxygen starved environment than it does in an oxygen enriched environment (e.g., Earth).
Gravity, Topography, and Magnetic Field of Mercury from Messenger
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Solomon, Sean C.; Zuber, Maria T.; Phillips, Roger J.; Barnouin, Olivier; Ernst, Carolyn; Goosens, Sander; Hauck, Steven A., II; Head, James W., III; Johnson, Catherine L.;
2012-01-01
On 18 March 2011, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was inserted into a 12-hour, near-polar orbit around Mercury, with an initial periapsis altitude of 200 km, initial periapse latitude of 60 deg N, and apoapsis at approximately 15,200 km altitude in the southern hemisphere. This orbit has permitted the mapping of regional gravitational structure in the northern hemisphere, and laser altimetry from the MESSENGER spacecraft has yielded a geodetically controlled elevation model for the same hemisphere. The shape of a planet combined with gravity provides fundamental information regarding its internal structure and geologic and thermal evolution. Elevations in the northern hemisphere exhibit a unimodal distribution with a dynamic range of 9.63 km, less than that of the Moon (19.9 km), but consistent with Mercury's higher surface gravitational acceleration. After one Earth-year in orbit, refined models of gravity and topography have revealed several large positive gravity anomalies that coincide with major impact basins. These candidate mascons have anomalies that exceed 100 mGal and indicate substantial crustal thinning and superisostatic uplift of underlying mantle. An additional uncompensated 1000-km-diameter gravity and topographic high at 68 deg N, 33 deg E lies within Mercury's northern volcanic plains. Mercury's northern hemisphere crust is generally thicker at low latitudes than in the polar region. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR2 = 0.353 +/- 0.017, where M=3.30 x 10(exp 23) kg and R=2440 km are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of Cm/C = 0.452 +/- 0.035. One proposed model for Mercury's radial density distribution consistent with these results includes silicate crust and mantle layers overlying a dense solid (possibly Fe-S) layer, a liquid Fe-rich outer core of radius 2030 +/- 37 km, and an assumed solid inner core. Magnetic field measurements indicate a northward offset of Mercury's axial magnetic dipole from the geographic equator by 479 +/-3 km and provide evidence for a regional-scale magnetic field approximately collocated with the northern volcanic plains of possible crustal origin. These results from MESSENGER indicate a complex and asymmetric evolution of internal structure and dynamics in this end-member inner planet.
NASA Astrophysics Data System (ADS)
Crosby, Jeffrey Scott
Mercury is a pollutant of grave concern with well documented neurological and developmental health impacts. Better sensing methodology would improve detection and control of mercury and thus reduce its health burden. Gold nanoparticles provide a sensing medium with potential advantages in sensitivity, selectivity, robustness, and cost over established techniques. Mercury readily adsorbs onto the surface of the gold changing the localized surface plasmon resonance which is measured as a shift in the peak optical absorbance wavelength. This shift is dependent on the mercury concentration and predictable with classical electromagnetism. This work investigates some of the fundamental relationships driving sensor response. The effects of mass transfer and surface kinetics on mercury/gold nanoparticle adsorption are determined with analytical models and experimental results based on impinging flow geometry. To decouple mass transfer and surface kinetics adsorption, electrical analogy models are constructed and fit to the experimental data. The models can account for variations in flow conditions and surface coatings on the nanoparticles. These models are generalizable to other systems. Results from these fundamental investigations are used to improve and extend sensor performance. The time response or collection efficiency is optimized depending on system requirements. Using the knowledge gained, the applicability of gold nanoparticle mercury sensors is extended to a fiber optic based system and aqueous detection. Nanorods deposited on the surface of a fiber optic cable have a linear response with concentration and are able to detect mercury down to 1.0 mug/m3. The modification of an established oxidation/reduction scheme for use with the sensor allows for the detection of ionic and organic mercury from water samples which ordinarily would not be reactive with gold nanoparticles. The aqueous sensor was able to detect mercury below the EPA's drinking water limit.
Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests
NASA Technical Reports Server (NTRS)
Wong, Wayne A.
2003-01-01
The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in identifying design solutions and validating thermal performance models under a very aggressive development schedule. The test data have assisted Johns Hopkins engineers in selecting a flight solar array vendor and a thermal shield design. MESSENGER is one in a series of missions in NASA's Discovery Program. Infrared thermography provides data on the thermal gradients in the MESSENGER components during high solar insolation vacuum testing.
NASA Astrophysics Data System (ADS)
Reitze, Maximilian; Morlok, Andreas; Hiesinger, Harald; Weber, Iris; Stojic, Aleksandra
2017-04-01
Infrared spectroscopy is a powerful technique for the exploration of planetary surfaces with remote sensing observations [e.g., 1]. The MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument onboard the BepiColombo spacecraft is designed to explore the surface mineralogy of Mercury in the wavelength region from 7 μ m to 14 μ m [2]. Mercury's surface reaches dayside temperatures of about 700 K [3]. It is well known that bondings between atoms change with temperature, resulting in infrared spectra changes with temperature [4]. In particular, rock-forming minerals like silicates show distinct absorption bands in the infrared due to molecular vibrations, for example, of Si-O bondings [4]. To accurately understand and correctly interpret returned MERTIS data, it is necessary to collect laboratory data of analogue materials under condition similar to Mercury [5]. It is known from previous investigations [5] that the Reststrahlenbands of olivine shift with temperature. In this work we report on temperature effects on Mercury analogue materials in ambient air. At the IRIS (Infrared & Raman for Interplanetary Spectroscopy) laboratory in Münster we used a Bruker VERTEX 70v IR spectrometer together with a Harrick heating stage in a Praying Mantis Diffuse Reflectance Accessory to measure mid-infrared reflectance of mineral powder samples with different grain sizes at increasing temperatures. We report on our spectral results for a natural olivine with Fo91 with a grain size range between 63 μ m and 125 μ m as well as a natural labradorite with a grain size range between 90 μ m and 125 μ m. Spectra were collected at 26, 75, 150, 200, 250, 300, and 350 degrees Celsius with a liquid nitrogen cooled MCT detector under normal ambient pressure. To ensure complete thermal equilibrium of our measured samples, we heated them to higher temperatures and subsequently cooled them to the temperatures at which the spectra were taken. For background calibration, we used a commercial diffuse reflectance gold standard (INFRAGOLD). Our results confirm the temperature-dependent shift of the strongest silicate feature in olivine spectra observed by [5]. For the shift of the peak position of this feature we calculated a shift function depending on the temperature in the form of Rmax[μ m]=0.00027μ m/K\\cdot x[K]+10.454μ m (R^2=0.92). Differences in the intensity of the spectra between [5] and our work are most likely due to smaller grain sizes of our samples. We are also planning on presenting results obtained from evacuated samples (down to 10-6 mbar), which are close to pressures existing on Mercury. References} [1] A. Maturilli, J. Helbert, A. Witzke, and L. Moroz, Planet. Space Sci., 54:1057-1064, 2006. [2] H. Hiesinger, J. Helbert, and MERTIS Co-I Team, Planet. Space Sci., 58:144-165, 2010. [3] M. A. Slade, B. J. Butler, and D. O. Muhleman, Science, 258:635-640, 1992. [4] C. M. Pieters and P. A. J. Englert, editors. Topics in Remote Sensing 4. Remote Geo-chemical Analysis: Elemental and Mineralogical Composition. Cambridge University Press, 1993. [5] J. Helbert, F. Nestola, S. Ferrari, A. Maturilli, M. Massironi, G. J. Redhammer, M. T. Capria, F. Capaccioni, and M. Bruno, EPSL, 371-372:252-257, 2013.
2004-07-19
KENNEDY SPACE CENTER, FLA. - After bagging the MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) spacecraft, Boeing workers at Astrotech Space Operations in Titusville, Fla., place the first part of a transportation canister around the Delta II upper stage booster. MESSENGER will be transferred to Launch Pad 17-B at Cape Canaveral Air Force Station, Fla. Liftoff of MESSENGER aboard a Boeing Delta II Heavy rocket is scheduled for Aug. 2. The spacecraft is expected to reach orbit around the planet in March 2011. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C.
2016-01-01
Abstract The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER's Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X‐Ray Spectrometer and Gamma‐Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near‐tail region of Mercury's magnetosphere and are subsequently “injected” onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form “quasi‐trapped” populations. PMID:27830111
Planning Bepicolombo MPO Science Operations to study Mercury Interior
NASA Astrophysics Data System (ADS)
De La Fuente, Sara; Carasa, Angela; Ortiz, Iñaki; Rodriguez, Pedro; Casale, Mauro; Benkhoff, Johannes; Zender, Joe
2017-04-01
BepiColombo is an Interdisciplinary Cornerstone ESA-JAXA Mission to Mercury, with two orbiters, the ESA Mercury Planetary Orbiter (MPO) and the JAXA Mercury Magnetospheric Orbiter (MMO) dedicated to study of the planet and its magnetosphere. The MPO, is a three-axis-stabilized, nadir-pointing spacecraft which will be placed in a polar orbit, providing excellent spatial resolution over the entire planet surface. The MPO's scientific payload comprises 11 instrument packages, including laser altimeter, cameras and the radio science experiment that will be dedicated to the study of Mercury's interior: structure, composition, formation and evolution. The planning of the science operations to be carried out by the Mercury's interior scientific instruments will be done by the SGS located at the European Space Astronomy Centre (ESAC), in conjunction with the scientific instrument teams. The process will always consider the complete nominal mission duration, such that the contribution of the scheduled science operations to the science objectives, the total data volume generated, and the seasonal interdependency, can be tracked. The heart of the science operations planning process is the Observations Catalogue (OC), a web-accessed database to collect and analyse all science operations requests. From the OC, the SGS will first determine all science opportunity windows compatible with the spacecraft operational constraints. Secondly, only those compatible with the resources (power and data volume) and pointing constraints will be chosen, including slew feasibility.
NASA Astrophysics Data System (ADS)
Maturilli, A.; Ferrari, S.; Helbert, J.; D'Incecco, P.; D'Amore, M.
2011-12-01
In the Planetary Emissivity Laboratory (PEL) at the Institute for Planetary Research of the German Aerospace Center (DLR) in Berlin, we set-up a simulation chamber for the spectroscopic investigation of minerals separates under Mercurial conditions. The chamber can be evacuated to 10-4 bar and the target samples heated to 700 K within few minutes, thanks to the innovative inductive heating system. While developing the protocol for the high temperature spectroscopy measurements we discovered interesting "morphologies" on the sample surfaces. The powders are poured into stainless steel cups of 50 mm internal diameter, 8 mm height and 3 mm depth, having a 5 mm thick base (thus leaving 3 mm free space for the minerals), and rim 1 mm thick. We selected several minerals of interest for Mercurial surface composition and for each of them we analyzed various grain size separates, to study the influence of grain dimensions to the process of thermal stressing. We observed that for the smaller grain size separate (0-25 μm) the thermal stress mainly induces large depressions and fractures, while on larger grain sizes (125-250 μm) small depressions and a cratered surface. Our current working hypothesis is that these features are mainly caused by thermal stress induced by a radiatively quickly cooling surface layer covering the much hotter bulk material. Further investigation is ongoing to understand the processes better. The observed morphologies exhibit surprising similarities to features observed at planetary scale size for example on Mercury and even on Venus. Especially the high resolution images provided currently from MESSENGER'S Mercury Dual Imaging System (MDIS) instrument has revealed plains dominated by polygonal fractures whose origin still have to be determined. Our laboratory analogue studies might in the future provide some insight into the processes creating those features
Mercury's helium exosphere after Mariner 10's third encounter
NASA Technical Reports Server (NTRS)
Curtis, S. A.; Hartle, R. E.
1977-01-01
From Mariner 10 third encounter UV data, a value of .00045 was calculated as the fraction of the solar wind He++ flux intercepted and captured by Mercury's magnetosphere if the observed He atmosphere is maintained by the solar wind. If an internal source for He prevails, the corresponding upper bound for the global outgassing rate is estimated to be 4.5 x 10 to the 22nd power per sec. A surface temperature distribution was used which satisfies the heat equation over Mercury's entire surface using Mariner 10 determined mean surface thermal characteristics. The means stand off distance of Mercury's magnetopause averaged over Mercury's orbit was also used.
NASA Technical Reports Server (NTRS)
Hammack, Jerome B.; Heberlig, Jack C.
1961-01-01
The Mercury-Redstone program is reviewed as to its intended mission and its main results. The progressive results of unmanned, animal, and manned flights of this over-all Project Mercury ballistic training program are presented. A technical description of the major spacecraft systems is presented with some analysis of flight performance. Performance of the spacecraft with and without pilot input is discussed. The influence of the astronaut as an operating link in the over-all system is presented, and relative difficulties of manned versus unmanned flight are briefly commented upon. The program provided information on man as an integral part of a space flight system, demonstrating that man can assume a primary role in space as he does in other realms of flight. The Mercury-Redstone program demonstrated that the Mercury spacecraft was capable of manned space flight, and succeeded in partially qualifying the spacecraft for orbital flight.
1961-05-05
Dr. von Braun addresses a crowd celebrating in front of the Madison County Alabama Courthouse following the successful launch of Astronaut Alan Shepard (America's first astronaut in space) into space on a Mercury-Redstone Launch Vehicle, Freedom 7. Shepard's Mercury Spacecraft, was launched from Cape Canaveral. He reached a speed of 5200 mph. His flight lasted 15-1/2 minutes. May 5, 1961 (Photo: Courtesy of Huntsville/Madison County Public Library)
Mercury's Interior from MESSENGER Radio Science Data
NASA Astrophysics Data System (ADS)
Genova, A.; Mazarico, E.; Goossens, S. J.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.
2017-12-01
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft provided precise radio tracking data in orbit about Mercury for more than 4 years, from March 2011 to April 2015. These geodetic measurements enable us to investigate the interior structure of the planet from the inner core to the crust. The first three years of radio data allowed us to determine the gravity field of Mercury with a resolution of 150 km in the northern hemisphere (degree and order 50 in spherical harmonics) since the periapsis was located at higher latitudes (>65˚N) and 200-500 km altitudes. The comparison of this gravity solution with Mercury's topography, which was retrieved by using over 25 million individual measurements of the Mercury Laser Altimeter (MLA), resulted in a preliminary map of the crustal thickness of the planet. However, those results were limited by the resolution of the gravity field since the topography was defined in spherical harmonics up to degree and order 125. The last year of the MESSENGER extended mission was dedicated to a low-altitude campaign, where the spacecraft periapsis was maintained at altitudes between 25 and 100 km. The radio data collected during this mission phase allowed us to significantly improve the resolution of the gravity field locally in the northern hemisphere up to degree and order 100 in spherical harmonics. We present the gravity anomalies and crustal thickness maps that lead to a better understanding on the formation and evolution of specific regions. We present our estimated orientation model, which slightly differs from the solutions that were obtained by using Earth-based radar measurements and the co-registration of MESSENGER imaging and altimetry data. These previous estimates provide a direct measurement of the surface response, whereas the orientation model from gravity is more sensitive to the inner and outer core. A discrepancy between core and surface obliquities may provide fundamental information on the status of the outer core and the presence of a solid inner core. We also present the latest solution of the tidal Love number k2 that enables us to constrain the basal temperature and rigidity of the outer molten core.
Identification of elemental mercury in the subsurface
Jackson, Dennis G
2015-01-06
An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.
Geodesy at Mercury with MESSENGER
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria t.; Peale, Stanley J.; Phillips, Roger J.; Solomon, Sean C.
2006-01-01
In 2011 the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft will enter Mercury orbit and begin the mapping phase of the mission. As part of its science objectives the MESSENGER mission will determine the shape and gravity field of Mercury. These observations will enable the topography and the crustal thickness to be derived for the planet and will determine the small libration of the planet about its axis, the latter critical to constraining the state of the core. These measurements require very precise positioning of the MESSENGER spacecraft in its eccentric orbit, which has a periapsis altitude as low as 200 km, an apoapsis altitude near 15,000 km, and a closest approach to the surface varying from latitude 60 to about 70 N. The X-band tracking of MESSENGER and the laser altimetry are the primary data that will be used to measure the planetary shape and gravity field. The laser altimeter, which has an expected range of 1000 to 1200 km, is expected to provide significant data only over the northern hemisphere because of MESSENGER's eccentric orbit. For the southern hemisphere, radio occultation measurements obtained as the spacecraft passes behind the planet as seen from Earth and images obtained with the imaging system will be used to provide the long-wavelength shape of the planet. Gravity, derived from the tracking data, will also have greater resolution in the northern hemisphere, but full global models for both topography and gravity will be obtained at low harmonic order and degree. The limiting factor for both gravity and topography is expected to be knowledge of the spacecraft location. Present estimations are that in a combined tracking, altimetry, and occultation solution the spacecraft position uncertainty is likely to be of order 10 m. This accuracy should be adequate for establishing an initial geodetic coordinate system for Mercury that will enable positioning of imaged features on the surface, determination of the planet's obliquity, and detection of the librational motion of the planet about its axis.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Improved algorithms for the retrieval of the h2 Love number of Mercury from laser altimetry data
NASA Astrophysics Data System (ADS)
Thor, Robin; Kallenbach, Reinald; Christensen, Ulrich; Oberst, Jürgen; Stark, Alexander; Steinbrügge, Gregor
2017-04-01
We simulate measurements to be performed by the BepiColombo laser altimeter (BELA) aboard the Mercury Planetary Orbiter (MPO) of the BepiColombo mission and investigate whether coverage and accuracy will be sufficient to retrieve the h2 Love number of Mercury. The h2 Love number describes the tidal response of Mercury's surface and is a function of the materials in its interior and their properties and distribution. Therefore, it can serve as an important constraint for models of the internal structure. The tide-generating potential from the Sun causes periodic radial displacements of up to ˜2 m on Mercury which can be detected by laser altimetry. In this study, we simultaneously extract the static global shape, parametrized by local basis functions, and its variability in time. The usage of cubic splines as local basis functions in both longitudinal and latitudinal direction provides an improvement over the methodology of Koch et al. (2010, Planetary and Space Science, 58(14), 2022-2030) who used cubic splines in longitudinal direction, but only step functions in latitudinal direction. We achieve a relative 1σ accuracy of the h2 Love number of 1.7% assuming nominal data acquisition for BELA during a one-year mission, but considering only stochastic noise.
2017-12-08
This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. This specific color combination places the second principle component in the red channel, the first principle component in the green channel, and the ratio of the 430 nm/1000 nm filters in the blue channel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A deep dynamo generating Mercury's magnetic field.
Christensen, Ulrich R
2006-12-21
Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.
NASA Astrophysics Data System (ADS)
Rowland, R. L., II; Vander Kaaden, K. E.; McCubbin, F. M.; Danielson, L. R.
2017-12-01
With the data returned from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER suggest a low oxygen fugacity of the present materials on the planet's surface. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples, estimated at approximately 3-7 log units below the Iron-Wüstite (IW) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions (e.g., enstatite chondrites, achondrites, aubrites) are available in our collections for examination of this change in geochemical affinity. Our goal is to determine the elemental partitioning behavior of typically lithophile elements at lower oxygen fugacity as a function of temperature and pressure. Experiments were conducted at 1 GPa in a 13 mm QUICKpress piston cylinder and at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850°C. The composition of starting materials for the experiments were designed so the final run products contained metal, silicate melt, and sulfide melt phases. Oxygen fugacity was controlled in the experiments by adding silicon metal to the samples, in order to utilize the Si-SiO2 buffer, which is 5 log units more reducing than the IW buffer at our temperatures of interest. The target silicate melt composition was diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. The results of our experiments will aid in our understanding of the fate of elements during the differentiation and thermal evolution of Mercury and other highly reducing planetary bodies.
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to guests about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- NASA Kennedy Space Center Bob Cabana talks to a guest about the Mercury Project's Atlas rocket in the Vehicle Assembly Building. At the space center in Florida, Cabana is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
Highly Reducing Partitioning Experiments Relevant to the Planet Mercury
NASA Technical Reports Server (NTRS)
Rowland, Rick, II; Vander Kaaden, Kathleen E.; McCubbin, Francis M.; Danielson, Lisa R.
2017-01-01
With the data returned from the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission, there are now numerous constraints on the physical and chemical properties of Mercury, including its surface composition. The high S and low FeO contents observed from MESSENGER on the planet's surface suggests a low oxygen fugacity of the present planetary materials. Estimates of the oxygen fugacity for Mercurian magmas are approximately 3-7 log units below the Iron-Wüstite (Fe-FeO) oxygen buffer, several orders of magnitude more reducing than other terrestrial bodies we have data from such as the Earth, Moon, or Mars. Most of our understanding of elemental partitioning behavior comes from observations made on terrestrial rocks, but Mercury's oxygen fugacity is far outside the conditions of those samples. With limited oxygen available, lithophile elements may instead exhibit chalcophile, halophile, or siderophile behaviors. Furthermore, very few natural samples of rocks that formed under reducing conditions are available in our collections (e.g., enstatite chondrites, achondrites, aubrites). With this limited amount of material, we must perform experiments to determine the elemental partitioning behavior of typically lithophile elements as a function of decreasing oxygen fugacity. Experiments are being conducted at 4 GPa in an 880-ton multi-anvil press, at temperatures up to 1850degC. The composition of starting materials for the experiments were selected for the final run products to contain metal, silicate melt, and sulfide melt phases. Oxygen fugacity is controlled in the experiments by adding silicon metal to the samples, using the Si-SiO2 oxygen buffer, which is approximately 5 log units more reducing than the Fe-FeO oxygen buffer at our temperatures of interest. The target silicate melt compositional is diopside (CaMgSi2O6) because measured surface compositions indicate partial melting of a pyroxene-rich mantle. Elements detected on Mercury's surface by MESSENGER (K, Na, Fe, Ti, Cl, Al, Cr, Mn, U, Th) and other geochemically relevant elements (P, F, H, N, C, Co, Ni, Mo, Ce, Nd, Sm, Eu, Gd, Dy, Yb) are added to the starting composition at trace abundances (approximately 500 ppm) so that they are close enough to infinite dilution to follow Henry's law of trace elements, and their partitioning behavior can be measured between the metal, silicate, and sulfide phases. The results of these experiments will allow us to assess the thermal and magmatic evolution of the planet Mercury from a geochemical standpoint.
Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao
2015-11-01
A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blewett, David T.; Vaughan, William M.; Xiao, Zhiyong; Chabot, Nancy L.; Denevi, Brett W.; Ernst, Carolyn M.; Helbert, JöRn; D'Amore, Mario; Maturilli, Alessandro; Head, James W.; Solomon, Sean C.
2013-05-01
unique to Mercury, hollows are shallow, flat-floored irregular depressions notable for their relatively high reflectance and characteristic color. Here we document the range of geological settings in which hollows occur. Most are associated with impact structures (simple bowl-shaped craters to multiring basins, and ranging from Kuiperian to Calorian in age). Hollows are found in the low-reflectance material global color unit and in low-reflectance blue plains, but they appear to be absent from high-reflectance red plains. Hollows may occur preferentially on equator- or hot-pole-facing slopes, implying that their formation is linked to solar heating. Evidence suggests that hollows form because of loss of volatile material. We describe hypotheses for the origin of the volatiles and for how such loss proceeds. Intense space weathering and solar heating are likely contributors to the loss of volatiles; contact heating by melts could promote the formation of hollows in some locations. Lunar Ina-type depressions differ from hollows on Mercury in a number of characteristics, so it is unclear if they represent a good analog. We also use MESSENGER multispectral images to characterize a variety of surfaces on Mercury, including hollows, within a framework defined by laboratory spectra for analog minerals and lunar samples. Data from MESSENGER's X-Ray Spectrometer indicate that the planet's surface contains up to 4% sulfur. We conclude that nanophase or microphase sulfide minerals could contribute to the low reflectance of the low-reflectance material relative to average surface material. Hollows may owe their relatively high reflectance to destruction of the darkening agent (sulfides), the presence of alteration minerals, and/or physical differences in particle size, texture, or scattering behavior.
