Mercury in Indiana watersheds: retrospective for 2001-2006
Risch, Martin R.; Baker, Nancy T.; Fowler, Kathleen K.; Egler, Amanda L.; Lampe, David C.
2010-01-01
Information about total mercury and methylmercury concentrations in water samples and mercury concentrations in fish-tissue samples was summarized for 26 watersheds in Indiana that drain most of the land area of the State. Mercury levels were interpreted with information on streamflow, atmospheric mercury deposition, mercury emissions to the atmosphere, mercury in wastewater, and landscape characteristics. Unfiltered total mercury concentrations in 411 water samples from streams in the 26 watersheds had a median of 2.32 nanograms per liter (ng/L) and a maximum of 28.2 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 5.4 percent exceeded the 12-ng/L chronic-aquatic criterion, 59 percent exceeded the 1.8-ng/L Great Lakes human-health criterion, and 72.5 percent exceeded the 1.3-ng/L Great Lakes wildlife criterion. Mercury concentrations in water were related to streamflow, and the highest mercury concentrations were associated with the highest streamflows. On average, 67 percent of total mercury in streams was in a particulate form, and particulate mercury concentrations were significantly lower downstream from dams than at monitoring stations not affected by dams. Methylmercury is the organic fraction of total mercury and is the form of mercury that accumulates and magnifies in food chains. It is made from inorganic mercury by natural processes under specific conditions. Unfiltered methylmercury concentrations in 411 water samples had a median of 0.10 ng/L and a maximum of 0.66 ng/L. Methylmercury was a median 3.7 percent and maximum 64.8 percent of the total mercury in 252 samples for which methylmercury was reported. The percentages of methylmercury in water samples were significantly higher downstream from dams than at other monitoring stations. Nearly all of the total mercury detected in fish tissue was assumed to be methylmercury. Fish-tissue samples from the 26 watersheds had wet-weight mercury concentrations that exceeded the 0.3 milligram per kilogram (mg/kg) U.S. Environmental Protection Agency (USEPA) methylmercury criterion in 12.4 percent of the 1,731 samples. The median wet-weight concentration in the fish-tissue samples was 0.13 mg/kg, and the maximum was 1.07 mg/kg. A coarse-scale analysis of all fish-tissue data in each watershed and a fine-scale analysis of data within 5 kilometers (km) of the downstream end of each watershed showed similar results overall. Mercury concentrations in fish-tissue samples were highest in the White River watershed in southern Indiana and the Fall Creek watershed in central Indiana. In fish-tissue samples within 5 km of the downstream end of a watershed, the USEPA methylmercury criterion was exceeded by 45 percent of mercury concentrations from the White River watershed and 40 percent of the mercury concentration from the Fall Creek watershed. A clear relation between mercury concentrations in fish-tissue samples and methylmercury concentrations in water was not observed in the data from watersheds in Indiana. Average annual atmospheric mercury wet-deposition rates were mapped with data at 156 locations in Indiana and four surrounding states for 2001-2006. These maps revealed an area in southeastern Indiana with high mercury wet-deposition rates-from 15 to 19 micrograms per square meter per year (ug/m2/yr). Annual atmospheric mercury dry-deposition rates were estimated with an inferential method by using concentrations of mercury species in air samples at three locations in Indiana. Mercury dry deposition-rates were 5.6 to 13.6 ug/m2/yr and were 0.49 to 1.4 times mercury wet-deposition rates. Total mercury concentrations were detected in 96 percent of 402 samples of wastewater effluent from 50 publicly owned treatment works in the watersheds; the median concentration was 3.0 ng/L, and the maximum was 88 ng/L. When these concentrations were compared to Indiana water-quality criteria for mercury, 12 percent exceeded the 12-n
Maage, Amund; Nilsen, Bente M; Julshamn, Kaare; Frøyland, Livar; Valdersnes, Stig
2017-08-01
Meat samples of 84 minke whales (Balaenoptera acutorostrata) mainly from the Barents Sea, collected between 1 May and 16 August 2011, were analyzed for total mercury, methylmercury, cadmium, lead, total arsenic, inorganic arsenic and selenium. The average total mercury concentration found was 0.15 ± 0.09 mg/kg, with a range from 0.05 to 0.49 mg/kg. The molar ratio of selenium to mercury varied between 1.0 and 10.3. Cadmium content ranged from 0.002 to 0.036 mg/kg, while the content of lead in whale meat ranged from <0.01 to 0.09 mg/kg. None of the whale samples exceeded established EU maximum levels for metals in fish muscle, but 4.8% and 6.8% of the samples exceeded Japanese maximum levels for total mercury and methylmercury, respectively, in whale meat. There was only minor variations in element concentrations between whales from different geographical areas, and cadmium was the only element were the concentration increased with increasing length.
MODELING MERCURY FATE IN SEVEN GEORGIA WATERSHEDS
Field and modeling studies were conducted in support of total maximum daily loads (TMDLs)for mercury in six south Georgia rivers and the Savannah River. Mercury is introduced to these rivers primarily by atmospheric deposition, with minor point source loadings. To produce mercu...
Mercury distribution in Douro estuary (Portugal).
Ramalhosa, E; Pereira, E; Vale, C; Válega, M; Monterroso, P; Duarte, A C
2005-11-01
Determinations of dissolved reactive and total dissolved mercury, particulate and sedimentary mercury, dissolved organic carbon (DOC), particulate organic carbon (POC) and suspended particulate matter (SPM) have been made in the estuary of river Douro, in northern Portugal. The estuary was stratified by salinity along most of its length, it had low concentrations of SPM, typically <20 mg dm(-3), and concentrations of DOC in the range <1.0-1.8 mg dm(-3). The surface waters had a maximum dissolved concentration of reactive mercury of about 10 ng dm(-3), whereas for the more saline bottom waters it was about 65 ng dm(-3). The surface waters had maximum concentrations of total suspended particulate mercury of approximately 7 microg g(-1) and the bottom waters were always <1 microg g(-1). Concentrations of mercury in sediments was low and in the range from 0.06 to 0.18 microg g(-1). The transport of mercury in surface waters was mainly associated with organic-rich particulate matter, while in bottom waters the dissolved phase transport of mercury is more important. Lower particulate organic matter, formation of chlorocomplexes in more saline waters and eventually the presence of colloids appear to explain the difference of mercury partitioning in Douro estuarine waters.
Eggleston, Jack
2009-01-01
Due to elevated levels of methylmercury in fish, three streams in the Shenandoah Valley of Virginia have been placed on the State's 303d list of contaminated waters. These streams, the South River, the South Fork Shenandoah River, and parts of the Shenandoah River, are downstream from the city of Waynesboro, where mercury waste was discharged from 1929-1950 at an industrial site. To evaluate mercury contamination in fish, this total maximum daily load (TMDL) study was performed in a cooperative effort between the U.S. Geological Survey, the Virginia Department of Environmental Quality, and the U.S. Environmental Protection Agency. The investigation focused on the South River watershed, a headwater of the South Fork Shenandoah River, and extrapolated findings to the other affected downstream rivers. A numerical model of the watershed, based on Hydrological Simulation Program-FORTRAN (HSPF) software, was developed to simulate flows of water, sediment, and total mercury. Results from the investigation and numerical model indicate that contaminated flood-plain soils along the riverbank are the largest source of mercury to the river. Mercury associated with sediment accounts for 96 percent of the annual downstream mercury load (181 of 189 kilograms per year) at the mouth of the South River. Atmospherically deposited mercury contributes a smaller load (less than 1 percent) as do point sources, including current discharge from the historic industrial source area. In order to determine how reductions of mercury loading to the stream could reduce methylmercury concentrations in fish tissue below the U.S. Environmental Protection Agency criterion of 0.3 milligrams per kilogram, multiple scenarios were simulated. Bioaccumulation of mercury was expressed with a site-specific exponential relation between aqueous total mercury and methylmercury in smallmouth bass, the indicator fish species. Simulations indicate that if mercury loading were to decrease by 98.9 percent from 189 to 2 kilograms per year, fish tissue methylmercury concentrations would drop below 0.3 milligrams per kilogram. Based on the simulations, the estimated maximum load of total mercury that can enter the South River without causing fish tissue methylmercury concentrations to rise above 0.3 milligrams per kilogram is 2.03 kilograms per year for the South River, and 4.12 and 6.06 kilograms per year for the South Fork Shenandoah River and Shenandoah River, respectively.
Incorporating uncertainty in watershed management decision-making: A mercury TMDL case study
Labiosa, W.; Leckie, J.; Shachter, R.; Freyberg, D.; Rytuba, J.; ,
2005-01-01
Water quality impairment due to high mercury fish tissue concentrations and high mercury aqueous concentrations is a widespread problem in several sub-watersheds that are major sources of mercury to the San Francisco Bay. Several mercury Total Maximum Daily Load regulations are currently being developed to address this problem. Decisions about control strategies are being made despite very large uncertainties about current mercury loading behavior, relationships between total mercury loading and methyl mercury formation, and relationships between potential controls and mercury fish tissue levels. To deal with the issues of very large uncertainties, data limitations, knowledge gaps, and very limited State agency resources, this work proposes a decision analytical alternative for mercury TMDL decision support. The proposed probabilistic decision model is Bayesian in nature and is fully compatible with a "learning while doing" adaptive management approach. Strategy evaluation, sensitivity analysis, and information collection prioritization are examples of analyses that can be performed using this approach.
Wetherbee, Gregory A.; Martin, RoseAnn
2016-07-05
The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicated that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations. The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring.
Levels of total mercury in marine organisms from Adriatic Sea, Italy.
Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Zaccaroni, Annalisa; Olivieri, Vincenzo; Amorena, Michele
2009-08-01
The presence of total mercury in fish, crustacean and cephalopod from Adriatic Sea, was investigated. The highest concentrations were observed in decreasing order in: Norway lobster (0.97 +/- 0.24 mg/kg; mean +/- SE), European hake (0.59 +/- 0.14 mg/kg), red mullet (0.48 +/- 0.09 mg/kg), blue whiting (0.38 +/- 0.09 mg/kg), Atlantic mackerel (0.36 +/- 0.08 mg/kg) and European flying squid (0.25 +/- 0.03 mg/kg). A significant difference (p < 0.01) was found between the levels of total mercury in Norway lobster and those detected in all other species. The 25% of all samples exceeded the maximum limit fixed by Commission Regulation (EC) No 1881/2006. The results show that fish and fishery products can exceed the maximum levels and stress the need of more information for consumers in particular for people that eat large amount of fish.
Malvandi, Hassan; Sari, Abbas Esmaili; Aliabadian, Mansour
2014-10-01
Total mercury concentrations were determined in muscle tissue of Khramulia (Capoeta capoeta) captured in the Cheshme Kile and Zarrin Gol Rivers, Iran. In Cheshme Kile River, 49 fish samples were collected. The mean total mercury concentration in the muscles of C. capoeta from this area was 249 ng g(-1) dw. In Zarrin Gol River, where 62 fish samples were collected, the total mercury in muscles averaged 164 ng g(-1) dw. A significant difference was found between means of mercury in the rivers (p < 0.001). All samples from the two rivers had mean mercury concentrations below the maximum allowable limits for mercury set by the Food and Agriculture Organization, World Health Organization, Standardization Administration of China and Environmental Protection Agency. The results of this study indicate that the values of hazard target quotient and estimated weekly intake are low and represent a negligible risk for human health.
Total mercury in infant food, occurrence and exposure assessment in Portugal.
Martins, Carla; Vasco, Elsa; Paixão, Eleonora; Alvito, Paula
2013-01-01
Commercial infant food labelled as from organic and conventional origin (n = 87) was analysed for total mercury content using a direct mercury analyser (DMA). Median contents of mercury were 0.50, 0.50 and 0.40 μg kg⁻¹ for processed cereal-based food, infant formulae and baby foods, respectively, with a maximum value of 19.56 μg kg⁻¹ in a baby food containing fish. Processed cereal-based food samples showed statistically significant differences for mercury content between organic and conventional analysed products. Consumption of commercial infant food analysed did not pose a risk to infants when the provisionally tolerable weekly intake (PTWI) for food other than fish and shellfish was considered. By the contrary, a risk to some infants could not be excluded when using the PTWI for fish and shellfish. This is the first study reporting contents of total mercury in commercial infant food from both farming systems and the first on exposure assessment of children to mercury in Portugal.
Levels of total mercury in predatory fish sold in Canada in 2005.
Dabeka, R W; McKenzie, A D; Forsyth, D S
2011-06-01
Total mercury was analysed in 188 samples of predatory fish purchased at the retail level in Canada in 2005. The average concentrations (ng g(-1), range) were: sea bass 329 (38-1367), red snapper 148 (36-431), orange roughy 543 (279-974), fresh water trout 55 (20-430), grouper 360 (8-1060), black cod 284 (71-651), Arctic char 37 (28-54), king fish 440 (42-923), tilefish 601 (79-1164) and marlin 854 (125-2346). The Canadian standard for maximum total mercury allowed in the edible portions of fish sold at the retail level is 1000 ng g(-1) for shark, swordfish, marlin, orange roughy, escolar and both fresh and frozen tuna. The standard is 500 ng g(-1) for all other types of fish. In this study, despite the small number of samples of each species, the 1000 ng g(-1) maximum was exceeded in five samples of marlin (28%). The 500 ng g(-1) maximum was exceeded by six samples of sea bass (20%), four of tilefish (50%), five of grouper (24%), six of king fish (40%) and one of black cod (13%).
Optimizing fish sampling for fish–mercury bioaccumulation factors
Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop total maximum daily load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to s...
Survey of total mercury and methylmercury levels in edible fish from the Adriatic Sea.
Storelli, M M; Giacominelli-Stuffler, R; Storelli, A; D'Addabbo, R; Palermo, C; Marcotrigiano, G O
2003-12-01
Total mercury and methylmercury concentrations were measured in the muscle tissue of different fish species from the Adriatic Sea to ascertain whether the concentrations exceeded the maximum level fixed by the European Commission. Large species-dependent variability was observed. The highest total mercury mean concentrations were in benthic (0.20-0.76 microg g(-1) wet wt) and demersal fish (0.22-0.73 microg g(-1) wet wt), while pelagic species showed the lowest levels (0.09-0.23 microg g(-1) wet wt). In 15% of frost fish, in 42% of skate and in 30% of angler fish samples total mercury concentrations exceeded the maximum level fixed by the European Commission (Hg = 1 microg g(-1) wet wt); for the species for which the maximum level was set to 0.5 microg g(-1) wet wt, concentrations exceeding the prescribed legal limit were observed in 6.4% of bokkem, in 6.6% of pandora, in 20% of megrin, in 12.5% of four-spotted megrim, in 16% of striped mullet, in 5.0% of forkbeard and in 5.3% of picarel samples. In all the different species, mercury was present almost completely in the methylated form, with mean percentages between 70 and 100%. Weekly intake was estimated and compared with the provisional tolerable weekly intake recommended by the FAO/WHO Expert Committee on Food Additives. A high exposure was associated with the consumption of only skates, frost fish and angler fish, thought the consumption of the other species, such as, megrim, four spotted megrim, red fish striped mullet and forkbeard, resulted in a weekly intake slightly below the established provisional tolerable weekly intake.
Sari, Mega M; Inoue, Takanobu; Matsumoto, Yoshitaka; Yokota, Kuriko
2016-01-01
This research is comparative study of gold mining and non-gold mining areas, using four community vulnerability indicators. Vulnerability indicators are exposure degree, contamination rate, chronic, and acute toxicity. Each indicator used different samples, such as wastewater from gold mining process, river water from Tajum river, human hair samples, and health questionnaire. This research used cold vapor atomic absorption spectrometry to determine total mercury concentration. The result showed that concentration of total mercury was 2,420 times than the maximum content of mercury permitted in wastewater based on the Indonesian regulation. Moreover, the mercury concentration in river water reached 685 ng/l, exceeding the quality threshold standards of the World Health Organization (WHO). The mercury concentration in hair samples obtained from the people living in the research location was considered to identify the health quality level of the people or as a chronic toxicity indicator. The highest mercury concentration--i.e. 17 ng/mg, was found in the gold mining respondents. Therefore, based on the total mercury concentration in the four indicators, the community in the gold mining area were more vulnerable to mercury than communities in non-gold mining areas. It was concluded that the community in gold mining area was more vulnerable to mercury contamination than the community in non-gold mining area.
Risch, Martin R.
2005-01-01
Data from this study have implications for a Total Maximum Daily Load (TMDL) for mercury in the Grand Calumet River/Indiana Harbor Canal. Comparisons of data from this study with historical data do not show substantial changes in the distribution of mercury in the study area from 1994 through 2002. Treated municipal effluent had larger mercury concentrations than industrial effluent and presents a potential for larger mercury loads that could be controlled to achieve a TMDL, based on concentration. Mercury in ground-water discharge may be difficult to control to achieve a TMDL because of its diffuse and widespread distribution.
Bai, Wei-yang; Zhang, Cheng; Zhao, Zheng; Tang, Zhen-ya; Wang, Ding-yong
2015-08-01
An investigation on the concentrations and the spatial distribution characteristics of different species of mercury in the water body of Changshou Lake in Three Gorges Reservoir region was carried out based on the AreGIS statistics module. The results showed that the concentration of the total mercury in Changshou Lake surface water ranged from 0.50 to 3.78 ng x L(-1), with an average of 1.51 ng x L(-1); the concentration of the total MeHg (methylmercury) ranged from 0.10 to 0.75 ng x L(-1), with an average of 0.23 ng x L(-1). The nugget effect value of total mercury in surface water (50.65%), dissolved mercury (49.80%), particulate mercury (29.94%) and the activity mercury (26.95%) were moderate spatial autocorrelation. It indicated that the autocorrelation was impacted by the intrinsic properties of sediments (such as parent materials and rocks, geological mineral and terrain), and on the other hand it was also disturbed by the exogenous input factors (such as aquaculture, industrial activities, farming etc). The nugget effect value of dissolved methylmercury (DMeHg) in Changshou lake surface water (3.49%) was less than 25%, showing significant strong spatial autocorrelation. The distribution was mainly controlled by environmental factors in water. The proportion of total MeHg in total Hg in Changshou Lake water reached 30% which was the maximum ratio of the total MeHg to total Hg in freshwater lakes and rivers. It implied that mercury was easily methylated in the environment of Chanashou Lake.
Biomagnifications of mercury and methylmercury in tuna and mackerel.
Hajeb, P; Jinap, S; Ahmad, I
2010-12-01
Seawater may be contaminated by harmful substances, including toxic elements released by human activities. The present study evaluates the total mercury and methylmercury concentrations and their correlations to fish body size in longtail tuna and short-bodied mackerel from Chendring, Kuantan, at east coast and Kuala Perlis at west costs of Peninsular Malaysia during May to November 2007. Total mercury and methylmercury in muscle tissue of 69 samples of longtail tuna and short-bodied mackerel, ranged from 0.180 to 1.460 μg/g and 0.0.169-0.973 μg/g and 0.251-1.470 μg/g and 0.202-1.352, whereas the methylmercury to total mercury ratio ranged from 70% to 83%, respectively. Samples of both species from the east coast showed higher levels of mercury compared to those from west coast. In all of the locations, significant positive correlations were found between fish body weight and mercury content (R(2) > 0.470). The estimated weekly intake of total mercury and methylmercury from the consumption 66.33 g/week of short-bodied mackerel and 18.34 g/week of longtail tuna (based on local dietry survey) was found to be lower than the maximum limit of 5 and 1.5 μg/kg bodyweight established by FAO/WHO and codex, respectively.
Jin, Huafang; Liebezeit, Gerd
2013-01-01
In this study, we evaluate the nature of the relationship between particulate matter and total mercury concentrations. For this purpose, we estimate both of the two values in water column over 12-h tidal cycles of the Jade Bay, southern North Sea. Total particulate mercury in 250 mL water samples was determined by oxygen combustion-gold amalgamation. Mercury contents varied from 63 to 259 ng/g suspended particulate matter (SPM) or 3.5-52.8 ng/L in surface waters. Total particulate mercury content (THg(p)) was positively correlated with (SPM), indicating that mercury in tidal waters is mostly associated with (SPM), and that tidal variations of total particulate mercury are mainly due to changes in (SPM) content throughout the tidal cycle. Maximum values for THg(p) were observed during mid-flood and mid-ebb, while the lowest values were determined at low tide and high tide. These data suggest that there are no mercury point sources in the Jade Bay. Moreover, the THg(p) content at low tide and high tide were significantly lower than the values recorded in the bottom sediment of the sampling site (>200 ng/g DW), while THg(p) content during the mid-flood and mid-ebb were comparable to the THg content in the surface bottom sediments. Therefore, changes in THg(p) content in the water column due to tidal forcing may have resulted from re-suspension of underlying surface sediments with relatively high mercury content.
Rahayu, Rachmawati Noviana; Irawan, Bambang; Soegianto, Agoes
2016-01-01
This study measured the levels of total mercury (tHg) in the whole tissues of cockles (Anadara granosa and A. antiquata) harvested from three estuaries of Western Lombok Island (WLI), Indonesia. This paper also evaluated the hazard level posed by the mercury in relation to the maximum residual limit for human consumption and to estimate the weekly intake and compare it with the provisional tolerable weekly intake (PTWI). The tHg concentrations in A. granosa ranged from 0.020 to 0.070 mg kg(-1), and those in A. antiquata were between 0.032 and 0.077 mg kg(-1) at all locations. All samples of cockles harvested from WLI contain tHg below the permissible limit for human consumption. The maximum weekly intakes for total mercury by coastal people range from 0.28 to 1.08 µg kg(-1) b.w., and they are below the recommended values of PTWI (5.6 µg kg(-1) b.w.). If it is assumed that 100% of the Hg in cockles is methyl mercury (MeHg), consumption of the indicated amounts at the measured values wouldn't exceed the MeHg PTWI (1.6 µg kg(-1) b.w.).
NASA Astrophysics Data System (ADS)
Meng, D.; Wang, N.; Ai, J. C.; Zhang, G.; Liu, X. J.
2016-08-01
Gold mining was first initiated in Jiapigou area, Huadian city of Northeastern China about 200 years ago. Before 2006, the mercury amalgamation technique was used in the gold mining process, which led to severe mercury contamination. The aim of this paper is to explore the influences of residual mercury on the environment media after eliminating the amalgamation process to extract gold. The mercury concentrations of the atmosphere and the soil were determined in autumn of 2011 and spring of 2012. The soil environmental quality was assessed by the index of geoaccumulation. The results indicated that the maximum value of gaseous mercury was 25ng•m-3 in autumn and 19.5ng•m-3 in spring; the maximum value of mercury in the soil was 2.06mg•kg-1 in autumn and 2.51mg•kg-1in spring. It can be seen that the peak concentrations of the gaseous mercury happened at the gold mine area and tailings, while the peak mercury concentrations in the soil were located at the places near the mining sites and the residential area in the valley. Furthermore, the regression analysis of the total mercury contents between the atmosphere and the soil showed a significant correlation, which indicated that there was certain circulation of the mercury between the regional atmosphere and soil. In general, after the elimination of the amalgamation technique in gold extraction, the distance to the mercury source, the special conditions of hilly weather and landforms and the mercury exchange flux are the main factors of mercury contamination.
NASA Astrophysics Data System (ADS)
Hagan, Nicole; Robins, Nicholas; Hsu-Kim, Heileen; Halabi, Susan; Morris, Mark; Woodall, George; Zhang, Tong; Bacon, Allan; Richter, Daniel De B.; Vandenberg, John
2011-12-01
Detailed Spanish records of mercury use and silver production during the colonial period in Potosí, Bolivia were evaluated to estimate atmospheric emissions of mercury from silver smelting. Mercury was used in the silver production process in Potosí and nearly 32,000 metric tons of mercury were released to the environment. AERMOD was used in combination with the estimated emissions to approximate historical air concentrations of mercury from colonial mining operations during 1715, a year of relatively low silver production. Source characteristics were selected from archival documents, colonial maps and images of silver smelters in Potosí and a base case of input parameters was selected. Input parameters were varied to understand the sensitivity of the model to each parameter. Modeled maximum 1-h concentrations were most sensitive to stack height and diameter, whereas an index of community exposure was relatively insensitive to uncertainty in input parameters. Modeled 1-h and long-term concentrations were compared to inhalation reference values for elemental mercury vapor. Estimated 1-h maximum concentrations within 500 m of the silver smelters consistently exceeded present-day occupational inhalation reference values. Additionally, the entire community was estimated to have been exposed to levels of mercury vapor that exceed present-day acute inhalation reference values for the general public. Estimated long-term maximum concentrations of mercury were predicted to substantially exceed the EPA Reference Concentration for areas within 600 m of the silver smelters. A concentration gradient predicted by AERMOD was used to select soil sampling locations along transects in Potosí. Total mercury in soils ranged from 0.105 to 155 mg kg-1, among the highest levels reported for surface soils in the scientific literature. The correlation between estimated air concentrations and measured soil concentrations will guide future research to determine the extent to which the current community of Potosí and vicinity is at risk of adverse health effects from historical mercury contamination.
NASA Technical Reports Server (NTRS)
Dupree, David T.; Hawkins, W. Kent
1947-01-01
A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.
Gochfeld, Michael; Burger, Joanna; Jeitner, Christian; Donio, Mark; Pittfield, Taryn
2014-01-01
We examined total mercury and selenium levels in muscle of striped bass (Morone saxatilis) collected from 2005 to 2008 from coastal New Jersey. Of primary interest was whether there were differences in mercury and selenium levels as a function of size and location, and whether the legal size limits increased the exposure of bass consumers to mercury. We obtained samples mainly from recreational anglers, but also by seine and trawl. For the entire sample (n = 178 individual fish), the mean (± standard error) for total mercury was 0.39 ± 0.02 μg/g (= 0.39 ppm, wet weight basis) with a maximum of 1.3 μg/g (= 1.3 ppm wet weight). Mean selenium level was 0.30 ± 0.01 μg/g (w/w) with a maximum of 0.9 μg/g). Angler-caught fish (n = 122) were constrained by legal size limits to exceed 61 cm (24 in.) and averaged 72.6 ± 1.3 cm long; total mercury averaged 0.48 ± 0.021 μg/g and selenium averaged 0.29 ± 0.01 μg/g. For comparable sizes, angler-caught fish had significantly higher mercury levels (0.3 vs 0.21 μg/g) than trawled fish. In both the total and angler-only samples, mercury was strongly correlated with length (Kendall tau = 0.37; p < 0.0001) and weight (0.38; p < 0.0001), but was not correlated with condition or with selenium. In the whole sample and all subsamples, total length yielded the highest r2 (up to 0.42) of any variable for both mercury and selenium concentrations. Trawled fish from Long Branch in August and Sandy Hook in October were the same size (68.9 vs 70.1 cm) and had the same mercury concentrations (0.22 vs 0.21 ppm), but different selenium levels (0.11 vs 0.28 ppm). The seined fish (all from Delaware Bay) had the same mercury concentration as the trawled fish from the Atlantic coast despite being smaller. Angler-caught fish from the North (Sandy Hook) were larger but had significantly lower mercury than fish from the South (mainly Cape May). Selenium levels were high in small fish, low in medium-sized fish, and increased again in larger fish, but overall selenium was correlated with length (tau = 0.14; p = 0.006) and weight (tau = 0.27; p < 0.0001). Length-squared contributed significantly to selenium models, reflecting the non-linear relationship. Inter-year differences were explained partly by differences in sizes. The selenium:mercury molar ratio was below 1:1 in 20% of the fish and 25% of the angler-caught fish. Frequent consumption of large striped bass can result in exposure above the EPA’s reference dose, a problem particularly for fetal development. PMID:22226733
Hg soil pollution around the Flix chlor-alkali plant
NASA Astrophysics Data System (ADS)
Esbrí, José Maria; López-Berdoces, Miguel Angel; Martínez-Coronado, Alba; Fernández-Calderon, Sergio; Díez, Sergi; León Higueras, Pablo
2014-05-01
Main mercury consumer in industrialized countries is the chlor-alkali industry. In Spain, this industry declares 2.54 tons of mercury emissions to the atmosphere per year, but the losses of mercury in this industrial process seem to be higher than this. In the next 15 years, these industries are going to make a technology change to a free mercury based technology. This study has been applied to the Flix (Tarragona, NE Spain) plant, located very near the Ebro River. Local industrial activity started in the late 18th Century, being the first Spanish industrial precinct in activity. Technology used in this plant is obsolete, and produces important emissions to the atmosphere. Besides, it has also produced an important pollution problem in the Ebro River. The aim of this work is the characterization of mercury soil pollution around the oldest chlor-alkali plant (CAP), actually in process of decommissioning. For this porpoises, we provided data of mercury in soils and in olive oil leaves, in order to assess the extent of this pollution, and the consequences in terms of transferring to local agricultural biota. We present data from two soils geochemistry surveys, one centered in the general area, and a second one centered in an anomalous area identified by the first survey, at the Ebro margins downstream the town area. A total of 126 surface soil samples were taken and analyzed for total mercury by means of a Lumex RA-915+ device with RP- 91C pyrolysis attachment. Soil-plant transfer was studied based on mercury contents in olive leaves, the most ubiquitous plant species in the area; these biological samples were thoroughly clean and freeze-dried before its total mercury analysis in a Lumex RA-915+ device with its RP-91c pyrolysis attachment. Mercury contents in soils reach maximum levels in the vicinity of CAP (495 mg kg-1), much higher than baseline levels found in the area (0.18 mg kg-1, in average). These polluted soils are located near CAP and the riverbanks of Ebro meander, downstream the town area. Mercury seems to be partially available to plants, especially in the CAP surrounding area, where total mercury levels in olive leaves reach maximum values of 1.27 mg kg-1, and average concentration is 0.48 mg kg-1, higher than tolerable level for agronomic crops establish by Kabata-Pendias (2010) in 0.2 mg kg-1. Although correlation coefficients between Hgsoil-Hgplants are low, is possible to characterize plant absorption by logistic curves. Main conclusions of this work are: i) A fraction of mercury vapor emitted by CAP has been deposited on local soils by wet and dry deposition; ii) Mercury in local soils seems to be bioavailable for plants as highlights mercury levels in olive trees; iii) In this work we have identified risks areas with polluted soils.
Carbon bed mercury emissions control for mixed waste treatment.
Soelberg, Nick; Enneking, Joe
2010-11-01
Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.
Reduced mercury deposition in New Hampshire from 1996 to 2002 due to changes in local sources.
Han, Young-Ji; Holsen, Thomas M; Evers, David C; Driscoll, Charles T
2008-12-01
Changes in deposition of gaseous divalent mercury (Hg(II)) and particulate mercury (Hg(p)) in New Hampshire due to changes in local sources from 1996 to 2002 were assessed using the Industrial Source Complex Short Term (ISCST3) model (regional and global sources and Hg atmospheric reactions were not considered). Mercury (Hg) emissions in New Hampshire and adjacent areas decreased significantly (from 1540 to 880 kg yr(-1)) during this period, and the average annual modeled deposition of total Hg also declined from 17 to 7.0 microg m(-2) yr(-1) for the same period. In 2002, the maximum amount of Hg deposition was modeled to be in southern New Hampshire, while for 1996 the maximum deposition occurred farther north and east. The ISCST3 was also used to evaluate two future scenarios. The average percent difference in deposition across all cells was 5% for the 50% reduction scenario and 9% for the 90% reduction scenario.
Optimizing fish and stream-water mercury metrics for calculation of fish bioaccumulation factors
Paul Bradley; Karen Riva Murray; Barbara C. Scudder Elkenberry; Christopher D. Knightes; Celeste A. Journey; Mark A. Brigham
2016-01-01
Mercury (Hg) bioaccumulation factors (BAFs; ratios of Hg in fish [Hgfish] and water[Hgwater]) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Protection of wildlife and human health depends directly on the accuracy of site-specific estimates of Hgfish and Hgwater and the predictability of the relation between these...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
40 CFR 141.51 - Maximum contaminant level goals for inorganic contaminants.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...: Contaminant MCLG (mg/l) Antimony 0.006 Arsenic zero 1 Asbestos 7 Million fibers/liter (longer than 10 µm... Lead zero Mercury 0.002 Nitrate 10 (as Nitrogen). Nitrite 1 (as Nitrogen). Total Nitrate+Nitrite 10 (as...
Saiki, M.K.; Martin, B.A.; May, T.W.; Alpers, Charles N.
2005-01-01
This study was conducted during September-October 2002 to verify preliminary findings of elevated total mercury concentrations in skinless fillets of sportfishes inhabiting Lake Natoma. Although we measured total mercury concentrations, most mercury in fish flesh occurs in the methylated form. In August 2000, other investigators collected a small number of fish containing mercury concentrations that exceeded 0.30 ??g/g wet weight, the U.S. Environmental Protection Agency (USEPA) tissue residue criterion derived from a reference dose for methylmercury that may cause undesirable neurological abnormalities in human infants exposed in utero when pregnant women consume mercury-contaminated foods. During our study, skinless fillets of bluegill, Lepomis macrochirus, contained as much as 0.19 ??g Hg/g wet weight (1.06 ??g Hg/g dry weight); redear sunfish, L. microlophus, contained as much as 0.39 ??g Hg/g wetweight (1.99 ??g Hg/g dry weight); and largemouth bass, Micropterus salmoides, contained as much as 0.86 ??g Hg/g wet weight (3.85 ??g Hg/g dry weight). Maximum concentrations of mercury in other fish species varied from 0.097 ??g/g wet weight (0.537 ??g/g dry weight) in rainbow trout, Oncorhynchus mykiss, to 0.56 ??g/g wet weight (3.07 ??g/g dry weight) in white catfish, Ameiurus catus. Altogether, 1 of 20 redear sunfish, 14 of 61 largemouth bass, 1 of 1 brown builhead, A. nebulosus, 2 of 3 spotted bass, M. punctulatus, and 1 of 1 white catfish exceeded the USEPA fish tissue methylmercury residue criterion. Only bluegill and largemouth bass exhibited significant correlations between fish total length (TL), weight, and age, and total mercury concentration in fillets. Judging from a best-fit power-curve equation, largemouth bass measuring 273 mm TL (roughly 292g) or larger are estimated to contain total mercury concentrations in their fillets that exceed the USEPA fish tissue methylmercury criterion. These results confirmed that some fish species inhabiting Lake Natoma are contaminated with undesirably high concentrations of mercury in their skinless fillets.
Schaap, Bryan D.; Bartholomay, Roy C.
2006-01-01
During June and July 2005, water and bottom-sediment samples were collected from selected Yankton Sioux Tribe wetlands within the historic Reservation area of eastern Charles Mix County as part of a reconnaissance-level assessment by the U.S. Geological Survey and Yankton Sioux Tribe. The water samples were analyzed for pesticides and mercury species. In addition, the water samples were analyzed for physical properties and chemical constituents that might help further characterize the water quality of the wetlands. The bottom-sediment samples were analyzed for mercury species. During June 2005, water samples were collected from 19 wetlands and were analyzed for 61 widely used pesticide compounds. Many pesticides were not detected in any of the water samples and many others were detected only at low concentrations in a few of the samples. Thirteen pesticides were detected in water samples from at least one of the wetlands. Atrazine and de-ethyl atrazine were detected at each of the 19 wetlands. The minimum, maximum, and median dissolved atrazine concentrations were 0.056, 0.567, and 0.151 microgram per liter (?g/L), respectively. Four pesticides (alachlor, carbaryl, chlorpyrifos, and dicamba) were detected in only one wetland each. The number of pesticides detected in any of the 19 wetlands ranged from 3 to 8, with a median of 6. In addition to the results for this study, recent previous studies have frequently found atrazine in Lake Andes and the Missouri River, but none of the atrazine concentrations have been greater than 3 ?g/L, the U.S. Environmental Protection Agency's Maximum Contaminant Level for atrazine in drinking water. During June and July 2005, water and bottom-sediment samples were collected from 10 wetlands. Water samples from each of the wetlands were analyzed for major ions, organic carbon, and mercury species, and bottom-sediment samples were analyzed for mercury species. For the whole-water samples, the total mercury concentrations ranged from 1.11 to 29.65 nanograms per liter (ng/L), with a median of 10.56 ng/L. The methylmercury concentrations ranged from 0.45 to 14.03 ng/L, with a median of 2.28 ng/L. For the bottom-sediment samples, the total mercury concentration ranged from 21.3 to 74.6 nanograms per gram (ng/g), with a median of 54.2 ng/g. The methylmercury concentrations ranged from <0.11 to 2.04 ng/g, with a median of 0.78 ng/g. The total mercury concentrations in the water samples were all much less than 2 ?g/L (2,000 ng/L), the U.S. Environmental Protection Agency's Maximum Contaminant Level for mercury in drinking water. However, water samples from four of the wetlands had concentrations larger than 0.012 ?g/L (12 ng/L), the State of South Dakota's chronic standard for surface waters, including wetlands. Maximum methylmercury concentrations for this study are larger than reported concentrations for wetlands in North Dakota and concentrations reported for the Cheyenne River Indian Reservation in South Dakota.
Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography
NASA Astrophysics Data System (ADS)
Chen, Shuyue; Jiang, Xing; Lu, Guirong
2017-07-01
A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.
de Paiva, Esther Lima; Morgano, Marcelo Antonio; Milani, Raquel Fernanda
2017-09-01
The objective of this work was to determine levels of inorganic contaminants in 30 samples of five commercial brands of canned tuna, acquired on the local market in Campinas, São Paulo, Brazil, in the year of 2015. Total mercury and methylmercury (MeHg+) were determined by atomic absorption with thermal decomposition and amalgamation; and cadmium, lead, and tin were determined by inductively coupled plasma optical emission spectrometry. Results indicated that 20% of the tuna samples surpassed limits determined by the Brazilian and European Commission legislation for cadmium; for lead, the maximum value found was 59 µg kg -1 and tin was not detected in any samples. The maximum values found for total Hg and MeHg+ were 261 and 258 µg kg -1 , respectively. As from the results obtained, it was estimated that the consumption of four cans per week (540 g) of tuna canned in water could surpass the provisional tolerable monthly intake for MeHg + by 100%.
Phytoremediation of mercury-contaminated soils by Jatropha curcas.
Marrugo-Negrete, José; Durango-Hernández, José; Pinedo-Hernández, José; Olivero-Verbel, Jesús; Díez, Sergi
2015-05-01
Jatropha curcas plants species were tested to evaluate their phytoremediation capacity in soils contaminated by different levels of mercury. The experimental treatments consisted of four levels of mercury concentrations in the soil - T0, T1, T5, and T10 (0, 1, 5, and 10 μg Hg per g soil, respectively). The total mercury content absorbed by the different plant tissues (roots, stems and leaves) was determined during four months of exposure. The growth behavior, mercury accumulation, translocation (TF) and bioconcentration (BCF) factors were determined. The different tissues in J. curcas can be classified in order of decreasing accumulation Hg as follows: roots>leaves>stems. The highest cumulative absorption of the metal occurred between the second and third month of exposure. Maximum TF was detected during the second month and ranged from 0.79 to 1.04 for the different mercury concentrations. Values of BCF ranged from 0.21 to 1.43. Soils with T1 showed significantly higher BCF (1.43) followed by T10 (1.32) and T5 (0.91), all of them at the fourth month. On the other hand TFs were low (range 0.10-0.26) at the en of the experiment. The maximum reduction of biomass (16.3%) occurred for T10 (10 μg Hg g(-1)). In sum, J. curcas species showed high BCFs and low TFs, and their use could be a promising approach to remediating mercury-contaminated soils. Copyright © 2015 Elsevier Ltd. All rights reserved.
Increased mercury emissions from modern dental amalgams.
Bengtsson, Ulf G; Hylander, Lars D
2017-04-01
All types of dental amalgams contain mercury, which partly is emitted as mercury vapor. All types of dental amalgams corrode after being placed in the oral cavity. Modern high copper amalgams exhibit two new traits of increased instability. Firstly, when subjected to wear/polishing, droplets rich in mercury are formed on the surface, showing that mercury is not being strongly bonded to the base or alloy metals. Secondly, high copper amalgams emit substantially larger amounts of mercury vapor than the low copper amalgams used before the 1970s. High copper amalgams has been developed with focus on mechanical strength and corrosion resistance, but has been sub-optimized in other aspects, resulting in increased instability and higher emission of mercury vapor. This has not been presented to policy makers and scientists. Both low and high copper amalgams undergo a transformation process for several years after placement, resulting in a substantial reduction in mercury content, but there exist no limit for maximum allowed emission of mercury from dental amalgams. These modern high copper amalgams are nowadays totally dominating the European, US and other markets, resulting in significant emissions of mercury, not considered when judging their suitability for dental restoration.
Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong
2015-12-01
To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.
Mercury distribution in ancient and modern sediment of northeastern Bering Sea
Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H.
1975-01-01
Reconnaissance sampling of surface and subsurface sediment to a maximum depth of 80 m below the sea floor shows that typical values of 0.03 p.p.m. and anomalies of 0.2-1.3 p.p.m. mercury have been present in northeastern Bering Sea since Early Pliocene time. Values are highest in modern beach (maximum 1.3 and mean 0.22 p.p.m. Hg) and nearshore subsurface gravels (maximum 0.6 and mean 0.06 p.p.m. Hg) along the highly mineralized Seward Peninsula and in clayey silt rich in organic matter (maximum 0.16 and mean 0.10 p.p.m. Hg) throughout the region. Although gold mining may be partly responsible for high mercury levels in the modern beach near Nome, Alaska (maximum 0.45 p.p.m.), equally high or greater concentrations of mercury occur in buried Pleistocene sediments immediately offshore (maximum 0.6 p.p.m.) and in modern unpolluted beach sediments at Bluff (maximum 1.3 p.p.m.); this suggests that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The mercury content of offshore surface sediment, even adjacent to mercury-rich beaches, corresponds to that of unpolluted marine and fresh-water sediment elsewhere. The normal values that prevail offshore may be attributable to entrapment of mercury-bearing heavy minerals on beaches near sources and/or dilution effects of offshore sedimentation. The few minor anomalies offshore occur in glacial drift derived from mercury source regions of Chukotka (Siberia) and Seward Peninsula; Pleistocene shoreline processes have reworked the drift to concentrate the heavy metals. The distribution pattern of mercury indicates that particulate mercury-bearing minerals have not been widely dispersed from onland deposits in quantities sufficient to increase mercury levels above normal in offshore sediments of Bering Sea; however, it shows that natural sedimentary processes can concentrate this mercury in beaches of the coastal zone where there already is concern because of potential pollution from man's activities.
Hui, C.A.; Rudnick, D.; Williams, E.
2005-01-01
Chinese mitten crabs (Eriocheir sinensis), endemic to Asia, were first reported in the San Francisco Bay in 1992. They are now established in nearly all San Francisco Bay tributaries. These crabs accumulate more metals, such as mercury, than crustaceans living in the water column. Because their predators include fish, birds, mammals and humans, their mercury burdens have an exceptional potential to impact the ecosystem and public health. We sought to elucidate the potential threat of mitten crab mercury burdens in three adjacent streams in southern San Francisco Bay, one of which is known to be contaminated with mercury. Mitten crabs had hepatopancreas concentrations of total mercury and methylmercury that did not differ among streams. The maximum burden we measured was below the action level of 1 ppm recommended by the USEPA. Hepatopancreas concentrations of methylmercury declined with increasing crab size, suggesting a mechanism for mercury excretion and that predators might reduce mercury exposure if they select larger crabs. Because mercury may be heterogeneously distributed among tissues, estimation of the impacts of crab mercury burdens on the environment requires more data on the feeding preferences of predators. Hepatopancreas concentrations of mercury decline with crab size, which may have important consequences for bio-magnification in food webs. ?? 2004 Elsevier Ltd. All rights reserved.
Mercury measurements in the ocean - GEOTRACES intercalibration exercises
NASA Astrophysics Data System (ADS)
Heimbürger, L. E.
2015-12-01
Mercury is amongst the least concentrated trace metals in the ocean. We need to be able to measure, understand and interpret variability in mercury concentrations in seawater, which is often as low as some 10 percent. We organized international intcalibration exercises for total mercury and total methylmercury determination in seawater collected during the 2013 Dutch GEOTRACES MedBlack cruise (GA04- Black Sea), the 2014 French GEOTRACES GEOVIDE (GA01- North Atlantic Ocean) and the 2015 German GEOTRACES TranArc II cruise ( GN04 - Arctic Ocean). The exercises were intended to primarily evaluate the analytical performance of each participating laboratory. Therefore each laboratory received a single sample bottle of similar size, that has undergone the same cleaning procedure prior to sampling, and each sample was preserved in the same manner. The 2013 exercise was intended as a broader screening with a maximum number (25) of participating laboratories. Results indicated substantial disagreement between the participating laboratories, for both total mercury and methylmercury determinations. For the 2014 exercise we could only invite 10 laboratories of the 2013 exercise. Intercomparability of the second exercise was considerably better, but needs to be further improved in the years to come. The 2015 will be organized this summer. We will present the results of both intercalibration exercises in detail, attempt to explain causes for disagreements, and share our ideas about future developments to achieve traceable mercury measurements in the oceans. We will also make use of this occasion to plan the 2016 GEOTRACES intercalibration cruise.
Water resources of the White Earth Indian Reservation, northwestern Minnesota
Ruhl, J.F.
1989-01-01
Surface water also is a calcium magnesium bicarbonate type. Lake waters are hard and alkaline and are mesotrophic to eutrophic in productivity. Quality of the lake and stream water is suitable for native forms of freshwater biota, although the concentration of total recoverable mercury exceeds the 0.012 micrograms per liter maximum contaminant level; that level, established by USEPA for the organic form of dissolved mercury, is intended to protect against chronic effects on freshwater life. Available information, however, indicates that the amount of mercury in edible tissue from fish in alkaline lakes of northwestern Minnesota is within safe limits. The concentrations of phosphorus and nitrate in the streams are below levels that indicate pollution problems.
Olmedo, P; Pla, A; Hernández, A F; Barbier, F; Ayouni, L; Gil, F
2013-09-01
Although fish intake has potential health benefits, the presence of metal contamination in seafood has raised public health concerns. In this study, levels of mercury, cadmium, lead, tin and arsenic have been determined in fresh, canned and frozen fish and shellfish products and compared with the maximum levels currently in force. In a further step, potential human health risks for the consumers were assessed. A total of 485 samples of the 43 most frequently consumed fish and shellfish species in Andalusia (Southern Spain) were analyzed for their toxic elements content. High mercury concentrations were found in some predatory species (blue shark, cat shark, swordfish and tuna), although they were below the regulatory maximum levels. In the case of cadmium, bivalve mollusks such as canned clams and mussels presented higher concentrations than fish, but almost none of the samples analyzed exceeded the maximum levels. Lead concentrations were almost negligible with the exception of frozen common sole, which showed median levels above the legal limit. Tin levels in canned products were far below the maximum regulatory limit, indicating that no significant tin was transferred from the can. Arsenic concentrations were higher in crustaceans such as fresh and frozen shrimps. The risk assessment performed indicated that fish and shellfish products were safe for the average consumer, although a potential risk cannot be dismissed for regular or excessive consumers of particular fish species, such as tuna, swordfish, blue shark and cat shark (for mercury) and common sole (for lead). Copyright © 2013 Elsevier Ltd. All rights reserved.
MODELING TOOLS USED FOR MERCURY TMDLS IN GEORGIA RIVERS
The Clean Water Act and associated regulations require each State to identify waters not meeting water quality standards applicable to their designated uses. Total maximum daily loads (TMDLs) are required for pollutants violating these standards. The Consent Decree in the Georg...
Liu, Jinling; Feng, Xinbin; Zhu, Wei; Zhang, Xian; Yin, Runsheng
2012-01-01
The distribution and speciation of mercury in surface water of East River, Guangdong province, China were investigated. All told 63 water samples were collected during a bi-weekly sampling campaign from July 15th to 26th, 2009. Total mercury (THg) concentrations in water samples ranged from 11 to 49 ng/L. Maximum levels of THg were measured in the lower reaches of East River, where it passes through a major industrial area adjacent to Dongguang city. Higher ratios of dissolved mercury (THg (aq)) in proportion to THg were restricted to the downstream section of East River. Concentrations of the minor constituent methyl mercury varied in the range from 0.08 to 0.21 ng/L. On average, methyl mercury made up 0.8% and 0.56% of THg (aq) and THg, respectively. Dissolved species dominated the speciation of methyl mercury in proportions up to 81%, which may imply that methyl mercury is largely produced in situ within the river water. Environmental factors (such as water temperature, dissolved oxygen, etc.) are regarded to play an important role in Hg methylation processes were monitored and assessed. In an international perspective, East River must be classified as a polluted river with considerably sources within its industrial areas. The THg (aq) and particle mercury fluxes to the Pearl River Estuary by East River run-off were estimated to be 0.31 ± 0.11 and 0.17 ± 0.13 t/year, respectively. Hence, in total nearly 0.5 t Hg is annually released to the sea from the East River tributary.
Surface water-quality activities of the U.S. Geological Survey in New England
Huntington, Thomas G.
2016-03-23
• Water quality monitoring networks • Effects of best management practices and low impact development on water quality • Load estimation techniques and total maximum daily load assistance • Mercury studies • Toxics and emerging contaminants • Eutrophication and nuisance algal blooms
Mercury in the Carson and Truckee River basins of Nevada
Van Denburgh, A.S.
1973-01-01
Upstream from major pre-1900 ore milling in the Carson and Truckee River basins, "background" concentrations of total mercury in the upper 1 to 3 inches of sand- to clay-sized stream-bottom sediment are less than 0.1 ug/g (microgram per gram). Downstream, measured concentrations were as much as 200 times the background level. Greatest concentrations were encountered in the Carson River basin within and immediately upstream from Lahontan Reservoir. Data from for the Carson River near Fort Churchill suggest that most of the mercury in the sampled bottom sediment may be present as mercuric sulfide or as a component of one of more non-methyl organic compounds or complexes, rather than existing in the metallic state. Regardless of state, this reservoir of mercury is of concern because of its possible availability to the aquatic food chain and, ultimately, to man. Among 48 samples of surface water from 29 sites in the two basins, the maximum measured total-mercury concentration was 6.3 ug/1 (micrograms per liter), for a sample from the Carson River near Fort Churchill. Except downstream from Lahontan Reservoir, most other measured values were less than 1 ug/1. (The U.S> Environmental Protection Agency interim limit for drinking water is 5 ug/1.) The total-mercury content of stream water is related to the mercury content of bottom sediments and the rate of streamflow, because the latter affects the suspended-sediment transporting capability of the stream,. Near Fort Churchill, total-mercury concentrations that might be expected at streamflows greater than those of 1971-72 are: as much as 10-15 ug/1 or more at 2,000 cfs (cubic feet per second), and as much as 10-20 ug/1 or more at 3,000 cfs. Elsewhere, expectable concentrations are much less because the bottom sediment contains much less mercury. The mercury contents of water samples from 36 wells in the Carson and Truckee basins were all less than 1 ug/1, indicating that mercury is not a problem in ground water, even adjacent to areas where stream-bottom sediment is enriched in mercury. Limited data indicate that the Carson River above Lahontan Reservoir and the reservoir itself contain only trace amounts of dissolved arsenic, cyanide, selenium, and silver. Among 17 additional trace metals analysed for on four unfiltered samples from the river above the reservoir, only six of the metals were consistently present in concentrations exceeding detection limits. Maximum measured concentrations for the six metals were: aluminum, >670 ug/1; iron, 2,500 ug/1; manganese, 1,100 ug/1; molybdenum, 15 ug/1; titanium, 110 ug/1; and vanadium, 15 ug/1. Presumably, the detected metals were associated largely or almost entirely with the suspended-sediment phase of the water samples. Selenium and silver concentrations in sampled well waters from the Carson and Truckee basins were uniformly low, with one exception--as elenium concentration of 18 ug/1 for the water of a shallow well southwest of Fallon (Public Health Service limit, 10 ug/1). The arsenic content of 15 sampled well waters ranged from 0 to 1,500 ug/1 (0 to 1.5 ppm), with seven of the values greater than 50 ug/1 (the Public Health Service limit).
von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene
2002-01-01
Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716
Kannan, K.; Smith, R.G.; Lee, R.F.; Windom, H.L.; Heitmuller, P.T.; Macauley, J.M.; Summers, J.K.
1998-01-01
Concentrations of total mercury and methyl mercury were determined in sediment and fish collected from estuarine waters of Florida to understand their distribution and partitioning. Total mercury concentrations in sediments ranged from 1 to 219 ng/g dry wt. Methyl mercury accounted for, on average, 0.77% of total mercury in sediment. Methyl mercury concentrations were not correlated with total mercury or organic carbon content in sediments. The concentrations of total mercury in fish muscle were between 0.03 and 2.22 (mean: 0.31) ??g/g, wet wt, with methyl mercury contributing 83% of total mercury. Methyl mercury concentrations in fish muscle were directly proportional to total mercury concentrations. The relationship of total and methyl mercury concentrations in fish to those of sediments from corresponding locations was fish-species dependent, in addition to several abiotic factors. Among fish species analyzed, hardhead catfish, gafftopsail catfish, and sand seatrout contained the highest concentrations of mercury. Filtered water samples from canals and creeks that discharge into the Florida Bay showed mercury concentrations of 3-7.4 ng/L, with methyl mercury accounting for <0.03-52% of the total mercury. Consumption of fish containing 0.31 ??g mercury/g wet wt, the mean concentration found in this study, at rates greater than 70 g/day, was estimated to be hazardous to human health.
NASA Astrophysics Data System (ADS)
López-Berdonces, Miguel Angel; María Esbrí, José; Lorenzo, Saturnino; Higueras, Pablo
2014-05-01
Data from soil pollution and its consequences around a decommissioned chlor-alkali plant are presented in this communication. The plant was active in the period 1977-1991, producing during these years a heavily pollution of Guadalquivir River and hidrargirism in more than local 45 workers. It is located at 7 km South of Jódar, a locality with some 12,120 inhabitants. Mercury usage was general in this type of plants, but at present it is being replaced by other types of technologies, due to the risks of mercury usage in personal and environment. A soil geochemistry survey was carried out in the area, together with the analysis of olive-tree leaves from the same area. 75 soil samples were taken at two different depths (0-15 cm. and 15-30 cm), together with 75 olive tree samples, 5 water samples. Besides, two monitoring surveys for total gaseous mercury in the atmosphere were performed. Mercury content of geologic and biologic samples was determined by means of Atomic Absorption Spectrometry with Zeeman Effect, using a Lumex RA-915+ device with the RP-91C pyrolysis attachment. Air surveys were carried our using a RA-915M Lumex portable analytical device, with GPS georreferenciation of the analysis points. Soil mercury contents were higher in topsoil than in the deeper soil samples, indicating that incorporation of mercury was due to dry and wet deposition of mercury vapors emitted from the plant. A local reference level was calculated as GM + 2SD (where GM is the geometric mean and SD the standard deviation). With this reference level it was possible to delimitate a contaminated soil area centered on the decommissioned chlor-alkali plant. A high affinity of local olive trees to accumulate mercury from the contaminated soil was also found, with a calculated maximum mercury content of 243.5 ng g-1. This maximum level is slightly higher than tolerable level for agronomic crops. Total mercury content in the analyzed waters was slightly higher than the chronic exposure level for aquatic life. Atmospheric mercury levels registered on the study area were much lower than most restrictive levels for chronic exposure. The area of influence of the facility (in terms of mercury content in air) was restricted to distances between 100 and 200 meters, depending on meteorological conditions. Main conclusions of this research work are the following: i) The Jódar decommissioned chlor-alkali plant is still a mercury source 20 years after its cease of activities without any reclamation measures; ii) The activity of the plant has produced an important dissemination of mercury in the surrounding environment; and iii) The corresponding pollution levels, in particular in soils, may suppose a risk to the main crops of the area (olive trees).
Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële
2005-01-01
The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides the first measurements of mercury trophic transfer through planktonic communities in this watershed. It is worth reemphasizing that this data set represents a single ?snap shot? of conditions in water bodies within the Guadalupe River watershed to: (1) fill gaps in trophic transfer information, and (2) provide a scientific basis for future process-based studies with enhanced temporal and spatial coverage. This electronic document was unconventionally formatted to enhance the accessibility of information to a wide range of interest groups.
Etheridge, Alexandra B.
2015-12-07
Ninety-eight percent of the estimated total mercury load transported downstream of the study area is attributable to Sugar Creek. A maximum concentration of 26 micrograms per liter was measured in Sugar Creek during May 2013 when snowmelt runoff occurred during a single peak in the hydrograph. Monitoring and modeling results indicate sediment and sediment-associated constituent concentrations and loads increase along Meadow Creek, likely because of the inflow of the East Fork of Meadow Creek, and decrease between sites 3 and 4 because the Glory Hole is trapping sediments. Sugar Creek (site 5) accounted for most of the sediment and sediment-associated constituent loading leaving the study area because loads from the East Fork of Meadow Creek remained trapped in the Glory Hole. Additionally, total mercury was detected at all five streamflow-gaging stations, and sampled mercury concentrations exceeded Idaho ambient water-quality criteria at all five streamflow-gaging stations.
Saiki, Michael K.; Slotton, Darrell G.; May, Thomas W.; Ayers, Shaun M.; Alpers, Charles N.
2004-01-01
This report summarizes results of total mercury measurements in skinless fillets of sport fishes collected during August 2000, September?October 2002, and July 2003 from Lake Natoma, a small (8,760 acre-feet) afterbay for Folsom Dam on the lower American River. The primary objective of the study was to determine if mercury concentrations in fillets approached or exceeded guidelines for human consumption. The Food and Drug Administration (FDA) human-health action level for methylmercury in commercially caught fish is 1.0 ?g/g (microgram per gram); the U.S. Environmental Protection Agency (USEPA) human-health criterion for methylmercury residue in fish tissue is 0.30 ?g/g. Wet weight concentrations of total mercury in skinless fillets were as high as 0.19 ?g/g in bluegill (Lepomis macrochirus), 0.39 ?g/g in redear sunfish (L. microlophus), 1.02 ?g/g in largemouth bass (Micropterus salmoides), and 1.89 ?g/g in channel catfish (Ictalurus punctatus). Maximum concentrations of mercury in other fish species varied from 0.10 ?g/g in rainbow trout (Oncorhynchus mykiss) to 0.56 ?g/g in white catfish (A-meiurus catus). Altogether, 1 of 86 largemouth bass and 11 of 11 channel catfish exceeded the FDA human-health action level. In addition, 1 of 20 redear sunfish, 26 of 86 largemouth bass, 2 of 3 spotted bass (M. punctulatus), 1 of 1 brown bullhead (A. nebulosus), and 1 of 1 white catfish exceeded the USEPA human-health criterion. These results indicate that some fish species inhabiting Lake Natoma contain undesirably high concentrations of mercury in their skinless fillets.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil....164 0.068 Zinc 0.584 0.244 Gold 0.040 Oil and grease 8.000 4.800 Total suspended solids 16.400 7.800 p...
Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen; Zhao, Changming
2018-01-01
This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg 2+ ) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg -1 mercury. The MDA (malondialdehyde) content increased whereas and the P n (net photosynthetic rate), F v ∕ F m (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg -1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate-low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol.
Lv, Shiqi; Yang, Bin; Kou, Yixuan; Zeng, Jun; Wang, Ruixiong; Xiao, Yumeng; Li, Fencan; Lu, Ying; Mu, Yuwen
2018-01-01
This study was conducted to evaluate the effects of mercury stress on growth, photosynthesis and mercury accumulation in different cultivars of a non-food energy crop, Jerusalem artichoke, and to screen appropriate cultivars for their efficacy in the phytoremediation of mercury (Hg2+) contaminated soil. Cultivars LZJ033 (high above-ground biomass and nutrient content, and strongly sexual reproduction) and LZJ119 (a long period of vegetative growth) exhibited more tolerance to mercury stress than LZJ047 (the highest tuber yield and total sugar content). The lines LZJ119 and LZJ047 showed delays in emergence time of about four weeks, and LZJ047 exhibited the highest mortality rate, 85.19%, under treatment with 10 mg kg-1 mercury. The MDA (malondialdehyde) content increased whereas and the Pn (net photosynthetic rate), Fv∕Fm (the maximum quantum yield of PSII photochemistry) and chlorophyll content decreased in response to mercury stress. The stem diameter, stem biomass and photosynthetic rate of Jerusalem artichoke showed some modest increases in response to mercury stress and exhibited hormesis at least 1 mg kg-1 mercury treatment. Overall, LZJ119 produced more biomass under mercury stress, whereas LZJ033 exhibited a greater capacity for mercury bioaccumulation. Accordingly, LZJ119 may be a good candidate cultivar for use in cases of moderate—low mercury contamination, whereas LZJ033 may be a better candidate under conditions of high mercury contamination. When Jerusalem artichoke was cultivated in mercury contaminated soil, it not only removed the mercury from soil but also produced large amounts of tubers and shoots which could be used as feedstock for the production of bioethanol. PMID:29404218
Mercury distribution in ancient and modern sediments of northeastern Bering Sea
Nelson, C. Hans; Pierce, D.E.; Leong, K.W.; Wang, F.F.
1972-01-01
A reconnaissance of surface and subsurface sediments to a maximum depth of 244 feet below the sea floor shows that natural mercury anomalies from 0.2 to 1.3 ppm have been present in northeastern Bering Sea since early Pliocene. The anomalies and mean values are highest in modern beach (maximum 1.3 and mean 0.22 ppm Hg) and nearshore subsurface gravels (maximum 0.6 and mean .06 ppm Hg) along the highly mineralized Seward Peninsula and in organic rich silt (maximum 0.16 and mean 0.10 ppm Hg) throughout the region; the mean values are lowest in offshore sands (0.03 ppm Hg) . Although gold mining may be partially responsible for high mercury levels in the beaches near Nome, Alaska, equally high or greater concentrations of mercury occur in ancient glacial sediments immediately offshore (0.6 ppm) and in modern unpolluted beach sediments at Bluff (0.45 - 1.3 ppm); this indicates that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The background content of mercury (0.03) throughout the central area of northeastern Bering Sea is similar to that elsewhere in the world. The low mean values (0.04 ppm) even immediately offshore from mercury-rich beaches, suggests that in the surface sediments of northeastern Bering Sea, the highest concentrations are limited to the beaches near mercury sources; occasionally, however, low mercury anomalies occur offshore in glacial drift derived from mercury source regions of Chukotka and Seward Peninsula and reworked by Pleistocene shoreline processes. The minimal values offshore may be attributable to beach entrapment of heavy minerals containing mercury and/or dilution effects of modern sedimentation.
Mercury in breast milk - a health hazard for infants in gold mining areas?
Bose-O'Reilly, Stephan; Lettmeier, Beate; Roider, Gabriele; Siebert, Uwe; Drasch, Gustav
2008-10-01
Breast-feeding can be a source of mercury exposure for infants. The main concern up to now is methyl-mercury exposure of women at child-bearing age. Certain fish species have high levels of methyl-mercury leading to consumer's advisory guidelines in regard of fish consumption to protect infants from mercury exposure passing through breast milk. Little is known about the transfer of inorganic mercury passing through breast milk to infants. Epidemiological studies showed negative health effects of inorganic mercury in gold mining areas. Small-scale gold miners use mercury to extract the gold from the ore. Environmental and health assessments of gold mining areas in Indonesia, Tanzania and Zimbabwe showed a high exposure with inorganic mercury in these gold mining areas, and a negative health impact of the exposure to the miners and the communities. This paper reports about the analysis and the results of 46 breast milk samples collected from mercury-exposed mothers. The median level of 1.87mug/l is fairly high compared to other results from literature. Some breast milk samples showed very high levels of mercury (up to 149mug/l). Fourteen of the 46 breast milk samples exceed 4mug/l which is considered to be a "high" level. US EPA recommends a "Reference Dose" of 0.3mug inorganic mercury/kg body weight/day [United States Environmental Protection Agency, 1997. Volume V: Health Effects of Mercury and Mercury Compounds. Study Report EPA-452/R-97-007: US EPA]. Twenty-two of the 46 children from these gold mining areas had a higher calculated total mercury uptake. The highest calculated daily mercury uptake of 127mug exceeds by far the recommended maximum uptake of inorganic mercury. Further systematic research of mercury in breast milk from small-scale gold mining areas is needed to increase the knowledge about the bio-transfer of mercury from mercury vapour-exposed mothers passing through breast milk to the breast-fed infant.
Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.; Alpers, Charles N.
2010-01-01
This study examined mercury concentrations in whole fish from Camp Far West Reservoir, an 830-ha reservoir in northern California, USA, located downstream from lands mined for gold during and following the Gold Rush of 1848–1864. Total mercury (reported as dry weight concentrations) was highest in spotted bass (mean, 0.93 μg/g; range, 0.16–4.41 μg/g) and lower in bluegill (mean, 0.45 μg/g; range, 0.22–1.96 μg/g) and threadfin shad (0.44 μg/g; range, 0.21–1.34 μg/g). Spatial patterns for mercury in fish indicated high concentrations upstream in the Bear River arm and generally lower concentrations elsewhere, including downstream near the dam. These findings coincided with patterns exhibited by methylmercury in water and sediment, and suggested that mercury-laden inflows from the Bear River were largely responsible for contaminating the reservoir ecosystem. Maximum concentrations of mercury in all three fish species, but especially bass, were high enough to warrant concern about toxic effects in fish and consumers of fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Shanique L.; Kim, Myoungwoo; Lin, Peng
The Great Lakes eco-region is one of the largest sources of fresh water in North America; however it is chronically exposed to heavy metal loadings such as mercury. In this study a comprehensive model evaluation was conducted to determine mercury loadings to the Great Lakes. The study also evaluated the relative impact of anthropogenic mercury emissions from China, regional and global sources on deposition to the Great Lakes. For the 2005 study period, CMAQ 4.7.1 model estimated a total of 6.4 ± 0.5 metric tons of mercury deposited in the Great Lakes. The total deposition breakdown showed a net loadingmore » for Lake Superior of 1906 ± 246 kg/year which is the highest of all the lakes. Lake Michigan followed with 1645 ± 203 kg/year and 1511 ± 107 kg/year in Lake Huron. The lowest total deposition was seen in Lakes Erie and Ontario amassing annual totals of 837 ± 107 kg and 506 ± 63 kg, respectively. Wet and dry deposition of mercury were both significant pathways and exhibited strong seasonal variability with higher deposition occurring in the warmer months (June–November) and the lowest in winter. Wet deposition of RGM significantly influenced the deposition proportions accounting for roughly 90% of all mercury deposited. Of the three emission sources (global background, integrated planning management (IPM) and Chinese), global background concentrations represented the maximum impact to deposition loading in the Great Lakes, except for Lake Erie and parts of Lake Michigan. There was minimal seasonality for the global background, but differences in percentage contribution between dry (28–97%) and wet deposition (43–98%) was predicted. The contributions were seen mainly in the northern sections of the Great Lakes further away from IPM point sources. These findings suggest strong localized impact of IPM sources on the southernmost lakes. Deposition as a result of emissions from China exhibited seasonality in both wet and dry deposition and showed significant contributions ranging from 0.2 to 9%.« less
Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study.
