Sample records for mesh refinement techniques

  1. An adaptive mesh-moving and refinement procedure for one-dimensional conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Flaherty, Joseph E.; Arney, David C.

    1993-01-01

    We examine the performance of an adaptive mesh-moving and /or local mesh refinement procedure for the finite difference solution of one-dimensional hyperbolic systems of conservation laws. Adaptive motion of a base mesh is designed to isolate spatially distinct phenomena, and recursive local refinement of the time step and cells of the stationary or moving base mesh is performed in regions where a refinement indicator exceeds a prescribed tolerance. These adaptive procedures are incorporated into a computer code that includes a MacCormack finite difference scheme wih Davis' artificial viscosity model and a discretization error estimate based on Richardson's extrapolation. Experiments are conducted on three problems in order to qualify the advantages of adaptive techniques relative to uniform mesh computations and the relative benefits of mesh moving and refinement. Key results indicate that local mesh refinement, with and without mesh moving, can provide reliable solutions at much lower computational cost than possible on uniform meshes; that mesh motion can be used to improve the results of uniform mesh solutions for a modest computational effort; that the cost of managing the tree data structure associated with refinement is small; and that a combination of mesh motion and refinement reliably produces solutions for the least cost per unit accuracy.

  2. Mesh refinement strategy for optimal control problems

    NASA Astrophysics Data System (ADS)

    Paiva, L. T.; Fontes, F. A. C. C.

    2013-10-01

    Direct methods are becoming the most used technique to solve nonlinear optimal control problems. Regular time meshes having equidistant spacing are frequently used. However, in some cases these meshes cannot cope accurately with nonlinear behavior. One way to improve the solution is to select a new mesh with a greater number of nodes. Another way, involves adaptive mesh refinement. In this case, the mesh nodes have non equidistant spacing which allow a non uniform nodes collocation. In the method presented in this paper, a time mesh refinement strategy based on the local error is developed. After computing a solution in a coarse mesh, the local error is evaluated, which gives information about the subintervals of time domain where refinement is needed. This procedure is repeated until the local error reaches a user-specified threshold. The technique is applied to solve the car-like vehicle problem aiming minimum consumption. The approach developed in this paper leads to results with greater accuracy and yet with lower overall computational time as compared to using a time meshes having equidistant spacing.

  3. Controlling Reflections from Mesh Refinement Interfaces in Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Van Meter, James R.

    2005-01-01

    A leading approach to improving the accuracy on numerical relativity simulations of black hole systems is through fixed or adaptive mesh refinement techniques. We describe a generic numerical error which manifests as slowly converging, artificial reflections from refinement boundaries in a broad class of mesh-refinement implementations, potentially limiting the effectiveness of mesh- refinement techniques for some numerical relativity applications. We elucidate this numerical effect by presenting a model problem which exhibits the phenomenon, but which is simple enough that its numerical error can be understood analytically. Our analysis shows that the effect is caused by variations in finite differencing error generated across low and high resolution regions, and that its slow convergence is caused by the presence of dramatic speed differences among propagation modes typical of 3+1 relativity. Lastly, we resolve the problem, presenting a class of finite-differencing stencil modifications which eliminate this pathology in both our model problem and in numerical relativity examples.

  4. Visualization of AMR data with multi-level dual-mesh interpolation.

    PubMed

    Moran, Patrick J; Ellsworth, David

    2011-12-01

    We present a new technique for providing interpolation within cell-centered Adaptive Mesh Refinement (AMR) data that achieves C(0) continuity throughout the 3D domain. Our technique improves on earlier work in that it does not require that adjacent patches differ by at most one refinement level. Our approach takes the dual of each mesh patch and generates "stitching cells" on the fly to fill the gaps between dual meshes. We demonstrate applications of our technique with data from Enzo, an AMR cosmological structure formation simulation code. We show ray-cast visualizations that include contributions from particle data (dark matter and stars, also output by Enzo) and gridded hydrodynamic data. We also show results from isosurface studies, including surfaces in regions where adjacent patches differ by more than one refinement level. © 2011 IEEE