Fantozzi, L; Manca, G; Ammoscato, I; Pirrone, N; Sprovieri, F
2013-03-15
An oceanographic cruise campaign on-board the Italian research vessel Urania was carried out from the 26th of August to the 13th of September 2010 in the Eastern Mediterranean. The campaign sought to investigate the mercury cycle at coastal and offshore locations in different weather conditions. The experimental activity focused on measuring mercury speciation in both seawater and in air, and using meteorological parameters to estimate elemental mercury exchange at the sea-atmosphere interface. Dissolved gaseous mercury (DGM), unfiltered total mercury (UTHg) and filtered total mercury (FTHg) surface concentrations ranged from 16 to 114, 300 to 18,760, and 230 to 10,990pgL(-1), respectively. The highest DGM, UTHg and FTHg values were observed close to Augusta (Sicily), a highly industrialized area of the Mediterranean region, while the lowest values were recorded at offshore stations. DGM vertical profiles partially followed the distribution of sunlight, as a result of the photoinduced transformations of elemental mercury in the surface layers of the water column. However, at some stations, we observed higher DGM concentrations in samples taken from the bottom of the water column, suggesting biological mercury production processes or the presence of tectonic activity. Moreover, two days of continuous measurement at one location demonstrated that surface DGM concentration is affected by solar radiation and atmospheric turbulence intensity. Atmospheric measurements of gaseous elemental mercury (GEM) showed an average concentration (1.6ngm(-3)) close to the background level for the northern hemisphere. For the first time this study used a numerical scheme based on a two-thin film model with a specific parameterization for mercury to estimate elemental mercury flux. The calculated average mercury flux during the entire cruise was 2.2±1.5ngm(-2)h(-1). The analysis of flux data highlights the importance of the wind speed on the mercury evasion from sea surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Color variations on Victoria quadrangle: support for the geological mapping
NASA Astrophysics Data System (ADS)
Zambon, F.; Galluzzi, V.; Carli, C.; Giacomini, L.; Massironi, M.; Palumbo, P.; Guzzetta, L.; Mancinelli, P.; Vivaldi, V.; Ferranti, L.; Pauselli, C.; Frigeri, A.; Zusi, M.; Pozzobon, R.; Cremonese, G.; Ferrari, S.; Capaccioni, F.
2015-10-01
Mercury is the closest planet to the Sun. Its extreme thermal environment makes it difficult to explore onsite. In 1974, Mariner 10, the first mission dedicated to Mercury, covered 45% of the surface during of the three Hermean flybys [1]. For about 30 years after Mariner 10, no other mission has flownto Mercury. Many unresolved issues need an answer, and in recent years the interest about Mercury has increased. MESSENGER mission contributed to understand Mercury's origin, its surface structure, and the nature of its magnetic field, exosphere, and magnetosphere [1]. The Mercury Dual Imaging System (MDIS) provided a global coverage of Mercury surface with variable spatial resolution. MDIS is equipped with a narrow angle camera (NAC), dedicated to the study of the geology and a wide angle camera (WAC) with 12 filters useful to investigate the surface composition[2]. Mercury has been divided into 15 quadrangles for mapping purposes [3]. The mapping process permits integration of different geological surface information to better understand the planet crust formation and evolution. Merging spectroscopically data is a poorly followed approach in planetary mapping, but it gives additional information about lithological composition, contributing to the construction of a more complete geological map [e.g. 4]. Recently, [5] proposed a first detailed map of all the Victoria quadrangle (H2). Victoria quadrangle is located in a longitude range between 270°E and 360°E and a latitude range of 22.5°N and 65°N,and itwas only partially mapped by Mariner 10 data[3]. Here we investigate the lithological variation by using the MDIS-WAC data to produce a set of color map products which could be asupport to the geological mapping [5]. The future ESA-JAXA mission to Mercury, BepiColombo, will soon contribute to improve the knowledge of Mercury surface composition and geology thanks to the Spectrometer and Imagers for MPO BepiColombo-Integrated Observatory SYStem (SIMBIO-SYS)[6].
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASAs MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Astrotech Space Operations processing facilities, workers check the placement of NASAs MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers remove the protective cover from NASAs MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Astrotech Space Operations processing facilities, workers check the placement of NASAs MESSENGER spacecraft on a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Astrotech Space Operations processing facilities near KSC, workers move NASAs MESSENGER spacecraft into a high bay clean room. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping
NASA Technical Reports Server (NTRS)
Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.
2012-01-01
A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.
2012-02-18
CAPE CANAVERAL, Fla. -- Hugh Harris, the former director of Public Affairs at NASA's Kennedy Space Center in Florida, talks to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. Harris is helping Mercury astronauts, John Glenn and Scott Carpenter, mark the 50th anniversary of Glenn being the first American to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
Mercury MESSENGER Stamp Unveiling
2011-05-03
From left, NASA Deputy Director, Planetary Science Division, Science Mission Directorate, Jim Adams, NASA Kennedy Space Center Director of Education and External Relations Cheryl Hurst, United States Postal Service Vice President of Finance Steve Masse, NASA Mercury Astronaut Scott Carpenter, NASA Administrator Charles Boldin, Daughters of NASA astronaut Alan Shepard, Alice Wackermann, Laura Shepard Churchley, and Julie Jenkins, and NASA Kennedy Space Center Director Robert Cabana pose for a photograph during an unveiling ceremony of two USPS stamps that commemorate and celebrate 50 years of US Spaceflight and the MESSENGER program during an event, Wednesday, May 4, 2011 at the NASA Kennedy Space Center in Cape Canaveral, Fla. One stamp commemorates NASA’s Project Mercury, America’s first manned spaceflight program, and NASA astronaut Alan Shepard’s historic flight on May 5, 1961, aboard spacecraft Freedom 7. The other stamp draws attention to NASA’s unmanned MESSENGER mission, a scientific investigation of the planet Mercury. On March 17, 2011, MESSENGER became the first spacecraft to enter into orbit around Mercury. Photo Credit: (NASA/Bill Ingalls)
Impacts of Center of Mass Shifts on Messenger Spacecraft Operations
NASA Technical Reports Server (NTRS)
O'Shaughnessy, D. J.; Vaughan, R. M.; Chouinard, T. L., III; Jaekle, D. E.
2007-01-01
The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) has successfully completed its first three years of flight operations following launch on August 3, 2004. As part of NASA s Discovery Program, MESSENGER will observe Mercury during flybys in 2008 and 2009, as well as from orbit beginning in March 2011. This paper discusses the impact that center of mass (CM) location changes have had on many mission activities, particularly angular momentum management and maneuver execution. Momentum trends were altered significantly following the first deep-space maneuver, and these changes were related to a change in the CM. The CM location also impacts maneuver execution, and uncertainties in its location led to the significant direction errors experienced at trajectory correction maneuver 11. Because of the spacecraft sensitivity to CM location, efforts to estimate its position are important to momentum and maneuver prediction. This paper summarizes efforts to estimate the CM from flight data, as well as the operational strategy to handle CM uncertainties and their impact on momentum trends and maneuver execution accuracy.
First observations of Mercury's plasma mantle by MESSENGER
NASA Astrophysics Data System (ADS)
DiBraccio, Gina A.; Slavin, James A.; Raines, Jim M.; Gershman, Daniel J.; Tracy, Patrick J.; Boardsen, Scott A.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; McNutt, Ralph L.; Solomon, Sean C.
2015-11-01
We present the first observations of Mercury's plasma mantle, a primary region for solar wind entry into the planetary magnetosphere, located in the high-latitude magnetotail. MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations from two orbits on 10 November 2012 have been analyzed. The main plasma mantle features are (1) a steady decrease in proton density as MESSENGER moved deeper into the magnetotail; (2) frequent flux transfer events throughout the magnetosheath and into the magnetotail, suggesting that these events are the primary source for solar wind plasma injection; (3) a diamagnetic depression, due to the presence of plasma, as pressure balance is maintained; and (4) a clear proton velocity dispersion, resulting from lower-energy protons being transported deep into the magnetosphere as higher-energy protons escape downtail. From these velocity dispersions we infer cross-magnetosphere electric potentials of 23 kV and 29 kV, consistent with estimates determined from measurements of magnetopause reconnection rate and tail loading and unloading events.
Mercury Na exospheric emission related to solar disturbances
NASA Astrophysics Data System (ADS)
Orsini, S.; Mangano, V.; Milillo, A.; Plainaki, C.; Mura, A.; Massetti, S.; Raines, J. M.; De Angelis, E.; Rispoli, R.; Lazzarotto, F.; Aronica, A.
2017-09-01
A first attempt to use Na exospheric emission at Mercury as a proxy of CME transit is presented, in a kind of planetary space weather. The link existing between the dayside exosphere Na pattern at Mercury and the solar wind-magnetosphere-surface interactions is investigated. This goal is pursued by analyzing the Na hourly average distributions, as observed by the ground-based THEMIS solar telescope during 10 selected periods between 2012 and 2013 (seeing <2"), when also data from MESSENGER were available. Very often a two-peak pattern of variable intensity is observed, symmetrically located at high latitudes in both hemispheres. Occasionally, the signal is instead diffused above the sub-solar region. We compare these different Na emission patterns with the time profiles of proton fluxes and magnetic field data, as measured in-situ by MESSENGER. Among these 10 cases, only in one occasion the Na signal is all the time diffused above the subsolar region, and only in this case the MESSENGER data indicate the occurrence of significant solar CME perturbations.
Global Particle-in-Cell Simulations of Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.
2017-12-01
Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.
The Venus flybys opportunity with BEPICOLOMBO
NASA Astrophysics Data System (ADS)
Mangano, Valeria; de la Fuente, Sara; Montagnon, Elsa; Benkhoff, Johannes; Zender, Joe; Orsini, Stefano
2017-04-01
BepiColombo is a dual spacecraft mission to Mercury to be launched in October 2018 and carried out jointly between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mercury Planetary Orbiter (MPO) payload comprises eleven experiments and instrument suites. It will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will test Einstein's theory of general relativity. The second spacecraft, the Mercury Magnetosphere Orbiter (MMO), will carry five experiments or instrument suites to study the environment around the planet including the planet's exosphere and magnetosphere, and their interaction processes with the solar wind. The composite spacecraft made of MPO, MMO, a transfer module (MTM) and a sunshield (MOSIF) will be launched on an escape trajectory that will bring it into heliocentric orbit on its way to Mercury. During the cruise of 7.2 years toward the inner part of the Solar System, BepiColombo will make 1 flyby to the Earth, 2 to Venus, and 6 to Mercury. Only part of its payload will be obstructed by the sunshield and the cruise spacecraft configuration, so that the two flybys to Venus will allow operations of many instruments, like: spectrometers at many wavelengths, accelerometer, radiometer, ion and electron detectors. A scientific working group has recently formed from the BepiColombo community to identify potentially interesting scientific cases and to analyse operation timelines. Preliminary outputs will be presented and discussed.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) prepare one of two solar array panels on the MESSENGER spacecraft for deployment. The panels will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., a technician with The Johns Hopkins University Applied Physics Laboratory (APL) watches as one of the solar array panels on the MESSENGER spacecraft is deployed. The two panels will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) check one of two solar panels on the MESSENGER spacecraft after a deployment test. The other panel is at right, undeployed. The solar arrays will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) prepare one of two solar array panels on the MESSENGER spacecraft for deployment. The panels will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) prepare to cover the MESSESNGER spacecraft for a move to a hazardous processing facility in preparation for loading the spacecraft’s complement of hypergolic propellants. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla., on a journey to Mercury. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) prepare the MESSESNGER spacecraft for a move to a hazardous processing facility in preparation for loading the spacecraft’s complement of hypergolic propellants. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla., on a journey to Mercury. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) monitor the progress of the solar array deployment on the MESSENGER spacecraft. The two panels will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2017-12-01
The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA Bepicolombo mission to Mercury will map the thermal emissivity at wavelength range of 7-14 μm and spatial resolution of 500 m/pixel [1]. Mercury was also imaged at the same wavelength range using the Boston University's Mid-Infrared Spectrometer and Imager (MIRSI) mounted on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii with the minimum spatial coverage of 400-600km/spectra which blends all rocks, minerals, and soil types [2]. Therefore, the study [2] used quantitative deconvolution algorithm developed by [3] for spectral unmixing of this composite thermal emissivity spectrum from telescope to their respective areal fractions of endmember spectra; however, the thermal emissivity of endmembers used in [2] is the inverted reflectance measurements (Kirchhoff's law) of various samples measured at room temperature and pressure. Over a decade, the Planetary Spectroscopy Laboratory (PSL) at the Institute of Planetary Research (PF) at the German Aerospace Center (DLR) facilitates the thermal emissivity measurements under controlled and simulated surface conditions of Mercury by taking emissivity measurements at varying temperatures from 100-500°C under vacuum conditions supporting MERTIS payload. The measured thermal emissivity endmember spectral library therefore includes major silicates such as bytownite, anorthoclase, synthetic glass, olivine, enstatite, nepheline basanite, rocks like komatiite, tektite, Johnson Space Center lunar simulant (1A), and synthetic powdered sulfides which includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Using such specialized endmember spectral library created under Mercury's conditions significantly increases the accuracy of the deconvolution model results. In this study, we revisited the available telescope spectra and redeveloped the algorithm by [3] by only choosing the endmember spectral library created at PSL for unbiased model accuracy with the RMS value of 0.03-0.04. Currently, the telescope spectra are investigated for its calibrations and the results will be presented at AGU. References: [1] Hiesinger, H. and J. Helbert (2010) PSS, 58(1-2): 144-165. [2] Sprague, A.L. et al (2009) PSS, 57, 364-383. [3] Ramsey and Christiansen (1998) JGR, 103, 577-596
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Mark J.; Brooks, Scott C.; Mathews, Teresa J.
2016-04-01
Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM) because of large historical losses of mercury within buildings and to soils and surface waters at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the downstream environment, the success of conventional options for mercury remediation in lower East Fork Poplar Creek (EFPC) is uncertain. A phased, adaptive management approach to remediation of surface water includes mercury treatment actions at Y-12 in the short-term and research andmore » technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014b).« less
Sublimation Formation on Mercury
2017-12-08
Located in the crater Eminescu, this high-resolution image shows part of the mountainous peak ring, as well as an example of the extensive formation of hollows located within the crater. Hollows maintain an air of mystery in the realm of planetary science. Though the exact formation mechanism is unknown, most scientists agree sublimation of volatiles holds the answer. This image highlights the prevalence of these hollows on and around the peak ring, as well as captures the beauty of such enigmatic formations. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 200-meter/pixel morphology base map. It is not possible to cover all of Mercury's surface at this high resolution, but typically several areas of high scientific interest are imaged in this mode each week. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Lee, Brian; Sarin, Love; Johnson, Natalie C.; Hurt, Robert H.
2013-01-01
Compact fluorescent lamps contain small quantities of mercury, whose release can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nano-selenium as the reactive component. Multi-layer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of the three scenarios. The nano-selenium barriers also exhibit a unique indicator function that can reveal the location of Hg-contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nano-selenium and its reaction products. PMID:19731697
Lee, Brian; Sarin, Love; Johnson, Natalie C; Hurt, Robert H
2009-08-01
Compact fluorescent lamps contain small quantities of mercury, release of which can lead to human exposures of potential concern in special cases involving multiple lamps, confined spaces, or young children. The exposure scenarios typically involve solid lamp debris that slowly releases elemental mercury vapor to indoor spaces. Here we propose and demonstrate a reactive barrier approach for the suppression of that mercury release, and demonstrate the concept using uncoated amorphous nanoselenium as the reactive component. Multilayer structures containing an impregnated reactive layer and a mercury vapor barrier are fabricated, characterized, and evaluated in three exposure prevention scenarios: carpeted break sites, disposal/recycling bags, and boxes as used for retail sales, shipping, and collection. The reactive barriers achieve significant suppression of mercury release to indoor spaces in each of thethree scenarios. The nanoselenium barriers also exhibit a unique indicator function that can reveal the location of Hg contamination by local reaction-induced change in optical properties. The article also presents results on equilibrium Hg vapor pressure above lamp debris, mathematical modeling of reaction and transport processes within reactive barriers, and landfill stability of nanoselenium and its reaction products.
This study will quantify the daily surrogate surface dry deposition of mercury and nutrient species, and evaluate its relative importance to wet deposition at two sites in Florida over a two-year period. It will identify the major sources contributing to the observed mercury and...
Chemical Heterogeneity on Mercury's Surface Revealed by the MESSENGER X-ray Spectrometer
NASA Technical Reports Server (NTRS)
Weider, Shoshana Z.; Nittler, Larry R.; Starr, Richard D.; McCoy, Timothy J.; Stockstill-Cahill, Karen R.; Byrne, Paul K.; Denevi, Brett W.; Head, James W.; Solomon, Sean C.
2012-01-01
We present the analysis of 205 spatially resolved measurements of the surfacecomposition of Mercury from MESSENGERs X-Ray Spectrometer. The surfacefootprints of these measurements are categorized according to geological terrain. Northernsmooth plains deposits and the plains interior to the Caloris basin differ compositionallyfrom older terrain on Mercury. The older terrain generally has higher MgSi, SSi, andCaSi ratios, and a lower AlSi ratio than the smooth plains. Mercurys surface mineralogyis likely dominated by high-Mg mafic minerals (e.g., enstatite), plagioclase feldspar, andlesser amounts of Ca, Mg, andor Fe sulfides (e.g., oldhamite). The compositionaldifference between the volcanic smooth plains and the older terrain reflects differentabundances of these minerals and points to the crystallization of the smooth plains from amore chemically evolved magma source. High-degree partial melts of enstatite chondritematerial provide a generally good compositional and mineralogical match for much ofthe surface of Mercury. An exception is Fe, for which the low surface abundance onMercury is still higher than that of melts from enstatite chondrites and may indicate anexogenous contribution from meteoroid impacts.
Mercury content of Illinois soils
Dreher, G.B.; Follmer, L.R.
2004-01-01
For a survey of Illinois soils, 101 cores had been collected and analyzed to determine the current and background elemental compositions of Illinois soils. Mercury and other elements were determined in six samples per core, including a surface sample from each core. The mean mercury content in the surface samples was 33 ?? 20 ??g/kg soil, and the background content was 20 ?? 9 ??g/kg. The most probable sources of mercury in these soils were the parent material, and wet and dry deposition of Hg0 and Hg2+ derived from coal-burning power plants, other industrial plants, and medical and municipal waste incinerators. Mercury-bearing sewage sludge or other fertilizers applied to agricultural fields could have been the local sources of mercury. Although the mercury content correlated with organic carbon content or clay content in individual cores, when all the data were considered, there was no strong correlation between mercury and either the organic carbon or the clay-size content.
Diminished mercury emission from waters with duckweed cover
NASA Astrophysics Data System (ADS)
Wollenberg, Jennifer L.; Peters, Stephen C.
2009-06-01
Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.
Thermal elastic deformations of the planet Mercury
NASA Technical Reports Server (NTRS)
Liu, H.
1971-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is shown that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of 0.004 and a period of 176 days.
Thermal elastic deformations of the planet Mercury.
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1972-01-01
The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.
The major-element composition of Mercury's surface from MESSENGER X-ray spectrometry.
Nittler, Larry R; Starr, Richard D; Weider, Shoshana Z; McCoy, Timothy J; Boynton, William V; Ebel, Denton S; Ernst, Carolyn M; Evans, Larry G; Goldsten, John O; Hamara, David K; Lawrence, David J; McNutt, Ralph L; Schlemm, Charles E; Solomon, Sean C; Sprague, Ann L
2011-09-30
X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets. Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust. The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles. Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance.
Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model
NASA Astrophysics Data System (ADS)
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-08-01
In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.
The Lunar Atmosphere: History, Status, Current Problems, and Context
NASA Technical Reports Server (NTRS)
Stern, S. Alan .
1997-01-01
After decades of speculation and fruitless searches, the lunar atmosphere was first observed by Apollo surface and orbital instruments between 1970 and 1972. With the demise of Apollo in 1972, and the termination of funding for Apollo lunar ground station studies in 1977, the field withered for many years, but has recently enjoyed a renaissance. This reflowering has been driven by the discovery and exploration of sodium and potassium in the lunar exosphere by groundbased observers, the detection of metal ions derived from the Moon in interplanetary space, the possible discoveries of H2O ice at the poles of the Moon and Mercury, and the detections of tenuous atmospheres around more remote sites in the solar system, including Mercury and the Galilean satellites. In this review we summarize the present state of knowledge about the lunar atmosphere, describe the important physical processes taking place within it, and then discuss related topics including a comparison of the lunar atmosphere to other surface boundary exospheres in the solar system.
Aspmo, Katrine; Temme, Christian; Berg, Torunn; Ferrari, Christophe; Gauchard, L Pierre-Alexis; Fain, Xavier; Wibetoe, Grethe
2006-07-01
Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.
Mercury's gravity field, orientation, and ephemeris after MESSENGER's Low-Altitude Campaign
NASA Astrophysics Data System (ADS)
Genova, Antonio; Mazarico, Erwan; Goossens, Sander J.; Lemoine, Frank G.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.
2015-04-01
In April 2015, the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft will complete more than 4 years of operations in orbit around Mercury. In its last year, as part of MESSENGER's Second Extended Mission (XM2) started in March 2013, the spacecraft has been collecting radio tracking data at unprecedented low altitudes in Mercury's northern hemisphere. During the first two years in orbit, the spacecraft periapsis altitude was kept between 200 and 500 km, while its location drifted slowly northward from 60˚N to 84˚N. The orbital period initially was 12 h, but it was decreased to 8 h in April 2012. The remaining fuel onboard the spacecraft enabled two extended missions, the last of which will end with an impact expected on or before 28 April 2015. During the second extended mission, the periapsis altitude has been as low as 15-25 km. NASA's Deep Space Network (DSN) tracked the spacecraft during periapsis passages from April to October 2014, when the spacecraft periapsis altitude was between 25 and 100 km. In the last six months of the mission, the closest approaches of MESSENGER were occulted by Mercury and were thus not visible from Earth. However, additional radio tracking data have been collected at altitudes (75-100 km) that are still substantially below the initial periapsis altitude. The new low-altitude radio tracking data have enabled an updated model of the gravity field of Mercury. With these data, the resolution of the field in the northern hemisphere has been improved, revealing features that were previously undetectable and that correlate well with topography. The zonal harmonics are in good agreement with those in previous models of the gravity field. We also focused our study on the determination of other geophysical parameters, such as the orientation of Mercury. The new data were acquired not only at lower altitudes but also at latitudes closer to the equator, so they provide important information on tides, the right ascension of the pole, and the physical libration in longitude. The new model of Mercury's gravity field includes the estimation of the declination and the right ascension of the pole, the Love number k2, and the amplitude of the longitudinal libration. We also report an update on the ephemeris of Mercury obtained from MESSENGER range data covering the entire mission period, from the flybys until the end of the mission.