Millour, Sandrine; Noël, Laurent; Kadar, Ali; Chekri, Rachida; Vastel, Christelle; Sirot, Véronique; Leblanc, Jean-Charles; Guérin, Thierry
2011-06-15
In 2006, the French Food Safety Agency (AFSSA) conducted the second French total diet study (TDS) to estimate dietary exposures of main minerals and trace elements from 1319 samples of foods habitually consumed by the French population. The foodstuffs were analysed by ICP-MS after microwave-assisted digestion. Contamination data for lead, mercury, cadmium, arsenic, antimony and aluminium were reported and compared with results from the previous French total diet study. The results are comparable with those from the rest of Europe. "Fish and fish products" and "sweeteners, honey and confectionery" were the food groups showing the highest cumulated contents in Pb, Hg, Cd, As, Al and Sb. However, observed levels remained low and were generally well below the maximum levels set by the current European regulation for lead, cadmium and mercury. Copyright © 2010 Elsevier Ltd. All rights reserved.
Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol
2018-03-01
Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2 at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zheng, Dongmei; Zhang, Zhongsheng; Wang, Qichao
2010-06-01
Total and methyl mercury concentrations of cicada bodies, wings, and exuviae were investigated to study the mercury distribution characteristics. Results indicated that total and methyl mercury concentrations of cicada bodies were 2.64 mg/kg and 123.93 ng/g on average, respectively. In cicada tissues, total mercury concentrations were found to increase in the order of exuviae (0.50 mg/kg on average) < wings (0.98 mg/kg on average) < cicada bodies (2.64 mg/kg on average) and methyl mercury concentrations of cicada bodies were 123.93 ng/g on average and were the highest. Methyl mercury concentrations accounted for about 4.69% of total mercury in cicada bodies and most mercury was in inorganic forms in cicada. Sex differences of total mercury concentrations were significantly great (F = 8.433, p < 0.01) and total mercury concentrations of the males, which were 3.38 mg/kg on average, were much higher. Correlation analysis showed that neither total nor methyl mercury concentrations of cicada bodies was significantly related to the corresponding contents of soil (r = 0.0598, p > 0.05).
Jeevanaraj, Pravina; Hashim, Zailina; Elias, Saliza Mohd; Aris, Ahmad Zaharin
2016-12-01
We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO 3 and H 2 O 2 . Total mercury was quantified using VP90 cold vapour system with N 2 carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R 2 = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
Mercury in fish products: what's the best for consumers between bluefin tuna and yellowfin tuna?
Cammilleri, Gaetano; Vazzana, Mirella; Arizza, Vincenzo; Giunta, Francesca; Vella, Antonio; Lo Dico, Gianluigi; Giaccone, Vita; Giofrè, Salvatore V; Giangrosso, Giuseppe; Cicero, Nicola; Ferrantelli, Vincenzo
2018-02-01
A total of 205 bluefin and yellowfin tuna samples were examined for mercury detection in order to verify possible differences and have a detailed risk assessment of the two tuna species. The results showed significant higher mercury concentration in muscle tissue of bluefin tuna respect yellowfin tuna (p < 0.001) with mean concentration of 0.84 mg/kg and maximum value of 1.94 mg/kg. These differences can be due the different biological and ecological aspects of the two tuna species and to different oceanographic aspects between Atlantic Ocean and Mediterranean sea. The results obtained in this study suggest an advisable containment of the sources of pollution and further studies on the closed-loop farming of bluefin tuna, in order to ensure the product safety.
Biosorption of mercury by the inactivated cells of Pseudomonas aeruginosa PU21 (Rip64)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.S.; Hong, J.
1994-10-01
Biomass of a mercury-resistance strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution of pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin. The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na[sup +] were present. Biosorption of mercury was also examined in sodium phosphate solution and phosphate-buffered saline solution containingmore » 50 mM and 150 mM of Na[sup +], respectively. It was found that the presence of Na[sup +] did not severely affect the biosorption of Hg[sup 2+], indicating a high mercury selectivity of the biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg[sup 2+] by the biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow the Langmuir or Freundlich adsorption isotherms.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
... included on the State of California's Section 303(d) list of polluted waters due to water quality impacts... ENVIRONMENTAL PROTECTION AGENCY [FRL-9146-6] Clean Water Act Section 303(d): Availability of Los... nutrient, mercury, chlordane, dieldrin, DDT, PCB, and trash impairments pursuant to Clean Water Act Section...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-08
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9135-1] Clean Water Act Section 303(d): Final Agency Action... the Clean Water Act (CWA). Documents from the administrative record file for the seven TMDLs... Oxygen. 010401 East Atchafalaya Mercury. Basin and Morganza Floodway South to Interstate 10 Canal. 010501...
Baldigo, Barry P.; Sloan, R.J.; Smith, S.B.; Denslow, N.D.; Blazer, V.S.; Gross, T.S.
2006-01-01
Tissue residues of total mercury (Hg), total polychlorinated biphenyls (PCBs), and lipid-based PCBs; plasma concentrations of endocrine biomarkers; and reproductive and histologic biomarkers were assessed in 460 carp (Cyprinus carpio), bass (Micropterus salmoides and Micropterus dolomieui), and bullhead (Ameiurus nebulosus) collected from eight sites across the Hudson River Basin in the spring of 1998 to determine if endocrine disruption was evident in resident fish species and to evaluate contaminant-biomarker interrelations. Total PCBs in bed sediments (maximum 2,500 ??g kg-1) could explain 64 to 90% of the variability in lipid-based PCB residues in tissues (maximum 1,250 ??g PCB g-lipid-1) of the four species. The 17??-estradiol to 11-ketotestosterone ratio, typically less than 1.0 in male fish and greater than 1.0 in females, exceeded 1.4 in all male largemouth bass and 35% of male carp and bullhead at one site 21 km downstream from a major PCB source. Endocrine biomarkers were significantly correlated with total Hg in female smallmouth bass and carp, and with lipid-based PCBs in males of all four species. Empirical evidence of endocrine modulation in blood plasma of male and female fish from sites with and without high PCB residues in bed sediments and fish tissues suggest that PCBs, Hg, or other contaminants may disrupt normal endocrine function in fish of the Hudson River. ?? Eawag, 2006.
High residue levels and the chemical form of mercury in tissues and organs of seabirds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.Y.; Murakami, Toru; Saeki, Kazutoshi
1995-12-31
Total and organic (methyl) mercury in liver, muscle, kidney and feather of 9 species of seabirds were analyzed to determine the levels and their distribution and to clarify the occurrences of high mercury levels and their detoxification process in seabirds. Total mercury levels in liver showed great variations in intra and interspecies, while organic mercury levels were less variable. As compared with species in relatively low mercury levels, the species which accumulated the high concentration of mercury like black-footed albatross exhibited the different distribution of mercury in the body: in total mercury burden, albatross species contained less than 10% inmore » feather and over 50% in liver, while other species contained over 40% in feather and less than 20% in liver. The order of organic mercury concentrations in tissues were as follows: liver > kidney > muscle in seabirds examined, except oldsquaw. The mean percentage of organic mercury in total was 35%, 66%, and 36% in liver, muscle and kidney, respectively, for all the species. The significant negative correlations were found between organic mercury percentage to total mercury and total mercury concentrations in the liver and muscle of black-footed albatross and in the liver of laysan albatross. Furthermore, in liver, muscle, and kidney of all the species, the percentages of organic mercury had a negative trend with an increase of total mercury concentrations. The results suggest that albatross species may be capable for demethylating organic mercury in the tissues (mainly in liver), and for storing the mercury as immobilizable inorganic form in the liver as substitution for delivering organic mercury to other organs. It is noteworthy that the species with high degree of demethylation showed the lower mercury burdens in feather and slow moulting pattern.« less
40 CFR 421.256 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for any 1 day Maximum for monthly average mg/troy ounce of gold refined electrolytically Lead 5.544 2... Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.364 0.169 Mercury 0.195 0.078... Maximum for monthly average mg/troy ounce of silver reduced in solution Lead 0.112 0.052 Mercury 0.060 0...
40 CFR 421.256 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.364 0.169 Mercury 0.195 0.078... Maximum for monthly average mg/troy ounce of silver reduced in solution Lead 0.112 0.052 Mercury 0.060 0... for any 1 day Maximum for monthly average mg/troy ounce of gold refined electrolytically Lead 5.544 2...
Mercury in the global atmosphere: Chemistry, deposition, and land-atmosphere interactions
NASA Astrophysics Data System (ADS)
Selin, Noelle Eckley
This thesis uses a global 3-D chemical transport model (GEOS-Chem), in conjunction with worldwide atmospheric observations, to better understand and quantify biogeochemical cycling and deposition of mercury. GEOS-Chem includes gaseous elemental (Hg(0)), divalent (Hg(II)), and particulate (Hg(P)) mercury in the atmosphere, and includes coupling with the ocean, developed at University of Washington, and with land, developed in this work. Observed concentrations and seasonal variation of total gaseous mercury (TGM) are consistent with photochemical oxidation for Hg(0) partly balanced by in-cloud photochemical reduction of Hg(II). High TGM concentrations from ship cruises in the Northern Hemisphere are not reproduced, implying a problem either in measurements or our understanding of sources. Model results, supported by observations, suggest Hg(II) to be dominant at higher altitudes. Diurnal variability observed at marine sites suggests uptake by sea salt aerosols is a major deposition mechanism. Global biogeochemical cycles of mercury are constructed for pre-industrial and present-day using the first fully-coupled, global 3-D land-atmosphere-ocean mercury model. Atmosphere-surface cycling increases the effective mercury lifetime more than threefold against transfer to long-lived soil and ocean reservoirs. It is estimated that 68% of deposition to the U.S. is anthropogenic, including 16% from the legacy of anthropogenic mercury accumulated in soils and the deep ocean. Observed seasonal variations in U.S. wet deposition are used to constrain redox and deposition processes influencing the fate of North American and international emissions. The model reproduces the seasonal variation and latitudinal gradient of wet deposition flux measured in the eastern U.S., with a maximum in the Southeast and higher fluxes in summer and at lower latitudes. Seasonal variation is attributed to variations in oxidation and wet deposition rates at northern latitudes, and to seasonal precipitation and deep convective scavenging in the Southeast. The estimated contribution of North American emissions to U.S. deposition is 23%, with a maximum >50% in the Midwest. International policy developments on mercury since 1970 are analyzed. Three policy options are compared: a global treaty, regulation under the Stockholm Convention on Persistent Organic Pollutants, and voluntary partnerships. It is concluded that policy efforts at multiple governance scales are necessary to address mercury pollution effectively.
Optimizing fish sampling for fish - mercury bioaccumulation factors
Scudder Eikenberry, Barbara C.; Riva-Murray, Karen; Knightes, Christopher D.; Journey, Celeste A.; Chasar, Lia C.; Brigham, Mark E.; Bradley, Paul M.
2015-01-01
Fish Bioaccumulation Factors (BAFs; ratios of mercury (Hg) in fish (Hgfish) and water (Hgwater)) are used to develop Total Maximum Daily Load and water quality criteria for Hg-impaired waters. Both applications require representative Hgfish estimates and, thus, are sensitive to sampling and data-treatment methods. Data collected by fixed protocol from 11 streams in 5 states distributed across the US were used to assess the effects of Hgfish normalization/standardization methods and fish sample numbers on BAF estimates. Fish length, followed by weight, was most correlated to adult top-predator Hgfish. Site-specific BAFs based on length-normalized and standardized Hgfish estimates demonstrated up to 50% less variability than those based on non-normalized Hgfish. Permutation analysis indicated that length-normalized and standardized Hgfish estimates based on at least 8 trout or 5 bass resulted in mean Hgfish coefficients of variation less than 20%. These results are intended to support regulatory mercury monitoring and load-reduction program improvements.
Rea, Lorrie D; Castellini, J Margaret; Correa, Lucero; Fadely, Brian S; O'Hara, Todd M
2013-06-01
Total mercury concentrations ([THg]) measured in western Aleutian Island Steller sea lion pup hair were the highest maximum [THg] documented in this endangered species to date. Some pups exceeded concentrations at which other fish-eating mammals can exhibit adverse neurological and reproductive effects (21% and 15% pups above 20 and 30 μg/g in hair, respectively). Of particular concern is fetal exposure to mercury during a particularly vulnerable stage of neurological development in late gestation. Hair and blood [THg] were highly correlated and 20% of pups sampled in the western Aleutian Islands of Alaska exceeded mammalian risk thresholds established for each of these tissues. Higher nitrogen isotope ratios suggested that pups accumulated the highest [THg] when their dams fed on higher trophic level prey during late gestation. Copyright © 2013 Elsevier B.V. All rights reserved.
Garetano, Gary; Gochfeld, Michael; Stern, Alan H.
2006-01-01
Elemental mercury has been imbued with magical properties for millennia, and various cultures use elemental mercury in a variety of superstitious and cultural practices, raising health concerns for users and residents in buildings where it is used. As a first step in assessing this phenomenon, we compared mercury vapor concentration in common areas of residential buildings versus outdoor air, in two New Jersey cities where mercury is available and is used in cultural practices. We measured mercury using a portable atomic absorption spectrometer capable of quantitative measurement from 2 ng/m3 mercury vapor. We evaluated the interior hallways in 34 multifamily buildings and the vestibule in an additional 33 buildings. Outdoor mercury vapor averaged 5 ng/m3; indoor mercury was significantly higher (mean 25 ng/m3; p < 0.001); 21% of buildings had mean mercury vapor concentration in hallways that exceeded the 95th percentile of outdoor mercury vapor concentration (17 ng/m3), whereas 35% of buildings had a maximum mercury vapor concentration that exceeded the 95th percentile of outdoor mercury concentration. The highest indoor average mercury vapor concentration was 299 ng/m3, and the maximum point concentration was 2,022 ng/m3. In some instances, we were able to locate the source, but we could not specifically attribute the elevated levels of mercury vapor to cultural use or other specific mercury releases. However, these findings provide sufficient evidence of indoor mercury source(s) to warrant further investigation. PMID:16393659
Size Distribution and First Flush Effects of Mercury Containing Particles in Highway Runoff Water
NASA Astrophysics Data System (ADS)
Ferguson, K.; Green, P.
2007-12-01
Human and environmental health concerns have recently prompted many California water quality control boards to lower the Total Maximum Daily Loads (TMDL) of Mercury into their water systems. A size distribution study of mercury containing particles was conducted in order to begin to understand the possible sources of the contamination in highway storm water runoff. Four storms were studied from a monitoring site in the Los Angeles area near the crossing of highways 605 and 91. Storm water ran through an extended detention basin made of earthen material with a maximum water depth of 1.17m. Grab samples were collected manually starting at the beginning of the runoff, continuing at every fifteen minutes for the first hour, followed by a collection every hour after that for the duration of the storm. The particle sizes were separated into five size ranges (larger than 100um, 20-100um, 8-20um, 0.45-8um, and 0-0.45um) by sequential filtration. The samples were then acid digested for further analysis. Five standard Mercury solutions ranging from 5 to 100 parts per trillion were prepared in nitric acid immediately before analysis. Samples were analyzed for both the Hg-199 and the Hg-202 isotopes using an Agilent 7500i Inductively Coupled Plasma Mass Spectrometer. Substantial sub-micron concentrations of mercury were detected from all four storms, and in all five particle size ranges studied. The total amount of Mercury detected from each of the storms ranged from 8.5 to 35.5 pptr. Bursts of rain correlate well with increases of influent Hg concentration. Although a First Flush effect can be seen in the first storm, it is not as strong and/or not shown at all in the remaining three. The detention basin used at the site was shown to be an efficient BMP, reducing the amount of Hg in the effluent runoff as much as 30 pptr and down to as little as 2 pptr. The majority of Hg was found in either the 8-20um or the 0-0.45um particle size ranges. Mitigation of either portion will be challenging, but necessary to meet proposed 50 percent reductions.
Mercury in Sediment, Water, and Biota of Sinclair Inlet, Puget Sound, Washington, 1989-2007
Paulson, Anthony J.; Keys, Morgan E.; Scholting, Kelly L.
2010-01-01
Historical records of mercury contamination in dated sediment cores from Sinclair Inlet are coincidental with activities at the U.S. Navy Puget Sound Naval Shipyard; peak total mercury concentrations occurred around World War II. After World War II, better metallurgical management practices and environmental regulations reduced mercury contamination, but total mercury concentrations in surface sediment of Sinclair Inlet have decreased slowly because of the low rate of sedimentation relative to the vertical mixing within sediment. The slopes of linear regressions between the total mercury and total organic carbon concentrations of sediment offshore of Puget Sound urban areas was the best indicator of general mercury contamination above pre-industrial levels. Prior to the 2000-01 remediation, this indicator placed Sinclair Inlet in the tier of estuaries with the highest level of mercury contamination, along with Bellingham Bay in northern Puget Sound and Elliott Bay near Seattle. This indicator also suggests that the 2000/2001 remediation dredging had significant positive effect on Sinclair Inlet as a whole. In 2007, about 80 percent of the area of the Bremerton naval complex had sediment total mercury concentrations within about 0.5 milligrams per kilogram of the Sinclair Inlet regression. Three areas adjacent to the waterfront of the Bremerton naval complex have total mercury concentrations above this range and indicate a possible terrestrial source from waterfront areas of Bremerton naval complex. Total mercury concentrations in unfiltered Sinclair Inlet marine waters are about three times higher than those of central Puget Sound, but the small numbers of samples and complex physical and geochemical processes make it difficult to interpret the geographical distribution of mercury in marine waters from Sinclair Inlet. Total mercury concentrations in various biota species were compared among geographical locations and included data of composite samples, individual specimens, and caged mussels. Total mercury concentrations in muscle and liver of English sole from Sinclair Inlet ranked in the upper quarter and third, respectively, of Puget Sound locations. For other species, concentrations from Sinclair Inlet were within the mid-range of locations (for example, Chinook salmon). Total mercury concentrations of the long-lived and higher trophic rockfish in composites and individual specimens from Sinclair Inlet tended to be the highest in Puget Sound. For a given size, sand sole, graceful crab, staghorn sculpin, surf perch, and sea cucumber individuals collected from Sinclair Inlet had higher total mercury concentrations than individuals collected from non-urban estuaries. Total mercury concentrations in individual English sole and ratfish were not significantly different than in individuals of various sizes collected from either urban or non-urban estuaries in Puget Sound. Total mercury concentrations in English sole collected from Sinclair Inlet after the 2000-2001 dredging appear to have lower total mercury concentrations than those collected before (1996) the dredging project. The highest total mercury concentrations of mussels caged in 2002 were not within the Bremerton naval complex, but within the Port Orchard Marina and inner Sinclair Inlet.
2015-03-16
This view shows Mercury's north polar region, colored by the maximum biannual surface temperature, which ranges from >400 K (red) to 50 K (purple). As expected for the Solar System's innermost planet, areas of Mercury's surface that are sunlit reach high temperatures, and hence most of this image is colored red! In contrast, some craters near Mercury's poles have regions that remain permanently in shadow, and in these regions even the maximum temperatures can be extremely low. Evidence from MESSENGER and Earth-based observations indicate that water ice deposits are present in these cold craters. The craters nearest Mercury' poles have surface temperatures less than 100 K (-173°C, -280°F), and water ice is stable on the surface, such as in Prokofiev. However, many craters near but somewhat farther from Mercury's poles have cold, permanently shadowed interiors, but the maximum temperature is too high for water ice to persist at the surface. In these craters, water ice is present but is buried beneath a thin, low-reflectance volatile layer likely consisting of organic-rich material, such as in Berlioz crater. http://photojournal.jpl.nasa.gov/catalog/PIA19247
[Contamination and Ecological Risk Assessment of Mercury in Hengshuihu Wetland, Hebei Province].
Wang, Nai-shan; Zhang, Man-yin; Cui, Li-juan; Ma, Mu-yuan; Yan, Liang; Mu, Yong-lin; Qin, Peng
2016-05-15
Investigation on the concentrations and the distribution characteristics of total mercury in atmosphere, water surface and soil/ sediments of Hengshuihu wetland was carried out based on a uniform set point sampling method. The geoaccumulation index and potential ecological risk index methods were simultaneously used to assess the mercury pollution in Hengshuihu wetland ecosystem. The results showed that: the total mercury content in Hengshuihu wetland atmosphere ranged from 1.0 to 5.0 ng · m⁻³, with an average of (2.9 ± 0.85) ng · m⁻³; the total mercury content in water surface ranged from 0.010 to 0.57 µg · L⁻¹, with the average value of (0.081 ± 0.053) µg · L⁻¹; the total mercury content in soil/sediment ranged from 0.001 0 to 0.058 mg · kg⁻¹, with an average of (0.027 ± 0.013) mg · kg⁻¹. The distribution features of total mercury in Hengshuihu wetland were as follows: the total mercury concentration in surface water of the shore was significantly higher than that in the center (P < 0.05), but the total mercury concentration of sediments in the center of the lake was significantly higher than that at the shore (P < 0.05); the total mercury in the soil of shore had a consistent trend with that in the atmosphere; high concentrations of total mercury pollution were accompanied by severe human activities. The geoaccumulation index showed that mercury pollution in Hengshuihu wetland was at clean level; potential ecological risk index showed mercury contamination had a low ecological risk in Hengshuihu wetland.
Chételat, John; Hickey, M Brian C; Poulain, Alexandre J; Dastoor, Ashu; Ryjkov, Andrei; McAlpine, Donald; Vanderwolf, Karen; Jung, Thomas S; Hale, Lesley; Cooke, Emma L L; Hobson, Dave; Jonasson, Kristin; Kaupas, Laura; McCarthy, Sara; McClelland, Christine; Morningstar, Derek; Norquay, Kaleigh J O; Novy, Richard; Player, Delanie; Redford, Tony; Simard, Anouk; Stamler, Samantha; Webber, Quinn M R; Yumvihoze, Emmanuel; Zanuttig, Michelle
2018-06-01
Wildlife are exposed to neurotoxic mercury at locations distant from anthropogenic emission sources because of long-range atmospheric transport of this metal. In this study, mercury bioaccumulation in insectivorous bat species (Mammalia: Chiroptera) was investigated on a broad geographic scale in Canada. Fur was analyzed (n=1178) for total mercury from 43 locations spanning 20° latitude and 77° longitude. Total mercury and methylmercury concentrations in fur were positively correlated with concentrations in internal tissues (brain, liver, kidney) for a small subset (n=21) of little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus), validating the use of fur to indicate internal mercury exposure. Brain methylmercury concentrations were approximately 10% of total mercury concentrations in fur. Three bat species were mainly collected (little brown bats, big brown bats, and northern long-eared bats [M. septentrionalis]), with little brown bats having lower total mercury concentrations in their fur than the other two species at sites where both species were sampled. On average, juvenile bats had lower total mercury concentrations than adults but no differences were found between males and females of a species. Combining our dataset with previously published data for eastern Canada, median total mercury concentrations in fur of little brown bats ranged from 0.88-12.78μg/g among 11 provinces and territories. Highest concentrations were found in eastern Canada where bats are most endangered from introduced disease. Model estimates of atmospheric mercury deposition indicated that eastern Canada was exposed to greater mercury deposition than central and western sites. Further, mean total mercury concentrations in fur of adult little brown bats were positively correlated with site-specific estimates of atmospheric mercury deposition. This study provides the largest geographic coverage of mercury measurements in bats to date and indicates that atmospheric mercury deposition is important in determining spatial patterns of mercury accumulation in a mammalian species. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Whiting, Michael; Preston, Barry; Mucklejohn, Stuart; Santos, Monica; Lister, Graeme
2016-09-01
Here we present an investigation into the feasibility of creating a diagnostic tool for obtaining maximum arc temperature measurements within a high pressure electrodeless discharge; utilizing integrating sphere measurements of optically thin lines emitted from mercury atoms within commercially available high pressure mercury lamp arc tubes. The optically thin lines chosen were 577 nm and 1014 nm from a 250 W high pressure mercury lamp operated at various powers. The effective temperature could be calculated by considering the relative intensities of the two optically thin lines and comparison with the theoretical ratio of the temperature dependent power emitted from the lines derived from the atomic spectral data provided by NIST. The calculations gave effective arc temperatures of 5755, 5804 and 5820 K at 200, 225, 250 W respectively. This method was subsequently used as a basis for determining maximum effective arc temperature within microwave-driven electrodeless discharge capsules, with varying mercury content of 6.07, 9.4 and 12.95 mg within 1 × 10-6 m3 giving maximum effective temperatures of 5163, 4768 and 4715 K respectively at 240 W.
Dissolved gaseous mercury formation and mercury volatilization in intertidal sediments.
Cesário, Rute; Poissant, Laurier; Pilote, Martin; O'Driscoll, Nelson J; Mota, Ana M; Canário, João
2017-12-15
Intertidal sediments of Tagus estuary regularly experiences complex redistribution due to tidal forcing, which affects the cycling of mercury (Hg) between sediments and the water column. This study quantifies total mercury (Hg) and methylmercury (MMHg) concentrations and fluxes in a flooded mudflat as well as the effects on water-level fluctuations on the air-surface exchange of mercury. A fast increase in dissolved Hg and MMHg concentrations was observed in overlying water in the first 10min of inundation and corresponded to a decrease in pore waters, suggesting a rapid export of Hg and MMHg from sediments to the water column. Estimations of daily advective transport exceeded the predicted diffusive fluxes by 5 orders of magnitude. A fast increase in dissolved gaseous mercury (DGM) concentration was also observed in the first 20-30min of inundation (maximum of 40pg L -1 ). Suspended particulate matter (SPM) concentrations were inversely correlated with DGM concentrations. Dissolved Hg variation suggested that biotic DGM production in pore waters is a significant factor in addition to the photochemical reduction of Hg. Mercury volatilization (ranged from 1.1 to 3.3ngm -2 h -1 ; average of 2.1ngm -2 h -1 ) and DGM production exhibited the same pattern with no significant time-lag suggesting a fast release of the produced DGM. These results indicate that Hg sediment/water exchanges in the physical dominated estuaries can be underestimated when the tidal effect is not considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Paulson, Anthony J.; Conn, Kathleen E.; DeWild, John F.
2013-01-01
Previous investigations examined sources and sinks of mercury to Sinclair Inlet based on historic and new data. This included an evaluation of mercury concentrations from various sources and mercury loadings from industrial discharges and groundwater flowing from the Bremerton naval complex to Sinclair Inlet. This report provides new data from four potential sources of mercury to Sinclair Inlet: (1) filtered and particulate total mercury concentrations of creek water during the wet season, (2) filtered and particulate total mercury releases from the Navy steam plant following changes in the water softening process and discharge operations, (3) release of mercury from soils to groundwater in two landfill areas at the Bremerton naval complex, and (4) total mercury concentrations of solids in dry dock sumps that were not affected by bias from sequential sampling. The previous estimate of the loading of filtered total mercury from Sinclair Inlet creeks was based solely on dry season samples. Concentrations of filtered total mercury in creek samples collected during wet weather were significantly higher than dry weather concentrations, which increased the estimated loading of filtered total mercury from creek basins from 27.1 to 78.1 grams per year. Changes in the concentrations and loading of filtered and particulate total mercury in the effluent of the steam plant were investigated after the water softening process was changed from ion-exchange to reverse osmosis and the discharge of stack blow-down wash began to be diverted to the municipal water-treatment plant. These changes reduced the concentrations of filtered and particulate total mercury from the steam plant of the Bremerton naval complex, which resulted in reduced loadings of filtered total mercury from 5.9 to 0.15 grams per year. Previous investigations identified three fill areas on the Bremerton naval complex, of which the western fill area is thought to be the largest source of mercury on the base. Studies of groundwater in the other two fill areas were conducted under worst-case higher high tidal conditions. A December 2011 study found that concentrations of filtered total mercury in the well in the fill area on the eastern boundary of the Bremerton naval complex were less than or equal to 11 nanograms per liter, indicating that releases from the eastern area were unlikely. In addition, concentrations of total mercury of solids were low (<3 milligrams per kilogram). In contrast, data from the November 2011 study indicated that the concentrations of filtered total mercury in the well located in the central fill area had tidally influenced concentrations of up to 500 nanograms per liter and elevated concentrations of total mercury of solids (29–41 milligrams per kilogram). This suggests that releases from this area, which has not been previously studied in detail, may be substantial. Previous measurements of total mercury of suspended solids in the dry dock discharges revealed high concentration of total mercury when suspended-solids concentrations were low. However, this result could have been owing to bias from sequential sampling during changing suspended‑solids concentrations. Sampling of two dry dock systems on the complex in a manner that precluded this bias confirmed that suspended-solids concentrations and total mercury concentrations of suspended solids varied considerably during pumping cycles. These new data result in revised estimates of solids loadings from the dry docks. Although most of the solids discharged by the dry docks seem to be recycled Operable Unit B Marine sediment, a total of about 3.2 metric tons of solids per year containing high concentrations of total mercury were estimated to be discharged by the two dry dock systems. A simple calculation, in which solids (from dry docks, the steam plant, and tidal flushing of the largest stormwater drain) are widely dispersed throughout Operable Unit B Marine, suggests that Bremerton naval complex solids would likely have little effect on Operable Unit B Marine sediments because of high concentrations of mercury already present in the sediment.
Mercury accumulation and attenuation at a rapidly forming delta with a point source of mining waste
Johnson, Bryce E.; Esser, Bradley K.; Whyte, Dyan C.; Ganguli, Priya M.; Austin, Carrie M.; Hunt, James R.
2009-01-01
The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.4 ng/g (dry wt.), with lower concentrations occurring at the vegetated marsh and upstream channel locations. Algal mats common to the delta’s sediment surface had MMHg concentrations ranging from 7.5 to 31.5 ng/g, and the top 1 cm of sediment directly under the mats had two times greater MMHg concentrations compared to adjacent locations without algal covering. Spatial trends in resident biota reflect enhanced MMHg uptake at the delta compared to other bay locations. Eighteen sediment cores, 1 to 2 meters deep, collected from the 1.2 km2 delta provide an estimate of a total mercury (Hg) inventory of 2500 ± 500 kg. Sediment Hg concentrations ranged from pre-mining background conditions of approximately 0.1 μg/g to a post-mining maximum of 5 μg/g. Sediment accumulation rates were determined from three sediment cores using measured differences of 137Cs activity. We estimate a pre-mining Hg accumulation of less than 20 kg/yr, and a period of maximum Hg accumulation in the 1970s and 1980s with loading rates greater than 50 kg/yr, corresponding to the failure of a tailings dam at the mine site. At the time of sampling (2003) over 40 kg/yr of Hg was still accumulating at the delta, indicating limited recovery. We attribute observed spatial evolution of elevated Hg levels to ongoing inputs and sediment re-working, and estimate the inventory of the anthropogenic fraction of total Hg to be at least 1500 ± 300 kg. We suggest ongoing sediment inputs and methylation at the deltaic surface support enhanced mercury levels for resident biota and transfer to higher trophic levels throughout the Bay. PMID:19539980
Spada, Lucia; Annicchiarico, Cristina; Cardellicchio, Nicola; Giandomenico, Santina; Di Leo, Antonella
2012-04-01
Total mercury and methylmercury concentrations were measured in sediments and marine organisms from the Taranto Gulf to understand their distribution and partitioning. Sediment concentrations ranged from 0.036 to 7.730 mg/kg (mean: 2.777 mg/kg d.w.) and from 1 to 40 μg/kg (mean: 11 μg/kg d.w.) for total mercury (THg) and methylmercury (Me-Hg), respectively. In mollusks THg ranged from n.d. to 1870 μg/kg d.w. while in fish from 324 to 1740 μg/kg d.w. Me-Hg concentrations in fish ranged from 190 to 1040 μg/kg d.w. and from n.d. to 1321 μg/kg d.w. in mollusks. THg exceeded the maximum level fixed by the European Commission (0.5 mg/kg w.w.) only in gastropod Hexaplex t. The calculated weekly intake was in many cases over the Provisional Tolerable Weekly Intake established by EFSA for all edible species. These results seem to indicate that dietary consumption of this seafood implicates an appreciable risk for human health. Copyright © 2011 Elsevier GmbH. All rights reserved.
LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...
Methylmercury is the predominant form of mercury in bird eggs: a synthesis
Ackerman, Joshua T.; Herzog, Mark P.; Schwarzbach, Steven E.
2013-01-01
Bird eggs are commonly used in mercury monitoring programs to assess methylmercury contamination and toxicity to birds. However, only 6% of >200 studies investigating mercury in bird eggs have actually measured methylmercury concentrations in eggs. Instead, studies typically measure total mercury in eggs (both organic and inorganic forms of mercury), with the explicit assumption that total mercury concentrations in eggs are a reliable proxy for methylmercury concentrations in eggs. This assumption is rarely tested, but has important implications for assessing risk of mercury to birds. We conducted a detailed assessment of this assumption by (1) collecting original data to examine the relationship between total and methylmercury in eggs of two species, and (2) reviewing the published literature on mercury concentrations in bird eggs to examine whether the percentage of total mercury in the methylmercury form differed among species. Within American avocets (Recurvirostra americana) and Forster’s terns (Sterna forsteri), methylmercury concentrations were highly correlated (R2 = 0.99) with total mercury concentrations in individual eggs (range: 0.03–7.33 μg/g fww), and the regression slope (log scale) was not different from one (m = 0.992). The mean percentage of total mercury in the methylmercury form in eggs was 97% for American avocets (n = 30 eggs), 96% for Forster’s terns (n = 30 eggs), and 96% among all 22 species of birds (n = 30 estimates of species means). The percentage of total mercury in the methylmercury form ranged from 63% to 116% among individual eggs and 82% to 111% among species means, but this variation was not related to total mercury concentrations in eggs, foraging guild, nor to a species life history strategy as characterized along the precocial to altricial spectrum. Our results support the use of total mercury concentrations to estimate methylmercury concentrations in bird eggs.
Distribution of mercury in the environment at Almaden, Spain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, S.G.; Huckabee, J.W.; Diaz, F.S.
1980-10-01
An ecological survey of the concentration and distribution of mercury in terrestrial and aquatic systems near the mercury mine at Almaden, Spain, was initiated in 1974. Field studies were completed in 1977, and chemical analyses were completed in 1979. Sample collection at Almaden followed a trophic-level approach in which certain compartments were sampled at a given instant in time (fall 1974, fall 1975, spring 1976, fall 1976, spring 1977). Mean total mercury concentration in terrestrial plants (8 taxa combined) ranged from >100 ..mu..g/g within 0.5 km of the mine to 1 ..mu..g/g 20 km distant from the mine. Different plantmore » species had different affinities for mercury, but moss species usually had higher total mercury concentration than vascular plants. Woody plants were lower in mercury concentration than forbs. Total mercury concentration in muscle, brain, kidney, and liver tissue from mice was highest at a station near the stream receiving liquid effluent from the mine (mean total mercury at this station ranging from 0.18 ..mu..g/g in muscle to 4.74 ..mu..g/g in kidney). Approximately 15 to 30% of total mercury in mouse tissue was in the methylated form. Total mercury concentration in muscle tissue from house sparrows varied inversely with distance from the mine, with highest concentrations exceeding 0.1 ..mu..g/g. Approximately 1 to 4% of total mercury in sparrow muscle was in the methylated form.« less
Colman, John A.; Waldron, Marcus C.; Breault, Robert F.; Lent, Robert M.
1999-01-01
Total mercury and methylmercury were measured in 4 reservoir cores and 12 wetland cores from Sudbury River. The distribution of total mercury and methylmercury in these cores was evaluated to determine the potential for total mercury and methylmercury transport from reservoir and wetlands sediments to the water column. Concentrations of methylmercury were corrected for an analytical artifact introduced during the separation distillation used in the analysis procedure. Corrected methylmercury concentrations correlated with total mercury concentrations in bulk sediment from below the top layers of reservoir and wetland cores; methylmercury concentrations at the top layers of cores were relatively high, however, and were not correlated with total mercury concentrations. Concentrations of methylmercury in pore water were positively correlated with methylmercury concentrations in the bulk sediment. High concentrations of total mercury and methylmercury in sediment (73 and 0.047 micrograms per gram dry-weight basis, respectively) contributed less to the water column in the reservoir than in the wetlands probably because of burial by low concentration sediment and differences in the processes available to transport mercury from the sediments to the water in the reservoirs, as compared to the wetlands .
Kalisinska, Elzbieta; Lisowski, Piotr; Kosik-Bogacka, Danuta Izabela
2012-02-01
In this study, we determined the concentrations of total mercury (Hg) in samples of liver, kidney and skeletal muscle of 27 red foxes Vulpes vulpes (L., 1758) from north-western Poland, and examined the morphometric characteristics of the collected specimens. The analysis also included the relationship between Hg concentration and the fox size, and the suitability of individual organs as bioindicators in indirect evaluation of environmental mercury contamination. Determination of Hg concentration was performed by atomic absorption spectroscopy. In the analysed samples, the Hg concentration was low and the maximum value did not exceed 0.85 mgHg/kg dry weight (dw). There were no significant differences in Hg concentrations in the analysed material between males and females or between immature and adult groups. The median concentrations of Hg in the liver, kidney and skeletal muscle were 0.22, 0.11 and 0.05 mgHg/kg dw, respectively. The correlation coefficients were significant between the concentrations of mercury in the liver, kidney and skeletal muscle (positive) and between the kidney Hg concentration and kidney mass (negative). Taking into account our results and findings of other authors, it may be argued that the red fox exhibits a measurable response to mercury environmental pollution and meets the requirements of a bioindicator.
Ion-thruster propellant utilization
NASA Technical Reports Server (NTRS)
Kaufman, H. R.
1971-01-01
The evaluation and understanding of maximum propellant utilization, with mercury used as the propellant are presented. The primary-electron region in the ion chamber of a bombardment thruster is analyzed at maximum utilization. The results of this analysis, as well as experimental data from a range of ion-chamber configurations, show a nearly constant loss rate for unionized propellant at maximum utilization over a wide range of total propellant flow rate. The discharge loss level of 1000 eV/ion was used as a definition of maximum utilization, but the exact level of this definition has no effect on the qualitative results and little effect on the quantitative results. There are obvious design applications for the results of this investigation, but the results are particularly significant whenever efficient throttled operation is required.
Mercury risk in poultry in the Wanshan Mercury Mine, China.
Yin, Runsheng; Zhang, Wei; Sun, Guangyi; Feng, Zhaohui; Hurley, James P; Yang, Liyuan; Shang, Lihai; Feng, Xinbin
2017-11-01
In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4-62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2-3917.1 ng/g; MeHg: 7.1-62.8 ng/g) and blood (THg: 12.3-338.0 ng/g; MeHg: 1.4-17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3-238.1 μg; MeHg: 2.2-15.6 μg), ducks (THg: 15.3-238.1 μg; MeHg: 3.5-14.7 μg) and geese (THg: 83.8-93.4 μg; MeHg: 15.4-29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Gao, Wei; Wu, Qingru; Hao, Jiming
2016-05-01
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to 41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%-49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute 29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%-36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven, sintering machine and blast furnace were 0.039-0.047gHg/ton steel, and for the electric furnace it was 0.021gHg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%-73% of total mercury emissions to air. Copyright © 2016. Published by Elsevier B.V.
40 CFR 141.62 - Maximum contaminant levels for inorganic contaminants.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 0.1 (6) Mercury 0.002 (7) Nitrate 10 (as Nitrogen) (8) Nitrite 1 (as Nitrogen) (9) Total Nitrate and Nitrite 10 (as Nitrogen) (10) Selenium 0.05 (11) Antimony 0.006 (12) Beryllium 0.004 (13) Cyanide (as free...,6 1,7 1 Nickel 5,6,7 Nitrate 5,7,9 Nitrite 5,7 Selenium 1,2 3,6,7,9 Thallium 1,5 1 BAT only if...
40 CFR 141.62 - Maximum contaminant levels for inorganic contaminants.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 0.1 (6) Mercury 0.002 (7) Nitrate 10 (as Nitrogen) (8) Nitrite 1 (as Nitrogen) (9) Total Nitrate and Nitrite 10 (as Nitrogen) (10) Selenium 0.05 (11) Antimony 0.006 (12) Beryllium 0.004 (13) Cyanide (as free...,6 1,7 1 Nickel 5,6,7 Nitrate 5,7,9 Nitrite 5,7 Selenium 1,2 3,6,7,9 Thallium 1,5 1 BAT only if...
An evaluation of a reagentless method for the determination of total mercury in aquatic life
Haynes, Sekeenia; Gragg, Richard D.; Johnson, Elijah; Robinson, Larry; Orazio, Carl E.
2006-01-01
Multiple treatment (i.e., drying, chemical digestion, and oxidation) steps are often required during preparation of biological matrices for quantitative analysis of mercury; these multiple steps could potentially lead to systematic errors and poor recovery of the analyte. In this study, the Direct Mercury Analyzer (Milestone Inc., Monroe, CT) was utilized to measure total mercury in fish tissue by integrating steps of drying, sample combustion and gold sequestration with successive identification using atomic absorption spectrometry. We also evaluated the differences between the mercury concentrations found in samples that were homogenized and samples with no preparation. These results were confirmed with cold vapor atomic absorbance and fluorescence spectrometric methods of analysis. Finally, total mercury in wild captured largemouth bass (n = 20) were assessed using the Direct Mercury Analyzer to examine internal variability between mercury concentrations in muscle, liver and brain organs. Direct analysis of total mercury measured in muscle tissue was strongly correlated with muscle tissue that was homogenized before analysis (r = 0.81, p < 0.0001). Additionally, results using this integrated method compared favorably (p < 0.05) with conventional cold vapor spectrometry with atomic absorbance and fluorescence detection methods. Mercury concentrations in brain were significantly lower than concentrations in muscle (p < 0.001) and liver (p < 0.05) tissues. This integrated method can measure a wide range of mercury concentrations (0-500 ??g) using small sample sizes. Total mercury measurements in this study are comparative to the methods (cold vapor) commonly used for total mercury analysis and are devoid of laborious sample preparation and expensive hazardous waste. ?? Springer 2006.
Mercury contamination in bank swallows and double-crested cormorants from the Carson River, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, R.; Brewer, R.; Peterson, S.C.
1995-12-31
An ecological risk assessment was performed in conjunction with a remedial investigation at the Carson River Mercury Site (CRMS) in northwestern Nevada. Large quantities of mercury used in the processing of gold and silver during mining operations in the mid to late 1800s are distributed throughout the Carson River ecosystem. Previous investigations indicated elevated levels of mercury in soil, sediment, water, and the aquatic food chain. Bird exposure to mercury was determined by measuring total mercury and monomethyl mercury in blood and feather samples from 15 unfledged double-crested cormorants (Phalacrocorax auritus), and in blood, feather, and liver samples from 18more » juvenile bank swallows (Riparia riparia) at both the CRMS and uncontaminated background locations. Monomethyl mercury accounted for 90 to 98% of the total mercury in the samples. Total mercury concentrations in bird tissues collected at the CRMS were significantly higher than at background locations. Average total mercury concentrations (wet weight) for the swallow blood, liver, and feather samples collected at the CRMS were 2.63, 3.96, and 2.01 mg/kg, respectively; compared with 0.74, 1,03, and 1.84 mg/kg, respectively at the background area. Average total mercury concentrations for cormorant samples collected at the CRMS were 17.07 mg/kg for blood, and 105.1 1 mg/kg for feathers. Cormorant samples collected at the background location had average total mercury concentrations of 0.49 mg/kg for blood and 8.99 mg/kg for feathers. Results are compared with published residue-effects levels to evaluate avian risks.« less
40 CFR 415.66 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... the mercury cell process, which introduces pollutants into a publicly owned treatment works, must...): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant property PSNS effluent limitations Maximum for any 1 day Average of daily values for 30 consecutive days Milligrams per liter Mercury (T) 0.11 0.048...
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2014 CFR
2014-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
40 CFR Table 4 to Subpart Uuuuu of... - Operating Limits for EGUs
Code of Federal Regulations, 2013 CFR
2013-07-01
...-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals... demonstrating compliance with the filterable PM, total non-mercury HAP metals (total HAP metals, for liquid oil-fired units), or individual non-mercury HAP metals (individual HAP metals including Hg, for liquid oil...
The influence of an external cavity on the emission spectrum of a mercury germicidal lamp
NASA Astrophysics Data System (ADS)
Solomonov, V. I.; Surkov, Yu. S.; Gorbunkov, V. I.
2016-09-01
The spectrum of emission from the cylindrical duralumin cavity of a TUV 8wG8 T5 UV industrial germicidal mercury lamp is studied. It is shown that, due to reflection from the inner surface of the cavity and reabsorption in the gas discharge, the resonance line of a mercury atom is significantly weakened. The dependence of the resonance line intensity on the discharge current has a maximum, and the discharge current corresponding to the intensity maximum depends on the reflection coefficient of the inner surface of the cavity.
Mercury speciation comparison. BrooksApplied Laboratories and Eurofins Frontier Global Sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bannochie, C. J.; Wilmarth, W. R.
2016-12-16
The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences (FGS), Inc. in Bothell, WA on behalf of the Savannah River Remediation (SRR) Mercury Program Team. These samples were analyzed for seven species including: total mercury, dissolved mercury, inorganic mercury ((Hg(I) and Hg(II)), elemental mercury, methylmercury, ethylmercury, and dimethylmercury, with an eighth species, particulate mercury, calculated from the difference between total and dissolved mercury after subtracting the elemental mercury. The species fraction of total mercury measured has ranged broadly from a low of 32% to a high of 146%,more » though the vast majority of samples have been <100%. This can be expected since one is summing multiple values that each have at least a ± 20% measurement uncertainty. Two liquid waste tanks particularly important to understanding the distribution of mercury species in the Savannah River Site (SRS) Tank Farm were selected for a round robin analysis by Eurofins FGS and BrooksApplied Laboratories (BAL). The analyses conducted by BAL on the Tank 22 and 38 samples and their agreement with those obtained from Eurofins FGS for total mercury, dissolved mercury, methylmercury, ethylmercury, and dimethylmercury provide a strong degree of confidence in these species measurements« less
Mercury in canned tuna marketed in Cartagena, Colombia, and estimation of human exposure.
Alcala-Orozco, Maria; Morillo-Garcia, Yenifer; Caballero-Gallardo, Karina; Olivero-Verbel, Jesus
2017-12-01
The presence of mercury in tuna is ubiquitous, so national authorities should guarantee food safety of canned tuna available on the market, according to legal regulations. The objective of this survey was to assess total mercury (T-Hg) levels in brands of canned tuna marketed in Cartagena, Colombia, and determine fish consumption-based risks after ingestion. For that purpose, 252 cans of tuna were collected, representing 6 brands (A-F), in 2 mediums (water and oil). Mean T-Hg levels were 0.66 ± 0.05 and 0.61 ± 0.05 µg g -1 wet weight, for water and oil, respectively. High T-Hg concentrations were measured in brands B and D. Only brands E and F guaranteed low risk for Hg-related health problems. According to Colombia's legislation, 15.5% of the samples exceeded the maximum level of 1.0 µg g -1 for mercury and 18.3% was higher than limits as recommended by Food and Agriculture Organization/World Health Organisation (0.5 µg g -1 ). It was concluded that consumption of canned tuna could represent a high risk for the Colombian population, particularly to vulnerable groups.
Mercury concentration in the muscle of seven fish species from Chagan Lake, Northeast China.
Zhu, Lilu; Yan, Baixing; Wang, Lixia; Pan, Xiaofeng
2012-03-01
Chagan Lake is located downstream of the Second Songhua River basin in Northeast China. It is one of the top ten inland freshwater lakes, and an important aquatic farm in China. The lake has been receiving large amounts (currently at 1.5 × 10(8) m(3)/a) of water from the river since 1984. This would pose a threat to the aquatic system of the lake because the river was seriously polluted with mercury in 1970s-1980s. The current study is the first to report the total mercury concentrations in fish found in the lake. Mercury concentrations in seven fish species collected from the lake in January 2009 were determined. The related human health risk from fish consumption was also assessed. The average concentration of mercury in the fish was 18.8 μg/kg of wet weight, ranging from 4.5 to 37.6 μg/kg of wet weight. A large difference in the mercury concentrations among the fish species was found. The mercury concentration was found to be higher in carnivorous species and lower in omnivorous and herbivorous species. This demonstrates greater mercury bioaccumulation in fish species at higher trophic levels. Mercury concentrations in fish showed significant positive correlations with age, length, and weight. No significant relationship was found between mercury concentrations in fish and the habitat preferences. Mercury concentrations in fish from the lake were within the limits of the international and national standards of China established for mercury. According to the reference doses established by the United States Environmental Protection Agency, the maximum safe consuming quantity considering all the fish was 297.3 g/day/person, which was more than five times as much as the current quantity (50 g/day/person) consumed by the local residents. This investigation indicates that the historical pollution of the Second Songhua River has not caused mercury bioaccumulation in fish muscle tissue of Chagan Lake. The present consumption of fish from the lake in the local area does not pose a threat to human health.
Paulson, Anthony J.; Dinicola, Richard S.; Noble, Marlene A.; Wagner, Richard J.; Huffman, Raegan L.; Moran, Patrick W.; DeWild, John F.
2012-01-01
The majority of filtered total mercury in the marine water of Sinclair Inlet originates from salt water flowing from Puget Sound. About 420 grams of filtered total mercury are added to Sinclair Inlet each year from atmospheric, terrestrial, and sedimentary sources, which has increased filtered total mercury concentrations in Sinclair Inlet (0.33 nanograms per liter) to concentrations greater than those of the Puget Sound (0.2 nanograms per liter). The category with the largest loading of filtered total mercury to Sinclair Inlet included diffusion of porewaters from marine sediment to the water column of Sinclair Inlet and discharge through the largest stormwater drain on the Bremerton naval complex, Bremerton, Washington. However, few data are available to estimate porewater and stormwater releases with any certainty. The release from the stormwater drain does not originate from overland flow of stormwater. Rather total mercury on soils is extracted by the chloride ions in seawater as the stormwater is drained and adjacent soils are flushed with seawater by tidal pumping. Filtered total mercury released by an unknown freshwater mechanism also was observed in the stormwater flowing through this drain. Direct atmospheric deposition on the Sinclair Inlet, freshwater discharge from creek and stormwater basins draining into Sinclair Inlet, and saline discharges from the dry dock sumps of the naval complex are included in the next largest loading category of sources of filtered total mercury. Individual discharges from a municipal wastewater treatment plant and from the industrial steam plant of the naval complex constituted the loading category with the third largest loadings. Stormwater discharge from the shipyard portion of the naval complex and groundwater discharge from the base are included in the loading category with the smallest loading of filtered total mercury. Presently, the origins of the solids depositing to the sediment of Sinclair Inlet are uncertain, and consequently, concentrations of sediments can be qualitatively compared only to total mercury concentrations of solids suspended in the water column. Concentrations of total mercury of suspended solids from creeks, stormwater, and even wastewater effluent discharging into greater Sinclair Inlet were comparable to concentrations of solids suspended in the water column of Sinclair Inlet. Concentrations of total mercury of suspended solids were significantly lower than those of marine bed sediment of Sinclair Inlet; these suspended solids have been shown to settle in Sinclair Inlet. The settling of suspended solids in the greater Sinclair Inlet and in Operable Unit B Marine of the naval complex likely will result in lower concentrations of total mercury in sediments. Such a decrease in total mercury concentrations was observed in the sediment of Operable Unit B Marine in 2010. However, total mercury concentrations of solids discharged from several sources from the Bremerton naval complex were higher than concentrations in sediment collected from Operable Unit B Marine. The combined loading of solids from these sources is small compared to the amount of solids depositing in OU B Marine. However, total mercury concentration in sediment collected at a monitoring station just offshore one of these sources, the largest stormwater drain on the Bremerton naval complex, increased considerably in 2010. Low methylmercury concentrations were detected in groundwater, stormwater, and effluents discharged from the Bremerton naval complex. The highest methylmercury concentrations were measured in the porewaters of highly reducing marine sediment in greater Sinclair Inlet. The marine sediment collected off the largest stormwater drain contained low concentrations of methylmercury in porewater because these sediments were not highly reducing.
Estimating usable resources from historical industry data.
Cargill, S.M.; Root, D.H.; Bailey, E.H.
1981-01-01
The commodities considered are mercury, copper and its byproducts gold and silver, and petroleum; the production and discovery data are for the US. The results indicate that the cumulative return per unit of effort, herein measured as grade of metal ores and discovery rate of recoverable petroleum, is proportional to a negative power of total effort expended, herein measured as total ore mined and total exploratory wells or footage drilled. This power relationship can be extended to some limiting point (a lower ore grade or a maximum number of exploratory wells or footage), and the apparent quantity of available remaining resource at that limit can be calculated. -from Authors
DEVELOPMENT OF A WATERSHED-BASED MERCURY POLLUTION CHARACTERIZATION SYSTEM
To investigate total mercury loadings to streams in a watershed, we have developed a watershed-based source quantification model ? Watershed Mercury Characterization System. The system uses the grid-based GIS modeling technology to calculate total soil mercury concentrations and ...
Annual ambient atmospheric mercury speciation measurement from Longjing, a rural site in Taiwan.
Fang, Guor-Cheng; Lo, Chaur-Tsuen; Cho, Meng-Hsien; Zhuang, Yuan-Jie; Tsai, Kai-Hsiang; Huang, Chao-Yang; Xiao, You-Fu
2017-08-01
The main purpose of this study was to monitor ambient air particulates and mercury species [RGM, Hg(p), GEM and total mercury] concentrations and dry depositions over rural area at Longjing in central Taiwan during October 2014 to September 2015. In addition, passive air sampler and knife-edge surrogate surface samplers were used to collect the ambient air mercury species concentrations and dry depositions, respectively, in this study. Moreover, direct mercury analyzer was directly used to detect the mercury Hg(p) and RGM concentrations. The result indicated that: (1) The average highest RGM, Hg(p), GEM and total mercury concentrations, and dry depositions were observed in January, prevailing dust storm occurred in winter season was the possible major reason responsible for the above findings. (2) The highest average RGM, Hg(p), GEM and total mercury concentrations, dry depositions and velocities were occurred in winter. This is because that China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. (3) The results indicated that the total mercury ratios of Kaohsiung to that of this study were 5.61. This is because that Kaohsiung has the largest industry density (~60 %) in Taiwan. (4) the USA showed average lower mercury species concentrations when compared to those of the other world countries. The average ratios of China/USA values were 89, 76 and 160 for total mercury, RGM and Hg(p), respectively, during the years of 2000-2012.
Rebelo, Fernanda M; Cunha, Leandro R da; Andrade, Patrícia D; Costa Junior, Walkimar A da; Bastos, Wanderley R; Caldas, Eloisa D
2017-12-01
Mercury is a toxic metal, ubiquitous in nature; it is excreted in breast milk from exposed mothers and may affect infant neuro-development. In this study, 224 breast milk samples provided by eight human milk banks in the Federal District of Brazil were analyzed for total mercury (THg), of which 183 were also analyzed for methyl mercury (MeHg), the most relevant form of this metal for the breastfed infants. Samples were acid digested in a microwave oven and THg determined by atomic fluorescence spectrometry (LOQ of 0.76μg/L). Samples were lyophilized, ethylated and MeHg determined in a MERX automated system (LOQ of 0.10μg/L). Inorganic mercury (IHg) levels were estimated from the THg and MeHg determined in the samples. Most of the samples were collected 1-2 months postpartum, with 38% during the first month. Over 80% of the samples had THg values above the LOQ, reaching a maximum of 8.40μg/L, with a mean of 2.56μg/L. On average, MeHg accounted for 11.8% of THg, with a maximum of 97.4%. Weekly intakes were estimated individually, considering the baby's age and body weight at the time of milk collection. Mean weekly intake for MeHg was 0.16±0.22μg/kg bw, which represented 10% of the PTWI; in only one case, the intake exceeded 100% of the PTWI (1.90μg/kg bw, 119% of PTWI). Mean intake for IHg was 2.1±1.5μg/kg bw, corresponding to 53% PTWI. These results indicate no health concern for the breastfed babies, a conclusion that can be extended to the consumers of breast milk donated to the milk banks, primarily immature and low weight babies. Copyright © 2017 Elsevier GmbH. All rights reserved.
Methyl mercury, but not inorganic mercury, associated with higher blood pressure during pregnancy.
Wells, Ellen M; Herbstman, Julie B; Lin, Yu Hong; Hibbeln, Joseph R; Halden, Rolf U; Witter, Frank R; Goldman, Lynn R
2017-04-01
Prior studies addressing associations between mercury and blood pressure have produced inconsistent findings; some of this may result from measuring total instead of speciated mercury. This cross-sectional study of 263 pregnant women assessed total mercury, speciated mercury, selenium, and n-3 polyunsaturated fatty acids in umbilical cord blood and blood pressure during labor and delivery. Models with a) total mercury or b) methyl and inorganic mercury were evaluated. Regression models adjusted for maternal age, race/ethnicity, prepregnancy body mass index, neighborhood income, parity, smoking, n-3 fatty acids and selenium. Geometric mean total, methyl, and inorganic mercury concentrations were 1.40µg/L (95% confidence interval: 1.29, 1.52); 0.95µg/L (0.84, 1.07); and 0.13µg/L (0.10, 0.17), respectively. Elevated systolic BP, diastolic BP, and pulse pressure were found, respectively, in 11.4%, 6.8%, and 19.8% of mothers. In adjusted multivariable models, a one-tertile increase of methyl mercury was associated with 2.83mmHg (0.17, 5.50) higher systolic blood pressure and 2.99mmHg (0.91, 5.08) higher pulse pressure. In the same models, an increase of one tertile of inorganic mercury was associated with -1.18mmHg (-3.72, 1.35) lower systolic blood pressure and -2.51mmHg (-4.49, -0.53) lower pulse pressure. No associations were observed with diastolic pressure. There was a non-significant trend of higher total mercury with higher systolic blood pressure. We observed a significant association of higher methyl mercury with higher systolic and pulse pressure, yet higher inorganic mercury was significantly associated with lower pulse pressure. These results should be confirmed with larger, longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Mercury mass balance in Lake Michigan--the knowns and unknowns
LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...
Selenium and Mercury Concentrations in Fish, Wolford Mountain Reservoir, Colorado, 2005
Bauch, Nancy J.
2007-01-01
A reconnaissance investigation of selenium and total mercury in fish in Wolford Mountain Reservoir, Colorado, was conducted by the U.S. Geological Survey in June 2005, in cooperation with the Colorado River Water Conservation District. A total of 32 game and nongame fish were collected from three sites in the reservoir for analysis of selenium and total mercury. Five species of fish were sampled: white sucker (Catostomus commersonii, n=17), brown trout (Salmo trutta, n=5), rainbow trout (Oncorhynchus mykiss, n=5), cutthroat trout (Oncorhynchus clarkii, n=3), and splake (Salvelinus fontinalis x Salvelinus namaycush, n=2). Selenium concentrations ranged from 1.05 to 11.7 micrograms per gram (equivalent to parts per million or ppm) dry weight, whole body. Almost 22 percent (7 of 32) of fish samples had selenium concentrations greater than 7.91 micrograms per gram dry weight, the U.S. Environmental Protection Agency 2004 draft freshwater chronic criterion for selenium in whole-body fish tissue. Total mercury concentrations in muscle plug samples ranged from 0.012 to 0.320 microgram per gram wet weight. Concentrations of mercury in muscle plug samples are comparable to concentrations in fillet samples, and only one fish sample, a nongame white sucker, had a total mercury concentration greater than the U.S. Environmental Protection Agency water-quality criterion for the protection of human health of 0.3 microgram per gram wet weight in fillets. Converting muscle plug or fillet concentrations of mercury to whole-body concentrations, four fish samples (12.5 percent) had estimated whole-body total mercury concentrations greater than 0.1 microgram per gram wet weight concentration in whole-body fish tissue, the U.S. Fish and Wildlife Service criterion for protection of fish-eating birds and wildlife. Water-quality data for dissolved selenium and total mercury in two tributaries and three reservoir sites were compiled and compared. Dissolved concentrations of selenium in one tributary and one reservoir site (prior to 1998) were greater than 4.6 micrograms per liter, the State of Colorado chronic water-quality standard for dissolved selenium for protection of aquatic life. Total mercury concentrations in most water samples from two tributaries and three reservoir sites were less than or equal to 0.01 microgram per liter, the State of Colorado chronic water-quality standard for total mercury for protection of aquatic life. Selenium and mercury in fish in Wolford Mountain Reservoir most likely are not directly related to selenium and mercury concentrations in reservoir water, as most selenium and mercury in fish tissue results from the presence of selenium and mercury in the diet rather than through gill uptake from water. Results of this reconnaissance investigation of selenium and total mercury in fish in Wolford Mountain Reservoir indicate that concentrations of selenium were elevated in some fish. Most total mercury concentrations in fish were less than criteria levels.
Temporal and spatial distribution of waterborne mercury in a gold miner's river.
Picado, Francisco; Bengtsson, Göran
2012-10-26
We examined the spatial and temporal (hourly) variation of aqueous concentrations of mercury in a gold miner's river to determine factors that control transport, retention, and export of mercury. The mercury flux was estimated to account for episodic inputs of mercury through mining tailings, variations in flow rate, and the partitioning of mercury between dissolved and particulate phases. Water samples were collected upstream and downstream of two gold mining sites in the Artiguas river, Nicaragua. The samples were analyzed for dissolved and suspended mercury, total solids, dissolved organic carbon, and total iron in water. Water velocity was also measured at the sampling sites. We found that mercury was mainly transported in a suspended phase, with a temporal pattern of diurnal peaks corresponding to the amalgamation schedules at the mining plants. The concentrations decreased with distance from the mining sites, suggesting dilution by tributaries or sedimentation of particle-bound mercury. The lowest total mercury concentrations in the water were less than 0.1 μg l(-1) and the highest concentration was 5.0 μg l(-1). The mercury concentrations are below the present WHO guidelines of 6 μg l(-1) but are considered to lead to a higher risk to aquatic bacteria and fish in the stream than to humans. The aqueous concentrations exceed the hazard endpoints for both groups by a probability of about 1%. Particulate mercury accounted for the largest variation of mercury fluxes, whereas dissolved mercury made up most of the long-range transport along the stream. The estimated total mass of mercury retained due to sedimentation of suspended solids was 2.7 kg per year, and the total mass exported downstream from the mining area was 1.6 kg per year. This study demonstrates the importance of the temporal and spatial resolution of observations in describing the occurrence and fate of mercury in a river affected by anthropogenic activities.
Preliminary report on a population that received a heavy exposure to methyl mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarkson, T.W.; Smith, J.C.; Bakir, F.
1973-01-01
An epidemic of methyl mercury poisoning due to the consumption of homemade bread prepared from wheat treated with a methyl mercury fungicide occurred in Iraq in the winter of 1971-1972, with 6530 cases admitted to hospitals. Four hundred and fifty nine died in hosptials. Observations on 16 patients over a period of 60 days indicated a median clearance half-time from blood of approximately 70 days. Concentrations of total mercury in milk averaged 5% of the mercury in simultaneously collected samples of whole blood. Concentrations of total mercury in urine samples did not correlate with concentrations of mercury in blood. Inorganicmore » mercury accounted for the following average percentages of total mercury: 22% in plasma, 40% in milk and 73% in urine. Studies of dose-response relationships indicated that toxic effects of methyl mercury became clinically detectable at body burdens in the range of 0.05-0.8 mg Hg/kg body weight. 8 references, 4 figures.« less
Stumpner, Elizabeth B.; Kraus, Tamara E.C.; Fleck, Jacob A.; Hansen, Angela M.; Bachand, Sandra M.; Horwath, William R.; DeWild, John F.; Krabbenhoft, David P.; Bachand, Philip A.M.
2015-09-02
Following coagulation, but prior to passage through the wetland cells, coagulation treatments transferred dissolved mercury and carbon to the particulate fraction relative to untreated source water: at the wetland cell inlets, the coagulation treatments decreased concentrations of filtered total mercury by 59–76 percent, filtered monomethyl mercury by 40–70 percent, and dissolved organic carbon by 65–86 percent. Passage through the wetland cells decreased the particulate fraction of mercury in wetland cells that received coagulant-treated water. Changes in total mercury, monomethyl mercury, and dissolved organic carbon concentrations resulting from wetland passage varied both by treatment and season. Despite increased monomethyl mercury in the filtered fraction during wetland passage between March and August, the coagulation-wetland systems generally decreased total mercury (filtered plus particulate) and monomethyl mercury (filtered plus particulate) concentrations relative to source water. Coagulation—either alone or in association with constructed wetlands—could be an effective way to decrease concentrations of mercury and dissolved organic carbon in surface water as well as the bioavailability of mercury in the Sacramento–San Joaquin Delta.
40 CFR 421.254 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... average mg/troy ounce of gold refined electrolytically Lead 5.544 2.574 Mercury 2.970 1.188 Silver 5.742 2... property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0... reduced in solution Lead 0.112 0.052 Mercury 0.060 0.024 Silver 0.116 0.048 Zinc 0.408 0.168 Gold 0.040...
Sousa, Ana C A; Teixeira, Isa Sofia de Sá; Marques, Bruna; Vilhena, Hugo; Vieira, Lisete; Soares, Amadeu M V M; Nogueira, António J A; Lillebø, Ana I
2013-11-01
Pet cats and dogs have been successfully used as indicators of environmental pollution by a great variety of chemicals, including metals. However, information on mercury (a well know priority environmental pollutant) concentrations in household pets tissues and/or organs is scarce. Thus, in the present work we quantified total mercury (Hg(Total)) in blood and hair samples from twenty-six household dogs. The obtained results disclose relatively low levels of total mercury in the surveyed dogs, with values ranging from 0.16 to 12.38 ng g(-1) in blood; and from 24.16 to 826.30 ng g(-1) in hair. Mercury concentrations were independent of gender, age and diet type. A highly significant positive correlation was established between total mercury in blood and hair, validating the latter as a surrogate, non-invasive matrix for mercury exposure evaluation. Additionally, the obtained blood to hair ratio (200) is similar to the one described for humans reinforcing the suitability of dogs as sentinels. Overall, the determination of total mercury levels in dogs' hair samples proved to be a good screening method for the estimation of mercury burden in this species. We propose the quantification of Hg(Total) in hair as a screening method for sentinels like household pets to be performed in routine veterinary visits.