  5. Parallel Adaptive Mesh Refinement for High-Order Finite-Volume Schemes in Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Schwing, Alan Michael

    For computational fluid dynamics, the governing equations are solved on a discretized domain of nodes, faces, and cells. The quality of the grid or mesh can be a driving source for error in the results. While refinement studies can help guide the creation of a mesh, grid quality is largely determined by user expertise and understanding of the flow physics. Adaptive mesh refinement is a technique for enriching the mesh during a simulation based on metrics for error, impact on important parameters, or location of important flow features. This can offload from the user some of the difficult and ambiguous decisions necessary when discretizing the domain. This work explores the implementation of adaptive mesh refinement in an implicit, unstructured, finite-volume solver. Consideration is made for applying modern computational techniques in the presence of hanging nodes and refined cells. The approach is developed to be independent of the flow solver in order to provide a path for augmenting existing codes. It is designed to be applicable for unsteady simulations and refinement and coarsening of the grid does not impact the conservatism of the underlying numerics. The effect on high-order numerical fluxes of fourth- and sixth-order are explored. Provided the criteria for refinement is appropriately selected, solutions obtained using adapted meshes have no additional error when compared to results obtained on traditional, unadapted meshes. In order to leverage large-scale computational resources common today, the methods are parallelized using MPI. Parallel performance is considered for several test problems in order to assess scalability of both adapted and unadapted grids. Dynamic repartitioning of the mesh during refinement is crucial for load balancing an evolving grid. Development of the methods outlined here depend on a dual-memory approach that is described in detail. Validation of the solver developed here against a number of motivating problems shows favorable comparisons across a range of regimes. Unsteady and steady applications are considered in both subsonic and supersonic flows. Inviscid and viscous simulations achieve similar results at a much reduced cost when employing dynamic mesh adaptation. Several techniques for guiding adaptation are compared. Detailed analysis of statistics from the instrumented solver enable understanding of the costs associated with adaptation. Adaptive mesh refinement shows promise for the test cases presented here. It can be considerably faster than using conventional grids and provides accurate results. The procedures for adapting the grid are light-weight enough to not require significant computational time and yield significant reductions in grid size.

  6. Parallel three-dimensional magnetotelluric inversion using adaptive finite-element method. Part I: theory and synthetic study

    NASA Astrophysics Data System (ADS)

    Grayver, Alexander V.

    2015-07-01

    This paper presents a distributed magnetotelluric inversion scheme based on adaptive finite-element method (FEM). The key novel aspect of the introduced algorithm is the use of automatic mesh refinement techniques for both forward and inverse modelling. These techniques alleviate tedious and subjective procedure of choosing a suitable model parametrization. To avoid overparametrization, meshes for forward and inverse problems were decoupled. For calculation of accurate electromagnetic (EM) responses, automatic mesh refinement algorithm based on a goal-oriented error estimator has been adopted. For further efficiency gain, EM fields for each frequency were calculated using independent meshes in order to account for substantially different spatial behaviour of the fields over a wide range of frequencies. An automatic approach for efficient initial mesh design in inverse problems based on linearized model resolution matrix was developed. To make this algorithm suitable for large-scale problems, it was proposed to use a low-rank approximation of the linearized model resolution matrix. In order to fill a gap between initial and true model complexities and resolve emerging 3-D structures better, an algorithm for adaptive inverse mesh refinement was derived. Within this algorithm, spatial variations of the imaged parameter are calculated and mesh is refined in the neighborhoods of points with the largest variations. A series of numerical tests were performed to demonstrate the utility of the presented algorithms. Adaptive mesh refinement based on the model resolution estimates provides an efficient tool to derive initial meshes which account for arbitrary survey layouts, data types, frequency content and measurement uncertainties. Furthermore, the algorithm is capable to deliver meshes suitable to resolve features on multiple scales while keeping number of unknowns low. However, such meshes exhibit dependency on an initial model guess. Additionally, it is demonstrated that the adaptive mesh refinement can be particularly efficient in resolving complex shapes. The implemented inversion scheme was able to resolve a hemisphere object with sufficient resolution starting from a coarse discretization and refining mesh adaptively in a fully automatic process. The code is able to harness the computational power of modern distributed platforms and is shown to work with models consisting of millions of degrees of freedom. Significant computational savings were achieved by using locally refined decoupled meshes.