Evidence for a basalt-free surface on Mercury and implications for internal heat.
Jeanloz, R; Mitchell, D L; Sprague, A L; de Pater, I
1995-06-09
Microwave and mid-infrared observations reveal that Mercury's surface contains less FeO + TiO2 and at least as much feldspar as the lunar highlands. The results are compatible with the high albedo (brightness) of Mercury's surface at visible wavelengths in suggesting a rock and soil composition that is devoid of basalt, the primary differentiate of terrestrial mantles. The occurrence of a basalt-free, highly differentiated crust is in accord with recent models of the planet's thermal evolution and suggests that Mercury has retained a hot interior as a result of a combination of inefficient mantle convection and minimal volcanic heat loss.
NASA Astrophysics Data System (ADS)
Chanteur, G. M.; Modolo, R.; Leblanc, F.
2014-12-01
MESSENGER has revealed the complexity of the Hermean magnetic field which is dominated by dipolar and quadrupolar components (Anderson et al., 2012 and references therein). By contrast to other magnetized planets having large scale dynamo driven magnetic fields Mercury has a quadrupolar field large enough to reinforce the dipolar field at high northern latitudes and to shape the topology of the planetary field in the equatorial region and the southern hemisphere. Magnetic reconnection at Mercury is extremely effective for all IMF orientations [DiBraccio et al., JGR, 2013]. Global hybrid simulations by Richer et al. (2012) have demonstrated the dramatic influence of the quadrupolar field of Mercury on the topology of the Hermean magnetosphere. Then Chanteur et al. (AOGS 2014) have investigated the impacts of solar wind protons and alphas on Mercury's surface with the same hybrid code and have presented a case study to demonstrate the importance of magnetic reconnection between the IMF and the planetary field in this process. We will present a set of different results corresponding to different configurations depending upon the IMF orientation and solar wind parameters. References Anderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. (2012), Low-degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, doi:10.1029/2012JE004159. DiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon (2013), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Phys., 118, 997-1008, doi:10.1002/jgra50123. Richer, E., R. Modolo, G. M. Chanteur, S. Hess, and F. Leblanc (2012), A global hybrid model for Mercury's interaction with the solar wind: Case study of the dipole representation, J. Geophys. Res., 117, A10228, doi:10.1029/2012JA017898. Chanteur, G.M., R. Modolo, and F. Leblanc (2014), Effect of the Hermean Magnetic quadrupole on Magnetic Reconnection and Penetration of the SW Plasma Inside the Magnetosphere, AOGS, 11th annual meeting, Sapporo, Japan, July 28th - August 1st.
A new setup for experimental investigations of solar wind sputtering
NASA Astrophysics Data System (ADS)
Szabo, Paul S.; Berger, Bernhard M.; Chiba, Rimpei; Stadlmayr, Reinhard; Aumayr, Friedrich
2017-04-01
The surfaces of Mercury and Moon are not shielded by a thick atmosphere and therefore they are exposed to bombardment by charged particles, ultraviolet photons and micrometeorites. These influences lead to an alteration and erosion of the surface, and the emitted atoms and molecules form a thin atmosphere, an exosphere, around these celestial bodies [1]. The composition of these exospheres is connected to the surface composition and has been subject to flyby measurements by satellites. Model calculations which include the erosion mechanisms can be used as a method of comparison for such exosphere measurements and allow conclusions about the surface composition. Surface sputtering induced by solar wind ions hereby represents a major contribution to the erosion of the surfaces of Mercury and Moon [1]. However, the experimental database for sputtering of respective analogue materials by solar wind ions, which would be necessary for exact modelling of the space weathering process, is still in its early stages. Sputtering experiments have been performed at TU Wien during the past years using a quartz crystal microbalance (QCM) technique [2]. Target material is deposited on the quartz surface as a thin layer and the quartz's resonance frequency is measured under ion bombardment. The sputter yield can then be calculated from the frequency change and the ion current [2]. In order to remove the restrictions of a thin layer QCM target and simplify experiments with composite targets, a new QCM catcher setup was developed. In the new design, the QCM is placed beside the target holder and acts as a catcher for material that is sputtered from the target surface. By comparing the catcher signal to reference measurements and SDTrimSP simulations [3], the target sputter yield can be determined. In order to test the setup, we have performed experiments with a Au-coated QCM target under 2 keV Ar+ bombardment so that both the mass changes at the target and at the catcher could be obtained simultaneously. The results coincide very well with SDTrimSP predictions showing the feasibility of the new design [4]. Furthermore, Fe-coated QCM targets with different surface roughness were investigated in the new setup. The surface roughness represents a key factor for the solar wind induced erosion of planetary or lunar rocks. It has a strong influence on the absolute sputtering yield as well as on the spatial distribution of sputtered particles and was therefore investigated. As a next step, sputtering experiments with Mercury or Moon analogues will be conducted. Knowledge gained in the course of this research will enhance the understanding of surface sputtering by solar wind ions and used to improve theoretical models of the Mercury's and Moon's exosphere formation. References: [1] E. Kallio, et al., Planetary and Space Science, 56, 1506 (2008). [2] G. Hayderer, et al., Review of Scientific Instruments, 70, 3696 (1999). [3] A. Mutzke, R. Schneider, W. Eckstein, R. Dohmen, SDTrimSP: Version 5.00, IPP Report, 12/8, (2011). [4] B. M. Berger, P. S. Szabo, R. Stadlmayr, F. Aumayr, Nucl. Instrum. Meth. Phys. Res. B, doi: 10.1016/j.nimb.2016.11.039
[Contamination and Ecological Risk Assessment of Mercury in Hengshuihu Wetland, Hebei Province].
Wang, Nai-shan; Zhang, Man-yin; Cui, Li-juan; Ma, Mu-yuan; Yan, Liang; Mu, Yong-lin; Qin, Peng
2016-05-15
Investigation on the concentrations and the distribution characteristics of total mercury in atmosphere, water surface and soil/ sediments of Hengshuihu wetland was carried out based on a uniform set point sampling method. The geoaccumulation index and potential ecological risk index methods were simultaneously used to assess the mercury pollution in Hengshuihu wetland ecosystem. The results showed that: the total mercury content in Hengshuihu wetland atmosphere ranged from 1.0 to 5.0 ng · m⁻³, with an average of (2.9 ± 0.85) ng · m⁻³; the total mercury content in water surface ranged from 0.010 to 0.57 µg · L⁻¹, with the average value of (0.081 ± 0.053) µg · L⁻¹; the total mercury content in soil/sediment ranged from 0.001 0 to 0.058 mg · kg⁻¹, with an average of (0.027 ± 0.013) mg · kg⁻¹. The distribution features of total mercury in Hengshuihu wetland were as follows: the total mercury concentration in surface water of the shore was significantly higher than that in the center (P < 0.05), but the total mercury concentration of sediments in the center of the lake was significantly higher than that at the shore (P < 0.05); the total mercury in the soil of shore had a consistent trend with that in the atmosphere; high concentrations of total mercury pollution were accompanied by severe human activities. The geoaccumulation index showed that mercury pollution in Hengshuihu wetland was at clean level; potential ecological risk index showed mercury contamination had a low ecological risk in Hengshuihu wetland.
John H Glenn Jr. Wreath Laying Ceremony
2016-12-09
An Atlas rocket and Mercury capsule like the ones that carried Sen. John Glenn into Earth orbit in February 1962 stand in the Rocket Garden at the Kennedy Space Center Visitor Complex adjacent to the Heroes and Legends exhibit hall where Glenn was remembered during a ceremony Dec. 9, 2016. Glenn, one of the Mercury Seven astronauts NASA chose to fly the first missions of the Space Age, passed away on Dec. 8, 2016, at age 95. He gained worldwide acclaim during his Mercury mission that made him the first American to orbit the Earth. He flew again in 1998 aboard space shuttle Discovery at age 77.
Complex Teichmüller Space below the Planck Length for the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Winterberg, Friedwardt
2014-03-01
As Newton's mysterious action at a distance law of gravity was explained as a Riemannian geometry by Einstein, it is proposed that the likewise mysterious non-local quantum mechanics is explained by the analytic continuation below the Planck length into a complex Teichmüller space. Newton's theory worked extremely well, as does quantum mechanics, but no satisfactory explanation has been given for quantum mechanics. In one space dimension, sufficient to explain the EPR paradox, the Teichmüller space is reduced to a space of complex Riemann surfaces. Einstein's curved space-time theory of gravity was confirmed by a tiny departure from Newton's theory in the motion of the planet Mercury, and an experiment is proposed to demonstrate the possible existence of a Teichmüller space below the Planck length.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Korth, H.; Anderson, B. J.; Solomon, S. C.
2015-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
NASA Astrophysics Data System (ADS)
Raines, J. M.; Slavin, J. A.; Tracy, P.; Gershman, D. J.; Zurbuchen, T.; Dewey, R. M.; Sarantos, M.
2016-12-01
Plasma impact onto Mercury's surface can be an important contributor to Mercury's exosphere through the process of ion sputtering. Under some circumstances, this process can produce a substantial fraction of the exosphere. When the impacting plasma originates from the magnetosphere itself, this sputtering process can conversely be considered as a sink for the plasma of the Mercury magnetosphere, providing evidence for the processes at work in that system. One such process is reconnection in Mercury's magnetotail, which can accelerate ions and electrons from the central plasma sheet toward the nightside of the planet. By analogy with processes at Earth, it is hypothesized that as these flows approach the planet, much of the plasma is diverted from impact onto the surface by the increasingly strong planetary magnetic field closer to the planet. The remainder of the plasma is expected to follow nearly dipolar field lines, impacting the nightside surface and potentially contributing to field-aligned currents. We present the first direct evidence that this process is operating at Mercury. We examine ion precipitation events on Mercury's nightside with the Fast Imaging Plasma Spectrometer (FIPS) on the MESSENGER spacecraft, which orbited Mercury from 2011 to 2015. We characterize the energy distributions of these events and their extent in latitude and local time. We use these observations to predict the precipitating proton flux from altitudes as low as 11 km. We use this information to bound the region of Mercury's surface that remains protected from plasma bombardment by the planetary dipole magnetic field, and to explore the implications of this information for magnetospheric convection and exosphere generation at Mercury.
NASA Astrophysics Data System (ADS)
Benkhoff, J.
2017-12-01
NASA's MESSENGER mission has fundamentally changed our view of the innermost planet. Mercury is in many ways a very different planet from what we were expecting. Now BepiColombo has to follow up on answering the fundamental questions that MESSENGER raised and go beyond. BepiColombo is a joint project between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). The Mission consists of two orbiters, the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The mission scenario foresees a launch of both spacecraft with an ARIANE V in October 2018 and an arrival at Mercury in 2025. From their dedicated orbits the two spacecraft will be studying the planet and its environment. BepiColombo will study and understand the composition, geophysics, atmosphere, magnetosphere and history of Mercury, the least explored planet in the inner Solar System. In addition, the BepiColombo mission will provide a rare opportunity to collect multi-point measurements in a planetary environment. This will be particularly important at Mercury because of short temporal and spatial scales in the Mercury's environment. The foreseen orbits of the MPO and MMO will allow close encounters of the two spacecrafts throughout the mission. The MPO scientific payload comprises eleven instruments/instrument packages; The MMO comprises 5 instruments/instrument packages to the the study of the environment. The MPO will focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, it will be testing Einstein's theory of general relativity. Together, the scientific payload of both spacecraft will provide the detailed information necessary to understand Mercury and its magnetospheric environment and to find clues to the origin and evolution of a planet close to its parent star. The BepiColombo mission will complement and follow up the work of NASA's MESSENGER mission by providing a highly accurate and comprehensive set of observations of Mercury. The mission has been named in honor of Giuseppe (Bepi) Colombo (1920-1984), who was a brilliant Italian mathematician, who made many significant contributions to planetary research and celestial mechanics.
The role of CMEs in the refilling of Mercury's exosphere
NASA Astrophysics Data System (ADS)
Lichtenegger, H. I. M.; Lammer, H.; Kallio, E.; Mura, A.; Wurz, P.; Millio, A.; Torka, K.; Livi, S.; Barabash, S.; Orsini, S.
A better understanding of the connection between the solar plasma environment and surface particle release processes from Mercury is needed for planned exospheric and remote surface geochemical studies by the Neutral Particle Analyzer Ion Spectrometer sensors ELENA, STROFIO, MIPA and PICAM of the SERENA instrument on board of ESA's BepiColombo planetary orbiter MPO. We study the exosphere refilling of various elements caused by sputtering during the exposure of CMEs from Mercury's surface by applying a quasi-neutral hybrid model and by using a survey of potential surface analogues, which are based on laboratory studied Lunar surface regolith and hypothetical analogue materials as derived form experimental studies. The formation and refilling of Mercury's exosphere during CME exposure is compared with usual solar wind cases by considering various parameters, such as regolith porosity, binding energies and elemental fractionation of the surface minerals. For studying the influence of these parameters we use the derived geochemical surface composition and the exposed surface are as an input for a 3-D exospheric model for studying whether the measurements of exospheric particles by the particle detectors is feasible along the MPO spacecraft orbit. Finally we find a denser exosphere environment distributed over a larger planetary area during collisions of CMEs or magnetic clouds with Mercury.
1963-09-09
Astronaut Alan B. Shepard, one of the original seven astronauts for Mercury Project selected by NASA on April 27, 1959. The Freedom 7 spacecraft boosted by Mercury-Redstone vehicle for the MR-3 mission made the first marned suborbital flight and Astronaut Shepard became the first American in space.
Zones of comfortable living of habitants on Mercury
NASA Astrophysics Data System (ADS)
Steklov, A. F.; Vidmachenko, A. P.
2018-05-01
Temperature in the sunflower point on Mercury +480 °C; before sunrise, the temperature at the equator drops to-183 °C. In this regard, after arrival on the surface of Mercury, a person immediately needs to protect himself from extreme temperatures and radiation, hiding, for example, under the surface. Temperature fluctuations observed on the surface of the Earth too, very slowly propagate into the depth of the soil. 228 years ago by the French scientist Antoine Lavoisier proved that the temperature in the mine under the surface at a depth of 28 m in the territory of the Paris Observatory year-round is constant and equal to +11.7 C. For Kiev this constant temperature is always + 9°Ð¡. Solving a similar problem for Mercury, we obtained at latitudes |70-90 deg.| that the temperature below the surface at depths of 3-30 m will be guaranteed constant in range of +15-25 C. The area of settlements with comfort temperatures for the biological life form at subsurface subpolar regions is more than three million km2. Thus, under the surface (endo) of Mercury at depths of 3-30 m tens of endo-settlements can be located. It remains only to provide people in these settlements - water and specialized spacesuits. This will enable people to live there for a long time, and will allow them to extract mineral resources on Mercury. Therefore, now it is necessary to work on the creation of special symbiotic "cocoons", which can themselves be buried. This will ensure the long-term existence of endoplanetary stations on Mercury.
Mercury's Low-Degree Geoid and Topography from Insolation-Driven Elastic Deformation
NASA Astrophysics Data System (ADS)
Tosi, N.; Cadek, O.; Padovan, S.; Wieczorek, M. A.
2014-12-01
Because of Mercury's high eccentricity, nearly zero obliquity, and 3:2 spin-orbit resonance, the planet's surface is characterized by an average insolation pattern resulting in longitudinal and latitudinal temperature variations that can be expressed in terms of the (2,0), (2,2) and (4,0) harmonics [Vasavada et al., 1999]. We show that the temperature anomalies that propagate from the surface into the deep mantle can be used to interpret the above harmonics of the geoid and topography spectra in terms of the elastic response of the lithosphere and mantle. Using 3D numerical simulations of thermal evolution constrained by MESSENGER observations [Tosi et al., 2013], we first demonstrate that mantle convection either ceased in the past or, at most, is very weak at present, implying that the mantle is in a conductive or nearly-conductive state. As a consequence, the power spectra of the geoid and topography due to present-day mantle convection only are orders of magnitude smaller than the observed ones. We assume therefore that present-day heat transport in the mantle occurs primarily via thermal conduction and numerically solve the diffusion equation in a 3D spherical shell with variable surface temperature and internal heat sources partitioned between the mantle and a crust of variable thickness according to different enrichment factors. We obtain a set of temperature distributions that are employed to calculate the deformation of a compressible elastic layer overlying a quasi-hydrostatic mantle in which shear stresses are assumed to be relaxed and deformation solely induced by thermal and mechanical compressibility. The surface displacements calculated with this model are then compared against the observed topography, while the internal density anomalies and the displacements of the surface and core-mantle boundary are used to calculate Mercury's geoid. We thoroughly explore the parameter space by varying the thickness of the boundary between the elastic and quasi-hydrostatic layers, the lithosphere's elastic parameters and the coefficient of thermal expansion. Our model can reproduce more than 90% of the observed low-degree geoid and topography thereby allowing us to constrain the effective thickness of Mercury's elastic lithosphere.
Limits to Mercury's Magnesium Exosphere from MESSENGER Second Flyby Observations
NASA Technical Reports Server (NTRS)
Sarantos, Menelaos; Killen, Rosemary M.; McClintock, William E.; Bradley, E. Todd; Vervack, Ronald J., Jr.; Benna, Mehdi; Slavin, James A.
2011-01-01
The discovery measurements of Mercury's exospheric magnesium, obtained by the MErcury Surface. Space ENvironment, GEochemistry. and Ranging (MESSENGER) probe during its second Mercury flyby, are modeled to constrain the source and loss processes for this neutral species. Fits to a Chamberlain exosphere reveal that at least two source temperatures are required to reconcile the distribution of magnesium measured far from and near the planet: a hot ejection process at the equivalent temperature of several tens of thousands of degrees K, and a competing, cooler source at temperatures as low as 400 K. For the energetic component, our models indicate that the column abundance that can be attributed to sputtering under constant southward interplanetary magnetic field (IMF) conditions is at least a factor of five less than the rate dictated by the measurements, Although highly uncertain, this result suggests that another energetic process, such as the rapid dissociation of exospheric MgO, may be the main source of the distant neutral component. If meteoroid and micrometeoroid impacts eject mainly molecules, the total amount of magnesium at altitudes exceeding approximately 100 km is found to be consistent with predictions by impact vaporization models for molecule lifetimes of no more than two minutes. Though a sharp increase in emission observed near the dawn terminator region can be reproduced if a single meteoroid enhanced the impact vapor at equatorial dawn, it is much more likely that observations in this region, which probe heights increasingly near the surface, indicate a reservoir of volatile Mg being acted upon by lower-energy source processes.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
Tacey, Sean A.; Xu, Lang; Mavrikakis, Manos; ...
2016-03-25
Here, the atmospheric lifetime of mercury is greatly impacted by redox chemistry resulting from the high deposition rate of reactive mercury (Hg(II)) compared to elemental mercury (Hg 0). Recent laboratory and field studies have observed the reduction of Hg(II) but the chemical mechanism for this reaction has not been identified. Recent laboratory studies have shown that the reduction reaction is heterogeneous and can occur on iron and sodium chloride aerosol surfaces. This study explores the use of density functional theory calculations to discern the reduction pathways of HgCl 2, HgBr 2, Hg(NO 3) 2, and HgSO 4 on clean Fe(110),more » NaCl(100), and NaCl(111) Na surfaces. In doing so, potential energy surfaces have been prepared for the various reduction pathways, indicating that the reduction pathway leading to the production of gas-phase elemental mercury is highly favorable on Fe(110) and NaCl(111) Na. Moreover, the Fe(110) surface requires an external energy source of approximately 0.5 eV to desorb the reduced mercury, whereas the NaCl(111) Na surface requires no energy input. The results indicate that a number of mercury species can be reduced on metallic iron and sodium chloride surfaces, which are known aerosol components, and that a photochemical reaction involving the aerosol surface is likely needed for the reaction to be catalytic.« less
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more...
Sodium Velocity Maps on Mercury
NASA Technical Reports Server (NTRS)
Potter, A. E.; Killen, R. M.
2011-01-01
The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Astrotech Space Operations processing facilities near KSC, workers begin moving NASAs MESSENGER spacecraft into the building MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging is being taken into a high bay clean room where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers get ready to remove the protective cover from NASAs MESSENGER spacecraft. Employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. At the Astrotech Space Operations processing facilities near KSC, workers check the moveable pallet holding NASAs MESSENGER spacecraft. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be taken into a high bay clean room and employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare NASAs MESSENGER spacecraft for transfer to a work stand. There employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Officials Stand Before Mercury-Redstone Booster
NASA Technical Reports Server (NTRS)
2004-01-01
This photograph shows a group of officials standing before a Mercury-Redstone booster at the Marshall Space Flight Center (MSFC). Among those in the photograph are astronauts James Lovell, Walter Schirra, and Gus Grissom. Also pictured is Joachim Kuettner who managed responsibilities of MSFC's Mercury-Redstone program.
NASA Technical Reports Server (NTRS)
Vilas, Faith (Editor); Chapman, Clark R. (Editor); Matthews, Mildred Shapley (Editor)
1988-01-01
Papers are presented on future observations of and missions to Mercury, the photometry and polarimetry of Mercury, the surface composition of Mercury from reflectance spectrophotometry, the Goldstone radar observations of Mercury, the radar observations of Mercury, the stratigraphy and geologic history of Mercury, the geomorphology of impact craters on Mercury, and the cratering record on Mercury and the origin of impacting objects. Consideration is also given to the tectonics of Mercury, the tectonic history of Mercury, Mercury's thermal history and the generation of its magnetic field, the rotational dynamics of Mercury and the state of its core, Mercury's magnetic field and interior, the magnetosphere of Mercury, and the Mercury atmosphere. Other papers are on the present bounds on the bulk composition of Mercury and the implications for planetary formation processes, the building stones of the planets, the origin and composition of Mercury, the formation of Mercury from planetesimals, and theoretical considerations on the strange density of Mercury.
Modelling of mercury emissions from background soils.
Scholtz, M T; Van Heyst, B J; Schroeder, W H
2003-03-20
Emissions of volatile mercury species from natural soils are believed to be a significant contributor to the atmospheric burden of mercury, but only order-of-magnitude estimates of emissions from these sources are available. The scaling-up of mercury flux measurements to regional or global scales is confounded by a limited understanding of the physical, chemical and biochemical processes that occur in the soil, a complex environmental matrix. This study is a first step toward the development of an air-surface exchange model for mercury (known as the mercury emission model (MEM)). The objective of the study is to model the partitioning and movement of inorganic Hg(II) and Hg(0) in open field soils, and to use MEM to interpret published data on mercury emissions to the atmosphere. MEM is a multi-layered, dynamic finite-element soil and atmospheric surface-layer model that simulates the exchange of heat, moisture and mercury between soils and the atmosphere. The model includes a simple formulation of the reduction of inorganic Hg(II) to Hg(0). Good agreement was found between the meteorological dependence of observed mercury emission fluxes, and hourly modelled fluxes, and it is concluded that MEM is able to simulate well the soil and atmospheric processes influencing the emission of Hg(0) to the atmosphere. The heretofore unexplained close correlation between soil temperature and mercury emission flux is fully modelled by MEM and is attributed to the temperature dependence of the Hg(0) Henry's Law coefficient and the control of the volumetric soil-air fraction on the diffusion of Hg(0) near the surface. The observed correlation between solar radiation intensity and mercury flux, appears in part to be due to the surface-energy balance between radiation, and sensible and latent heat fluxes which determines the soil temperature. The modelled results imply that empirical correlations that are based only on flux chamber data, may not extend to the open atmosphere for all weather scenarios.