Estimation of mercury emission from different sources to atmosphere in Chongqing, China.
Wang, Dingyong; He, Lei; Wei, Shiqiang; Feng, Xinbin
2006-08-01
This investigation presents a first assessment of the contribution to the regional mercury budget from anthropogenic and natural sources in Chongqing, an important industrial region in southwest China. The emissions of mercury to atmosphere from anthropogenic sources in the region were estimated through indirect approaches, i.e. using commonly acceptable emission factors method, which based on annual process throughputs or consumption for these sources. The natural mercury emissions were estimated from selected natural sources by the dynamic flux chamber technique. The results indicated that the anthropogenic mercury emissions totaled approximately 8.85 tons (t), more than 50% of this total originated in coal combustion and 23.7% of this total emission in the industrial process (include cement production, metal smelting and chemical industry). The natural emissions represented approximately 17% of total emissions (1.78 t yr(-1)). The total mercury emission to atmosphere in Chongqing in 2001 was 10.63 t.
Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes
Hammerschmidt, Chad R.; Wiener, James G.; Frazier, Brdaley E.; Rada, Ronald G.
1999-01-01
We examined the influence of maternal mercury and selected lacustrine variables on the mercury content of eggs from yellow perch (Perca flavescens). Total mercury, methylmercury, and inorganic mercury were determined in eggs and carcasses (less eggs) from three seepage lakes with a pH range of 6.1a??7.0 and a fourth lake in which pH was experimentally increased from 5.5 to 6.8 by addition of alkaline groundwater. The concentration of total mercury in eggs was strongly correlated with that in the maternal carcass. Concentrations and burdens of mercury in eggs and carcasses were inversely correlated with lake water pH, acid-neutralizing capacity, calcium, and dissolved organic carbon. In eggs containing more than 30 ng/g dry weight (4.5 ng/g wet weight) of total mercury, methylmercury averaged 91% of total mercury and ranged from 85% to 96%. Mean burdens of total mercury in individual eggs varied greatly among lakes (range, 2.3a??63 pg), and the egg mass averaged 1.9% of the whole-body burden. We conclude that exposure of the developing yellow perch embryo to methylmercury is strongly affected by maternal bioaccumulation, which can vary substantially among and within lakes; however, the toxicological significance of the observed exposure of embryos to methylmercury is unclear.
Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconsin lakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammerschmidt, C.R.; Frazier, B.E.; Rada, R.G.
1999-04-01
The authors examined the influence of maternal mercury and selected lacustrine variables on the mercury content of eggs from yellow perch (Perca flavescens). Total mercury, methylmercury, and inorganic mercury were determined in eggs and carcasses (less eggs) from three seepage lakes with a pH range of 6.1--7.0 and a fourth lake in which pH was experimentally increased from 5.5 to 6.8 by addition of alkaline groundwater. The concentration of total mercury in eggs was strongly correlated with that in the material carcass. Concentrations and burdens of mercury in eggs and carcasses were inversely correlated with lake water pH, acid-neutralizing capacity,more » calcium, and dissolved organic carbon. In eggs containing more than 30 ng/g dry weight of total mercury, methylmercury averaged 91% of total mercury and ranged from 85% to 96%. Mean burdens of total mercury in individual eggs varied greatly among lakes and the egg mass averaged 1.9% of the whole-body burden. The authors conclude that exposure of the developing yellow perch embryo to methylmercury is strongly affected by maternal bioaccumulation, which can vary substantially among and within lakes; however, the toxicological significance of the observed exposure of embryos to methylmercury is unclear.« less
Determination of mercurous chloride and total mercury in mercury ores
Fahey, J.J.
1937-01-01
A method for the determination of mercurous chloride and total mercury on the same sample is described. The mercury minerals are volatilized in a glass tube and brought into intimate contact with granulated sodium carbonate. The chlorine is fixed as sodium chloride, determined with silver nitrate, and computed to mercurous chloride. The mercury is collected on a previously weighed gold coil and weighed.
The effects of cooking practices commonly used by Native Americans on total mercury concentrations in fish were investigated. A preparation factor relating mercury concentrations in fish as prepared for consumption to mercury concentration data as measured in typical environmenta...
Surveillance of Total Mercury and Methylmercury Concentrations in Retail Fish.
Watanabe, Takahiro; Hayashi, Tomoko; Matsuda, Rieko; Akiyama, Hiroshi; Teshima, Reiko
2017-01-01
Most fish samples contain methylmercury, that the concentrations very greatly according to the fish species. To avoid the adverse health effects of methylmercury while retaining the benefits provided by fish consumption, it is important to select suitable fish species and to control the amount of the fish intake. We surveyed the concentrations of total mercury and methylmercury in 210 retail fish samples classified into 19 fish species by using validated analytical methods. The results of this survey were as follows. The total mercury and methylmercury concentrations were higher than 1 mg/kg in some samples of swordfish and bluefin tuna, which are large predatory fish species. In bluefin tuna and yellowtail, total mercury and methylmercury concentrations in farm-raised fish were lower than those in natural fish. There was a positive correlation between total mercury concentration and methylmercury concentration. Our results indicate that a cut-off value of 0.3 mg/kg total mercury in the screening of fish samples would increase the effectiveness of inspection.
Li, Sixin; Zhou, Lianfeng; Chang, Jianbo; Yang, Zhi; Hu, Juxiang; Hongjun, Wang
2017-11-01
Mercury concentrations in fish were investigated downstream from a newly impounded subtropical reservoir in August 2008. After 6-7 months of reservoir impoundment, mean mercury concentration in fish from downstream is significantly increased by 1.9 times. Not only carnivorous fish but also benthic fish had significantly higher total mercury concentrations than others. No significant correlation was found between total mercury concentrations and body length or weight of 13 fish species. Compared with the pre-impoundment, total mercury in fish from downstream is significantly increased by reservoir impoundment, but the increased rate is lower than those in subarctic and temperate areas. Fish samples surpassed the Chinese hygienic standard for tolerances of mercury in foods increased by 4.3%. More attention should be given to fish mercury levels from downstream sites to prevent possible adverse effects on the health of local people.
Code of Federal Regulations, 2011 CFR
2011-07-01
... silver smelted Lead 0.546 0.260 Mercury 0.325 0.130 Silver 0.533 0.221 Zinc 1.898 0.793 Gold 0.130 Oil... monthly average mg/troy ounce of silver reduced in solution Lead 0.168 0.080 Mercury 0.100 0.040 Silver 0... property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold refined electrolytically...
Content and chemical form of mercury and selenium in Lake Ontario salmon and trout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappon, C.J.
1984-01-01
The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On amore » molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.« less
MERCURY SPECIATION AND CAPTURE
In December 2000, the U.S. Environmental Protection Agency (USEPA) announced its intent to regulate mercury emissions from coal-fired electric utility steam generating plants. Maximum achievable control technology (MACT) requirements are to be proposed by December 2003 and finali...
Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem.
Malczyk, Evan A; Branfireun, Brian A
2015-08-15
Mercury pollution has not been well documented in the inland lakes or fishes of Mexico, despite the importance of freshwater fish as a source of protein in local diets. Total mercury and methylmercury in waters, sediments, and the commercial fish catch were investigated in Lake Zapotlán, Mexico. Concentrations of total and methylmercury were very high in runoff and wastewater inputs, but very low in sediments and surface waters of the open water area of the lake. Concentrations of total mercury in tilapia and carp were very low, consistent with the low concentrations in lake water and sediments. Particle settling, sorption, the biogeochemical environment, and/or bloom dilution are all plausible explanations for the significant reductions in both total mercury and methylmercury. Despite very high loading of mercury, this shallow tropical lake was not a mercury-impaired ecosystem, and these findings may translate across other shallow, alkaline tropical lakes. Importantly, the ecosystem services that seemed to be provided by peripheral wetlands in reducing mercury inputs highlight the potential for wetland conservation or restoration in Mexico. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Abdullah, Md Pauzi; Khalik, Wan Mohd Afiq Wan Mohd; Othman, Mohamed Rozali
2016-11-01
The extraction procedure for determination of low level mercury using solid phase microextraction was successfully carried out. Design of experimental works using factorial design and central composite design were applied to screen and predict the optimum condition for extraction step. In this study, variables namely concentration level (5 % m/v) and volume of derivatization solution (150 µL) has depicted as main effect for controlling the suitability of derivative reagent condition. Maximum of signal response (account as total peak areas for mercury species) was obtained when extraction procedure was set up at pH of water sample (5.8), extraction time (14 min), extraction temperature (43 °C) and stirring rate (450 rpm). Reducing time required to reach equilibrium is new improvement achieved in this study. Detection limit for each species (MeHg 26.17 ngL-1; EtHg 48.84 ngL-1 and IHg 14.11 ngL-1) was calculated lower than our previous work. Recovery, repeatability and reproducibility trial were recorded varied at acceptable range and relative standard deviation was calculated below than 10 %.
40 CFR Table 7 to Subpart Ddddd of... - Establishing Operating Limits
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Particulate matter, mercury, or total selected metals a. Wet scrubber operating parameters i. Establish a site... drop and liquid flow rate monitors and the particulate matter, mercury, or total selected metals... from the pressure drop and liquid flow rate monitors and the particulate matter, mercury, or total...
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glass, G.E.; Sorensen, J.A.; Schmidt, K.W.
Studies in the Upper Midwest have shown significant amounts of total mercury in the air, precipitation, surface waters, sediments, and biota. We now report on measurements of methylmercury in precipitation from nine wet deposition monitoring stations (MIC Type B Collectors) located in and around Minnesota near: Lamberton, Bethel, Duluth, Finland, Ely, Tower, International Falls, MN; Cavalier, ND; and Raco, MI using the analytical methods previously described. Methyl and total mercury concentration means, std. dev., and ranges (in parentheses) were found to be 0.18{plus_minus}0.09 ng/L (<0.04, 0.48) and 15.1{plus_minus}7.6 ng/L (4.7, 34), respectively, for one week samples of precipitation collected duringmore » each of the months, June through September, 1993. Methylmercury averaged 1.3 to 1.8% of the total mercury concentration. The calculated one-week mean wet deposition values (across sites) for the same months were 4.8, 5.9, 3.5, and 3.2 ng/m{sup 2} methylmercury, and 341, 354, 320, and 322 ng/m{sup 2} total mercury, respectively. Methylmercury concentrations correlated significantly (r value signs, p<.01, n=37) with total mercury concentrations (+) and precipitation volume (-), and chloride concentrations (+), while methylmercury depositions correlated significantly with depositions of total mercury (+), nitrate (+), chloride (+), and sulfate (+), ammonium (+), and pH (-). Winter concentrations of methylmercury and % methyl of total mercury in snow were significantly higher. Urban sites show significantly higher depositions than remote sites. The mercury depositions are similar to those observed in Scandinavia that have contaminated aquatic and terrestrial ecosystems.« less
Mercury and water level fluctuations in lakes of northern Minnesota
Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.
2017-01-01
Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.
Total Mercury and Methylmercury in Indiana Streams, August 2004-September 2006
Ulberg, Amanda L.; Risch, Martin R.
2008-01-01
Total mercury and methylmercury were determined by use of low (subnanogram per liter) level analytical methods in 225 representative water samples collected following ultraclean protocols at 25 Indiana monitoring stations in a statewide network, on a seasonal schedule, August 2004-September 2006. The highest unfiltered total mercury concentrations were at six monitoring stations - five that are downstream from urban and industrial wastewater discharges and that have upstream drainage areas more than 1,960 square miles and one that is downstream from active and abandoned mine lands and that has an upstream drainage area of 602 square miles. Total mercury concentrations in unfiltered samples ranged from 0.24 to 26.9 nanograms per liter (ng/L), with a median of 2.35 ng/L. The highest concentrations of total mercury, those in the 90th percentile and above, were more than 9.05 ng/L, and most were in samples collected during winter and spring 2006 during changing streamflow hydrograph conditions. Seasonal medians for unfiltered total mercury were highest during winter and spring. Instantaneous streamflow and turbidity at the time of sample collection also were highest in winter and spring and potentially indicate conditions for the most particulate mercury transport. Samples with the highest total mercury concentrations were from water that had the highest turbidity at the time of sample collection. Unfiltered total mercury concentrations were significantly lower in samples collected at five stations downstream from dams. Values for particulate total mercury and streamflow also were significantly lower at these five stations. Total mercury concentrations equaled or exceeded the 2007 Indiana chronic aquatic criterion of 12 ng/L in 5.8 percent of samples and at 10 monitoring stations. Most of the total mercury in these 13 samples was estimated to be particulate. Most of the samples with mercury concentrations that equaled or exceeded the 12 ng/L criterion were collected during winter and spring 2006 during changing streamflow hydrograph conditions and in streamflow that was high for 2004-2006. Methylmercury was detected in 83 percent of unfiltered samples; reported concentrations ranged from 0.04 to 0.57 ng/L, with a median of 0.09 ng/L. The highest concentrations of methylmercury, those in the 90th percentile and above, were more than 0.25 ng/L, and most were in samples collected during spring and summer. Methylation efficiency in most samples was less than 5.8 percent, but was as much as 24.6 percent. Seasonal medians for methylmercury were highest during spring and summer. Seasonal medians for water temperatures at the time of sample collection were highest during these seasons and potentially indicate conditions for the most formation of methylmercury. The low streamflow statistical category had the significantly highest methylation efficiency.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.364 0.169 Mercury 0.195 0.078 Silver 0.377 0.156 Zinc 1.326 0.546 Gold 0.130 (b) Silver... reduced in solution Lead 0.112 0.052 Mercury 0.060 0.024 Silver 0.116 0.048 Zinc 0.408 0.168 Gold 0.040 (c...
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.364 0.169 Mercury 0.195 0.078 Silver 0.377 0.156 Zinc 1.326 0.546 Gold 0.130 (b) Silver... reduced in solution Lead 0.112 0.052 Mercury 0.060 0.024 Silver 0.116 0.048 Zinc 0.408 0.168 Gold 0.040 (c...
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and silver smelted Lead 0.364 0.169 Mercury 0.195 0.078 Silver 0.377 0.156 Zinc 1.326 0.546 Gold 0.130 (b) Silver... reduced in solution Lead 0.112 0.052 Mercury 0.060 0.024 Silver 0.116 0.048 Zinc 0.408 0.168 Gold 0.040 (c...
Investigation of Total and Methyl Mercury in Fish and Sediment of Lake Michigan
Sediment cores and fish collected between 1994 and 1996 as part of the Lake Michigan Mass Balance Project were analyzed for total and methyl mercury. Results of the fish analyses are being used to describe total and methyl mercury concentrations in forage fish and lake trout, re...
Diviš, Pavel; Kadlecová, Milada; Ouddane, Baghdad
2016-05-01
The distribution of mercury in surface water and in sediment from Deûle River in Northern France was studied by application of conventional sampling methods and by diffusive gradients in thin films technique (DGT). Concentration of total dissolved mercury in surface water was 20.8 ± 0.8 ng l(-1). The particulate mercury concentration was 6.2 ± 0.6 µg g(-1). The particulate mercury was accumulated in sediment (9.9 ± 2.3 mg kg(-1)), and it was transformed by methylating bacteria to methylmercury, mainly in the first 2-cm layer of the sediment. Total dissolved concentration of mercury in sediment pore water obtained by application of centrifugation extraction was 17.6 ± 4.1 ng l(-1), and it was comparable with total dissolved pore water mercury concentration measured by DGT probe containing Duolite GT-73 resin gel (18.2 ± 4.3 ng l(-1)), taking the sediment heterogeneity and different principles of the applied methods into account. By application of two DGT probes with different resin gels specific for mercury, it was found that approximately 30% of total dissolved mercury in sediment pore water was present in labile forms easy available for biota. The resolution of mercury DGT depth profiles was 0.5 cm, which allows, unlike conventional techniques, to study the connection of the geochemical cycle of mercury with geochemical cycles of iron and manganese.
Exposure of great egret (Ardea albus) nestlings to mercury through diet in the Everglades ecosystem
Frederick, Peter C; Spalding, Marilyn G.; Sepalveda, Maria S.; Williams, Gary E.; Nico, Leo G.; Robins, Robert H.
1999-01-01
We estimated exposure of great egret (Ardea albus) nestlings to mercury in food in the Florida Everglades, USA, by collecting regurgitated food samples during the 1993 to 1996 breeding seasons and during 1995 measured concentrations of mercury in individual prey items from those samples. Great egret nestlings had a diet composed predominantly of fish (>95% of biomass), though the species composition of fish in the diet fluctuated considerably among years. Great egrets concentrated on the larger fish available in the marsh, especially members of the Centrarchidae. The importance of all nonnative fish fluctuated from 0 to 32% of the diet by biomass and was dominated by pike killifish (Belonesox belizanus) and cichlids (Cichlidae). Total mercury concentrations in prey fish ranged from 0.04 to 1.40 mg/kg wet weight, and we found a significant relationship between mass of individual fish and mercury concentration. We estimated the concentration of total mercury in the diet as a whole by weighting the mercury concentration in a given fish species by the proportion of that species in the diet. We estimate that total mercury concentrations in the diets ranged among years from 0.37 to 0.47 mg/kg fish (4-year mean = 0.41 mg/kg). We estimated total mercury exposure in great egret nestlings by combining these mercury concentrations with measurements of food intake rate, as measured over the course of the nestling period in both lab and field situations. We estimate that, at the 0.41 mg/kg level, nestlings would ingest 4.32 mg total mercury during an 80-day nestling period. Captive feeding studies reported elsewhere suggest that this level of exposure in the wild could be associated with reduced fledging mass, increased lethargy, decreased appetite, and, possibly, poor health and juvenile survival.
Chen, M H; Teng, P Y; Chen, C Y; Hsu, C C
2011-01-01
Muscle samples of 121 and 110 bigeye tuna (Thunnus obesus) caught by Taiwanese long-line fishing vessels in the Atlantic and Indian Oceans, respectively, were used to analyze total mercury (THg) and organic mercury (OHg) content. The overall THg and OHg concentrations were 0.786 ± 0.386 (0.214-3.133) and 0.595 ± 0.238 (0.143-2.222) mg kg⁻¹ wet weight, respectively, similar to the results of previous studies. Our findings, however, reflected the highest THg and OHg concentrations for the species in each ocean among the published data. Mean THg and OHg concentrations in Atlantic tuna were significantly (p < 0.05) higher than those in Indian tuna. Two of 121 samples of tuna from the Atlantic Ocean, but no samples from the Indian Ocean, had levels of OHg above 2 mg kg⁻¹ wet weight set by the Department of Health Taiwan, and 13 of 121 samples of tuna from the Atlantic Ocean and three of 110 samples from the Indian Ocean had levels of OHg above 1 mg kg⁻¹ wet weight set by US FDA and WHO. Accordingly, for adult Taiwanese men and women with average body weight of 65 and 55 kg, respectively, the maximum allowable weekly intake of bigeye tuna is suggested to be 170 and 145 g, respectively.
Kral, Tomas; Blahova, Jana; Doubkova, Veronika; Farkova, Dagmar; Vecerek, Vladimir; Svobodova, Zdenka
2017-02-01
The aim of this work is to assess mercury content in the great cormorant in the Třeboň region pond systems (Czech Republic) in terms of its potential to accumulate mercury from common carp. Selected tissues samples were taken from 51 cormorants and 30 common carp. In the food chain the cormorant was found to have the potential to accumulate mercury, where the muscle total mercury was roughly 35 times higher compared to the total mercury content in the carp muscle as its food. A statistically significantly higher overall mercury content (p < 0.01) has been found in the kidney and liver (2.23 ± 0.30, 2.12 ± 0.22 mg/kg) compared to other tissues examined in cormorants. The proportion of muscle methylmercury in the total mercury content of the cormorant was within the range 64.3%-87.3%. The results can help us to gain a better understanding of how mercury is distributed and accumulated in the aquatic food chain.
Mercury data from small lakes in Voyageurs National Park, northern Minnesota, 2000-02
Goldstein, Robert M.; Brigham, Mark E.; Steuwe, Luke; Menheer, Michael A.
2003-01-01
Mercury contamination of aquatic ecosystems is a resource concern in Voyageurs National Park. High concentrations of mercury in fish pose a potential risk to organisms that consume large amounts of those fish. During 2000–02, the U.S. Geological Survey measured mercury in water collected from 20 lakes in Voyageurs National Park. Those lakes span a gradient in fish-mercury concentrations, and also span gradients in other environmental variables that are thought to influence mercury cycling. During 2001, near surface methylmercury concentrations ranged from below the method detection limit of 0.04 nanograms per liter (ng/L) to 0.41 ng/L. Near surface total mercury concentrations ranged from 0.34 ng/L to 3.74 ng/L. Hypolimnetic methylmercury ranged from below detection to 2.69 ng/L, and hypolimnetic total mercury concentrations ranged from 0.34 ng/L to 7.16 ng/L. During 2002, near surface methylmercury concentrations ranged from below the method detection limit to 0.46 ng/L, and near surface total mercury ranged from 0.34 ng/L to 4.81 ng/L.
Global and regional contributions to total mercury concentrations in Lake Michigan water
A calibrated mercury component mass balance model, LM2-Mercury, was applied to Lake Michigan to predict mercury concentrations in the lake under different mercury loadings, mercury air concentrations, and management scenarios. Although post-audit data are few, model predictions (...
Toward a Unified Understanding of Mercury and Methylated Mercury from the World's Oceans
NASA Astrophysics Data System (ADS)
McNutt, M. K.; Krabbenhoft, D. P.; Landing, W. M.; Sunderland, E. M.
2012-12-01
Marine fish and shellfish are the main source of toxic methylmercury exposure for humans. As recently as decade ago, very limited aqueous methylated mercury data were available from marine settings, resulting in a generally poor understanding of the processes controlling mercury in pelagic marine food webs. Recent oceanographic cruises have significantly improved availability of reliable measurements of methylated mercury and total mercury in seawater. This presentation will focus on vertical seawater profiles collected to depths 1000 m from three recent sampling efforts in collaboration with the CLIVAR Repeat Hydrography Program sponsored by NOAA including: 1) the northeastern Pacific (P16N cruise from Honolulu, Hawaii to Kodiak, Alaska); (2) the southern Indian Ocean (I5 cruise from Cape Town, South Africa, to Fremantle, Australia); and, (3) the Southern Ocean cruise (S4P from McMurdo, Antarctica, to Punta Arenas, Chile). Analytical results presented were all derived from the USGS Mercury Research Lab (http://wi.water.usgs.gov/mercury-lab). Supporting data derived from these cruises on water mass ages, nutrients, carbon and dissolved oxygen provide an opportunity to develop a stronger understanding of the biogeochemical factors controlling oceanic distributions of mercury and methylated mercury. Whole-water, median total mercury, and methylated mercury concentrations for the northern Pacific, southern Indian, and Southern Ocean were 1.10, 0.80, and 1.65 pM, , and 0.11, 0.08, and 0.32 pM, respectively. For all three oceans, vertical profiles of total mercury generally show the lowest concentrations in the surface mixed layer, and concentration maxima at the 700-1000 m depths. Surface depletion of total mercury is attributed to photo-chemical reduction and evasion of gaseous elemental mercury as well as scavenging by settling particulate matter, the main vector of transport to the subsurface ocean. Methylated mercury in all the ocean profiles reveal distinct mid-profile concentration maxima, however, the depth of the maxima are more varied than the total mercury profiles (150 - 700m). Also, our observed distribution of methylated mercury highly correlated with organic carbon remineralization rates (OCRR) in the North Pacific and Indian Oceans. Interestingly, we find the highest methylated mercury concentrations in the Southern Ocean, suggesting the possibility of unique mechanisms for methylmercury production, preservation, and degradation in polar ecosystems such as cold water temperatures, extended periods of sea ice cover, and annual atmospheric mercury depletion events. We are using these data to better link oceanic production of bioaccumulative mercury to models for atmospheric and oceanic transport and bioaccumulation. This will ultimately lead to a better understanding of mercury levels in consumable fish and shell fish.
[Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].
Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L
2014-01-01
To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.
NASA Astrophysics Data System (ADS)
Arzuman, Anry
Mercury is a hazardous air pollutant emitted to the atmosphere in large amounts. Mercury emissions from electric power generation sources were estimated to be 48 metric tons/year, constituting the single largest anthropogenic source of mercury in the U.S. Settled mercury species are highly toxic contaminants of the environment. The newly issued Federal Clean Air Mercury Rule requires that the electric power plants firing coal meet the new Maximum Achievable Mercury Control Technology limit by 2018. This signifies that all of the air-phase mercury will be concentrated in solid phase which, based on the current state of the Air Pollution Control Technology, will be fly ash. Fly ash is utilized by different industries including construction industry in concrete, its products, road bases, structural fills, monifills, for solidification, stabilization, etc. Since the increase in coal combustion in the U.S. (1.6 percent/year) is much higher than the fly ash demand, large amounts of fly ash containing mercury and other trace elements are expected to accumulate in the next decades. The amount of mercury transferred from one phase to another is not a linear function of coal combustion or ash production, depends on the future states of technology, and is unknown. The amount of aqueous mercury as a function of the future removal, mercury speciation, and coal and aquifer characteristics is also unknown. This paper makes a first attempt to relate mercury concentrations in coal, flue gas, fly ash, and fly ash leachate using a single algorithm. Mercury concentrations in all phases were examined and phase transformation algorithms were derived in a form suitable for probabilistic analyses. Such important parameters used in the transformation algorithms as Soil Cation Exchange Capacity for mercury, soil mercury selectivity sequence, mercury activity coefficient, mercury retardation factor, mercury species soil adsorption ratio, and mercury Freundlich soil adsorption isotherm coefficients were derived. Mercury air-phase removal efficiency was studied as a function of dominant mercury species vapor pressures, the amount of chlorine, sorbent injection rate and adsorption capacities, and process temperature and modifications. A mercury air phase removal algorithm was derived which defines the future removal efficiencies as a function of activated carbon injection rate. Mercury adsorption on soil was studied as a function of Mercury Mass Law incorporating the dominant aquatic mercury species, pH, chlorine and sulfur concentrations, and the amount of complexed hydroxyl groups. Aquatic mercury longitudinal plume delineation was studied using the Domenico and Robbins function. A Monte Carlo simulation was performed using random number series (5000) for all of the variables in the Domenico and Robbins and mercury retardation functions. The probability that the Maximum Contaminant Level for mercury will be exceeded was found to be equal approximately 1 percent of all soil-related fly ash applications.
Zhang, Lei; Zhang, Lei
2015-01-01
Fish and marine mammal consumption are an important pathway for human exposure to mercury. The low mercury content in shellfish poses a low mercury health risk to people who consume shellfish. The objectives of this study are to detect mercury concentrations in different species of shellfish and to calculate the mercury health risk from shellfish consumption among traditional residents near northern Jiaozhou Bay. A total of 356 shellfish samples, which comprised 7 species from 5 different places in northern Jiaozhou Bay, were collected from April to June in 2012. The average mercury content in the collected shellfish ranged from 0.024 mg·kg(-1) to 0.452 mg·kg(-1). A total of 44 shellfish samples (12.36%) had mercury levels exceeding the national pollution-free aquatic products limit (0.3 mg·kg(-1)). Generally, the viscus had the highest mercury content among all parts of the shellfish. A positive correlation between mercury content and total weight/edible part weight was found in most species of the collected shellfish. The results showed that shellfish consumption resulted in the lower risk of mercury exposure to residents based on the calculation of daily intake (DI) and target hazard quotient (THQ).
Varian-Ramos, Claire W; Whitney, Margaret; Rice, Gary W; Cristol, Daniel A
2017-07-01
Exposure to mercury in humans, other mammals, and birds is primarily dietary, with mercury in the methylated form and bound to cysteine in the tissues of prey items. Yet dosing studies are generally carried out using methylmercury chloride. Here we tested whether the accumulation of total mercury in zebra finch blood, egg, muscle, liver, kidney or brain differed depending on whether dietary mercury was complexed with chloride or cysteine. We found no effect of form of mercury on tissue accumulation. Some previous studies have found lower accumulation of mercury in tissues of animals fed complexed mercury. Much remains to be understood about what happens to ingested mercury once it enters the intestines, but our results suggest that dietary studies using methylmercury chloride in birds will produce similar tissue accumulation levels to those using methylmercury cysteine.
Morgan, J N; Berry, M R; Graves, R L
1997-01-01
The effects of cooking practices commonly used by Native Americans on total mercury concentrations in fish were investigated. A preparation factor relating mercury concentrations in fish as prepared for consumption to mercury concentration data as measured in typical environmental monitoring programs was calculated. Preparation factors are needed to provide risk assessors with a more accurate estimate of the actual amount of mercury ingested through consumption of contaminated fish. Data on fish preparation and consumption practices of two communities of Chippewa residing on the shores of Lake Superior in northern Wisconsin were used to select practices for study. The most commonly consumed species, walleye and lake trout, were selected. Whitefish livers were also selected for study. Commonly used cooking techniques including panfrying, deep-frying, baking, boiling, and smoking were duplicated in the laboratory. Total mercury concentrations were determined in fish portions before and after cooking and in a portion representative of that analyzed in programs to assess water quality (skin-on fillets). Total mercury was determined by microwave digestion-cold vapor atomic absorption spectroscopy. Mercury concentrations (wet weight basis) in panfried, baked, and boiled walleye fillets and deep-fried and baked whitefish livers ranged from 1.1 to 1.5 times higher than in corresponding raw portions. In lake trout, mercury concentrations were 1.5 to 2.0 times higher in cooked portions than in the raw portion. However, total mercury levels were constant before and after cooking, indicating the concentration effect is caused by weight (moisture and fat) loss. The addition of lemon juice to potentially release mercury from its bound state and promote volatilization did not exert any measurable influence on mercury concentrations in cooked walleye. In some cases mercury concentrations were increased with increased cooking times due to further loss of moisture and fat. Preparation factors (defined as the ratio of mercury concentration in cooked fish to the mercury concentration in the environmental portion) ranged from 1.3 to 2.0. Results suggest that consideration be given to the use of preparation factors in risk assessments, exposure assessments, or issuance of fish advisories where mercury concentration in raw fish tissue are used in conjunction with cooked fish meal sizes.
SIX-YEAR TREND (1990-1995) OF WET MERCURY DEPOSITION IN THE UPPER MIDWEST, USA
Precipitation maxima occurences in the Upper Midwest in 1993 significantly affected total mercury concentrations and deposition as compared with 1990-92, 1994, and 1995. Methylmercury depositions strongly correlated with total mercury, major ions, and precepitation depth. Indepe...
Effective mercury(II) bioremoval from aqueous solution, and its electrochemical determination.
Balderas-Hernández, Patricia; Roa-Morales, Gabriela; Ramírez-Silva, María Teresa; Romero-Romo, Mario; Rodríguez-Sevilla, Erika; Esparza-Schulz, Juan Marcos; Juárez-Gómez, Jorge
2017-01-01
This work proposed mercury elimination using agricultural waste (Allium Cepa L.). The biomass removed 99.4% of mercury, following a pseudo-second order kinetics (r 2 = 0.9999). The Langmuir model was adequately fitted to the adsorption isotherm, thereby obtaining the maximum mercury adsorption capacity of 111.1 ± 0.3 mg g -1 . The biomass showed high density of strong mercury chelating groups, thus making it economically attractive. Also, the implementation of a mercury-selective electrode for continuous determination in real time is proposed; this electrode replaces techniques like atomic absorption spectroscopy, thus it can be applied to real time studies. This work therefore presents a new perspective for removing mercury(II) from contaminated water for environmental remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, Tomoko; Sakamoto, Mineshi; Kurosawa, Tomoko
2007-02-15
To investigate the relations among total mercury levels in hair, toenail, and urine, together with potential effects of methylmercury intake on renal tubular function, we determined their levels, and urinary N-acetyl-{beta}-d-glucosaminidase activity (NAG) and {alpha}{sub 1}-microglobulin (AMG) in 59 women free from occupational exposures, and estimated daily mercury intakes from fish and other seafood using a food frequency questionnaire. Mercury levels (mean+/-SD) in the women were 1.51+/-0.91{mu}g/g in hair, 0.59+/-0.32{mu}g/g in toenail, and 0.86+/-0.66{mu}g/g creatinine in urine; and, there were positive correlations among them (P<0.001). The daily mercury intake of 9.15+/-7.84{mu}g/day was significantly correlated with total mercury levels in hair,more » toenail, and urine (r=0.551, 0.537, and 0.604, P<0.001). Among the women, the NAG and AMG were positively correlated with both the daily mercury intake and mercury levels in hair, toenail, and urine (P<0.01); and, these relations were almost similar when using multiple regression analysis to adjust for possible confounders such as urinary cadmium (0.47+/-0.28{mu}g/g creatinine) and smoking status. In conclusion, mercury resulting from fish consumption can explain total mercury levels in hair, toenail, and urine to some degree (about 30%), partly through the degradation into the inorganic form, and it may confound the renal tubular effect of other nephrotoxic agents. Also, the following equation may be applicable to the population neither with dental amalgam fillings nor with occupational exposures: [hair mercury ({mu}g/g)]=2.44x[toenail mercury ({mu}g/g)].« less
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2010-02-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
Mercury emission and speciation of coal-fired power plants in China
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, L.; Li, G.; Wu, Y.; Hao, J.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.
2009-11-01
Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of selective catalyst reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.
Shanley, J.B.; Alisa, Mast M.; Campbell, D.H.; Aiken, G.R.; Krabbenhoft, D.P.; Hunt, R.J.; Walker, J.F.; Schuster, P.F.; Chalmers, A.; Aulenbach, Brent T.; Peters, N.E.; Marvin-DiPasquale, M.; Clow, D.W.; Shafer, M.M.
2008-01-01
The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1 ng L-1 and MeHg was less than 0.2 ng L-1. THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56) ng L-1 at Sleepers River, Vermont; 112 (0.75) ng L-1 at Rio Icacos, Puerto Rico; and 55 (0.80) ng L-1 at Panola Mt., Georgia. Filtered (<0.7 ??m) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5 ng L-1 at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling. ?? 2008 Elsevier Ltd. All rights reserved.
Transformation of mercury speciation through the SCR system in power plants.
Yang, Hong-min; Pan, Wei-ping
2007-01-01
Coal-fired utility boilers are now identified as the largest source of mercury in the United States. There is speculation that the installation of selective catalytic reduction (SCR) system for reduction of NOx can also prompt the oxidation and removal of mercury. In this paper, tests at six full-scale power plants with similar type of the SCR systems are conducted to investigate the effect of the SCR on the transformation of mercury speciation. The results show that the SCR system can achieve more than 70%-80% oxidation of elemental mercury and enhance the mercury removal ability in these units. The oxidation of elemental mercury in the SCR system strongly depends on the coal properties and the operation conditions of the SCR systems. The content of chloride in the coal is the key factor for the oxidization process and the maximum oxidation of elemental mercury is found when chloride content changes from 400 to 600 ppm. The sulfur content is no significant impact on oxidation of elemental mercury.
Matos, J; Lourenço, H M; Brito, P; Maulvault, A L; Martins, L L; Afonso, C
2015-11-01
This study aimed to identify the benefit and risk associated with raw and cooked blue shark consumption taking into account the bioaccessibility of Se, Hg and MeHg, by using in vitro digestion method. Selenium, Hg and MeHg levels were higher in cooked samples, particularly in grilled blue shark. Whereas Se bioaccessibility was above 83% in grilled samples, Hg and MeHg bioaccessibility was lower in grilled samples with values near 50%. In addition, all Se-Health Beneficial Values were negative and the molar MeHg:Se ratios were higher than one. The risk-benefit assessment yielded a maximum consumption of one yearly meal for raw or cooked blue shark, thus emphasizing the need to recommend the consumption of a wider variety of seafood species in a balanced and healthy diet. Copyright © 2015 Elsevier Inc. All rights reserved.
Report #2005-P-00003, February 3, 2005. Evidence indicates that EPA senior management instructed EPA staff to develop a Maximum Achievable Control Technology (MACT) standard for mercury that would result in national emissions of 34 tons annually.
Method and apparatus for monitoring mercury emissions
Durham, Michael D.; Schlager, Richard J.; Sappey, Andrew D.; Sagan, Francis J.; Marmaro, Roger W.; Wilson, Kevin G.
1997-01-01
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber.
Method and apparatus for monitoring mercury emissions
Durham, M.D.; Schlager, R.J.; Sappey, A.D.; Sagan, F.J.; Marmaro, R.W.; Wilson, K.G.
1997-10-21
A mercury monitoring device that continuously monitors the total mercury concentration in a gas. The device uses the same chamber for converting speciated mercury into elemental mercury and for measurement of the mercury in the chamber by radiation absorption techniques. The interior of the chamber is resistant to the absorption of speciated and elemental mercury at the operating temperature of the chamber. 15 figs.
Atmospheric mercury distribution in Northern Europe and in the Mediterranean region
NASA Astrophysics Data System (ADS)
Wängberg, I.; Munthe, J.; Pirrone, N.; Iverfeldt, Å.; Bahlman, E.; Costa, P.; Ebinghaus, R.; Feng, X.; Ferrara, R.; Gårdfeldt, K.; Kock, H.; Lanzillotta, E.; Mamane, Y.; Mas, F.; Melamed, E.; Osnat, Y.; Prestbo, E.; Sommar, J.; Schmolke, S.; Spain, G.; Sprovieri, F.; Tuncel, G.
Mercury species in air have been measured at five sites in Northwest Europe and at five coastal sites in the Mediterranean region during measurements at four seasons. Observed concentrations of total gaseous mercury (TGM), total particulate mercury (TPM) and reactive gaseous mercury (RGM) were generally slightly higher in the Mediterranean region than in Northwest Europe. Incoming clean Atlantic air seems to be enriched in TGM in comparison to air in Scandinavia. Trajectory analysis of events where high concentrations of TPM simultaneously were observed at sites in North Europe indicate source areas in Central Europe and provide evidence of transport of mercury on particles on a regional scale.
AN ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TESTING OF FOUR MERCURY EMISSION SAMPLING SYSTEMS
CEMs - Tekran Instrument Corp. Series 3300 and Thermo Electron's Mercury Freedom System Continuous Emission Monitors (CEMs) for mercury are designed to determine total and/or chemically speciated vapor-phase mercury in combustion emissions. Performance for mercury CEMs are cont...
[Fish and seafood as a source of human exposure to methylmercury].
Mania, Monika; Wojciechowska-Mazurek, Maria; Starska, Krystyna; Rebeniak, Małgorzata; Postupolski, Jacek
2012-01-01
Fish and seafood are recommended diet constituents providing high quality protein, vitamins, minerals and omega-3 fatty acids, mainly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, these foodstuffs can also be the major source ofmethylmercury intake in humans. In general, more than 90% of the mercury in fish is found as methylmercury, but contents of methylmercury can vary considerably between species. Predatory species that are at the top of the food chain and live a long time, may accumulate higher levels of methylmercury. This paper contains information about sources of human exposure to organic compounds of mercury, toxicity, metabolism and transformation of mercury in the environment. Assessment of methylmercury by international risk assessment bodies such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and U.S. National Research Council (NRC) were presented. Climate changes and their influence on the mercury cycle in the environment especially mercury methylation and concentrations of methylmercury in marine species were also presented. Consumer advice prepared by European Commission and Member States as regards consumption of predatory fishes such as swordfish, tuna, shark, marlin and pike, taking into account the most vulnerable groups of population e.g. women planning pregnancy, pregnant or breastfeeding women and children were presented. Mercury and methylmercury contamination of fishes and seafood on the basis of the literature references as well as intake of mercury with fish and fish products in Poland and other European country were discussed. The role of selenium as a factor which counteracts methylmercury toxicity and protects against some neurological effects of methylmercury exposure in humans, as well as information on potential etiological factors connected with autism disorder were also described. Attention has also been drawn to increasing number of notifications to Rapid Alert System for Food and Feed (RASFF) concerning the contamination of fish and fish products with total mercury. European and national regulations concerning maximum permissible levels of mercury in food were also presented. Possibility of selection of different fish and seafood species, taking into account low methylmercury contamination and high contents of omega-3 fatty acids e.g. sardine, mackerel, anchovy, salmon, periwinkle, have been discussed.
Mercury methylation at mercury mines in the Humboldt River Basin, Nevada, USA
Gray, J.E.; Crock, J.G.; Lasorsa, B.K.
2002-01-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River Basin. Mine-waste calcines contain total Hg concentrations as high as 14 000 ??g g-1. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170 ??g g-1, whereas stream sediments collected at a distance >5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations 8 km from the nearest mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.
Atta, Alhassan; Voegborlo, Ray Bright; Agorku, Eric Selorm
2012-05-01
Total mercury concentrations were determined in seven tissues of 38 fish samples comprising six species from the Kpong hydroelectric reservoir in Ghana by cold vapour atomic absorption spectrometry technique using an automatic mercury analyzer. Mercury concentration in all the tissues ranged from 0.005 to 0.022 μg/g wet weight. In general, the concentration of mercury in all the tissues were decreasing in the order; liver > muscle > intestine > stomach > gonad > gill > swim bladder. Mercury concentration was generally greater in the tissues of high-trophic-level fish such as Clarotes laticeps, Mormyrops anguilloides and Chrysichthys aurutus whereas low-trophic-level fish such as Oreochromis niloticus recorded low mercury concentration in their tissues. The results obtained for total mercury concentration in the muscle tissues analysed in this study are below the WHO/FAO threshold limit of 0.5 μg/g. This suggests that the exposure of the general public to Hg through fish consumption can be considered negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Songgeng Li; Shuang Deng; Andy Wu
Co-combustion of chicken litter with coal was performed in a laboratory-scale fluidized bed combustor to investigate the effect of chicken litter addition on the partitioning behavior of mercury. Gaseous total and elemental mercury concentrations in the flue gas were measured online, and ash was analyzed for particle-bound mercury along with other elemental and surface properties. The mercury mass balance was between 85 and 105%. The experimental results show that co-combustion of chicken litter decreases the amount of elemental and total mercury in the gas phase. Mercury content in fly ash increases with an increasing chicken litter share. 22 refs., 6more » figs., 5 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, Kent; Daniel, Anamary; Tachiev, Georgio
2013-07-01
In this case study, groundwater/surface water modeling was used to determine efficacy of stabilization in place with hydrologic isolation for remediation of mercury contaminated areas in the Upper East Fork Poplar Creek (UEFPC) Watershed in Oak Ridge, TN. The modeling simulates the potential for mercury in soil to contaminate groundwater above industrial use risk standards and to contribute to surface water contamination. The modeling approach is unique in that it couples watershed hydrology with the total mercury transport and provides a tool for analysis of changes in mercury load related to daily precipitation, evaporation, and runoff from storms. The modelmore » also allows for simulation of colloidal transport of total mercury in surface water. Previous models for the watershed only simulated average yearly conditions and dissolved concentrations that are not sufficient for predicting mercury flux under variable flow conditions that control colloidal transport of mercury in the watershed. The transport of mercury from groundwater to surface water from mercury sources identified from information in the Oak Ridge Environmental Information System was simulated using a watershed scale model calibrated to match observed daily creek flow, total suspended solids and mercury fluxes. Mercury sources at the former Building 81-10 area, where mercury was previously retorted, were modeled using a telescopic refined mesh with boundary conditions extracted from the watershed model. Modeling on a watershed scale indicated that only source excavation for soils/sediment in the vicinity of UEFPC had any effect on mercury flux in surface water. The simulations showed that colloidal transport contributed 85 percent of the total mercury flux leaving the UEFPC watershed under high flow conditions. Simulation of dissolved mercury transport from liquid elemental mercury and adsorbed sources in soil at former Building 81-10 indicated that dissolved concentrations are orders of magnitude below a target industrial groundwater concentration beneath the source and would not influence concentrations in surface water at Station 17. This analysis addressed only shallow concentrations in soil and the shallow groundwater flow path in soil and unconsolidated sediments to UEFPC. Other mercury sources may occur in bedrock and transport though bedrock to UEFPC may contribute to the mercury flux at Station 17. Generally mercury in the source areas adjacent to the stream and in sediment that is eroding can contribute to the flux of mercury in surface water. Because colloidally adsorbed mercury can be transported in surface water, actions that trap colloids and or hydrologically isolate surface water runoff from source areas would reduce the flux of mercury in surface water. Mercury in soil is highly adsorbed and transport in the groundwater system is very limited under porous media conditions. (authors)« less
Turnquist, Madeline A; Driscoll, Charles T; Schulz, Kimberly L; Schlaepfer, Martin A
2011-10-01
Mercury (Hg) deposited onto the landscape can be transformed into methylmercury (MeHg), a neurotoxin that bioaccumulates up the aquatic food chain. Here, we report on Hg concentrations in snapping turtles (Chelydra serpentina) across New York State, USA. The objectives of this study were to: (1) test which landscape, water, and biometric characteristics correlate with total Hg (THg) concentrations in snapping turtles; and (2) determine whether soft tissue THg concentrations correlate with scute (shell) concentrations. Forty-eight turtles were sampled non-lethally from ten lakes and wetlands across New York to observe patterns under a range of ecosystem variables and water chemistry conditions. THg concentrations ranged from 0.041 to 1.50 μg/g and 0.47 to 7.43 μg/g wet weight of muscle tissue and shell, respectively. The vast majority of mercury (~94%) was in the MeHg form. Sixty-one percent of turtle muscle samples exceeded U.S. Environmental Protection Agency (U.S. EPA) consumption advisory limit of 0.3 μg Hg/g for fish. Muscle THg concentrations were significantly correlated with sulfate in water and the maximum elevation of the watershed. Shell THg concentrations were significantly correlated with the acid neutralizing capacity (ANC) of water, the maximum elevation of the watershed, the percent open water in the watershed, the lake to watershed size, and various forms of atmospheric Hg deposition. Thus, our results demonstrate that THg concentrations in snapping turtles are spatially variable, frequently exceed advisory limits, and are significantly correlated with several landscape and water characteristics.
Distribution of total and methyl mercury in sediments along Steamboat Creek (Nevada, USA)
Stamenkovic, J.; Gustin, M.S.; Marvin-DiPasquale, M. C.; Thomas, B.A.; Agee, J.L.
2004-01-01
In the late 1800s, mills in the Washoe Lake area, Nevada, used elemental mercury to remove gold and silver from the ores of the Comstock deposit. Since that time, mercury contaminated waste has been distributed from Washoe Lake, down Steamboat Creek, and to the Truckee River. The creek has high mercury concentrations in both water and sediments, and continues to be a constant source of mercury to the Truckee River. The objective of this study was to determine concentrations of total and methyl mercury (MeHg) in surface sediments and characterize their spatial distribution in the Steamboat Creek watershed. Total mercury concentrations measured in channel and bank sediments did not decrease downstream, indicating that mercury contamination has been distributed along the creek's length. Total mercury concentrations in sediments (0.01-21.43 ??g/g) were one to two orders of magnitude higher than those in pristine systems. At 14 out of 17 sites, MeHg concentrations in streambank sediments were higher than the concentrations in the channel, suggesting that low banks with wet sediments might be important sites of mercury methylation in this system. Both pond/wetland and channel sites exhibited high potential for mercury methylation (6.4-30.0 ng g-1 day-1). Potential methylation rates were positively correlated with sulfate reduction rates, and decreased as a function of reduced sulfur and MeHg concentration in the sediments. Potential demethylation rate appeared not to be influenced by MeHg concentration, sulfur chemistry, DOC, sediment grain size or other parameters, and showed little variation across the sites (3.7-7.4 ng g-1 day-1). ?? 2003 Elsevier B.V. All rights reserved.
Kwaansa-Ansah, E E; Basu, N; Nriagu, J O
2010-11-01
Total mercury concentrations in human hair and urine samples were determined to ascertain the extent of environmental and occupational mercury exposure in Dunkwa-On-Offin, a small scale gold mining area of the central-west region of Ghana. In all ninety-four (94) hair and urine samples comprising of forty (40) small scale miners and fifty-four (54) farmers were collected and analyzed for their total mercury levels using the cold vapour atomic absorption spectrometry. The hair total mercury concentrations ranged from 0.63 to 7.19 ug/g with a mean of 2.35 ± 1.58 ug/g for the farmers and 0.57-6.07 ug/g with a mean of 2.14 ± 1.53 ug/g for the small scale gold miners. There was no significant correlation between the total mercury concentration and the average weekly fish diet. The total mercury concentrations in urine of the miners were higher than those of the farmers and ranged from 0.32 to 3.62 ug/L with a mean of 1.23 ± 0.86 ug/L. The urine concentrations of farmers ranged from 0.075 to 2.31 ug/L with a mean of 0.69 ± 0.39 ug/L. Although the results indicate elevated internal dose of mercury the current levels of exposures do not appear to pose a significant health threat to the people.
Total and Methyl Mercury in 1994-5 Lake Michigan Lake Trout and Forage Fish
Total and methyl mercury were analyzed in Lake Michigan fish collected in 1994 and 1995 as part of the Lake Michigan Mass Balance project (LMMB). One predator fish species and five forage fish species were analyzed to determine the bioaccumulative nature of mercury. These data ...
Mercury in fish and adverse reproductive outcomes: results from South Carolina
2014-01-01
Background Mercury is a metal with widespread distribution in aquatic ecosystems and significant neurodevelopmental toxicity in humans. Fish biomonitoring for total mercury has been conducted in South Carolina (SC) since 1976, and consumption advisories have been posted for many SC waterways. However, there is limited information on the potential reproductive impacts of mercury due to recreational or subsistence fish consumption. Methods To address this issue, geocoded residential locations for live births from the Vital Statistics Registry (1995–2005, N = 362,625) were linked with spatially interpolated total mercury concentrations in fish to estimate potential mercury exposure from consumption of locally caught fish. Generalized estimating equations were used to test the hypothesis that risk of low birth weight (LBW, <2,500 grams) or preterm birth (PTB, <37 weeks clinical gestation) was greater among women living in areas with elevated total mercury in fish, after adjustment for confounding. Separate analyses estimated term LBW and PTB risks using residential proximity to rivers with fish consumption advisories to characterize exposure. Results Term LBW was more likely among women residing in areas in the upper quartile of predicted total mercury in fish (odds ratio [OR] = 1.04; 95% confidence interval [CI]: 1.00-1.09) or within 8 kilometers of a river with a ‘do not eat’ fish advisory (1.05; 1.00-1.11) compared to the lowest quartile, or rivers without fish consumption restrictions, respectively. When stratified by race, risks for term LBW or PTB were 10-18% more likely among African-American (AA) mothers living in areas with the highest total fish mercury concentrations. Conclusions To our knowledge, this is the first study to examine the relationship between fish total mercury concentrations and adverse reproductive outcomes in a large population-based sample that included AA women. The ecologic nature of exposure assessment in this study precludes causal inference. However, the results suggest a need for more detailed investigations to characterize patterns of local fish consumption and potential dose–response relationships between mercury exposure and adverse reproductive outcomes, particularly among AA mothers. PMID:25127892
Distribution of mercury in the deep sea water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takizawa, Y.; Amano, Y.
1974-01-01
A study was performed to determine why deep sea fish and shellfish contain a large percentage of mercury. The material selected for study consisted of sediments, corals, seaweeds, and seawater. Total mercury was determined by ultraviolet atomic absorption, and methylmercury was analyzed via gas chromatography. The sediments of the Japan Sea bed contained low (0.001-0.011 ppm) amounts of total mercury. Methylmercury was not detected in the sediments. In corals, total mercury varied according to age; there was a tendency for the accumulation to be larger in the modern living coral than in the old corals. Mercury concentrations in seaweeds variedmore » from none to 0.032 ppm. Methylmercury was not detected in seaweeds. The concentrations detected in this study cannot explain the high levels found in fish and shellfish. The authors speculate that a food chain transfer is operating, its structure being phytoplankton-based. 3 tables.« less
Wiener, J.G.; Shields, P.J.
2000-01-01
We review the transport, fate, and bioavailability of mercury in the Sudbury River, topics addressed in the following five papers. Mercury entered the river from an industrial complex (site) that operated from 1917 to 1978. Rates of mercury accumulation in sediment cores from two reservoirs just downstream from the site decreased soon after industrial operations ended and have decreased further since capping of contaminated soils at the site in 1991. The reservoirs contained the most contaminated sediments (some exceeding 50 mu g Hg.g dry weight(-1)) and were depositional sinks for total mercury. Methyl mercury concentrations in biota did not parallel concentrations of total mercury in the sediments to which organisms were exposed, experimentally or as residents. Contaminated wetlands within the floodplain about 25 km downstream from the site produced and exported methyl mercury from inorganic mercury that had originated from the site. Natural burial processes have gradually decreased the quantity of sedimentary mercury available for methylation within the reservoirs, whereas mercury in the lesser contaminated wetlands farther downstream has remained more available for transport, methylation, and entry into food webs.
Toxic metals in imported fruits and vegetables marketed in Kuwait
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husain, A.; Baroon, Z.; Al-Khalafawi, M.
1995-12-31
The concentration of lead, cadmium, and mercury in 134 samples of imported fruits and vegetables marketed in Kuwait were determined using an atomic absorption spectrophotometer with a graphite furnace and the cold vapor technique. Results obtained showed that the concentration of these metal ions in most cases did not exceed the maximum permissible concentration of metals in fresh fruits and vegetables as restricted by some countries. Only a few samples of fruits and vegetables contained levels of mercury, cadmium, and lead which exceeded these maximum permissible levels.
Simon, N.S.; Spencer, R.; Cox, T.
1999-01-01
Periphyton samples from Water Conservation Areas, Big Cypress National Preserve, and Everglades National Park in south Florida were analyzed for concentrations of total mercury, methylmercury, nitrogen, phosphorus, organic carbon, and inorganic carbon. Concentrations of total mercury in periphyton decrease slightly along a gradient from north-to-south. Both total mercury and methylmercury are positively correlated with organic carbon, nitrogen and phosphorus in periphyton. In horizontal sections of periphyton mats, total mercury concentrations tend to be largest at the tops and bottoms of the mats. Methylmercury concentrations tend to be the largest near the bottom of mats. These localized elevated concentrations of methylmercury suggest that there are "hot spots" of methylmercury in periphyton. ?? 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Characterizing dry deposition of mercury in urban runoff
Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.
2007-01-01
Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.
Huge, Dane H.; Schofield, Pamela J.; Jacoby, Charles A.; Frazer, Thomas K.
2014-01-01
Strategies to control invasive lionfish in the western Atlantic and Caribbean are likely to include harvest and consumption. Until this report, total mercury concentrations had been documented only for lionfish from Jamaica, and changes in concentrations with increasing fish size had not been evaluated. In the Florida Keys, total mercury concentrations in dorsal muscle tissue from 107 lionfish ranged from 0.03 to 0.48 ppm, with all concentrations being less than the regulatory threshold for limited consumption. Mercury concentrations did not vary consistently with standard lengths or wet weights of lionfish. In 2010, lionfish from the upper Keys had mean concentrations that were 0.03–0.04 ppm higher than lionfish from the middle Keys, but mean concentrations did not differ consistently among years and locations. Overall, total mercury concentrations in lionfish were lower than those in several predatory fishes that support commercial and recreational fisheries in Florida.
117.6-kilobit telemetry from Mercury in-flight system analysis
NASA Technical Reports Server (NTRS)
Evanchuk, V. L.
1974-01-01
This paper discusses very specifically the mode of the Mariner Venus/Mercury 1973 (MVM'73) telecommunications system in the interplexed dual channel 117.6 kilobits per second (kbps) and 2.45 kbps telemetry. This mode, originally designed for only Venus encounter, was also used at Mercury despite significantly less performance margin. Detailed analysis and careful measurement of system performance before and during flight operations allowed critical operational decisions, which made maximum use of the system capabilities.
A Mercury Transport and Fate Model for Mass Budget Assessment of Mercury Cycling in Lake Michigan
A mercury mass balance model was developed to describe and evaluate the fate, transport, and biogeochemical transformations of mercury in Lake Michigan. Coupling with total suspendable solids (TSS) and dissolved organic carbon (DOC), the mercury transport and fate model simulates...
Burguera, J L; Quintana, I A; Salager, J L; Burguera, M; Rondón, C; Carrero, P; Anton de Salager, R; Petit de Peña, Y
1999-04-01
An on-line time based injection system used in conjunction with cold vapor generation atomic absorption spectrometry and microwave-aided oxidation with potassium persulfate has been developed for the determination of the different mercury species in fish-eggs oil samples. A three-phase surfactant-oil-water emulsion produced an advantageous flow when a peristaltic pump was used to introduce the highly viscous sample into the system. The optimum proportion of the oil-water mixture ratio was 2:3 v/v with a Tween 20 surfactant concentration in the emulsion of 0.008% v/v. Inorganic mercury was determined after reduction with sodium borohydride while total mercury was determined after an oxidation step with persulfate prior to the reduction step to elemental mercury with the same reducing agent. The difference between total and inorganic mercury determined the organomercury content in samples. A linear calibration graph was obtained in the range 0.1-20 micrograms l-1 of Hg2+ by injecting 0.7 ml of samples. The detection limits based on 3 sigma of the blank signals were 0.11 and 0.12 microgram l-1 for total and inorganic mercury, respectively. The relative standard deviation of ten independent measurements were 2.8 and 2.2% for 10 micrograms l-1 and 8.8 and 9.0% for 0.1 microgram l-1 amounts of total and inorganic mercury, respectively. The recoveries of 0.3, 0.6 and 8 micrograms l-1 of inorganic and organic mercury added to fish-eggs oil samples ranged from 93.0 to 94.8% and from 100 to 106%, respectively. Good agreement with those values obtained for total mercury content in real samples by electrothermal atomic absorption spectrometry was also obtained, differences between mean values were < 7%. With the proposed procedure, 22 proteropterous catfish-eggs oil samples from the northwestern coast of Venezuela were measured; while the organic mercury lay in the range 2.0 and 3.3 micrograms l-1, inorganic mercury was not detected.
Formation of mercury sulfide from Hg(II)−thiolate complexes in natural organic matter
Alain Manceau,; Cyprien Lemouchi,; Mironel Enescu,; Anne-Claire Gaillot,; Martine Lanson,; Valerie Magnin,; Pieter Glatzel,; Poulin, Brett; Ryan, Joseph N.; Aiken, George R.; Isabelle Gautier-Lunea,; Kathryn L. Nagy,
2015-01-01
Methylmercury is the environmental form of neurotoxic mercury that is biomagnified in the food chain. Methylation rates are reduced when the metal is sequestered in crystalline mercury sulfides or bound to thiol groups in macromolecular natural organic matter. Mercury sulfide minerals are known to nucleate in anoxic zones, by reaction of the thiol-bound mercury with biogenic sulfide, but not in oxic environments. We present experimental evidence that mercury sulfide forms from thiol-bound mercury alone in aqueous dark systems in contact with air. The maximum amount of nanoparticulate mercury sulfide relative to thiol-bound mercury obtained by reacting dissolved mercury and soil organic matter matches that detected in the organic horizon of a contaminated soil situated downstream from Oak Ridge, TN, in the United States. The nearly identical ratios of the two forms of mercury in field and experimental systems suggest a common reaction mechanism for nucleating the mineral. We identified a chemical reaction mechanism that is thermodynamically favorable in which thiol-bound mercury polymerizes to mercury–sulfur clusters. The clusters form by elimination of sulfur from the thiol complexes via breaking of mercury–sulfur bonds as in an alkylation reaction. Addition of sulfide is not required. This nucleation mechanism provides one explanation for how mercury may be immobilized, and eventually sequestered, in oxygenated surface environments.
Mercury from chlor-alkali plants: measured concentrations in food product sugar.
Dufault, Renee; LeBlanc, Blaise; Schnoll, Roseanne; Cornett, Charles; Schweitzer, Laura; Wallinga, David; Hightower, Jane; Patrick, Lyn; Lukiw, Walter J
2009-01-26
Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations.
A 270-year Ice Core Record of Atmospheric Mercury Deposition to Western North America
NASA Astrophysics Data System (ADS)
Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; DeWild, J. F.; Susong, D. D.; Green, J. R.
2001-05-01
The Upper Fremont Glacier (UFG), a mid-latitude glacier in the Wind River Range, Wyoming, U.S.A., contains a record of atmospheric mercury deposition. Although some polar ice-core studies have provided a limited record of past mercury deposition, polar cores are, at best, proxy indicators of historic mercury deposition in the mid-latitudes. Two ice cores removed from the UFG in 1991 and 1998 (totaling 160 meters in length) provided a chronology and paleoenvironmental framework. This aids in the interpretation of the mercury deposition record. For the first time reported from a mid-latitude ice core, using low-level procedures, 97 ice core samples were analyzed to reconstruct a 270-year atmospheric mercury deposition record based in the western United States. Trends in mercury concentration from the UFG record major releases to the atmosphere of both natural and anthropogenic mercury from regional and global sources. We find that mercury concentrations are significantly, but for relatively short time intervals, elevated during periods corresponding to volcanic eruptions with global impact. This indicates that these natural events "punctuate" the record. Anthropogenic activities such as industrialization (global scale), gold mining and war-time manufacturing (regional scale), indicate that chronic levels of elevated mercury emissions have a greater influence on the historical atmospheric deposition record from the UFG. In terms of total mercury deposition recorded by the UFG during approximately the past 270 years: anthropogenic inputs contributed 52 percent; volcanic events contributed 6 percent; and pre-industrialization or background accounted for 42 percent of the total input. More significantly, during the last 100 years, anthropogenic sources contributed 70 percent of the total mercury input. A declining trend in mercury concentrations is obvious during the past 20 years. Declining mercury concentrations in the upper section of the ice core are corroborated by recent declining trends observed in sediment cores. This is also verified by similar concentrations in UFG snow samples collected in 1999. This decline may be in response to the United States Clean Air Act of 1970.
Mercury in Precipitation in Indiana, January 2004-December 2005
Risch, Martin R.; Fowler, Kathleen K.
2008-01-01
Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2004 and 2005 was in the top 25 percent of the NADP-MDN stations in eastern North America. Mercury concentrations and deposition varied at the five monitoring stations during 2004-2005. Mercury concentrations in wet-deposition samples ranged from 1.2 to 116.6 ng/L and weekly mercury deposition ranged from 0.002 to 1.74 ug/m2. Data from weekly samples exhibited seasonal patterns. During April through September, total mercury concentrations and deposition were higher than the median for all samples. Annual precipitation at four of the five monitoring stations was within 10 percent of normal both years, with the exception of Indiana Dunes, where precipitation was 23 percent below normal in 2005. Episodes of high mercury deposition, which were the top 10 percent of weekly mercury deposition at the five monitoring stations, contributed 39 percent of all mercury deposition during 2004-2005. Mercury deposition more than 1.04 ug/m2 (5 times the mean weekly deposition) was recorded for 12 samples. These episodes of highest mercury deposition were recorded at all five monitoring stations, but the most (7 of 12) were at Clifty Falls and contributed 34.4 percent of the total deposition at that station during 2004-2005. Weekly samples with high mercury deposition may help to explain the differences in annual mercury deposition among the five monitoring stations in Indiana. A statistical evaluation of the monitoring data for 2001-2005 indicated several statistically significant temporal trends. A statewide (5-station) decrease (p = 0.007) in mercury deposition and a statewide decrease (p = 0.059) in mercury concentration were shown. Decreases in mercury deposition (p = 0.061 and p = 0.083) were observed at Roush Lake and Bloomington. A statistically significant trend was not observed for precipitation at the five monitoring stations during this 5-year period. A potential explanation for part of the statewide decrease in mercury concentration and mercury deposition was a 2
Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing
2013-09-01
The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent seas. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and sea-air transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the sea area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the sea surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the sea surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the air annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.
Global mercury emissions from combustion in light of international fuel trading.
Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu
2014-01-01
The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.
40 CFR 421.144 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 19.370 Mercury 4.687 1.875 Total suspended solids 468.700 375.000 pH (1) (1) 1 Within the range of 7... Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH... Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH (1) (1) 1 Within the...
Agorku, Eric Selorm; Kwaansa-Ansah, Edward Ebow; Voegborlo, Ray Bright; Amegbletor, Pamela; Opoku, Francis
2016-01-01
In this study, sixty-two (62) skin-lightening creams and soaps were analysed for total mercury and hydroquinone levels. Total mercury was determined by the Cold Vapour Atomic Absorption Spectrophotometry using an automatic mercury analyser and hydroquinone by High Performance Liquid Chromatography. The mean concentration of total mercury in skin toning creams and cosmetic soaps were 0.098 ± 0.082 and 0.152 ± 0.126 μg/g, respectively. The mean concentration of hydroquinone was 0.243 ± 0.385 and 0.035 ± 0.021 % in skin toning creams and cosmetic soaps, respectively. All the creams and soaps analysed had mercury and hydroquinone levels below the US Food and Drug Administration's acceptable limit of 1 μg/g and 2 %, respectively. The low levels of mercury and hydroquinone in the creams and soaps analysed in this study therefore do not pose any potential risk to consumers who are mostly women in Ghana.
Woodruff, Laurel G.; Cannon, William F.; Knightes, Christopher D.; Chapelle, Francis H.; Bradley, Paul M.; Burns, Douglas A.; Brigham, Mark E.; Lowery, Mark A.
2010-01-01
Mercury is an element of on-going concern for human and aquatic health. Mercury sequestered in upland and wetland soils represents a source that may contribute to mercury contamination in sensitive ecosystems. An improved understanding of mercury cycling in stream ecosystems requires identification and quantification of mercury speciation and transport dynamics in upland and wetland soils within a watershed. This report presents data for soils collected in 2008 from two small watersheds in New York and South Carolina. In New York, 163 samples were taken from multiple depths or soil horizons at 70 separate locations near Fishing Brook, located in Hamilton County. At McTier Creek, in Aiken County, South Carolina, 81 samples from various soil horizons or soil depths were collected from 24 locations. Sample locations within each watershed were selected to characterize soil geochemistry in distinct land-cover compartments. Soils were analyzed for total mercury, selenium, total and carbonate carbon, and 42 other elements. A subset of the samples was also analyzed for methylmercury.
Temporal trends in gaseous mercury evasion from the Mediterranean seawaters.