  7. Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1997-01-01

    An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.

  8. An object-oriented approach for parallel self adaptive mesh refinement on block structured grids

    NASA Technical Reports Server (NTRS)

    Lemke, Max; Witsch, Kristian; Quinlan, Daniel

    1993-01-01

    Self-adaptive mesh refinement dynamically matches the computational demands of a solver for partial differential equations to the activity in the application's domain. In this paper we present two C++ class libraries, P++ and AMR++, which significantly simplify the development of sophisticated adaptive mesh refinement codes on (massively) parallel distributed memory architectures. The development is based on our previous research in this area. The C++ class libraries provide abstractions to separate the issues of developing parallel adaptive mesh refinement applications into those of parallelism, abstracted by P++, and adaptive mesh refinement, abstracted by AMR++. P++ is a parallel array class library to permit efficient development of architecture independent codes for structured grid applications, and AMR++ provides support for self-adaptive mesh refinement on block-structured grids of rectangular non-overlapping blocks. Using these libraries, the application programmers' work is greatly simplified to primarily specifying the serial single grid application and obtaining the parallel and self-adaptive mesh refinement code with minimal effort. Initial results for simple singular perturbation problems solved by self-adaptive multilevel techniques (FAC, AFAC), being implemented on the basis of prototypes of the P++/AMR++ environment, are presented. Singular perturbation problems frequently arise in large applications, e.g. in the area of computational fluid dynamics. They usually have solutions with layers which require adaptive mesh refinement and fast basic solvers in order to be resolved efficiently.

  9. Adaptive mesh refinement and front-tracking for shear bands in an antiplane shear model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garaizar, F.X.; Trangenstein, J.

    1998-09-01

    In this paper the authors describe a numerical algorithm for the study of hear-band formation and growth in a two-dimensional antiplane shear of granular materials. The algorithm combines front-tracking techniques and adaptive mesh refinement. Tracking provides a more careful evolution of the band when coupled with special techniques to advance the ends of the shear band in the presence of a loss of hyperbolicity. The adaptive mesh refinement allows the computational effort to be concentrated in important areas of the deformation, such as the shear band and the elastic relief wave. The main challenges are the problems related to shearmore » bands that extend across several grid patches and the effects that a nonhyperbolic growth rate of the shear bands has in the refinement process. They give examples of the success of the algorithm for various levels of refinement.« less

  10. Method of modifying a volume mesh using sheet insertion

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2006-08-29

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.

  11. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  12. Computations of Unsteady Viscous Compressible Flows Using Adaptive Mesh Refinement in Curvilinear Body-fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, E.; Modiano, David; Colella, Phillip

    1994-01-01

    A methodology for accurate and efficient simulation of unsteady, compressible flows is presented. The cornerstones of the methodology are a special discretization of the Navier-Stokes equations on structured body-fitted grid systems and an efficient solution-adaptive mesh refinement technique for structured grids. The discretization employs an explicit multidimensional upwind scheme for the inviscid fluxes and an implicit treatment of the viscous terms. The mesh refinement technique is based on the AMR algorithm of Berger and Colella. In this approach, cells on each level of refinement are organized into a small number of topologically rectangular blocks, each containing several thousand cells. The small number of blocks leads to small overhead in managing data, while their size and regular topology means that a high degree of optimization can be achieved on computers with vector processors.