Immobilization of Hg(II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon.
Kim, Eun-Ah; Seyfferth, Angelia L; Fendorf, Scott; Luthy, Richard G
2011-01-01
An effective mercury removal method using polymer-coated activated carbon was studied for possible use in water treatment. In order to increase the affinity of activated carbon for mercury, a sulfur-rich compound, polysulfide-rubber (PSR) polymer, was effectively coated onto the activated carbon. The polymer was synthesized by condensation polymerization between sodium tetrasulfide and 1,2-dichloroethane in water. PSR-mercury interactions and Hg-S bonding were elucidated from x-ray photoelectron spectroscopy, and Fourier transform infra-red spectroscopy analyses. The sulfur loading levels were controlled by the polymer dose during the coating process and the total surface area of the activated carbon was maintained for the sulfur loading less than 2 wt%. Sorption kinetic studies showed that PSR-coated activated carbon facilitates fast reaction by providing a greater reactive surface area than PSR alone. High sulfur loading on activated carbon enhanced mercury adsorption contributing to a three orders of magnitude reduction in mercury concentration. μ-X-ray absorption near edge spectroscopic analyses of the mercury bound to activated carbon and to PSR on activated carbon suggests the chemical bond with mercury on the surface is a combination of Hg-Cl and Hg-S interaction. The pH effect on mercury removal and adsorption isotherm results indicate competition between protons and mercury for binding to sulfur at low pH. Copyright © 2010. Published by Elsevier Ltd.
Korth, Haje; Tsyganenko, Nikolai A; Johnson, Catherine L; Philpott, Lydia C; Anderson, Brian J; Al Asad, Manar M; Solomon, Sean C; McNutt, Ralph L
2015-06-01
Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT R M 3 , where R M is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross-tail current sheet. The cross-tail current is described by a disk-shaped current near the planet and a sheet current at larger (≳ 5 R M ) antisunward distances. The tail currents are constrained by minimizing the root-mean-square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause.
Tsyganenko, Nikolai A.; Johnson, Catherine L.; Philpott, Lydia C.; Anderson, Brian J.; Al Asad, Manar M.; Solomon, Sean C.; McNutt, Ralph L.
2015-01-01
Abstract Accurate knowledge of Mercury's magnetospheric magnetic field is required to understand the sources of the planet's internal field. We present the first model of Mercury's magnetospheric magnetic field confined within a magnetopause shape derived from Magnetometer observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. The field of internal origin is approximated by a dipole of magnitude 190 nT RM 3, where RM is Mercury's radius, offset northward by 479 km along the spin axis. External field sources include currents flowing on the magnetopause boundary and in the cross‐tail current sheet. The cross‐tail current is described by a disk‐shaped current near the planet and a sheet current at larger (≳ 5 RM) antisunward distances. The tail currents are constrained by minimizing the root‐mean‐square (RMS) residual between the model and the magnetic field observed within the magnetosphere. The magnetopause current contributions are derived by shielding the field of each module external to the magnetopause by minimizing the RMS normal component of the magnetic field at the magnetopause. The new model yields improvements over the previously developed paraboloid model in regions that are close to the magnetopause and the nightside magnetic equatorial plane. Magnetic field residuals remain that are distributed systematically over large areas and vary monotonically with magnetic activity. Further advances in empirical descriptions of Mercury's magnetospheric external field will need to account for the dependence of the tail and magnetopause currents on magnetic activity and additional sources within the magnetosphere associated with Birkeland currents and plasma distributions near the dayside magnetopause. PMID:27656335
Yin, Kun; Lv, Min; Wang, Qiaoning; Wu, Yixuan; Liao, Chunyang; Zhang, Weiwei; Chen, Lingxin
2016-10-15
Mercury is a toxic heavy metal and presents significant threats to organisms and natural ecosystems. Recently, the mercury remediation as well as its detection by environmental-friendly biotechnology has received increasing attention. In this study, carboxylesterase E2 from mercury-resistant strain Pseudomonas aeruginosa PA1 has been successfully displayed on the outer membrane of Escherichia coli Top10 bacteria to simultaneously adsorb and detect mercury ion (Hg(2+)). The transmission electron microscopy analysis shows that Hg(2+) can be absorbed by carboxylesterase E2 and accumulated on the outer membrane of surface-displayed E. coli bacteria. The adsorption of Hg(2+) followed a physicochemical, equilibrated and saturatable mechanism, which well fits the traditional Langmuir adsorption model. The surface-displayed system can be regenerated through regulating pH values. As its activity can be inhibited by Hg(2+), carboxylesterase E2 has been used to detect the concentration of Hg(2+) in water samples. The developed surface display system will be of great potential in the simultaneous bioremediation and biodetection of environmental mercury pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Color Image of Mercury from NASA's MESSENGER Satellite
2017-12-08
NASA image acquired September 3, 2011 Dominici crater, the very bright crater to the top of this image, exhibits bright rays and contains hollows. This crater lies upon the peak ring of Homer Basin, a very degraded peak ring basin that has been filled by volcanism. This image contains several examples of craters that have excavated materials from depth that are spectrally distinct from the surface volcanic layers, providing windows into the subsurface. MESSENGER scientists are estimating the approximate depths of these spectrally distinct materials by applying knowledge of how impacts excavate material during the cratering process. The 1000, 750, and 430 nm bands of the Wide Angle Camera are displayed in red, green, and blue, respectively. This image was acquired as a high-resolution targeted observation. Targeted observations are images of a small area on Mercury's surface at resolutions much higher than the 250-meter/pixel (820 feet/pixel) morphology base map or the 1-kilometer/pixel (0.6 miles/pixel) color base map. It is not possible to cover all of Mercury's surface at this high resolution during MESSENGER's one-year mission, but several areas of high scientific interest are generally imaged in this mode each week. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MDIS is scheduled to acquire more than 75,000 images in support of MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars
NASA Technical Reports Server (NTRS)
Murray, B.; Malin, M. C.; Greeley, R.
1981-01-01
The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.
Experimental Investigation of Chromium Behavior During Mercury's Differentiation
NASA Astrophysics Data System (ADS)
Boujibar, A.; Nittler, L. R.; Chabot, N.; McCubbin, F. M.; Righter, K.; Vander Kaaden, K. E.; McCoy, T. J.
2018-05-01
We use experimental data on Cr partitioning and its concentration on Mercury's surface to constrain on Mercury's oxidation state. We found that Mercury's bulk Cr composition can be chondritic and its core segregated at an fO2 of IW- 4.5 to IW-3.
1959-01-01
Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.
NASA Astrophysics Data System (ADS)
Rutter, A. P.; Schauer, J. J.; Shafer, M. M.; Olson, M.; Robinson, M.; Vanderveer, P.; Creswell, J. E.; Parman, A.; Mallek, J.; Gorski, P.
2009-12-01
Andrew P. Rutter (1) * *, James J, Schauer (1,2) *, Martin M. Shafer(1,2), Michael R. Olson (1), Michael Robinson (1), Peter Vanderveer (3), Joel Creswell (1), Justin L. Mallek (1), Andrew M. Parman (1) (1) Environmental Chemistry and Technology Program, 660 N. Park St, Madison, WI 53705. (2) Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, Madison, WI 53718. (3) Biotron, University of Wisconsin - Madison, 2115 Observatory Drive, Madison, WI 53706 * Correspond author(jjschauer@wisc.edu) * *Presenting author (aprutter@wisc.edu) Abstract Gaseous elemental mercury (GEM) is the predominant component of atmospheric mercury outside of arctic depletion events, and locations where anthropogenic point sources are not influencing atmospheric concentrations. GEM constitutes greater than 99% of the mercury mass in most rural and remote locations. While dry and wet deposition of atmospheric mercury is thought to be dominated by oxidized mercury (a.k.a. reactive mercury), only small GEM uptake to environmental surfaces could impact the input of mercury to terrestrial and aquatic ecosystems. Dry deposition and subsequent re-emission of gaseous elemental mercury is a pathway from the atmosphere that remains only partially understood from a mechanistic perspective. In order to properly model GEM dry deposition and re-emission an understanding of its dependence on irradiance, temperature, and relative humidity must be measured and parameterized for a broad spectrum of environmental surfaces colocated with surrogate deposition surfaces used to make field based dry deposition measurements. Measurements of isotopically enriched GEM dry deposition were made with a variety of environmental surfaces in a controlled environment room at the University of Wisconsin Biotron. The experimental set up allowed dry deposition components which are not easily separated in the field to be decoupled. We were able to isolate surface transfer processes from variabilities caused by atmospheric turbulence and wind speed. GEM enriched in stable isotope 198 (GEM-198) was released into the room from source at elevated but environmentally relevant concentrations of GEM-198 for several days. Uptake of GEM-198 from deciduous and conifer trees, grass turf, 3 types of soil, sand, concrete, asphalt, and adsorbent coated deposition coupons were quantified over several days. Exposures were conducted between 10oC and 30oC, in dark and light conditions. Mercury was recovered from the samples using acidic digestions and surface leaches, and then analyzed for the content of GEM-198 by high resolution ICPMS. Experimental results demonstrated that uptake by White Ash, White Spruce, and Kentucky bluegrass were significantly higher than uptakes measured for two Wisconsin soils, peat, sand, concrete and asphalt at all of the conditions studied. Deposition resistances for surface transfer processes for were calculated for each of the substrates across the conditions studied for use in atmospheric model simulations.
Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition
Harris, R.C.; Rudd, J.W.M.; Amyot, M.; Babiarz, Christopher L.; Beaty, K.G.; Blanchfield, P.J.; Bodaly, R.A.; Branfireun, B.A.; Gilmour, C.C.; Graydon, J.A.; Heyes, A.; Hintelmann, H.; Hurley, J.P.; Kelly, C.A.; Krabbenhoft, D.P.; Lindberg, S.E.; Mason, R.P.; Paterson, M.J.; Podemski, C.L.; Robinson, A.; Sandilands, K.A.; Southworthn, G.R.; St. Louis, V.L.; Tate, M.T.
2007-01-01
Methylmercury contamination of fisheries from centuries of industrial atmospheric emissions negatively impacts humans and wild-life worldwide. The response of fish methylmercury concentrations to changes in mercury deposition has been difficult to establish because sediments/soils contain large pools of historical contamination, and many factors in addition to deposition affect fish mercury. To test directly the response of fish contamination to changing mercury deposition, we conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed us to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first 3 years of study. Essentially all of the increase in fish methylmercury concentrations came from mercury deposited directly to the lake surface. In contrast, <1% of the mercury isotope deposited to the watershed was exported to the lake. Steady state was not reached within 3 years. Lake mercury isotope concentrations were still rising in lake biota, and watershed mercury isotope exports to the lake were increasing slowly. Therefore, we predict that mercury emissions reductions will yield rapid (years) reductions in fish methylmercury concentrations and will yield concomitant reductions in risk. However, a full response will be delayed by the gradual export of mercury stored in watersheds. The rate of response will vary among lakes depending on the relative surface areas of water and watershed. ?? 2007 by The National Academy of Sciences of the USA.
Questions about Mercury's role in comparative planetary geophysics
NASA Technical Reports Server (NTRS)
Chapman, C. R.; Weidenschilling, S. J.; Davis, D. R.; Greenberg, R.; Leake, M. A.
1985-01-01
Problems which have arisen in formulating a mutually consistent picture of Mercury's evolution are outlined. It appears that one or more of the following widely adopted assumptions are wrong about Mercury: (1) its original composition at least approximately resulted from equilibrium condensation; (2) its magnetic field arises from a still-active dynamo; (3) its thermal evolution should have yielded early core formation followed by cooling and a global contraction approaching 20 km in the planet's radius; (4) Mercury's surface is basaltic and the intercrater plains are of volcanic origin. It is suggested that Mercury's role in comparative planetology be reevaluated in the context of an alternative timescale based on the possibility that Mercury was subjected to a continuing source of cratering projectiles over recent aeons, which have not impacted the other terrestrial planets. Although such vulcanoids have not yet been discovered, the evolution of Mercury's orbit due to secular perturbations could well have led to a prolonged period of sweeping out any intra-Mercurian planetesimals that were originally present. Mercury's surface could be younger than previously believed, which explains why Mercury's core is still molten.
2016-11-07
Inside the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex, this display includes the spacesuit worn by astronaut Gus Grissom during his Mercury 4 suborbital flight of July 21, 1961. The new facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.
NASA Technical Reports Server (NTRS)
Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.
2015-01-01
Mercury is known as an endmember planet as it is the most reduced terrestrial planet with the highest core/mantle ratio. MESSENGER spacecraft has shown that its surface is FeO-poor (2-4 wt%) and Srich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. Moreover, high resolution images revealed large volcanic plains and abundant pyroclastic deposits, suggesting important melting stages of the Mercurian mantle. This interpretation was confirmed by the high crustal thickness (up to 100 km) derived from Mercury's gravity field. This is also corroborated by a recent experimental result that showed that Mercurian partial melts are expected to be highly buoyant within the Mercurian mantle and could have risen from depths as high as the core-mantle boundary. In addition MESSENGER spacecraft provided relatively precise data on major elemental compositions of Mercury's surface. These results revealed important chemical and mineralogical heterogeneities that suggested several stages of differentiation and re-melting processes. However, the extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Therefore, in this study, we investigated the processes that lead to the various compositions of Mercury's surface. Melting experiments with bulk Mercury-analogue compositions were performed and compared to the compositions measured by MESSENGER.
Influence of atmospheric deposition on Okefenokee National Wildlife Refuge
Winger, P.V.; Lasier, P.J.; Jackson, B.P.
1995-01-01
Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.
NASA Astrophysics Data System (ADS)
Winslow, R. M.; Johnson, C. L.; Anderson, B. J.; Gershman, D. J.; Raines, J. M.; Lillis, R. J.; Korth, H.; Slavin, J. A.; Solomon, S. C.; Zurbuchen, T.
2014-12-01
The application of a recently developed proton-reflection magnetometry technique to MESSENGER spacecraft observations at Mercury has yielded two significant findings. First, loss-cone observations directly confirm particle precipitation to Mercury's surface and indicate that solar wind plasma persistently bombards the planet not only in the magnetic cusp regions but over a large fraction of the southern hemisphere. Second, the inferred surface field strengths independently confirm the north-south asymmetry in Mercury's global magnetic field structure first documented from observations of magnetic equator crossings. Here we extend this work with 1.5 additional years of observations (i.e., to 2.5 years in all) to further probe Mercury's surface magnetic field and better resolve proton flux precipitation to the planet's surface. We map regions where proton loss cones are observed; these maps indicate regions where protons precipitate directly onto the surface. The augmentation of our data set over that used in our original study allows us to examine the proton loss cones in cells of dimension 10° latitude by 20° longitude in Mercury body-fixed coordinates. We observe a transition from double-sided to single-sided loss cones in the pitch-angle distributions; this transition marks the boundary between open and closed field lines. At the surface this boundary lies between 60° and 70°N. Our observations allow the estimation of surface magnetic field strengths in the northern cusp region and the calculation of incident proton fluxes to both hemispheres. In the northern cusp, our regional-scale observations are consistent with an offset dipole field and a dipole moment of 190 nT RM3, where RM is Mercury's radius, implying that any regional-scale variations in surface magnetic field strengths are either weak relative to the dipole field or occur at length scales smaller than the resolution of our observations (~300 km). From the global proton flux map (north of 40° S) derived from proton loss-cone measurements, we find an increase in proton flux near 0° and 180° planetary longitudes. This pattern is consistent with that expected from the combined effects of increased incident solar wind density at these longitudes at local noon (given the 3:2 spin-orbit resonance of Mercury) and phasing of MESSENGER's orbit.
Characterizing dry deposition of mercury in urban runoff
Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.
2007-01-01
Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.
NASA Technical Reports Server (NTRS)
Dzurisin, D.
1977-01-01
Volcanic and tectonic implications of the surface morphology of Mercury are discussed. Mercurian scarps, ridges, troughs, and other lineaments are described and classified as planimetrically linear, arcuate, lobate, or irregular. A global pattern of lineaments is interpreted to reflect modification of linear crustal joints formed in response to stresses induced by tidal spindown. Large arcuate scarps on Mercury most likely record a period of compressional tectonism near the end of heavy bombardment. Shrinkage owing to planetary cooling is the mechanism preferred for their production. Measurements of local normal albedo are combined with computer-generated photometric maps of Mercury to provide constraints on the nature of surface materials and processes. If the mercurian surface obeys the average lunar photometric function, its normal albedo at 554 nm is .16 + or - .03.
Merging of the USGS Atlas of Mercury 1:5,000,000 Geologic Series
NASA Technical Reports Server (NTRS)
Frigeri, A.; Federico, C.; Pauselli, C.; Coradini, A.
2008-01-01
After 30 years, the planet Mercury is going to give us new information. The NASA MESSENGER [1] already made its first successful flyby on December 2007 while the European Space Agency and the Japanese Space Agency ISAS/JAXA are preparing the upcoming mission BepiColombo [2]. In order to contribute to current and future analyses on the geology of Mercury, we have started to work on the production of a single digital geologic map of Mercury derived from the merging process of the geologic maps of the Atlas of Mercury, produced by the United States Geological Survey, based on Mariner 10 data. The aim of this work is to merge the nine maps so that the final product reflects as much as possible the original work. Herein we describe the data we used, the working environment and the steps made for producing the final map.
Thermal protection systems manned spacecraft flight experience
NASA Technical Reports Server (NTRS)
Curry, Donald M.
1992-01-01
Since the first U.S. manned entry, Mercury (May 5, 1961), seventy-five manned entries have been made resulting in significant progress in the understanding and development of Thermal Protection Systems (TPS) for manned rated spacecraft. The TPS materials and systems installed on these spacecraft are compared. The first three vehicles (Mercury, Gemini, Apollo) used ablative (single-use) systems while the Space Shuttle Orbiter TPS is a multimission system. A TPS figure of merit, unit weight lb/sq ft, illustrates the advances in TPS material performance from Mercury (10.2 lb/sq ft) to the Space Shuttle (1.7 lb/sq ft). Significant advances have been made in the design, fabrication, and certification of TPS on manned entry vehicles (Mercury through Shuttle Orbiter). Shuttle experience has identified some key design and operational issues. State-of-the-art ceramic insulation materials developed in the 1970's for the Space Shuttle Orbiter have been used in the initial designs of aerobrakes. This TPS material experience has identified the need to develop a technology base from which a new class of higher temperature materials will emerge for advanced space transportation vehicles.
McClintock, William E; Vervack, Ronald J; Bradley, E Todd; Killen, Rosemary M; Mouawad, Nelly; Sprague, Ann L; Burger, Matthew H; Solomon, Sean C; Izenberg, Noam R
2009-05-01
Mercury is surrounded by a tenuous exosphere that is supplied primarily by the planet's surface materials and is known to contain sodium, potassium, and calcium. Observations by the Mercury Atmospheric and Surface Composition Spectrometer during MESSENGER's second Mercury flyby revealed the presence of neutral magnesium in the tail (anti-sunward) region of the exosphere, as well as differing spatial distributions of magnesium, calcium, and sodium atoms in both the tail and the nightside, near-planet exosphere. Analysis of these observations, supplemented by observations during the first Mercury flyby, as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.
2004-06-28
KENNEDY SPACE CENTER, FLA. - - After the deployment test of two solar panels at Astrotech in Titusville, Fla., technicians with The Johns Hopkins University Applied Physics Laboratory (APL) prepare the MESSESNGER spacecraft for a move to a hazardous processing facility in preparation for loading the spacecraft’s complement of hypergolic propellants. The solar arrays will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by APL in Laurel, Md.
2004-06-28
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., NASA Mission Integration Manager Cheryle Mako and NASA Launch Site Integration Manager John Hueckel talk before the deployment of the solar array panels on the MESSENGER spacecraft behind them. The solar arrays will provide MESSENGER’s power on its journey to Mercury. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2017-12-08
This colorful view of Mercury was produced by using images from the color base map imaging campaign during MESSENGER's primary mission. These colors are not what Mercury would look like to the human eye, but rather the colors enhance the chemical, mineralogical, and physical differences between the rocks that make up Mercury's surface. To watch a movie of this colorful view of Mercury as a spinning globe go here: www.flickr.com/photos/gsfc/8497927473 Young crater rays, extending radially from fresh impact craters, appear light blue or white. Medium- and dark-blue areas are a geologic unit of Mercury's crust known as the "low-reflectance material", thought to be rich in a dark, opaque mineral. Tan areas are plains formed by eruption of highly fluid lavas. The giant Caloris basin is the large circular tan feature located just to the upper right of center of the image. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Myrbo, A.; Swain, E. B.; Johnson, N. W.; Engstrom, D. R.; Pastor, J.; Dewey, B.; Monson, P.; Brenner, J.; Dykhuizen Shore, M.; Peters, E. B.
2017-11-01
Microbial sulfate reduction (MSR) in both freshwater and marine ecosystems is a pathway for the decomposition of sedimentary organic matter (OM) after oxygen has been consumed. In experimental freshwater wetland mesocosms, sulfate additions allowed MSR to mineralize OM that would not otherwise have been decomposed. The mineralization of OM by MSR increased surface water concentrations of ecologically important constituents of OM: dissolved inorganic carbon, dissolved organic carbon, phosphorus, nitrogen, total mercury, and methylmercury. Increases in surface water concentrations, except for methylmercury, were in proportion to cumulative sulfate reduction, which was estimated by sulfate loss from the surface water into the sediments. Stoichiometric analysis shows that the increases were less than would be predicted from ratios with carbon in sediment, indicating that there are processes that limit P, N, and Hg mobilization to, or retention in, surface water. The highest sulfate treatment produced high levels of sulfide that retarded the methylation of mercury but simultaneously mobilized sedimentary inorganic mercury into surface water. As a result, the proportion of mercury in the surface water as methylmercury peaked at intermediate pore water sulfide concentrations. The mesocosms have a relatively high ratio of wall and sediment surfaces to the volume of overlying water, perhaps enhancing the removal of nutrients and mercury to periphyton. The presence of wild rice decreased sediment sulfide concentrations by 30%, which was most likely a result of oxygen release from the wild rice roots. An additional consequence of the enhanced MSR was that sulfate additions produced phytotoxic levels of sulfide in sediment pore water.