Ferrara, R; Mazzolai, B; Lanzillotta, E; Nucaro, E; Pirrone, N
2000-10-02
Mercury evasion from seawaters is considered to be one of the main natural sources of mercury released to the atmosphere. The temporal evolution of this mechanism is related to biotic and abiotic processes that produce mercury in its elemental form and as DGM. The efficiency of these processes depends upon the intensity of the solar radiation, the ambient temperature of the air parcel above the seawater, and the water temperature. In the Mediterranean region, the magnitude of these mechanisms are particularly significant, due to favorable climate conditions and to the presence of large cinnabar deposits that cross the whole region; all these synergic factors yield significant evasional fluxes of mercury from the surface water during most of the annual period. In this work, mercury fluxes were measured by using a floating flux chamber connected to an atomic absorption analyzer. Photosynthetic active radiation (PAR) and UV components of the solar radiation were measured using the same system adopted in the EC 'ELDONet project'. The measurements of the mercury evasional fluxes were carried out at three sites of the northern Tyrrhenian Sea during 1998. Two sites were located at unpolluted and polluted coastal areas, and the third was an offshore site. The evasional flux showed a typical daily trend, highest at midday when the ambient temperature and solar radiation were at the maximum, and lowest, near to zero, during the night. Besides the day-night behavior, a seasonal trend was also observed, with minimum values during the winter period (0.7-2.0 ng/m2 h) and maximum values during the summer (10-13 ng/m2 h).
Small passenger car transmission test: Mercury Lynx ATX transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1981-01-01
The testing of a Mercury Lynx automatic transmission is reported. The transmission was tested in accordance with a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these conditions, the transmission attained maximum efficiencies in the mid-ninety percent range both for drive performance test and coast performance tests. The torque, speed, and efficiency curves are presented, which provide the complete performance characteristics for the Mercury Lynx automatic transmission.
Maramba, Nelia P C; Reyes, Jose Paciano; Francisco-Rivera, Ana Trinidad; Panganiban, Lynn Crisanta R; Dioquino, Carissa; Dando, Nerissa; Timbang, Rene; Akagi, Hirokatsu; Castillo, Ma Teresa; Quitoriano, Carmela; Afuang, Maredith; Matsuyama, Akito; Eguchi, Tomomi; Fuchigami, Youko
2006-10-01
Abandoned mines are an important global concern and continue to pose real or potential threats to human safety and health including environmental damage/s. Very few countries had government mine regulation and reclamation policies until the latter part of the century where legal, financial and technical procedures were required for existing mining operations. Major reasons for mine closure may be mainly due to poor economies of the commodity making mining unprofitable, technical difficulties and national security. If the mine is abandoned, more often than not it is the government that shoulders the burden of clean-up, monitoring and remediation. The topic of abandoned mines is complex because of the associated financial and legal liability implications. Abandoned mercury mines have been identified as one of the major concerns because of their significant long-term environmental problems. Primary mercury production is still ongoing in Spain, Kyrgzystan, China, Algeria, Russia and Slovakia while world production declined substantially in the late 1980s. In the Philippines, the mercury mine located southeast of Manila was in operation from 1955 to 1976, before ceasing operation because of the decline in world market price for the commodity. During this time, annual production of mercury was estimated to be about 140,000 kg of mercury yearly. Approximately 2,000,000 t of mine-waste calcines (retorted ore) were produced during mining and roughly 1,000,000 t of these calcines were dumped into nearby Honda Bay to construct a jetty to facilitate mine operations where about 2000 people reside in the nearby three barangays. In October, 1994 the Department of Health received a request from the Provincial Health Office for technical assistance relative to the investigation of increasing complaints of unusual symptoms (e.g. miscarriages, tooth loss, muscle weakness, paralysis, anemia, tremors, etc.) among residents of three barangays. Initial health reports revealed significant elevation of blood mercury levels exceeding the then recommended exposure level of 20ppb in 12 out of the 43 (27.9%) residents examined. The majority of the volunteers were former mine workers. In this study the abnormal findings included gingivitis, mercury lines, gum bleeding and pterydium. The most common neurologic complaints were numbness, weakness, tremors and incoordination. Anemia and elevated liver function tests were also seen in a majority of those examined. The assessment also revealed a probable association between blood mercury level and eosinophilia. The same association was also seen between high mercury levels and the presence of tremors and working in the mercury mine. To date, there are very limited environmental and health studies on the impact of both total and methylmercury that have been undertaken in the Philippines. Thus, this area of study was selected primarily because of its importance as an emerging issue in the country, especially regarding the combined effects of total and methylmercury low-dose and continuous uptake from environmental sources. At present the effects of total mercury exposure combined with MeHg consumption remain an important issue, especially those of low-dose and continuous uptake. Results of the study showed that four (4) species of fish, namely ibis, tabas, lapu-lapu and torsillo, had exceeded the recommended total mercury and methylmercury levels in fish (NV>0.5 microg/gf.w., NV>0.3 microg/gf.w., respectively). Saging and kanuping also exceeded the permissible levels for methylmercury. Total and methylmercury in canned fish, and total mercury in rice, ambient air and drinking water were within the recommended levels, however, additional mercury load from these sources may contribute to the over-all body burden of mercury among residents in the area. Surface water quality at the mining area, Honda Bay and during some monitoring periods at Palawan Bay exceeded total mercury standards (NV>0.002 ng/mL). Soil samples in two sites, namely Tagburos and Honda Bay, exceeded the EPA Region 9 Primary Remediation Goal recommended values for total mercury for residential purposes (NV>23 mg/kg). The hand to mouth activity among infants and children is another significant route for mercury exposure. Statistically significant results were obtained for infants when comparing the results after one year of monitoring for methylmercury levels in hair for both exposed and control sub-groups. Likewise, comparing the initial and final hair methylmercury levels among pregnant women/mothers in the exposed group showed statistically significant (p<0.05) results. Comparing the exposed and control sub-groups' mercury hair levels per sub-group showed statistically significant results among the following: (a) initial and final total mercury hair levels among children, (b) initial and final methylmercury hair levels among children, (c) final total mercury hair levels among pregnant women, (d) initial and final total mercury hair levels among mothers, and (e) initial and final methyl hair levels among mothers.
Speciated mercury at marine, coastal, and inland sites in New England - Part 1: Temporal variability
NASA Astrophysics Data System (ADS)
Mao, H.; Talbot, R.
2011-12-01
A comprehensive analysis was conducted using long-term continuous measurements of gaseous elemental mercury (Hgo), reactive mercury (RGM), and particulate phase mercury (HgP) at coastal (Thompson Farm, denoted as TF), marine (Appledore Island, denoted as AI), and elevated inland (Pac Monadnock, denoted as PM) sites from the AIRMAP Observatories. Decreasing trends in background Hgo were identified in the 7- and 5-yr records at TF and PM with decline rates of 3.3 parts per quadrillion by volume (ppqv) yr-1 and 6.3 ppqv yr-1, respectively. Common characteristics at these sites were the reproducible annual cycle of Hgo with its maximum in winter-spring and minimum in fall as well as a decline/increase trend in the warm/cool season. The coastal site TF differed from the other two sites with its exceptionally low levels (as low as below 50 ppqv) in the nocturnal inversion layer probably due to dissolution in dew water. Year-to-year variability was observed in the warm season decline in Hgo at TF varying from a minimum total seasonal loss of 20 ppqv in 2010 to a maximum of 92 ppqv in 2005, whereas variability remained small at AI and PM. Measurements of Hgo at PM, an elevated inland rural site, exhibited the smallest diurnal to annual variability among the three environments, where peak levels rarely exceeded 250 ppqv and the minimum was typically 100 ppqv. It should be noted that summertime diurnal patterns at TF and AI are opposite in phase indicating strong sink(s) for Hgo during the day in the marine boundary layer, which is consistent with the hypothesis of Hgo oxidation by halogen radicals there. Mixing ratios of RGM in the coastal and marine boundary layers reached annual maximum in spring and minimum in fall, whereas at PM levels were generally below the limit of detection (LOD) except in spring. RGM levels at AI were higher than at TF and PM indicating a stronger source strength(s) in the marine environment. Mixing ratios of HgP at AI and TF were close in magnitude to RGM levels and were mostly below 1 ppqv. Diurnal variation in HgP was barely discernible at TF and AI in spring and summer with higher levels during the day and smaller but above the LOD at night.
Mol, J H; Ramlal, J S; Lietar, C; Verloo, M
2001-06-01
The extent of mercury contamination in Surinamese food fishes due to small-scale gold mining was investigated by determination of the total mercury concentration in 318 freshwater fishes, 109 estuarine fishes, and 110 fishes from the Atlantic Ocean. High background levels were found in the piranha Serrasalmus rhombeus (0.35 microg Hg x g(-1) muscle tissue, wet mass basis) and the peacock cichlid Cichla ocellaris (0.39 microg x g(-1)) from the Central Suriname Nature Reserve. Average mercury levels in freshwater fishes were higher in piscivorous species than in nonpiscivorous species, both in potentially contaminated water bodies (0.71 and 0.19 microg x g(-1), respectively) and in the control site (0.25 and 0.04 microg x g(-1), respectively). Mercury concentrations in piscivorous freshwater fishes were significantly higher in rivers potentially affected by gold mining than in the control site. In 57% of 269 piscivorous freshwater fishes from potentially contaminated sites, mercury levels exceeded the maximum permissible concentration of 0.5 microg Hg x g(-1). The highest mercury concentrations (3.13 and 4.26 microg x g(-1)) were found in two piranhas S. rhombeus from the hydroelectric reservoir Lake Brokopondo. The high mercury levels in fishes from Lake Brokopondo were to some extent related to gold mining because fishes collected at eastern sites (i.e., close to the gold fields) showed significantly higher mercury concentrations than fishes from western localities. In the estuaries, mercury levels in ariid catfish (0.22 microg x g(-1)) and croakers (0.04-0.33 microg x g(-1)) were distinctly lower than those in piscivorous fishes from contaminated freshwater sites. In the isolated Bigi Pan Lagoon, the piscivores snook Centropomus undecimalis (0.04 microg x g(-1)) and tarpon Megalops atlanticus (0.03 microg x g(-1)) showed low mercury levels. Mercury levels were significantly higher in marine fishes than in estuarine fishes, even with the Bigi Pan fishes excluded. High mercury concentrations were found in the shark Mustelus higmani (0.71 microg x g(-1)), the crevalle jack Caranx hippos (1.17 microg x g(-1)), and the barracuda Sphyraena guachancho (0.39 microg x g(-1)), but also in nonpiscivorous species such as Calamus bajonado (0.54 microg x g(-1)), Haemulon plumieri (0.47 microg x g(-1)), and Isopisthus parvipinnis (0.48 microg x g(-1)). Mercury levels were positively correlated with the length of the fish in populations of the freshwater piscivores S. rhombeus, Hoplias malabaricus, and Plagioscion squamosissimus, in estuarine species (Arius couma, Cynoscion virescens, and Macrodon ancylodon), and in S. guachancho from the Atlantic Ocean. Copyright 2001 Academic Press.
ERIC Educational Resources Information Center
Chase, D. L.; And Others
Total mercury in ambient air can be collected in iodine monochloride, but the subsequent analysis is relatively complex and tedious, and contamination from reagents and containers is a problem. A sliver wool collector, preceded by a catalytic pyrolysis furnace, gives good recovery of mercury and simplifies the analytical step. An instrumental…
The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...
Wu, Chengli; Cao, Yan; Dong, Zhongbing; Cheng, Chinmin; Li, Hanxu; Pan, Weiping
2010-01-01
Air pollution control devices (APCDs) are installed at coal-fired power plants for air pollutant regulation. Selective catalytic reduction (SCR) and wet flue gas desulfurization (FGD) systems have the co-benefits of air pollutant and mercury removal. Configuration and operational conditions of APCDs and mercury speciation affect mercury removal efficiently at coal-fired utilities. The Ontario Hydro Method (OHM) recommended by the U.S. Environmental Protection Agency (EPA) was used to determine mercury speciation simultaneously at five sampling locations through SCR-ESP-FGD at a 190 MW unit. Chlorine in coal had been suggested as a factor affecting the mercury speciation in flue gas; and low-chlorine coal was purported to produce less oxidized mercury (Hg2+) and more elemental mercury (Hg0) at the SCR inlet compared to higher chlorine coal. SCR could oxidize elemental mercury into oxidized mercury when SCR was in service, and oxidation efficiency reached 71.0%. Therefore, oxidized mercury removal efficiency was enhanced through a wet FGD system. In the non-ozone season, about 89.5%-96.8% of oxidized mercury was controlled, but only 54.9%-68.8% of the total mercury was captured through wet FGD. Oxidized mercury removal efficiency was 95.9%-98.0%, and there was a big difference in the total mercury removal efficiencies from 78.0% to 90.2% in the ozone season. Mercury mass balance was evaluated to validate reliability of OHM testing data, and the ratio of mercury input in the coal to mercury output at the stack was from 0.84 to 1.08.
Mahbub, Khandaker Rayhan; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu
2017-01-01
A mercury resistant bacterial strain SE2 was isolated from contaminated soil. The 16s rRNA gene sequencing confirms the strain as Sphingopyxis belongs to the Sphingomonadaceae family of the α-Proteobacteria group. The isolate showed high resistance to mercury with estimated concentrations of Hg that caused 50% reduction in growth (EC 50 ) of 5.97 and 6.22mg/L and minimum inhibitory concentrations (MICs) of 32.19 and 34.95mg/L in minimal and rich media, respectively. The qualitative detection of volatilized mercury and the presence of mercuric reductase enzyme proved that the strain SE2 can potentially remediate mercury. ICP-QQQ-MS analysis of the remaining mercury in experimental broths indicated that a maximum of 44% mercury was volatilized within 6hr by live SE2 culture. Furthermore a small quantity (23%) of mercury was accumulated in live cell pellets. While no volatilization was caused by dead cells, sorption of mercury was confirmed. The mercuric reductase gene merA was amplified and sequenced. Homology was observed among the amino acid sequences of mercuric reductase enzyme of different organisms from α-Proteobacteria and ascomycota groups. Copyright © 2016. Published by Elsevier B.V.
Mercury in fish from the Madeira River and health risk to Amazonian and riverine populations.
Soares, José Maria; Gomes, José M; Anjos, Marcelo R; Silveira, Josianne N; Custódio, Flavia B; Gloria, M Beatriz A
2018-07-01
The objective of this study was to quantify total mercury in highly popular Amazonian fish pacu, curimatã, jaraqui, and sardinha from the Madeira River and to estimate the exposure to methylmercury from fish consumption. The samples were obtained from two locations - Puruzinho Igarapé and Santa Rosa - near Humaitá, Amazonia, Brazil in two seasons of 2015 (high and low waters). The fish were identified, weighed and measured, and lipids were quantified. Total mercury was determined by gold amalgamation-atomic absorption spectrometry. Mean levels were used to calculate exposure of Amazonian and riverine populations. There was significant correlation (p < 0.05) between length × weight for all fish; length × lipid and weight × lipid were significant only for pacu. Total mercury levels varied along muscle tissue for the fish, except for sardinha; therefore muscle from the dorsal area along the fish were sampled, homogenized and used for analysis. The levels of total mercury varied from 0.01 to 0.46 mg/kg, with higher median levels in sardinha (0.24 mg/kg), followed by curimatã (0.16 mg/kg), jaraqui (0.13 mg/kg) and pacu (0.04 mg/kg), corresponding with the respective feeding habits along the trophic chain. Total mercury levels were not affected by the location of fish capture and by high and low waters seasons. Total mercury correlated significantly with length and weight for jaraqui and with length for sardinha (negative correlation). Total mercury levels in fish complied with legislation; however, exposures to methylmercury from fish consumption overpassed the safe intake reference dose for sardinha for Amazonians; however, for the riverine communities, all of the fish would cause potential health risk, mainly for children and women of childbearing age. Copyright © 2018 Elsevier Ltd. All rights reserved.
MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON
The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...
Groth, Edward
2010-04-01
Fish and shellfish have important nutritional benefits, and US per capita seafood consumption has increased substantially since 2002. Recent research has reinforced concerns about adverse effects of methylmercury exposure, suggesting that methylmercury doses associated with typical US rates of fish consumption may pose measurable risks, with no threshold. These converging trends create a need to improve risk communication about fish consumption and mercury. The analysis performed here identifies the relative importance of different fish and shellfish as sources of mercury in the US seafood supply and proposes improved consumer advice, so that the public can benefit from fish consumption while minimizing mercury exposure. I have quantified contributions to total mercury in the US seafood supply by 51 different varieties of fish and shellfish, then ranked and sorted the 51 varieties in terms of relative impact. Except for swordfish, most fish with the highest mercury levels are relatively minor contributors to total inputs. Tuna (canned light, canned albacore and fresh/frozen varieties) accounts for 37.4 percent of total mercury inputs, while two-thirds of the seafood supply and nine of the 11 most heavily consumed fish and shellfish are low or very low in mercury. Substantial improvement in risk communication about mercury in fish and seafood is needed; in particular, several population subsets need better guidance to base their seafood choices more explicitly on mercury content. I have sorted the 51 seafood varieties into six categories based on mercury levels, as a framework for improving risk communication in this regard. (c) 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Shah, H.; Bannochie, C. J.
Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less
David, N.; McKee, L.J.; Black, F.J.; Flegal, A.R.; Conaway, C.H.; Schoellhamer, D.H.; Ganju, N.K.
2009-01-01
In order to estimate total mercury (HgT) loads entering San Francisco Bay, USA, via the Sacramento-San Joaquin River system, unfiltered water samples were collected between January 2002 and January 2006 during high flow events and analyzed for HgT. Unfiltered HgT concentrations ranged from 3.2 to 75 ng/L and showed a strong correlation (r2 = 0.8, p < 0.001, n = 78) to suspended sediment concentrations (SSC). During infrequent large floods, HgT concentrations relative to SSC were approximately twice as high as observed during smaller floods. This difference indicates the transport of more Hg-contaminated particles during high discharge events. Daily HgT loads in the Sacramento-San Joaquin River at Mallard Island ranged from below the limit of detection to 35 kg. Annual HgT loads varied from 61 ?? 22 kg (n = 5) in water year (WY) 2002 to 470 ?? 170 kg (n = 25) in WY 2006. The data collected will assist in understanding the long-term recovery of San Francisco Bay from Hg contamination and in implementing the Hg total maximum daily load, the long-term cleanup plan for Hg in the Bay. ?? 2009 SETAC.
Elevated Mercury Concentrations in Humans of Madre de Dios, Peru
Ashe, Katy
2012-01-01
The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population. PMID:22438911
Elevated mercury concentrations in humans of Madre de Dios, Peru.
Ashe, Katy
2012-01-01
The enormous increase in practically unregulated mining in Madre de Dios Peru is leading to massive release of liquid elemental mercury to the environment. Rapidly increasing global prices for gold are causing a massive upsurge in artisanal mining in the Peruvian Amazon, considered to be one of the most biodiverse places on the planet. This study identifies the current levels of mercury in the human population, through identifying levels of total mercury in human hair in mining zones of Madre de Dios Department and in the nearby city of Puerto Maldonado. A regression analysis reveals that fish consumption, gender, and location of residence were significant indicators of mercury levels; while duration of residence and age had no significant relationship to mercury levels. Increased fish consumption levels were the strongest indicators of increased total mercury levels across the entire population. The levels of total mercury in hair was significantly (α = 0.05) higher in mining zones, than Puerto Maldonado. In both areas men had significantly higher levels than women, likely due to a difference in metabolism or varying levels of direct involvement in gold mining- a male predominated industry. This is the first study to show the health threat that mercury poses to this region, however further research needs to be done to gain a more refined understanding of the predominant routes of exposure in this population.
[Mercury concentration of fish in Tokyo Bay and the surrounding sea area].
Zhang, R; Kashima, Y; Matsui, M; Okabe, T; Doi, R
2001-07-01
Total mercury in the muscles of three fish species was analyzed in fish caught in Tokyo Bay and the surrounding sea areas, Sagami Bay and Choshi. Tokyo Bay is a semi-closed sea area surrounded by Tokyo, Kanagawa and Chiba prefectures. Sagami Bay and Choshi are open to the Pacific Ocean. A total of 412 fish consisting of northern whiting (Sillago japonica), flatfish (Limanda yokohamae) and sardine (Sardinops melanosticta) were caught in these areas over a 6 months period from November 1998 to April 1999. Total mercury concentration ranged from 0.008-0.092 microgram/g (wet wt.) in northern whiting, 0.006-0.065 microgram/g in flatfish and 0.001-0.045 microgram/g in sardine. All concentrations were below the restriction limit of fish mercury in Japan, 0.4 microgram/g of total mercury concentration. A significant correlation was found between mercury concentrations and body length or body weight in northern whiting and flatfish, irrespective of the sea area. A correlation was also found between mercury concentration in fish and their feeding habits: among the 3 species caught in the same area, crustacean feeding northern whiting had the highest, polychaete feeding flatfish moderate, and plankton feeding sardine had the lowest mercury concentration. In a comparison of mercury concentration in the same species caught in different sea areas, a higher concentration was noted in fish caught in the semi-closed sea area of Tokyo Bay, than in fish caught in the open sea areas of Sagami Bay and Choshi. This difference was most marked in fish caught at the bottom of Tokyo Bay and we considered that the mercury concentration of seawater and sediment in these areas was the cause of mercury accumulation in fish. These findings suggest that improved water quality control and environmental monitoring is necessary in semi-closed sea areas such as Tokyo Bay.
Dietary Predictors of Maternal Prenatal Blood Mercury Levels in the ALSPAC Birth Cohort Study
Steer, Colin D.; Hibbeln, Joseph R.; Emmett, Pauline M.; Lowery, Tony; Jones, Robert
2013-01-01
Background: Very high levels of prenatal maternal mercury have adverse effects on the developing fetal brain. It has been suggested that all possible sources of mercury should be avoided. However, although seafood is a known source of mercury, little is known about other dietary components that contribute to the overall levels of blood mercury. Objective: Our goal was to quantify the contribution of components of maternal diet to prenatal blood mercury level. Methods: Whole blood samples and information on diet and sociodemographic factors were collected from pregnant women (n = 4,484) enrolled in the Avon Longitudinal Study of Parents and Children (ALSPAC). The blood samples were assayed for total mercury using inductively coupled plasma dynamic reaction cell mass spectrometry. Linear regression was used to estimate the relative contributions of 103 dietary variables and 6 sociodemographic characteristics to whole blood total mercury levels (TBM; untransformed and log-transformed) based on R2 values. Results: We estimated that maternal diet accounted for 19.8% of the total variation in ln-TBM, with 44% of diet-associated variability (8.75% of the total variation) associated with seafood consumption (white fish, oily fish, and shellfish). Other dietary components positively associated with TBM included wine and herbal teas, and components with significant negative associations included white bread, meat pies or pasties, and french fries. Conclusions: Although seafood is a source of dietary mercury, seafood appeared to explain a relatively small proportion of the variation in TBM in our UK study population. Our findings require confirmation, but suggest that limiting seafood intake during pregnancy may have a limited impact on prenatal blood mercury levels. Citation: Golding J, Steer CD, Hibbeln JR, Emmett PM, Lowery T, Jones R. 2013. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ Health Perspect 121:1214–1218; http://dx.doi.org/10.1289/ehp.1206115 PMID:23811414
Huge, Dane H; Schofield, Pamela J; Jacoby, Charles A; Frazer, Thomas K
2014-01-15
Strategies to control invasive lionfish in the western Atlantic and Caribbean are likely to include harvest and consumption. Until this report, total mercury concentrations had been documented only for lionfish from Jamaica, and changes in concentrations with increasing fish size had not been evaluated. In the Florida Keys, total mercury concentrations in dorsal muscle tissue from 107 lionfish ranged from 0.03 to 0.48 ppm, with all concentrations being less than the regulatory threshold for limited consumption. Mercury concentrations did not vary consistently with standard lengths or wet weights of lionfish. In 2010, lionfish from the upper Keys had mean concentrations that were 0.03-0.04 ppm higher than lionfish from the middle Keys, but mean concentrations did not differ consistently among years and locations. Overall, total mercury concentrations in lionfish were lower than those in several predatory fishes that support commercial and recreational fisheries in Florida. Published by Elsevier Ltd.
Perugini, Monia; Visciano, Pierina; Manera, Maurizio; Abete, Maria Cesarina; Gavinelli, Stefania; Amorena, Michele
2013-11-01
The aim of this study was to evaluate mercury and selenium distribution in different portions (exoskeleton, white meat and brown meat) of Norway lobster (Nephrops norvegicus). Some samples were also analysed as whole specimens. The same portions were also examined after boiling, in order to observe if this cooking practice could affect mercury and selenium concentrations. The highest mercury concentrations were detected in white meat, exceeding in all cases the maximum levels established by European legislation. The brown meat reported the highest selenium concentrations. In all boiled samples, mercury levels showed a statistically significant increase compared to raw portions. On the contrary, selenium concentrations detected in boiled samples of white meat, brown meat and whole specimen showed a statistically significant decrease compared to the corresponding raw samples. These results indicate that boiling modifies mercury and selenium concentrations. The high mercury levels detected represent a possible risk for consumers, and the publication and diffusion of specific advisories concerning seafood consumption is recommended.
Scenarios of global mercury emissions from anthropogenic sources
NASA Astrophysics Data System (ADS)
Rafaj, P.; Bertok, I.; Cofala, J.; Schöpp, W.
2013-11-01
This paper discusses the impact of air quality and climate policies on global mercury emissions in the time horizon up to 2050. Evolution of mercury emissions is based on projections of energy consumption for a scenario without any global greenhouse gas mitigation efforts, and for a 2 °C climate policy scenario, which assumes internationally coordinated action to mitigate climate change. The assessment takes into account current air quality legislation in each country, as well as provides estimates of maximum feasible reductions in mercury through 2050. Results indicate significant scope for co-benefits of climate policies for mercury emissions. Atmospheric releases of mercury from anthropogenic sources under the global climate mitigation regime are reduced in 2050 by 45% when compared to the case without climate measures. Around one third of world-wide co-benefits for mercury emissions by 2050 occur in China. An annual Hg-abatement of about 800 tons is estimated for the coal combustion in power sector if the current air pollution legislation and climate policies are adopted in parallel.
Influence of Exercise Modality on Cerebral-Ocular Hemodynamics and Pressures
NASA Technical Reports Server (NTRS)
Scott, J.; Martin, D.; Crowell, B.; Goetchius, E.; Seponski, C.; Gonzales, R.; Matz, T.; Ploutz-Snyder, R.; Stenger, M.; Ploutz-Snyder, L.
2016-01-01
Background: Moderate and high intensity aerobic or resistance exercise has clearly identified benefits for cardiac, muscle, and bone health. However, the impact of such exercise - either as a mitigating or an exacerbating factor - on the development of the visual impairment and intracranial pressure syndrome (VIIP) is unknown. Accordingly, our aim was to characterize the effect of an acute bout of resistance (RE), moderate-intensity continuous (CE), and high-intensity interval exercise (IE) during a cephalad fluid shift on cerebral-ocular hemodynamics and pressures. Methods: 10 male subjects (36 plus or minus 9 years) completed 4 testing days in a 15 degree head-down tilt (HDT): (1) assessment of maximum volume of O (sub 2), (2) RE session (4 sets of 12 repetition maximum leg press exercise), (3) CE session (30 minutes of cycling at 60 percent maximum volume of O (sub 2)), and (4) IE session (4 by 4-minute intervals of exercise at 85 percent maximum volume of O (sub 2) with 3-minute active rest periods). During each session, blood flow (Vivid-e, GE Healthcare) in extracranial arteries (common carotid artery, CCA; internal carotid artery, ICA; external carotid artery, ECA and vertebral artery, VA), and mean blood flow velocity in middle cerebral artery (MCA), internal jugular pressure (IJP; VeinPress), and intraocular pressure (IOP; Icare PRO) were measured at rest, at the end of each resistance or interval set, and every 5 minutes during continuous exercise. Translaminar pressure gradient (TLPG) was estimated by subtracting IJP from IOP. Results: There were no differences across days in pre-exercise resting blood flows or pressures. IOP decreased slightly from HDT rest (20.2 plus or minus 2.3 millimeters of mercury) to exercise (RE: 19.2 plus or minus 2.8 millimeters of mercury; CE: 18.9 plus or minus 3.2 millimeters of mercury; IE: 20.1 plus or minus 2.8 millimeters of mercury), while IJP decreased during CE (31.6 plus or minus 9.5 millimeters of mercury) and RE (32.0 plus or minus 8.1 millimeters of mercury), and increased during IE (35.1 plus or minus 9.5 millimeters of mercury) from HDT rest (33.3 plus or minus 6.5 millimeters of mercury). Estimated TLPG was increased during IE only. Compared to RE and CE, IE resulted in the greatest increase in MCA blood flow velocity and extracranial artery blood flow. Conclusions: These preliminary results suggest that high-intensity IE acutely increases cerebral blood flow, IJP, and TLPG. Alterations in TLPG is one mechanism that may contribute to optic nerve sheath edema in astronauts. Accordingly, acutely raising IOP and/or orbital pressure during exercise could optimize cerebral-ocular pressures during spaceflight.
Dietary toxicity and tissue accumulation of methylmercury in American kestrels
Bennett, Richard S.; French, John B.; Rossmann, Ronald; Haebler, Romona J.
2009-01-01
American kestrels (Falco sparverius) were fed meat diets containing 0, 3, 6, or 12 ppm (dry weight) methylmercury chloride. Birds fed the 12-ppm diet started to show signs of neurotoxicity after 26 days and all died in 39?49 days. One male kestrel fed the 6-ppm diet died after 75 days of exposure and several others showed signs of neurotoxicity after 45 days. None of the birds fed the 3-ppm diet died or showed signs of toxicity. After 59 days of exposure, mercury concentrations in the liver, kidney, and blood of nonreproducing kestrels increased with increasing dietary concentration. Tissue concentrations of mercury also steadily increased over time in birds fed diets with 6 ppm mercury, which were necropsied at 8, 15, 29, or 59 days of exposure, reaching mean total mercury concentrations of 57, 46, and 45 ppm (wet weight) at 59 days in the liver, kidney, and whole blood, respectively. Two pairs of kestrels at each dietary concentration were allowed to breed. Eggs averaged 8.3 and 18.1 ppm (wet weight) total mercury from birds fed 3- and 6-ppm diets, respectively. Feathers grown during mercury exposure contained high concentrations of mercury: Birds fed 3- and 6-ppm diets contained 275 and 542 ppm total mercury, respectively.
Harada, M; Nakanishi, J; Konuma, S; Ohno, K; Kimura, T; Yamaguchi, H; Tsuruta, K; Kizaki, T; Ookawara, T; Ohno, H
1998-05-01
A total of 191 fishermen and their family (32-82 years) living in some mercury-polluted areas along the Shiranui Sea volunteered for the present study. They made a living by fishery and had formerly eaten the methyl mercury-contaminated fish and shellfish caught there. The questionnaire on subjective symptoms, fish eating habits, and past living history was conducted on the subjects. In addition, they were clinically examined in detail by several neurologists and scalp hair was collected. With six exceptions, all the 185 subjects showed a normal total mercury level in hair (<10 ppm). The ratio of methyl mercury to total mercury was 79-94% on the average for each group examined, suggesting indirect contamination (perhaps through the food chain). Despite their low mercury level in scalp hair, however, the subjects showed various neurological symptoms, particularly, sensory disturbance (such as the glove and stocking type), at a very high rate. Thus, it seems fair to state that, in addition to officially recognized Minamata disease patients, there still exist many people with atypical, slight Minamata disease on the coast of the Shiranui Sea. The current hair mercury level is not necessarily useful as a criterion for diagnosing chronic Minamata disease because of the long lapse of time. Copyright 1998 Academic Press.
Total mercury levels in commercial fish species from Italian fishery and aquaculture.
Di Lena, Gabriella; Casini, Irene; Caproni, Roberto; Fusari, Andrea; Orban, Elena
2017-06-01
Total mercury levels were measured in 42 commercial fish species caught off the Central Adriatic and Tyrrhenian coasts of Italy and in 6 aquaculture species. The study on wild fish covered species differing in living habitat and trophic level. The study on farmed fish covered marine and freshwater species from intensive and extensive aquaculture and their feed. Mercury levels were analysed by thermal decomposition-amalgamation-atomic absorption spectrophotometry. Total mercury concentrations in the muscle of wild fish showed a high variability among species (0.025-2.20 mg kg -1 wet weight). The lowest levels were detected in low trophic-level demersal and pelagic-neritic fish and in young individuals of high trophic-level species. Levels exceeding the European Commission limits were found in large-size specimens of high trophic-level pelagic and demersal species. Fish from intensive farming showed low levels of total mercury (0.008-0.251 mg kg -1 ). Fish from extensive rearing showed variable contamination levels, depending on the area of provenience. An estimation of the human intake of mercury associated to the consumption of the studied fish and its comparison with the tolerable weekly intake is provided.
Domain specific effects of postnatal toenail methylmercury exposure on child behaviour.
Karatela, Shamshad; Paterson, Janis; Ward, Neil I
2017-05-01
Very little is known about the relationship between postnatal methylmercury concentrations (via toenails as bioindicator) and behavioural characteristics of Pacific Island children living in New Zealand. The aim of this study was to explore the association between total mercury exposure and different domains of behavioural problems in Pacific children. A sample of nine-year-old Pacific Island children resident in Auckland, New Zealand participated in this study. Total mercury was determined in biological samples (toenail clippings) on behavioural problems as identified by mothers (using the child behaviour checklist). Specific behavioural domains, particularly aggression, rule breaking, attention and social problems were studied in relation to mercury exposure using toenails. The determination of mercury concentration in toenail clippings, after acid digestion was carried out using inductively coupled plasma mass spectrometry. The observational study was conducted between July 2010 and July 2011 in which 278 eligible nine-year-old Pacific Island children were enrolled (Girls n=58%; boys n=42%). showed that 21% of the children had total toenail mercury concentrations (1.5μg/g to 6μg/g) higher than the United State Environmental Protection Agency recommended levels (RfD; 1μg/g Hg) for optimal health in children. Aggressive behaviour was associated with total toenail mercury exposure after adjusting for gender, ethnicity and income levels (OR: 2.15 95% CI 1.45, 3.18 p-value <0.05; OR 1.38 95% CI 0.83, 1.2 p value <0.05, respectively). Overall, this research contributes to the understanding of total toenail mercury concentrations for Pacific people in New Zealand using toenail clippings as biomarkers in terms of associations with child behavioural problems. Mercury in toenails demonstrated a moderate association with a specific behavioural domain - aggressive behaviour. Copyright © 2017 Elsevier GmbH. All rights reserved.
Malakahmad, Amirhossein; Hasani, Amirhesam; Eisakhani, Mahdieh; Isa, Mohamed Hasnain
2011-07-15
Petrochemical factories which manufacture vinyl chloride monomer and poly vinyl chloride (PVC) are among the largest industries which produce wastewater contains mercury and cadmium. The objective of this research is to evaluate the performance of a lab-scale Sequencing Batch Reactor (SBR) to treat a synthetic petrochemical wastewater containing mercury and cadmium. After acclimatization of the system which lasted 60 days, the SBR was introduced to mercury and cadmium in low concentrations which then was increased gradually to 9.03±0.02 mg/L Hg and 15.52±0.02 mg/L Cd until day 110. The SBR performance was assessed by measuring Chemical Oxygen Demand, Total and Volatile Suspended Solids as well as Sludge Volume Index. At maximum concentrations of the heavy metals, the SBR was able to remove 76-90% of Hg(2+) and 96-98% of Cd(2+). The COD removal efficiency and MLVSS (microorganism population) in the SBR was affected by mercury and cadmium concentrations in influent. Different species of microorganisms such as Rhodospirilium-like bacteria, Gomphonema-like algae, and sulfate reducing-like bacteria were identified in the system. While COD removal efficiency and MLVSS concentration declined during addition of heavy metals, the appreciable performance of SBR in removal of Hg(2+) and Cd(2+) implies that the removal in SBR was not only a biological process, but also by the biosorption process of the sludge. Copyright © 2011 Elsevier B.V. All rights reserved.
Sando, Steven K.; Wiche, G.J.; Lundgren, R.F.; Sether, Bradley A.
2003-01-01
Devils Lake rose dramatically during the 1990's, causing extensive flood damages. Because of the potential for continued flooding, the U.S. Army Corps of Engineers has been conducting studies to evaluate the feasibility of constructing and operating an outlet from Devils Lake. The occurrence of mercury in lakes, wetlands, and rivers and the potential for increased loading of mercury into the Sheyenne River as a result of a Devils Lake outlet needed to be evaluated as part of the studies.Sixteen lake, wetland, and river sites in the Devils Lake, Sheyenne River, Red River of the North, and Red Lake River Basins were sampled and analyzed for mercury constituents and other selected properties and constituents relevant to mercury aquatic chemistry. For the lake and wetland sites, whole-water methylmercury concentrations ranged from less than 0.04 to 3.53 nanograms per liter and whole-water total mercury concentrations ranged from 0.38 to 7.02 nanograms per liter. Conditions favorable for methylation of mercury generally exist at the lake and wetland sites, as indicated by larger dissolved methylmercury concentrations in near-bottom samples than in near-surface samples and by relatively large ratios of methylmercury to total mercury (generally greater than 10 percent for the summer sampling period). Total mercury concentrations were larger for the summer sampling period than for the winter sampling period for all lake and wetland sites. A wetland site in the upper Devils Lake Basin had the largest mercury concentrations for the lake and wetland sites.For the river sites, whole-water methylmercury concentrations ranged from 0.15 to 1.13 nanograms per liter and whole-water total mercury concentrations ranged from 2.00 to 26.90 nanograms per liter. Most of the mercury for the river sites occurred in particulate inorganic phase. Summer ratios of whole-water methylmercury to whole-water total mercury were 35 percent for Starkweather Coulee (a wetland-dominated site), near or less than 10 percent for the Sheyenne River sites, and less than 8 percent for the Red River of the North and Red Lake River sites.Although the number of samples collected during this investigation is small, results indicated an outlet from Devils Lake probably would not have adverse effects on mercury concentrations in the Sheyenne River upstream from Lake Ashtabula. However, because discharges in the Sheyenne River would increase during some periods, loads of mercury entering Lake Ashtabula also would increase. Lake Ashtabula probably serves as a sink for suspended sediment and mercury. Thus, a Devils Lake outlet probably would not have substantial effects on mercury concentrations and loads in the downstream part of the Sheyenne River or in the Red River of the North. More substantial effects could occur for Lake Ashtabula.
Radionuclides and mercury in the salt lakes of the Crimea
NASA Astrophysics Data System (ADS)
Mirzoyeva, Natalya; Gulina, Larisa; Gulin, Sergey; Plotitsina, Olga; Stetsuk, Alexandra; Arkhipova, Svetlana; Korkishko, Nina; Eremin, Oleg
2015-11-01
90Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (238U, 232Th, 226Ra, 210Pb, 40K) and anthropogenic 137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of 90Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m3) and Lake Kirleutskoe (121.3 Bq/m3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of 210Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using 210Pb and 137Cs data, were 0.117 and 0.109 cm per year, respectively.
Kim, Seong-Ah; Kwon, YoungMin; Kim, Suejin; Joung, Hyojee
2016-01-01
From a public health perspective, there is growing concern about dietary mercury intake as the most important source of mercury exposure. This study was performed to estimate dietary mercury exposure and to analyze the association between mercury intake and blood mercury levels in Koreans. The study subjects were 553 adults, comprising a 10% representative subsample of the Korean National Environmental Health Survey (KoNEHS) 2012–2014, who completed a health examination, a face-to-face interview, and a three-day food record. Dietary mercury and methylmercury intakes were assessed from the three-day food record, and blood mercury concentration was measured using a mercury analyzer. The association between dietary mercury intake and blood mercury levels was analyzed by comparing the odds ratios for the blood mercury levels above the Human BioMonitoring (HBM) I value (5 μg/L) among the three groups with different mercury intakes. The average total mercury intake was 4.74 and 3.07 μg/day in males and females, respectively. The food group that contributed most to mercury intake was fish and shellfish, accounting for 77.8% of total intake. The geometric mean of the blood mercury concentration significantly and linearly increased with the mercury and methylmercury intakes (p < 0.001). The odds ratios for blood mercury levels above the HBM I value in the highest mercury and methyl mercury intake group were 3.27 (95% Confidence Interval (CI) 1.79–5.95) and 3.20 (95% CI 1.77–5.79) times higher than that of the lowest intake group, respectively. Our results provide compelling evidence that blood mercury level has a strong positive association with dietary intake, and that fish and shellfish contribute most to the dietary mercury exposure. PMID:27598185
[Characteristic of Mercury Emissions and Mass Balance of the Typical Iron and Steel Industry].
Zhang, Ya-hui; Zhang, Cheng; Wang, Ding-yong; Luo, Cheng-zhong; Yang, Xi; Xu, Feng
2015-12-01
To preliminarily discuss the mercury emission characteristics and its mass balance in each process of the iron and steel production, a typical iron and steel enterprise was chosen to study the total mercury in all employed materials and estimate the input and output of mercury during the steel production process. The results showed that the mercury concentrations of input materials in each technology ranged 2.93-159.11 µg · kg⁻¹ with the highest level observed in ore used in blast furnace, followed by coal of sintering and blast furnace. The mercury concentrations of output materials ranged 3.09-18.13 µg · kg⁻¹ and the mercury concentration of dust was the highest, followed by converter slag. The mercury input and the output in the coking plant were 1346.74 g · d⁻¹ ± 36.95 g · d⁻¹ and 177.42 g · d⁻¹ ± 13.73 g · d⁻¹, respectively. In coking process, mercury mainly came from the burning of coking coal. The sintering process was the biggest contributor for mercury input during the iron and steel production with the mercury input of 1075. 27 g · d⁻¹ ± 60.89 g · d⁻¹ accounting for 68.06% of the total mercury input during this production process, and the ore powder was considered as the main mercury source. For the solid output material, the output in the sintering process was 14.15 g · d⁻¹ ± 0.38 g · d⁻¹, accounting for 22.61% of the total solid output. The mercury emission amount from this studied iron and steel enterprise was estimated to be 553.83 kg in 2013 with the emission factor of 0.092 g · t⁻¹ steel production. Thus, to control the mercury emissions, iron and steel enterprises should combine with production practice, further reduce energy consumption of coking and sintering, or improve the quality of raw materials and reduce the input of mercury.
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR NOX CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
EVALUATION OF MERCURY SPECIATION AT POWER PLANTS USING SCR AND SNCR CONTROL TECHNOLOGIES
The paper describes the impact that selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas-conditioning systems have on total mercury emissions and on the speciation of mercury. If SCR and/or SNCR systems enhance mercury conversion/capture, the...
Methylmercury is a known neurotoxin with deleterious health effects on humans and wildlife. Atmospheric deposition is the largest source of mercury loading to most terrestrial and aquatic ecosystems. Regional scale air quality models are needed to quantify mercury deposition resu...
USDA-ARS?s Scientific Manuscript database
Sediment cores from seasonal wetland and open water areas from six oxbow lakes in the Mississippi River alluvial flood plain were analyzed for total-mercury (Hg) using a direct mercury analyzer (DMA). In the process we evaluated the feasibility of simultaneously determining organic matter content by...
Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment.
Nerentorp Mastromonaco, Michelle G; Gårdfeldt, Katarina; Langer, Sarka; Dommergue, Aurélien
2016-12-06
Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L -1 ) to spring (4.7 ng L -1 ) while the average elemental mercury concentration increased from winter (0.07 ng L -1 ) to summer (0.105 ng L -1 ). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.
Navya, C; Gopikrishna, V G; Arunbabu, V; Mohan, Mahesh
2015-12-01
Mercury biogeochemistry is highly complex in the aquatic ecosystems and it is very difficult to predict. The speciation of mercury is the primary factor controlling its behavior, movement, and fate in these systems. The fluctuating water levels in wetlands could play a major role in the mercury transformations and transport. Hence, the agricultural wetlands may have a significant influence on the global mercury cycling. Kuttanad agricultural wetland ecosystem is a unique one as it is lying below the sea level and most of the time it is inundated with water. To understand the mobility and bioavailability of Hg in the soils of this agricultural wetland ecosystem, the present study analyzed the total mercury content as well as the different fractions of mercury. Mercury was detected using cold vapor atomic fluorescence spectrophotometer. The total mercury content varied from 0.002 to 0.683 mg/kg, and most of the samples are having concentrations below the background value. The percentage of mercury found in the initial three fractions F1, F2, and F3 are more available and it may enhance the methylation potential of the Kuttanad agroecosystem.
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.
2011-01-01
Toxicological risk of methylmercury exposure to juvenile birds is complex due to the highly transient nature of mercury concentrations as chicks age. We examined total mercury and methylmercury concentrations in blood, liver, kidney, muscle, and feathers of 111 Forster's tern (Sterna forsteri), 69 black-necked stilt (Himantopus mexicanus), and 43 American avocet (Recurvirostra americana) chicks as they aged from hatching through postfledging at wetlands that had either low or high mercury contamination in San Francisco Bay, California. For each waterbird species, internal tissue, and wetland, total mercury and methylmercury concentrations changed rapidly as chicks aged and exhibited a quadratic, U-shaped pattern from hatching through postfledging. Mercury concentrations were highest immediately after hatching, due to maternally deposited mercury in eggs, then rapidly declined as chicks aged and diluted their mercury body burden through growth in size and mercury depuration into growing feathers. Mercury concentrations then increased during fledging when mass gain and feather growth slowed, while chicks continued to acquire dietary mercury. In contrast to mercury in internal tissues, mercury concentrations in chick feathers were highly variable and declined linearly with age. For 58 recaptured Forster's tern chicks, the proportional change in blood mercury concentration was negatively related to the proportional change in body mass, but not to the amount of feathers or wing length. Thus, mercury concentrations declined more in chicks that gained more mass between sampling events. The U-shaped pattern of mercury concentrations from hatching to fledging indicates that juvenile birds may be at highest risk to methylmercury toxicity shortly after hatching when maternally deposited mercury concentrations are still high and again after fledging when opportunities for mass dilution and mercury excretion into feathers are limited.
Influence of atmospheric deposition on Okefenokee National Wildlife Refuge
Winger, P.V.; Lasier, P.J.; Jackson, B.P.
1995-01-01
Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.
Zhang, L.; Blanchard, P.; Gay, D.A.; Prestbo, E.M.; Risch, M.R.; Johnson, D.; Narayan, J.; Zsolway, R.; Holsen, T.M.; Miller, E.K.; Castro, M.S.; Graydon, J.A.; St. Louis, V.L.; Dalziel, J.
2012-01-01
Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (Vd) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m−2 at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled Vd values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m−2 at 18 sites and 33 μg m−2 at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America.
Accumulation and fate of mercury in an Everglades aquatic food web
Loftus, William F.
2000-01-01
This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season.
Beaulieu, Karen M.; Button, Daniel T.; Eikenberry, Barbara C. Scudder; Riva-Murray, Karen; Chasar, Lia C.; Bradley, Paul M.; Burns, Douglas A.
2012-01-01
The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study from 2005–09 to investigate the bioaccumulation of mercury in streams from two contrasting environmental settings. Study areas were located in the central Adirondack Mountains region of New York and the Inner Coastal Plain of South Carolina. Fish, macroinvertebrates, periphyton (attached algae and associated material), detritus, and terrestrial leaf litter were collected. Fish were analyzed for total mercury; macroinvertebrates, periphyton, and terrestrial leaf litter were analyzed for total mercury and methylmercury; and select samples of fish, macroinvertebrates, periphyton, detritus, and terrestrial leaf litter were analyzed for stable isotopes of carbon (δ13C) and nitrogen (δ15N). This report presents methodology and data on total mercury, methylmercury, stable isotopes, and other ecologically relevant measurements in biological tissues.
NASA Astrophysics Data System (ADS)
Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli
2017-12-01
Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before commercialized freeze-dried P. putida.
Magnetic field observations near Mercury: Preliminary results from Mariner 10
NASA Technical Reports Server (NTRS)
Ness, N. F.; Behannon, K. W.; Lepping, R. P.; Whang, Y. C.; Schatten, K. H.
1974-01-01
Results are presented from a preliminary analysis of data obtained near Mercury by the NASA/GSFC Magnetic Field Experiment on Mariner 10. A very well developed, detached bow shock wave, which developed as the super-Alfvenic solar wind interacted with the planet Mercury was observed. A magnetosphere-like region, with maximum field strength of 98 gamma at closest approach (704 km altitude) was also observed, and was contained within boundaries similar to the terrestrial magnetopause. The obstacle deflecting the solar wind flow was global in size, but the origin of the enhanced magnetic field was not established. The most plausible explanation, considering the complete body of data, favored the conclusion that Mercury has an intrinsic magnetic field.
In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...
a sequential extraction and separation procedure that maybe used in conjunction with a determinative method to differentiate mercury species that arepresent in soils and sediments. provides information on both total mercury andvarious mercury species.
Huffman, R.L.; Wagner, R.J.; Toft, J.; Cordell, J.; DeWild, J.F.; Dinicola, R.S.; Aiken, G.R.; Krabbenhoft, D.P.; Marvin-DiPasquale, M.; Stewart, A.R.; Moran, P.W.; Paulson, A.J.
2012-01-01
The Methylation and Bioaccumulation Project included a comprehensive field study of mercury biogeochemistry in marine sediment, water, and zooplankton in Sinclair Inlet. Mercury, iron, and sulfur species in sediment porewater from six sites within and three sites outside of Sinclair Inlet were measured to provide insight into the processes that produce methylmercury in the sediments. Total mercury, methylmercury, dissolved organic carbon, and redox-sensitive species were measured in porewaters in the top 2 centimeters of sediment, and these data were paired with sedimentary flux measurements from core incubation experiments to connect sedimentary processes to the water column. A broad-scale study of mercury methylation potential and mercury species at 20-plus stations in Sinclair Inlet was conducted in February 2009 and 2010, June 2009, and August 2009. Sedimentary flux measurements and analysis of mercury and biogeochemicals in sediment porewater and bottom water were made at six of the broad-scale stations. Bioaccumulation processes in the water column in the context of the sedimentary flux of methylmercury were examined using monthly survey data collected between August 2008 and August 2009. The survey data included concentrations of methylmercury and isotope ratios of carbon and nitrogen in bulk zooplankton measured at four stations in Sinclair Inlet in the context of the population of bulk zooplankton ascertained by taxonomical identification. The analysis of filtered total mercury, total particulate mercury, filtered methylmercury, particulate methylmercury, chlorophyll a, isotopes of carbon and nitrogen in suspended matter, and other biogeochemical data will facilitate the examination of the biogeochemistry of mercury in Sinclair Inlet.
Zhou, Jun; Wang, Zhangwei; Sun, Ting; Zhang, Huan; Zhang, Xiaoshan
2016-05-01
Forests are considered a pool of mercury in the global mercury cycle. However, few studies have investigated the distribution of mercury in the forested systems in China. Tieshanping forest catchment in southwest China was impacted by mercury emissions from industrial activities and coal combustions. Our work studied mercury content in atmosphere, soil, vegetation and insect with a view to estimating the potential for mercury release during forest fires. Results of the present study showed that total gaseous mercury (TGM) was highly elevated and the annual mean concentration was 3.51 ± 1.39 ng m(-2). Of the vegetation tissues, the mercury concentration follows the order of leaf/needle > root > bark > branch > bole wood for each species. Total ecosystem mercury pool was 103.5 mg m(-2) and about 99.4% of the mercury resides in soil layers (0-40 cm). The remaining 0.6% (0.50 mg m(-2)) of mercury was stored in biomass. The large mercury stocks in the forest ecosystem pose a serious threat for large pluses to the atmospheric mercury during potential wildfires and additional ecological stress to forest insect: dung beetles, cicada and longicorn, with mercury concentration of 1983 ± 446, 49 ± 38 and 7 ± 5 ng g(-1), respectively. Hence, the results obtained in the present study has implications for global estimates of mercury storage in forests, risks to forest insect and potential release to the atmosphere during wildfires. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rose, Donna L.; Sandstrom, Mark W.
2003-01-01
Devils Lake rose dramatically during the 1990's, causing extensive flood damages. Because of the potential for continued flooding, the U.S. Army Corps of Engineers has been conducting studies to evaluate the feasibility of constructing and operating an outlet from Devils Lake. The occurrence of mercury in lakes, wetlands, and rivers and the potential for increased loading of mercury into the Sheyenne River as a result of a Devils Lake outlet needed to be evaluated as part of the studies. Sixteen lake, wetland, and river sites in the Devils Lake, Sheyenne River, Red River of the North, and Red Lake River Basins were sampled and analyzed for mercury constituents and other selected properties and constituents relevant to mercury aquatic chemistry. For the lake and wetland sites, whole-water methylmercury concentrations ranged from less than 0.04 to 3.53 nanograms per liter and whole-water total mercury concentrations ranged from 0.38 to 7.02 nanograms per liter. Conditions favorable for methylation of mercury generally exist at the lake and wetland sites, as indicated by larger dissolved methylmercury concentrations in near-bottom samples than in near-surface samples and by relatively large ratios of methylmercury to total mercury (generally greater than 10 percent for the summer sampling period). Total mercury concentrations were larger for the summer sampling period than for the winter sampling period for all lake and wetland sites. A wetland site in the upper Devils Lake Basin had the largest mercury concentrations for the lake and wetland sites. For the river sites, whole-water methylmercury concentrations ranged from 0.15 to 1.13 nanograms per liter and whole-water total mercury concentrations ranged from 2.00 to 26.90 nanograms per liter. Most of the mercury for the river sites occurred in particulate inorganic phase. Summer ratios of whole-water methylmercury to whole-water total mercury were 35 percent for Starkweather Coulee (a wetland-dominated site), near or less than 10 percent for the Sheyenne River sites, and less than 8 percent for the Red River of the North and Red Lake River sites. Although the number of samples collected during this investigation is small, results indicated an outlet from Devils Lake probably would not have adverse effects on mercury concentrations in the Sheyenne River upstream from Lake Ashtabula. However, because discharges in the Sheyenne River would increase during some periods, loads of mercury entering Lake Ashtabula also would increase. Lake Ashtabula probably serves as a sink for suspended sediment and mercury. Thus, a Devils Lake outlet probably would not have substantial effects on mercury concentrations and loads in the downstream part of the Sheyenne River or in the Red River of the North. More substantial effects could occur for Lake Ashtabula.
Mercury concentrations in water from an unconfined aquifer system, New Jersey coastal plain
Barringer, J.L.; Szabo, Z.; Kauffman, L.J.; Barringer, T.H.; Stackelberg, P.E.; Ivahnenko, T.; Rajagopalan, S.; Krabbenhoft, D.P.
2005-01-01
Concentrations of total mercury (Hg) from 2 ??g/L (the USEPA maximum contaminant level) to 72 ??g/L in water from about 600 domestic wells in residential parts of eight counties in southern New Jersey have been reported by State and county agencies. The wells draw water from the areally extensive (7770 km2) unconfined Kirkwood-Cohansey aquifer system, in which background concentrations of Hg are about 0.01 ??g/L or less. Hg is present in most aquifer materials at concentrations 0.1 ??g/L did not correlate significantly with concentrations of the inorganic constituents. Hgf concentrations near or exceeding 2 ??g/L were found only in water from wells in areas with residential land use, but concentrations were at background levels in most water samples from undeveloped land. The spatial distribution of Hg-contaminated ground water appears to be locally and regionally heterogeneous; no extensive plumes of Hg contamination have yet been identified. ?? 2004 Elsevier B.V. All rights reserved.
Global Mercury Pathways in the Arctic Ecosystem
NASA Astrophysics Data System (ADS)
Lahoutifard, N.; Lean, D.
2003-12-01
The sudden depletions of atmospheric mercury which occur during the Arctic spring are believed to involve oxidation of gaseous elemental mercury, Hg(0), rendering it less volatile and more soluble. The Hg(II) oxidation product(s) are more susceptible to deposition, consistent with the observation of dramatic increases in snow mercury levels during depletion events. Temporal correlations with ozone depletion events and the proliferation of BrO radicals support the hypothesis that oxidation of Hg(0) occurs in the gas phase and results in its conversion to RGM (Reactive Gaseous Mercury). The mechanisms of Hg(0) oxidation and particularly Hg(II) reduction are as yet unproven. In order to evaluate the feasibility of proposed chemical processes involving mercury in the Arctic atmosphere and its pathway after deposition on the snow from the air, we investigated mercury speciation in air and snow pack at Resolute, Nunavut, Canada (latitude 75° N) prior to and during snow melt during spring 2003. Quantitative, real-time information on emission, air transport and deposition were combined with experimental studies of the distribution and concentrations of different mercury species, methyl mercury, anions, total organic carbon and total inorganic carbon in snow samples. The effect of solar radiation and photoreductants on mercury in snow samples was also investigated. In this work, we quantify mercury removed from the air, and deposited on the snow and the transformation to inorganic and methyl mercury.
Spatial Patterns of Mercury Bioaccumulation in the Upper Clark Fork River Basin, MT
NASA Astrophysics Data System (ADS)
Staats, M. F.; Langner, H.; Moore, J. N.
2010-12-01
The Upper Clark Fork River Basin (UCFRB) in Montana has a legacy of historic gold/silver mine waste that contributes large quantities of mercury into the watershed. Mercury bioaccumulation at higher levels of the aquatic food chain, such as the mercury concentration in the blood of pre-fledge osprey, exhibit an irregular spatial signature based on the location of the nests throughout the river basin. Here we identify regions with a high concentration of bioavailable mercury and the major factors that allow the mercury to bioaccumulate within trophic levels. This identification is based on the abundance of mercury sources and the potential for mercury methylation. To address the source term, we did a survey of total mercury in fine sediments along selected UCFRB reaches, along with the assessment of environmental river conditions (percentage of backwaters/wetlands, water temperature and pH, etc). In addition, we analyzed the mercury levels of a representative number of macroinvertebrates and fish from key locations. The concentration of total mercury in sediment, which varies from reach to reach (tributaries of the Clark Fork River, <0.05 mg/kg to the main stem of the river, >5mg/kg) affects the concentration of mercury found at various trophic levels. However, reaches with a low supply of mine waste-derived mercury can also yield substantial concentrations of mercury in the biota, due to highly favorable conditions for mercury methylation. We identify that the major environmental factor that affects the methylation potential in the UCFRB is the proximity and connectivity of wetland areas to the river.
Ding, Lingyun; Zhao, Kaiyun; Zhang, Lijuan; Liang, Peng; Wu, Shengchun; Wong, Ming Hung; Tao, Huchun
2018-05-14
At the Pearl River Estuary of southern China, mercury and its environmental problems have long been a great concern. This study investigated the distribution and speciation of mercury compounds that are significantly influenced by the increasing content of humic acid (HA, a model natural organic matter) in this region. The inorganic mercury and methyl mercury, being adsorbed and converted at different HA levels, were studied in sediments and surface water at both mariculture and their reference sites. In mariculture sediments with higher HA content (up to 4.5%), more mercury were adsorbed at different compound levels, promoting the methylation and accumulation of mercury (P < 0.05) at the sediment-water interface. Seasonal shift in environmental temperature might control the HA content, subsequently favouring mercury methylation (maximum 1.75 ± 0.08 mg L -1 d -1 ) under warm weather conditions. In reference sites received less HA wastes, lower adsorption capacity and methylation rate were observed for mercury in sediments and surface water. Our work points to the significant roles of HA on mercury distribution and speciation both spatially and seasonally, thus addressing the impacts of mariculture activities on estuary eco-system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Increasing Mercury in Yellow Perch at a Hotspot in Atlantic Canada, Kejimkujik National Park
2010-01-01
In the mid-1990s, yellow perch (Perca flavescens) and common loons (Gavia immer) from Kejimkujik National Park and National Historic Site (KNPNHS), Nova Scotia, Canada, had among the highest mercury (Hg) concentrations across North America. In 2006 and 2007, we re-examined 16 lakes to determine whether there have been changes in Hg in the loon’s preferred prey, yellow perch. Total Hg concentrations were measured in up to nine perch in each of three size classes (5−10 cm, 10−15 cm, and 15−20 cm) consumed by loons. Between 1996/97 and 2006/07, polynomial regressions indicated that Hg in yellow perch increased an average of 29% in ten lakes, decreased an average of 21% in three, and were unchanged in the remaining three lakes. In 2006/07, perch in 75% of the study lakes had Hg concentrations (standardized to 12-cm fish length) equal to or above the concentration (0.21 μg·g−1 ww) associated with a 50% reduction in maximum productivity of loons, compared with only 56% of these lakes in 1996/97. Mercury contamination currently poses a greater threat to loon health than a decade ago, and further reductions in anthropogenic emissions should be considered to reduce its impacts on ecosystem health. PMID:21062071
Lan, Xin; Talbot, Robert; Laine, Patrick; Torres, Azucena; Lefer, Barry; Flynn, James
2015-09-01
Atmospheric mercury emissions in the Barnett Shale area were studied by employing both stationary measurements and mobile laboratory surveys. Stationary measurements near the Engle Mountain Lake showed that the median mixing ratio of total gaseous mercury (THg) was 138 ppqv (140 ± 29 ppqv for mean ± S.D.) during the June 2011 study period. A distinct diurnal variation pattern was observed in which the highest THg levels appeared near midnight, followed by a monotonic decrease until midafternoon. The influence of oil and gas (ONG) emissions was substantial in this area, as inferred from the i-pentane/n-pentane ratio (1.17). However, few THg plumes were captured by our mobile laboratory during a ∼3700 km survey with detailed downwind measurements from 50 ONG facilities. One compressor station and one natural gas condensate processing facility were found to have significant THg emissions, with maximum THg levels of 963 and 392 ppqv, respectively, and the emissions rates were estimated to be 7.9 kg/yr and 0.3 kg/yr, respectively. Our results suggest that the majority of ONG facilities in this area are not significant sources of THg; however, it is highly likely that a small number of these facilities contribute a relatively large amount of emissions in the ONG sector.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
NASA Astrophysics Data System (ADS)
Muntean, Marilena; Janssens-Maenhout, Greet; Song, Shaojie; Giang, Amanda; Selin, Noelle E.; Zhong, Hui; Zhao, Yu; Olivier, Jos G. J.; Guizzardi, Diego; Crippa, Monica; Schaaf, Edwin; Dentener, Frank
2018-07-01
Speciated mercury gridded emissions inventories together with chemical transport models and concentration measurements are essential when investigating both the effectiveness of mitigation measures and the mercury cycle in the environment. Since different mercury species have contrasting behaviour in the atmosphere, their proportion in anthropogenic emissions could determine the spatial impacts. In this study, the time series from 1970 to 2012 of the EDGARv4.tox2 global mercury emissions inventory are described; the total global mercury emission in 2010 is 1772 tonnes. Global grid-maps with geospatial distribution of mercury emissions at a 0.1° × 0.1° resolution are provided for each year. Compared to the previous tox1 version, tox2 provides updates for more recent years and improved emissions in particular for agricultural waste burning, power generation and artisanal and small-scale gold mining (ASGM) sectors. We have also developed three retrospective emissions scenarios based on different hypotheses related to the proportion of mercury species in the total mercury emissions for each activity sector; improvements in emissions speciation are seen when using information primarily from field measurements. We evaluated them using the GEOS-Chem 3-D mercury model in order to explore the influence of speciation shifts, to reactive mercury forms in particular, on regional wet deposition patterns. The reference scenario S1 (EDGARv4.tox2_S1) uses speciation factors from the Arctic Monitoring and Assessment Programme (AMAP); scenario S2 ("EPA_power") uses factors from EPA's Information Collection Request (ICR); and scenario S3 ("Asia_filedM") factors from recent scientific publications. In the reference scenario, the sum of reactive mercury emissions (Hg-P and Hg2+) accounted for 25.3% of the total global emissions; the regions/countries that have shares of reactive mercury emissions higher than 6% in total global reactive mercury are China+ (30.9%), India+ (12.5%) and the United States (9.9%). In 2010, the variations of reactive mercury emissions amongst the different scenarios are in the range of -19.3 t/yr (China+) to 4.4 t/yr (OECD_Europe). However, at the sector level, the variation could be different, e.g., for the iron and steel industry in China reaches 15.4 t/yr. Model evaluation at the global level shows a variation of approximately ±10% in wet deposition for the three emissions scenarios. An evaluation of the impact of mercury speciation within nested grid sensitivity simulations is performed for the United States and modelled wet deposition fluxes are compared with measurements. These studies show that using the S2 and S3 emissions of reactive mercury, can improve wet deposition estimates near sources.
Chasar, Lia C.; Scudder, Barbara C.; Bell, Amanda H.; Wentz, Dennis A.; Brigham, Mark E.
2008-01-01
The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study to investigate the bioaccumulation of mercury from 2002 to 2004. Study areas were located in Oregon, Wisconsin, and Florida. Each study area included one urban site, and one or two nonurban sites that had the following attributes: high-percent wetland or low-percent wetland. Periphyton, macroinvertebrates, and forage fish were collected twice per year (during 2003 and 2004) to capture seasonality. Top predators, specifically largemouth bass (Micropterus salmoides), brown trout (Salmo trutta), and cutthroat trout (Oncorhynchus clarkii), were collected once per year (Oregon, Wisconsin, and Florida in 2003; Florida only in 2004). All biota were identified to the lowest possible taxonomic category and were analyzed for mercury and stable carbon and nitrogen isotopes. Periphyton and invertebrates were analyzed for total mercury and methylmercury; fish were analyzed for total mercury only. This report presents (1) methodology and data on mercury, methylmercury, stable isotopes, and (2) other ecologically relevant measurements in biological tissues of periphyton, invertebrates, forage fish, and predator fish.
Atmospheric deposition of mercury in central Poland: Sources and seasonal trends
NASA Astrophysics Data System (ADS)
Siudek, Patrycja; Kurzyca, Iwona; Siepak, Jerzy
2016-03-01
Atmospheric deposition of total mercury was studied at two sites in central Poland, between April 2013 and October 2014. Hg in rainwater (bulk deposition) was analyzed in relation to meteorological parameters and major ions (H+, NO3-, Cl-, SO42 -) in order to investigate seasonal variation, identify sources and determine factors affecting atmospheric Hg chemistry and deposition. Total mercury concentrations varied between 1.24 and 22.1 ng L- 1 at the urban sampling site (Poznań) and between 0.57 and 18.3 ng L- 1 in the woodland protected area (Jeziory), with quite similar mean values of 6.96 and 6.37 ng L- 1, respectively. Mercury in precipitation exhibited lower spatial variability within the study domain (urban/forest transect) than the concentrations determined during other similar observations, reflecting the predominant influence of the same local sources. In our study, a significant seasonal pattern of Hg deposition was observed at both sampling sites, with higher and more variable concentrations of Hg reported for the urban area. In particular, deposition values of Hg were higher in the samples attributed to relatively large precipitation amounts in the summer and in those collected during the winter season (the result of higher contributions from combustion sources, i.e. intensive combustion of fossil fuels in residential and commercial boilers, individual power/heat-generating plants). In addition, a significant relationship between Hg concentration and precipitation amount was found while considering different types of wintertime samples (i.e. rain, snow and mixed precipitation). The analysis of backward trajectories showed that air masses arriving from polluted regions of western Europe and southern Poland largely affected the amount of Hg in rainwater. A seasonal variation in Hg deposition fluxes was also observed, with the maximum value of Hg in spring and minimum in winter. Our results indicated that rainwater Hg and, consequently, the wet deposition flux of Hg are related to seasonal differences in precipitation (type, intensity, amount) and the emission source.