  13. A new adaptive mesh refinement strategy for numerically solving evolutionary PDE's

    NASA Astrophysics Data System (ADS)

    Burgarelli, Denise; Kischinhevsky, Mauricio; Biezuner, Rodney Josue

    2006-11-01

    A graph-based implementation of quadtree meshes for dealing with adaptive mesh refinement (AMR) in the numerical solution of evolutionary partial differential equations is discussed using finite volume methods. The technique displays a plug-in feature that allows replacement of a group of cells in any region of interest for another one with arbitrary refinement, and with only local changes occurring in the data structure. The data structure is also specially designed to minimize the number of operations needed in the AMR. Implementation of the new scheme allows flexibility in the levels of refinement of adjacent regions. Moreover, storage requirements and computational cost compare competitively with mesh refinement schemes based on hierarchical trees. Low storage is achieved for only the children nodes are stored when a refinement takes place. These nodes become part of a graph structure, thus motivating the denomination autonomous leaves graph (ALG) for the new scheme. Neighbors can then be reached without accessing their parent nodes. Additionally, linear-system solvers based on the minimization of functionals can be easily employed. ALG was not conceived with any particular problem or geometry in mind and can thus be applied to the study of several phenomena. Some test problems are used to illustrate the effectiveness of the technique.

  14. Lagrangian Modeling of Evaporating Sprays at Diesel Engine Conditions: Effects of Multi-Hole Injector Nozzles With JP-8 Surrogates

    DTIC Science & Technology

    2014-05-01

    solver to treat the spray process. An Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with...Adaptive Mesh Refinement (AMR) and fixed embedding technique is employed to capture the gas - liquid interface with high fidelity while keeping the cell...in single and multi-hole nozzle configurations. The models were added to the present CONVERGE liquid fuel database and validated extensively

  15. Adaptive mesh refinement for time-domain electromagnetics using vector finite elements :a feasibility study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, C. David; Kotulski, Joseph Daniel; Pasik, Michael Francis

    This report investigates the feasibility of applying Adaptive Mesh Refinement (AMR) techniques to a vector finite element formulation for the wave equation in three dimensions. Possible error estimators are considered first. Next, approaches for refining tetrahedral elements are reviewed. AMR capabilities within the Nevada framework are then evaluated. We summarize our conclusions on the feasibility of AMR for time-domain vector finite elements and identify a path forward.

  16. A multi-block adaptive solving technique based on lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Xie, Jiahua; Li, Xiaoyue; Ma, Zhenghai; Zou, Jianfeng; Zheng, Yao

    2018-05-01

    In this paper, a CFD parallel adaptive algorithm is self-developed by combining the multi-block Lattice Boltzmann Method (LBM) with Adaptive Mesh Refinement (AMR). The mesh refinement criterion of this algorithm is based on the density, velocity and vortices of the flow field. The refined grid boundary is obtained by extending outward half a ghost cell from the coarse grid boundary, which makes the adaptive mesh more compact and the boundary treatment more convenient. Two numerical examples of the backward step flow separation and the unsteady flow around circular cylinder demonstrate the vortex structure of the cold flow field accurately and specifically.

  17. Mesh Convergence Requirements for Composite Damage Models

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    The ability of the finite element method to accurately represent the response of objects with intricate geometry and loading renders the finite element method as an extremely versatile analysis technique for structural analysis. Finite element analysis is routinely used in industry to calculate deflections, stress concentrations, natural frequencies, buckling loads, and much more. The method works by discretizing complex problems into smaller, simpler approximations that are valid over small uniform domains. For common analyses, the maximum size of the elements that can be used is often be determined by experience. However, to verify the quality of a solution, analyses with several levels of mesh refinement should be performed to ensure that the solution has converged. In recent years, the finite element method has been used to calculate the resistance of structures, and in particular that of composite structures. A number of techniques such as cohesive zone modeling, the virtual crack closure technique, and continuum damage modeling have emerged that can be used to predict cracking, delaminations, fiber failure, and other composite damage modes that lead to structural collapse. However, damage models present mesh refinement requirements that are not well understood. In this presentation, we examine different mesh refinement issues related to the representation of damage in composite materials. Damage process zone sizes and their corresponding mesh requirements will be discussed. The difficulties of modeling discontinuities and the associated need for regularization techniques will be illustrated, and some unexpected element size constraints will be presented. Finally, some of the difficulties in constructing models of composite structures capable of predicting transverse matrix cracking will be discussed. It will be shown that to predict the initiation and propagation of transverse matrix cracks, their density, and their saturation may require models that are significantly more refined than those that have been contemplated in the past.