A new planetary mapping for future space missions
NASA Astrophysics Data System (ADS)
Karachevtseva, Irina; Kokhanov, Alexander; Rodionova, Janna; Zubarev, Anatoliy; Nadezhdina, Irina; Kreslavsky, Mikhail; Oberst, Jürgen
2015-04-01
The wide studies of Solar system, including different planetary bodies, were announced by new Russian space program. Their geodesy and cartography support provides by MIIGAiK Extraterrestrial Laboratory (http://mexlab.miigaik.ru/eng) in frames of the new project "Studies of Fundamental Geodetic Parameters and Topography of Planets and Satellites". The objects of study are satellites of the outer planets (satellites of Jupiter - Europa, Calisto and Ganymede; Saturnine satellite Enceladus), some planets (Mercury and Mars) and the satellites of the terrestrial planets - Phobos (Mars) and the Moon (Earth). The new research project, which started in 2014, will address the following important scientific and practical tasks: - Creating new three-dimensional geodetic control point networks of satellites of the outer planets using innovative photogrammetry techniques; - Determination of fundamental geodetic parameters and study size, shape, and spin parameters and to create the basic framework for research of their surfaces; - Studies of relief of planetary bodies and comparative analysis of general surface characteristics of the Moon, Mars, and Mercury, as well as studies of morphometric parameters of volcanic formations on the Moon and Mars; - Modeling of meteoritic bombardment of celestial bodies and the study of the dynamics of particle emissions caused by a meteorite impacts; - Development of geodatabase for studies of planetary bodies, including creation of object catalogues, (craters and volcanic forms, etc.), and thematic mapping using GIS technology. The significance of the project is defined both by necessity of obtaining fundamental characteristics of the Solar System bodies, and practical tasks in preparation for future Russian and international space missions to the Jupiter system (Laplace-P and JUICE), the Moon (Luna-Glob and Luna-Resource), Mars (Exo-Mars), Mercury (Bepi-Colombo), and possible mission to Phobos (project Boomerang). For cartographic support of future missions, we have created various maps as results of first year research: new base maps of Ganymede, including a hypsometric map and a global surface map; the base and thematic maps of Phobos which were updated using new image data sets from Mars Express; a newest map of topographic roughness of Mercury (for north polar area) [2] and a map of topographic roughness of the Moon using laser altimeter data processing obtained by MESSENGER (MLA) and LRO (LOLA) for their comparative analyses; a new global hypsometric map of the Moon. Published version of the maps will be presented at the conference, and all data products using for mapping will be available via MExLab Geoportal (http://cartsrv.mexlab.ru/geoportal/#body/). Acknowledgments. This work was carried out in MIIGAiK and supported by Russian Science Foundation, project #14-22-00197. References: [1] http://mexlab.miigaik.ru/eng/ [2] Kreslavsky et al., Geophys. Res.Lett., 41, doi:10.1002/2014GL062162 [3] http://cartsrv.mexlab.ru/geoportal/#body/
Lu, Y.; Rostam-Abadi, M.; Chang, R.; Richardson, C.; Paradis, J.
2007-01-01
Nine fly ash samples were collected from the particulate collection devices (baghouse or electrostatic precipitator) of four full-scale pulverized coal (PC) utility boilers burning eastern bituminous coals (EB-PC ashes) and three cyclone utility boilers burning either Powder River Basin (PRB) coals or PRB blends,(PRB-CYC ashes). As-received fly ash samples were mechanically sieved to obtain six size fractions. Unburned carbon (UBC) content, mercury content, and Brunauer-Emmett-Teller (BET)-N2 surface areas of as-received fly ashes and their size fractions were measured. In addition, UBC particles were examined by scanning electron microscopy, high-resolution transmission microscopy, and thermogravimetry to obtain information on their surface morphology, structure, and oxidation reactivity. It was found that the UBC particles contained amorphous carbon, ribbon-shaped graphitic carbon, and highly ordered graphite structures. The mercury contents of the UBCs (Hg/UBC, in ppm) in raw ash samples were comparable to those of the UBC-enriched samples, indicating that mercury was mainly adsorbed on the UBC in fly ash. The UBC content decreased with a decreasing particle size range for all nine ashes. There was no correlation between the mercury and UBC contents of different size fractions of as-received ashes. The mercury content of the UBCs in each size fraction, however, generally increased with a decreasing particle size for the nine ashes. The mercury contents and surface areas of the UBCs in the PRB-CYC ashes were about 8 and 3 times higher than UBCs in the EB-PC ashes, respectively. It appeared that both the particle size and surface area of UBC could contribute to mercury capture. The particle size of the UBC in PRB-CYC ash and thus the external mass transfer was found to be the major factor impacting the mercury adsorption. Both the particle size and surface reactivity of the UBC in EB-PC ash, which generally had a lower carbon oxidation reactivity than the PRB-PC ashes, appeared to be important for the mercury adsorption. ?? 2007 American Chemical Society.
Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L
2011-09-15
Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.
NASA's Space Lidar Measurements of Earth and Planetary Surfaces
NASA Technical Reports Server (NTRS)
Abshire, James B.
2010-01-01
A lidar instrument on a spacecraft was first used to measure planetary surface height and topography on the Apollo 15 mission to the Moon in 1971, The lidar was based around a flashlamp-pumped ruby laser, and the Apollo 15-17 missions used them to make a few thousand measurements of lunar surface height from orbit. With the advent of diode pumped lasers in the late 1980s, the lifetime, efficiency, resolution and mass of lasers and space lidar all improved dramatically. These advances were utilized in NASA space missions to map the shape and surface topography of Mars with > 600 million measurements, demonstrate initial space measurements of the Earth's topography, and measured the detailed shape of asteroid. NASA's ICESat mission in Earth orbit just completed its polar ice measurement mission with almost 2 billion measurements of the Earth's surface and atmosphere, and demonstrated measurements to Antarctica and Greenland with a height resolution of a few em. Space missions presently in cruise phase and in operation include those to Mercury and a topographic mapping mission of the Moon. Orbital lidar also have been used in experiments to demonstrate laser ranging over planetary distances, including laser pulse transmission from Earth to Mars orbit. Based on the demonstrated value of the measurements, lidar is now the preferred measurement approach for many new scientific space missions. Some missions planned by NASA include a planetary mission to measure the shape and dynamics of Europa, and several Earth orbiting missions to continue monitoring ice sheet heights, measure vegetation heights, assess atmospheric CO2 concentrations, and to map the Earth surface topographic heights with 5 m spatial resolution. This presentation will give an overview of history, ongoing work, and plans for using space lidar for measurements of the surfaces of the Earth and planets.
PRODUCTION AND LOSS OF DISSOLVED GASEOUS MERCURY IN COASTAL SEAWATER (R824778)
The formation of dissolved gaseous mercury (DGM, mainly
composed of elemental mercury, Hg0) in the surface
ocean
and its subsequent removal through volatilization is an
important component of the global mercury (Hg) cycle.
We studied DGM production an...
In the Republic of Kazakhstan there are some regions contaminated with mercury as a result of technogenic releases from industrial enterprises. The mercury ingress into the environment has resulted in significant pollution of groundwater and surface water with soluble mercury com...
Dr. von Braun with Original Mercury Astronauts
NASA Technical Reports Server (NTRS)
1959-01-01
Dr. Wernher von Braun, Director of the Army Ballistic Missile Agency's (ABMA) Development Operations Division, poses with the original Mercury astronauts in ABMA's Fabrication Laboratory during a 1959 visit. Inspecting Mercury-Redstone hardware are from left to right, Alan Shepard, Donald Deke Slayton, Virgil Gus Grissom, von Braun, Gordon Cooper, Wally Schirra, John Glenn, and Scott Carpenter. Project Mercury officially began October 7, 1958 as the United States' first manned space program.
Corbitt, Elizabeth S.; Jacob, Daniel J.; Holmes, Christopher D.; Streets, David G.; Sunderland, Elsie M.
2011-01-01
Global policies regulating anthropogenic mercury require an understanding of the relationship between emitted and deposited mercury on intercontinental scales. Here we examine source-receptor relationships for present-day conditions and for four 2050 IPCC scenarios encompassing a range of economic development and environmental regulation projections. We use the GEOS-Chem global model to track mercury from its point of emission through rapid cycling in surface ocean and land reservoirs to its accumulation in longer-lived ocean and soil pools. Deposited mercury has a local component (emitted HgII, lifetime of 3.7 days against deposition) and a global component (emitted Hg0, lifetime of 6 months against deposition). Fast recycling of deposited mercury through photoreduction of HgII and re-emission of Hg0 from surface reservoirs (ice, land, surface ocean) increases the effective lifetime of anthropogenic mercury to 9 months against loss to legacy reservoirs (soil pools and the subsurface ocean). This lifetime is still sufficiently short that source-receptor relationships have a strong hemispheric signature. Asian emissions are the largest source of anthropogenic deposition to all ocean basins, though there is also regional source influence from upwind continents. Current anthropogenic emissions account for only about one-third of mercury deposition to the global ocean with the remainder from natural and legacy sources. However, controls on anthropogenic emissions would have the added benefit of reducing the legacy mercury re-emitted to the atmosphere. Better understanding is needed of the timescales for transfer of mercury from active pools to stable geochemical reservoirs. PMID:22050654
Melting of the Primitive Mercurian Mantle, Insights into the Origin of Its Surface Composition
NASA Technical Reports Server (NTRS)
Boujibar, A.; Righter, K.; Rapp, J. F.; Ross, D. K.; Pando, K. M.; Danielson, L. R.; Fontaine, E.
2016-01-01
Recent findings of the MESSENGER mission on Mercury have brought new evidence for its reducing nature, widespread volcanism and surface compositional heteregeneity. MESSENGER also provided major elemental ratios of its surface that can be used to infer large-scale differentiation processes and the thermal history of the planet. Mercury is known as being very reduced, with very low Fe-content and high S and alkali contents on its surface. Its bulk composition is therefore likely close to EH enstatite chondrites. In order to elucidate the origin of the chemical diversity of Mercury's surface, we determined the melting properties of EH enstatite chondrites, at pressures between 1 bar and 3 GPa and oxygen fugacity of IW-3 to IW-5, using piston-cylinder experiments, combined with a previous study on EH4 melting at 1 bar. We found that the presence of Ca-rich sulfide melts induces significant decrease of Ca-content in silicate melts at low pressure and low degree of melting (F). Also at pressures lower than 3 GPa, the SiO2-content decreases with F, while it increases at 3 GPa. This is likely due to the chemical composition of the bulk silicate which has a (Mg+Fe+Ca)/Si ratio very close to 1 and to the change from incongruent to congruent melting of enstatite. We then tested whether the various chemical compositions of Mercury's surface can result from mixing between two melting products of EH chondrites. We found that the majority of the geochemical provinces of Mercury's surface can be explained by mixing of two melts, with the exception of the High-Al plains that require an Al-rich source. Our findings indicate that Mercury's surface could have been produced by polybaric melting of a relatively primitive mantle.
Modeling MESSENGER Observations of Calcium in Mercury's Exosphere
NASA Technical Reports Server (NTRS)
Burger, Matthew Howard; Killen, Rosemary M.; McClintock, William E.; Vervack, Ronald J., Jr.; Merkel, Aimee W.; Sprague, Ann L.; Sarantos, Menelaos
2012-01-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) on the MESSENGER spacecraft has made the first high-spatial-resolution observations of exospheric calcium at Mercury. We use a Monte Carlo model of the exosphere to track the trajectories of calcium atoms ejected from the surface until they are photoionized, escape from the system, or stick to the surface. This model permits an exploration of exospheric source processes and interactions among neutral atoms, solar radiation, and the planetary surface. The MASCS data have suggested that a persistent, high-energy source of calcium that was enhanced in the dawn, equatorial region of Mercury was active during MESSENGER's three flybys of Mercury and during the first seven orbits for which MASCS obtained data. The total Ca source rate from the surface varied between 1.2x10(exp 23) and 2.6x10(exp 23) Ca atoms/s, if its temperature was 50,000 K. The origin of this high-energy, asymmetric source is unknown, although from this limited data set it does not appear to be consistent with micrometeoroid impact vaporization, ion sputtering, electron-stimulated desorption, or vaporization at dawn of material trapped on the cold nightside.
The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.
2005-12-01
The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.
Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury
NASA Astrophysics Data System (ADS)
Simioni, Emanuele; Da Deppo, Vania; Re, Cristina; Naletto, Giampiero; Martellato, Elena; Borrelli, Donato; Dami, Michele; Aroldi, Gianluca; Ficai Veltroni, Iacopo; Cremonese, Gabriele
2016-07-01
The ESA-JAXA mission BepiColombo that will be launched in 2018 is devoted to the observation of Mercury, the innermost planet of the Solar System. SIMBIOSYS is its remote sensing suite, which consists of three instruments: the High Resolution Imaging Channel (HRIC), the Visible and Infrared Hyperspectral Imager (VIHI), and the Stereo Imaging Channel (STC). The latter will provide the global three dimensional reconstruction of the Mercury surface, and it represents the first push-frame stereo camera on board of a space satellite. Based on a new telescope design, STC combines the advantages of a compact single detector camera to the convenience of a double direction acquisition system; this solution allows to minimize mass and volume performing a push-frame imaging acquisition. The shared camera sensor is divided in six portions: four are covered with suitable filters; the others, one looking forward and one backwards with respect to nadir direction, are covered with a panchromatic filter supplying stereo image pairs of the planet surface. The main STC scientific requirements are to reconstruct in 3D the Mercury surface with a vertical accuracy better than 80 m and performing a global imaging with a grid size of 65 m along-track at the periherm. Scope of this work is to present the on-ground geometric calibration pipeline for this original instrument. The selected STC off-axis configuration forced to develop a new distortion map model. Additional considerations are connected to the detector, a Si-Pin hybrid CMOS, which is characterized by a high fixed pattern noise. This had a great impact in pre-calibration phases compelling to use a not common approach to the definition of the spot centroids in the distortion calibration process. This work presents the results obtained during the calibration of STC concerning the distortion analysis for three different temperatures. These results are then used to define the corresponding distortion model of the camera.
The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER
NASA Astrophysics Data System (ADS)
Izenberg, Noam R.; Klima, Rachel L.; Murchie, Scott L.; Blewett, David T.; Holsclaw, Gregory M.; McClintock, William E.; Malaret, Erick; Mauceri, Calogero; Vilas, Faith; Sprague, Ann L.; Helbert, Jörn; Domingue, Deborah L.; Head, James W.; Goudge, Timothy A.; Solomon, Sean C.; Hibbitts, Charles A.; Dyar, M. Darby
2014-01-01
The MESSENGER spacecraft's Mercury Atmospheric and Surface Composition Spectrometer (MASCS) obtained more than 1.6 million reflectance spectra of Mercury's surface from near-ultraviolet to near-infrared wavelengths during the first year of orbital operations. A global analysis of spectra in the wavelength range 300-1450 nm shows little regional variation in absolute reflectance or spectral slopes and a lack of mineralogically diagnostic absorptions. In particular, reflectance spectra show no clear evidence for an absorption band centered near 1 μm that would be associated with the presence of ferrous iron in silicates. There is, however, evidence for an ultraviolet absorption possibly consistent with a very low iron content (2-3 wt% FeO or less) in surface silicates and for the presence of small amounts of metallic iron or other opaque minerals in the form of nano- or micrometer-sized particles. These findings are consistent with MESSENGER X-ray and gamma-ray measurements of Mercury's surface iron abundance. Although X-ray and gamma-ray observations indicate higher than expected quantities of sulfur on the surface, reflectance spectra show no absorption bands diagnostic of sulfide minerals. Whereas there is strong evidence of water ice in permanently shadowed craters near Mercury's poles, MASCS spectra provide no evidence for hydroxylated materials near permanently shadowed craters.
2016-11-07
Inside the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex, interactive features include the original consoles of the Mercury Mission Control room with the world map where capsules paths were followed between tracking stations. The new facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.
The use of radar and visual observations to characterize the surface structure of the planet Mercury
NASA Technical Reports Server (NTRS)
Clark, P. E.; Kobrick, M.; Jurgens, R. F.
1985-01-01
An analysis is conducted of available topographic profiles and scattering parameters derived from earth-based S- and X-band radar observations of Mercury, in order to determine the nature and origin of regional surface variations and structures that are typical of the planet. Attention is given to the proposal that intercrater plains on Mercury formed from extensive volcanic flooding during bombardment, so that most craters were formed on a partially molten surface and were thus obliterated, together with previously formed tectonic features.
Experimental Constraints on the Chemical Differentiation of Mercurys Mantle
NASA Technical Reports Server (NTRS)
Boujibar, A.; Righter, K.; Pando, K.; Danielson, L.
2015-01-01
Mercury is known as being the most reduced terrestrial planet with the highest core/mantle ratio. Results from MESSENGER spacecraft have shown that its surface is FeO-poor (2-4 wt%) and S-rich (up to 6-7 wt%), which confirms the reducing nature of its silicate mantle. In addition several features suggest important melting stages of the Mercurian mantle: widespread volcanic deposits on its surface, a high crustal thickness (approximately 10% of the planet's volume) and chemical compositions of its surface suggesting several stages of differentiation and remelting processes. Therefore it is likely that igneous processes like magma ocean crystallization and continuous melting have induced chemical and mineralogical heterogeneities in the Mercurian mantle. The extent and nature of compositional variations produced by partial melting remains poorly constrained for the particular compositions of Mercury (very reducing conditions, low FeO-contents and high sulfur-contents). Melting experiments with bulk Mercury-analogue compositions are scarce and with poorly con-trolled starting compositions. Therefore additional experimental data are needed to better understand the differentiation processes that lead to the observed chemical compositions of Mercury's surface.
Mercury: the dark-side temperature.
Murdock, T L; Ney, E P
1970-10-30
The planet Mercury was observed before, during, and after the inferior conjunctions of 29 September 1969 and 9 May 1970 at wavelengths of 3.75, 4.75, 8.6, and 12 microns. The average dark-side temperature is 111 degrees +/- 3 degrees K. The thermal inertia of the surface required to fit this temperature is close to that for the moon and indicates that Mercury and the moon have very similar top surface layers.
NASA Technical Reports Server (NTRS)
1959-01-01
The purpose of this staff study, made at the request of the chairman, is to serve members of the Committee on Aeronautical and Space Sciences as a source of basic information on Project Mercury, the man-in-space program of the National Aeronautics and Space Administration. The study is largely derived from unclassified information released by the National Aeronautics and Space Administration and testimony concerning Project Mercury given during hearings before this committee. The program descriptions are based upon current program planning. Since this is a highly advanced research and development program, the project is obviously subject to changes that may result from future developments and accomplishments characteristic of such research activities. Certain information with respect to revised schedules, obtained on a classified basis by the committee during inspection trips, is necessarily omitted. The appendixes to the study include information that may prove helpful on various aspects of space flight and exploration. Included are unofficial comments and observations relating to Russia's manned space flight activities and also a complete chronology of all satellites, lunar probes, and space probes up to the present.
Carbon on Mercury's Surface — Origin, Distribution, and Concentration
NASA Astrophysics Data System (ADS)
Klima, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Murchie, S. L.; Peplowski, P. N.; Perera, V.; Vander Kaaden, K.
2018-05-01
Low-reflectance material on Mercury, excavated from depth, may contain up to 5wt% carbon in some areas of the planet. We interpret this as endogenic carbon associated with the earliest crust of Mercury.
Mercury's surface: Preliminary description and interpretation from Mariner 10 pictures
Murray, B.C.; Belton, M.J.S.; Danielson, G. Edward; Davies, M.E.; Gault, D.E.; Hapke, B.; O'Leary, B.; Strom, R.G.; Suomi, V.; Trask, N.
1974-01-01
The surface morphology and optical properties of Mercury resemble those of the moon in remarkable detail and record a very similar sequence of events. Chemical and mineralogical similarity of the outer layers of Mercury and the moon is implied; Mercury is probably a differentiated planet with a large iron-rich core. Differentiation is inferred to have occurred very early. No evidence of atmospheric modification of landforms has been found. Large-scale scarps and ridges unlike lunar or martian features may reflect a unique period of planetary compression near the end of heavy bombardment by small planetesimals.
2011-05-05
CAPE CANAVERAL, Fla. -- Program participants pose for a group photo in front of a replica of a Mercury-Redstone rocket during a celebration at Complex 5/6 on Cape Canaveral Air Force Station in Florida. From left are Hugh Harris, former director of Public Affairs at Kennedy Space Center; Alice Wackermann, Julie Jenkins and Laura Churchley, daughters of astronaut Alan Shepard; Jack King, former chief, Public Information Office, Marshall Space Flight Center; Bob Moser, former chief test conductor for the Mercury-Redstone launches; NBC reporter Jay Barbree; Mercury astronaut Scott Carpenter; Kennedy Space Center Director Bob Cabana; Lieutenant General Susan J. Helms, commander of the 14th Air Force and former astronaut; and NASA Administrator Charlie Bolden. The celebration was held at the launch site of the first U.S. manned spaceflight May 5, 1961, to mark the 50th anniversary of the flight. Fifty years ago, astronaut Alan Shepard lifted off inside the Mercury capsule, "Freedom 7," atop an 82-foot-tall Mercury-Redstone rocket at 9:34 a.m. EST, sending him on a remarkably successful, 15-minute suborbital flight. The event was attended by more than 200 workers from the original Mercury program and included a re-creation of Shepard's flight and recovery, as well as a tribute to his contributions as a moonwalker on the Apollo 14 lunar mission. For more information, visit www.nasa.gov/topics/history/milestones/index.html. Photo credit: NASA/Kim Shiflett
Artistic View of Mercury Astronaut Training
1959-10-21
This composite image includes a photograph of pilot Joe Algranti testing the Multi-Axis Space Test Inertia Facility (MASTIF) inside Altitude Wind Tunnel at NASA’s Lewis Research Center with other images designed to simulate the interior of a Mercury space capsule. As part of the space agency’s preparations for Project Mercury missions, the seven Mercury astronauts traveled to Cleveland in early 1960 to train on the MASTIF. Researchers used the device to familiarize the astronauts with the sensations of an out-of-control spacecraft. The MASTIF was a three-axis rig with a pilot’s chair mounted in the center. An astronaut was secured in a foam couch in the center of the rig. The rig then spun on three axes from 2 to 50 rotations per minute. The astronauts used small nitrogen gas thrusters to bring the MASTIF under control. In the fall of 1959, prior to the astronauts’ visit, Lewis researcher James Useller and Algranti perfected and calibrated the MASTIF.
2014-07-02
Date acquired: May 05, 2014 Today's color image features both Mercury's terminator and limb. The terminator is the striking separation of night and day on Mercury. It is seen in this image with the change from dark, on the left of the image, to light. Mercury's limb is also captured, as we can see the edge between sunlit Mercury and space. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. During the first two years of orbital operations, MESSENGER acquired over 150,000 images and extensive other data sets. MESSENGER is capable of continuing orbital operations until early 2015. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
BOUNDS ON SUBSURFACE MERCURY FLUX FROM THE SULPHUR BANK MERCURY MINE, LAKE COUNTY, CALIFORNIA
The Sulphur Bank Mercury Mine (SBMM) in Lake County, California has been identified as a significant source of mercury to Clear Lake. The mine was operated from the 1860s through the 1950's. Mining started with surface operations, progressed to shaft mining, and later to open p...
Compact fluorescent light (CFL) bulbs contain a few milligrams (mg) of elemental mercury. When a CFL breaks, some of the mercury is immediately released as elemental mercury vapor and the remainder is deposited on indoor surfaces with the bulb debris. In a controlled study design...
Mercury's Lithospheric Magnetization
NASA Astrophysics Data System (ADS)
Johnson, C.; Phillips, R. J.; Philpott, L. C.; Al Asad, M.; Plattner, A.; Mast, S.; Kinczyk, M. J.; Prockter, L. M.