Rice methylmercury exposure and mitigation: a comprehensive review
Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.
2014-01-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion.
Rice Methylmercury Exposure and Mitigation: A Comprehensive Review
Rothenberg, Sarah E.; Windham-Myers, Lisamarie; Creswell, Joel E.
2014-01-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effect of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, which minimize methylmercury exposure through rice ingestion. PMID:24972509
Searching for the Source of Salt Marsh Buried Mercury.
NASA Astrophysics Data System (ADS)
Brooke, C. G.; Nelson, D. C.; Fleming, E. J.
2016-12-01
Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-28
... and Order on Consent for the Mercury Refining Superfund Site, Towns of Guilderland and Colonie, Albany... Management of Michigan, Inc. (hereafter ``Settling Parties'') pertaining to the Mercury Refining Superfund... Superfund Mercury Refining Superfund Site Special Account, which combined total $79,028.49. Each Settling...
Mercury concentrations in estuarine sediments, Lavaca and Matagorda bays, Texas, 1992
Brown, David S.; Snyder, Grant L.; Taylor, R. Lynn
1998-01-01
U.S. Environmental Protection Agency Method 7471 (Cold Vapor Atomic Absorption) was an acceptable analytical method for determining the total mercury concentrations in the Lavaca-Matagorda Bays estuarine sediment samples. Measurement of additional trace metals would aid in the characterization of total mercury concentrations and in the identification of concentrator/collector relations that are principally responsible for the adsorption of mercurous compounds to particulates in the bottom sediments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... produced by electrowinning Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562 Total suspended... produced by electrowinning Antimony 89.680 40.000 Arsenic 65.310 29.060 Mercury 7.812 3.125 Total suspended...
Willford, Wayne A.; Hesselberg, Robert J.; Bergman, Harold L.
1973-01-01
Total mercury in a variety of substances is determined rapidly and precisely by direct sample combustion, collection of released mercury by amalgamation, and photometric measurement of mercury volatilized from the heated amalgam. Up to 0.2 g fish tissue is heated in a stream of O2 (1.2 L/min) for 3.5 min in 1 tube of a 2-tube induction furnace. The released mercury vapor and combustion products are carried by the stream of O2 through a series of traps (6% NaOH scrubber, water condenser, and Mg(CIO4)2 drying tube) and the mercury is collected in a 10 mm diameter column of 24 gauge gold wire (8 g) cut into 3 mm lengths. The resulting amalgam is heated in the second tube of the induction furnace and the volatilized mercury is measured with a mercury vapor meter equipped with a recorder-integrator. Total analysis time is approximately 8 min/sample. The detection limit is less than 0.002 μg and the system is easily converted for use with other biological materials, water, and sediments.
NASA Technical Reports Server (NTRS)
Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.
2017-01-01
Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.
Llull, Rosa Maria; Garí, Mercè; Canals, Miquel; Rey-Maquieira, Teresa; Grimalt, Joan O
2017-10-01
The present study reports total mercury (THg) and methylmercury (MeHg) concentrations in 32 different lean fish species from the Western Mediterranean Sea, with a special focus on the Balearic Islands. The concentrations of THg ranged between 0.05mg/kg ww and 3.1mg/kg ww (mean 0.41mg/kg ww). A considerable number of the most frequently fish species consumed by the Spanish population exceed the maximum levels proposed by the European legislation when they originate from the Mediterranean Sea, such as dusky grouper (100% of the examined specimens), common dentex (65%), conger (45%), common sole (38%), hake (26%) and angler (15%), among others. The estimated weekly intakes (EWI) in children (7-12 years of age) and adults from the Spanish population (2.7µg/kg bw and 2.1µg/kg bw, respectively) for population only consuming Mediterranean fish were below the provisional tolerable weekly intake (PTWI) of THg established by EFSA in 2012, 4µg/kg bw. However, the equivalent estimations for methylmercury, involving PTWI of 1.3µg/kg bw, were two times higher in children and above 50% in adults. For hake, sole, angler and dusky grouper, the most frequently consumed fish, the estimated weekly intakes in both children and adults were below the maximum levels accepted. These intakes correspond to maximum potential estimations because fish from non-Mediterranean origin is often consumed by the Spanish population including the one from the Balearic Islands. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Malinina, A. A.; Malinin, A. N.
2015-03-01
Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold and... monthly average mg/troy ounce of silver reduced in solution Lead 0.168 0.080 Mercury 0.100 0.040 Silver 0... property Maximum for any 1 day Maximum for monthly average mg/troy ounce of gold refined electrolytically...
Spatial distribution of chemical constituents in the Kuskokwim River, Alaska
Wang, Bronwen
1999-01-01
The effects of lithologic changes on the water quality of the Kuskokwim River, Alaska, were evaluated by the U.S. Geological Survey in June 1997. Water, suspended sediments, and bed sediments were sampled from the Kusko-kwim River and from three tributaries, the Holitna River, Red Devil Creek, and Crooked Creek. Dissolved boron, chromium, copper, manganese, zinc, aluminum, lithium, barium, iron, antimony, arsenic, mercury, and strontium were detected. Dissolved manganese and iron concentrations were three and four times higher in the Holitna River than in the Kusko-kwim River. Finely divided ferruginous materials found in the graywacke and shale units of the Kuskokwim Group are the probable source of the iron. The highest concentrations of dissolved strontium and barium were found at McGrath, and the limestone present in the upper basin was the most probable source of strontium. The total mercury concentrations on the Kuskokwim River decreased downstream from McGrath. Dissolved mercury was 24 to 32 percent of the total concentration. The highest concentrations of total mercury, and of dissolved antimony and arsenic were found in Red Devil Creek. The higher concentrations from Red Devil Creek did not affect the main stem mercury transport because the tributary was small relative to the Kuskokwim River. In Red Devil Creek, total mercury exceeded the concentration at which the U.S. Environmental Protection Agency (USEPA) indicates that aquatic life is affected and dissolved arsenic exceeded the USEPA's drinking-water standard. Background mercury and antimony concentrations in bed sediments ranged from 0.09 to 0.15 micrograms per gram for mercury and from 1.6 to 2.1 micrograms per gram for antimony. Background arsenic concentrations were greater than 27 micrograms per gram. Sites near the Red Devil mercury mine had mercury and antimony concentrations greater than background concentrations. These concentrations probably reflect the proximity to the ore body and past mining. Crooked Creek had mercury concentrations greater than the background concentration. The transport of suspended sediment-associated trace elements was lower for all elements in the lower river than in the upper river, indicating storage of sediments and their associated metals within the river system.
A comparison of the dynamics and bioconcentration of mercury in Oregon reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.; Curtis, L.
1995-12-31
The authors assessed the extent of mercury pollution and its bioconcentration effects in fish in two Oregon reservoirs. Cottage Grove and Dorena Reservoirs are located in same ecoregions but distinguished by the history of mercury mining in the formers watershed. Past mercury mining activity deposited up to 271 {micro}g/g mercury and 2.6 mg/g sulfur in soils of near Black Butte Mine, OR. Sediment mercury concentration in the main tributary of Cottage Grove Reservoir, which drains the tailings of the past mercury mine, was ten times higher than in sediment from other tributaries to the reservoir. However there was no significantlymore » difference between mercury concentration in each tributary of Dorena Reservoir, which has no mercury mining history in its watershed. Average mercury concentration in sediment of Cottage Grove Reservoir (0.67 {micro}g/g dw) was higher than of Dorena Reservoir (0.12 {micro}g/g dw). The authors also determined percent volatile solid and grain size effect in sediment. Maximum mercury concentration exceeded the FDA limit 1 {micro}g/g ww for largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus) in Cottage Grove Reservoir. All fish species (largemouth bass, bluegill, crappie (Pomoxis nigromaculatus), catfish (Ictalurus nebulosus)) from Cottage Grove Reservoir had significantly higher levels of mercury than from Dorena Reservoir. Fish weight and age was positively correlated with mercury concentration in both-reservoirs and seasonal variation of mercury concentration in fish was examined. These results indicate that the Black Butte Mine is the main source of mercury and mercury bioconcentration in fish represents a management problem in Cottage Grove Reservoir.« less
Exposure to mercury among Spanish preschool children: Trend from birth to age four
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llop, Sabrina, E-mail: llop_sab@gva.es; Spanish Consortium for Research on Epidemiology and Public Health; Murcia, Mario
The purpose of this study is to describe the total hair mercury concentrations and their determinants in preschool Spanish children, as well as to explore the trend in mercury exposure from birth to the age four. This evolution has been scarcely studied in other birth cohort studies. The study population was 580 four year old children participating in the INMA (i.e. Childhood and Environment) birth cohort study in Valencia (2008–2009). Total mercury concentration at age four was measured in hair samples by atomic absorption spectrometry. Fish consumption and other covariates were obtained by questionnaire. Multivariate linear regression models were conductedmore » in order to explore the association between mercury exposure and fish consumption, socio-demographic characteristics and prenatal exposure to mercury. The geometric mean was 1.10 µg/g (95%CI: 1.02, 1.19). Nineteen percent of children had mercury concentrations above the equivalent to the Provisional Tolerable Weekly Intake proposed by WHO. Mercury concentration was associated with increasing maternal age, fish consumption and cord blood mercury levels, as well as decreasing parity. Children whose mothers worked had higher mercury levels than those with non working mothers. Swordfish, lean fish and canned fish were the fish categories most associated with hair mercury concentrations. We observed a decreasing trend in mercury concentrations between birth and age four. In conclusion, the children participating in this study had high hair mercury concentrations compared to reported studies on children from other European countries and similar to other countries with high fish consumption. The INMA study design allows the evaluation of the exposure to mercury longitudinally and enables this information to be used for biomonitoring purposes and dietary recommendations. - Highlights: • The geometric mean of hair Hg concentrations was 1.10 µg/g. • 19% of children had Hg concentrations above the RfD proposed by the WHO. • Hair Hg concentrations in children increased as a function of total fish intake. • Swordfish, lean fish and canned fish were the most related to Hg concentrations. • There was a decrease in Hg concentrations from birth to age four.« less
Hayer, Cari-Ann; Chipps, Steven R.; Stone, James J.
2011-01-01
Elevated mercury concentration has been documented in a variety of fish and is a growing concern for human consumption. Here, we explore the influence of physiochemical and watershed attributes on mercury concentration in walleye (Sander vitreus, M.) from natural, glacial lakes in South Dakota. Regression analysis showed that water quality attributes were poor predictors of walleye mercury concentration (R2 = 0.57, p = 0.13). In contrast, models based on watershed features (e.g., lake level changes, watershed slope, agricultural land, wetlands) and local habitat features (i.e., substrate composition, maximum lake depth) explained 81% (p = 0.001) and 80% (p = 0.002) of the variation in walleye mercury concentration. Using an information theoretic approach we evaluated hypotheses related to water quality, physical habitat and watershed features. The best model explaining variation in walleye mercury concentration included local habitat features (Wi = 0.991). These results show that physical habitat and watershed features were better predictors of walleye mercury concentration than water chemistry in glacial lakes of the Northern Great Plains.
Langeland, Aubrey L.; Hardin, Rebecca D.; Neitzel, Richard L.
2017-01-01
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)’s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco (Piaractus brachypomus) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities. PMID:28335439
Langeland, Aubrey L; Hardin, Rebecca D; Neitzel, Richard L
2017-03-14
Artisanal and small-scale gold mining (ASGM) has been an important source of income for communities in the Madre de Dios River Basin in Peru for hundreds of years. However, in recent decades, the scale of ASGM activities in the region has increased dramatically, and exposures to a variety of occupational and environmental hazards related to ASGM, including mercury, are becoming more widespread. The aims of our study were to: (1) examine patterns in the total hair mercury level of human participants in several communities in the region and compare these results to the 2.2 µg/g total hair mercury level equivalent to the World Health Organization (WHO) Expert Committee of Food Additives (JECFA)'s Provisional Tolerable Weekly Intake (PTWI); and (2), to measure the mercury levels of paco ( Piaractus brachypomus ) fish raised in local aquaculture ponds, in order to compare these levels to the EPA Fish Tissue Residue Criterion of 0.3 µg Hg/g fish (wet weight). We collected hair samples from 80 participants in four communities (one control and three where ASGM activities occurred) in the region, and collected 111 samples from fish raised in 24 local aquaculture farms. We then analyzed the samples for total mercury. Total mercury levels in hair were statistically significantly higher in the mining communities than in the control community, and increased with increasing geodesic distance from the Madre de Dios headwaters, did not differ by sex, and frequently exceeded the reference level. Regression analyses indicated that higher hair mercury levels were associated with residence in ASGM communities. The analysis of paco fish samples found no samples that exceeded the EPA tissue residue criterion. Collectively, these results align with other recent studies showing that ASGM activities are associated with elevated human mercury exposure. The fish farmed through the relatively new process of aquaculture in ASGM areas appeared to have little potential to contribute to human mercury exposure. More research is needed on human health risks associated with ASGM to discern occupational, residential, and nutritional exposure, especially through tracking temporal changes in mercury levels as fish ponds age, and assessing levels in different farmed fish species. Additionally, research is needed to definitively determine that elevated mercury levels in humans and fish result from the elemental mercury from mining, rather than from a different source, such as the mercury released from soil erosion during deforestation events from mining or other activities.
Radiotracer Dilution Method for Mercury Inventory Study in Electrolytic Cells
NASA Astrophysics Data System (ADS)
Sugiharto, Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Santoso, Sigit Budi; Abidin, Zainal; Santoso, Gatot Budi
2010-06-01
Purpose of the experiment is to demonstrate feasibility the use of radiotracer to measure weight of mercury in electrolytic cells of soda industry. The weight of mercury in each cell of the plant is designed approximately 1700 kg. Radiotracer is prepared by mixing 203 Hg radioactive mercury with 2400 g of inactive mercury in a bath. The respective precisely weighted mercury aliquots to be injected into the cells are prepared by pouring approximately 130 g of radioactive mercury taken from the bath into 13 standard vials, in accordance with the number of the cells tested. Four standard references prepared by further dilution of ±2 g active mercury taken from the bath to obtain the dilution factors range of 12,000 to 20,000 from which the calibration graph is constructed. The injection process is conducting by pouring the radioactive mercury from aliquots into the flowing mercury at the inlet side of the cell and allows them to mix thoroughly. It is assumed that the mass of the radiotracer injected into a closed system remains constant, at least during the period of the test. From this experiment it was observed that the mixing time is two days after injection of radioactive mercury. The inactive mercury in each electrolytic cell calculated by the radiotracer method is of the range 1351.529 kg to 1966.354 kg with maximum error (95% confidence) is 1.52 %. The accuracy of measurement of the present method is better than gravimetric one which accounts 4 % of error on average.
Factors controlling mercury transport in an upland forested catchment
Scherbatskoy, T.; Shanley, J.B.; Keeler, G.J.
1998-01-01
Total mercury (Hg) deposition and input/output relationships were investigated in an 11-ha deciduous forested catchment in northern Vermont as part of ongoing evaluations of rig cycling and transport in the Lake Champlain basin. Atmospheric Hg deposition (precipitation + modeled vapor phase downward flux) was 425 mg ha-1 during the one-year period March 1994 through February 1995 and 463 mg ha-1 from March 1995 through February 1996. In the same periods, stream export of total Hg was 32 mg ha-1 and 22 mg ha-1, respectively. Thus, there was a net retention of Hg by the catchment of 92% the first year and 95% the second year. In the first year, 16.9 mg ha-1 or about half of the annual stream export, occurred on the single day of peak spring snowmelt in April. In contrast, the maximum daily export in the second year, when peak stream flow was somewhat lower, was 3.5 mg ha-1 during a January thaw. The fate of file Hg retained by this forested catchment is not known. Dissolved (< 0.22 ??m) Hg concentrations in stream water ranged from 0.5-2.6 ng L-1, even when total (unfiltered) concentrations were greater than 10 ng L-1 during high flow events. Total Hg concentrations in stream water were correlated with the total organic fraction of suspended sediment, suggesting the importance of organic material in Hg transport within the catchment. High flow events and transport with organic material may be especially important mechanisms for the movement of Hg through forested ecosystems.
A global ocean inventory of anthropogenic mercury based on water column measurements.
Lamborg, Carl H; Hammerschmidt, Chad R; Bowman, Katlin L; Swarr, Gretchen J; Munson, Kathleen M; Ohnemus, Daniel C; Lam, Phoebe J; Heimbürger, Lars-Eric; Rijkenberg, Micha J A; Saito, Mak A
2014-08-07
Mercury is a toxic, bioaccumulating trace metal whose emissions to the environment have increased significantly as a result of anthropogenic activities such as mining and fossil fuel combustion. Several recent models have estimated that these emissions have increased the oceanic mercury inventory by 36-1,313 million moles since the 1500s. Such predictions have remained largely untested owing to a lack of appropriate historical data and natural archives. Here we report oceanographic measurements of total dissolved mercury and related parameters from several recent expeditions to the Atlantic, Pacific, Southern and Arctic oceans. We find that deep North Atlantic waters and most intermediate waters are anomalously enriched in mercury relative to the deep waters of the South Atlantic, Southern and Pacific oceans, probably as a result of the incorporation of anthropogenic mercury. We estimate the total amount of anthropogenic mercury present in the global ocean to be 290 ± 80 million moles, with almost two-thirds residing in water shallower than a thousand metres. Our findings suggest that anthropogenic perturbations to the global mercury cycle have led to an approximately 150 per cent increase in the amount of mercury in thermocline waters and have tripled the mercury content of surface waters compared to pre-anthropogenic conditions. This information may aid our understanding of the processes and the depths at which inorganic mercury species are converted into toxic methyl mercury and subsequently bioaccumulated in marine food webs.
Characterization and speciation of mercury-bearing mine wastes using X-ray absorption spectroscopy
Kim, C.S.; Brown, Gordon E.; Rytuba, J.J.
2000-01-01
Mining of mercury deposits located in the California Coast Range has resulted in the release of mercury to the local environment and water supplies. The solubility, transport, and potential bioavailability of mercury are controlled by its chemical speciation, which can be directly determined for samples with total mercury concentrations greater than 100 mg kg-1 (ppm) using X-ray absorption spectroscopy (XAS). This technique has the additional benefits of being non-destructive to the sample, element-specific, relatively sensitive at low concentrations, and requiring minimal sample preparation. In this study, Hg L(III)-edge extended X-ray absorption fine structure (EXAFS) spectra were collected for several mercury mine tailings (calcines) in the California Coast Range. Total mercury concentrations of samples analyzed ranged from 230 to 1060 ppm. Speciation data (mercury phases present and relative abundances) were obtained by comparing the spectra from heterogeneous, roasted (calcined) mine tailings samples with a spectral database of mercury minerals and sorbed mercury complexes. Speciation analyses were also conducted on known mixtures of pure mercury minerals in order to assess the quantitative accuracy of the technique. While some calcine samples were found to consist exclusively of mercuric sulfide, others contain additional, more soluble mercury phases, indicating a greater potential for the release of mercury into solution. Also, a correlation was observed between samples from hot-spring mercury deposits, in which chloride levels are elevated, and the presence of mercury-chloride species as detected by the speciation analysis. The speciation results demonstrate the ability of XAS to identify multiple mercury phases in a heterogeneous sample, with a quantitative accuracy of ??25% for the mercury-containing phases considered. Use of this technique, in conjunction with standard microanalytical techniques such as X-ray diffraction and electron probe microanalysis, is beneficial in the prioritization and remediation of mercury-contaminated mine sites. (C) 2000 Elsevier Science B.V.
Influence of the forest canopy on total and methyl mercury deposition in the boreal forest
E.L. Witt; R.K. Kolka; E.A. Nater; T.R. Wickman
2009-01-01
Atmospheric mercury deposition by wet and dry processes contributes mercury to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to boreal forests were identified in this study. Throughfall and open canopy precipitation samples were collected in 2005 and 2006 using passive precipitation collectors from pristine sites located across...
Mercury bioaccumulation in Southern Appalachian birds, assessed through feather concentrations
Rebecca Hylton Keller; Lingtian Xie; David B. Buchwalter; Kathleen E. Franzreb; Theodore R Simons
2014-01-01
Mercury contamination in wildlife has rarely been studied in the Southern Appalachians despite high deposition rates in the region. From 2006 to 2008 we sampled feathers from 458 birds representing 32 species in the Southern Appalachians for total mercury and stable isotope ä 15N. Mercury concentrations (mean ± SE) averaged 0.46...
Effects of body position on exercise capacity and pulmonary vascular pressure-flow relationships.
Forton, Kevin; Motoji, Yoshiki; Deboeck, Gael; Faoro, Vitalie; Naeije, Robert
2016-11-01
There has been revival of interest in exercise testing of the pulmonary circulation for the diagnosis of pulmonary vascular disease, but there still is uncertainty about body position and the most relevant measurements. Doppler echocardiography pulmonary hemodynamic measurements were performed at progressively increased workloads in 26 healthy adult volunteers in supine, semirecumbent, and upright positions that were randomly assigned at 24-h intervals. Mean pulmonary artery pressure (mPAP) was estimated from the maximum tricuspid regurgitation jet velocity. Cardiac output was calculated from the left ventricular outflow velocity-time integral. Pulmonary vascular distensibility α-index, the percent change of vessel diameter per millimeter mercury of mPAP, was calculated from multipoint mPAP-cardiac output plots. Body position did not affect maximum oxygen uptake (Vo 2max ), maximum respiratory exchange ratio, ventilatory equivalent for carbon dioxide, or slope of mPAP-cardiac output relationships, which was on average of 1.5 ± 0.4 mmHg·l -1 ·min -1 Maximum mPAP, cardiac output, and total pulmonary vascular resistance were, respectively, 34 ± 4 mmHg, 18 ± 3 l/min, and 1.9 ± 0.3 Wood units. However, the semirecumbent position was associated with a 10% decrease in maximum workload. Furthermore, cardiac output-workload or cardiac output-Vo 2 relationships were nonlinear and variable. These results suggest that body position does not affect maximum exercise testing of the pulmonary circulation when results are expressed as mPAP-cardiac output or maximum total pulmonary vascular resistance. Maximum workload is decreased in semirecumbent compared with upright exercise. Workload or Vo 2 cannot reliably be used as surrogates for cardiac output. Copyright © 2016 the American Physiological Society.
Donato, David I.
2012-01-01
This report presents the mathematical expressions and the computational techniques required to compute maximum-likelihood estimates for the parameters of the National Descriptive Model of Mercury in Fish (NDMMF), a statistical model used to predict the concentration of methylmercury in fish tissue. The expressions and techniques reported here were prepared to support the development of custom software capable of computing NDMMF parameter estimates more quickly and using less computer memory than is currently possible with available general-purpose statistical software. Computation of maximum-likelihood estimates for the NDMMF by numerical solution of a system of simultaneous equations through repeated Newton-Raphson iterations is described. This report explains the derivation of the mathematical expressions required for computational parameter estimation in sufficient detail to facilitate future derivations for any revised versions of the NDMMF that may be developed.
Barletta, M; Lucena, L R R; Costa, M F; Barbosa-Cintra, S C T; Cysneiros, F J A
2012-08-01
Mercury loads in tropical estuaries are largely controlled by the rainfall regime that may cause biodilution due to increased amounts of organic matter (both live and non-living) in the system. Top predators, as Trichiurus lepturus, reflect the changing mercury bioavailability situations in their muscle tissues. In this work two variables [fish weight (g) and monthly total rainfall (mm)] are presented as being important predictors of total mercury concentration (T-Hg) in fish muscle. These important explanatory variables were identified by a Weibull Regression model, which best fit the dataset. A predictive model using readily available variables as rainfall is important, and can be applied for human and ecological health assessments and decisions. The main contribution will be to further protect vulnerable groups as pregnant women and children. Nature conservation directives could also improve by considering monitoring sample designs that include this hypothesis, helping to establish complete and detailed mercury contamination scenarios. Copyright © 2012 Elsevier Ltd. All rights reserved.
Imaging Mercury's Polar Deposits during MESSENGER's Low-altitude Campaign.
Chabot, Nancy L; Ernst, Carolyn M; Paige, David A; Nair, Hari; Denevi, Brett W; Blewett, David T; Murchie, Scott L; Deutsch, Ariel N; Head, James W; Solomon, Sean C
2016-09-28
Images obtained during MESSENGER's low-altitude campaign in the final year of the mission provide the highest-spatial-resolution views of Mercury's polar deposits. Images for distinct areas of permanent shadow within 35 north polar craters were successfully captured during the campaign. All of these regions of permanent shadow were found to have low-reflectance surfaces with well-defined boundaries. Additionally, brightness variations across the deposits correlate with variations in the biannual maximum surface temperature across the permanently shadowed regions, supporting the conclusion that multiple volatile organic compounds are contained in Mercury's polar deposits, in addition to water ice. A recent large impact event or ongoing bombardment by micrometeoroids could deliver water as well as many volatile organic compounds to Mercury. Either scenario is consistent with the distinctive reflectance properties and well-defined boundaries of Mercury's polar deposits and the presence of volatiles in all available cold traps.
Mercury contamination of fish and shrimp samples available in markets of Mashhad, Iran.
Vahabzadeh, Maryam; Balali-Mood, Mahdi; Mousavi, Seyed-Reza; Moradi, Valiollah; Mokhtari, Mehrangiz; Riahi-Zanjani, Bamdad
2013-09-01
Fish and shrimp are common healthy sources of protein to a large percentage of the world's population. Hence, it is vital to evaluate the content of possible contamination of these marine-foods. Six species of fishes and two species of shrimps were collected from the local markets of Mashhad, Iran. The mercury (Hg) concentration of samples was determined by atomic absorption spectrophotometry using a mercuric hydride system (MHS 10). High concentration of total Hg was found in Clupeonella cultriventris caspia (0.93 ± 0.14 μg/g) while the lowest level was detected in Penaeus indicus (0.37 ± 0.03 μg/g). Mean Hg levels in fish and shrimp samples were 0.77 ± 0.08 μg/g and 0.51 ± 0.05 μg/g, respectively. Farmed species (except for P. indicus) and all samples from Persian Gulf and the Caspian Sea had mean mercury concentrations above 0.5 μg/g, which is the maximum standard level recommended by Joint FAO/WHO/Expert Committee on Food Additives (JECFA). All samples had also mean Hg concentrations that exceeded EPA's established safety level of 0.3 μg/g. A little more extensive analysis of data showed that weekly intake of mercury for the proportion of the Iranian population consuming Hg contaminated fish and shrimp is not predicted to exceed the respective provisional tolerable weekly intakes recommended by JECFA. However, the Iranian health and environmental authorities should monitor Hg contamination of the fishes and shrimps before marketing.
Survey of total mercury in some edible fish and shellfish species collected in Canada in 2002.
Dabeka, R; McKenzie, A D; Forsyth, D S; Conacher, H B S
2004-05-01
Total mercury was measured in the edible portions of 244 selected fish and shellfish purchased in Canada at the retail level. By species, average mercury concentrations ranged from 0.011 microg g(-1) for oysters to 1.82 microg g(-1) for swordfish. The predatory fish contained the highest concentrations of mercury: swordfish (mean 1.82 microg g(-1), range 0.40-3.85 microg g(-1)), marlin (1.43, 0.34-3.19 microg g(-1)), shark (1.26, 0.087-2.73 microg g(-1)), and canned, fresh and frozen tuna (0.35, 0.020-2.12 microg g(-1)). Levels of mercury in the fresh and frozen tuna contained a mean of 0.93 microg g(-1) (range 0.077-2.12 microg g(-1)) and were substantially higher than in the canned tuna (0.15, 0.02-0.59 microg g(-1)). In the canned tuna, mercury concentrations varied with subspecies, with the highest average concentrations being found in Albacore tuna (mean 0.26 microg g(-1), range 0.19-0.38 microg g(-1)) and the lowest (0.047, 0.025-0.069 microg g(-1)) in five samples for which the subspecies of tuna were not identified. Mean concentrations of mercury in swordfish and fresh and frozen tuna were up to three times higher than reported for the USA. Dietary intake estimations found that provided fresh and frozen tuna, marlin, swordfish or shark are consumed once a month or less, the dietary intakes of total mercury by women of child-bearing age, averaged over 1 month, would fall below the Joint FAO/WHO Expert Committee on Food Additives provisional tolerable weekly intake for total mercury. The current Canadian advisory to children and women of child-bearing age is to limit their consumption of fresh and frozen tuna, swordfish and shark to no more than one meal per month.
Mercury capture within coal-fired power plant electrostatic precipitators: model evaluation.
Clack, Herek L
2009-03-01
Efforts to reduce anthropogenic mercury emissions worldwide have recently focused on a variety of sources, including mercury emitted during coal combustion. Toward that end, much research has been ongoing seeking to develop new processes for reducing coal combustion mercury emissions. Among air pollution control processes that can be applied to coal-fired boilers, electrostatic precipitators (ESPs) are by far the most common, both on a global scale and among the principal countries of India, China, and the U.S. that burn coal for electric power generation. A previously reported theoretical model of in-flight mercury capture within ESPs is herein evaluated against data from a number of full-scale tests of activated carbon injection for mercury emissions control. By using the established particle size distribution of the activated carbon and actual or estimated values of its equilibrium mercury adsorption capacity, the incremental reduction in mercury concentration across each ESP can be predicted and compared to experimental results. Because the model does not incorporate kinetics associated with gas-phase mercury transformation or surface adsorption, the model predictions representthe mass-transfer-limited performance. Comparing field data to model results reveals many facilities performing at or near the predicted mass-transfer-limited maximum, particularly at low rates of sorbent injection. Where agreement is poor between field data and model predictions, additional chemical or physical phenomena may be responsible for reducing mercury removal efficiencies.
Rice methylmercury exposure and mitigation: a comprehensive review.
Rothenberg, Sarah E; Windham-Myers, Lisamarie; Creswell, Joel E
2014-08-01
Rice cultivation practices from field preparation to post-harvest transform rice paddies into hot spots for microbial mercury methylation, converting less-toxic inorganic mercury to more-toxic methylmercury, which is likely translocated to rice grain. This review includes 51 studies reporting rice total mercury and/or methylmercury concentrations, based on rice (Orzya sativa) cultivated or purchased in 15 countries. Not surprisingly, both rice total mercury and methylmercury levels were significantly higher in polluted sites compared to non-polluted sites (Wilcoxon rank sum, p<0.001). However, rice percent methylmercury (of total mercury) did not differ statistically between polluted and non-polluted sites (Wilcoxon rank sum, p=0.35), suggesting comparable mercury methylation rates in paddy soil across these sites and/or similar accumulation of mercury species for these rice cultivars. Studies characterizing the effects of rice cultivation under more aerobic conditions were reviewed to determine the mitigation potential of this practice. Rice management practices utilizing alternating wetting and drying (instead of continuous flooding) caused soil methylmercury levels to spike, resulting in a strong methylmercury pulse after fields were dried and reflooded; however, it is uncertain whether this led to increased translocation of methylmercury from paddy soil to rice grain. Due to the potential health risks, it is advisable to investigate this issue further, and to develop separate water management strategies for mercury polluted and non-polluted sites, in order to minimize methylmercury exposure through rice ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishir P. Sable; Wiebren de Jong; Ruud Meij
2007-08-15
The present work mainly involves bench scale studies to investigate partitioning of mercury in pulverized fuel co-combustion at 1000 and 1300{sup o}C. High volatile bituminous coal is used as a reference case and chicken manure, olive residue, and B quality (demolition) wood are used as secondary fuels with 10 and 20% thermal shares. The combustion experiments are carried out in an entrained flow reactor with a fuel input of 7-8 kWth. Elemental and total gaseous mercury concentrations in the flue gas of the reactor are measured on-line, and ash is analyzed for particulate mercury along with other elemental and surfacemore » properties. Animal waste like chicken manure behaves very differently from plant waste. The higher chlorine contents of chicken manure cause higher ionic mercury concentrations whereas even with high unburnt carbon, particulate mercury reduces with increase in the chicken manure share. This might be a problem due to coarse fuel particles, low surface area, and iron contents. B-wood and olive residue cofiring reduces the emission of total gaseous mercury and increases particulate mercury capture due to unburnt carbon formed, fine particles, and iron contents of the ash. Calcium in chicken manure does not show any effect on particulate or gaseous mercury. It is probably due to a higher calcium sulfation rate in the presence of high sulfur and chlorine contents. However, in plant waste cofiring, calcium may have reacted with chlorine to reduce ionic mercury to its elemental form. According to thermodynamic predictions, almost 50% of the total ash is melted to form slag at 1300{sup o}C in cofiring because of high calcium, iron, and potassium and hence mercury and other remaining metals are concentrated in small amounts of ash and show an increase at higher temperatures. No slag formation was predicted at 1000{sup o}C. 24 refs., 8 figs., 4 tabs.« less
Ice Core Perspective on Mercury Pollution during the Past 600 Years.
Beal, Samuel A; Osterberg, Erich C; Zdanowicz, Christian M; Fisher, David A
2015-07-07
Past emissions of the toxic metal mercury (Hg) persist in the global environment, yet these emissions remain poorly constrained by existing data. Ice cores are high-resolution archives of atmospheric deposition that may provide crucial insight into past atmospheric Hg levels during recent and historical time. Here we present a record of total Hg (HgT) in an ice core from the pristine summit plateau (5340 m asl) of Mount Logan, Yukon, Canada, representing atmospheric deposition from AD 1410 to 1998. The Colonial Period (∼1603-1850) and North American "Gold Rush" (1850-1900) represent minor fractions (8% and 14%, respectively) of total anthropogenic Hg deposition in the record, with the majority (78%) occurring during the 20th Century. A period of maximum HgT fluxes from 1940 to 1975 coincides with estimates of enhanced anthropogenic Hg emissions from commercial sources, as well as with industrial emissions of other toxic metals. Rapid declines in HgT fluxes following peaks during the Gold Rush and the mid-20th Century indicate that atmospheric Hg deposition responds quickly to reductions in emissions. Increasing HgT fluxes from 1993 until the youngest samples in 1998 may reflect the resurgence of Hg emissions from unregulated coal burning and small-scale gold mining.
Cerbino, M R; Vieira, José Cavalcante Souza; Braga, C P; Oliveira, G; Padilha, I F; Silva, T M; Zara, L F; Silva, N J; Padilha, P M
2018-02-01
Mercury is a potentially toxic element that is present in the environment of the Brazilian Amazon and is responsible for adverse health effects in humans. This study sought to assess possible protein biomarkers of mercury exposure in breast milk samples from lactating women in the Madeira and Negro Rivers in the Brazilian Amazon. The mercury content of hair samples of lactating women was determined, and the proteome of breast milk samples was obtained using two-dimensional electrophoresis after protein precipitation with acetone. Mercury measurements of protein spots obtained via protein fractionation were performed by graphite furnace atomic absorption spectrometry (GFAAS), and it was observed that mercury is linked to proteins with molecular masses in the range of 14-26 kDa. The total mercury concentration was also determined by GFAAS in unprocessed milk, lyophilized milk, and protein pellets, with the purpose of determining the mercury mass balance in relation to the concentration of this element in milk and pellets. Approximately 85 to 97% of mercury present in the lyophilized milk from samples of lactating women of the Madeira River is bound in the protein fraction. From lactating women of the Negro River, approximately 49% of the total mercury is bound in the protein fraction, and a difference of 51% is bound in the lipid fraction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Process Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With... Heaters With Mercury Emission Limits and Boilers and Process Heaters That Choose To Comply With the... operating limits: If you demonstrate compliance with applicable mercury and/or total selected metals...
Mercury Emission From Phragmites in a Contaminated Wetland
NASA Astrophysics Data System (ADS)
Bubb, M.; Peters, S.
2008-12-01
Characterizing the role of vegetation has been an elusive component to a complete understanding of the mercury cycle. Defining this contribution is of ecological and environmental significance as it pertains to contaminated industrial sites. Various studies have demonstrated that foliar exchange of gaseous mercury is bi-directional and may depend on atmospheric concentrations of mercury as well as other environmental parameters. In particular emergent aquatic vegetation such as Typha, Cladium, and Phragmites, in areas of elevated mercury soil concentrations have been shown to generate relatively high daytime fluxes of ~30ng/m2/hr, ~20ng/m2/hr, and in one case 90ng/m2/hr, respectively. For this research mercury fluxes were measured from foliar surfaces of Phragmites australis in a highly contaminated portion of the New Jersey Hackensack Meadowlands using a dynamic flux chamber. The chamber is constructed from UV transparent acrylic sheets sized to average Phragmites leaves and employs a sheath-like design so that it may be easily slid over foliage with minimal interference. The design also circumvents the use of foams or silicone as sealant which in the past have been shown to emit or absorb mercury. Laboratory and field tests have shown good agreement between ambient air and chamber blank mercury levels. During field excursions generally 5-7 adjacent plants would be sampled for 20-30 min each.Over one 6-hour sampling period in late summer 2008 mean Phragmites flux was - 0.12ng/m2/hr±0.25 with a maximum negative flux of -0.64ng/m2/hr. Another sampling period showed a positive average of 0.07ng/m2/hr±0.07 with a maximum of 0.11ng/m2/hr. These values, as well as those observed in earlier literature, are likely the result of significant environmental parameters operating on the mechanism by which foliar flux is produced. Such parameters include, incoming solar radiation, wind velocity, air temperature, air quality, humidity, sediment pore water mercury concentrations, as well as internal leaf properties such as transpiration and relative humidity. It is the ongoing goal of this study to relate the magnitude of mercury flux with said parameters in order to better understand the controls by which emission is enhanced or diminished.
Wan, Qi; Feng, Xinbin; Lu, Julia; Zheng, Wei; Song, Xinjie; Li, Ping; Han, Shijie; Xu, Hao
2009-08-01
Reactive gaseous mercury (RGM) and particulate mercury (Hgp) concentrations in ambient air from a remote site at Changbai Mountain area in northeastern China were intermittently monitored from August 2005 to July 2006 totaling 93 days representing fall, winter-spring and summer season, respectively. Rainwater and snow samples were collected during a whole year, and total mercury (THg) in rain samples were used to calculate wet depositional flux. A throughfall method and a model method were used to estimate dry depositional flux. Results showed mean concentrations of RGM and Hgp are 65 and 77 pg m(-3). Compared to background concentrations of atmospheric mercury species in Northern Hemisphere, RGM and Hgp are significantly elevated in Changbai area. Large values for standard deviation indicated fast reactivity and a low residence time for these mercury species. Seasonal variability is also important, with lower mercury levels in summer compared to other seasons, which is attributed to scavenging by rainfall and low local mercury emissions in summer. THg concentrations ranged from 11.5 to 15.9 ng L(-1) in rainwater samples and 14.9-18.6 ng L(-1) in throughfall samples. Wet depositional flux in Changbai area is calculated to be 8.4 microg m(-2) a(-1), and dry deposition flux is estimated to be 16.5 microg m(-2) a(-1) according to a throughfall method and 20.2 microg m(-2) a(-1) using a model method.
Assessment of mobility and bioavailability of mercury compounds in sewage sludge and composts.
Janowska, Beata; Szymański, Kazimierz; Sidełko, Robert; Siebielska, Izabela; Walendzik, Bartosz
2017-07-01
Content of heavy metals, including mercury, determines the method of management and disposal of sewage sludge. Excessive concentration of mercury in composts used as organic fertilizer may lead to accumulation of this element in soil and plant material. Fractionation of mercury in sewage sludge and composts provides a better understanding of the extent of mobility and bioavailability of the different mercury species and helps in more informed decision making on the application of sludge for agricultural purposes. The experimental setup comprises the composing process of the sewage sludge containing 13.1mgkg -1 of the total mercury, performed in static reactors with forced aeration. In order to evaluate the bioavailability of mercury, its fractionation was performed in sewage sludge and composts during the process. An analytical procedure based on four-stage sequential extraction was applied to determine the mercury content in the ion exchange (water soluble and exchangeable Hg), base soluble (Hg bound to humic and fulvic acid), acid soluble (Hg bound to Fe/Mn oxides and carbonates) and oxidizable (Hg bound to organic matter and sulphide) fractions. The results showed that from 50.09% to 64.55% of the total mercury was strongly bound to organo-sulphur and inorganic sulphide; that during composting, increase of concentrations of mercury compounds strongly bound with organic matter and sulphides; and that mercury content in the base soluble and oxidizable fractions was strongly correlated with concentration of dissolved organic carbon in those fractions. Copyright © 2017 Elsevier Inc. All rights reserved.
Arisawa, K; Takahashi, T; Nakano, A; Liu, X J; Saito, H; Takizawa, Y; Koba, T
2000-02-01
The purpose of this study was to evaluate the presence of exposure to inorganic mercury and its health effects among people living near a sewage sludge dumping site in Nagasaki Prefecture, Japan. In this area, sewage sludge and industrial waste have been dumped since 1975, and total mercury levels exceeding the water quality standards (0.0006-0.0020 mg/l) have been detected in seeping water and river water since July 1997. The population for the present study comprised 48 subjects (aged 11-91 years) living near a sewage sludge dumping site and 49 subjects (aged 10-82 years) living in a non-polluted area. In November and December 1998, subjective symptoms of inorganic mercury exposure, history of occupational exposure to inorganic mercury, frequency of fish intake, sources of drinking water and other health habits were inquired by a self-administered questionnaire. Total mercury and total protein levels and N-acetyl-beta-D-glucosaminidase (NAG) activity in morning urine specimens were also measured. Among males, the proportion of subjects who complained of tremor in the hands (P = 0.02) and increased irritability (P = 0.10) was higher in the polluted area than in the control area. In addition, the proportion of those who did not report being easily fatigued was lower in the polluted area than in the control area (P = 0.07). Among females there was no significant difference in the prevalence of self-reported symptoms related to the central nervous system disturbance between the two areas. After adjustment for gender and age using logistic regression analysis, the prevalence of increased irritability was significantly higher (P = 0.05) and the proportion of those who did not report being easily fatigued was significantly lower (P = 0.03) in the polluted area than in the control area. However, there was no significant difference in the geometric mean of urinary total mercury concentration (microgram/g creatinine) between the polluted area (0.66, 95% confidence interval [CI] 0.48-0.91 for men and 0.96, 95% CI 0.70-1.33 for women) and the control area (0.81, 95% CI 0.60-1.09 for men and 0.83, 95% CI 0.57-1.22 for women). There was no individual whose total mercury concentration in urine exceeded 30 micrograms/g creatinine, at which level of urinary total mercury toxic effects on the central nervous system have been reported in industrial workers. There was also no significant difference in the geometric means of urinary total protein level and NAG activity. There was no evidence of excessive exposure to inorganic mercury among residents in the polluted area. Thus, we concluded that the difference in the prevalence of subjective symptoms was not due to the direct effect of exposure to inorganic mercury. To prevent the contamination of water by taking measures against pollution sources, monitoring of the quality of drinking water, and finally to secure safe water supply by public waterworks are required.
Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A
2015-01-01
Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.
THE ONTARIO HYDRO METHOD FOR SPECIATED MERCURY MEASUREMENTS: ISSUES AND CONSIDERATIONS
The Ontario Hydro (OH) method has been developed for the measurement of total and speciated mercury emissions from coal-fired combustion sources. The OH method was initially developed to support EPA's information collection request to characterize and inventory mercury emissions ...
Webb, M A H; Feist, G W; Fitzpatrick, M S; Foster, E P; Schreck, C B; Plumlee, M; Wong, C; Gundersen, D T
2006-04-01
This study determined the partitioning of total mercury in liver, gonad, and cheek muscle of white sturgeon (Acipenser transmonatus) in the lower Columbia River. The relationship between tissue mercury concentrations and various physiologic parameters was assessed. White sturgeon were captured in commercial fisheries in the estuary and Bonneville, The Dalles, and John Day Reservoirs. Condition factor (CF), relative weight (Wr), and gonadosomatic index (GSI) were determined for each fish (n = 57). Gonadal tissue was examined histologically to determine sex and stage of maturity. Liver (n = 49), gonad (n = 49), and cheek muscle (n = 57) were analyzed for total mercury using cold-vapor atomic fluorescence spectrophotometry. Tissue protein concentrations were measured by ultraviolet-visible spectroscopy. Plasma was analyzed for testosterone (T), 11-ketotestosterone (KT), and 17ss-estradiol (E2) using radioimmunoassay. Mean tissue mercury concentrations were higher in muscle compared with liver and gonad at all sampling locations, except Bonneville Reservoir where mean liver mercury content was the highest tissue concentration observed in the study. Significant negative correlations between plasma androgens (T and KT) and muscle mercury content and plasma E2 and liver mercury content were found. A significant positive linear relationship between white sturgeon age and liver mercury concentrations was evident. Significant negative correlations between CF and relative weight and gonad and liver mercury content were found. In addition, immature male sturgeon with increased gonad mercury content had decreased GSIs. These results suggest that mercury, in the form of methylmercury, may have an effect on the reproductive potential of white sturgeon.
Determination and assessment of total mercury levels in local, frozen and canned fish in Lebanon.
Obeid, Pierre J; El-Khoury, Bilal; Burger, Joanne; Aouad, Samer; Younis, Mira; Aoun, Amal; El-Nakat, John Hanna
2011-01-01
Fish is an important constituent of the Lebanese diet. However, very little attention in our area is given to bring awareness regarding the effect of the toxicity of mercury (Hg) mainly through fish consumption. This study aimed to report analytical data on total mercury levels in several fish species for the first time in thirty years and to also made individuals aware of the presence and danger from exposure to mercury through fish consumption. Fish samples were selected from local Lebanese markets and fisheries and included 94 samples of which were fresh, frozen, processed, and canned fish. All values were reported as microgram of mercury per gram of fish based on wet weight. The level of mercury ranged from 0.0190 to 0.5700 microg/g in fresh samples, 0.0059 to 0.0665 microg/g in frozen samples, and 0.0305 to 0.1190 microg/g in canned samples. The data clearly showed that higher levels of mercury were detected in local fresh fish as opposed to other types thus placing consumers at higher risk from mercury exposure. Moreover, the data revealed that Mallifa (yellowstripe barracuda/Sphyraena chrysotaenia), Sargous (white seabream/Diplodus sargus), Ghobbos (bogue/Boops boops), and shrimp (Penaeus sp.) were among the types containing the highest amounts of mercury. On the other hand, processed fish such as fish fillet, fish burger, small shrimp and crab are found to contain lower levels of mercury and are associated with lower exposure risks to mercury. Lebanese population should therefore, be aware to consume limited amounts of fresh local fish to minimize exposure to mercury.
Aspmo, Katrine; Temme, Christian; Berg, Torunn; Ferrari, Christophe; Gauchard, L Pierre-Alexis; Fain, Xavier; Wibetoe, Grethe
2006-07-01
Atmospheric mercury speciation measurements were performed during a 10 week Arctic summer expedition in the North Atlantic Ocean onboard the German research vessel RV Polarstern between June 15 and August 29, 2004. This expedition covered large areas of the North Atlantic and Arctic Oceans between latitudes 54 degrees N and 85 degrees N and longitudes 16 degrees W and 16 degrees E. Gaseous elemental mercury (GEM), reactive gaseous mercury (RGM) and mercury associated with particles (Hg-P) were measured during this study. In addition, total mercury in surface snow and meltwater ponds located on sea ice floes was measured. GEM showed a homogeneous distribution over the open North Atlantic Ocean (median 1.53 +/- 0.12 ng/m3), which is in contrast to the higher concentrations of GEM observed over sea ice (median 1.82 +/- 0.24 ng/m3). It is hypothesized that this results from either (re-) emission of mercury contained in snow and ice surfaces that was previously deposited during atmospheric mercury depletion events (AMDE) in the spring or evasion from the ocean due to increased reduction potential at high latitudes during Arctic summer. Measured concentrations of total mercury in surface snow and meltwater ponds were low (all samples <10 ng/L), indicating that marginal accumulation of mercury occurs in these environmental compartments. Results also reveal low concentrations of RGM and Hg-P without a significant diurnal variability. These results indicate that the production and deposition of these reactive mercury species do not significantly contribute to the atmospheric mercury cycle in the North Atlantic Ocean during the Arctic summer.
[Mercury Transport from Glacier to Runoff in Typical Inland Glacial Area in the Tibetan Plateau].
Sun, Xue-jun; Wang, Kang; Guo, Jun-ming; Kang, Shi-chang; Zhang, Guo-shuai; Huang, Jie; Cong, Zhi-yuan; Zhang, Qiang-gong
2016-02-15
To investigate the transport of mercury from glacier to runoff in typical inland glacial area in the Tibetan Plateau, we selected Zhadang glacier and Qugaqie river Basin located in the Nyainqentanglha Range region and collected samples from snow pit, glacier melt-water and Qugaqie river water during 15th August to 9'h September 2011. Mercury speciation and concentrations were determined and their distribution and controlling factors in different environmental compartments were analyzed. The results showed that the average THg concentrations were (3.79 +/- 5.12) ng x L(-1), (1.06 +/- 0.77) ng x L(-1) and (1.02 +/- 0.24) ng x L(-1) for glacier snow, glacier melt-water and Qugaqie river water, respectively, all of which were at the global background levels. Particulate-bound mercury accounted for large proportion of mercury in all environmental matrices, while mercury in glacial melt-water was controlled by total suspended particle, and mercury in Qugaqie river water co-varied with runoff. With the increase of temperature, glacier melted and released water as well as mercury into glacier-fed river. Total mercury concentrations in glacier melt water, upstream and downstream peaked at 14:00, 16:00 and after 20:00, respectively, reflecting the process of mercury release from glacier and its subsequent transport in the glacier fed river. The transport of riverine mercury was controlled by multiple factors. Under the context of climate change, glacier ablation and the increasing runoff will play increasingly important roles in mercury release and transport.
Comparative observations on levels of mercury in scalp hair of humans from different Islands
NASA Astrophysics Data System (ADS)
Renzoni, Aristeo
1992-09-01
Following the Minamata events, an extraordinary number of studies concerning mercury toxicity and human health have been undertaken. Particular attention has been given to the evaluation of the dose-response relationship, i.e., the body burden at which (evaluated through the mercury analyses in blood or hair) the risk of poisoning begins. The results of a comparative study concerning levels of mercury in the hair of fishermen living in small islands who eat seafood more than four times per week show that in two areas only, and only in a few cases in these areas, the mercury in the hair exceeds the limit at which a possible risk could exist. In fact, the limit of 50 mg/g of total mercury in the hair (indicated as the lower limit above which a possible risk could occur) is surpassed by nine fishermen out of a total of 39 at station 1 and by four fishermen out of a total of 26 at station 3. The average value at station 1 is 36.38 mg/g and that at station 3 is 30.31 mg. Many countries have set legal limits of mercury for seafood, but evidently the system does not offer a true protection for man. Only the provisional tolerable weekly intake (PTWI), as repeatedly suggested by WHO, should be considered the best guideline to prevent possibly harmful consequences.
Microbial mercury methylation in Antarctic sea ice.
Gionfriddo, Caitlin M; Tate, Michael T; Wick, Ryan R; Schultz, Mark B; Zemla, Adam; Thelen, Michael P; Schofield, Robyn; Krabbenhoft, David P; Holt, Kathryn E; Moreau, John W
2016-08-01
Atmospheric deposition of mercury onto sea ice and circumpolar sea water provides mercury for microbial methylation, and contributes to the bioaccumulation of the potent neurotoxin methylmercury in the marine food web. Little is known about the abiotic and biotic controls on microbial mercury methylation in polar marine systems. However, mercury methylation is known to occur alongside photochemical and microbial mercury reduction and subsequent volatilization. Here, we combine mercury speciation measurements of total and methylated mercury with metagenomic analysis of whole-community microbial DNA from Antarctic snow, brine, sea ice and sea water to elucidate potential microbially mediated mercury methylation and volatilization pathways in polar marine environments. Our results identify the marine microaerophilic bacterium Nitrospina as a potential mercury methylator within sea ice. Anaerobic bacteria known to methylate mercury were notably absent from sea-ice metagenomes. We propose that Antarctic sea ice can harbour a microbial source of methylmercury in the Southern Ocean.
EDITORIAL: Mercury-free discharges for lighting
NASA Astrophysics Data System (ADS)
Haverlag, M.
2007-07-01
This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this special issue. These initiatives may in time offer realistic alternatives for mercury-containing discharge lamps as the efficiency gap with existing products is getting smaller. At the same time, new applications for radiation sources are becoming more important, and in some of them the presence of mercury has other disadvantages besides the environmental aspects. Since in most cases mercury is used in the form of a saturated vapour, the mercury pressure is dependent on the ambient temperature, which means that mercury-containing lamps often show a slow increase to the steady-state light output or a strongly reduced output in cold environments, which is undesirable in many applications. For this reason also, different options for light sources without mercury are being investigated, and a number of them can be found in this special issue. This collection of papers gives a good overview of the different technologies that are currently being investigated as alternatives to existing lamp technologies, and will surely inspire others to reduce the use of mercury for lighting applications.
Mercury in wetlands at the Glacial Ridge National Wildlife Refuge, northwestern Minnesota, 2007-9
Cowdery, Timothy K.; Brigham, Mark E.
2013-01-01
The Glacial Ridge National Wildlife Refuge was established in 2004 on land in northwestern Minnesota that had previously undergone extensive wetland and prairie restorations. About 7,000 acres of drained wetlands were restored to their original hydrologic function and aquatic ecosystem. During 2007–9, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service and the Red Lake Watershed District, analyzed mercury concentrations in wetland water and sediment to evaluate the effect of wetland restoration on mercury methylation. The wetland waters sampled generally were of the calcium/magnesium bicarbonate type. Nitrogen in water was mostly in the form of dissolved-organic nitrogen, with very low dissolved-nitrate and dissolved-ammonia concentrations. About 71 percent of all phosphorus in water was dissolved, with one-half of that in the form of orthophosphorus. Wetland water had total-mercury and methylmercury concentrations ranging from 1.5 to 20 nanograms per liter (ng/L) and 0.2 to 16 ng/L, respectively. Median concentrations were 7.1 and 2.9 ng/L, respectively. About one-half of the mercury in wetland water samples was in the form of methylmercury, but this form ranged from 7 to 81 percent of each sample. Compared to concentrations in stream sediment samples collected throughout the United States, Glacial Ridge National Wildlife Refuge wetland sediment samples contained typical total-mercury concentrations, but methylmercury concentrations were nearly twice as high. The maximum concentration measured in Glacial Ridge National Wildlife Refuge wetland water approached the highest published water methylmercury concentration in uncontaminated waters of which we are aware. However, the upper quartile of water methylmercury concentrations is similar to concentrations reported for some impoundments and wetlands in northwestern Minnesota and North Dakota. Methylmercury concentrations in sampled wetlands were much higher than those from typical lakes or flowing streams throughout the United States. The high concentrations of methylmercury measured in sampled wetlands indicate the potential for substantial methylmercury concentrations in aquatic biota and wildlife that consume those biota. These wetlands also are a methylmercury source for downstream lakes and rivers. The high concentrations of methylmercury in water, its bioaccumulation potential, and its known toxicity in aquatic birds and food webs highlight a need to assess methylmercury in the biota within these ecosystems. Better understanding of factors that control methylmercury production concentrations within aquatic food webs in ecosystems of the Glacial Ridge National Wildlife Refuge would enable resource managers to better understand and manage risk to wildlife.
A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...
Using Fur to Estimate Mercury Concentrations in Mink
Total mercury (Hg) concentrations in fur and muscle tissue from mink (Mustela vison) were compared to determine the utility of fur analysis as a non-lethal and convenient method for predicting mercury concentrations in tissues. Sixty nine wild-trapped mink were collected in Rhode...
BIOAVAILABILITY OF MERCURY IN SEDIMENTS FROM A FLOOD CONTROL RESERVOIR TO HYALELLA AZTECA
In the last three years, mercury contamination in North Mississippi flood control reservoirs has become a growing concern. Previous data indicate that three flood control reservoirs have similar total mercury sediment concentrations and that fish collected from one reservoir cont...
Condini, Mario V; Hoeinghaus, David J; Roberts, Aaron P; Soulen, Brianne K; Garcia, Alexandre M
2017-02-15
Our study incorporated a comprehensive suite of parameters (i.e., body size, age, diet and trophic position) to investigate mercury concentration in dusky groupers Epinephelus marginatus. This study was carried out in rocky bottoms in littoral and neritic habitats along the Southern Brazilian coast. We also determined spatial variation in mercury concentrations in individuals inhabiting both zones, which may provide insights into how dietary differences or potential pollution sources affect bioaccumulation. A total of 244 dusky groupers was analyzed to determine total mercury concentrations. Our study revealed that when considering similar body sizes, individuals inhabiting littoral rocky habitats had higher concentrations of mercury probably due to proximity to pollution sources associated with human activities in the estuary and its drainage basin. Furthermore, large individuals (>650mm and >8years old) showed mercury contamination levels that are potentially harmful for this endangered fish species and above the acceptable limits for human consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance capabilities of the 8-cm mercury ion thruster
NASA Technical Reports Server (NTRS)
Mantenieks, M. A.
1981-01-01
A preliminary characterization of the performance capabilities of the 8-cm thruster in order to initiate an evaluation of its application to LSS propulsion requirements is presented. With minor thruster modifications, the thrust was increased by about a factor of four while the discharge voltage was reduced from 39 to 22 volts. The thruster was operated over a range of specific impulse of 1950 to 3040 seconds and a maximum total efficiency of about 54 percent was attained. Preliminary analysis of component lifetimes, as determined by temperature and spectroscopic line intensity measurements, indicated acceptable thruster lifetimes are anticipated at the high power level operation.
Money, Eric S; Sackett, Dana K; Aday, D Derek; Serre, Marc L
2011-09-15
Mercury in fish tissue is a major human health concern. Consumption of mercury-contaminated fish poses risks to the general population, including potentially serious developmental defects and neurological damage in young children. Therefore, it is important to accurately identify areas that have the potential for high levels of bioaccumulated mercury. However, due to time and resource constraints, it is difficult to adequately assess fish tissue mercury on a basin wide scale. We hypothesized that, given the nature of fish movement along streams, an analytical approach that takes into account distance traveled along these streams would improve the estimation accuracy for fish tissue mercury in unsampled streams. Therefore, we used a river-based Bayesian Maximum Entropy framework (river-BME) for modern space/time geostatistics to estimate fish tissue mercury at unsampled locations in the Cape Fear and Lumber Basins in eastern North Carolina. We also compared the space/time geostatistical estimation using river-BME to the more traditional Euclidean-based BME approach, with and without the inclusion of a secondary variable. Results showed that this river-based approach reduced the estimation error of fish tissue mercury by more than 13% and that the median estimate of fish tissue mercury exceeded the EPA action level of 0.3 ppm in more than 90% of river miles for the study domain.
Mercury Exposure in Young Children Living in New York City
Jeffery, Nancy; Kieszak, Stephanie; Fritz, Pat; Spliethoff, Henry; Palmer, Christopher D.; Parsons, Patrick J.; Kass, Daniel E.; Caldwell, Kathy; Eadon, George; Rubin, Carol
2007-01-01
Residential exposure to vapor from current or previous cultural use of mercury could harm children living in rental (apartment) homes. That concern prompted the following agencies to conduct a study to assess pediatric mercury exposure in New York City communities by measuring urine mercury levels: New York City Department of Health and Mental Hygiene’s (NYCDOHMH) Bureau of Environmental Surveillance and Policy, New York State Department of Health/Center for Environmental Health (NYSDOHCEH), Wadsworth Center’s Biomonitoring Program/Trace Elements Laboratory (WC-TEL), and Centers for Disease Control and Prevention (CDC). A previous study indicated that people could obtain mercury for ritualistic use from botanicas located in Brooklyn, Manhattan, and the Bronx. Working closely with local community partners, we concentrated our recruiting efforts through health clinics located in potentially affected neighborhoods. We developed posters to advertise the study, conducted active outreach through local partners, and, as compensation for participation in the study, we offered a food gift certificate redeemable at a local grocer. We collected 460 urine specimens and analyzed them for total mercury. Overall, geometric mean urine total mercury was 0.31 μg mercury/l urine. One sample was 24 μg mercury/l urine, which exceeded the (20 μg mercury/l urine) NYSDOH Heavy Metal Registry reporting threshold for urine mercury exposure. Geometric mean urine mercury levels were uniformly low and did not differ by neighborhood or with any clinical significance by children’s ethnicity. Few parents reported the presence of mercury at home, in a charm, or other item (e.g., skin-lightening creams and soaps), and we found no association between these potential sources of exposure and a child’s urinary mercury levels. All pediatric mercury levels measured in this study were well below a level considered to be of medical concern. This study found neither self-reported nor measured evidence of significant mercury use or exposure among participating children. Because some participants were aware of the possibility that they could acquire and use mercury for cultural or ritualistic purposes, community education about the health hazards of mercury should continue. PMID:17957474
Measuring mercury in coastal fog water
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2012-04-01
Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)
Souza-Araujo, J; Giarrizzo, T; Lima, M O; Souza, M B G
2016-07-01
This study assessed total mercury (THg) and methyl mercury (MeHg) concentrations, bioaccumulation and biomagnification of THg through the food web in fishes consumed by indigenous communities of Bacajá River, the largest tributary of the right bank of Xingu River. In total, 496 fish (22 species) were sampled. Nine species had THg concentrations above the limit recommended by the World Health Organisation (0·5 µg g(-1) wet mass), and one exceeded the recommended level for Hg in predatory fishes by Brazilian law (1·0 µg g(-1) ). The average concentration of THg increased significantly with trophic guild (herbivorous to piscivorous) and trophic level, with higher accumulation in fishes with greater total length. Ninety-six per cent of all mercury was methylated. These results suggest that feeding habits determine THg concentrations in fishes and that Hg elimination rate is slow during growth, which allows greater accumulation. These findings show that fishes in the Bacajá River contain high concentrations of THg and MeHg. © 2016 The Fisheries Society of the British Isles.
Giacomino, Agnese; Ruo Redda, Andrea; Squadrone, Stefania; Rizzi, Marco; Abete, Maria Cesarina; La Gioia, Carmela; Toniolo, Rosanna; Abollino, Ornella; Malandrino, Mery
2017-04-15
The applicability to the determination of mercury in tuna of square wave anodic stripping voltammetry (SW-ASV) conducted at both solid gold electrode (SGE) and a gold nanoparticle-modified glassy carbon electrode (AuNPs-GCE) was demonstrated. Mercury content in two certified materials and in ten samples of canned tuna was measured. The performances of the electrodes were compared with one another as well as with two spectroscopic techniques, namely cold vapour atomic absorption spectroscopy (CV-AAS) and a direct mercury analyser (DMA). The results found pointed out that both SW-ASV approaches were suitable and easy-to-use method to monitor mercury concentration in tunas, since they allowed accurate quantification at concentration values lower than the maximum admissible level in this matrix ([Hg]=1mg/kg wet weight,ww ). In particular, mercury detection at the AuNPs-GCE showed a LOQ in fish-matrix of 0.1μg/l, corresponding to 0.06mg/kg ww , with performance comparable to that of DMA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Determination of total mercury in aluminium industrial zones and soil contaminated with red mud.
Rasulov, Oqil; Zacharová, Andrea; Schwarz, Marián
2017-08-01
This study investigated total mercury contents in areas impacted by aluminium plants in Tajikistan and Slovakia and in one area flooded with red mud in Hungary. We present the first determination of total mercury contents in the near-top soil (0-10 and 10-20 cm) in Tajikistan and the first comparative investigation of Tajikistan-Slovakia-Hungary. The Tajik Aluminium Company (TALCO) is one of the leading producers of primary aluminium in Central Asia. In the past 30 years, the plant has been producing large volumes of industrial waste, resulting in negative impacts on soil, groundwater and air quality of the surrounding region. Mercury concentrations were significant in Slovakia and Hungary, 6 years after the flooding. In studied areas in Slovakia and Hungary, concentrations of total mercury exceeded the threshold limit value (TLV = 0.5 mg Hg kg -1 ). However, in Tajikistan, values were below the TLV (0.006-0.074 mg kg -1 ) and did not significantly vary between depths. Total Hg in Slovakia ranged from 0.057 to 0.668 mg kg -1 and in Hungary from 0.029 to 1.275 mg kg -1 . However, in the plots near to the red mud reservoir and the flooded area, Hg concentrations were higher in the upper layers than in the lower ones.
Lifespan mercury accumulation pattern in Liza aurata : Evidence from two southern European estuaries
NASA Astrophysics Data System (ADS)
Tavares, S.; Oliveira, H.; Coelho, J. P.; Pereira, M. E.; Duarte, A. C.; Pardal, M. A.
2011-10-01
Mercury accumulation throughout the lifespan of Liza aurata (Risso, 1810) was analysed in four tissues (muscle, gills, liver and brain) in two southern European coastal ecosystems with distinct mercury contamination. Specimens from four to five age classes were captured in two sampling sites in the Ria de Aveiro (Laranjo bay and Mira), a system historically contaminated by industrial mercury, and in one site in the Mondego estuary, assumed as a mercury-free ecosystem. Mercury concentration in all tissues was found to be significantly higher in the Ria de Aveiro (Laranjo bay) compared to the Mondego, in accordance with the environmental contamination (water, sediments and suspended particulate matter). Significant differences inside the Ria de Aveiro (between the Mira and Laranjo bay) were only detected in the liver. This tissue registered the highest levels of mercury (ranging from 0.11 to 4.2 μg g -1 ) in all sampling sites, followed by muscle, brain, and gills. In all sampling sites and tissues was denoted a mercury dilution pattern along the lifecycle (except in liver at the Mondego, the reference area where the concentrations are always very low). An exponential trend was found in the metal age variation patterns in Laranjo (the most contaminated area) and a linear trend in the Mira and the Mondego (the least contaminated areas). Organic mercury concentration in muscle generally accounted for over 95% of total mercury concentration, and followed the same accumulation pattern of total mercury. This fish species is of lesser importance in mercury transfer to adjacent coastal areas and although the consumption of fish from Laranjo may present some risk for the humans, this risk decreases with fish age/size.