2017-12-01
Magnetic field data obtained by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have been used to demonstrate the presence of lithospheric magnetization on Mercury. Larger amplitude fields resulting from the core dynamo and the strongly time-varying magnetospheric current systems are first estimated and subtracted from the magnetic field data to isolate lithospheric signals with wavelengths less than 500 km. These signals (hereafter referred to as data) are only observed at spacecraft altitudes less than 120 km, and are typically a few to 10 nT in amplitude. We present and compare equivalent source dipole magnetization models for latitudes 35°N to 75°N obtained from two distinct approaches to constrain the distribution and origin of lithospheric magnetization. First, models that fit either the data or the surface field predicted from a regional spherical harmonic representation of the data (see Plattner & Johnson abstract) and that minimize the root mean square (RMS) value of the magnetization are derived. Second, models in which the spatial distribution of magnetization required to fit the data is minimized are derived using the approach of Parker (1991). As seen previously, the largest amplitudes of lithospheric magnetization are concentrated around the Caloris basin. With this exception, across the northern hemisphere there are no overall correlations of magnetization with surface geology, although higher magnetizations are found in regions with darker surfaces. Similarly, there is no systematic correlation of magnetization signatures with crater materials, although there are specific instances of craters with interiors or ejecta that have magnetizations distinct from the surrounding region. For the latter case, we observe no correlation of the occurrence of these signatures with crater degradation state (a proxy for age). At the lowest spacecraft altitudes (< 10 km), signals with wavelengths shorter than 40 km are not observed. These observations collectively suggest that magnetization source depths less than O(10 km) are unlikely in most regions. The minimum RMS magnetization models are used to bound the possible contributions of magnetization induced in Mercury's present field to the observed signals, regionally and over the northern hemisphere.
The STS-95 crew poses with a Mercury capsule model before returning to JSC
NASA Technical Reports Server (NTRS)
1998-01-01
Before returning to the Johnson Space Center in Houston, Texas, members of the STS-95 crew pose with a model of a Mercury capsule following a media briefing at the Kennedy Space Center Press Site Auditorium . From left to right are Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA); Pilot Steven W. Lindsey; Mission Commander Curtis L. Brown Jr.; Friendship 7; Payload Specialist John H. Glenn Jr., a senator from Ohio and one of the original seven Project Mercury astronauts; Mission Specialist Scott E. Parazynski; and Mission Specialist Pedro Duque, with the European Space Agency (ESA). Also on the crew is Mission Specialist and Payload Commander Stephen K. Robinson (not shown). The STS-95 mission ended with landing at Kennedy Space Center's Shuttle Landing Facility at 12:04 p.m. EST on Nov. 7. The mission included research payloads such as the Spartan-201 solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as a SPACEHAB single module with experiments on space flight and the aging process.
Method of forming capsules containing a precise amount of material
Grossman, Mark W.; George, William A.; Maya, Jakob
1986-01-01
A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations therealong and thus enable separation of the tube into said capsules.
Method of forming capsules containing a precise amount of material
Grossman, M.W.; George, W.A.; Maya, J.
1986-06-24
A method of forming a sealed capsule containing a submilligram quantity of mercury or the like, the capsule being constructed from a hollow glass tube, by placing a globule or droplet of the mercury in the tube. The tube is then evacuated and sealed and is subsequently heated so as to vaporize the mercury and fill the tube therewith. The tube is then separated into separate sealed capsules by heating spaced locations along the tube with a coiled heating wire means to cause collapse spaced locations there along and thus enable separation of the tube into said capsules. 7 figs.
Materials technology programs in support of a mercury Rankine space power system
NASA Technical Reports Server (NTRS)
Stone, P. L.
1973-01-01
A large portion of the materials technology is summarized that was generated in support of the development of a mercury-rankine space power system (SNAP-8). The primary areas of investigation are: (1) the compatibility of various construction materials with the liquid metals mercury and NaK, (2) the mechanical properties of unalloyed tantalum, and (3) the development of refractory metal/austenitic stainless steel tubing and transition joints. The primary results, conclusions, and state of technology at the completion of this effort for each of these areas are summarized. Results of possible significance to other applications are highlighted.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers attach an overhead crane to NASAs MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the high bay clean room at the Astrotech Space Operations processing facilities near KSC, workers prepare to attach an overhead crane to NASAs MESSENGER spacecraft. The spacecraft will be moved to a work stand where employees of the Johns Hopkins University Applied Physics Laboratory, builders of the spacecraft, will perform an initial state-of-health check. Then processing for launch can begin, including checkout of the power systems, communications systems and control systems. The thermal blankets will also be attached for flight. MESSENGER short for MErcury Surface, Space ENvironment, GEochemistry and Ranging will be launched May 11 on a six-year mission aboard a Boeing Delta II rocket. Liftoff is targeted for 2:26 a.m. EDT on Tuesday, May 11.
Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun
2018-05-14
At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-05-04
CAPE CANAVERAL, Fla. -- In the Rocket Garden at NASA's Kennedy Space Center Visitor Complex in Florida, Mercury Astronaut Scott Carpenter, NASA Administrator Charlie Bolden, Julie Jenkins, daughter of Mercury Astronaut Alan Shepard, and NASA's Deputy Director for Planetary Science, Jim Adams, enjoy a light moment during an event unveiling two new stamps to commemorate the 50th anniversary of human spaceflight from the United States Postal Service. One stamp commemorates NASA's Project Mercury and Alan Shepard's historic launch on May 5, 1961, aboard the spacecraft Freedom 7. The second stamp honors NASA's MESSENGER, which reached Mercury in March to become the first spacecraft to orbit the planet. The two missions frame a remarkable 50-year period in which America advanced space exploration through more than 1,500 crewed and uncrewed flights. Photo credit: NASA/Kim Shiflett
Mercury, Skylab, Spacehab, International Space Station: A Continuum
NASA Technical Reports Server (NTRS)
Walker, Charles; Crouch, Roger K.; Binnenbruck, Horsta; Nagaoka, Shunji; Riesselmann, Werner
2000-01-01
We have conducted real research in space. Virtually all that we conducted in the first decade and a half of the space age was government funded and basic research like the carrier vehicles we call satellites and Sputniki, but direction human interaction began with Project Mercury. When the Apollo program ended with success, we got back to research again. Skylab was using Apollo hardware, using Apollo systems in a manner that offered spacious accomodations for researchers. Education began to move into space. This document describes Skylab's role in spaceborne experiments.
Ridges and Cliffs on Mercury Surface
2008-01-20
A complex history of geological evolution is recorded in this frame from the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS instrument, taken during NASA MESSENGER close flyby of Mercury on January 14, 2008.
NASA Astrophysics Data System (ADS)
Cremonese, Gabriele
I.Holin, core-mantle interplay from spin variation of Mercury's crust G.Murakami et al., de-velopment of the microchannel plate detector for fuv spectroscopy in the bepicolombo mission K.Yoshioka et al., performance of the euv detector of phebus for the bepicolombo mission L.Ksanfomality, large dark area on Mercury neighboring the s basin L.Czechowsk,delamination of the lithosphere and similar processes in terrestrial planets R.Ziethe, Mercury's thermal evo-lution, dynamical topography and geoid S.Ferrari et al., geo-structural mapping and age de-terminations of Rembrandt basin F.Nestola et al., low-high temperature behaviour of olivine: implication for Mercury surface M.Blecka, influence the temperatures of the surface and gaseous environment of Mercury on ir radiance spectra -the results of numerical simulation V.Iafolla et al., contributions of isa accelerometer to bepicolombo exploration of planet mercury Y.Miyake et al., particle-in-cell analysis of an electric antenna for the bepicolombo/mmo spacecraft
2007-11-02
KENNEDY SPACE CENTER, FLA. -- During the World Space Expo held at NASA's Kennedy Space Center Visitor Complex, veteran astronauts pose with current and future VIPs of the Space Program: from left, Mercury astronaut Scott Carpenter; Brig. Gen. Susan J. Helms, Commander of the 45th Space Wing at Patrick Air Force Base and former shuttle astronaut; Mercury astronaut John Glenn, who also flew on space shuttle Discovery for STS-95 in 1998; Kennedy Space Center Director Bill Parsons; and NASA Associate Administrator Chris Scolese. The astronauts were part of the World Space Expo, an event to commemorate humanity's first 50 years in space while looking forward to returning people to the moon and exploring beyond. The expo showcased various panels, presentations and educational programs, as well as an aerial salute featuring the U.S. Air Force Thunderbirds, U.S. Air Force F-22 Raptor, U.S. Navy F-18 Super Hornet, U.S. Air Force F-15 Eagle, the P-51 Mustang Heritage Flight, and the U.S. Air Force 920th Rescue Wing, which was responsible for Mercury and Gemini capsule recovery. The U.S. Army Golden Knights also demonstrated precision skydiving. Photo credit: NASA/George Shelton
Adsorption of mercury by activated carbon prepared from dried sewage sludge in simulated flue gas.
Park, Jeongmin; Lee, Sang-Sup
2018-04-25
Conversion of sewage sludge to activated carbon is attractive as an alternative method to ocean dumping for the disposal of sewage sludge. Injection of activated carbon upstream of particulate matter control devices has been suggested as a method to remove elemental mercury from flue gas. Activated carbon was prepared using various activation temperatures and times and was tested for their mercury adsorption efficiency using lab-scale systems. To understand the effect of the physical property of the activated carbon, its mercury adsorption efficiency was investigated as a function of their Brunauer-Emmett-Teller (BET) surface area. Two simulated flue gas conditions: (1) without hydrogen chloride (HCl) and (2) with 20 ppm HCl, were used to investigate the effect of flue gas composition on the mercury adsorption capacity of activated carbon. Despite very low BET surface area of the prepared sewage sludge activated carbons, their mercury adsorption efficiencies were comparable under both simulated flue gas conditions to those of pinewood and coal activated carbons. After injecting HCl into the simulated flue gas, all sewage sludge activated carbons demonstrated high adsorption efficiencies, i.e., more than 87%, regardless of their BET surface area. IMPLICATIONS We tested activated carbons prepared from dried sewage sludge to investigate the effect of their physical properties on their mercury adsorption efficiency. Using two simulated flue gas conditions, we conducted mercury speciation for the outlet gas. We found that the sewage sludge activated carbon had comparable mercury adsorption efficiency to pinewood and coal activated carbons, and the presence of HCl minimized the effect of physical property of the activated carbon on its mercury adsorption efficiency.
Mercury Heavily Cratered Surface
1999-10-07
As NASA Mariner 10 approached Mercury at nearly seven miles per second on March 29, 1974, its TV camera took this picture from an altitude of 35,000 kilometers 21,700 miles The picture shows a heavily-cratered surface with many low hills
Bolaños-Álvarez, Yoelvis; Alonso-Hernández, Carlos Manuel; Morabito, Roberto; Díaz-Asencio, Misael; Pinto, Valentina; Gómez-Batista, Miguel
2016-06-01
Sediment is a great indicator for assessing coastal mercury contamination. The objective of this study was to assess the magnitude of mercury pollution in the sediments of the Sagua River, Cuba, where a mercury-cell chlor-alkali plant has operated since the beginning of the 1980s. Surface sediments and a sediment core were collected in the Sagua River and analyzed for mercury using an Advanced Mercury Analyser (LECO AMA-254). Total mercury concentrations ranged from 0.165 to 97 μg g(-1) dry weight surface sediments. Enrichment Factor (EF), Index of Geoaccumulation (Igeo) and Sediment Quality Guidelines were applied to calculate the degrees of sediment contamination. The EF showed the significant role of anthropogenic mercury inputs in sediments of the Sagua River. The result also determined that in all stations downstream from the chlor-alkali plant effluents, the mercury concentrations in the sediments were higher than the Probable Effect Levels value, indicating a high potential for adverse biological effects. The Igeo index indicated that the sediments in the Sagua River are evaluated as heavily polluted to extremely contaminated and should be remediated as a hazardous material. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in sediments from tropical rivers and estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
1979-02-28
This photo of Callisto, outermost of Jupiter's four Galilean satellites, was taken a few minutes after midnight (PST) Feb. 25 by Voyager 1. The distance to Callisto was 8,023,000 kilometers (4.98 million miles). The hemisphere in this picture shows a fairly uniform surface dotted with brighter spots that are up to several hundred kilometers across. Scientists believe the spots may be impact craters but higher-resolution photos will be necessary before the features can be interpreted. Callisto is about the same size as the planet Mercury--about 5,000 kilometers (3,000 miles) in diameter. Callisto is less massive than Mercury, however, giving it a density less than twice that of water. Scientists believe Callisto, therefore, is composed of a mixture of rock and ice (up to about 50 percent by weight). Its surface is darker than those of the other Galilean satellites, but is still about twice as bright as Earth's Moon. This black-and-white photo was taken through a violet filter. Jet Propulsion Laboratory manages and controls the Voyager project for NASA's Office of Space Science. (JPL ref. No. P-21149)
Lyman-α Models for LRO LAMP from MESSENGER MASCS and SOHO SWAN Data
NASA Astrophysics Data System (ADS)
Pryor, Wayne R.; Holsclaw, Gregory M.; McClintock, William E.; Snow, Martin; Vervack, Ronald J.; Gladstone, G. Randall; Stern, S. Alan; Retherford, Kurt D.; Miles, Paul F.
From models of the interplanetary Lyman-α glow derived from observations by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) interplanetary Lyman-α data obtained in 2009-2011 on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft mission, daily all-sky Lyman-α maps were generated for use by the Lunar Reconnaissance Orbiter (LRO) LAMP Lyman-Alpha Mapping Project (LAMP) experiment. These models were then compared with Solar and Heliospheric Observatory (SOHO) Solar Wind ANistropy (SWAN) Lyman-α maps when available. Although the empirical agreement across the sky between the scaled model and the SWAN maps is adequate for LAMP mapping purposes, the model brightness values best agree with the SWAN values in 2008 and 2009. SWAN's observations show a systematic decline in 2010 and 2011 relative to the model. It is not clear if the decline represents a failure of the model or a decline in sensitivity in SWAN in 2010 and 2011. MESSENGER MASCS and SOHO SWAN Lyman-α calibrations systematically differ in comparison with the model, with MASCS reporting Lyman-α values some 30 % lower than SWAN.
Enhanced capture of elemental mercury by bamboo-based sorbents.
Tan, Zengqiang; Xiang, Jun; Su, Sheng; Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong
2012-11-15
To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO2 on gas-phase Hg0 adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 °C and 180 °C. The presence of NO or SO2 could inhibit Hg0 capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed. Copyright © 2012 Elsevier B.V. All rights reserved.
Jin, Huafang; Liebezeit, Gerd
2013-01-01
In this study, we evaluate the nature of the relationship between particulate matter and total mercury concentrations. For this purpose, we estimate both of the two values in water column over 12-h tidal cycles of the Jade Bay, southern North Sea. Total particulate mercury in 250 mL water samples was determined by oxygen combustion-gold amalgamation. Mercury contents varied from 63 to 259 ng/g suspended particulate matter (SPM) or 3.5-52.8 ng/L in surface waters. Total particulate mercury content (THg(p)) was positively correlated with (SPM), indicating that mercury in tidal waters is mostly associated with (SPM), and that tidal variations of total particulate mercury are mainly due to changes in (SPM) content throughout the tidal cycle. Maximum values for THg(p) were observed during mid-flood and mid-ebb, while the lowest values were determined at low tide and high tide. These data suggest that there are no mercury point sources in the Jade Bay. Moreover, the THg(p) content at low tide and high tide were significantly lower than the values recorded in the bottom sediment of the sampling site (>200 ng/g DW), while THg(p) content during the mid-flood and mid-ebb were comparable to the THg content in the surface bottom sediments. Therefore, changes in THg(p) content in the water column due to tidal forcing may have resulted from re-suspension of underlying surface sediments with relatively high mercury content.
Inhibition and promotion of trace pollutant adsorption within electrostatic precipitators.
Clack, Herek L
2017-08-01
Among the technologies available for reducing mercury emissions from coal-fired electric utilities is the injection of a powdered sorbent, often some form of activated carbon, into the flue gas upstream of the particulate control device, most commonly an electrostatic precipitator (ESP). Detailed measurements of mercury removal within ESPs are lacking due to the hazardous environment they pose, increasing the importance of analysis and numerical simulation in understanding the mechanisms involved. Our previous analyses revealed that mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are not additive removal mechanisms but rather are competitive. The present study expands on this counterintuitive finding. Presented are results from numerical simulations reflecting the complete range of possible mass transfer boundary conditions representing mercury adsorption by the accumulated dust cake covering internal ESP collection electrodes. Using the two mercury removal mechanisms operating concurrently and interdependently always underperforms the sum of the two mechanisms' individual contributions. The dual use of electrostatic precipitators (ESPs) for particulate removal and adsorption of trace gaseous pollutants such as mercury is increasing as mercury regulations become more widespread. Under such circumstances, mercury adsorption by particles suspended in the gas and mercury adsorption by particles collected on internal ESP surfaces are competitive. Together, the two mercury removal mechanisms always underperform the sum of their two independent contributions. These findings can inform strategies sought by electric utilities for reducing the usage costs of mercury sorbents.
2012-02-18
CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, left, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- John Glenn tours the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
2012-02-18
CAPE CANAVERAL, Fla. -- Former space shuttle launch director, Bob Sieck, talks to guests in the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Sieck is helping John Glenn mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
Complex chemical cycling of mercury in aquatic ecosystems means that tracing the linkage between anthropogenic and natural loadings of mercury to watersheds and water bodies and associated concentrations in the environment are difficult to establish without the assistance of nume...
Emissions of elemental mercury (Hg0) from natural processes are believed to be as large as anthropogenic mercury emissions and are a critical source required to model the transport and fate of mercury. Recent ecosystem scale measurements indicate that a fraction of rec...
Optimization Review: Carson River Mercury Superfund Site, Carson City, Nevada
The Carson River Mercury Site (CRMS) (Figure 1) is located in northwest Nevada and was designated a Superfund site in 1990 because of elevated mercury concentrations observed in surface water, sediments and biota inhabiting the site.
NASA Astrophysics Data System (ADS)
Moroz, Lyuba V.; Starukhina, Larissa V.; Rout, Surya Snata; Sasaki, Sho; Helbert, Jörn; Baither, Dietmar; Bischoff, Addi; Hiesinger, Harald
2014-06-01
To investigate effects of micrometeorite bombardment on optical spectra and composition of planetary and asteroid regoliths with low Fe contents, we irradiated samples of a Fe-poor plagioclase feldspar (andesine-labradorite) using a nanosecond pulsed laser. We measured reflectance spectra of irradiated and non-irradiated areas of the samples (pressed pellets) between 0.5 and 18 μm and performed SEM/EDS and TEM studies of the samples. Bulk FeO content of 0.72 wt.% in the samples is comparable, for example, to FeO content in silicates on the surface of Mercury, that was recently mapped by NASA's MESSENGER mission and will be spectrally mapped by remote sensing instruments MERTIS and SYMBIO-SYS on board the ESA BepiColombo spacecraft. We also employed theoretical spectral modeling to characterize optical alteration caused by formation of nano- and submicrometer Fe0 inclusions within space-weathered surface layers and grain rims of a Fe-poor regolith. The laser-irradiated surface layer of plagioclase reveals significant melting, while reflectance spectra show mild darkening and reddening in the visible and near-infrared (VNIR). Our spectral modeling indicates that the optical changes observed in the visible require reduction of bulk FeO (including Fe from mineral impurities found in the sample) and formation of nanophase (np) Fe0 within the glassy surface layer. A vapor deposit, if present, is optically too thin to contribute to optical modification of the investigated samples or to cause space weathering-induced optical alteration of Fe-poor regoliths in general. Due to low thickness of vapor deposits, npFe0 formation in the latter can cause darkening and reddening only for a regolith with rather high bulk Fe content. Our calculations show that only a fraction of bulk Fe is likely to be converted to npFe0 in nanosecond laser irradiation experiments and probably in natural regolith layers modified by space weathering. The previously reported differences in response of different minerals to laser irradiation, and probably to space weathering-induced heating are likely controlled by their differences in electrical conductivities and melting points. For a given mineral grain, its susceptibility to melting/vaporization is also affected by electric conductivities of adjacent grains of other minerals in the regolith. Published nanosecond laser irradiation experiments simulate optical alteration of immature regoliths, since only the uppermost surface layer of an irradiated pellet is subject to heating. According to our calculations, if regolith particles due to impact-induced turnover are mantled with npFe0-bearing rims of the same thickness, then even low contents of Fe similar to our sample or Mercury' surface can cause significant darkening and reddening, provided a melt layer, rather than a thin vapor deposit is involved into npFe0 formation. All spectral effects observed in the thermal infrared (TIR) after irradiation of our feldspar sample are likely to be associated with textural changes. We expect that mineralogical interpretation of the BepiColombo MERTIS infrared spectra of Mercury between 7 and 17 μm will be influenced mostly by textural effects (porosity, comminution) and impact glass formation rather than formation of npFe0 inclusions.
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. At right, is Jack King, who was chief of Kennedy's Public Information Office during Project Mercury. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
Deformed space-time transformations in Mercury
NASA Astrophysics Data System (ADS)
Cardone, F.; Albertini, G.; Bassani, D.; Cherubini, G.; Guerriero, E.; Mignani, R.; Monti, M.; Petrucci, A.; Ridolfi, F.; Rosada, A.; Rosetto, F.; Sala, V.; Santoro, E.; Spera, G.
2017-09-01
A mole of Mercury was suitably treated by ultrasound in order to generate in it the same conditions of local Lorentz invariance violation that were generated in a sonicated cylindrical bar of AISI 304 steel and that are the cause of neutron emission during the sonication. After 3 min, part of the mercury turned into a solid material which turned out to contain isotopes having a different mass (higher and lower) with respect to the isotopes already present in the initial material (mercury). These transformations in the atomic weight without gamma production above the background are brought about during Deformed Space-Time reactions. We present the results of the analyses performed on samples taken from the transformation product. The analyses have been done in two groups, the first one using five different analytical techniques: ICP-OES, XRF, ESEM-EDS, ICP-MS, INAA. In the second group of analyses, we used only two techniques: INAA and ICP-MS. The second group of analyses confirmed the occurring of the transformations in mercury.
Test facility for 6000 hour life test of 30 cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Caldwell, J. J.
1973-01-01
The environmental and instrumentation requirements for long term testing of electrical propulsion thrusters which impose severe and unusual requirements upon the simulation facility were studied. High speed ions ejected from a mercury thruster erode material from collecting surfaces, which is then scattered and redeposited upon other surfaces, with resultant damage to the chamber and test article. By collecting the thruster plume on a frozen mercury surface damage to the thruster and chamber by back-scattered erosion products was minimized. Provisions for unattended operation, remote data acquisition, personnel safety, and instrumentation for assessing thruster performance are also discussed.
NASA Astrophysics Data System (ADS)
Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.
2018-03-01
Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.
Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)
NASA Astrophysics Data System (ADS)
Wollenberg, J. L.; Peters, S. C.
2007-12-01
Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface as compared to open water controls. Decreases in emission rate varied linearly with percent duckweed cover, with lower fluxes occurring at higher percent cover. Mercury flux in the duckweed treatments as compared to open water treatments decreased from 17% in the lowest percent cover treatment to 67% in the highest percent cover treatment. The observed decrease in mercury emission suggests that duckweed limits emission via the formation of a physical barrier to diffusion.
Students Engaging the Public in Exciting Discoveries by NASA's MESSENGER Mission
NASA Astrophysics Data System (ADS)
Hallau, K. G.; Morison, J.; Schuele, H.
2012-12-01
In March 2011, NASA's MESSENGER spacecraft entered into orbit around Mercury, the closest planet to the Sun. As the first mission to orbit and study Mercury in depth, MESSENGER sought to answer six primary scientific questions: why is Mercury so dense; what is the geologic history of Mercury; what is the nature of Mercury's magnetic field; what is the structure of Mercury's core; what are the unusual materials at Mercury's poles; and what volatiles are important at Mercury? In the first year of orbit, MESSENGER answered all of these questions, and also made several surprising discoveries. Student interns working with the MESSENGER Education and Public Outreach (EPO) team are using MESSENGER Mosaic Postcards (MPC) in both print and digital formats to present this new information to a broad audience. These MPCs, in conjunction with the rest of the MESSENGER EPO tools, present a unified and global resource for the public. By creating this resource in a variety of media, from printable cards to interactive features on the EPO website (http://www.messenger-education.org/), the EPO team can reach a larger audience, further the goal of the MPC project to share newly discovered features and phenomena with the general public, and thereby generate increased interest in and excitement about science and planetary exploration. One side of each MPC shows a MESSENGER image of a portion of Mercury's surface, and together the postcards can be arranged to form a complete image of the planet. On the reverse side of some cards is information pertaining to an item of interest in view on the image-side. One of us (physics undergraduate JEM) researches interesting features on the surface of Mercury and creates descriptions for the informational side of the postcards, and another (computer science undergraduate HCS) creates the digital versions of cards and associated resources for the Surface Interactive, an interactive tool on the MESSENGER EPO website. Postcards already in distribution address topics such as craters with pyroclastic deposits, rayed craters, crater superposition, dark materials on Mercury, smooth plains, and lobate scarps. As MESSENGER continues its orbital study of Mercury, ever more exciting and surprising data are being returned, and from them new MPCs are being produced. Several of these MPCs focus on specific geologic features of Mercury, including the Caloris basin, one of the largest impact basins in the solar system; Pantheon Fossae, a mysterious set of radial troughs; and Raditladi, a comparatively young, double-ringed impact basin. Moreover, discoveries about Mercury extend beyond geologic features. Newly produced MPCs also explain how MESSENGER used gravity assists of Earth, Venus, and Mercury to succeed in its orbit insertion and how the probe's eccentric orbit protects the spacecraft and instruments from heat re-radiated from Mercury's surface. New information regarding Mercury's magnetic field, magnetosphere, and exosphere are also intriguing topics to be presented in future MPCs.
A 3 Year-Old Male Child Ingested Approximately 750 Grams of Elemental Mercury.
Uysalol, Metin; Parlakgül, Güneş; Yılmaz, Yasin; Çıtak, Agop; Uzel, Nedret
2016-07-01
The oral ingestion of elemental mercury is unlikely to cause systemic toxicity, as it is poorly absorbed through the gastrointestinal system. However, abnormal gastrointestinal function or anatomy may allow elemental mercury into the bloodstream and the peritoneal space. Systemic effects of massive oral intake of mercury have rarely been reported. In this paper, we are presenting the highest single oral intake of elemental mercury by a child aged 3 years. A Libyan boy aged 3 years ingested approximately 750 grams of elemental mercury and was still asymptomatic. The patient had no existing disease or abnormal gastrointestinal function or anatomy. The physical examination was normal. His serum mercury level was 91 µg/L (normal: <5 µg/L), and he showed no clinical manifestations. Exposure to mercury in children through different circumstances remains a likely occurrence.
1986-12-01
Prior to examination of LME fractures, liquid or solid metals were removed from fracture surfaces as follows: Mercury was evaporated from fractures in a...1 mm/s. Under these conditions, the appearance of fracture surfaces was identical to that produced by rapid fracture (-1 mm/s) in liquid mercury ...Furthermore, the appearance of fractures depended somewhat on the orientation of crystals but was the same in hydrogen and mercury environments for each
Mercury: surface composition from the reflection spectrum.
McCord, T B; Adams, J B
1972-11-17
The reflection spectrum for the integral disk of the planet Mercury was measured and was found to have a constant positive slope from 0.32 to 1.05 micrometers, except for absorption features in the infrared. The reflectivity curve matches closely the curve for the lunar upland and mare regions. Thus, the surface of Mercury is probably covered with a lunar-like soil rich in dark glasses of high iron and titanium content. Pyroxene is probably the dominant mafic mineral.
Vaselli, Orlando; Nisi, Barbara; Rappuoli, Daniele; Cabassi, Jacopo; Tassi, Franco
2017-04-15
Mercury has a strong environmental impact since both its organic and inorganic forms are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere. In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were determined in the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of about 65 ha and contains mining structures and managers' and workers' buildings. Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for the buildings and structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced. Measurements were also performed in February, April, July, September and December 2016 in the edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time and space mostly depending on ambient temperature and the operational activities that were carried out in each building. The Unit 2 surveys carried out in the hotter period (from June to September) showed GEM concentrations up to 27,500 ng·m -3 , while in Unit 6, they were on average much higher, and occasionally, they saturated the GEM measurement device (>50,000 ng·m -3 ). Concentrations of total (in mg·kg -1 ) and leached (in μg·L -1 ) mercury measured in different building materials (up to 46,580 mg·kg -1 and 4470 mg·L -1 , respectively) were highly variable, being related to the edifice or mining structure from which they were collected. The results obtained in this study are of relevant interest for operational cleanings to be carried out during reclamation activities.
NASA Technical Reports Server (NTRS)
Jurgens, R. F.; Clark, P. E.; Goldstein, R. M.; Ostro, S. J.; Slade, M. A.; Thompson, T. W.; Saunders, R. S.
1986-01-01
Information is provided about physical nature planetary surfaces and their topography as well as dynamical properties such as orbits and spin states using ground based radar as a remote sensing tool. Accessible targets are the terrestrial planets: the Earth's Moon, Mercury, Venus and Mars, the outer planets rings and major moons, and many transient objects such as asteroids and comets. Data acquisition utilizes the unique facilities of the Goldstone Deep Space Network, occasionally the Arecibo radar, and proposed use of the VLA (very large array).
Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.
2016-02-29
Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.
For nearly a century, Clear Lake in northern California has received inputs of mercury (Hg) mining wastes trom the Sulfur Bank Mercury Mine (SBMM). About 1.2 million tons of Hg-contaminated overburden and mine tailings were distributed over a 50-ha surface area due to mining oper...
The Sulphur Bank Mercury Mine in Lake County, California (SBMM) was operated from the 1860s through the 1950s. Mining for sulfur started with surface operations and then progressed to shaft and later open pit techniques to obtain mercury. SBMM is located adjacent to the shore o...
Intra-particle migration of mercury in granular polysulfide-rubber-coated activated carbon (PSR-AC)
Kim, Eun-Ah; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.
2011-01-01
The depth profile of mercuric ion after the reaction with polysulfide-rubber-coated activated carbon (PSR-AC) was investigated using micro-x-ray fluorescence (μ-XRF) imaging techniques and mathematical modeling. The μ-XRF results revealed that mercury was concentrated at 0~100 μm from the exterior of the particle after three months of treatment with PSR-AC in 10 ppm HgCl2 aqueous solution. The μ-X-ray absorption near edge spectroscopic (μ-XANES) analyses indicated HgS as a major mercury species, and suggested that the intra-particle mercury transport involved a chemical reaction with PSR polymer. An intra-particle mass transfer model was developed based on either a Langmuir sorption isotherm with liquid phase diffusion (Langmuir model) or a kinetic sorption with surface diffusion (kinetic sorption model). The Langmuir model predicted the general trend of mercury diffusion, although at a slower rate than observed from the μ-XRF map. A kinetic sorption model suggested faster mercury transport, which overestimated the movement of mercuric ions through an exchange reaction between the fast and slow reaction sites. Both μ-XRF and mathematical modeling results suggest mercury removal occurs not only at the outer surface of the PSR-AC particle but also at some interior regions due to a large PSR surface area within an AC particle. PMID:22133913
Modeling Watershed Mercury Response to Atmospheric Loadings: Response Time and Challenges
The relationship between sources of mercury to watersheds and its fate in surface waters is invariably complex. Large scale monitoring studies, such as the METAALICUS project, have advanced current understanding of the links between atmospheric deposition of mercury and accumulat...
Diviš, Pavel; Kadlecová, Milada; Ouddane, Baghdad
2016-05-01
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Some thoughts on Mercurian resources
NASA Astrophysics Data System (ADS)
Gillett, Stephen L.
Virtually all scenarios on Solar System development ignore Mercury, but such inattention is probably undeserved. Once viable lunar and (probably) asteroidal facilities are established in the next century, Mercury warrants further investigation. Mercury's high solar energy density is a major potential advantage for space-based industries. Indeed, despite its higher gravity, Mercury is roughly twice as easy to leave as the Moon if the additional solar flux is taken into account. Moreover, with solar-driven technologies such as solar sails or electric propulsion, its depth in the Sun's gravity well is less important. Because Mercury is airless and almost certainly waterless, it will be an obvious place to export lunar technology, which will have been developed to deal with very similar conditions. Methods for extracting resources from anhydrous silicates will be particularly germane. Even without solar-powered propulsion, the discovery of low-delta-V access via multiple Venus and Earth encounters makes the planet easier to reach than had been thought. Technology developed for multi-year missions to asteroids and Mars should be readily adaptable to such Mercurian missions. Mercury will not be our first outpost in the Solar System. Nonetheless, as facilities are established in cis-Earth space, it probably merits attention as a next step for development.
Fish Mercury and Surface Water Sulfate Relationships in the Everglades Protection Area
Few published studies present data on relationships between fish mercury and surface or pore water sulfate concentrations, particularly on an ecosystem-wide basis. Resource managers can use these relationships to identify the sulfate conditions that contain fish with health-conce...
Characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke.
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg(0) adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mn (x+) , and O=C-OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg(0). Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously.
Characteristics and Stability of Mercury Vapor Adsorption over Two Kinds of Modified Semicoke
Huawei, Zhang; Xiuli, Liu; Li, Wang; Peng, Liang
2014-01-01
In an attempt to produce effective and lower price gaseous Hg0 adsorbents, two methods of HCl and KMnO4/heat treatment were used respectively for the surface modification of liginite semicoke from inner Mongolia. The different effects of modification process on the surface physical and chemical properties were analyzed. The characteristics and stability of mercury vapor adsorption over two kinds of modified semicoke were investigated. The results indicated that modification process caused lower micropore quantity and volume capacity of semicoke; the C-Cl functional groups, C=O bond and delocalized electron π on the surface of Cl-SC, the amorphous higher valency Mnx+, and O=C–OH functional groups on the surface of Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg0. Modification process led to higher mercury removal efficiency of semicoke at 140°C and reduced the stability of adsorbed mercury of semicoke in simulated water circumstance simultaneously. PMID:25309948
NASA Astrophysics Data System (ADS)
Paulauskas, A.; Selskis, A.; Bukauskas, V.; Vaicikauskas, V.; Ramanavicius, A.; Balevicius, Z.
2018-01-01
Total internal reflection ellipsometry (TIRE) was utilized in its dynamic data acquisition mode to reveal the percentage of mercury present in an amalgam surface layer. In determining the optical constants of the amalgam film, the non-homogeneities of the formed surface layer were taken into account. The composition of the amalgam layer by percentage was determined using the EMA Bruggemann model for the analysis of the TIRE data. Regression results showed that amalgam layer consisted of mercury 16.00 ± 0.43% and gold 84.00 ± 0.43%. This real time TIRE analysis has shown that for these studies method can detect 0.6 ± 0.4% of mercury on a gold surface, proving that this is a suitable optical technique for obtaining real time readouts. The structural analysis of SEM and AFM have shown that the amalgam layer had a dendritic structure, which formation was determined by the weak adhesion of the gold atoms onto its surface.
Unmasking the Secrets of Mercury
2015-04-16
The MASCS instrument onboard NASA MESSENGER spacecraft was designed to study both the exosphere and surface of Mercury. To learn more about the minerals and surface processes on Mercury, the Visual and Infrared Spectrometer (VIRS) portion of MASCS has been diligently collecting single tracks of spectral surface measurements since MESSENGER entered orbit. The track coverage is now extensive enough that the spectral properties of both broad terrains and small, distinct features such as pyroclastic vents and fresh craters can be studied. To accentuate the geological context of the spectral measurements, the MASCS data have been overlain on the MDIS monochrome mosaic. Click on the image to explore the colorful diversity of surface materials in more detail! Instrument: Mercury Atmosphere and Surface Composition Spectrometer (MASCS) Map Projection: Orthographic VIRS Color Composite Wavelengths: 575 nm as red, 415 nm/750 nm as green, 310 nm/390 nm as blue Center Latitude (All Globes): 0° Center Longitude (Top Left Globe): 270° E Center Longitude (Top Right Globe): 0° E Center Longitude (Bottom Left Globe): 90° E Center Longitude (Bottom Right Globe): 180° E http://photojournal.jpl.nasa.gov/catalog/PIA19419
NASA Technical Reports Server (NTRS)
McClintock, William E.; Vervack, Ronald J., Jr.; Bradley, E. Todd; Killen, Rosemary M.; Mouawad, Nelly; Sprague, Ann L.; Burger, Matthew H.; Solomon, Sean C.; Izenberg, Noam R.
2009-01-01
During MESSENGER's second Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer observed emission from Mercury's neutral exosphere. These observations include the first detection of emission from magnesium. Differing spatial distributions for sodium, calcium, and magnesium were revealed by observations beginning in Mercury's tail region, approximately 8 Mercury radii anti-sunward of the planet, continuing past the nightside, and ending near the dawn terminator. Analysis of these observations, supplemented by observations during the first Mercury flyby as well as those by other MESSENGER instruments, suggests that the distinct spatial distributions arise from a combination of differences in source, transfer, and loss processes.
Semi-volatiles at Mercury: Sodium (Na) and potassium (K)
NASA Technical Reports Server (NTRS)
Sprague, A.
1994-01-01
Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.
Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data
NASA Astrophysics Data System (ADS)
Herčík, David; Trávníček, Pavel M.; Å tverák, Å. těpán.; Hellinger, Petr
2016-01-01
Using a global hybrid model and test particle simulations we present a detailed analysis of the Hermean plasma belt structure. We investigate characteristic properties of quasi-trapped particle population characteristics and its behavior under different orientations of the interplanetary magnetic field. The plasma belt region is constantly supplied with solar wind protons via magnetospheric flanks and tail current sheet region. Protons inside the plasma belt region are quasi-trapped in the magnetic field of Mercury and perform westward drift along the planet. This region is well separated by a magnetic shell and has higher average temperatures and lower bulk proton current densities than the surrounding area. On the dayside the population exhibits loss cone distribution function matching the theoretical loss cone angle. The simulation results are in good agreement with in situ observations of MESSENGER's (MErcury Surface Space ENvironment GEochemistry, and Ranging) MAG and FIPS instruments.
1961-01-01
This is a comparison illustration of the Redstone, Jupiter-C, and Mercury Redstone launch vehicles. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile. Originally developed as a nose cone re-entry test vehicle for the Jupiter intermediate range ballistic missile, the Jupiter-C was a modification of the Redstone missile and successfully launched the first American Satellite, Explorer-1, in orbit on January 31, 1958. The Mercury Redstone lifted off carrying the first American, astronaut Alan Shepard, in his Mercury spacecraft Freedom 7, on May 5, 1961.
2012-02-18
CAPE CANAVERAL, Fla. -- Astronaut Steve Robinson of STS-95, left, Cal Fowler, Launch test director during Mercury, U.S. Rep. Bill Posey, U.S. Sen. Bill Nelson and Kennedy Space Center Director Bob Cabana listen to remarks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with John Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing
2013-09-01
The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.
Mercury dynamics in a coastal plain watershed: insights from multiple models and empirical data
Interactions among atmospherically deposited mercury, abundant wetlands, and surface waters with elevated acidity and dissolved organic carbon (DOC) often lead to widespread mercury-related fish consumption advisories in the Coastal Plain of the southeastern United States (US). H...
Mercury. [Mariner 10 observations and planetary properties
NASA Technical Reports Server (NTRS)
Gault, D. E.; Cassen, P.; Burns, J. A.; Strom, R. G.
1977-01-01
Information about Mercury obtained with the Mariner 10 spacecraft is summarized together with results of theoretical studies and ground-based observations. It is shown that Mercury is very likely a differentiated body, probably contains a large earthlike iron-rich core, and displays a surface similar to the moon's, which suggests a similar evolutionary history. The size and mass of Mercury are discussed along with its orbit, rotation, atmosphere, magnetic field, and magnetosphere. Surface features of Mercury are described on the basis of Mariner 10 pictures, with detailed attention given to the major physiographic provinces, the structure of the Caloris basin, the tectonic framework of the planet, crater morphology, the planet's optical and thermal properties, and cartography. The composition and structure of the interior are examined, and the thermal history of Mercury is considered. The planet's geologic history is divided into five stages or epochs: (1) accretion and differentiation, (2) terminal heavy bombardment, (3) Caloris basin formation, (4) basin flooding, and (5) postfilling lighter bombardment.
Mercury's exosphere: observations during MESSENGER's First Mercury flyby.
McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C
2008-07-04
During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.
NASA Technical Reports Server (NTRS)
1974-01-01
Mariner 10's first image of Mercury acquired on March 24, 1974. During its flight, Mariner 10's trajectory brought it behind the lighted hemisphere of Mercury, where this image was taken, in order to acquire important measurements with other instruments.
This picture was acquired from a distance of 3,340,000 miles (5,380,000 km) from the surface of Mercury. The diameter of Mercury (3,031 miles; 4,878 km) is about 1/3 that of Earth.Images of Mercury were acquired in two steps, an inbound leg (images acquired before passing into Mercury's shadow) and an outbound leg (after exiting from Mercury's shadow). More than 2300 useful images of Mercury were taken, both moderate resolution (3-20 km/pixel) color and high resolution (better than 1 km/pixel) black and white coverage.Discovery of sodium in the atmosphere of mercury.
Potter, A; Morgan, T
1985-08-16
The spectrum of Mercury at the Fraunhofer sodium D lines shows strong emission features that are attributed to resonant scattering of sunlight from sodium vapor in the atmosphere of the planet. The total column abundance of sodium was estimated to be 8.1 x 10(11) atoms per square centimeter, which corresponds to a surface density at the subsolar point of about 1.5 x 10(5) atoms per cubic centimeter. The most abundant atmospheric species found by the Mariner 10 mission to Mercury was helium, with a surface density of 4.5 x 10(3) atoms per cubic centimeter. It now appears that sodium vapor is a major constituent of Mercury's atmosphere.
Attempted Recovery - Mercury Spacecraft - End - Mercury-Redstone (MR)-4 Mission
1961-07-27
S61-02820 (21 July 1961) --- Attempted recovery of Mercury spacecraft at end of the Mercury-Redstone 4 (MR-4) mission. View shows the Marine helicopter pulled almost to the waters surface by the weight of the capsule, which filled with water. It eventually had to abandon its recovery attempts. Behind the Marine helicopter, a Navy helicopter prepares to assist. Photo credit: NASA
The Sulphur Bank Mercury Mine, located on the shore of Clear Lake, Lake County, California, is a potential source for a modern-day mercury flux into the local aquatic ecosystem. Surface mining created the Herman Pit, a 9.3 ha open pit with a depth > 30 m, while overburden and pr...
Final Technical Report: Mercury Release from Organic Matter (OM) and OM-Coated Mineral Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagy, Kathryn L.
2015-08-18
Chemical reactions between mercury, a neurotoxin, and sulfur, an essential nutrient, in the environment control to a large extent the distribution and amount of mercury available for uptake by living organisms. The largest reservoir of sulfur in soils is in living, decaying, and dissolved natural organic matter. The decaying and dissolved organic matter can also coat the surfaces of minerals in the soil. Mercury (as a divalent cation) can bind to the sulfur species in the organic matter as well as to the bare mineral surfaces, but the extent of binding and release of this mercury is not well understood.more » The goals of the research were to investigate fundamental relationships among mercury, natural organic matter, and selected minerals to better understand specifically the fate and transport of mercury in contaminated soils downstream from the Y-12 plant along East Fork Poplar Creek, Tennessee, and more generally in any contaminated soil. The research focused on (1) experiments to quantify the uptake and release of mercury from two clay minerals in the soil, kaolinite and vermiculite, in the presence and absence of dissolved organic matter; (2) release of mercury from cinnabar under oxic and anoxic conditions; (3) characterization of the forms of mercury in the soil using synchrotron X-ray absorption spectroscopic techniques; and, (4) determination of molecular forms of mercury in the presence of natural organic matter. We also leveraged funding from the National Science Foundation to (5) evaluate published approaches for determining sulfur speciation in natural organic matter by fitting X-ray Absorption Near Edge Structure (XANES) spectra obtained at the sulfur K-edge and apply optimized fitting schemes to new measurements of sulfur speciation in a suite of dissolved organic matter samples from the International Humic Substances Society. Lastly, in collaboration with researchers at the University of Colorado and the U.S. Geological Survey in Boulder, Colorado, (6) we investigated the biogeochemical controls on the release of mercury in simulated flooding experiments using loose soils and intact soil cores from East Fork Poplar Creek.« less
NASA Astrophysics Data System (ADS)
Herrick, R. R.
2018-05-01
There is great diversity of appearance in the interiors of 100-km diameter craters. The spatial distribution of interior landforms is clustered and nonrandom, but does not clearly correlate with Mercury's surface geology patterns.
NASA Astrophysics Data System (ADS)
Chabot, N. L.; Neumann, G. A.; Ernst, C. M.; Mazarico, E. M.; Shread, E. E.
2018-05-01
We investigate three of Mercury's north polar craters that are predicted from their thermal conditions to be conducive to the presence of extensive water ice at the surface, but that may lack such ice.
Ices on Mercury: Chemistry of volatiles in permanently cold areas of Mercury's north polar region
NASA Astrophysics Data System (ADS)
Delitsky, M. L.; Paige, D. A.; Siegler, M. A.; Harju, E. R.; Schriver, D.; Johnson, R. E.; Travnicek, P.