Leclerc, Maxime; Planas, Dolors; Amyot, Marc
2015-07-07
The uptake of mercury by microorganisms is a key step in the production of methylmercury, a biomagnifiable toxin. Mercury complexation by low-molecular-weight (LMW) thiols can affect its bioavailability and thus the production of methylmercury. Freshwater biofilms were sampled in the summer using artificial Teflon substrates submerged for over a year to allow natural community colonization in the littoral zone of a Boreal Shield lake. Inside biofilms, concentrations of different extracellular thiol species (thioglycolic acid, l-cysteine-l-glycine, cysteine, and glutathione) were up to 3 orders of magnitude greater than in the surrounding water column, potentially more readily controlling mercury speciation than in the water column. All biofilm thiols except thioglycolic acid were highly correlated to chlorophyll a, likely indicating an algal origin. Extracellular total mercury represented 3 ± 1% of all biofilm mercury and was preferentially found in the capsular fraction. Levels of LMW thiols of presumed algal origins were highly correlated with total mercury in the mobile colloidal fraction of biofilms. We propose that periphytic phototrophic microorganisms such as algae likely affect the bioavailability of mercury through the exudation of LMW thiols, and thus they may play a key role in the production of methylmercury in biofilms.
Engle, Mark A; Sexauer Gustin, Mae; Johnson, Dale W; Murphy, James F; Miller, Wally W; Walker, Roger F; Wright, Joan; Markee, Melissa
2006-08-15
Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36+/-0.13 g ha(-1), respectively, with litter and vegetation being the most important sources.
MERCURY DEPOSITION AND WATER QUALITY IN THE UPPER MIDWEST, USA
Total wet mercury deposition was monitored weekly at six Upper-Midwest, USA sites for a period of six years, 1990-195, to assess temporal and spatial patterns, and contributions to surface waters. Annual wet mercury deposition averaged 7.4 g Hg/m2yr., showed significant variation...
Mercury hair levels and factors that influence exposure for residents of Huancavelica, Peru
Between 1564 and 1810, nearly 17,000 metric tons of mercury (Hg) vapor were released to the environment during cinnabar refining in the small town of Huancavelica, Peru. The present study characterizes individual exposure to mercury using total and speciated Hg from residential s...
Amphibians in alpine wetlands of the Sierra Nevada mountains comprise key components of an aquatic-terrestrial food chain, and mercury contamination is a concern because concentrations in fish from this regin exceed thresholds of risk to piscivorous wildlife. Total mercury conc...
POWER PLANT EVALUATION OF THE EFFECT OF SCR TECHNOLOGY ON MERCURY
The paper presents results of research on the impact that selective catalytic reduction (SCR) systems have on speciation and total emissions of mercury. Although SCR systems are designed to reduce nitrogen oxides (NOx), they may oxidize elemental mercury (Hg0) to Hg2+, which is m...
FLUE GAS EFFECTS ON A CARBON-BASED MERCURY SORBENT. (R827649)
Coal is now the primary source of anthropogenic mercury emissions in the United States, accounting for 46%, or 72 tons/year, of the total U.S. Environmental Protection Agency (EPA) estimated 158 tons/year [U.S. Environmental Protection Agency, Mercury Study Report to Congress,...
MERCURY IN SEDIMENT AND FISH FROM NORTH MISSISSIPPI LAKES.
Sediments and/or fish were collected from Sardis, Enid and Grenada Lakes, which are located in three different watersheds in North Mississippi, in order to assess mercury contamination. The mean total mercury concentration in sediments from Enid Lake in 1997 was 0.154 mg Hg/kg, w...
Two modified passive samplers were evaluated at multiple field locations. The sampling rate (SR) of the modified polyurethane foam (PUF)-disk passive sampler for total gaseous mercury (TGM) using gold-coated quartz fiber filters (GcQFF) and gaseous oxidized mercury (GOM) using io...
Díez, Elena Gascón; Graham, Neil D; Loizeau, Jean-Luc
2018-05-16
Concentrations and fluxes of total and methylmercury were determined in surface sediments and associated with settling particles at two sites in Lake Geneva to evaluate the sources and dynamics of this toxic contaminant. Total mercury concentrations measured in settling particles were different throughout the seasons and were greatly influenced by the Rhone River particulate inputs. Total mercury concentrations closer to shore (NG2) ranged between 0.073 ± 0.001 and 0.27 ± 0.01 μg/g, and between 0.038 ± 0.001 and 0.214 ± 0.008 μg/g at a site deeper in the lake (NG3). Total mercury fluxes ranged between 0.144 ± 0.002 and 3.0 ± 0.1 μg/m 2 /day at NG2, and between 0.102 ± 0.008 and 1.32 ± 0.08 μg/m 2 /day at NG3. Combined results of concentrations and fluxes showed that total mercury concentrations in settling particles are related to the season and particle inputs from the Rhone River. Despite an observed decrease in total mercury fluxes from the coastal zone towards the open lake, NG3 (~ 3 km from the shoreline) was still affected by the coastal boundary, as compared to distal sites at the center of the lake. Thus, sediment focusing is not efficient enough to redistribute contaminant inputs originating from the coastal zones, to the lake center. Methylmercury concentrations in settling particles largely exceeded the concentrations found in sediments, and their fluxes did not show significant differences with relation to the distance from shore. The methylmercury found associated with settling particles would be related to the lake's internal production rather than the effect of transport from sediment resuspension.
Event-based precipitation samples were collected at a downtown industrial and a predominantly upwind rural location in the Cleveland, Ohio metropolitan area from July 2009 through December 2010 to investigate the potential local total mercury (Hg) wet deposition enhancement in a ...
Voltammetric methods for determination of total sulfide concentrations in anoxic sediments utilizing a previously described [1] gold-based mercury amalgam microelectrode were optimized. Systematic studies in NaCl (supporting electrolyte) and porewater indicate variations in ionic...
INTERLABORATORY STUDY OF THE COLD VAPOR TECHNIQUE FOR TOTAL MERCURY IN WATER
The American Society for Testing and Materials (ASTM) and the U.S. Environmental Protection Agency (EPA) conducted a joint study of the cold vapor technique for total mercury in water, before formal acceptance of the method by each organization. The method employs an acid-permang...
This report summarizes total mercury concentrations for environmental media collected from near-coastal areas including those impacted by contaminant sources common to the Gulf of Mexico. Water, sediment, fish, blue crabs, oysters, clams, mussels, periphyton and seagrasses were ...
Eklöf, Karin; Schelker, Jakob; Sørensen, Rasmus; Meili, Markus; Laudon, Hjalmar; von Brömssen, Claudia; Bishop, Kevin
2014-05-06
Forestry operations can increase the export of mercury (both total and methyl) to surface waters. However, little is known about the relative contribution of different forestry practices. We address this question using a paired-catchment study that distinguishes the effects of site preparation from the antecedent logging. Runoff water from three catchments, two harvested and one untreated control, was sampled biweekly during one year prior to logging, two years after logging, and three years after site preparation. The logging alone did not significantly increase the concentrations of either total or methyl-mercury in runoff, but export increased by 50-70% in one of the harvested catchments as a consequence of increased runoff volume. The combined effects of logging and site preparation increased total and methyl-mercury concentrations by 30-50% relative to preharvest conditions in both treated catchments. The more pronounced concentration effect after site preparation compared to logging could be related to site preparation being conducted during summer. This caused more soil disturbance than logging, which was done during winter with snow covering the ground. The results suggest that the cumulative impact of forest harvest on catchment mercury outputs depends on when and how forestry operations are implemented.
Probabilistic risk analysis of mercury intake via food consumption in Spain.
Moreno-Ortega, Alicia; Moreno-Rojas, Rafael; Martínez-Álvarez, Jesús Román; González Estecha, Montserrat; Castro González, Numa Pompilio; Amaro López, Manuel Ángel
2017-09-01
In Spain, recently, the public institutions have given information to the population in relation to fish consumption and the risk that it poses to health from the ingestion of mercury supposedly contained in the fish. At the same time, several scientific societies have published various works in this direction. All this without there being, up to now, any study on the evaluation of a probabilistic risk from mercury due to fish and seafood intake in Spain, which is the objective of this present work. For that purpose, we took individual data from a survey of the total diet of 3000 people, whose consumption of the principal fish and seafood species (49) was estimated. We compiled individualized data (2000) on the total mercury content of those species, which were completed and validated with bibliographic statistical data. After estimating the distributions of each fish and seafood species, both of their consumption and their mercury content, a simulation was made of the distribution of mercury ingestion from fish and seafood offered by 2.6% of the Spanish population at risk of exceeding total mercury recommendations, and between 12.2% and 21.2% of those exceeding methylmercury ones. The main species responsible were tuna fish, swordfish and hake, and significant differences were identified in fish consumption between sexes and ages, although, in the risk percentage, what stands out is an increase in the latter with an increase in age. Copyright © 2017 Elsevier GmbH. All rights reserved.
Fantozzi, L; Manca, G; Ammoscato, I; Pirrone, N; Sprovieri, F
2013-03-15
An oceanographic cruise campaign on-board the Italian research vessel Urania was carried out from the 26th of August to the 13th of September 2010 in the Eastern Mediterranean. The campaign sought to investigate the mercury cycle at coastal and offshore locations in different weather conditions. The experimental activity focused on measuring mercury speciation in both seawater and in air, and using meteorological parameters to estimate elemental mercury exchange at the sea-atmosphere interface. Dissolved gaseous mercury (DGM), unfiltered total mercury (UTHg) and filtered total mercury (FTHg) surface concentrations ranged from 16 to 114, 300 to 18,760, and 230 to 10,990pgL(-1), respectively. The highest DGM, UTHg and FTHg values were observed close to Augusta (Sicily), a highly industrialized area of the Mediterranean region, while the lowest values were recorded at offshore stations. DGM vertical profiles partially followed the distribution of sunlight, as a result of the photoinduced transformations of elemental mercury in the surface layers of the water column. However, at some stations, we observed higher DGM concentrations in samples taken from the bottom of the water column, suggesting biological mercury production processes or the presence of tectonic activity. Moreover, two days of continuous measurement at one location demonstrated that surface DGM concentration is affected by solar radiation and atmospheric turbulence intensity. Atmospheric measurements of gaseous elemental mercury (GEM) showed an average concentration (1.6ngm(-3)) close to the background level for the northern hemisphere. For the first time this study used a numerical scheme based on a two-thin film model with a specific parameterization for mercury to estimate elemental mercury flux. The calculated average mercury flux during the entire cruise was 2.2±1.5ngm(-2)h(-1). The analysis of flux data highlights the importance of the wind speed on the mercury evasion from sea surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
Substance flow analysis of mercury in Turkey for policy decision support.
Civancik, Didem; Yetis, Ulku
2018-02-01
Identification and quantification of mercury flows in Turkey are essential for better policy development regarding to the implementation of water-related legislation. To this end, substance flow analysis (SFA) of mercury in Turkey was conducted in order to identify and quantify mercury releases to different environmental compartments and help policy decision makers to better understand their options to reduce mercury flows. For the quantification of mercury flows, United Nations Environment Programme (UNEP) Mercury Toolkit, which is develop by UNEP Chemicals Branch with the aim of assisting countries to develop their own mercury inventory, was used. Results of the study showed that a total of 34.61 t of mercury is released annually from the activities in Turkey to different environmental compartments. It was found that most of the mercury releases were to the atmosphere (74 %) and smaller amounts were to land (21 %) and to water (5 %). Mercury naturally found in the lithosphere was found to be responsible for most of the releases while intentional mercury uses have smaller shares and decreasing importance because of the phasing out of mercury.
Accumulation and oxidation of elemental mercury in tropical soils.
Soares, Liliane Catone; Egreja Filho, Fernando Barboza; Linhares, Lucília Alves; Windmoller, Cláudia Carvalhinho; Yoshida, Maria Irene
2015-09-01
The role of chemical and mineralogical soil properties in the retention and oxidation of atmospheric mercury in tropical soils is discussed based on thermal desorption analysis. The retention of gaseous mercury by tropical soils varied greatly both quantitatively and qualitatively with soil type. The average natural mercury content of soils was 0.08 ± 0.06 μg g(-1) with a maximum of 0.215 ± 0.009 μg g(-1). After gaseous Hg(0) incubation experiments, mercury content of investigated soils ranged from 0.6 ± 0.2 to 735 ± 23 μg g(-1), with a mean value of 44 ± 146 μg g(-1). Comparatively, A horizon of almost all soil types adsorbed more mercury than B horizon from the same soil, which demonstrates the key role of organic matter in mercury adsorption. In addition to organic matter, pH and CEC also appear to be important soil characteristics for the adsorption of mercury. All thermograms showed Hg(2+) peaks, which were predominant in most of them, indicating that elemental mercury oxidized in tropical soils. After four months of incubation, the thermograms showed oxidation levels from 70% to 100%. As none of the samples presented only the Hg(0) peak, and the soils retained varying amounts of mercury despite exposure under the same incubation conditions, it became clear that oxidation occurred on soil surface. Organic matter seemed to play a key role in mercury oxidation through complexation/stabilization of the oxidized forms. The lower percentages of available mercury (extracted with KNO3) in A horizons when compared to B horizons support this idea. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bioaccumulation of mercury in the trophic chain of flatfish from the Baltic Sea.
Polak-Juszczak, Lucyna
2012-10-01
Mercury concentrations in three flatfish species - flounder (Platichtys flesus), plaice (Pleuronectes platessa), and Baltic turbot (Scophthalmus maximus), netted in the southern Baltic Sea were assessed and compared to concentrations of this metal in sediments, sea water, and flatfish food - bivalve Macoma balthica, isopod Saduria entomon, and sprat (Sprattus sprattus). Collected simultaneously with flatfish in 2009 and 2010. Different concentrations of mercury depending on species, tissue or organ, sex, individual length, kind of food, and region were determined. The muscle tissues of turbot had the highest concentrations of the metal. The bioaccumulation (BF) and biomagnification (BMF) factors has been counted showing that the muscle tissues of turbot have maximum affinity for mercury, and thus best reflected the metal contamination of the Baltic Sea environment. The data suggest that the common Baltic turbot (S. maximus) is an important model species, suitable and cost-effective to biomonitor environmental mercury pollution for ecological research. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Mercury pollution in cricket in different biotopes suffering from pollution by zinc smelting].
Zheng, Dong-Mei; Li, Xin-Xin; Luo, Qing
2012-10-01
Total mercury contents in cricket bodies were studied in different biotopes in the surrounding of Huludao Zinc Plant to discuss the mercury distribution characteristics in cricket and to reveal the effects of environmental mercury accumulation in the short life-cycle insects through comparing cricket with other insect species. The average mercury content in cricket was 0.081 mg x kg(-1) and much higher than those in the control sites (0.012 mg x kg(-1) in average) in different biotopes. Mercury contents were found in the order of cricket head > wing > thorax approximately abdomen > leg. Mercury contents in cricket bodies varied greatly with sample sites. Significant correlation was found between the mercury contents in cricket and the distance from the pollution source as well as the mercury contents in plant stems. No significant correlation was found between the mercury contents in soil and in cricket bodies. Mercury contents in cricket were lower than those in cicadae, similar to those in other insects with shorter life-cycle periods.
Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades
Reddy, M.M.; Aiken, G.R.
2001-01-01
Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.
Mercury Methylation by Desulfovibrio desulfuricans ND132 in the Presence of Polysulfides
Jay, Jenny Ayla; Murray, Karen J.; Gilmour, Cynthia C.; Mason, Robert P.; Morel, François M. M.; Roberts, A. Lynn; Hemond, Harold F.
2002-01-01
The extracellular speciation of mercury may control bacterial uptake and methylation. Mercury-polysulfide complexes have recently been shown to be prevalent in sulfidic waters containing zero-valent sulfur. Despite substantial increases in total dissolved mercury concentration, methylation rates in cultures of Desulfovibrio desulfuricans ND132 equilibrated with cinnabar did not increase in the presence of polysulfides, as expected due to the large size and charged nature of most of the complexes. In natural waters not at saturation with cinnabar, mercury-polysulfide complexes would be expected to shift the speciation of mercury from HgS0(aq) toward charged complexes, thereby decreasing methylation rates. PMID:12406773
NASA Astrophysics Data System (ADS)
Cossa, Daniel; Durrieu de Madron, Xavier; Schäfer, Jörg; Lanceleur, Laurent; Guédron, Stéphane; Buscail, Roselyne; Thomas, Bastien; Castelle, Sabine; Naudin, Jean-Jacques
2017-02-01
Despite the ecologic and economical importance of coastal areas, the neurotoxic bioaccumulable monomethylmercury (MMHg) fluxes within the ocean margins and exchanges with the open sea remain unassessed. The aim of this paper is to address the questions of the abundance, distribution, production and exchanges of methylated mercury species (MeHgT), including MMHg and dimethylmercury (DMHg), in the waters, atmosphere and sediments of the Northwestern Mediterranean margin including the Rhône River delta, the continental shelf and its slope (Gulf of Lions) and the adjacent open sea (North Gyre). Concentrations of MeHgT ranged from <0.02 to 0.48 pmol L-1 with highest values associated with the oxygen-deficient zone of the open sea. The methylated mercury to total mercury proportion (MeHgT/HgT) increased from 2% to 4% in the Rhône River to up to 30% (averaging 18%) in the North Gyre waters, whereas, within the shelf waters, MeHgT/HgT proportions were the lowest (1-3%). We calculate that the open sea is the major source of MeHgT for the shelf waters, with an annual flux estimated at 0.68 ± 0.12 kmol a-1 (i.e., equivalent to 12% of the HgT flux). This MeHgT influx is more than 80 times the direct atmospheric deposition or the in situ net production, more than 40 times the estimated "maximum potential" annual efflux from shelf sediment, and more than 7 times that of the continental sources. In the open sea, ratios of MMHg/DMHg in waters were always <1 and minimum in the oxygen deficient zones of the water column, where MeHg concentrations are maximum. This observation supports the idea that MMHg could be a degradation product of DMHg produced from inorganic divalent Hg.
Allan, Mohammed; Le Roux, Gael; Sonke, Jeroen E; Piotrowska, Natalia; Streel, Maurice; Fagel, Nathalie
2013-01-01
Four sediment cores were collected in 2008 from the Misten ombrotrophic peat bog in the Northern part of the Hautes Fagnes Plateau in Belgium. Total mercury (Hg) concentrations were analyzed to investigate the intra-site variability in atmospheric Hg deposition over the past 1,500 years. Mercury concentrations in the four cores ranged from 16 to 1,100 μg kg(-1), with the maxima between 840 and 1,100 μg kg(-1). A chronological framework was established using radiometric (210)Pb and (14)C dating of two cores (M1 and M4). Pollen horizons from these two cores were correlated with data from two additional cores, providing a consistent dating framework between all the sites. There was good agreement between atmospheric Hg accumulation rates in the four cores over time based on precise age dating and pollen chronosequences. The average Hg accumulation rate before the influence of human activities (from 500 to 1,300 AD) was 1.8 ± 1 μg m(-2)y(-1) (2SD). Maximum Hg accumulation rates ranged from 90 to 200 μg m(-2)y(-1) between 1930 and 1980 AD. During the European-North American Industrial Revolution, the mean Hg accumulation rate exceeded the pre-Industrial values by a factor of 63. Based on comparisons with historical records of anthropogenic activities in Europe and Belgium, the predominant regional anthropogenic sources of Hg during and after the Industrial Revolution were coal burning and smelter Hg emissions. Mercury accumulation rates and chronologies in the Misten cores were consistent with those reported for other European peat records. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Falandysz, J.; Kubotal, R.; Kunito, T.; Bielawski, L.; Brzostowski, A.; Gucia, M.; Jedrusiak, A.; Lipka, K.; Tanabe, S.
2003-05-01
The relationships between concentrations of total selenium and mercury were investigated for the whole fruiting bodies, caps and/or stalks of King bolete (Boletus edulis), Brown birch scaber stalk (Leccinum scabrum), Parasol mushroom (Macrolepiota procera), Poison pax (Paxillus involutus) and Fly agaric (Amatiita niuscaria) collected from the various sites in Poland. The mushroom species examined varied largely due to the contents and proportions between the total selenium and mercury concentrations, what seems to indicate on species-dependent strategy of co-uptake and accumulation of these elements.
Trasande, Leonardo; DiGangi, Joseph; Evers, David C; Petrlik, Jindrich; Buck, David G; Šamánek, Jan; Beeler, Bjorn; Turnquist, Madeline A; Regan, Kevin
2016-12-01
Several developing countries have limited or no information about exposures near anthropogenic mercury sources and no studies have quantified costs of mercury pollution or economic benefits to mercury pollution prevention in these countries. In this study, we present data on mercury concentrations in human hair from subpopulations in developing countries most likely to benefit from the implementation of the Minamata Convention on Mercury. These data are then used to estimate economic costs of mercury exposure in these communities. Hair samples were collected from sites located in 15 countries. We used a linear dose-response relationship that previously identified a 0.18 IQ point decrement per part per million (ppm) increase in hair mercury, and modeled a base case scenario assuming a reference level of 1 ppm, and a second scenario assuming no reference level. We then estimated the corresponding increases in intellectual disability and lost Disability-Adjusted Life Years (DALY). A total of 236 participants provided hair samples for analysis, with an estimated population at risk of mercury exposure near the 15 sites of 11,302,582. Average mercury levels were in the range of 0.48 ppm-4.60 ppm, and 61% of all participants had hair mercury concentrations greater than 1 ppm, the level that approximately corresponds to the USA EPA reference dose. An additional 1310 cases of intellectual disability attributable to mercury exposure were identified annually (4110 assuming no reference level), resulting in 16,501 lost DALYs (51,809 assuming no reference level). A total of $77.4 million in lost economic productivity was estimated assuming a 1 ppm reference level and $130 million if no reference level was used. We conclude that significant mercury exposures occur in developing and transition country communities near sources named in the Minamata Convention, and our estimates suggest that a large economic burden could be avoided by timely implementation of measures to prevent mercury exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.
Analysis of Halogen-Mercury Reactions in Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paula Buitrago; Geoffrey Silcox; Constance Senior
2010-01-01
Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using amore » wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.« less
NASA Astrophysics Data System (ADS)
Read, Katie A.; Neves, Luis M.; Carpenter, Lucy J.; Lewis, Alastair C.; Fleming, Zoe L.; Kentisbeer, John
2017-04-01
Mercury is a chemical with widespread anthropogenic emissions that is known to be highly toxic to humans, ecosystems and wildlife. Global anthropogenic emissions are around 20 % higher than natural emissions and the amount of mercury released into the atmosphere has increased since the industrial revolution. In 2005 the European Union and the United States adopted measures to reduce mercury use, in part to offset the impacts of increasing emissions in industrialising countries. The changing regional emissions of mercury have impacts on a range of spatial scales. Here we report 4 years (December 2011-December 2015) of total gaseous mercury (TGM) measurements at the Cape Verde Observatory (CVO), a global WMO-GAW station located in the subtropical remote marine boundary layer. Observed total gaseous mercury concentrations were between 1.03 and 1.33 ng m-3 (10th, 90th percentiles), close to expectations based on previous interhemispheric gradient measurements. We observe a decreasing trend in TGM (-0.05 ± 0.04 ng m-3 yr-1, -4.2 % ± 3.3 % yr-1) over the 4 years consistent with the reported decrease of mercury concentrations in North Atlantic surface waters and reductions in anthropogenic emissions. The decrease was more visible in the summer (July-September) than in the winter (December-February), when measurements were impacted by air from the African continent and Sahara/Sahel regions. African air masses were also associated with the highest and most variable TGM concentrations. We suggest that the less pronounced downward trend inclination in African air may be attributed to poorly controlled anthropogenic sources such as artisanal and small-scale gold mining (ASGM) in West Africa.
Mercury enrichment and its effects on atmospheric emissions in cement plants of China
NASA Astrophysics Data System (ADS)
Wang, Fengyang; Wang, Shuxiao; Zhang, Lei; Yang, Hai; Wu, Qingru; Hao, Jiming
2014-08-01
The cement industry is one of the most significant anthropogenic sources of atmospheric mercury emissions worldwide. In this study of three typical Chinese cement plants, mercury in kiln flue gas was sampled using the Ontario Hydro Method (OHM), and solid samples were analyzed. Particulate matter recycling, preheating of raw materials, and the use of coal and flue gas desulfurization derived gypsum contributed to emissions of Hg in the air and to accumulation in cement. Over 90% of the mercury input was emitted into the atmosphere. Mercury emission factors were 0.044-0.072 g/t clinker for the test plants. The major species emitted into the atmosphere from cement plants is oxidized mercury, accounting for 61%-91% of the total mercury in flue gas. The results of this study help improve the accuracy of the mercury emission inventory in China and provide useful information for developing mercury controls.
NASA Astrophysics Data System (ADS)
King, J. K.; Saunders, F. M.
2004-05-01
Mercury research in freshwater and marine systems suggests that sediment characteristics such as organic substrate, mercury speciation, and sulfate/sulfide concentrations influence availability of inorganic mercury for methylation. Similarly, sediment characteristics also influence sulfate-reducing bacterial (SRB) respiration as well as the presence/distribution of phylogenetic groups responsible for mercury methylation. Our work illustrates that the process of methylmercury formation in freshwater and marine systems are not dissimilar. Rather, the same geochemical parameters and SRB phylogenetic groups determine the propensity for methylmercury formation and are applicable in both fresh- and marine-water systems. The presentation will include our integration of sediment geochemical and microbial parameters affecting mercury methylation in specific freshwater and marine systems. Constructed wetlands planted with Schoenoplectus californicus and amended with gypsum (CaSO4) have demonstrated a capacity to remove inorganic mercury from industrial outfalls. However, bioaccumulation studies of periphyton, eastern mosquitofish (Gambusia holbrooki) and lake chubsucker (Erimyzon sucetta) were conducted in order to ascertain the availability of wetland-generated methylmercury to biota. Total mercury concentrations in mosquitofish from non-sulfate treated controls and the reference location were significantly lower than those from the low and high sulfate treatments while mean total mercury concentrations in lake chubsuckers were also significantly elevated in the high sulfate treatment compared to the low sulfate, control and reference populations. Methylmercury concentrations in periphyton also corresponded with mercury levels found in the tissue of the lake chubsuckers, and these findings fit well given the trophic levels identified for both species of fish. Overall, data from this study suggest that the initial use of gypsum to accelerate the maturity of a constructed wetland may not prove beneficial with respect to the ultimate objective of mercury sequestration. Current regulations place strict requirements on dredge material placed in confined disposal facilities (CDF) as well as associated effluent waters. Although regulatory guidelines typically address total mercury concentrations, historical data specific to bioaccumulation of mercury suggest that methylmercury concentrations found in sediments and water require attention. Resource agencies are now interested in knowing the likelihood of methylmercury formation in dredge spoil since birds and fish are frequently found feeding in CDFs and the associated mixing zones. Mechanisms that influence methylmercury formation in sediments dictate that dredging of mercury-containing sediments will result in an increased availability of inorganic mercury for methylation. Prior to dredging, the undisturbed sediment contains inorganic mercury complexed to sulfide in an insoluble, unavailable form. However, hydraulic or clamshell dredging can result in an oxidation of sediments and remobilization of mercury-sulfide species thus increasing its availability for methylation. Once sediments are disposed in a CDF, sulfate-reducing bacteria profiles are re-established vertically in dredge spoil and methylmercury synthesis can readily occur.
40 CFR 415.65 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Any new source subject to this subpart and using the mercury cell process must achieve the following new source performance standards (NSPS): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant... pounds per 1,000 lb) of product TSS 0.64 0.32 Mercury (T) 0.00023 0.00010 Total Residual Chlorine 0.0032...
40 CFR 415.65 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Any new source subject to this subpart and using the mercury cell process must achieve the following new source performance standards (NSPS): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant... pounds per 1,000 lb) of product TSS 0.64 0.32 Mercury (T) 0.00023 0.00010 Total Residual Chlorine 0.0032...
40 CFR 415.65 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Any new source subject to this subpart and using the mercury cell process must achieve the following new source performance standards (NSPS): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant... pounds per 1,000 lb) of product TSS 0.64 0.32 Mercury (T) 0.00023 0.00010 Total Residual Chlorine 0.0032...
40 CFR 415.65 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Any new source subject to this subpart and using the mercury cell process must achieve the following new source performance standards (NSPS): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant... pounds per 1,000 lb) of product TSS 0.64 0.32 Mercury (T) 0.00023 0.00010 Total Residual Chlorine 0.0032...
40 CFR 415.65 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Any new source subject to this subpart and using the mercury cell process must achieve the following new source performance standards (NSPS): Subpart F—Chlor-Alkali-Mercury Cells Pollutant or pollutant... pounds per 1,000 lb) of product TSS 0.64 0.32 Mercury (T) 0.00023 0.00010 Total Residual Chlorine 0.0032...
MERCURY IN SEDIMENTS AND FISH FROM NORTH MISSISSIPPI LAKES AND SUBSEQUENT HUMAN HAZARD EVALUATION
Sediments and/or fish were collected from Sardis, Enid and Grenada Lakes, which are located in three different watersheds in North Mississippi, in order to assess mercury contamination. The mean total mercury concentration in sediments from Enid Lake in 1997 was 0.154 mg Hg/kg, w...
Samples of opportunity from Pb-210 dated sediment cores collected from Lake Michigan between 1994 and 1996 were analyzed for mercury. The storage of both anthropogenic and total (post-1850) mercury in the lake was calculated to be 186 and 228 metric tons, respectively. By setti...
Leaching of mercury from seal carcasses into Antarctic soils.
Zvěřina, Ondřej; Coufalík, Pavel; Brat, Kristián; Červenka, Rostislav; Kuta, Jan; Mikeš, Ondřej; Komárek, Josef
2017-01-01
More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 μg/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 μg/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.
May, Jason T.; Hothem, Roger L.; Bauer, Marissa L.; Brown, Larry R.
2012-01-01
This report presents the results of a reconnaissance study conducted by the U.S. Geological Survey (USGS) to determine mercury (Hg) and other selected metal concentrations in Black bass (Micropterus spp.) from Whiskeytown Lake, Shasta County, California. Total mercury concentrations were determined by cold-vapor atomic absorption spectroscopy (CVAAS) in fillets and whole bodies of each sampled fish. Selected metals scans were performed on whole bodies (less the fillets) by inductively coupled plasma–mass spectroscopy (ICP-MS) and inductively coupled plasma–optical emission spectroscopy (ICP-OES). Mercury concentrations in fillet samples ranged from 0.06 to 0.52 micrograms per gram (μg/g) wet weight (ww). Total mercury (HgT) in the same fish whole-body samples ranged from 0.04 to 0.37 (μg/g, ww). Mercury concentrations in 17 percent of "legal catch size" (≥305 millimeters in length) were above the U.S. Environmental Protection Agency water-quality criterion for the protection of human health of 0.30 μg/g (ww). These data will serve as a baseline for future monitoring efforts within Whiskeytown Lake.
Fantozzi, L; Ferrara, R; Dini, F; Tamburello, L; Pirrone, N; Sprovieri, F
2013-08-01
Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters that we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000ngm(-2)h(-1)) were observed on bare soils during the hours of maximum insulation, while lower values (250ngm(-2)h(-1)) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500ngm(-2)h(-1), which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28°C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. Copyright © 2013 Elsevier Inc. All rights reserved.
Gaseous mercury from curing concretes that contain fly ash: laboratory measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danold W. Golightly; Ping Sun; Chin-Min Cheng
2005-08-01
Total gaseous mercury in headspace air was measured for enclosed concretes dry curing at 40 C for intervals of 2, 28, and 56 days. Release of mercury was confirmed for ordinary Portland cement concrete (OPC) and three concretes in which class F fly ash from coal-combustion substituted for a fraction of the cement: (a) 33% fly ash (FA33), (b) 55% fly ash (FA55), and (c) 33% fly ash plus 0.5% mercury-loaded powdered activated carbon (HgPAC). Mean rates of mercury release (0.10-0.43 ng/day per kg of concrete) over the standard first 28 days of curing followed the order OPC {lt} FA33more » {approximately} FA55 {lt} HgPAC. The mercury flux from exposed surfaces of these concretes ranged from 1.9 {+-} 0.5 to 8.1 {+-} 2.0 ng/m{sup 2}/h, values similar to the average flux for multiple natural substrates in Nevada, 4.2 {+-} 1.4 ng/m{sup 2}/h, recently published by others. Air sampling extending for 28 days beyond the initial 28-day maturation for OPC, FA55, and HgPAC suggested that the average Hg release rate by OPC is constant over 56 days and that mercury release rates for FA55 and HgPAC may ultimately diminish to levels exhibited by OPC concrete. The release of mercury from all samples was less than 0.1% of total mercury content over the initial curing period, implying that nearly all of the mercury was retained in the concrete. 20 refs., 3 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Huang, Shuyuan; Sun, Lumin; Zhou, Tingjin; Yuan, Dongxing; Du, Bing; Sun, Xiuwu
2018-01-01
In this study, samples of 18 wet precipitations (WPs) and 38 aerosols were collected around a coal-fired power plant (CFPP) located in Xiamen, southeast China, which was equipped with a seawater flue gas desulfurization system. Total particulate mercury (TPM) in aerosol samples, and total mercury (WP-TM), dissolved mercury (WP-DM) and particulate mercury (WP-PM) in WP samples were analyzed for the natural isotopic compositions of mercury. For the first time, both mass dependent fractionation (MDF) and mass independent fractionation of odd (odd-MIF) and even (even-MIF) isotopes of WP-DM and WP-PM were reported and discussed. Both WP-TM and TPM displayed negative MDF and slightly positive even-MIF. Negative odd-MIF was observed in TPM and WP-PM, whereas positive odd-MIF was observed in WP-TM and WP-DM. It was found that the mercury budget in WP-PM samples was mainly controlled by atmospheric particles. Potential sources of mercury in samples were identified via analysis of mercury isotopic signatures and meteorological data with the NOAA HYSPLIT model. The results showed that TPM and WP-PM in solid samples were homologous and the isotopic compositions of WP-TM depended on those of WP-DM. The ratios of Δ199Hg/Δ201Hg resulting from photochemical reactions and positive Δ200Hg values (from -0.06‰ to 0.27‰) in all samples indicated that the mercury coming from local emission of the CFPP together with long-distance transportation were the two main contributing sources.
Factors influencing mercury concentrations in walleyes in northern Wisconsin lakes
Wiener, J.G.; Martini, R.E.; Sheffy, T.B.; Glass, G.E.
1990-01-01
The authors examined relations between mercury concentrations in walleyes Stizostedion vitreum and the characteristics of clear-water Wisconsin lakes, which spanned a broad range of pH values (5.0-8.1) and acid- neutralizing capacities (-9 to 1,017 mu eq/L). Total concentrations of mercury in axial muscle tissue of walleyes (total length, 25-56 cm) varied from 0.12 to 1.74 mu g/g wet weight. Concentrations were greatest in fish from the eight lakes with pH less than 7.0; concentrations in these fish equaled or exceeded 0.5 mu g/g in 88% of the samples analyzed and 1.0 mu g/g in 44%. In the five lakes with pH of 7.0 and above, concentrations exceeded 0.5 mu g/g in only 1 of 21 walleyes. Multiple regression revealed that lake pH and total length of fish accounted for 69% of the variation in mercury concentration in walleyes. Regression models with total length and either waterborne calcium or acid-neutralizing capacity as independent variables accounted for 67% of the variation in concentration.
Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G
2011-02-15
Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations. Copyright © 2010 Elsevier B.V. All rights reserved.
Anthropogenic mercury emissions from 1980 to 2012 in China.
Huang, Ying; Deng, Meihua; Li, Tingqiang; Japenga, Jan; Chen, Qianqian; Yang, Xiaoe; He, Zhenli
2017-07-01
China was considered the biggest contributor for airborne mercury in the world but the amount of mercury emission in effluents and solid wastes has not been documented. In this study, total national and regional mercury emission to the environment via exhaust gases, effluents and solid wastes were accounted with updated emission factors and the amount of goods produced and/or consumed. The national mercury emission in China increased from 448 to 2151 tons during the 1980-2012 period. Nearly all of the emissions were ended up as exhaust gases and solid wastes. The proportion of exhaust gases decreased with increasing share of solid wastes and effluents. Of all the anthropogenic sources, coal was the most important contributor in quantity, followed by mercury mining, gold smelting, nonferrous smelting, iron steel production, domestic wastes, and cement production, with accounting for more than 90% of the total emission. There was a big variation of regional cumulative mercury emission during 1980-2012 in China, with higher emissions occurred in eastern areas and lower values in the western and far northern regions. The biggest cumulative emission occurred in GZ (Guizhou), reaching 3974 t, while the smallest cumulative emission was lower than 10 t in XZ (Tibet). Correspondingly, mercury accumulation in soil were higher in regions with larger emissions in unit area. Therefore, it is urgent to reduce anthropogenic mercury emission and subsequent impact on ecological functions and human health. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Cheng, Irene; Zhang, Leiming; Mao, Huiting
2015-08-01
Relative contributions to mercury wet deposition by gaseous oxidized mercury (%GOM) and fine and coarse particle-bound mercury (%FPBM and %CPBM) were estimated making use of monitored FPBM air concentration and mercury wet deposition at nine North American locations. Scavenging ratios of particulate inorganic ions (K+ and Ca2+, Mg2+ and Na+) were used as a surrogate for those of FPBM and CPBM, respectively. FPBM and CPBM were estimated to contribute 8-36% and 5-27%, respectively, depending on the location, to total wet deposition. The rest of the 39-87% was attributed to the contribution of GOM. The average %GOM, %FPBM and %CPBM among all locations were 65%, 17%, and 18%, respectively. The relative distributions of %GOM, %FPBM, and %CPBM were influenced by Hg(II) gas-particle partitioning, urban site characteristics, and precipitation type. At the regional scale, %GOM dominated over %FPBM and %CPBM. However, the sum of FPBM and CPBM contributed to nearly half of the total Hg wet deposition in urban areas, which was greater than other site categories and is attributed to higher FPBM air concentrations. At four locations, %FPBM exceeded %GOM during winter in contrast to summer, suggesting the efficient snow scavenging of aerosols. The results from this study are useful in improving mercury transport models since most of these models do not estimate CPBM, but frequently use monitored mercury wet deposition data for model evaluation.
Liu, Lihong; Zhang, Yu; Yun, Zhaojun; He, Bin; Jiang, Guibin
2016-01-01
Mercury (Hg), mainly in cinnabar species, has been used in medicine for thousands of years in China, and worldwide concern has been raised on its toxicity. In this work, the amount of bioaccessible mercury in 16 Chinese patent medicines (CPMs) was measured by using an in vitro simulated digestion system, consisting of simulated gastric and intestinal fluid, to investigate the bioavailability of mercury in CPMs and evaluate its potential risk to human health. Total mercury and mercury in the gastrointestinal extracts were measured by inductively coupled plasma mass spectrometry (ICP-MS). The levels of total Hg in 16 CPMs ranged from not detected to 11.89 mg/g, with a mean value of 1.13 mg/g, while the extractable Hg ranged from not detected to 4.37 μg/g, with a mean value of 0.42 μg/g. Mercury bioaccessibility varied significantly in the investigated CPMs, depending on the ingredient. Compared to the CPMs without cinnabar (2.5%-30.9%), the percentage of mercury in the gastrointestinal supernatants for CPMs with cinnabar was quite a bit lower (0.037%). By comparing with the Food and Agricultural Organization/World Health Organization Joint Expert Committee on Food Additives (FAO/WHO) safety guideline, the average daily intake dose (ADD) of Hg in the medicines was then calculated to access the risk of mercury to human health from taking CPMs. Copyright © 2015. Published by Elsevier B.V.
Impacts of Wildfires on Mercury Contamination in Canada
NASA Astrophysics Data System (ADS)
Dastoor, A.; Fraser, A.; Ryjkov, A.
2017-12-01
Wildfires frequency has increased in past four decades in Canada, and is expected to increase in future as a result of climate change. Biomass Burning Mercury Emissions (BBMEs) are known to be significant; however, the impact of biomass burning on Mercury (Hg) burden in Canada has not been previously quantified. We investigated the spatio-temporal variability of BBME in Canada, and used Environment and Climate Change Canada's air quality and mercury model, GEM-MACH-Hg, to quantify the impacts of BBME on spatio-temporal variability of air concentrations and deposition fluxes of Hg in Canada. We optimized the biomass burning Emission Factors (EFs) for gaseous elemental mercury (GEM) using observations, GEM-MACH-Hg and an inversion technique for five vegetation types represented in North American fires to constrain the BBME impacts of Hg. We used three BBME scenarios (i.e., two scenarios where mercury is emitted only as GEM using literature or optimized EFs, and a third scenario where mercury is emitted as GEM using literature EFs and particle bound mercury (PBM) emitted using a GEM/PBM ratio from lab measurements) in Canada to conduct three sets of model simulations for 2010-2015. The three BBME scenarios represent the range of possible values for the impacts of BBME in Canada on mercury concentration and deposition. We found total BBME and its spatial distribution to be highly variable from year to year, and total atmospheric BBME averaged for 2010-2015 in Canada to be between 6 - 14 tonnes, which is 3 - 7 times the mercury emission from anthropogenic sources in Canada during the biomass burning season (i.e., from May to September). We found that while BBME have a small impact on surface air concentrations of GEM and total Hg deposition averaged over individual provinces/territories, these impacts for individual ecosystems can be as high as 95% during the burning season. We found that northern Alberta and Saskatchewan, central British Columbia, and the area around Great Slave Lake in the Northwest Territories are at greater risk of mercury contamination from biomass burning. We analysed the uncertainties in BBME, and found that reducing uncertainty in the speciation of Hg in BBME would provide the largest benefit to constraining the mercury contamination from biomass burning source to Canadian ecosystems.
Salt-marsh plants as potential sources of Hg0 into the atmosphere
NASA Astrophysics Data System (ADS)
Canário, João; Poissant, Laurier; Pilote, Martin; Caetano, Miguel; Hintelmann, Holger; O'Driscoll, Nelson J.
2017-03-01
To assess the role of salt-marsh plants on the vegetation-atmospheric Hg0 fluxes, three salt marsh plant species, Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima were selected from a moderately contaminated site in the Tagus estuary during May 2012. Total mercury in stems and leaves for each plant as well as total gaseous mercury and vegetation-air Hg0 fluxes were measured over two continuous days. Mercury fluxes were estimated with a dynamic flux Tedlar® bag coupled to a high-resolution automated mercury analyzer (Tekran 2537A). Other environmental parameters such as air temperature, relative humidity and net solar radiation were also measured aside. H. portulacoides showed the highest total mercury concentrations in stems and leaves and the highest average vegetation-air Hg0 flux (0.48 ± 0.40 ng Hg m-2 h-1). The continuous measurements converged to a daily pattern for all plants, with enhanced fluxes during daylight and lower flux during the night. It is noteworthy that throughout the measurements a negative flux (air-vegetation) was never observed, suggesting the absence of net Hg0 deposition. Based on the above fluxes and the total area occupied by each species we have estimated the total amount of Hg0 emitted from this salt-marsh plants. A daily emission of 1.19 mg Hg d-1 was predicted for the Alcochete marsh and 175 mg Hg d-1 for the entire salt marsh area of the Tagus estuary.
Removal of mercury bonded in residual glass from spent fluorescent lamps.
Rey-Raap, Natalia; Gallardo, Antonio
2013-01-30
The current technologies available for recycling fluorescent lamps do not completely remove the phosphor powder attached to the surface of the glass. Consequently, the glass contains the mercury diffused through the glass matrix and the mercury deposited in the phosphor powder that has not been removed during treatment at the recycling plant. A low-cost process, with just one stage, which can be used to remove the layer of phosphor powder attached to the surface of the glass and its mercury was studied. Several stirring tests were performed with different extraction mixtures, different liquid-solid ratios, and different agitation times. The value of the initial mercury concentration of the residual glass was 2.37 ± 0.50 μg/g. The maximum extraction percentage was 68.38%, obtained by stirring for 24 h with a liquid-solid ratio of 10 and using an extraction solution with 5% of an acid mixture prepared with HCl and HNO(3) at a ratio of 3:1 by volume. On an industrial scale the contact time could be reduced to 8 h without significantly lowering the percentage of mercury extracted. In fact, 64% of the mercury was extracted. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sierra, M J; Millán, R; Esteban, E
2009-11-01
This work studies mercury root uptake by Lavandula stoechas var. Kew Red (lavender) and the distribution of this metal through the plant under greenhouse conditions along three consecutive seasons. Mercury concentration in plant tissues and in the different products obtained from lavender plants (essential oil, toilet water and in lavender tea) was assessed in order to evaluate the possible cultivation of lavender as a profitable alternative land use to mercury mining in the Almadén area once the mine had been closed down. Mercury concentration in useful parts of the plant was low (0.03-0.55 mg kg(-1)). Likewise, the essential oil, toilet water and tea obtained from these plants presented very low mercury levels, below the detection limit of the used equipment (<0.5 microg kg(-1)). In the case of the obtained tea, according to the recommendations given by the World Health Organization, the maximum daily intake of it without intoxication risk would be 85.2l. So, although other sources of mercury intake should also be considered in order to elaborate a complete toxicological risk assessment. Lavender data, obtained under this greenhouse working conditions, shows that lavender cultivation could be an alternative crop in the Almadén area.
Total mercury and methylmercury levels in fish from hydroelectric reservoirs in Tanzania.
Ikingura, J R; Akagi, H
2003-03-20
Total mercury (THg) and methylmercury (MeHg) levels have been determined in fish species representing various tropic levels in four major hydroelectric reservoirs (Mtera, Kidatu, Hale-Pangani, Nyumba ya Mungu) located in two distinct geographical areas in Tanzania. The Mtera and Kidatu reservoirs are located along the Great Ruaha River drainage basin in the southern central part of the country while the other reservoirs are located within the Pangani River basin in the north eastern part of Tanzania. Fish mercury levels ranged from 5 to 143 microg/kg (mean 40 microg/kg wet weight) in the Mtera Reservoir, and from 7 to 119 microg/kg (mean 21 microg/kg) in the Kidatu Reservoir downstream of the Great Ruaha River. The lowest THg levels, in the range 1-10 microg/kg (mean 5 microg/kg), were found in fish from the Nyumba ya Mungu (NyM) Reservoir, which is one of the oldest reservoirs in the country. Fish mercury levels in the Pangani and Hale mini-reservoirs, downstream of the NyM Reservoir, were in the order of 3-263 microg/kg, with an average level of 21 microg/kg. These THg levels are among the lowest to be reported in freshwater fish from hydroelectric reservoirs. Approximately 56-100% of the total mercury in the fish was methylmercury. Herbivorous fish species contained lower THg levels than the piscivorous species; this was consistent with similar findings in other fish studies. In general the fish from the Tanzanian reservoirs contained very low mercury concentrations, and differed markedly from fish in hydroelectric reservoirs of similar age in temperate and other regions, which are reported to contain elevated mercury concentrations. The low levels of mercury in the fish correlated with low background concentrations of THg in sediment and flooded soil (mean 2-8 microg/kg dry weight) in the reservoir surroundings. This suggested a relatively clean reservoir environment that has not been significantly impacted by mercury contamination from natural or anthropogenic sources.
Comparion of Mercury Emissions Between Circulating Fluidized Bed Boiler and Pulverized Coal Boiler
NASA Astrophysics Data System (ADS)
Wang, Y. J.; Duan, Y. F.; Zhao, C. S.
Mercury emissions between a circulating fluidized bed (CFB) utility boiler and two pulverized coal (PC) boilers equipped with electrostatic precipitators (ESP) were in situ measured and compared. The standard Ontario Hydro Method (OHM) was used to sample the flue gas before and after the ESP. Various mercury speciations such as Hg0, Hg2+ and Hgp in flue gas and total mercury in fly ashes were analyzed. The results showed that the mercury removal rate of the CFB boiler is nearly 100%; the mercury emission in stack is only 0.028 g/h. However, the mercury removal rates of the two PC boilers are 27.56% and 33.59% respectively, the mercury emissions in stack are 0.80 and 51.78 g/h respectively. It concluded that components of the ESP fly ashes especially their unburnt carbons have remarkable influence on mercury capture. Pore configurations of fine fly ash particles have non-ignored impacts on mercury emissions.
Accumulation route and chemical form of mercury in mushroom species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minagawa, K.; Sasaki, T.; Takizawa, Y.
1980-09-01
Some papers were published on several species of fungi having more accumulating abilities of mercury than other land plants and a relatively small part of mercury being present as methylmercury in most species (Stegnar et al. 1973, Stijve and Roschnik 1974). But, little information is available regarding the routes of mercury in fungi, and also no report on mercury speciation (chemical form and complexation) in them have been published, apart from methylmercury. In order to evaluate accurately their biological characteristics such as absorption, excretion, accumulation and toxicity (The Task Group on Metal Interaction 1978), the mercury speciation present in mushrooms,more » regardless of edible or nonedible, should be identified. In this report, we present (1) contents of total and methylmercury in mushrooms near the acetaldehyde factory which had the mounds of sludge containing mercury, (2) data or exposure experiment of mercury vapor to raw mushrooms (Shiitake) on the market, and (3) data on mercury speciation of mercury other than methylmercury.« less
Meattey, Dustin E; Savoy, Lucas; Beuth, Josh; Pau, Nancy; O'Brien, Kathleen; Osenkowski, Jason; Regan, Kevin; Lasorsa, Brenda; Johnson, Ian
2014-09-15
In North America and Europe, sea ducks are important indicators of ecological health and inshore marine pollution. To explore spatial variation in mercury accumulation in common eiders in the northeastern United States, we compared concentrations of total mercury in common eider blood at several New England locations between 1998 and 2013. Eider food items (mollusks) were collected and analyzed to determine if mercury concentrations in eider blood were indicative of local mercury bioavailability. Eiders from Plum Island Sound, MA had a significantly higher mean blood mercury concentration (0.83 μg/g) than those in other locations. Mean mercury levels in this population were also nearly three times higher than any blood mercury concentrations reported for common eiders in published literature. We observed consistent patterns in eider blood mercury and blue mussel mercury concentrations between sites, suggesting a tentative predictive quality between the two species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rizea, Maria-Cristina; Bratu, Maria-Cristina; Danet, Andrei Florin; Bratu, Adrian
2007-09-01
A sensitive method was proposed and optimized for the determination of total mercury in fish tissue by using wet digestion, followed by cold vapor atomic absorption spectrometry (CVAAS) at the main resonance line of mercury (184.9 nm). The measurements were made using a new type of a non-dispersive mercury minianalyzer. This instrument was initially designed and built for atmospheric mercury-vapor detection. For determining mercury in aqueous samples, the minianalyzer was linked with a mercury/hydride system, Perkin Elmer Model MHS-10. To check the method, the analyzed samples were spiked with a standard solution of mercury. The recoveries of mercury spiked to wet fish tissue were >90% for 0.5 - 0.8 g samples. The results showed a better sensitivity (about 2.5 times higher) when using the mercury absorption line at 184.9 nm compared with the sensitivity obtained by conventional CVAAS at 253.7 nm.
Astronaut Alan Shepard - U.S.S. Champlain - Post-Recovery Mercury Capsule
1961-05-05
S61-02727 (5 May 1961) --- Astronaut Alan B. Shepard is seen on the deck of the USS Lake Champlain after the recovery of his Mercury capsule in the western Atlantic Ocean. Shepard and the Mercury spacecraft designated the ?Freedom 7? were flown to the deck of the recovery ship within 11 minutes of splashdown. MR-3 was the United States? first manned space mission. The spacecraft attained a maximum speed of 5,180 miles per hour, reached an altitude of 116 1/2 statute miles, and landed 302 statute miles downrange from Cape Canaveral, Florida. The suborbital mission lasted 15 minutes and 22 seconds. Photo credit: NASA or National Aeronautics and Space Administration
Mercury Methylation at Mercury Mines In The Humboldt River Basin, Nevada, USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, John E.; Crock, James G.; Lasorsa, Brenda K.
2002-12-01
Total Hg and methylmercury concentrations were measured in mine-waste calcines (retorted ore), sediment, and water samples collected in and around abandoned mercury mines in western Nevada to evaluate Hg methylation at the mines and in the Humboldt River basin. Mine-waste calcines contain total Hg concentrations as high as 14 000?g/g. Stream-sediment samples collected within 1 km of the mercury mines contain total Hg concentrations as high as 170?g/g, whereas stream sediments collected>5 km from the mines, and those collected from the Humboldt River and regional baseline sites, contain total Hg concentrations<0.5?g/g. Similarly, methylmercury concentrations in mine-waste calcines are locally asmore » high as 96 ng/g, but methylmercury contents in stream-sediments collected downstream from the mines and from the Humboldt River are lower, ranging from<0.05 to 0.95 ng/g. Stream-water samples collected below two mines studied contain total Hg concentrations ranging from 6 to 2000 ng/L, whereas total Hg in Humboldt River water was generally lower ranging from 2.1 to 9.0 ng/L. Methylmercury concentrations in the Humboldt River water were the lowest in this study (<0.02-0.27 ng/L). Although total Hg and methylmercury concentrations are locally high in mine-waste calcines, there is significant dilution of Hg and lower Hg methylation down gradient from the mines, especially in the sediments and water collected from the Humboldt River, which is> 8 km from any mercury mines. Our data indicate little transference of Hg and methylmercury from the sediment to the water column due to the lack of mine runoff in this desert climate.« less
Costa Junior, José Maria Farah; Silva, Camile Irene Mota da; Lima, Abner Ariel da Silva; Rodrigues Júnior, Dario; Silveira, Luiz Carlos de Lima; Souza, Givago da Silva; Pinheiro, Maria da Conceição Nascimento
2018-03-01
Riverine communities are exposed to mercury due to the high ingestion of fish in their diet. In order to evaluate the levels of exposure in the Tapajós region, also assessing the fish ingestion frequency, a study was conducted in adults living in riverine communities in the municipality of Itaituba in the State of Pará. Hair samples were collected for the determination of total mercury and the weekly frequency data of fish ingestion was recorded. The mean concentration of total mercury varied from 7.25μg/g (in 2013) to 10.80μg/g (in 2014), with no significant difference being observed (p = 0.1436). As for fish ingestion frequency, the majority of the individuals evaluated revealed high consumption both in 2013 and in 2014. High levels of total mercury were observed only in those with high consumption of fish in both years. The importance of ongoing monitoring of exposure levels in humans should be stressed, basing itself on indices of tolerance of 6μg/g recommended by the World Health Organization, and investigation about the consumption of fish such that strategies for control and prevention are improved.
Assessment of mercury exposure among small-scale gold miners using mercury stable isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Laura S., E-mail: lsaylors@umich.edu; Blum, Joel D.; Basu, Niladri
Total mercury (Hg) concentrations in hair and urine are often used as biomarkers of exposure to fish-derived methylmercury (MeHg) and gaseous elemental Hg, respectively. We used Hg stable isotopes to assess the validity of these biomarkers among small-scale gold mining populations in Ghana and Indonesia. Urine from Ghanaian miners displayed similar Δ{sup 199}Hg values to Hg derived from ore deposits (mean urine Δ{sup 199}Hg=0.01‰, n=6). This suggests that urine total Hg concentrations accurately reflect exposure to inorganic Hg among this population. Hair samples from Ghanaian miners displayed low positive Δ{sup 199}Hg values (0.23–0.55‰, n=6) and low percentages of total Hgmore » as MeHg (7.6–29%, n=7). These data suggest that the majority of the Hg in these miners' hair samples is exogenously adsorbed inorganic Hg and not fish-derived MeHg. Hair samples from Indonesian gold miners who eat fish daily displayed a wider range of positive Δ{sup 199}Hg values (0.21–1.32‰, n=5) and percentages of total Hg as MeHg (32–72%, n=4). This suggests that total Hg in the hair samples from Indonesian gold miners is likely a mixture of ingested fish MeHg and exogenously adsorbed inorganic Hg. Based on data from both populations, we suggest that total Hg concentrations in hair samples from small-scale gold miners likely overestimate exposure to MeHg from fish consumption. - Highlights: • Mercury isotopes were measured in hair and urine from small-scale gold miners. • Mercury isotopes indicate that Hg in urine comes from mining activity. • Mercury isotopes suggest Hg in hair is a mixture of fish MeHg and inorganic Hg. • A large percentage of Hg in miner’s hair is released during amalgam burning and adsorbed.« less
Kotnik; Horvat; Mandic; Logar
2000-10-02
Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.
Optimization study on structural analyses for the J-PARC mercury target vessel
NASA Astrophysics Data System (ADS)
Guan, Wenhai; Wakai, Eiichi; Naoe, Takashi; Kogawa, Hiroyuki; Wakui, Takashi; Haga, Katsuhiro; Takada, Hiroshi; Futakawa, Masatoshi
2018-06-01
The spallation neutron source at the Japan Proton Accelerator Research Complex (J-PARC) mercury target vessel is used for various materials science studies, work is underway to achieve stable operation at 1 MW. This is very important for enhancing the structural integrity and durability of the target vessel, which is being developed for 1 MW operation. In the present study, to reduce thermal stress and relax stress concentrations more effectively in the existing target vessel in J-PARC, an optimization approach called the Taguchi method (TM) is applied to thermo-mechanical analysis. The ribs and their relative parameters, as well as the thickness of the mercury vessel and shrouds, were selected as important design parameters for this investigation. According to the analytical results of 18 model types designed using the TM, the optimal design was determined. It is characterized by discrete ribs and a thicker vessel wall than the current design. The maximum thermal stresses in the mercury vessel and the outer shroud were reduced by 14% and 15%, respectively. Furthermore, it was indicated that variations in rib width, left/right rib intervals, and shroud thickness could influence the maximum thermal stress performance. It is therefore concluded that the TM was useful for optimizing the structure of the target vessel and to reduce the thermal stress in a small number of calculation cases.
Ashley, Roger P.; Rytuba, James J.
2008-01-01
Clear Creek, one of the major tributaries of the upper Sacramento River, drains the eastern Trinity Mountains. Alluvial plain and terrace gravels of lower Clear Creek, at the northwest edge of the Sacramento Valley, contain placer gold that has been mined since the Gold Rush by various methods including hydraulic mining and dredging. In addition, from the 1950s to the 1980s aggregate-mining operations removed gravel from the lower Clear Creek flood plain. Since Clear Creek is an important stream for salmon production, a habitat restoration program is underway to repair damage from mining and improve conditions for spawning. This program includes moving dredge tailings to increase the area of spawning gravel and to fill gravel pits in the flood plain, raising the concern that mercury lost to these tailings in the gold recovery process may be released and become available to biota. The purposes of our study are to identify sources, transport, and dispersal of mercury in the lower Clear Creek area and identify environments in which bioavailable methylmercury is produced. Analytical data acquired include total mercury and methylmercury concentrations in sediments, tailings, and water. Mercury concentrations in bedrock and unmined gravels in and around the mined area are low and are taken to represent background concentrations. Bulk mercury values in placer mining tailings range from near-background in coarse dry materials to more than 40 times background in sands and silts exposed to mercury in sluices. Tailings are entrained in flood-plain sediments and active stream sediments; consequently, mercury concentrations in these materials range from background to about two to three times background. Mercury in sediments and tailings is associated with fine size fractions. The source of most of this mercury is historical gold mining in the Clear Creek watershed. Although methylmercury levels are low in most of these tailings and sediments, flood-plain sediment in shallow flood-plain ponds, tailings in a dredge pond, and active stream sediment in a Clear Creek backwater have elevated levels of methylmercury. Stream waters in the area show low mercury levels during both summer and winter base-flow conditions. During winter high flows total mercury increases by about one order of magnitude; this additional mercury is associated with suspended particulate material. Methylmercury is low in stream waters. Ponds in various environments generally have higher total mercury levels in waters than Clear Creek under base-flow conditions and higher methylmercury levels in both sediments and waters. Ponds are probably the main source of bioavailable mercury in the lower Clear Creek area. Several saline springs occur in the area. The saline waters are enriched in lithium, boron, and mercury, similar to connate waters that are expelled along thrust faults to the south on the west side of the Sacramento Valley. Saline springs may locally contribute some mercury to pond and drainage waters.
Soares, Mônica Campos; Sarkis, Jorge Eduardo Souza; Müller, Regina Céli Sarkis; Brabo, Edilson Silva; Santos, Elizabete Oliveira
2002-03-15
Total mercury and selenium concentrations were determined in hair samples collected from Wari (Pacaás Novos) Indians living in Doutor Tanajura village, Gujará-Mirim city, Rondĵnia State. The mercury concentrations in some samples are much higher than the values determined in samples from individuals not exposed to mercury contamination, occupationally or environmentally. The selenium concentrations are in the normal range. A correlation was observed between the mercury and selenium concentration and the values of the molar ratio approach 1 at low Hg concentrations. This fact is related to the equimolar complex formed by [(Hg-Se)n]m-Seleprotein P, which can decrease the bioavailable mercury in the organism.
Schuster, Roseanne C; Gamberg, Mary; Dickson, Cindy; Chan, Hing Man
2011-08-01
The contamination of traditional foods with chemical pollutants is a challenge to the food security of Aboriginal Peoples. Mercury levels are generally low in terrestrial animals; however renal mercury levels have been shown to change over time in the Porcupine Caribou Herd, the principal food source for the Vuntut Gwitchin First Nation of Old Crow in Yukon, Canada. Seventy-five Porcupine Caribou muscle, sixty-three kidney and three liver samples were analyzed for total mercury. Average concentrations were 0.003, 0.360 and 0.120mg/kg wet weight total mercury for muscle, kidney and liver, respectively. Consumption data of caribou muscle, kidney and liver were collected from twenty-six adults in Vuntut Gwitchin households. Women of child-bearing age (n=5) consumed a median of 71.5g/person/day of caribou muscle and 0.0g/person/day kidney but consumed no liver; median consumptions for all other adults (women aged 40+ and all men, n=21) were 75.8, 3.2 and 2.5g/person/day for meat, kidney and liver, respectively. Median dietary exposures to total mercury from caribou tissues were estimated to be 0.138μg/kg body weight for women of child-bearing age and 0.223μg/kg body weight for other adults. Caribou tissues were found to contribute high levels of important nutrients to the diet and pose minimal health risk from mercury exposure. Copyright © 2011 Elsevier Inc. All rights reserved.
Domagalski, Joseph L.
1999-01-01
Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada, east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation are known to occur in stagnant wetland environments that have high dissolved carbon.Mercury poses a water-quality problem for California's Sacramento River, a large river with a mean annual discharge of over 650 m3/s. This river discharges into the San Francisco Bay, and numerous fish species of the bay and river contain mercury levels high enough to affect human health if consumed. Two possible sources of mercury are the mercury mines in the Coast Ranges and the gold mines in the Sierra Nevada. Mercury was once mined in the Coast Ranges, west of the Sacramento River, and used to process gold in the Sierra Nevada east of the river. The mineralogy of the Coast Ranges mercury deposits is mainly cinnabar (HgS), but elemental mercury was used to process gold in the Sierra Nevada. Residual mercury from mineral processing in the Sierra Nevada is mainly in elemental form or in association with oxide particles or organic matter and is biologically available. Recent bed-sediment sampling, at sites below large reservoirs, showed elevated levels of total mercury (median concentration 0.28 ??g/g) in every large river (the Feather, Yuba, Bear, and American rivers) draining the Sierra Nevada gold region. Monthly sampling for mercury in unfiltered water shows relatively low concentrations during the nonrainy season in samples collected throughout the Sacramento River Basin, but significantly higher concentrations following storm-water runoff. Measured concentrations, following storm-water runoff, frequently exceeded the state of California standards for the protection of aquatic life. Results from the first year of a 2-year program of sampling for methyl mercury in unfiltered water showed similar median concentrations (0.1 ng/l) at all sampling locations, but with apparent high seasonal concentrations measured during autumn and winter. Methyl mercury concentrations were not significantly higher in rice field runoff water, even though rice production involves the creation of seasonal wetlands: higher rates of methylation a
Measurements of gas-, particle- and precipitation-phases of atmospheric mercury
(Hg) were made in the South and equatorial Atlantic Ocean as part of the 1996
IOC Trace Metal Baseline Study (Montevideo, Uruguay to Barbados). Total gaseous
mercury (TGM) ranged from ...
Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...
We have measured total gaseous mercury concentrations (Hgo) at Point Barrow, Alaska since September 1998 in an effort to determine the geographic extent and reaction mechanism of the so-called mercury depletion events (MDE) previously reported in the high Arctic at Alert, Canad...
Edible tissue of largemouth bass collected at 29 freshwater sites across the variable landscape of Rhode Island, USA showed a 27 fold range in total mercury concentrations [Hg], from 0.04 to 1.0 ppm (wet). Twenty-one variables, including water quality data and geographic informat...
Chipps, Steven R.; Stetler, Larry; Stone, James J.; McCutcheon, Cindy M.
2011-01-01
The purpose of this study was to determine whether water quality parameters commonly associated with primary productivity may be used to predict the susceptibility of a specific water body to exceed proposed fish consumption advisory limitation of 0.3 mg kg−1. South Dakota currently has nine lakes and impoundments that exceed fish tissue mercury advisory limits of 1.0 mg kg−1 total mercury, far exceeding US Environmental Protection Agency and Food and Drug Administration 0.3 mg kg−1 consumption criteria. Previous studies suggest that increased aquatic productivity may mitigate the effects of biological production and subsequent uptake of methyl mercury through bio-dilution; however, it is uncertain whether these trends may exist within highly alkaline and highly productive aquatic conditions common to South Dakota lakes and impoundments. Water quality parameters and fish tissue mercury data for northern pike and walleye were collected and assessed using existing South Dakota Department of Environment and Natural Resources and Game Fish and Parks data. The data was initially screened using both parametric linear regression and non-parametric Mann–Whitney rank sum comparisons and further assessed using binary logistic regression and stepwise logistic regression methodology. Three separate phosphorus measurements (total, total dissolved, and Trophic State Index) and pH were determined to significantly correlate with increased mercury concentrations for the northern pike-in-impoundments model. However, phosphorus surprisingly was not a strong predictor for the remaining scenarios modeled. For the northern pike-in-natural lakes models, alkalinity was the most significant water quality parameter predicting increased mercury concentrations. Mercury concentrations for the walleye-in-natural lakes models were further influenced by pH and alkalinity. The water quality and fish tissue mercury interrelationships determined within this study suggest aquatic productivity, and consequential eutrophication processes appear to be reasonable indicators of fish tissue mercury susceptibility for aquatic conditions common to South Dakota and highlight the continuing need to minimize eutrophication through effective watershed management strategies.
Mercury levels of marine fish commonly consumed in Peninsular Malaysia.