2017-01-01
Observations by the MESSENGER spacecraft during its flyby and orbital observations of Mercury in 2008-2015 indicated the presence of cold icy materials hiding in permanently-shadowed craters in Mercury's north polar region. These icy condensed volatiles are thought to be composed of water ice and frozen organics that can persist over long geologic timescales and evolve under the influence of the Mercury space environment. Polar ices never see solar photons because at such high latitudes, sunlight cannot reach over the crater rims. The craters maintain a permanently cold environment for the ices to persist. However, the magnetosphere will supply a beam of ions and electrons that can reach the frozen volatiles and induce ice chemistry. Mercury's magnetic field contains magnetic cusps, areas of focused field lines containing trapped magnetospheric charged particles that will be funneled onto the Mercury surface at very high latitudes. This magnetic highway will act to direct energetic protons, ions and electrons directly onto the polar ices. The radiation processing of the ices could convert them into higher-order organics and dark refractory materials whose spectral characteristics are consistent with low-albedo materials observed by MESSENGER Laser Altimeter (MLA) and RADAR instruments. Galactic cosmic rays (GCR), scattered UV light and solar energetic particles (SEP) also supply energy for ice processing. Cometary impacts will deposit H2O, CH4, CO2 and NH3 raw materials onto Mercury's surface which will migrate to the poles and be converted to more complex Csbnd Hsbnd Nsbnd Osbnd S-containing molecules such as aldehydes, amines, alcohols, cyanates, ketones, hydroxides, carbon oxides and suboxides, organic acids and others. Based on lab experiments in the literature, possible specific compounds produced may be: H2CO, HCOOH, CH3OH, HCO, H2CO3, CH3C(O)CH3, C2O, CxO, C3O2, CxOy, CH3CHO, CH3OCH2CH2OCH3, C2H6, CxHy, NO2, HNO2, HNO3, NH2OH, HNO, N2H2, N3, HCN, Na2O, NaOH, CH3NH2, SO, SO2, SO3, OCS, H2S, CH3SH, even BxHy. Three types of radiation processing mechanisms may be at work in the ices: (1) Impact/dissociation, (2) Ion implantation and (3) Nuclear recoil (hot atom chemistry). Magnetospheric energy sources dominate the radiation effects. Total energy fluxes of photons, SEPs and GCRs are all around two or more orders of magnitude less than the fluxes from magnetospheric energy sources (in the focused cusp particles). However, SEPs and GCRs cause chemical processing at greater depths than other particles leading to thicker organic layers. Processing of polar volatiles on Mercury would be somewhat different from that on the Moon because Mercury has a magnetic field while the Moon does not. The channeled flux of charged particles through these magnetospheric cusps is a chemical processing mechanism unique to Mercury as compared to other airless bodies.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., look over a solar panel ready to be installed on NASA’s MESSENGER spacecraft. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-25
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians secure guide wires on the second solar panel to be installed on NASA’s MESSENGER spacecraft. The two large solar panels, supplemented with a nickel-hydrogen battery, will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., carry a solar panel toward NASA’s MESSENGER spacecraft for installation. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., adjust a solar panel suspended from above for installation on NASA’s MESSENGER spacecraft. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-25
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians check the second solar panel that will be installed on NASA’s MESSENGER spacecraft. The two large solar panels, supplemented with a nickel-hydrogen battery, will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-25
KENNEDY SPACE CENTER, FLA. - At Astrotech in Titusville, Fla., technicians maneuver a second solar panel to a vertical position to move it toward NASA’s MESSENGER spacecraft for installation. The two large solar panels, supplemented with a nickel-hydrogen battery, will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., maneuver a solar panel into place for installation on NASA’s MESSENGER spacecraft. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., help guide a solar panel toward NASA’s MESSENGER spacecraft for installation. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-25
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., hold steady the second solar panel being installed on NASA’s MESSENGER spacecraft. At left is the first panel already installed. The two large solar panels, supplemented with a nickel-hydrogen battery, will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., guide a solar panel closer to NASA’s MESSENGER spacecraft for installation. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., attach a bar to a solar panel in order to lift it and move it to NASA’s MESSENGER spacecraft for installation. The two large solar panels, supplemented with a nickel-hydrogen battery, will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
2004-06-24
KENNEDY SPACE CENTER, FLA. - Technicians at Astrotech in Titusville, Fla., steady a solar panel suspended from above as others prepare to install it on NASA’s MESSENGER spacecraft. It is one of two large solar panels, supplemented with a nickel-hydrogen battery, that will provide MESSENGER’s power. MESSENGER is scheduled to launch Aug. 2 aboard a Boeing Delta II rocket from Pad 17-B, Cape Canaveral Air Force Station, Fla. It will return to Earth for a gravity boost in July 2005, then fly past Venus twice, in October 2006 and June 2007. The spacecraft uses the tug of Venus’ gravity to resize and rotate its trajectory closer to Mercury’s orbit. Three Mercury flybys, each followed about two months later by a course-correction maneuver, put MESSENGER in position to enter Mercury orbit in March 2011. During the flybys, MESSENGER will map nearly the entire planet in color, image most of the areas unseen by Mariner 10, and measure the composition of the surface, atmosphere and magnetosphere. It will be the first new data from Mercury in more than 30 years - and invaluable for planning MESSENGER’s year-long orbital mission. MESSENGER was built for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md.
Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong
2015-08-01
An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.
Discovery of calcium in Mercury's atmosphere.
Bida, T A; Killen, R M; Morgan, T H
2000-03-09
The composition and evolutionary history of Mercury's crust are not well determined. The planet as a whole has been predicted to have a refractory, anhydrous composition: rich in Ca, Al, Mg and Fe, but poor in Na, K, OH, and S. Its atmosphere is believed to be derived in large part from the surface materials. A combination of effects that include impact vaporization (from infalling material), volatile evaporation, photon-stimulated desorption and sputtering releases material from the surface to form the atmosphere. Sodium and potassium have already been observed in Mercury's atmosphere, with abundances that require a volatile-rich crust. The sodium probably results from photon-stimulated desorption, and has a temperature of 1,500 K (ref. 10). Here we report the discovery of calcium in the atmosphere near Mercury's poles. The column density is very low and the temperature is apparently very high (12,000 K). The localized distribution and high temperature, if confirmed, suggest that the atmospheric calcium may arise from surface sputtering by ions, which enter Mercury's auroral zone. The low abundance of atmospheric Ca may indicate that the regolith is rarefied in calcium.
Space weathering on near-Earth objects investigated by neutral-particle detection
NASA Astrophysics Data System (ADS)
Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; De Angelis, E.; Di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Massetti, S.; Palumbo, M. E.
2009-03-01
The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.
Space weathering on near-Earth objects investigated by neutral-particle detection
NASA Astrophysics Data System (ADS)
Plainaki, C.; Milillo, A.; Orsini, S.; Mura, A.; de Angelis, E.; di Lellis, A. M.; Dotto, E.; Livi, S.; Mangano, V.; Palumbo, M. E.
2009-04-01
The ion-sputtering (IS) process is active in many planetary environments in the solar system where plasma precipitates directly on the surface (for instance, Mercury, Moon and Europa). In particular, solar wind sputtering is one of the most important agents for the surface erosion of a near-Earth object (NEO), acting together with other surface release processes, such as photon stimulated desorption (PSD), thermal desorption (TD) and micrometeoroid impact vaporization (MIV). The energy distribution of the IS-released neutrals peaks at a few eVs and extends up to hundreds of eVs. Since all other release processes produce particles of lower energies, the presence of neutral atoms in the energy range above 10 eV and below a few keVs (sputtered high-energy atoms (SHEA)) identifies the IS process. SHEA easily escape from the NEO, due to NEO's extremely weak gravity. Detection and analysis of SHEA will give important information on surface-loss processes as well as on surface elemental composition. The investigation of the active release processes, as a function of the external conditions and the NEO surface properties, is crucial for obtaining a clear view of the body's present loss rate as well as for getting clues on its evolution, which depends significantly on space weather. In this work, an attempt to analyze processes that take place on the surface of these small airless bodies, as a result of their exposure to the space environment, has been realized. For this reason, a new space weathering model (space weathering on NEO-SPAWN) is presented. Moreover, an instrument concept of a neutral-particle analyzer specifically designed for the measurement of neutral density and the detection of SHEA from a NEO is proposed.
NASA Astrophysics Data System (ADS)
Zambon, F.; De Sanctis, M. C.; Capaccioni, F.; Filacchione, G.; Carli, C.; Ammanito, E.; Friggeri, A.
2011-10-01
During the first two MESSENGER flybys (14th January 2008 and 6th October 2008) the Mercury Dual Imaging System (MDIS) has extended the coverage of the Mercury surface, obtained by Mariner 10 and now we have images of about 90% of the Mercury surface [1]. MDIS is equipped with a Narrow Angle Camera (NAC) and a Wide Angle Camera (WAC). The NAC uses an off-axis reflective design with a 1.5° field of view (FOV) centered at 747 nm. The WAC has a re- fractive design with a 10.5° FOV and 12-position filters that cover a 395-1040 nm spectral range [2]. The color images can be used to infer information on the surface composition and classification meth- ods are an interesting technique for multispectral image analysis which can be applied to the study of the planetary surfaces. Classification methods are based on clustering algorithms and they can be divided in two categories: unsupervised and supervised. The unsupervised classifiers do not require the analyst feedback, and the algorithm automatically organizes pixels values into classes. In the supervised method, instead, the analyst must choose the "training area" that define the pixels value of a given class [3]. Here we will describe the classification in different compositional units of the region near the Rudaki Crater on Mercury.
Aerospect operations criteria for Mercury thresholds
NASA Technical Reports Server (NTRS)
Katz, S.
1979-01-01
The hazards anticipated from a large scale mercury spill during a possible failure in the preflight and early flight stages of the Space Shuttle were studied. Toxicity thresholds were investigated as well as other consequences of mercury interacting with the environment. Three sites of mercury spill were investigated: land, water, and atmosphere. A laboratory study of interactions between mercury vapor and ozone in a low pressure, high ultraviolet radiation environment approximated the conditions of a mercury vapor release in the ozone layer region of the stratosphere. Clear evidence of an interaction leading to the destruction of ozone by conversion to oxygen was obtained. The impact of a spill on the Earth's environment and methods of early detection of a developing hazard wave of primary concern in the study.
Mercury in the nation's streams - Levels, trends, and implications
Wentz, Dennis A.; Brigham, Mark E.; Chasar, Lia C.; Lutz, Michelle A.; Krabbenhoft, David P.
2014-01-01
Mercury is a potent neurotoxin that accumulates in fish to levels of concern for human health and the health of fish-eating wildlife. Mercury contamination of fish is the primary reason for issuing fish consumption advisories, which exist in every State in the Nation. Much of the mercury originates from combustion of coal and can travel long distances in the atmosphere before being deposited. This can result in mercury-contaminated fish in areas with no obvious source of mercury pollution.Three key factors determine the level of mercury contamination in fish - the amount of inorganic mercury available to an ecosystem, the conversion of inorganic mercury to methylmercury, and the bioaccumulation of methylmercury through the food web. Inorganic mercury originates from both natural sources (such as volcanoes, geologic deposits of mercury, geothermal springs, and volatilization from the ocean) and anthropogenic sources (such as coal combustion, mining, and use of mercury in products and industrial processes). Humans have doubled the amount of inorganic mercury in the global atmosphere since pre-industrial times, with substantially greater increases occurring at locations closer to major urban areas.In aquatic ecosystems, some inorganic mercury is converted to methylmercury, the form that ultimately accumulates in fish. The rate of mercury methylation, thus the amount of methylmercury produced, varies greatly in time and space, and depends on numerous environmental factors, including temperature and the amounts of oxygen, organic matter, and sulfate that are present.Methylmercury enters aquatic food webs when it is taken up from water by algae and other microorganisms. Methylmercury concentrations increase with successively higher trophic levels in the food web—a process known as bioaccumulation. In general, fish at the top of the food web consume other fish and tend to accumulate the highest methylmercury concentrations.This report summarizes selected stream studies conducted by the U.S. Geological Survey (USGS) since the late 1990s, while also drawing on scientific literature and datasets from other sources. Previous national mercury assessments by other agencies have focused largely on lakes. Although numerous studies of mercury in streams have been conducted at local and regional scales, recent USGS studies provide the most comprehensive, multimedia assessment of streams across the United States, and yield insights about the importance of watershed characteristics relative to mercury inputs. Information from other environments (lakes, wetlands, soil, atmosphere, glacial ice) also is summarized to help understand how mercury varies in space and time.
Colliding worlds: A journey in time and space through the solar system (Farinella Prize Lecture)
NASA Astrophysics Data System (ADS)
Marchi, S.
2017-09-01
The evolution of the interiors, surfaces, and atmospheres of solid bodies in the solar system is affected by interplanetary collisions. From Mercury to the outskirts of the solar system, collisions with leftover planetesimals -asteroids, comets and their debris- provide a primary evolutionary process. Impact craters mark this evolution and provide a diagnostic tool, which coupled with modeling and, when possible, sample analysis, allow us to unravel the ancient history of the solar system. In this prize talk, I will present a few selected cutting-edge research topics at the frontier between modeling and space exploration that without any doubt would have deeply interested the curious mind of Paolo Farinella.
Space food systems - Mercury through Apollo.
NASA Technical Reports Server (NTRS)
Roth, N. G.; Smith, M. C.
1972-01-01
Major achievements which characterized the development of food systems used by American astronauts in manned space flight are reviewed throughout a period spanning the Mercury, Gemini, and Apollo programs up to and including the Apollo 11 lunar landing mission. Lists of food types are accompanied by information on packaging, storage, preparation, consumption, and quality of particular products. Experience gained from development efforts for the Manned Orbiting Laboratory Program is also discussed.
Project Mercury: NASA's first manned space programme
NASA Astrophysics Data System (ADS)
Catchpole, John
Project Mercury will offer a developmental resume of the first American manned spaceflight programme and its associated infrastructure, including accounts of space launch vehicles. The book highlights the differences in Redstone/Atlas technology, drawing similar comparisons between ballistic capsules and alternative types of spacecraft. The book also covers astronaut selection and training, as well as tracking systems, flight control, basic principles of spaceflight and detailed accounts of individual flights.
Progress In Ground Based Mercury's Imaging
NASA Astrophysics Data System (ADS)
Ksanfomality, L.
The reduction of an exposure time improves considerably the resolution of the images of astronomical objects, which usually equals 1.0"-1.5"?for telescopes of a moderate diameter. A poor resolution is determined specifically by the atmospheric instability. A considerable reduction of the exposure became possible only with the advent of ef- fective CCD receivers. Certainly, the reduction of exposure does not eliminate distor- tions, though it can eliminate the image blurring. Nevertheless, it is possible to select the images with small distortions from a number of images. This study using the short exposure method for observations of the planet Mercury started in 1998 (Ksanfomal- ity, 1998). A similar study of Mercury using ground based technique, was fulfilled by J.Warell (Astronomical Observatory Uppsala, Sweden) and S.S.Limaye (University of Wisconsin-Madison, USA). J. Warell started his work as early as 1995 (Warell and Limaye, 2001). Later J.Baumgardner, M.Mendello and J.K.Wilson (2000) succeeded obtaining an image of a portion of Mercury's surface not covered by the Mariner- 10 imaging. They used a CCD camera, continuously operating with frequency 30 frames/sec and choose the best of them for a compilation. Due to the low planet's orbit the possible duration of the ground-based observations of Mercury is extremely limited. Nevertheless the new results are really promising and can be a means for obtaining new information on the planet; it may be of importance for new missions to Mercury that are now in progress both by NASA (the Messenger project) and by the European Space Agency (the BepiColombo project). Within the framework of the Mercury investigations carried out at the Institute for Space Research, Russian Academy of Sciences, on December 1-3, 1999, and November 1-10, 2001, observa- tions of the planet Mercury were carried out at the Abastumany Astrophysical Obser- vatory (Republic of Georgia), by the short exposure method using a charge-coupled device (CCD) camera. A great advantage of the observations at this Observatory was its considerable height above sea level (about 1700 m), which is important for obser- vations at large zenith distances.The AZT-11 telescope (D = 1.25 m, the Cassegrain focus F = 16 m) was used as a long-focus instrument. Due to a random fortunate co- incidence, the phase and position of the planet happened to be virtually the same as 1 in 1974, when Mercury was observed from the Mariner-10 spacecraft. Exposures as short as 3 ms and up to 70 ms were used. The atmospheric condition on November 3rd for about 45 min got unusually clear, and about 300 of electronic images of different quality were gathered. Using a sophisticated technique processing of observationally independent data rows resulted in many compositional electronic images with a num- ber of small features, never seen before and repeating times and again, which could be successfully compared the Mariner-10 mosaic. A set of the images is presented. 2
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronauts, John Glenn, left, and Scott Carpenter, talk to Mercury Project workers and other guests in the Astronaut Encounter Theater at the Kennedy Space Center Visitor Complex in Florida. The pair participated in 50th anniversary events at the launch site of Glenn's first orbital flight aboard NASA's Friendship 7 capsule, which launched Feb. 20, 1962, aboard an Atlas rocket. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-18
CAPE CANAVERAL, Fla. -- Mercury astronaut John Glenn poses for a photo in front of the Project Mercury monument at Launch Complex-14 LC-14 at Cape Canaveral Air Force Station in Florida. During events at the Cape and NASA's Kennedy Space Center, Glenn is marking the 50th anniversary of being the first American astronaut to orbit the Earth inside the Friendship 7 capsule on Feb. 20, 1962. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Kim Shiflett
2012-02-17
Mercury astronaut John Glenn speaks during the "On Shoulders of Giants" program celebrating 50 years of Americans in orbit, an era which began with Glenn's MA-6 mission on Feb. 20, 1962. The event was conducted in the Rocket Garden at the Kennedy Space Center Visitor Complex in Florida a few miles from the launch pad where Glenn and Scott Carpenter took flight in Mercury spacecraft. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975.
NASA Astrophysics Data System (ADS)
Varatharajan, I.; D'Amore, M.; Maturilli, A.; Helbert, J.; Hiesinger, H.
2018-04-01
Machine learning approach to spectral unmixing of emissivity spectra of Mercury is carried out using endmember spectral library measured at simulated daytime surface conditions of Mercury. Study supports MERTIS payload onboard ESA/JAXA BepiColombo.
De Wild, John F.; Olsen, Mark L.; Olund, Shane D.
2002-01-01
A recent national sampling of streams in the United States revealed low methyl mercury concentrations in surface waters. The resulting median and mean concentrations, calculated from 104 samples, were 0.06 nanograms per liter (ng/L) and 0.15 ng/L, respectively. This level of methyl mercury in surface water in the United States has created a need for analytical techniques capable of detecting sub-nanogram per liter concentrations. In an attempt to create a U.S. Geological Survey approved method, the Wisconsin District Mercury Laboratory has adapted a distillation/ethylation/ gas-phase separation method with cold vapor atomic fluorescence spectroscopy detection for the determination of methyl mercury in filtered and unfiltered waters. This method is described in this report. Based on multiple analyses of surface water and ground-water samples, a method detection limit of 0.04 ng/L was established. Precision and accuracy were evaluated for the method using both spiked and unspiked ground-water and surface-water samples. The percent relative standard deviations ranged from 10.2 to 15.6 for all analyses at all concentrations. Average recoveries obtained for the spiked matrices ranged from 88.8 to 117 percent. The precision and accuracy ranges are within the acceptable method-performance limits. Considering the demonstrated detection limit, precision, and accuracy, the method is an effective means to quantify methyl mercury in waters at or below environmentally relevant concentrations
2015-05-01
In this perspective view, NASA MESSENGER spacecraft looked northwest over the Caloris Basin, a depression about 1500 km in diameter formed several billion years ago by the impact of a large projectile into the surface of Mercury. The mountain range at the edge of the basin can be seen as an arc in the background. In the foreground, we see a set of tectonic troughs, known as Pantheon Fossae, radiating from the center of the basin outward toward the edge of the basin interior. A 41-km-diameter impact crater, Apollodorus, is superposed just slightly off from the center of Pantheon Fossae. White and red are high topography, and greens and blues are low topography, with a total height differences of roughly 4 km. The MESSENGER spacecraft was launched in 2004 and ended it's orbital operations yesterday, April 30, 2015, by impacting Mercury's surface. Background image texture is provided by the Mercury Dual Imaging System (MDIS) instrument while color corresponds to surface elevation data obtained from the Mercury Laser Altimeter (MLA) experiment, with both draped over a digital elevation model derived from MLA altimetric data. Instrument: Mercury Dual Imaging System (MDIS) and Mercury Laser Altimeter (MLA) Approximate Center Latitude: 33.7° N Approximate Center Longitude: 158.7° E Scale: Apollodorus crater is approximately 41 km (25 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19450
2012-02-18
CAPE CANAVERAL, Fla. -- John Glenn and his wife, Annie, and NASA astronaut Stephen Robinson tour the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. Glenn is at the space center to mark the 50th anniversary of being the first American astronaut to orbit the Earth inside the NASA Mercury Project's Friendship 7 capsule on Feb. 20, 1962. Glenn later returned to space in October 1998 as a payload specialist aboard space shuttle Discovery's STS-95 mission. Robinson was the payload commander of STS-95. Glenn's launch aboard an Atlas rocket took with it the hopes of an entire nation and ushered in a new era of space travel that eventually led to Americans walking on the moon by the end of the 1960s. Glenn soon was followed into orbit by Scott Carpenter, Walter Schirra and Gordon Cooper. Their fellow Mercury astronauts Alan Shepard and Virgil "Gus" Grissom flew earlier suborbital flights. Deke Slayton, a member of NASA's original Mercury 7 astronauts, was grounded by a medical condition until the Apollo-Soyuz Test Project in 1975. Photo credit: Cory Huston
IMPORTANCE OF ACTIVATED CARBON'S OXYGEN SURFACE FUNCTIONAL GROUPS ON ELEMENTAL MERCURY ADSORPTION
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury [Hg(0)] was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidat...
ROLE OF HCL IN ADSORPTION OF ELEMENTAL MERCURY VAPOR BY CALCIUM-BASED SORBENTS
The paper gives results of a study to identify active sites and surface functional groups that may contribute to the adsorption of elemental mercury (Hg?) by relatively inexpensive calcium (Ca)-based sorbents. (NOTE: Hg? capture has been mostly investigated using high-surface-ar...
THE EFFECT OF ACTIVATED CARBON SURFACE MOISTURE ON LOW TEMPERATURE MERCURY ADSORPTION
Experiments with elemental mercury (Hg0) adsorption by activated carbons were performed using a bench-scale fixed-bed reactor at room temperature (27 degrees C) to determine the role of surface moisture in capturing Hg0. A bituminous-coal-based activated carbon (BPL) and an activ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkerson, Laura O.; DePaoli, Susan M.; Turner, Ralph
2013-07-01
The U.S. Department of Energy (DOE), along with the Tennessee Department of Environment and Conservation (TDEC) and the U.S. Environmental Protection Agency (EPA), has identified mercury contamination at the Y-12 National Security Complex (Y-12) as the highest priority cleanup risk on the Oak Ridge Reservation (ORR). The historic loss of mercury to the environment dwarfs any other contaminant release on the ORR. Efforts over the last 20 years to reduce mercury levels leaving the site in the surface waters of Upper East Fork Poplar Creek (UEFPC) have not resulted in a corresponding decrease in mercury concentrations in fish. Further reductionsmore » in mercury surface water concentrations are needed. Recent stimulus funding through the American Recovery and Reinvestment Act of 2009 (ARRA) has supported several major efforts involving mercury cleanup at Y-12. Near-term implementation activities are being pursued with remaining funds and include design of a centrally located mercury treatment facility for waterborne mercury, treatability studies on mercury-contaminated soils, and free mercury removal from storm drains. Out-year source removal will entail demolition/disposal of several massive uranium processing facilities along with removal and disposal of underlying contaminated soil. As a National Priorities List (NPL) site, cleanup is implemented under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and directed by the Federal Facility Agreement (FFA) between DOE, EPA, and TDEC. The CERCLA process is followed to plan, reach approval, implement, and monitor the cleanup. (authors)« less
Astronaut Alan Shepard - U.S.S. Champlain - Post-Recovery Mercury Capsule
1961-05-05
S61-02727 (5 May 1961) --- Astronaut Alan B. Shepard is seen on the deck of the USS Lake Champlain after the recovery of his Mercury capsule in the western Atlantic Ocean. Shepard and the Mercury spacecraft designated the ?Freedom 7? were flown to the deck of the recovery ship within 11 minutes of splashdown. MR-3 was the United States? first manned space mission. The spacecraft attained a maximum speed of 5,180 miles per hour, reached an altitude of 116 1/2 statute miles, and landed 302 statute miles downrange from Cape Canaveral, Florida. The suborbital mission lasted 15 minutes and 22 seconds. Photo credit: NASA or National Aeronautics and Space Administration