Ahmad, Nurul Izzah; Noh, Mohd Fairulnizal Mohd; Mahiyuddin, Wan Rozita Wan; Jaafar, Hamdan; Ishak, Ismail; Azmi, Wan Nurul Farah Wan; Veloo, Yuvaneswary; Hairi, Mohd Hairulhisam
2015-03-01
This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p < 0.001) in demersal fish (the range was from 0.173 to 2.537 mg/kg in dried weight) compared to pelagic fish (which ranged from 0.055 to 2.137 mg/kg in dried weight). The mercury concentrations were also higher in carnivorous fish especially in the species with more predatory feeding habits. Besides, the family group of Latidae (0.537 ± 0.267 mg/kg in dried weight), Dasyatidae (0.492 ± 0.740 mg/kg in dried weight), and Lutjanidae (0.465 ± 0.566 mg/kg in dried weight) showed significantly (p < 0.001) higher mercury levels compared to other groups. Fish collected from Port Klang (0.563 ± 0.509 mg/kg in dry weight), Kuala Besar (0.521 ± 0.415 mg/kg in dry weight), and Pandan (0.380 ± 0.481 mg/kg in dry weight) were significantly higher (p = 0.014) in mercury concentrations when compared to fish from other sampling locations. Total mercury levels were significantly higher (p < 0.002) in bigger fish (body length >20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.
Dang, Fei; Zhao, Jie; Greenfield, Ben K; Zhong, Huan; Wang, Yujun; Yang, Zhousheng; Zhou, Dongmei
2015-07-15
Mercury presents a potential risk to soil organisms, yet our understanding of mercury bioaccumulation in soil dwelling organisms is limited. The influence of soil geochemistry and digestive processes on both methylmercury (MeHg) and total mercury (THg) bioavailability to earthworms (Pheretima guillemi) was evaluated in this study. Earthworms were exposed to six mercury-contaminated soils with geochemically contrasting properties for 36 days, and digestive fluid was concurrently collected to solubilize soil-associated mercury. Bioaccumulation factors were 7.5-31.0 and 0.2-0.6 for MeHg and THg, respectively, and MeHg accounted for 17-58% of THg in earthworm. THg and MeHg measured in soils and earthworms were negatively associated with soil total organic carbon (TOC). Earthworm THg and MeHg also increased with increasing soil pH. The proportion of MeHg and THg released into the digestive fluid (digestive solubilizable mercury, DSM) was 8.3-18.1% and 0.4-1.3%, respectively. The greater solubilization of MeHg by digestive fluid than CaCl2, together with a biokinetic model-based estimate of dietary MeHg uptake, indicated the importance of soil ingestion for MeHg bioaccumulation in earthworms. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu
2015-10-15
In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less
Kirk, Line E; Jørgensen, Jan S; Nielsen, Flemming; Grandjean, Philippe
2017-06-01
To evaluate whether a public health intervention using focused dietary advice combined with a hair-mercury analysis can lower neurotoxic methylmercury exposure among pregnant women without decreasing their overall intake of seafood. A total of 146 pregnant women were consecutively recruited from the antenatal clinic at a Danish university hospital at their initial ultrasound scan. Dietary advice was provided on avoiding methylmercury exposure from large predatory fish and a hair sample from each participant was analysed for mercury, with the results being communicated shortly thereafter to the women. A dietary questionnaire was filled in. Follow-up three months later included a dietary questionnaire and a repeat hair-mercury analysis. In the follow-up group, 22% of the women had hair-mercury concentrations above a safe limit of 0.58 µg/g at enrolment, decreasing to 8% three months later. Average hair-mercury concentrations decreased by 21%. However, the total seafood intake remained at the same level after three months. Increased exposure to methylmercury among pregnant women is an important public health concern in Denmark. The observed lowering of hair-mercury concentrations associated with dietary advice corresponds to a substantial public health benefit that probably makes such an intervention highly profitable.
Response of mercury in an Adirondack (NY, USA) forest stream to watershed lime application
Millard, Geoffrey D.; Driscoll, Charles T.; Burns, Douglas; Montesdeoca, Mario R.; Murray, Karen
2018-01-01
significantly in streamwater within two weeks of treatment, to previously unobserved oncentrations. After six months, post-treatment before–after impact-control (BACI) tests indicate that mean dissolved organic carbon concentrations and total mercury to dissolved organic carbon ratios remained significantly higher and limed site fluxes of methylmercury were lower than those at the reference stream. This pattern suggests total mercury is leaching at elevated levels from the limed watershed, but limitations in production and transport to the stream channel likely resulted in increases in methylmercury concentration that were of limited duration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of antimony metal...
Accumulation factors of mercury by King Bolete Boletus edulis
NASA Astrophysics Data System (ADS)
Falandysz, J.; Frankowska, A.
2003-05-01
To understand pollution picture with mercury and to examine suitability of King Bolete Boletits edulis Bull.: Fr. as possible bioindicator the total mercurv concentrations were determined both in the fruiting bodies and underlying soil substrate collected from various regions of Poland. There were quite large spatial variations of mercury concentration and some seasonal also were noted. Mercury content of the caps exceeded that of stalks (p<0.05), Nvhile Hg BCF values varied between 9 and 40, and 4 and 40, respectively.
Calls to Florida Poison Control Centers about mercury: Trends over 2003-2013.
Gribble, Matthew O; Deshpande, Aniruddha; Stephan, Wendy B; Hunter, Candis M; Weisman, Richard S
2017-11-01
The aim of this analysis was to contrast trends in exposure-report calls and informational queries (a measure of public interest) about mercury to the Florida Poison Control Centers over 2003-2013. Poison-control specialists coded calls to Florida Poison Control Centers by substance of concern, caller demographics, and whether the call pertained to an exposure event or was an informational query. For the present study, call records regarding mercury were de-identified and provided along with daily total number of calls for statistical analysis. We fit Poisson models using generalized estimating equations to summarize changes across years in counts of daily calls to Florida Poison Control Centers, adjusting for month. In a second stage of analysis, we further adjusted for the total number of calls each day. We also conducted analyses stratified by age of the exposed. There was an overall decrease over 2003-2013 in the number of total calls about mercury [Ratio per year: 0.89, 95% CI: (0.88, 0.90)], and calls about mercury exposure [Ratio per year: 0.84, 95% CI: (0.83, 0.85)], but the number of informational queries about mercury increased over this time [Ratio per year: 1.15 (95% CI: 1.12, 1.18)]. After adjusting for the number of calls of that type each day (e.g., call volume), the associations remained similar: a ratio of 0.88 (95% CI: 0.87, 0.89) per year for total calls, 0.85 (0.83, 0.86) for exposure-related calls, and 1.17 (1.14, 1.21) for informational queries. Although, the number of exposure-related calls decreased, informational queries increased over 2003-2013. This might suggest an increased public interest in mercury health risks despite a decrease in reported exposures over this time period. Copyright © 2017 Elsevier Inc. All rights reserved.
Gandhi, N.; Bhavsar, S.P.; Diamond, M.L.; Kuwabara, J.S.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.
2007-01-01
A mathematically linked mercury transport, speciation, kinetic, and simple biotic uptake (BIOTRANSPEC) model has been developed. An extension of the metal transport and speciation (TRANSPEC) model, BIOTRANSPEC estimates the fate and biotic uptake of inorganic (Hg(II)), elemental (Hg(0)) and organic (MeHg) forms of mercury and their species in the dissolved, colloidal (e.g., dissolved organic matter [DOM]), and particulate phases of surface aquatic systems. A pseudo-steady state version of the model was used to describe mercury dynamics in Lahontan Reservoir (near Carson City, NV, USA), where internal loading of the historically deposited mercury is remobilized, thereby maintaining elevated water concentrations. The Carson River is the main source of total mercury (THg), of which more than 90% is tightly bound in a gold-silver-mercury amalgam, to the system through loadings in the spring, with negligible input from the atmospheric deposition. The speciation results suggest that aqueous species are dominated by Hg-DOM, Hg(OH)2, and HgClOH. Sediment-to-water diffusion of MeHg and Hg-DOM accounts for approximately 10% of total loadings to the water column. The water column acts as a net sink for MeHg by reducing its levels through two competitive processes: Uptake by fish, and net MeHg demethylation. Although reservoir sediments produce significant amounts of MeHg (4 g/d), its transport from sediment to water is limited (1.6 g/d), possibly because of its adsorption on metal oxides of iron and manganese at the sediment-water interface. Fish accumulate approximately 45% of the total MeHg mass in the water column, and 9% of total MeHg uptake by fish leaves the system because of fishing. Results from this new model reiterate the previous conclusion that more than 90% of THg input is retained in sediment, which perpetuates elevated water concentrations. ?? 2007 SETAC.
[Mercury in the hair of pregnant and lactating Chilean mothers].
Bruhn, C G; Rodríguez, A A; Barrios, C A; Jaramillo, V H; Gras, N T; Becerra, J; Núñez, E; Reyes, O C
1995-11-01
Mercury-containing industrial waste has been released into the coastal waters of the Eighth Region of Chile for around two decades. This study, carried out from 1991 to 1993, sought to measure mercury concentrations in the hair of pregnant and lactating women from villages near the coast and in the interior of the region in order to examine the relationship between the concentration of mercury and seafood consumption. The survey questionnaire used in 1991 to determine seafood consumption did not ask about the frequency of consumption of fish, shellfish, and algae but only whether the women who were pregnant or breast-feeding consumed a minimum of one fish-based meal per week. The questionnaire used in 1992 and 1993 asked about the daily and weekly consumption of seafood in general (fish, shellfish, and algae). Spectrophotometry was used to determine the total mercury concentration in samples of 100 mg of hair from 153 pregnant and lactating women in 11 fishing villages of the Eighth Region where seafood is regularly consumed. None of the women had occupational exposure to mercury. Total mercury concentration was also determined in hair samples from a control group composed of 26 pregnant and lactating women from Pinto and El Carmen, villages in the interior of the same region where seafood was rarely eaten. The arithmetic mean of the total mercury concentration in hair was 1.81 mg/kg of body weight for the study group (standard deviation [SD] 1.52) and 0.42 mg/kg for the control group (SD 0.15)--a statistically significant difference (P < 0.01). Pairwise comparisons also revealed statistically significant differences (P < 0.05) between the mean for the interior group and the means for the women in the nine villages closest to the sources of the pollution, but not between the mean for the interior group and those for women in the two villages at the extreme north and south of the study zone, who lived farthest from the contaminated waters. The total mercury concentration in hair was significantly higher in women who indicated that they ate fish seven or more times per week; in those who said they ate fish, shellfish, or algae five or more times per week; and in those who had lived 20 or more years in their village. No statistically significant differences were found when the results were analyzed by age.
Legacy source of mercury in an urban stream-wetland ecosystem in central North Carolina, USA.
Deonarine, Amrika; Hsu-Kim, Heileen; Zhang, Tong; Cai, Yong; Richardson, Curtis J
2015-11-01
In the United States, aquatic mercury contamination originates from point and non-point sources to watersheds. Here, we studied the contribution of mercury in urban runoff derived from historically contaminated soils and the subsequent production of methylmercury in a stream-wetland complex (Durham, North Carolina), the receiving water of this runoff. Our results demonstrated that the mercury originated from the leachate of grass-covered athletic fields. A fraction of mercury in this soil existed as phenylmercury, suggesting that mercurial anti-fungal compounds were historically applied to this soil. Further downstream in the anaerobic sediments of the stream-wetland complex, a fraction (up to 9%) of mercury was converted to methylmercury, the bioaccumulative form of the metal. Importantly, the concentrations of total mercury and methylmercury were reduced to background levels within the stream-wetland complex. Overall, this work provides an example of a legacy source of mercury that should be considered in urban watershed models and watershed management. Copyright © 2014 Elsevier Ltd. All rights reserved.
Staudinger, Michelle D
2011-04-01
Total mercury was analyzed as a function of body length, season, and diet in four commercially and recreationally important marine fish, bluefish (Pomatomus saltatrix), goosefish (Lophius americanus), silver hake (Merluccius bilinearis), and summer flounder (Paralichthys dentatus), collected from continental shelf waters of the northwest Atlantic Ocean. Mercury levels in the dorsal muscle tissue of 115 individuals ranged from 0.006 to 1.217 μg/g (wet weight) and varied significantly among species. The relationship between predator length and mercury concentration was linear for bluefish and summer flounder, while mercury levels increased with size at an exponential rate for silver hake and goosefish. Mercury burdens were the highest overall in bluefish, but increased with size at the greatest rate in silver hake. Seasonal differences were detected for bluefish and goosefish with mercury levels peaking during summer and spring, respectively. Prey mercury burdens and predator foraging habits are discussed as the primary factors influencing mercury accumulation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
ye, Z.
2013-12-01
Mercury (Hg) is a hazardous pollutant due to the bioaccumulation in food chain. It is emitted to the atmosphere primarily as elemental form, and the long lifetime of which allows global transport. Oxidation of gaseous elemental mercury (GEM) generates reactive gaseous mercury (RGM) which plays an important role in the atmospheric mercury cycle by enhancing the rate of mercury deposition to ecosystem. The present study aimed to investigate the midlatitudinal atmospheric Hg cycling. To achieve that, a mercury chemistry box model was improved by employing the most up-to-date kinetic data for gaseous and aqueous reactions, and was applied to summertime clear sky conditions at three specific sites: Appledore Island (marine site), Thompson Farm (coastal site), and Pack Monadnock (inland site). The model was evaluated using observational data of RGM and pHg (particulate mercury) concentrations from these sites. The simulation results for all three sites showed that HgO, which is produced from oxidation of GEM by O3 and OH, contributed the most (>82%) to the total RGM production. Even in the marine boundary layer, halogen species (mainly Br) only contributed less than 12% to total RGM. The importance of reactions in most updated halogen chemistry has been evaluated. Gas and particle partitioning played an important role in coastal and inland environments. Some abnormally high RGM peaks were found at Appledore Island which may be explained by transport and air-sea exchange. Specific reactions and other processes controlling the diurnal cycles of RGM and pHg at the three sites are still being investigated.
DYNAMIC STABILITY OF THE SOLAR SYSTEM: STATISTICALLY INCONCLUSIVE RESULTS FROM ENSEMBLE INTEGRATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeebe, Richard E., E-mail: zeebe@soest.hawaii.edu
Due to the chaotic nature of the solar system, the question of its long-term stability can only be answered in a statistical sense, for instance, based on numerical ensemble integrations of nearby orbits. Destabilization of the inner planets, leading to close encounters and/or collisions can be initiated through a large increase in Mercury's eccentricity, with a currently assumed likelihood of ∼1%. However, little is known at present about the robustness of this number. Here I report ensemble integrations of the full equations of motion of the eight planets and Pluto over 5 Gyr, including contributions from general relativity. The resultsmore » show that different numerical algorithms lead to statistically different results for the evolution of Mercury's eccentricity (e{sub M}). For instance, starting at present initial conditions (e{sub M}≃0.21), Mercury's maximum eccentricity achieved over 5 Gyr is, on average, significantly higher in symplectic ensemble integrations using heliocentric rather than Jacobi coordinates and stricter error control. In contrast, starting at a possible future configuration (e{sub M}≃0.53), Mercury's maximum eccentricity achieved over the subsequent 500 Myr is, on average, significantly lower using heliocentric rather than Jacobi coordinates. For example, the probability for e{sub M} to increase beyond 0.53 over 500 Myr is >90% (Jacobi) versus only 40%-55% (heliocentric). This poses a dilemma because the physical evolution of the real system—and its probabilistic behavior—cannot depend on the coordinate system or the numerical algorithm chosen to describe it. Some tests of the numerical algorithms suggest that symplectic integrators using heliocentric coordinates underestimate the odds for destabilization of Mercury's orbit at high initial e{sub M}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fantozzi, L., E-mail: l.fantozzi@iia.cnr.it; Ferrara, R., E-mail: romano.ferrara@pi.ibf.cnr.it; Dini, F., E-mail: fdiniprotisti@gmail.com
2013-08-15
Atmospheric mercury emissions from mine-waste enriched soils were measured in order to compare the mercury fluxes of bare soils with those from other soils covered by native grasses. Our research was conducted near Mt. Amiata in central Italy, an area that was one of the largest and most productive mining centers in Europe up into the 1980s. To determine in situ mercury emissions, we used a Plexiglas flux chamber connected to a portable mercury analyzer (Lumex RA-915+). This allowed us to detect, in real time, the mercury vapor in the air, and to correlate this with the meteorological parameters thatmore » we examined (solar radiation, soil temperature, and humidity). The highest mercury flux values (8000 ng m{sup −2} h{sup −1}) were observed on bare soils during the hours of maximum insulation, while lower values (250 ng m{sup −2} h{sup −1}) were observed on soils covered by native grasses. Our results indicate that two main environmental variables affect mercury emission: solar radiation intensity and soil temperature. The presence of native vegetation, which can shield soil surfaces from incident light, reduced mercury emissions, a result that we attribute to a drop in the efficiency of mercury photoreduction processes rather than to decreases in soil temperature. This finding is consistent with decreases in mercury flux values down to 3500 ng m{sup −2} h{sup −1}, which occurred under cloudy conditions despite high soil temperatures. Moreover, when the soil temperature was 28 °C and the vegetation was removed from the experimental site, mercury emissions increased almost four-fold. This increase occurred almost immediately after the grasses were cut, and was approximately eight-fold after 20 h. Thus, this study demonstrates that enhancing wild vegetation cover could be an inexpensive and effective approach in fostering a natural, self-renewing reduction of mercury emissions from mercury-contaminated soils. -- Highlights: ► Mercury air/surface exchange from grass covered soil is different from bare soil. ► Light enhances mercury emissions and is the main parameter driving the process. ► The presence of wild vegetation covering the soil reduces mercury emission. ► Vegetative covers could be a solution to reduce atmospheric mercury pollution.« less
Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.
2009-01-01
The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.
Laarman, Percy W.; Willford, Wayne A.; Olson, James R.
1976-01-01
Mercury-contaminated yellow perch (Perca flavescens) and rock bass (Ambloplites rupestris) were collected from Lake St. Clair and stocked in two earthen ponds in September 1970. Twenty-six months later, concentrations of total mercury in the fillets had declined 53% in the yellow perch and 59% in the rock bass; however, the mean weight of the fish increased 88 and 183%, respectively, during the same period. All of the reduction in mercury concentrations was attributable to dilution by growth. Slight discrepancies between the theoretical and observed reduction of mercury concentrations suggest an initial redistribution of residues from other tissues to the muscle and a continued incorporation of background amounts of mercury during growth.
Mercury in the pelagic food web of Lake Champlain.
Miller, Eric K; Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela
2012-04-01
Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25-75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 μg g(-1) in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury.
Mercury in the Pelagic Food Web of Lake Champlain
Chen, Celia; Kamman, Neil; Shanley, James; Chalmers, Ann; Jackson, Brian; Taylor, Vivien; Smeltzer, Eric; Stangel, Pete; Shambaugh, Angela
2013-01-01
Lake Champlain continues to experience mercury contamination resulting in public advisories to limit human consumption of top trophic level fish such as walleye. Prior research suggested that mercury levels in biota could be modified by differences in ecosystem productivity as well as mercury loadings. We investigated relationships between mercury in different trophic levels in Lake Champlain. We measured inorganic and methyl mercury in water, seston, and two size fractions of zooplankton from 13 sites representing a range of nutrient loading conditions and productivity. Biomass varied significantly across lake segments in all measured ecosystem compartments in response to significant differences in nutrient levels. Local environmental factors such as alkalinity influenced the partitioning of mercury between water and seston. Mercury incorporation into biota was influenced by the biomass and mercury content of different ecosystem strata. Pelagic fish tissue mercury was a function of fish length and the size of the mercury pool associated with large zooplankton. We used these observations to parameterize a model of mercury transfers in the Lake Champlain food web that accounts for ecosystem productivity effects. Simulations using the mercury trophic transfer model suggest that reductions of 25 to 75% in summertime dissolved eplimnetic total mercury will likely allow fish tissue mercury concentrations to drop to the target level of 0.3 µg g−1 in a 40-cm fish in all lake segments. Changes in nutrient loading and ecosystem productivity in eutrophic segments may delay any response to reduced dissolved mercury and may result in increases in fish tissue mercury. PMID:22193540
Tomiyasu, Takashi; Kodamatani, Hitoshi; Imura, Ryusuke; Matsuyama, Akito; Miyamoto, Junko; Akagi, Hirokatsu; Kocman, David; Kotnik, Jože; Fajon, Vesna; Horvat, Milena
2017-10-01
The distributions of the total mercury (T-Hg), methylmercury (MeHg), and ethylmercury (EtHg) concentrations in soil and their relationship to chemical composition of the soil and total organic carbon content (TOC, %) were investigated. Core samples were collected from hill slope on the right and left riverbanks of the Idrija River. Former smelting plant is located on the right bank. The T-Hg average in each of the core samples ranged from 0.25 to 1650 mg kg -1 . The vertical T-Hg variations in the samples from the left bank showed no significant change with depth. Conversely, the T-Hg varied with depth, with the surface, or layers several centimeters from the surface, tending to show the highest values in the samples from the right bank. Since the right and left bank soils have different chemical compositions, different pathways of mercury delivery into soils were suggested. The MeHg and EtHg concentrations ranged from n.d. (not detected) to 444 μg kg -1 and n.d. to 17.4 μg kg -1 , respectively. The vertical variations of MeHg and EtHg were similar to those of TOC, except for the near-surface layers containing TOC greater than 20%. These results suggest that the decomposition of organic matter is closely related to organic mercury formation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Determination of methyl mercury in dental-unit wastewater.
Stone, Mark E; Cohen, Mark E; Liang, Lian; Pang, Patrick
2003-11-01
The objective of this investigation was to establish whether monomethyl mercury (MMHg) is present in dental-unit wastewater and if present, to determine the concentration relative to total mercury. Wastewater samples were collected over an 18-month period from three locations: at the dental chair; at a 30-chair clinic, and at a 107-chair clinic. Total mercury determinations were completed using United States Environmental Protection Agency's (USEPA) method 1631. MMHg was measured utilizing modified USEPA method 1630. The total mercury levels were found to be: 45182.11 microg/l (n=13, SD=68562.42) for the chair-side samples, 5350.74 microg/l (n=12, SD=2672.94) for samples at the 30-chair clinic, and 13439.13 microg/l (n=13, SD=9898.91) for samples at the107-chair clinic. Monomethyl Hg levels averaged 0.90 microg/l (n=13, SD=0.87) for chair side samples, 8.26 (n=12, SD=7.74) for the 30-chair facility, and 26.77 microg/l (n=13, SD=34.50) for 107-chair facility. By way of comparison, the MMHg levels for the open ocean, lakes and rain are orders of magnitude lower than methyl mercury levels seen in dental wastewater (part per billion levels for dental wastewater samples compared to part per trillion levels for samples from the environment). Environmentally important levels of MMHg were found to be present in dental-unit wastewater at concentrations orders of magnitude higher than seen in natural settings.
Virtual atmospheric mercury emission network in China.
Liang, Sai; Zhang, Chao; Wang, Yafei; Xu, Ming; Liu, Weidong
2014-01-01
Top-down analysis of virtual atmospheric mercury emission networks can direct efficient demand-side policy making on mercury reductions. Taking China-the world's top atmospheric mercury emitter-as a case, we identify key contributors to China's atmospheric mercury emissions from both the producer and the consumer perspectives. China totally discharged 794.9 tonnes of atmospheric mercury emissions in 2007. China's production-side control policies should mainly focus on key direct mercury emitters such as Liaoning, Hebei, Shandong, Shanxi, Henan, Hunan, Guizhou, Yunnan, and Inner Mongolia provinces and sectors producing metals, nonmetallic mineral products, and electricity and heat power, while demand-side policies should mainly focus on key underlying drivers of mercury emissions such as Shandong, Jiangsu, Zhejiang, and Guangdong provinces and sectors of construction activities and equipment manufacturing. China's interregional embodied atmospheric mercury flows are generally moving from the inland to the east coast. Beijing-Tianjin (with 4.8 tonnes of net mercury inflows) and South Coast (with 3.3 tonnes of net mercury inflows) are two largest net-inflow regions, while North (with 5.3 tonnes of net mercury outflows) is the largest net-outflow region. We also identify primary supply chains contributing to China's virtual atmospheric mercury emission network, which can be used to trace the transfers of production-side and demand-side policy effects.
Mercury and Organic Carbon Relationships in Streams Draining Forested Upland/Peatland Watersheds
Randall K. Kolka; D.F. Grigal; E.S. Verry; E.A. Nater
1999-01-01
We determined the fluxes of total mercury (HgT), total organic carbon (TOC), and dissolved organic carbon (DOC) from five upland/peatland watersheds at the watershed outlet. The difference between TOC and DOC was defined as particulate OC (POC). Concentrations of HgT showed moderate to strong relationships with POC (R2 = 0.77) when ah...
Delgado-Alvarez, C G; Frías-Espericueta, M G; Ruelas-Inzunza, J; Becerra-Álvarez, M J; Osuna-Martínez, C C; Aguilar-Juárez, M; Osuna-López, J I; Escobar-Sánchez, O; Voltolina, D
2017-07-01
Total mercury (Hg) concentrations were determined by atomic absorption spectrophotometry in muscles and liver of composite samples of Mugil cephalus and M. curema collected during November 2013 and in January, April, and July 2014 from the coastal lagoons Altata-Ensenada del Pabellón (AEP), Ceuta (CEU), and Teacapán-Agua Brava (TAG) of Sinaloa State. The mean Hg contents and information on local consumption were used to assess the possible risk caused by fish ingestion. Mean total mercury levels in the muscles ranged from 0.11 to 0.39 μg/g, while the range for liver was 0.12-3.91 μg/g. The mean Hg content of the liver was significantly (p < 0.001) higher than that of the muscles only in samples collected from AEP. Although total Hg levels in the muscles were lower than the official permissible limit, the HQ values for methyl mercury calculated for the younger age classes of one fishing community were >1, indicating a possible risk for some fishing communities of the Mexican Pacific coast.
Total arsenic, mercury, lead, and cadmium contents in edible dried seaweed in Korea.
Hwang, Y O; Park, S G; Park, G Y; Choi, S M; Kim, M Y
2010-01-01
Total arsenic, mercury, lead, and cadmium contents were determined in 426 samples of seaweed sold in Korea in 2007-08. The average concentrations, expressed in mg kg(-1), dry weight, were: total arsenic 17.4 (less than the limit of detection [LOD] to 88.8), Hg 0.01 (from 0.001 to 0.050), lead 0.7 (less than the LOD to 2.7), and cadmium 0.50 (less than the LOD to 2.9). There were differences in mercury, cadmium, and arsenic content in seaweed between different kinds of products and between coastal areas. The intakes of total mercury, lead, and cadmium for Korean people from seaweed were estimated to be 0.11, 0.65, and 0.45 µg kg(-1) body weight week(-1), respectively. With respect to food safety, consumption of 8.5 g day(-1) of the samples analysed could represent up to 0.2-6.7% of the respective provisional tolerable weekly intakes established by the World Health Organization (WHO). Therefore, even if Korean people have a high consumption of seaweed, this study confirms the low probability of health risks from these metals via seaweed consumption.
Karouna-Renier, Natalie K.; Snyder, Richard A.; Lange, Ted; Gibson, Suzanne; Allison, Jeffrey G.; Wagner, Matthew E.; Rao, K. Ranga
2011-01-01
The health benefits of regular consumption of fish and seafood have been espoused for many years. However, fish are also a potential source of environmental contaminants that have well known adverse effects on human health. We investigated the consumption risks for largemouth bass (Micropterus salmoides; n = 104) and striped mullet (Mugil cephalus; n = 170), two commonly harvested and consumed fish species inhabiting fresh and estuarine waters in northwest Florida. Skinless fillets were analyzed for total mercury, inorganic arsenic, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/F), polychlorinated biphenyls (PCBs), and organochlorine pesticides. Contaminant levels were compared to screening values (SV) calculated using U.S. Environmental Protection Agency (EPA) recommendations for establishing consumption advisories. Largemouth bass were found to contain high levels of total mercury at all sampling locations (0.37-0.89 ug/g) and one location exhibited elevated total PCBs (39.4 ng/g). All of the samples exceeded Florida fish consumption advisory trigger levels for total mercury and one location exceeded the U.S. EPA SV for total PCBs. As a result of the high mercury levels, the non-cancer health risks (hazard index-HI) for bass were above 1 for all locations. Striped mullet from several locations with known point sources contained elevated levels of PCBs (overall range 3.4-59.3 ng/g). However, total mercury levels in mullet were low. Eight of the 16 mullet sampling locations exceeded the U.S. EPA SV for total PCBs and two locations exceeded an HI of 1 due to elevated PCBs. Despite the elevated levels of total PCBs in some samples, only two locations exceeded the acceptable cancer risk range and therefore cancer health risks from consumption of bass and mullet were determined to be low at most sampling locations.
Large-scale projects in the amazon and human exposure to mercury: The case-study of the Tucuruí Dam.
Arrifano, Gabriela P F; Martín-Doimeadios, Rosa C Rodríguez; Jiménez-Moreno, María; Ramírez-Mateos, Vanesa; da Silva, Núbia F S; Souza-Monteiro, José Rogério; Augusto-Oliveira, Marcus; Paraense, Ricardo S O; Macchi, Barbarella M; do Nascimento, José Luiz M; Crespo-Lopez, Maria Elena
2018-01-01
The Tucuruí Dam is one of the largest dams ever built in the Amazon. The area is not highly influenced by gold mining as a source of mercury contamination. Still, we recently noted that one of the most consumed fishes (Cichla sp.) is possibly contaminated with methylmercury. Therefore, this work evaluated the mercury content in the human population living near the Tucuruí Dam. Strict exclusion/inclusion criteria were applied for the selection of participants avoiding those with altered hepatic and/or renal functions. Methylmercury and total mercury contents were analyzed in hair samples. The median level of total mercury in hair was above the safe limit (10µg/g) recommended by the World Health Organization, with values up to 75µg/g (about 90% as methylmercury). A large percentage of the participants (57% and 30%) showed high concentrations of total mercury (≥ 10µg/g and ≥ 20µg/g, respectively), with a median value of 12.0µg/g. These are among the highest concentrations ever detected in populations living near Amazonian dams. Interestingly, the concentrations are relatively higher than those currently shown for human populations highly influenced by gold mining areas. Although additional studies are needed to confirm the possible biomagnification and bioaccumulation of mercury by the dams in the Amazon, our data already support the importance of adequate impact studies and continuous monitoring. More than 400 hydropower dams are operational or under construction in the Amazon, and an additional 334 dams are presently planned/proposed. Continuous monitoring of the populations will assist in the development of prevention strategies and government actions to face the problem of the impacts caused by the dams. Copyright © 2017 Elsevier Inc. All rights reserved.
Subramanian, V; Madhavan, N; Saxena, Rajinder; Lundin, Lars-Christer
2003-06-01
Suspended Particulate Matter (SPM), surface (bed sediments) and short length cores of sediments collected from the largest tributary of the river Ganges, namely the river Yamuna, were analysed for total mercury as well as its fractionation in various size and chemical sites in the sediments following standard procedures. Also, attempts were made to determine the vertical distribution in sediments in relation to the recent timescale of a few decades. Our observations indicate that the SPM in general showed higher levels of total mercury compared to the surface sediments while at places the enhancement could be by a factor of 10, say around 25 microg g(-1) in the downstream region that integrates the industrial midstream and agricultural downstream terrain near its confluence with the Ganges. Surface sediments in the upstream direction near the Himalayan foothills and SPM in the lower reaches showed significant high Index of Geoaccumulation (Igeo) as defined by Müller. Size fractionation studies indicate that the finer fraction preferentially showed higher levels of mercury while in the lower reaches of the river, the total mercury is equitably distributed among all size fractions. The proportion of the residual fraction of mercury in relation to mobile fractions, in general decreases downstream towards its confluence with the Ganges river. In sediment cores, the vertical distribution show systematic peaks of mercury indicating that addition of this toxic metal to the aquatic system is in direct proportion to the increase in various types of human activities such as thermal power plants, land use changes (urbanisation) in the midstream region and intensive fertiliser application in lower reaches of this vast river basin.
Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.; Taylor, Howard E.; Antweiler, Ronald C.; De Wild, John F.; Lawler, David A.
2005-01-01
In 1999, the U.S. Geological Survey (USGS) initiated studies of mercury and methylmercury occurrence, transformation, and transport in the Bear River and Yuba River watersheds of the northwestern Sierra Nevada. Because these watersheds were affected by large-scale, historical gold extraction using mercury amalgamation beginning in the 1850s, they were selected for a pilot study of mercury transport by the USGS and other cooperating agencies. This report presents data on methylmercury (MeHg) and total mercury (THg) concentrations in water, bed sediment, invertebrates, and frogs collected at 40 stations during 1999-2001 in the Greenhorn Creek drainage, a major tributary to Bear River. Results document several mercury contamination ?hot spots? that represent potential targets for ongoing and future remediation efforts at abandoned mine sites in the study area. Water-quality samples were collected one or more times at each of 29 stations. The concentrations of total mercury in 45 unfiltered water samples ranged from 0.80 to 153,000 nanograms per liter (ng/L); the median was 9.6 ng/L. Total mercury concentrations in filtered water (41 samples) ranged from less than 0.3 to 8,000 ng/L; the median was 2.7 ng/L. Concentrations of methylmercury in the unfiltered water (40 samples) ranged from less than 0.04 to 9.1 ng/L; the median was 0.07 ng/L. Methylmercury in filtered water (13 samples) ranged from less than 0.04 to 0.27 ng/L; the median was 0.04 ng/L. Acidic drainage with pH values as low as 3.4 was encountered in some of the mined areas. Elevated concentrations of aluminum, cadmium, copper, iron, manganese, nickel, and zinc were found at several stations, especially in the more acidic water samples. Total mercury concentrations in sediment were determined by laboratory and field methods. Total mercury concentrations (determined by laboratory methods) in ten samples from eight stations ranged from about 0.0044 to 12 ?g/g (microgram per gram, equivalent to parts per million). Methylmercury concentrations in these samples ranged from less than 0.00011 to 0.0095 ?g/g. A field panning method was used to determine the concentration of liquid elemental mercury in 22 samples from 14 stations. Measured quantities of elemental mercury recovered by panning ranged from a trace amount estimated at 100 milligrams per kilogram (equivalent to parts per million) to 45,000 milligrams per kilogram (equivalent to 4.5 per cent, by weight). In total, 194 invertebrate samples were collected at 31 stations; 78 of the samples were analyzed for concentrations of THg and MeHg and used to calculate MeHg to THg ratios. A total of 69 frog samples were collected at 19 stations, and all were analyzed only for THg. Ranges of MeHg concentrations (?g/g, wet weight) in invertebrate samples and number of samples (n) were 0.0012-0.048 for banana slugs (Arionidae, n = 27), 0.027-0.39 for dobsonflies (Corydalidae, n = 14), 0.029-0.50 for predaceous diving beetles (Dytiscidae, n = 31), 0.026-0.52 for predaceous stoneflies (Perlidae, n = 18), 0.011-1.6 for dragonflies (Odonata, n = 46), and 0.061-0.55 for water striders (Gerridae, n = 56). The ratio of MeHg to THg in invertebrates was greater than 50 percent for 74 of 78 samples. The data from this reconnaissance sampling effort have been used by land-management agencies in selecting abandoned mine sites for remediation. The Forest Service has remediated the Sailor Flat site, and the Bureau of Land Management has initiated plans to remediate the Boston Mine drainage tunnel.
Kowalski, Artur; Frankowski, Marcin
2015-10-01
Determination of mercury is important in the case of pharmaceuticals for which the European Union regulations have not defined the maximum permissible concentration of this metal. The aim of the study was to determine the levels of mercury in the following groups of drugs (n = 119): analgesics, diuretics, cardiacs, antihypertensives, anti-influenza, antibiotics, anti-allergics, tranquilizers, antibacterials and in dietary supplements (n = 33) available on the Polish market. Mercury was analyzed using cold vapor atomic fluorescence spectrometry CV-AFS. Its content in the samples varied in the range of 0.9-476.1 ng g(-1). Higher mercury concentrations were reported for prescription drugs (Rx): 0.9-476.1 ng g(-1) (median: 7.4 ng g(-1)), lower--for non-prescription medicines (OTC): 1.2-45.8 ng g(-1) (median: 6.0 ng g(-1)). In the analyzed dietary supplements the concentrations were: 0.9-16.7 ng g(-1) (median: 5.9 ng g(-1)). On the basis of the information contained in the leaflet accompanying the medicine, a daily dose of mercury taken into the body with an analyzed medicament was estimated and the health risk posed by using such medicines was assessed. The study indicates that it is justified to carry out measurements of mercury in pharmaceuticals due to its high, potentially harmful. Copyright © 2015 Elsevier Inc. All rights reserved.
Anjum, Naser A; Ahmad, Iqbal; Válega, Mónica; Pacheco, Mário; Figueira, Etelvina; Duarte, Armando C; Pereira, Eduarda
2011-08-01
The dominance of a plant species in highly metal-contaminated areas reflects its tolerance or adaptability potential to these scenarios. Hence, plants with high adaptability and/or tolerance to exceptionally high metal-contaminated scenarios may help protect environmental degradation. The present study aimed to assess the strategies adopted by common reed, Phragmites australis for its dominance in highly mercury-contaminated Ria de Aveiro coastal lagoon (Portugal). Both plant samples and the sediments vegetated by monospecific stand of Phragmites australis were collected in five replicates from mercury-free (reference) and contaminated sites during low tide between March 2006 and January 2007. The sediments’ physico-chemical traits, plant dry mass, uptake, partitioning, and transfer of mercury were evaluated during growing season (spring, summer, autumn, and winter) of P. australis. Redox potential and pH of the sediment around roots were measured in situ using a WTW-pH 330i meter. Dried sediments were incinerated for 4 h at 500°C for the estimation of organic matter whereas plant samples were oven-dried at 60°C till constant weight for plant dry mass determination. Mercury concentrations in sediments and plant parts were determined by atomic absorption spectrometry with thermal decomposition, using an advanced mercury analyzer (LECO 254) and maintaining the accuracy and precision of the analytical methodologies. In addition, mercury bioaccumulation and translocation factors were also determined to differentiate the accumulation of mercury and its subsequent translocation to plant parts in P. australis. P. australis root exhibited the highest mercury accumulation followed by rhizome and leaves during the reproductive phase (autumn). During the same phase, P. australis exhibited ≈5 times less mercury-translocation factor (0.03 in leaf) when compared with the highest mercury bioaccumulation factor for root (0.14). Moreover, seasonal variations differentially impacted the studied parameters. P. australis’ extraordinary ability to (a) pool the maximum mercury in its roots and rhizomes, (b) protect its leaf against mercury toxicity by adopting the mercury exclusion, and (c) adjust the rhizosphere-sediment environment during the seasonal changes significantly helps to withstand the highly mercury-contaminated Ria de Aveiro lagoon. The current study implies that P. australis has enough potential to be used for mercury stabilization and restoration of sediments/soils rich in mercury as well.
Seiler, Ralph L.; Lico, Michael S.; Wiemeyer Evers, David C.
2004-01-01
Mercury is one of the most serious contaminants of water, sediment, and biota in Nevada because of its use during 19th century mining activities to recover gold and silver from ores. In 1998, mercury problems were discovered in the Walker River Basin of California and Nevada when blood drawn from three common loons from Walker Lake was analyzed and found to have severely elevated mercury levels. From 1999 to 2001, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collected water, sediment, and biological samples to determine mercury sources, distribution, and potential effects on the Walker River Basin ecosystem. Total-mercury concentrations ranged from 0.62 to 57.11 ng/L in streams from the Walker River system and ranged from 1.02 to 26.8 ng/L in lakes and reservoirs. Total-mercury concentrations in streambed sediment ranged from 1 to 13,600 ng/g, and methylmercury concentrations ranged from 0.07 to 32.1 ng/g. The sediment-effects threshold for mercury for fresh-water invertebrates is 200 ng/g, which was exceeded at nine stream sites in the Walker River Basin. The highest mercury concentrations were in streams with historic mines and milling operations in the watershed. The highest mercury concentration in sediment, 13,600 ng/g, was found in Bodie Creek near Bodie, Calif., a site of extensive gold mining and milling activities during the 19th century. Sediment cores taken from Walker Lake show total-mercury concentrations exceeding 1,000 ng/g at depths greater than 15 cm below lake bottom. The presence of 137Cs above 8 cm in one core indicates that the upper 8 cm was deposited sometime after 1963. The mercury peak at 46 cm in that core, 2,660 ng/g, likely represents the peak of mining and gold extraction in the Bodie and Aurora mining districts between 1870 and 1880. Mercury concentrations in aquatic invertebrates at all sites downstream from mining activities in the Rough Creek watershed, which drains the Bodie and Aurora mining districts, were elevated (range 0.263 to 0.863 ?g/g, dry weight). Mercury concentrations in the Walker Lake tui chub, the most abundant and likely prey for common loons, ranged from approximately 0.09 ?g/g to approximately 0.9 ?g/g (wet weight). Larger tui chub in the lake, which are most likely older, had the highest mercury concentrations. Blood samples from 94 common loons collected at Walker Lake between 1998 and 2001 contained a mean mercury concentration of 2.96 ?g/g (standard deviation 1.72 ?g/g). These levels were substantially higher than those found in more than 1,600 common loons tested across North America. Among the 1,600 common loons, the greatest blood mercury concentration, 9.46 ?g/g, was from a loon at Walker Lake. According to risk assessments for northeastern North America, blood mercury concentrations exceeding 3.0 ?g/g cause behavioral, reproductive, and physiological effects. At least 52 percent of the loons at Walker Lake are at risk for adverse effects from mercury on the basis of their blood-mercury concentrations. The larger loons staging in the spring are the most at risk group. The elevated mercury levels found in tui chub and common loons indicate that there is a potential threat to the well being and reproduction of fish and wildlife that use Walker Lake. Wildlife that use Weber Reservoir may also be at risk because it is the first reservoir downstream from mining activities in the Bodie and Aurora areas and mercury concentrations in sediment were elevated. Additional data on mercury concentrations in top level predators, such as piscivorous fish and birds, are needed to assess public health and other environmental risks.
de Almeida Ferreira, Clautenes Maria; Egler, Silvia Gonçalves; Yallouz, Allegra Viviane; Ignácio, Áurea Regina Alves
2017-05-01
In this study an environmental assessment of contamination by total mercury (THg) was carried out at the Plateau of the Upper Paraguai River. Total mercury was evaluated in sediment and muscle of the red piranha Pygocentrus nattereri Kner, 1858, a piscivorous species at the top of the food chain consumed for subsistence and commercially. THg concentrations were below national guidelines established by WHO for sediments (100 ng g -1 ) and fish (100-600 ng g -1 ) for most of the sampled sites. Two sites located downstream of artisanal diamond and gold mines had THg concentrations in fish equal or greater than 600 ng g -1 . Copyright © 2017. Published by Elsevier Ltd.
Unexpectedly high mercury concentration in commercial fish feed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, H.; Cech, J. Jr.
1995-12-31
Unexpectedly high mercury was found in a commercial fish pellet which has been widely used to feed fish in laboratory and fish farm settings. Researchers working with fish in mercury studies need to know that fish pellets contain mercury and consider the pellets, influence in their results. Mean mercury concentration in the commercial fish pellet was 47.4 ug/g (ranging from 35 to 56 ug Hg/g). Total mercury (T-Hg) in the blood of Sacramento blackfish (orthodon microlepidotus), fed the commercial feed for 8 months, was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Mean blood T-Hg reached a steady state at 41more » ug Hg/L (ranging from 34 to 51 ug Hg/L) during 5 months of feeding after capture from Clear Lake in California. The accumulation of mercury in blood followed a monoexponential pattern, in accordance with a one-compartment model. There were great variations in mercury levels in blood between individual fishes. The mercury concentrations in the blood did not tend to increase with the growth of the fish. In summary, feed sources of mercury need to be considered in mercury exposure experiments.« less
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
NASA Astrophysics Data System (ADS)
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-05-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI's food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks.
Mercury pollution in vegetables, grains and soils from areas surrounding coal-fired power plants
Li, Rui; Wu, Han; Ding, Jing; Fu, Weimin; Gan, Lijun; Li, Yi
2017-01-01
Mercury contamination in food can pose serious health risks to consumers and coal-fired power plants have been identified as the major source of mercury emissions. To assess the current state of mercury pollution in food crops grown near coal-fired power plants, we measured the total mercury concentration in vegetables and grain crops collected from farms located near two coal-fired power plants. We found that 79% of vegetable samples and 67% of grain samples exceeded the PTWI’s food safety standards. The mercury concentrations of soil samples were negatively correlated with distances from the studied coal-fired power plants, and the mercury contents in lettuce, amaranth, water spinach, cowpea and rice samples were correlated with the mercury contents in soil samples, respectively. Also, the mercury concentrations in vegetable leaves were much higher than those in roots and the mercury content of vegetable leaves decreased significantly after water rinses. Our calculation suggests that probable weekly intake of mercury for local residents, assuming all of their vegetables and grains are from their own farmland, may exceed the toxicologically tolerable values allowed, and therefore long-term consumptions of these contaminated vegetables and grains may pose serious health risks. PMID:28484233
Zhang, Gang; Wang, Ning; Wang, Yuan; Liu, Te; Ai, Jian-Chao
2012-09-01
In the studied area of Jia-pi-gou at the upstream area of Songhua River, algamation process has been applied as a dominant method to extract gold for more than one hundred and eighty years, resulting in severe mercury environmental pollution. The total mercury contents in the atmosphere and soil have been determined by mercury analyzer (Zeeman RA915+) and cold atomic absorption spectrophotometry (GB/T 17136-1997), respectively. To study the pollution characteristics of mercury in the soil and atmosphere, the mercury flux at the interface between the soil and the atmosphere of 4 sampling sites Lao-jin-chang, Er-dao-gou, Er-dao-cha and community of Jia-pi-gou have been determined with the method of dynamic flux chamber. Furthermore, linear regression analyses on the total mercury contents between soil and atmosphere have been carried out and the correlation coefficient of mercury exchange flux between soil and atmosphere and meteorological factors has been studied. The results are as follows: (1) The mean value of mercury content in the atmosphere is (71.08 +/- 38.22) ng x m(-3). (2) The mean value of mercury content in the soil is (0.913 1 +/- 0.040 8) mg x kg(-1); it shows remarkably positive correlation between the mercury contents in soil and in the atmosphere. (3) The mercury exchange flux between soil and atmosphere in different locations are Lao-jin-chang [(129.13 +/- 496.07) ng (m2 x h)(-1)], Er-dao-gou [(98.64 +/- 43.96) ng x (m2 x h)(-1)], Er-dao-cha [(23.17 +/- 171.23) ng x (m2 x h)(-1)], and community of Jia-pi-gou [(7.12 +/- 46.33) ng x (m2 x h)(-1)]. (4) Solar radiation is the major influential factor in the mercury exchange flux between the soil and atmosphere in Lao-jin-chang, Er-dao-cha and community of Jia-pi-gou. Solar radiation, air temperature and soil temperature jointly influence the process of the mercury exchange flux between the soil and atmosphere in Er-dao-gou. Under the disturbance of terrain, three noticeably distinctive trend features of daily change of mercury exchange flux between the soil and atmosphere have been formed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llop, Sabrina, E-mail: llop_sab@gva.es; Spanish Consortium for Research on Epidemiology and Public Health; Lopez-Espinosa, Maria-Jose
Objective: To evaluate the association between mercury exposure and thyroid-stimulating hormone (TSH), total triiodothyronine (TT3) and free thyroxine (FT4) levels during pregnancy as well as to explore if there is any synergic action between mercury and intake of iodine from different sources. Methods: The study population was 1407 pregnant women participating in the Spanish INMA birth cohort study. Total mercury concentrations were analyzed in cord blood. Thyroid hormones (THs) were measured in serum samples collected at 13.2±1.5 weeks of gestation. The association between mercury and TH levels was evaluated with multivariate linear regression models. Effect modification caused by iodine intakemore » from supplements and diet was also evaluated. Results: The geometric means of TSH, TT3, FT4 and mercury were 1.1 μU/L, 2.4 nmol/L, 10.5 pmol/L and 7.7 μg/L, respectively. Mercury levels were marginally significantly associated with TT3 (β: −0.05; 95%CI: −0.10, 0.01), but were neither associated with TSH nor FT4. The inverse association between mercury and TT3 levels was stronger among the iodine supplement consumers (−0.08; 95%CI: −0.15, −0.02, interaction p-value=0.07). The association with FT4 followed the same pattern, albeit not significant. Conclusion: Prenatal mercury exposure was inversely associated with TT3 levels among women who took iodine supplements during pregnancy. These results could be of public health concern, although further research is needed. - Highlights: • We studied the relationship between mercury and thyroid hormones among pregnant. • Mercury was marginally significantly associated with TT3, but not with TSH or FT4. • This association was stronger among the iodine supplement. • These results could be of public health concern, but further research is needed.« less
Vertical mercury distributions in the oceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, G.A.; Fitzgerald, W.F.
1988-06-01
The vertical distribution of mercury (Hg) was determined at coastal and open ocean sites in the northwest Atlantic and Pacific Oceans. Reliable and diagnostic Hg distribution were obtained, permitting major processes governing the marine biogeochemistry of Hg to be identified. The northwest Atlantic near Bermuda showed surface water Hg concentrations near 4 pM, a maximum of 10 pM within the main thermocline, and concentrations less than or equal to surface water values below the depth of the maximum. The maximum appears to result from lateral transport of Hg enriched waters from higher latitudes. In the central North Pacific, surface watersmore » (to 940 m) were slightly elevated (1.9 {plus minus} 0.7 pM) compared to deeper waters (1.4 {plus minus} 0.4 pM), but on thermocline Hg maximum was observed. At similar depths, Hg concentrations near Bermuda were elevated compared to the central North Pacific Ocean. The authors hypothesize that the source of this Hg comes from diagenetic reactions in oxic margin sediments, releasing dissolved Hg to overlying water. Geochemical steady-state box modeling arguments predict a relatively short ({approximately}350 years) mean residence time for Hg in the oceans, demonstrating the reactive nature of Hg in seawater and precluding significant involvement in nutrient-type recycling. Mercury's distributional features and reactive nature suggest that interaction of Hg with settling particulate matter and margin sediments play important roles in regulating oceanic Hg concentrations. Oceanic Hg distributions are governed by an external cycling process, in which water column distributions reflect a rapid competition between the magnitude of the input source and the intensity of the (water column) removal process.« less
Tadayon, Saeid; Smith, C.F.
1994-01-01
Data were collected on physical properties and chemistry of 4 surface water, l4 ground water, and 4 bottom sediment sites in the Rillito Creek basin where artificial recharge of surface runoff is being considered. Concentrations of suspended sediment in streams generally increased with increases in streamflow and were higher during the summer. The surface water is a calcium and bicarbonate type, and the ground water is calcium sodium and bicarbonate type. Total trace ek=nents in surface water that exceeded the U.S. Environmental Protection Agency primary maximum contaminant levels for drinking-water standards were barium, beryllium, cadmium, chromium, lead, mercury and nickel. Most unfiltered samples for suspended gross alpha as uranium, and unadjusted gross alpha plus gross beta in surface water exceeded the U.S. Environmental Protection Agency and the State of Arizona drinking-water standards. Comparisons of trace- element concentrations in bottom sediment with those in soils of the western conterminous United States generally indicate similar concentrations for most of the trace elements, with the exceptions of scandium and tin. The maximum concentration of total nitrite plus nitrate as nitrogen in three ground- samples and total lead in one ground-water sample exceeded U.S. Environmental Protection Agency primary maximum contaminant levels for drinking- water standards, respectively. Seven organochlorine pesticides were detected in surface-water samples and nine in bottom-sediment samples. Three priority pollutants were detected in surface water, two were detected in ground water, and eleven were detected in bottom sediment. Low concentrations of oil and grease were detected in surface-water and bottom- sediment samples.
Goodrich, Jaclyn M.; Wang, Yi; Gillespie, Brenda; Werner, Robert; Franzblau, Alfred; Basu, Niladri
2012-01-01
Mercury is a potent toxicant of concern to both the general public and occupationally exposed workers (e.g., dentists). Recent studies suggest that several genes mediating the toxicokinetics of mercury are polymorphic in humans and may influence inter-individual variability in mercury accumulation. This work hypothesizes that polymorphisms in key glutathione synthesizing enzyme, glutathione s-transferase, and selenoprotein genes underlie inter-individual differences in mercury body burden as assessed by analytical mercury measurement in urine and hair, biomarkers of elemental mercury and methylmercury, respectively. Urine and hair samples were collected from a population of dental professionals (n=515), and total mercury content was measured. Average urine (1.06±1.24 ug/L) and hair mercury levels (0.49±0.63 ug/g) were similar to national U.S. population averages. Taqman assays were used to genotype DNA from buccal swab samples at 15 polymorphic sites in genes implicated in mercury metabolism. Linear regression modeling assessed the ability of polymorphisms to modify the relationship between mercury biomarker levels and exposure sources (e.g., amalgams, fish consumption). Five polymorphisms were significantly associated with urine mercury levels (GSTT1 deletion), hair mercury levels (GSTP1-105, GSTP1-114, GSS 5’), or both (SEPP1 3’UTR). Overall, this study suggests that polymorphisms in selenoproteins and glutathione-related genes may influence elimination of mercury in the urine and hair or mercury retention following exposures to elemental mercury (via dental amalgams) and methylmercury (via fish consumption). PMID:21967774
Kim, Yu-Mi; Chung, Jin-Young; An, Hyun Sook; Park, Sung Yong; Kim, Byoung-Gwon; Bae, Jong Woon; Han, Myoungseok; Cho, Yeon Jean; Hong, Young-Seoub
2015-01-01
With rising concerns of heavy metal exposure in pregnancy and early childhood, this study was conducted to assess the relationship between the lead, cadmium, mercury, and methylmercury blood levels in pregnancy and neonatal period. The study population included 104 mothers and their children pairs who completed both baseline maternal blood sampling at the second trimester and umbilical cord blood sampling at birth. The geometric mean maternal blood levels of lead, cadmium, total mercury, and methylmercury at the second trimester were 1.02 ± 1.39 µg/dL, 0.61 ± 1.51 µg/L, 2.97 ± 1.45 µg/L, and 2.39 ± 1.45 µg/L, respectively, and in the newborns, these levels at birth were 0.71 ± 1.42 µg/dL, 0.01 ± 5.31 µg/L, 4.44 ± 1.49 µg/L, and 3.67 ± 1.51 µg/L, respectively. The mean ratios of lead, cadmium, total mercury, and methylmercury levels in the newborns to those in the mothers were 0.72, 0.04, 1.76, and 1.81, respectively. The levels of most heavy metals in pregnant women and infants were higher in this study than in studies from industrialized western countries. The placenta appears to protect fetuses from cadmium; however, total mercury and methylmercury were able to cross the placenta and accumulate in fetuses. PMID:26516876
40 CFR 461.73 - New source performance standards. (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... applied Chromium 6.24 2.70 Mercury 3.86 1.63 Silver 6.24 2.70 Zinc 1.19 0.53 Manganese 8.91 6.83 Oil and... times. (6) Subpart G—Nickel Impregnated Cathodes—NSPS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average Metric units—mg/kg of nickel applied English units—pounds per 1,000...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rural HMIWI HMIWI a with dry scrubber followed by fabric filter HMIWI a with wet scrubber HMIWI a with dry scrubber followed by fabric filter and wet scrubber Maximum operating parameters: Maximum charge... mercury (Hg) sorbent flow rate Hourly Once per hour ✔ ✔ Minimum pressure drop across the wet scrubber or...
Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.
2017-01-01
Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.
NASA Astrophysics Data System (ADS)
Gerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S.
2017-08-01
Global mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.
Henny, C.J.; Hill, E.F.; Grove, R.A.; Kaiser, J.L.
2007-01-01
The dynamic nature of the annual volume of water discharged down the Carson River over a 10-year period, which included a century flood and drought, was examined in order to gain a better understanding of mercury movement, biological availability, and exposure to waterbirds nesting at Lahontan Reservoir. Total annual water discharge directly influenced total mercury (THg) in unfiltered water above the reservoir and downstream of a mining area, whereas methyl mercury (MeHg) at the same site was negatively related to annual discharge. Annual water storage at Lahontan Reservoir in the spring and early summer, as expected, was directly related to annual Carson River discharge. In contrast to the findings from above the reservoir, annual MeHg concentrations in water sampled below the reservoir were positively correlated with the total discharge and the amount of water stored in the reservoir on 1 July; that is, the reservoir is an important location for mercury methylation, which agrees with earlier findings. However, unfiltered water MeHg concentrations were about 10-fold higher above than below the reservoir, which indicated that much MeHg that entered as well as that produced in the reservoir settled out in the reservoir. Avian exposure to mercury at Lahontan Reservoir was evaluated in both eggs and blood of young snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax). Annual MeHg concentrations in unfiltered water below the reservoir, during the time period (Julian Days 90-190) when birds were present, correlated significantly with mercury concentrations in night-heron blood (r 2= 0.461, p = 0.027), snowy egret blood (r 2= 0.474, p = 0.024), and night-heron eggs (r 2 = 0.447, p = 0.029), but not snowy egret eggs. A possible reason for lack of an MeHg water correlation with snowy egret eggs is discussed and relates to potential exposure differences associated with the food habits of both species. THg concentrations in water collected below the reservoir were not related to egg or blood mercury concentrations for either species. ?? 2007 Springer Science+Business Media, LLC.
Bioaccumulation of total mercury in the earthworm Eisenia andrei.
Le Roux, Shirley; Baker, Priscilla; Crouch, Andrew
2016-01-01
Earthworms are a major part of the total biomass of soil fauna and play a vital role in soil maintenance. They process large amounts of plant and soil material and can accumulate many pollutants that may be present in the soil. Earthworms have been explored as bioaccumulators for many heavy metal species such as Pb, Cu and Zn but limited information is available for mercury uptake and bioaccumulation in earthworms and very few report on the factors that influence the kinetics of Hg uptake by earthworms. It is known however that the uptake of Hg is strongly influenced by the presence of organic matter, hence the influence of ligands are a major factor contributing to the kinetics of mercury uptake in biosystems. In this work we have focused on the uptake of mercury by earthworms (Eisenia andrei) in the presence of humic acid (HA) under varying physical conditions of pH and temperature, done to assess the role of humic acid in the bioaccumulation of mercury by earthworms from soils. The study was conducted over a 5-day uptake period and all earthworm samples were analysed by direct mercury analysis. Mercury distribution profiles as a function of time, bioaccumulation factors (BAFs), first order rate constants and body burden constants for mercury uptake under selected conditions of temperature, pH as well as via the dermal and gut route were evaluated in one comprehensive approach. The results showed that the uptake of Hg was influenced by pH, temperature and the presence of HA. Uptake of Hg(2+) was improved at low pH and temperature when the earthworms in soil were in contact with a saturating aqueous phase. The total amount of Hg(2+) uptake decreased from 75 to 48 % as a function of pH. For earthworms in dry soil, the uptake was strongly influenced by the presence of the ligand. Calculated BAF values ranged from 0.1 to 0.8. Mercury uptake typically followed first order kinetics with rate constants determined as 0.2 to 1 h(-1).
NASA Astrophysics Data System (ADS)
Bao, Shuangyou; Li, Kai; Ning, Ping; Peng, Jinhui; Jin, Xu; Tang, Lihong
2017-01-01
A novel hybrid material was fabricated using mercaptoamine-functionalised silica-coated magnetic nanoparticles (MAF-SCMNPs) and was effective in the extraction and recovery of mercury and lead ions from wastewater. The properties of this new magnetic material were explored using various characterisation and analysis methods. Adsorbent amounts, pH levels and initial concentrations were optimised to improve removal efficiency. Additionally, kinetics, thermodynamics and adsorption isotherms were investigated to determine the mechanism by which the fabricated MAF-SCMNPs adsorb heavy metal ions. The results revealed that MAF-SCMNPs were acid-resistant. Sorption likely occurred by chelation through the amine group and ion exchange between heavy metal ions and thiol functional groups on the nanoadsorbent surface. The equilibrium was attained within 120 min, and the adsorption kinetics showed pseudo-second-order (R2 > 0.99). The mercury and lead adsorption isotherms were in agreement with the Freundlich model, displaying maximum adsorption capacities of 355 and 292 mg/g, respectively. The maximum adsorptions took place at pH 5-6 and 6-7 for Hg(II) and Pb(II), respectively. The maximum adsorptions were observed at 10 mg and 12 mg adsorbent quantities for Hg(II) and Pb(II), respectively. The adsorption process was endothermic and spontaneous within the temperature range of 298-318 K. This work demonstrates a unique magnetic nano-adsorbent for the removal of Hg(II) and Pb(II) from wastewater.
von Canstein, H.; Li, Y.; Timmis, K. N.; Deckwer, W.-D.; Wagner-Döbler, I.
1999-01-01
A mercury-resistant bacterial strain which is able to reduce ionic mercury to metallic mercury was used to remediate in laboratory columns mercury-containing wastewater produced during electrolytic production of chlorine. Factory effluents from several chloralkali plants in Europe were analyzed, and these effluents contained total mercury concentrations between 1.6 and 7.6 mg/liter and high chloride concentrations (up to 25 g/liter) and had pH values which were either acidic (pH 2.4) or alkaline (pH 13.0). A mercury-resistant bacterial strain, Pseudomonas putida Spi3, was isolated from polluted river sediments. Biofilms of P. putida Spi3 were grown on porous carrier material in laboratory column bioreactors. The bioreactors were continuously fed with sterile synthetic model wastewater or nonsterile, neutralized, aerated chloralkali wastewater. We found that sodium chloride concentrations up to 24 g/liter did not inhibit microbial mercury retention and that mercury concentrations up to 7 mg/liter could be treated with the bacterial biofilm with no loss of activity. When wastewater samples from three different chloralkali plants in Europe were used, levels of mercury retention efficiency between 90 and 98% were obtained. Thus, microbial mercury removal is a potential biological treatment for chloralkali electrolysis wastewater. PMID:10583977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laarman, P.W.; Willford, W.A.; Olson, J.R.
1976-03-01
Mercury-contaminated yellow perch (Perca flavescens) and rock bass (Ambloplites rupestris) were collected from Lake St. Clair and stocked in two earthern ponds in September 1970. Twenty-six months later, concentrations of total mercury in the fillets had declined 53 percent in the yellow perch and 59 percent in the rock bass; however, the mean weight of the fish increased 88 and 183 percent, respectively, during the same period. All of the reduction in mercury concentrations was attributable to dilution by growth. Slight discrepancies between the theoretical and observed reduction of mercury concentrations suggest an initial redistribution of residues from other tissuesmore » to the muscle and a continued incorporation of background amounts of mercury during growth.« less
Atmospheric mercury emissions in Australia from anthropogenic, natural and recycled sources
NASA Astrophysics Data System (ADS)
Nelson, Peter F.; Morrison, Anthony L.; Malfroy, Hugh J.; Cope, Martin; Lee, Sunhee; Hibberd, Mark L.; Meyer, C. P. (Mick); McGregor, John
2012-12-01
The United Nations Environment Programme (UNEP) has begun a process of developing a legally binding instrument to manage emissions of mercury from anthropogenic sources. The UNEP Governing Council has concluded that there is sufficient evidence of significant global adverse impacts from mercury to warrant further international action; and that national, regional and global actions should be initiated as soon as possible to identify populations at risk and to reduce human generated releases. This paper describes the development of, and presents results from, a comprehensive, spatially and temporally resolved inventory of atmospheric mercury emissions from the Australian landmass. Results indicate that the best estimate of total anthropogenic emissions of mercury to the atmosphere in 2006 was 15 ± 5 tonnes. Three industrial sectors contribute substantially to Australian anthropogenic emissions: gold smelting (˜50%, essentially from a single site/operation), coal combustion in power plants (˜15%) and alumina production from bauxite (˜12%). A diverse range of other sectors contribute smaller proportions of the emitted mercury, but industrial emissions account for around 90% of total anthropogenic mercury emissions. The other sectors include other industrial sources (mining, smelting, and cement production) and the use of products containing mercury. It is difficult to determine historical trends in mercury emissions given the large uncertainties in the data. Estimates for natural and re-emitted emissions from soil, water, vegetation and fires are made using meteorological models, satellite observations of land cover and soil and vegetation type, fuel loading, fire scars and emission factors which account for the effects of temperature, insolation and other environmental variables. These natural and re-emitted sources comfortably exceed the anthropogenic emissions, and comprise 4-12 tonnes per year from vegetation, 70-210 tonnes per year from soils, and 21-63 tonnes per year from fires.
Vo, Anh-Thu E.; Bank, Michael S.; Shine, James P.; Edwards, Scott V.
2011-01-01
Methylmercury cycling in the Pacific Ocean has garnered significant attention in recent years, especially with regard to rising mercury emissions from Asia. Uncertainty exists concerning whether increases in anthropogenic emissions over time may have caused increased mercury bioaccumulation in the biota. To address this, we measured total mercury and, for a subset of samples, methylmercury (the bioaccumulated form of mercury) in museum feathers from an endangered seabird, the black-footed albatross (Phoebastria nigripes), spanning a 120-y period. We analyzed stable isotopes of nitrogen (δ15N) and carbon (δ13C) to control for temporal changes in trophic structure and diet. In post-1940 and -1990 feathers, we detected significantly higher mean methylmercury concentrations and higher proportions of samples exhibiting above deleterious threshold levels (∼40,000 ng·g−1) of methylmercury relative to prior time points, suggesting that mercury toxicity may undermine reproductive effort in the species. We also found higher levels of (presumably curator-mediated) inorganic mercury in older specimens of albatross as well as two nonpelagic species lacking historical exposure to bioavailable mercury, patterns suggesting that studies on bioaccumulation should measure methylmercury rather than total mercury when using museum collections. δ15N contributed substantially to models explaining the observed methylmercury variation. After simultaneously controlling for significant trends in δ13C over time and δ15N with methylmercury exposure, year remained a significant independent covariate with feather methylmercury levels among the albatrosses. These data show that remote seabird colonies in the Pacific basin exhibit temporal changes in methylmercury levels consistent with historical global and recent regional increases in anthropogenic emissions. PMID:21502496
Torres, D P; Martins-Teixeira, M B; Silva, E F; Queiroz, H M
2012-01-01
A very simple and rapid method for the determination of total mercury in fish samples using the Direct Mercury Analyser DMA-80 was developed. In this system, a previously weighted portion of fresh fish is combusted and the released mercury is selectively trapped in a gold amalgamator. Upon heating, mercury is desorbed from the amalgamator, an atomic absorption measurement is performed and the mercury concentration is calculated. Some experimental parameters have been studied and optimised. In this study the sample mass was about 100.0 mg. The relative standard deviation was lower than 8.0% for all measurements of solid samples. Two calibration curves against aqueous standard solutions were prepared through the low linear range from 2.5 to 20.0 ng of Hg, and the high linear range from 25.0 to 200.0 ng of Hg, for which a correlation coefficient better than 0.997 was achieved, as well as a normal distribution of the residuals. Mercury reference solutions were prepared in 5.0% v/v nitric acid medium. Lyophilised fish tissues were also analysed; however, the additional procedure had no advantage over the direct analysis of the fresh fish, and additionally increased the total analytical process time. A fish tissue reference material, IAEA-407, was analysed and the mercury concentration was in agreement with the certified value, according to the t-test at a 95% confidence level. The limit of quantification (LOQ), based on a mercury-free sample, was 3.0 µg kg(-1). This LOQ is in accordance with performance criteria required by the Commission Regulation No. 333/2007. Simplicity and high efficiency, without the need for any sample preparation procedure, are some of the qualities of the proposed method.
Polar firn air reveals large-scale impact of anthropogenic mercury emissions during the 1970s.
Faïn, Xavier; Ferrari, Christophe P; Dommergue, Aurélien; Albert, Mary R; Battle, Mark; Severinghaus, Jeff; Arnaud, Laurent; Barnola, Jean-Marc; Cairns, Warren; Barbante, Carlo; Boutron, Claude
2009-09-22
Mercury (Hg) is an extremely toxic pollutant, and its biogeochemical cycle has been perturbed by anthropogenic emissions during recent centuries. In the atmosphere, gaseous elemental mercury (GEM; Hg degrees ) is the predominant form of mercury (up to 95%). Here we report the evolution of atmospheric levels of GEM in mid- to high-northern latitudes inferred from the interstitial air of firn (perennial snowpack) at Summit, Greenland. GEM concentrations increased rapidly after World War II from approximately 1.5 ng m(-3) reaching a maximum of approximately 3 ng m(-3) around 1970 and decreased until stabilizing at approximately 1.7 ng m(-3) around 1995. This reconstruction reproduces real-time measurements available from the Arctic since 1995 and exhibits the same general trend observed in Europe since 1990. Anthropogenic emissions caused a two-fold rise in boreal atmospheric GEM concentrations before the 1970s, which likely contributed to higher deposition of mercury in both industrialized and remotes areas. Once deposited, this toxin becomes available for methylation and, subsequently, the contamination of ecosystems. Implementation of air pollution regulations, however, enabled a large-scale decline in atmospheric mercury levels during the 1980s. The results shown here suggest that potential increases in emissions in the coming decades could have a similar large-scale impact on atmospheric Hg levels.
Emissions of mercury from the power sector in Poland
NASA Astrophysics Data System (ADS)
Zyśk, J.; Wyrwa, A.; Pluta, M.
2011-01-01
Poland belongs to the European Union countries with the highest mercury emissions. This is mainly related to coal combustion. This paper presents estimates of mercury emissions from power sector in Poland. In this work, the bottom-up approach was applied and over 160 emission point sources were analysed. For each, the characteristics of the whole technological chain starting from fuel quality, boiler type as well as emission controls were taken into account. Our results show that emissions of mercury from brown coal power plants in 2005 were nearly four times greater than those of hard coal power plants. These estimates differ significantly from national statistics and some possible reasons are discussed. For the first time total mercury emissions from the Polish power sector were differentiated into its main atmospheric forms: gaseous elemental (GEM), reactive gaseous (RGM) and particulate-bound mercury. Information on emission source location and the likely vertical distribution of mercury emissions, which can be used in modelling of atmospheric dispersion of mercury is also provided.
Regional trends in mercury distribution across the Great Lakes states, north central USA
NASA Astrophysics Data System (ADS)
Nater, Edward A.; Grigal, David F.
1992-07-01
CONCENTRATIONS of mercury in the environment are increasing as a result of human activities, notably fossil-fuel burning and incineration of municipal wastes. Increasing levels of mercury in aquatic environments and consequently in fish populations are recognized as a public-health problem1,2. Enhanced mercury concentrations in lake sediments relative to pre-industrial values have also been attributed to anthropogenic pollution. It is generally assumed that atmospheric mercury deposition is dominated by global-scale processes, consequently being regionally uniform. Here, to the contrary, we report a significant gradient in concentrations and total amounts of mercury in organic litter and surface mineral soil along a transect of forested sites across the north central United States from northwestern Minnesota to eastern Michigan. This gradient is accompanied by parallel changes in wet sulphate deposition and human activity along the transect, suggesting that the regional variation in mercury content is due to deposition of anthropogenic mercury, most probably in particulate form.
Rothenberg, Sarah E.; Mgutshini, Noma L.; Bizimis, Michael; Johnson-Beebout, Sarah E.; Ramanantsoanirina, Alain
2014-01-01
The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n=51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p<0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n=20) and brown bran (n=31) (Wilcoxon rank sum, p=0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r=0.33, p<0.05) and total mercury (r=0.44, p<0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r<0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem. PMID:25463705
Total mercury in precipitation collected using ASPS automated wet-only instrument and analyzed by cold vapor atomic fluorescence spectroscopy.This dataset is associated with the following publication:Lynam, M., J.T. Dvonch, J. Barres, M. Landis , and A. Kamal. Investigating the impact of local urban sources on total atmospheric mercury wet deposition in Cleveland, Ohio, USA. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 127: 262-271, (2016).
40 CFR 421.144 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH... Arsenic 21.720 9.687 Mercury 2.344 0.937 Total suspended solids 234.400 187.500 pH (1) (1) 1 Within the... per million pounds) of antimony metal produced by electrowinning Antimony 60.310 26.870 Arsenic 43.430...
Raymond, Michelle R; Christensen, Krista Y; Thompson, Brooke A; Anderson, Henry A
2016-07-01
The aim of this study was to determine fish consumption habits and contaminant exposures associated with adverse cardiovascular outcomes among older male anglers. One hundred fifty-four men aged 50 years and older living and fishing in Wisconsin completed a detailed survey and provided hair and blood samples. Associations between fish consumption and body burdens of several contaminants, with self-reported cardiovascular outcomes, were evaluated. Consuming fish species with higher methyl mercury content was positively associated with odds of angina, coronary heart disease (CHD), or heart attack, while consuming fattier species was negatively associated with high blood pressure or high cholesterol. Total mercury in blood was associated with 27% higher odds of heart attack, and certain classes of polychlorinated biphenyls were positively associated with CHD. Total mercury exposures may affect cardiovascular outcomes. Educational interventions promoting consumption of fish low in methyl mercury among older male anglers are needed.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-01-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
NASA Astrophysics Data System (ADS)
Pervez, S.; Koshle, A.; Pervez, Y.
2010-06-01
Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to results obtained in other industrial locations earlier. Plant workers have shown 1.5 to 2.5 times higher personal RPM-Hg levels compared to Category 2 and 20-30 times higher than Category 3. All biomarkers have shown higher Hg presence compared to prescribed standards. Regression analysis between exposure routes and bio-receptors has been investigated. Dominance status of selected routes of bio-accumulation has been varied from category to category.
Mercury Test on macroalgae from Burung and Tikus Island, Jakarta
NASA Astrophysics Data System (ADS)
Novianty, H.; Herandarudewi, S. M. C.; Suratno
2018-04-01
Environmental pollution, caused by the introduction of hazardous substances such as heavy metals into coastal waters, affects not only the condition of the waters but also the source of food that will be contaminated by hazardous metals, one of them is mercury (Hg). Mercury is toxic metal which could cause damage to the human body in certain threshold amounts. The aim of this study was to determin the content of mercury in several species of algae from Burung and Tikus Island, Jakarta. This study was using a descriptive method. The samples were collected from Burung and Tikus Island by simple rundown sampling. Mercury level was measured by NIC3000 mercury analyzer tool. The results showed that none of the mercury levels have passed 0.5 mg/kg (the safety standart level of mercury by SNI (Indonesian National Standard)7387 in 2019) mangrove. From tikus Island had lower total mercury than the ones from Burung Island. Burung Island is located near Pari Island which is a residential area, where pollution is more likely to occur.
Beaulieu, Harry J; Beaulieu, Serrita; Brown, Chris
2008-06-01
Phenyl mercuric acetate (PMA) historically has been used as a catalyst in polyurethane systems. In the 1950s-1970s, PMA was used as a catalyst in the 3M Tartan brand polyurethane flexible floors that were installed commonly in school gymnasiums. Mercury vapor is released into air above the surface of these floors. Sampling mercury in bulk flooring material and mercury vapor in air was conducted in nine Idaho schools in the spring of 2006. These evaluations were conducted in response to concerns by school officials that the floors could contain mercury and could release the mercury vapor into the air, presenting a potential health hazard for students, staff, and visitors. Controlled abatement was conducted in one school where remodeling would impact the mercury-bearing flexible gym floors ( approximately 9,000 ft(2) total). The controlled abatement consisted of containment of the work area with negative air technology; worker protection, including mercury-specific training, use of personal protective equipment, and biological and exposure monitoring; and environmental protection, including proper disposal of mercury-bearing hazardous waste material.
Pennuto, C M; Smith, M
2015-12-01
Riparian communities can receive environmental contaminants from adjacent aquatic 'donor' habitats. We investigated mercury biotransport from aquatic to terrestrial habitats via aquatic insect emergence and uptake by riparian spiders at sites within and upstream of the Buffalo River Area of Concern (AOC), a site with known sediment Hg contamination. Mercury concentration in emerging midges was roughly 10× less than contaminated sediment levels with the AOC, but biomagnification factors from midges to spiders ranged from 2.0 to 2.65 between sites. There was a significantly negative body mass:total mercury relationship in spiders (p < 0.001), indicating that mercury depuration is rapid or tissue dilution occurs in these riparian predators. Spiders contained significantly more mercury than their midge prey and spiders upstream of the AOC had higher mercury concentrations than spiders from within the AOC. Collectively, these data indicate that riparian spiders can be good mercury sentinels in urban environments, and that riparian communities upstream from the AOC may be at greater risk to mercury than has been previously considered.
Indicators of sediment and biotic mercury contamination in a southern New England estuary
Taylor, David L.; Linehan, Jennifer C.; Murray, David W.; Prell, Warren L.
2012-01-01
Total mercury (Hg) and methylmercury (MeHg) were analyzed in near surface sediments (0–2 cm) and biota (zooplankton, macro-invertebrates, finfish) collected from Narragansett Bay (Rhode Island/Massachusetts, USA) and adjacent embayments and tidal rivers. Spatial patterns in sediment contamination were governed by the high affinity of Hg for total organic carbon (TOC). Sediment MeHg and percent MeHg were also inversely related to summer bottom water dissolved oxygen (DO) concentrations, presumably due to the increased activity of methylating bacteria. For biota, Hg accumulation was influenced by inter-specific habitat preferences and trophic structure, and sediments with high TOC and percent silt-clay composition limited mercury bioavailability. Moreover, hypoxic bottom water limited Hg bioaccumulation, which is possibly mediated by a reduction in biotic foraging, and thus, dietary uptake of mercury. Finally, most biota demonstrated a significant positive relationship between tissue and TOC-normalized sediment Hg, but relationships were much weaker or absent for sediment MeHg. These results have important implications for the utility of estuarine biota as subjects for mercury monitoring programs. PMID:22317792
Kading, T J; Mason, R P; Leaner, J J
2009-01-01
Mercury deposition histories have been scarcely documented in the southern hemisphere. A sediment core was collected from the ecologically important estuarine floodplain of the Berg River (South Africa). We establish the concentration of Hg in this (210)Pb-dated sediment core at <50 ng g(-1) Hg(T) throughout the core, but with 1.3 ng g(-1) methylmercury in surface sediments. The (210)Pb dating of the core provides a first record of mercury deposition to the site and reveals the onset of enhanced mercury deposition in 1970. The ratio of methylmercury to total mercury is relatively high in these sediments when compared to other wetlands.
NASA Astrophysics Data System (ADS)
Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R.
2013-04-01
The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America - the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many scientists and policy makers for a robust database of measurements to improve model development, assess policies and programs, and improve estimates of mercury dry deposition. Many different agencies and groups support the network, including federal, state, tribal, and international governments, academic institutions, and private companies. AMNet has added two high elevation sites outside of continental North America in Hawaii and Taiwan because of new partnerships forged within NADP. Network sites measure concentrations of atmospheric mercury fractions using automated, continuous mercury speciation systems. The procedures that NADP developed for field operations, data management, and quality assurance ensure that the network makes scientifically valid and consistent measurements. AMNet reports concentrations of hourly gaseous elemental mercury (GEM), two-hour gaseous oxidized mercury (GOM), and two-hour particulate-bound mercury less than 2.5 microns in size (PBM2.5). As of January 2012, over 450 000 valid observations are available from 30 stations. The AMNet also collects ancillary meteorological data and information on land-use and vegetation, when available. We present atmospheric mercury data comparisons by time (3 yr) at 22 unique site locations. Highlighted are contrasting values for site locations across the network: urban versus rural, coastal versus high-elevation and the range of maximum observations. The data presented should catalyze the formation of many scientific questions that may be answered through further in-depth analysis and modeling studies of the AMNet database. All data and methods are publically available through an online database on the NADP website (http://nadp.isws.illinois.edu/amn/). Future network directions are to foster new network partnerships and continue to collect, quality assure, and post data, including dry deposition estimates, for each fraction.
NASA Astrophysics Data System (ADS)
Gay, D. A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R.
2013-11-01
The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric-mercury-monitoring sites based in North America - the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many scientists and policy makers for a robust database of measurements to improve model development, assess policies and programs, and improve estimates of mercury dry deposition. Many different agencies and groups support the network, including federal, state, tribal, and international governments, academic institutions, and private companies. AMNet has added two high-elevation sites outside of continental North America in Hawaii and Taiwan because of new partnerships forged within NADP. Network sites measure concentrations of atmospheric mercury fractions using automated, continuous mercury speciation systems. The procedures that NADP developed for field operations, data management, and quality assurance ensure that the network makes scientifically valid and consistent measurements. AMNet reports concentrations of hourly gaseous elemental mercury (GEM), two-hour gaseous oxidized mercury (GOM), and two-hour particulate-bound mercury less than 2.5 microns in size (PBM2.5). As of January 2012, over 450 000 valid observations are available from 30 stations. AMNet also collects ancillary meteorological data and information on land use and vegetation, when available. We present atmospheric mercury data comparisons by time (3 yr) at 21 individual sites and instruments. Highlighted are contrasting values for site locations across the network: urban versus rural, coastal versus high elevation and the range of maximum observations. The data presented should catalyze the formation of many scientific questions that may be answered through further in-depth analysis and modeling studies of the AMNet database. All data and methods are publically available through an online database on the NADP website (http://nadp.sws.uiuc.edu/amn/). Future network directions are to foster new network partnerships and continue to collect, quality assure, and post data, including dry deposition estimates, for each fraction.
The Life Cycle of Mercury Within the Clear Lake Aquatic Ecosystem: From Ore to Organism
NASA Astrophysics Data System (ADS)
Suchanek, T. H.; Suchanek, T. H.; Nelson, D. C.; Nelson, D. C.; Zierenberg, R. A.; King, P.; King, P.; McElroy, K.; McElroy, K.
2001-12-01
Clear Lake (Lake County) is located in the geologically active Clear Lake volcanics mercury (Hg) bearing Franciscan formation within the Coast Range of California, which includes over 300 abandoned Hg mines and prospects. Intermittent mining at the Sulphur Bank Mercury Mine (from 1872-1957), now a USEPA SuperFund site, has resulted in approximately 100 metric tonnes of Hg being deposited into the aquatic ecosystem of Clear Lake, with sediment concentrations of total-Hg as high as 650 mg/kg (parts per million = ppm) near the mine, making Clear Lake one of the most Hg contaminated lakes in the world. As a result, largemouth bass and other top predatory fish species often exceed both the Federal USFDA recommended maximum recommended concentrations of 1.0 ppm and the State of California level of 0.5 ppm. Acid rock drainage leaches Hg and high concentrations of sulfate from the mine site through wasterock and subsurface conduits through subsediment advection and eventually upward diffusion into lake sediments and water. When mineral-laden pH 3 fluids from the mine mix with Clear Lake water (pH 8), an alumino-silicate precipitate (floc) is produced that promotes the localized production of toxic methyl Hg. Floc "hot spots" in sediments near the mine exhibit low pH, high sulfate, anoxia and high organic loading which create conditions that promote Hg methylation by microbial activity, especially in late summer and fall. Wind-driven currents transport methyl-Hg laden floc particles throughout Clear Lake, where they are consumed by plankton and benthic invertebrates and bioaccumulated throughout the food web. While Clear Lake biota have elevated concentrations of methyl-Hg, they are not as elevated as might be expected based on the total Hg loading into the lake. A science-based management approach, utilizing over 10 years of data collected on Hg cycling within the physical and biological compartments of Clear Lake, is necessary to affect a sensible remediation plan.
Wyatt, Lauren; Ortiz, Ernesto J; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-12-15
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities ( n = 12), where ASGM has increased 4-6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15-49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual's oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8-10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29-75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions.
Current and future levels of mercury atmospheric pollution on a global scale
NASA Astrophysics Data System (ADS)
Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin
2016-10-01
An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source-receptor techniques for mercury emission apportionment on a global scale.
Wyatt, Lauren; Ortiz, Ernesto J.; Feingold, Beth; Berky, Axel; Diringer, Sarah; Morales, Ana Maria; Jurado, Elvis Rojas; Hsu-Kim, Heileen; Pan, William
2017-01-01
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities (n = 12), where ASGM has increased 4–6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15–49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual’s oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8–10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29–75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions. PMID:29244775
Estimation and mapping of wet and dry mercury deposition across northeastern North America
Miller, E.K.; Vanarsdale, A.; Keeler, G.J.; Chalmers, A.; Poissant, L.; Kamman, N.C.; Brulotte, R.
2005-01-01
Whereas many ecosystem characteristics and processes influence mercury accumulation in higher trophic-level organisms, the mercury flux from the atmosphere to a lake and its watershed is a likely factor in potential risk to biota. Atmospheric deposition clearly affects mercury accumulation in soils and lake sediments. Thus, knowledge of spatial patterns in atmospheric deposition may provide information for assessing the relative risk for ecosystems to exhibit excessive biotic mercury contamination. Atmospheric mercury concentrations in aerosol, vapor, and liquid phases from four observation networks were used to estimate regional surface concentration fields. Statistical models were developed to relate sparsely measured mercury vapor and aerosol concentrations to the more commonly measured mercury concentration in precipitation. High spatial resolution deposition velocities for different phases (precipitation, cloud droplets, aerosols, and reactive gaseous mercury (RGM)) were computed using inferential models. An empirical model was developed to estimate gaseous elemental mercury (GEM) deposition. Spatial patterns of estimated total mercury deposition were complex. Generally, deposition was higher in the southwest and lower in the northeast. Elevation, land cover, and proximity to urban areas modified the general pattern. The estimated net GEM and RGM fluxes were each greater than or equal to wet deposition in many areas. Mercury assimilation by plant foliage may provide a substantial input of methyl-mercury (MeHg) to ecosystems. ?? 2005 Springer Science+Business Media, Inc.
Gao, Zhen-Yan; Li, Min-Ming; Wang, Ju; Yan, Jin; Zhou, Can-Can; Yan, Chong-Huai
2018-01-01
This study sought to obtain national cross-sectional data for blood mercury levels and risk factors for mercury exposure in Chinese children aged 0 to 6years to provide evidence to support preventive measures for reducing childhood blood mercury levels. A multi-stage, stratified, clustered random sampling survey was conducted May 2013-Mar 2015. Shanghai, Jilin, Shanxi, Guangdong, Qinghai, Yunnan and Hubei, which are located in seven different geographical regions in China, were selected as the study field. A total of 14,202 children aged 0-6years participated in the study. Whole-blood venous samples (3ml) were collected from the subjects for mercury exposure assessment. The DMA-80 was applied for mercury detection, and a health questionnaire gathering information on related confounders was completed by the subjects' parents of the subjects after they received guidance from the investigators. A general linear model was used for the primary descriptive statistical analysis. Odds ratios (ORs) and 95%CIs for the risk factors were estimated using unconditional logistic regression. A total of 14,202 eligible samples were collected. The mean mercury level was 1.39μg/L. Other results were as follows: median 1.23μg/L, p25 0.86μg/L, p75 1.73μg/L, and GM 1.10μg/L. Of the seven geographical regions, Qinghai, in northwestern China, had a median mercury level of 0.37μg/L, which was significantly lower than the mercury level in Guangdong, in southeastern China (2.01μg/L). The median blood mercury level of children in suburban areas was 1.34μg/L, which was remarkably higher than that of children in rural areas (1.09μg/L). Dichotomous subgroups were generated using the median mercury concentration. Unconditional logistic regression analysis revealed that fish consumption may contribute to increased blood mercury levels (p<0.05). Additionally, we observed significantly positive associations between mercury concentrations and the children's anthropometric characteristics (BMI; p<0.05). Blood mercury concentrations among Chinese children aged 0-6years were considered low, and children who consumed more marine fish, freshwater fish and shellfish tended to have higher mercury concentrations. Our study suggests that children's growth is likely affected by the positive effects of mercury, which may have implications concerning the positive effects of fish consumption. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mercury hazards from gold mining to humans, plants, and animals
Eisler, R.
2004-01-01
Mercury contamination of the environment from historical and ongoing mining practices that rely on mercury amalgamation for gold extraction is widespread. Contamination was particularly severe in the immediate vicinity of gold extraction and refining operations; however, mercury--especially in the form of water-soluble methylmercury--may be transported to pristine areas by rainwater, water currents, deforestation, volatilization, and other vectors. Examples of gold mining-associated mercury pollution are shown for Canada, the United States, Africa, China, the Philippines, Siberia, and South America. In parts of Brazil, for example, mercury concentrations in all abiotic materials, plants, and animals--including endangered species of mammals and reptiles--collected near ongoing mercury-amalgamation gold mining sites were far in excess of allowable mercury levels promulgated by regulatory agencies for the protection of human health and natural resources. Although health authorities in Brazil are unable to detect conclusive evidence of human mercury intoxication, the potential exists in the absence of mitigation for epidemic mercury poisoning of the mining population and environs. In the United States, environmental mercury contamination is mostly from historical gold mining practices, and portions of Nevada remain sufficiently mercury-contaminated to pose a hazard to reproduction of carnivorous fishes and fish-eating birds. Concentrations of total mercury lethal to sensitive representative natural resources range from 0.1 to 2.0 ug/L of medium for aquatic organisms; from 2200 to 31,000 ug/kg body weight (acute oral) and 4000 to 40,000 ug/kg (dietary) for birds; and from 100 to 500 ug/kg body weight (daily dose) and 1000 to 5000 ug/kg diet for mammals. Significant adverse sublethal effects were observed among selected aquatic species at water concentrations of 0.03 to 0.1 ug Hg/L. For some birds, adverse effects--mainly on reproduction--have been associated with total mercury concentrations (in ug/kg fresh weight) of 5000 in feather, 900 in egg, and 50 to 100 in diet; and with daily intakes of 640 ug/kg body weight. Sensitive nonhuman mammals showed significant adverse effects of mercury when daily intakes were 250 ug/kg body weight, when dietary levels were 1100 ug/kg, or when tissue concentrations exceeded 1100 ug/kg. Proposed mercury criteria for protection of aquatic life range from 0.012 ug/L for freshwater life to 0.025 ug/L for marine life; for birds, less than 100 ug/kg diet fresh weight; and for small mammals, less than 1100 ug/kg fresh weight diet. All of these proposed criteria provide, at best, minimal protection.
Zhang, Yue; Ye, Xuejie; Yang, Tianjun; Li, Jinling; Chen, Long; Zhang, Wei; Wang, Xuejun
2018-01-01
Coal combustion is the most significant anthropogenic mercury emission source in China. In 2013, China signed the Minamata Convention affirming that mercury emissions should be controlled more strictly. Therefore, an evaluation of the costs associated with atmospheric mercury emission reductions from China's coal combustion is essential. In this study, we estimated mercury abatement costs for coal combustion in China for 2010, based on a provincial technology-based mercury emission inventory. In addition, four scenarios were used to project abatement costs for 2020. Our results indicate that actual mercury emission related to coal combustion in 2010 was 300.8Mg, indicating a reduction amount of 174.7Mg. Under a policy-controlled scenario for 2020, approximately 49% of this mercury could be removed using air pollution control devices, making mercury emissions in 2020 equal to or lower than in 2010. The total abatement cost associated with mercury emissions in 2010 was 50.2×10 9 RMB. In contrast, the total abatement costs for 2020 under baseline versus policy-controlled scenarios, having high-energy and low-energy consumption, would be 32.0×10 9 versus 51.2×10 9 , and 27.4×10 9 versus 43.9×10 9 RMB, respectively. The main expense is associated with flue gas desulfurization. The unit abatement cost of mercury emissions in 2010 was 288×10 3 RMB/(kgHg). The unit abatement costs projected for 2020 under a baseline, a policy-controlled, and an United Nations Environmental Programme scenario would be 143×10 3 , 172×10 3 and 1066×10 3 RMB/(kgHg), respectively. These results are much lower than other international ones. However, the relative costs to China in terms of GPD are higher than in most developed countries. We calculated that abatement costs related to mercury emissions accounted for about 0.14% of the GDP of China in 2010, but would be between 0.03% and 0.06% in 2020. This decrease in abatement costs in terms of GDP suggests that various policy-controlled scenarios would be viable. Copyright © 2017 Elsevier B.V. All rights reserved.
Mercury transport and human exposure from global marine fisheries.
Lavoie, Raphael A; Bouffard, Ariane; Maranger, Roxane; Amyot, Marc
2018-04-30
Human activities have increased the global circulation of mercury, a potent neurotoxin. Mercury can be converted into methylmercury, which biomagnifies along aquatic food chains and leads to high exposure in fish-eating populations. Here we quantify temporal trends in the ocean-to-land transport of total mercury and methylmercury from fisheries and we estimate potential human mercury intake through fish consumption in 175 countries. Mercury export from the ocean increased over time as a function of fishing pressure, especially on upper-trophic-level organisms. In 2014, over 13 metric tonnes of mercury were exported from the ocean. Asian countries were important contributors of mercury export in the last decades and the western Pacific Ocean was identified as the main source. Estimates of per capita mercury exposure through fish consumption showed that populations in 38% of the 175 countries assessed, mainly insular and developing nations, were exposed to doses of methylmercury above governmental thresholds. Our study shows temporal trends and spatial patterns of Hg transport by fisheries. Given the high mercury intake through seafood consumption observed in several understudied yet vulnerable coastal communities, we recommend a comprehensive assessment of the health exposure risk of those populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, George R; Greeley Jr, Mark Stephen; Peterson, Mark J
2010-02-01
East Fork Poplar Creek (EFPC) in Oak Ridge, Tennessee, has been heavily contaminated with mercury (also referred to as Hg) since the 1950s as a result of historical activities at the U.S. Department of Energy (DOE) Y-12 National Security Complex (formerly the Oak Ridge Y-12 Plant and hereinafter referred to as Y-12). During the period from 1950 to 1963, spills and leaks of elemental mercury (Hg{sup 0}) contaminated soil, building foundations, and subsurface drainage pathways at the site, while intentional discharges of mercury-laden wastewater added 100 metric tons of mercury directly to the creek (Turner and Southworth 1999). The inventorymore » of mercury estimated to be lost to soil and rock within the facility was 194 metric tons, with another estimated 70 metric tons deposited in floodplain soils along the 25 km length of EFPC (Turner and Southworth 1999). Remedial actions within the facility reduced mercury concentrations in EFPC water at the Y-12 boundary from > 2500 ng/L to about 600 ng/L by 1999 (Southworth et al. 2000). Further actions have reduced average total mercury concentration at that site to {approx}300 ng/L (2009 RER). Additional source control measures planned for future implementation within the facility include sediment/soil removal, storm drain relining, and restriction of rainfall infiltration within mercury-contaminated areas. Recent plans to demolish contaminated buildings within the former mercury-use areas provide an opportunity to reconstruct the storm drain system to prevent the entry of mercury-contaminated water into the flow of EFPC. Such actions have the potential to reduce mercury inputs from the industrial complex by perhaps as much as another 80%. The transformation and bioaccumulation of mercury in the EFPC ecosystem has been a perplexing subject since intensive investigation of the issue began in the mid 1980s. Although EFPC was highly contaminated with mercury (waterborne mercury exceeded background levels by 1000-fold, mercury in sediments by more than 2000-fold) in the 1980s, mercury concentrations in EFPC fish exceeded those in fish from regional reference sites by only a little more than 10-fold. This apparent low bioavailability of mercury in EFPC, coupled with a downstream pattern of mercury in fish in which mercury decreased in proportion to dilution of the upstream source, lead to the assumption that mercury in fish would respond to decreased inputs of dissolved mercury to the stream's headwaters. However, during the past two decades when mercury inputs were decreasing, mercury concentrations in fish in Lower EFPC (LEFPC) downstream of Y-12 increased while those in Upper EFPC (UEFPC) decreased. The key assumption of the ongoing cleanup efforts, and concentration goal for waterborne mercury were both called into question by the long-term monitoring data. The large inventory of mercury within the watershed downstream presents a concern that the successful treatment of sources in the headwaters may not be sufficient to reduce mercury bioaccumulation within the system to desired levels. The relative importance of headwater versus floodplain mercury sources in contributing to mercury bioaccumulation in EFPC is unknown. A mercury transport study conducted by the Tennessee Valley Authority (TVA) in 1984 estimated that floodplain sources contributed about 80% of the total annual mercury export from the EFPC system (ORTF 1985). Most of the floodplain inputs were associated with wet weather, high flow events, while much of the headwater flux occurred under baseflow conditions. Thus, day-to-day exposure of biota to waterborne mercury was assumed to be primarily determined by the Y-12 source. The objective of this study was to evaluate the results of recent studies and monitoring within the EFPC drainage with a focus on discerning the magnitude of floodplain mercury sources and how long these sources might continue to contaminate the system after headwater sources are eliminated or greatly reduced.« less
Adsorbents for capturing mercury in coal-fired boiler flue gas.
Yang, Hongqun; Xu, Zhenghe; Fan, Maohong; Bland, Alan E; Judkins, Roddie R
2007-07-19
This paper reviews recent advances in the research and development of sorbents used to capture mercury from coal-fired utility boiler flue gas. Mercury emissions are the source of serious health concerns. Worldwide mercury emissions from human activities are estimated to be 1000 to 6000 t/annum. Mercury emissions from coal-fired power plants are believed to be the largest source of anthropogenic mercury emissions. Mercury emissions from coal-fired utility boilers vary in total amount and speciation, depending on coal types, boiler operating conditions, and configurations of air pollution control devices (APCDs). The APCDs, such as fabric filter (FF) bag house, electrostatic precipitator (ESP), and wet flue gas desulfurization (FGD), can remove some particulate-bound and oxidized forms of mercury. Elemental mercury often escapes from these devices. Activated carbon injection upstream of a particulate control device has been shown to have the best potential to remove both elemental and oxidized mercury from the flue gas. For this paper, NORIT FGD activated carbon was extensively studied for its mercury adsorption behavior. Results from bench-, pilot- and field-scale studies, mercury adsorption by coal chars, and a case of lignite-burned mercury control were reviewed. Studies of brominated carbon, sulfur-impregnated carbon and chloride-impregnated carbon were also reviewed. Carbon substitutes, such as calcium sorbents, petroleum coke, zeolites and fly ash were analyzed for their mercury-adsorption performance. At this time, brominated activated carbon appears to be the best-performing mercury sorbent. A non-injection regenerable sorbent technology is briefly introduced herein, and the issue of mercury leachability is briefly covered. Future research directions are suggested.
Air Contamination by Mercury, Emissions and Transformations-a Review.
Gworek, Barbara; Dmuchowski, Wojciech; Baczewska, Aneta H; Brągoszewska, Paulina; Bemowska-Kałabun, Olga; Wrzosek-Jakubowska, Justyna
2017-01-01
The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg 0 -GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its Hg II -GOM and that in Hg p -TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.
High Maternal Blood Mercury Level Is Associated with Low Verbal IQ in Children.
Jeong, Kyoung Sook; Park, Hyewon; Ha, Eunhee; Shin, Jiyoung; Hong, Yun Chul; Ha, Mina; Park, Hyesook; Kim, Bung Nyun; Lee, Boeun; Lee, Soo Jeong; Lee, Kyung Yeon; Kim, Ja Hyeong; Kim, Yangho
2017-07-01
The objective of the present study was to investigate the relationship of IQ in children with maternal blood mercury concentration during late pregnancy. The present study is a component of the Mothers and Children's Environmental Health (MOCEH) study, a multi-center birth cohort project in Korea that began in 2006. The study cohort consisted of 553 children whose mothers underwent testing for blood mercury during late pregnancy. The children were given the Korean language version of the Wechsler Preschool and Primary Scale of Intelligence, revised edition (WPPSI-R) at 60 months of age. Multivariate linear regression analysis, with adjustment for covariates, was used to assess the relationship between verbal, performance, and total IQ in children and blood mercury concentration of mothers during late pregnancy. The results of multivariate linear regression analysis indicated that a doubling of blood mercury was associated with the decrease in verbal and total IQ by 2.482 (95% confidence interval [CI], 0.749-4.214) and 2.402 (95% CI, 0.526-4.279), respectively, after adjustment. This inverse association remained after further adjustment for blood lead concentration. Fish intake is an effect modifier of child IQ. In conclusion, high maternal blood mercury level is associated with low verbal IQ in children. © 2017 The Korean Academy of Medical Sciences.
The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques.
Jarzynska, Grazyna; Falandysz, Jerzy
2011-01-01
This research presents an example of an excellent applied study on analytical problems due to hazardous mercury determination in environmental materials and validity of published results on content of this element in wild growing mushrooms. The total mercury content has been analyzed in a several species of wild-grown mushrooms and some herbal origin certified reference materials, using two analytical methods. One method was commonly known and well validated the cold-vapour atomic absorption spectroscopy (CV-AAS) after a direct sample pyrolysis coupled to the gold wool trap, which was a reference method. A second method was a procedure that involved a final mercury measurement using the inductively-coupled plasma atomic emission spectroscopy (ICP-AES) at λ 194.163 nm, which was used by some authors to report on a high mercury content of a large sets of wild-grown mushrooms. We found that the method using the ICP-AES at λ 194.163 nm gave inaccurate and imprecise results. The results of this study imply that because of unsuitability of total mercury determination using the ICP-AES at λ 194.163 nm, the reports on great concentrations of this metal in a large sets of wild-grown mushrooms, when examined using this method, have to be studied with caution, since data are highly biased.
Mercury, cadmium, lead, and selenium in three waterbird species nesting in Galveston Bay, Texas, USA
King, K.A.; Cromartie, E.
1986-01-01
Heavy metal and selenium concentrations were determined in Olivaceous Cormorants (Phalacrocorax olivaceus ), Laughing gulls (Larus atricilla ), and Black Skimmers (Rynchops niger ) nesting in Galveston Bay, Texas, during 1980-81. Lead was detected at low levels in a small proportion of the liver samples. Mercury was present in all livers sampled, the highest levels being found in cormorants (7.8 ppm) and skimmers (16 ppm). Concentrations were considerably lower than those reported in birds from mercury-contaminated lakes in northern United States and Canada. Cadmium and selenium were detected in 93 and 95% of the kidneys. Cadmium was highest in gulls and skimmers with a maximum value of 16 ppm. Selenium levels were similar among species except for higher concentrations in gulls collected in 1981.
40 CFR 461.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... applied Chromium 6.24 2.70 Mercury 3.86 1.63 Silver 6.24 2.70 Zinc 1.19 0.53 Manganese 8.91 6.83 (4... Manganese 1.43 1.09 (6) Subpart G—Nickel Impregnated Cathodes—PSNS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average Metric units—mg/kg of nickel applied English units—pounds...
40 CFR 461.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... applied Chromium 6.24 2.70 Mercury 3.86 1.63 Silver 6.24 2.70 Zinc 1.19 0.53 Manganese 8.91 6.83 (4... Manganese 1.43 1.09 (6) Subpart G—Nickel Impregnated Cathodes—PSNS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average Metric units—mg/kg of nickel applied English units—pounds...
40 CFR 461.75 - Pretreatment standards for new sources (PSNS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... applied Chromium 6.24 2.70 Mercury 3.86 1.63 Silver 6.24 2.70 Zinc 1.19 0.53 Manganese 8.91 6.83 (4... Manganese 1.43 1.09 (6) Subpart G—Nickel Impregnated Cathodes—PSNS. Pollutant or pollutant property Maximum for any 1 day Maximum for monthly average Metric units—mg/kg of nickel applied English units—pounds...
Bioaccumulation of mercury in benthic communities of a river ecosystem affected by mercury mining.
Zizek, Suzana; Horvat, Milena; Gibicar, Darija; Fajon, Vesna; Toman, Mihael J
2007-05-15
The presence of mercury in the river Idrijca (Slovenia) is mainly due to 500 years of mercury mining in this region. In order to understand the cycling of mercury in the Idrijca ecosystem it is crucial to investigate the role of biota. This study is part of an ongoing investigation of mercury biogeochemistry in the river Idrijca, focusing on the accumulation and speciation of mercury in the lower levels of the food chain, namely filamentous algae, periphyton and macroinvertebrates. Mercury analysis and speciation in the biota and in water were performed during the spring, summer and autumn seasons at four locations on the river, representing different degrees of mercury contamination. Total (THg) and methyl mercury (MeHg) were measured. The results showed that the highest THg concentrations in biota correlate well with THg levels in sediments and water. The level of MeHg is spatially and seasonally variable, showing higher values at the most contaminated sites during the summer and autumn periods. The percentage of Hg as MeHg increases with the trophic level from water (0.1-0.8%), algae (0.5-1.3%), periphyton (1.6-8.8%) to macroinvertebrates (0.1-100%), which indicates active transformation, accumulation and magnification of mercury in the benthic organism of this heavily contaminated torrential river.
Decadal Declines of Mercury in Adult Bluefish (1972-2011) from the Mid-Atlantic Coast of the U.S.A.
Cross, Ford A; Evans, David W; Barber, Richard T
2015-08-04
Concentrations of total mercury were measured in muscle of adult bluefish (Pomatomus saltatrix) collected in 2011 off North Carolina and compared with similar measurements made in 1972. Concentrations of mercury decreased by 43% in the fish between the two time periods, with an average rate of decline of about 10% per decade. This reduction is similar to estimated reductions of mercury observed in atmospheric deposition, riverine input, seawater, freshwater lakes, and freshwater fish across northern North America. Eight other studies between 1973 and 2007 confirm the decrease in mercury levels in bluefish captured in the Mid-Atlantic Bight. These findings imply that (1) reductions in the release of mercury across northern North America were reflected rather quickly (decades) in the decline of mercury in adult bluefish; (2) marine predatory fish may have been contaminated by anthropogenic sources of mercury for over 100 years; and (3) if bluefish are surrogates for other predators in the Mid-Atlantic Bight, then a reduction in the intake of mercury by the fish-consuming public has occurred. Finally, with global emissions of mercury continuing to increase, especially from Asia, it is important that long-term monitoring programs be conducted for mercury in marine fish of economic importance.
Ackerman, Joshua T.; Kraus, Tamara E.C.; Fleck, Jacob A.; Krabbenhoft, David P.; Horwarth, William R.; Bachand, Sandra M.; Herzog, Mark; Hartman, Christopher; Bachand, Philip A.M.
2015-01-01
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California’s Sacramento–San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Ackerman, Joshua T; Kraus, Tamara E C; Fleck, Jacob A; Krabbenhoft, David P; Horwath, William R; Bachand, Sandra M; Herzog, Mark P; Hartman, C Alex; Bachand, Philip A M
2015-05-19
Mercury pollution is widespread globally, and strategies for managing mercury contamination in aquatic environments are necessary. We tested whether coagulation with metal-based salts could remove mercury from wetland surface waters and decrease mercury bioaccumulation in fish. In a complete randomized block design, we constructed nine experimental wetlands in California's Sacramento-San Joaquin Delta, stocked them with mosquitofish (Gambusia affinis), and then continuously applied agricultural drainage water that was either untreated (control), or treated with polyaluminum chloride or ferric sulfate coagulants. Total mercury and methylmercury concentrations in surface waters were decreased by 62% and 63% in polyaluminum chloride treated wetlands and 50% and 76% in ferric sulfate treated wetlands compared to control wetlands. Specifically, following coagulation, mercury was transferred from the filtered fraction of water into the particulate fraction of water which then settled within the wetland. Mosquitofish mercury concentrations were decreased by 35% in ferric sulfate treated wetlands compared to control wetlands. There was no reduction in mosquitofish mercury concentrations within the polyaluminum chloride treated wetlands, which may have been caused by production of bioavailable methylmercury within those wetlands. Coagulation may be an effective management strategy for reducing mercury contamination within wetlands, but further studies should explore potential effects on wetland ecosystems.
Duan, Lian; Xiu, Guangli; Feng, Ling; Cheng, Na; Wang, Chenggang
2016-03-01
PM2.5 samples were collected in south Shanghai from November 2013 to October 2014. The species of particulate bounded mercury (PBM), including hydrochloric soluble particle-phase mercury (HPM), element soluble particle-phase mercury (EPM) and residual soluble particle-phase mercury (RPM), were determined in PM2.5. The chemical composition of PM2.5 including organic carbon (OC) and elemental carbon (EC), total bromine and iodine were also analyzed. The results showed that the annual average concentration of PBM was 0.30 ± 0.31 ng m(-3) and 0.34 ± 0.32 ng m(-3) in winter, 0.31 ± 0.19 ng m(-3) in spring, 0.30 ± 0.45 ng m(-3) in fall and 0.28 ± 0.17 ng m(-3) in summer. HPM took the highest fraction 51.2% in PBM, followed by RPM 27.7% and EPM 21.1%. EC positively correlated to particle mercury, especially in winter (r = 0.70), the same for OC in winter (r = 0.72), which indicated that the carbonaceous composition may affect the transformation of Hg in the atmosphere. Mercury species showed different correlations with bromine and iodine in the four seasons. The strongest correlation between bromine, iodine and mercury was found in spring and fall, respectively. Bromine showed the stronger correlation with total mercury and speciated particle mercury than iodine. In addition, the days were classified into haze and non-haze days based on the visibility and relative humidity, while the ratio of HPM in haze days was much higher than that in non-haze days. EC strongly correlated with PBM during haze and non-haze days while OC only positively correlated with PBM in non-haze days, this may indicate that the different carbonaceous part may affect PBM differently. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim
2002-01-01
A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.
Total mercury in canned tuna sold in Canada in 2006.
Dabeka, Robert W; Mckenzie, Arthur D; Forsyth, Donald S
2014-01-01
Total mercury was measured in 156 composites prepared from 936 samples of canned tuna sold in Canada in 2006. Each composite comprised a single brand. Yellowfin tuna contained the lowest concentrations, averaging 0.066 mg/kg. Skipjack tuna contained slightly higher concentrations, averaging 0.132 mg/kg. The highest average concentration was found in the Albacore tuna: mean 0.325 mg/kg, range 0.174-0.507 mg/kg. The second highest concentration among the 49 albacore composites was 0.469 mg/kg. There were 72 composites for which the type of tuna was not specified. The mercury in these averaged 0.095 mg/kg and ranged from 0.016 to 0.237 mg/kg.
Freshwater aquatic macrophytes as heavy metal monitors - the Ottawa River experience.
Mortimer, D C
1985-09-01
The ability of freshwater aquatic vascular plants to accumulate heavy metals was examined in some detail during a five year study. Differences in uptake rate were found to depend on the species of plant, the seasonal growth rate changes and the metal ion being absorbed. Lead and mercury were concentrated to a greater extent than the lighter nickel and copper. Laboratory experiments were designed to establish uptake rate constants which were used to calculate water concentrations of mercury from the analyses of plant samples from the river. 'Background' levels of mercury in aquatic plants of 35-50 ng g(-1) dry weight corresponded to a water concentration near 15 ng L(-1) of total mercury of which 25-30% was methylmercury. Higher concentrations of mercury in the plants indicated a proportional increase in the mercury level in the water.
Adams, Douglas H; Engel, Marc E
2014-04-01
Blue crabs, Callinectes sapidus, from the Atlantic coast of Florida were analyzed for total mercury, methylmercury, lead, and cadmium. Paired samples of two tissue types were analyzed for each crab, (1) muscle tissue (cheliped and body muscles) and (2) whole-body tissue (all organs, muscle tissue and connective tissue), for evaluation of the concentration of metals available to human consumers as well as estuarine predators. There were clear patterns of tissue-specific partitioning for each metal. Total mercury was significantly greater in muscle tissue (mean=0.078 µg/g) than in whole-body tissue (mean=0.055 µg/g). Conversely, whole-body concentrations of lead and cadmium (means=0.131 and 0.079 µg/g, respectively) were significantly greater than concentrations in muscle (means=0.02 and 0.029 µg/g, respectively). There were no significant correlations between any metal contaminant and crab size. Cadmium levels were significantly greater in the muscle tissue of females, but, no other sex-related differences were seen for other metals or tissue types. Methylmercury composed 93-100% of the total mercury in tissues. Compared to previous blue crab studies from different regions of the United States, mean concentrations of mercury, lead, and cadmium were relatively low, although isolated groups or individual blue crabs accumulated high metal concentrations. © 2013 Published by Elsevier Inc.
Indoor and outdoor elemental mercury: a comparison of three different cases.
Loupa, G; Polyzou, C; Zarogianni, A M; Ouzounis, K; Rapsomanikis, S
2017-02-01
Gaseous elemental mercury (GEM) concentrations were determined in three different indoor environments: an office in a building with no indoor sources of mercury (Bldg. I), an office affected by indoor mercury emissions from an adjacent laboratory (Bldg. II), and finally, an office where an outdoor mercury spill occurred accidentally (Bldg. III). The maximum recorded indoor GEM concentrations, with the largest variation in time, were observed in Bldg. II, with a continuous indoor mercury source (lower to upper quartile 15 to 62 ng m -3 ). The lowest values were recorded in Bldg. I (lower to upper quartile 3 to 5 ng m -3 ), where indoor GEM levels were affected mainly by the exhaust of vehicles in the parking lot of the building. The monitoring of GEM indoors (lower to upper quartile 15 to 42 ng m -3 ), and outdoors (in several heights) of the Bldg. III, revealed that the cleaning up procedure that followed the spill was not adequate. Auxiliary measurements in the first two cases were the indoor microclimatic conditions, as well as the indoor CO 2 concentrations, and in the third case the outdoor meteorological data. The exhaust of vehicles, the chemical reagents, and an outdoor mercury spill were found to mainly affect the observed indoor GEM levels. People in Bldg. II and people walking through the area, where Hg 0 was spilled, were found to be exposed to concentrations above some guide values.
Characteristics and distributions of atmospheric mercury ...
Continuous measurements of speciated atmospheric mercury (Hg), including gaseous elemental mercury (GEM), particulate mercury (PHg), and reactive gaseous mercury (RGM) were conducted in Guizhou Province, southwestern China. Guiyang Power Plant (GPP), Guiyang Wujiang Cement Plant, Guizhou Aluminum Plant (GAP), and Guiyang Forest Park (GFP) in Guiyang were selected as study sites. Automatic Atmospheric Mercury Speciation Analyzers (Tekran 2537A) were used for GEM analysis. PHg and RGM were simultaneously collected by a manual sampling system, including elutriator, coupler/impactor, KCl-coated annular denuder, and a filter holder. Results show that different emission sources dominate different species of Hg. The highest average GEM value was 22.2 ± 28.3 ng·m−3 and the lowest 6.1 ± 3.9 ng·m−3, from samples collected at GPP and GAP, respectively. The maximum average PHg was 1984.9 pg·m−3 and the minimum average 55.9 pg·m−3, also from GPP and GAP, respectively. Similarly, the highest average RGM of 68.8 pg·m−3 was measured at GPP, and the lowest level of 20.5 pg·m−3 was found at GAP. We conclude that coal combustion sources are still playing a key role in GEM; traffic contributes significantly to PHg; and domestic pollution dominates RGM. Mercury (Hg) is a persistent hazardous pollutant with adverse effects on human health and wildlife due mainly to bioaccumulation and biomagnification in aquatic food webs (Lindqvist et al. 1991; Schroeder and Munt
Performance of Mercury Triple-Point Cells Made in Brazil
NASA Astrophysics Data System (ADS)
Petkovic, S. G.; Santiago, J. F. N.; Filho, R. R.; Teixeira, R. N.; Santos, P. R. F.
2003-09-01
Fixed-points cells are primary standards in ITS-90. They contain reference material with a purity of 99.999 % or more. The gallium in a melting-point cell, for example, can reach a purity of 99.99999 %. This level of purity is not easy to obtain. However, substances like water and mercury can be purified by means of distillation and chemical procedures. This paper presents the results of mercury triple-point cells made in Brazil that were directly compared to a mercury triple-point cell of 99.999% purity. This reference cell, made by Isotech (England), was previously compared to cells from CENAM (Mexico) and NRC (Canada) and the maximum deviation found was approximately 0.4 mK. The purification stage started with a sample of mercury 99.3 % pure, and the repeated use of both mechanical and chemical processes led to a purification grade considered good enough for calibration of standard platinum resistance thermometers. The purification procedures, the method of construction of the cell, the laboratory facilities, the comparison results and the budget of uncertainties are described in this paper. All of the cells tested have a triple-point temperature within 0.25 mK of the triple-point temperature of the Inmetro reference cell.
Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R
2014-01-01
The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.
Opiso, Einstine M; Aseneiro, John Paul J; Banda, Marybeth Hope T; Tabelin, Carlito B
2018-03-01
The solid-phase partitioning of mercury could provide necessary data in the identification of remediation techniques in contaminated artisanal gold mine tailings. This study was conducted to determine the total mercury content of mine wastes and identify its solid-phase partitioning through selective sequential extraction coupled with cold vapour atomic absorption spectroscopy. Samples from mine tailings and the carbon-in-pulp (CIP) process were obtained from selected key areas in Mindanao, Philippines. The results showed that mercury use is still prevalent among small-scale gold miners in the Philippines. Tailings after ball mill-gravity concentration (W-BM and Li-BM samples) from Mt Diwata and Libona contained high levels of mercury amounting to 25.024 and 6.5 mg kg -1 , respectively. The most prevalent form of mercury in the mine tailings was elemental/amalgamated mercury, followed by water soluble, exchangeable, organic and strongly bound phases, respectively. In contrast, mercury content of carbon-in-pulp residues were significantly lower at only 0.3 and 0.06 mg kg -1 for P-CIP (Del Pilar) and W-CIP (Mt Diwata), respectively. The bulk of mercury in P-CIP samples was partitioned in residual fraction while in W-CIP samples, water soluble mercury predominated. Overall, this study has several important implications with regards to mercury detoxification of contaminated mine tailings from Mindanao, Philippines.
Distribution of Gaseous and Particulate Mercury in the Coastal Rregion of Taiwan Strait
NASA Astrophysics Data System (ADS)
Luo, J.
2017-12-01
This investigation provides information in the distribution patterns and sources of the atmospheric mercury species in the coastal region across Taiwan Strait. Total gaseous mercury (TGM) and total particulate mercury (TPM) were monitored from 2013 to 2017 in Xiamen, Fujian; and Kaosiung, Taiwan respectively. Results indicated that the average concentrations of TGM were 4.07±1.75 ng/m3, and 4.63±0.39 ng/m3, and the average concentrations of TPM were 195.72±132.37 pg/m3 and 194.72±42.19 pg/m3, respectively in Xiamen and Kaosiung. It is also found that seasonal variation of gaseous Hg was similar for those two cities, with higher concentration occurred in cold months and lower in warm months. The monsoon weather played a critical role in the seasonal variation of atmospheric mercury concentrations. Correlation analysis showed the concentrations of two atmospheric species mercury correlated negatively with wind speed, ambient temperature, and positively with NO2, CO and O3 in both cities. TPM had a more significant relationship with criteria air pollutants than that of TGM in Xiamen. Backward trajectory simulation (HYSPLIT) showed that the air masses originated commonly from North China and the Yellow Sea. They can transport through the Yangtze River Delta (YRD) and arrived in Xiamen when the events of high TGM concentration occurred. However, the clean air masses from open sea could dilute the concentration of atmospheric mercury.
NASA Astrophysics Data System (ADS)
Landis, Matthew S.; Lewis, Charles W.; Stevens, Robert K.; Keeler, Gerald J.; Dvonch, J. Timothy; Tremblay, Raphael T.
During the fall of 1998, the US Environmental Protection Agency and the Florida Department of Environmental Protection sponsored a 7-day study at the Ft. McHenry tunnel in Baltimore, MD with the objective of obtaining PM 2.5 vehicle source profiles for use in atmospheric mercury source apportionment studies. PM 2.5 emission profiles from gasoline and diesel powered vehicles were developed from analysis of trace elements, polycyclic aromatic hydrocarbons (PAH), and condensed aliphatic hydrocarbons. PM 2.5 samples were collected using commercially available sampling systems and were extracted and analyzed using conventional well-established methods. Both inorganic and organic profiles were sufficiently unique to mathematically discriminate the contributions from each source type using a chemical mass balance source apportionment approach. However, only the organic source profiles provided unique PAH tracers (e.g., fluoranthene, pyrene, and chrysene) for diesel combustion that could be used to identify source contributions generated using multivariate statistical receptor modeling approaches. In addition, the study found significant emission of gaseous elemental mercury (Hg 0), divalent reactive gaseous mercury (RGM), and particulate mercury (Hg(p)) from gasoline but not from diesel powered motor vehicles. Fuel analysis supported the tunnel measurement results showing that total mercury content in all grades of gasoline (284±108 ng L -1) was substantially higher than total mercury content in diesel fuel (62±37 ng L -1) collected contemporaneously at local Baltimore retailers.
SAMPLING AND ANALYSIS OF MERCURY IN CRUDE OIL
Sampling and analytical procedures used to determine total mercury content in crude oils were examined. Three analytical methods were compared with respect to accuracy, precision and detection limit. The combustion method and a commercial extraction method were found adequate to...
Lent, R.M.; Alexander, C.R.
1997-01-01
Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.
Using PETRIMES to estimate mercury deposits in California
Lee, P.J.; Singer, D.A.
1994-01-01
In this article, we examine the use of an unconventional procedure, PETRIMES, to estimate mineral resources of mercury deposits in California. The study, which is based on the nonparametric discovery process model and Q-Q plots, suggests that a lognormal distribution is appropriate for the mercury deposits in California. The results of the assessment are summarized as follows: (1) the total number of mercury deposits in the population is approximately 165; (2) the median value of the largest undiscovered deposit size is 487 flasks; (3) the mean of the remaining mercury potential is 2,500 flasks; and (4) the population resource ranges from 1,040,000 to 4,300,000 flasks (at a 0.9 probability level). ?? 1994 Oxford University Press.
Avian mercury exposure and toxicological risk across western North America: A synthesis
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark; Hartman, Christopher; Peterson, Sarah; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.
2016-01-01
Methylmercury contamination of the environment is an important issue globally, and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations.
Avian mercury exposure and toxicological risk across western North America: A synthesis
Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.; Hartman, C. Alex; Peterson, Sarah H.; Evers, David C.; Jackson, Allyson K.; Elliott, John E.; Vander Pol, Stacy S.; Bryan, Colleen E.
2017-01-01
Methylmercury contamination of the environment is an important issue globally and birds are useful bioindicators for mercury monitoring programs. The available data on mercury contamination of birds in western North America were synthesized. Original data from multiple databases were obtained and a literature review was conducted to obtain additional mercury concentrations. In total, 29219 original bird mercury concentrations from 225 species were compiled, and an additional 1712 mean mercury concentrations, representing 19998 individuals and 176 species, from 200 publications were obtained. To make mercury data comparable across bird tissues, published equations of tissue mercury correlations were used to convert all mercury concentrations into blood-equivalent mercury concentrations. Blood-equivalent mercury concentrations differed among species, foraging guilds, habitat types, locations, and ecoregions. Piscivores and carnivores exhibited the greatest mercury concentrations, whereas herbivores and granivores exhibited the lowest mercury concentrations. Bird mercury concentrations were greatest in ocean and salt marsh habitats and lowest in terrestrial habitats. Bird mercury concentrations were above toxicity benchmarks in many areas throughout western North America, and multiple hotspots were identified. Additionally, published toxicity benchmarks established in multiple tissues were summarized and translated into a common blood-equivalent mercury concentration. Overall, 66% of birds sampled in western North American exceeded a blood-equivalent mercury concentration of 0.2 μg/g wet weight (ww; above background levels), which is the lowest-observed effect level, 28% exceeded 1.0 μg/g ww (moderate risk), 8% exceeded 3.0 μg/g ww (high risk), and 4% exceeded 4.0 μg/g ww (severe risk). Mercury monitoring programs should sample bird tissues, such as adult blood and eggs, that are most-easily translated into tissues with well-developed toxicity benchmarks and that are directly relevant to bird reproduction. Results indicate that mercury contamination of birds is prevalent in many areas throughout western North America, and large-scale ecological attributes are important factors influencing bird mercury concentrations. PMID:27093907
The fate and management of high mercury-containing lamps from high technology industry.
Chang, T C; You, S J; Yu, B S; Kong, H W
2007-03-22
This study investigated the fate and management of high mercury-contained lamps, such as cold cathode fluorescent lamps (CCFLs), ultraviolet lamps (UV lamps), and super high pressure mercury lamps (SHPs), from high technology industries in Taiwan, using material flow analysis (MFA) method. Several organizations, such as Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, the light sources manufactories, mercury-containing lamps importer, high technology industrial user, and waste mercury-containing lamps treatment facilities were interviewed in this study. According to this survey, the total mercury contained in CCFLs, UV lamps, and SHPs produced in Taiwan or imported from other countries was 886kg in year 2004. Among the various lamps containing mercury, 57kg mercury was exported as primary CCFLs, 7kg mercury was wasted as defective CCFLs, and 820kg mercury was used in the high technology industries, including 463kg mercury contained in exported industrial products using CCFLs as components. On the contrary, only 59kg of mercury was exported, including 57kg in CCFLs and 2kg in UV lamps. It reveals that 364kg mercury was consumed in Taiwan during year 2004. In addition, 140kg of the 364kg mercury contained in lamps used by high technology industry was well treated through industrial waste treatment system. Among the waste mercury from high technology industry, 80kg (57%), 53kg (38%), and 7kg (5%) of mercury were through domestic treatment, offshore treatment, and emission in air, respectively. Unfortunately, 224kg waste mercury was not suitable treated, including 199kg mercury contained in CCFL, which is a component of monitor for personal computer and liquid crystal display television, and 25kg non-treated mercury. Thus, how to recover the mercury from the waste monitors is an important challenge of zero wastage policy in Taiwan.
Total mercury and methylmercury in high altitude surface snow from the French Alps.
Marusczak, Nicolas; Larose, Catherine; Dommergue, Aurélien; Yumvihoze, Emmanuel; Lean, David; Nedjai, Rachid; Ferrari, Christophe
2011-09-01
Surface snow samples were collected weekly from the 31st of December 2008 to the 21st of June 2009 from Lake Bramant in the French Alps. Total mercury (THg), total dissolved mercury (THgD), methylmercury (MeHg) and particle distributions in surface snow were analyzed. Results showed that THg concentrations, MeHg concentrations and particle load increased with snow surface temperature, which is an indicator of rising temperatures as the season progresses. Significant correlations between MeHg and snow surface temperature and MeHg and total particles greater than 10 μm were observed. This suggests that the MeHg found in the snow originates from atmospheric deposition processes rather than in situ snowpack sources. This study suggests that an important post-winter atmospheric deposition of MeHg and THg occurs on summital zones of the French Alps and it is likely that this contamination originates from the surrounding valleys. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bieser, Johannes; Slemr, Franz; Ambrose, Jesse; Brenninkmeijer, Carl; Brooks, Steve; Dastoor, Ashu; DeSimone, Francesco; Ebinghaus, Ralf; Gencarelli, Christian N.; Geyer, Beate; Gratz, Lynne E.; Hedgecock, Ian M.; Jaffe, Daniel; Kelley, Paul; Lin, Che-Jen; Jaegle, Lyatt; Matthias, Volker; Ryjkov, Andrei; Selin, Noelle E.; Song, Shaojie; Travnikov, Oleg; Weigelt, Andreas; Luke, Winston; Ren, Xinrong; Zahn, Andreas; Yang, Xin; Zhu, Yun; Pirrone, Nicola
2017-06-01
Atmospheric chemistry and transport of mercury play a key role in the global mercury cycle. However, there are still considerable knowledge gaps concerning the fate of mercury in the atmosphere. This is the second part of a model intercomparison study investigating the impact of atmospheric chemistry and emissions on mercury in the atmosphere. While the first study focused on ground-based observations of mercury concentration and deposition, here we investigate the vertical and interhemispheric distribution and speciation of mercury from the planetary boundary layer to the lower stratosphere. So far, there have been few model studies investigating the vertical distribution of mercury, mostly focusing on single aircraft campaigns. Here, we present a first comprehensive analysis based on various aircraft observations in Europe, North America, and on intercontinental flights. The investigated models proved to be able to reproduce the distribution of total and elemental mercury concentrations in the troposphere including interhemispheric trends. One key aspect of the study is the investigation of mercury oxidation in the troposphere. We found that different chemistry schemes were better at reproducing observed oxidized mercury patterns depending on altitude. High concentrations of oxidized mercury in the upper troposphere could be reproduced with oxidation by bromine while elevated concentrations in the lower troposphere were better reproduced by OH and ozone chemistry. However, the results were not always conclusive as the physical and chemical parameterizations in the chemistry transport models also proved to have a substantial impact on model results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.
The uptake, distribution, and subsequent emission of mercury to the atmosphere were investigated in five plant species (Lepidium latifolium [L.], Artemisia douglasiana [Bess in Hook], Caulanthus sp. [S. Watson], Fragaria vesca [L.], and Eucalyptus globulus [Labill]) with different ecological and physiological attributes. Transfer coefficients for mercury in the soil-plant system were calculated. Plant-to-atmosphere emissions of mercury were determined using a controlled environment gas-exchange system and ranged from 10 to 93 mg/m{sup 2}/h in the light; emissions in the dark were an order of magnitude less. Transfer coefficients for mercury within the soil-plant system increased acropetally (root-to-leaf axis) by orders ofmore » magnitude. Estimated mercury emissions from plants in the Carson River Drainage Basin of Nevada over the growing season (0.5 mg/m{sup 2}) add to the previously reported soil mercury emissions (8.5 mg/m{sup 2}), resulting in total landscape emissions of 9 mg/m{sup 2}. For L. latifolium, 70% of the mercury taken up by the roots during the growing season was emitted to the atmosphere. For every one molecule of mercury retained in foliage of L. latifolium, 12 molecules of mercury were emitted. Within this arid ecosystem, mercury emissions are a dominant pathway of the mercury cycle. Plants function as conduits for the interfacial transport of mercury from the geosphere to the atmosphere, and this role is undervalued in models of the behavior of mercury in terrestrial exosystems and in the atmosphere on a global scale.« less
Mercury in dental amalgam: Are our health care workers at risk?
Sahani, M; Sulaiman, N S; Tan, B S; Yahya, N A; Anual, Z F; Mahiyuddin, W R Wan; Khan, M F; Muttalib, K A
2016-11-01
Dental amalgam in fillings exposes workers to mercury. The exposure to mercury was investigated among 1871 dental health care workers. The aim of the study was to evaluate the risk of mercury exposure among dental compared to nondental health care workers and to determine other risk factors for mercury exposure. Respondents answered questionnaires to obtain demographic, personal, professional, and workplace information and were examined for their own amalgam fillings. Chronic mercury exposure was assessed through urinary mercury levels. In total, 1409 dental and 462 nondental health care workers participated in the study. Median urine mercury levels for dental and nondental health care workers were 2.75 μg/L (interquartile range [IQR] = 3.0175) and 2.66 μg/L (IQR = 3.04) respectively. For mercury exposure, there were no significant risk factor found among the workers involved within the dental care. The Mann-Whitney test showed that urine mercury levels were significantly different between respondents who eat seafood more than 5 times per week compared to those who eat it less frequently or not at all (p = 0.003). The urinary mercury levels indicated significant difference between dental workers in their practice using squeeze cloths (Mann-Whitney test, p = 0.03). Multiple logistic regression showed that only the usage of cosmetic products that might contain mercury was found to be significantly associated with the urinary mercury levels (odds ratio [OR] = 15.237; CI: 3.612-64.276). Therefore, mean urinary mercury levels of health care workers were low. Exposure to dental amalgam is not associated with high mercury exposure. However, usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury. Exposure to the high levels of mercury from dental amalgam can lead to serious health effects among the dental health care workers. Nationwide chronic mercury exposure among dental personnel was assessed through urinary mercury levels. Findings suggest low urinary mercury levels of these health care workers. Exposure to dental amalgam is not associated with high mercury exposure. However, the usage of cosmetic products containing mercury and high seafood consumption may lead to the increase of exposure to mercury.
Garetano, Gary; Stern, Alan H.; Robson, Mark; Gochfeld, Michael
2015-01-01
Background Exposure to elemental mercury (Hg0) in residential buildings can occur from accidental spills, broken objects (thermometers, fluorescent fixtures, thermostats), and deliberate introduction, one mode of which involves cultural practices by individuals who believe dispersal of mercury in a residence will bring luck, enhance health or ward off harm. Objectives To determine whether mercury vapor levels in common areas of residential buildings is higher in a community where cultural uses are likely (study areas S1, S2) than in a reference community (C1) where cultural use is unlikely, and whether levels can serve as a signal of significant cultural mercury use. Methods We monitored Hg0 vapor with a portable spectrophotometer in the three communities. We randomly selected sites in S1 and C1 community, and also include sites in S2 specified by local health officials who suspected cultural mercury use. We evaluated 122 multifamily buildings and 116 outdoor locations. Findings We found >25 ng/m3 Hg0 in 14% of buildings in study areas compared to only one reference building. In the latter we identified an accidental mercury spill from a bottle that had been brought into the building. Both the mean and maximum indoor mercury vapor levels were greater in the study communities than in the reference community. In all communities, we observed mean indoor Hg0 vapor concentration greater than outdoors, although in two-thirds of buildings, indoor levels did not exceed the area-specific outdoor upper-limit concentration. Conclusion After controlling for factors that might influence Hg0 vapor levels, the most plausible explanation for greater Hg0 levels in the study area is a relationship to cultural use of mercury. None of the measured levels exceeded the ATSDR minimum risk level for residences of 200 ng/m3 Hg0 although levels in living quarters might be greater than those in the common areas. PMID:18406445