  18. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  19. Interpolation methods and the accuracy of lattice-Boltzmann mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Weisgraber, Todd H.; Colella, Phillip; ...

    2013-12-10

    A lattice-Boltzmann model to solve the equivalent of the Navier-Stokes equations on adap- tively refined grids is presented. A method for transferring information across interfaces between different grid resolutions was developed following established techniques for finite- volume representations. This new approach relies on a space-time interpolation and solving constrained least-squares problems to ensure conservation. The effectiveness of this method at maintaining the second order accuracy of lattice-Boltzmann is demonstrated through a series of benchmark simulations and detailed mesh refinement studies. These results exhibit smaller solution errors and improved convergence when compared with similar approaches relying only on spatial interpolation. Examplesmore » highlighting the mesh adaptivity of this method are also provided.« less

  20. Auto-adaptive finite element meshes

    NASA Technical Reports Server (NTRS)

    Richter, Roland; Leyland, Penelope

    1995-01-01

    Accurate capturing of discontinuities within compressible flow computations is achieved by coupling a suitable solver with an automatic adaptive mesh algorithm for unstructured triangular meshes. The mesh adaptation procedures developed rely on non-hierarchical dynamical local refinement/derefinement techniques, which hence enable structural optimization as well as geometrical optimization. The methods described are applied for a number of the ICASE test cases are particularly interesting for unsteady flow simulations.

  1. B and F Projection Methods for Nearly Incompressible Linear and Nonlinear Elasticity and Plasticity using Higher-order NURBS Elements

    DTIC Science & Technology

    2007-08-01

    Infinite plate with a hole: sequence of meshes produced by h-refinement. The geometry of the coarsest mesh...recalled with an emphasis on k -refinement. In Section 3, the use of high-order NURBS within a projection technique is studied in the geometri - cally linear...case with a B̄ method to investigate the choice of approximation and projection spaces with NURBS.

  2. Thermal-chemical Mantle Convection Models With Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Leng, W.; Zhong, S.

    2008-12-01

    In numerical modeling of mantle convection, resolution is often crucial for resolving small-scale features. New techniques, adaptive mesh refinement (AMR), allow local mesh refinement wherever high resolution is needed, while leaving other regions with relatively low resolution. Both computational efficiency for large- scale simulation and accuracy for small-scale features can thus be achieved with AMR. Based on the octree data structure [Tu et al. 2005], we implement the AMR techniques into the 2-D mantle convection models. For pure thermal convection models, benchmark tests show that our code can achieve high accuracy with relatively small number of elements both for isoviscous cases (i.e. 7492 AMR elements v.s. 65536 uniform elements) and for temperature-dependent viscosity cases (i.e. 14620 AMR elements v.s. 65536 uniform elements). We further implement tracer-method into the models for simulating thermal-chemical convection. By appropriately adding and removing tracers according to the refinement of the meshes, our code successfully reproduces the benchmark results in van Keken et al. [1997] with much fewer elements and tracers compared with uniform-mesh models (i.e. 7552 AMR elements v.s. 16384 uniform elements, and ~83000 tracers v.s. ~410000 tracers). The boundaries of the chemical piles in our AMR code can be easily refined to the scales of a few kilometers for the Earth's mantle and the tracers are concentrated near the chemical boundaries to precisely trace the evolvement of the boundaries. It is thus very suitable for our AMR code to study the thermal-chemical convection problems which need high resolution to resolve the evolvement of chemical boundaries, such as the entrainment problems [Sleep, 1988].

  3. Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavel Kus; Pavel Solin; David Andrs

    2014-11-01

    In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.

  4. Evolving a Puncture Black Hole with Fixed Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Imbiriba, Breno; Baker, John; Choi, Dae-II; Centrella, Joan; Fiske. David R.; Brown, J. David; vanMeter, James R.; Olson, Kevin

    2004-01-01

    We present a detailed study of the effects of mesh refinement boundaries on the convergence and stability of simulations of black hole spacetimes. We find no technical problems. In our applications of this technique to the evolution of puncture initial data, we demonstrate that it is possible to simulaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult.

  5. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2014-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using ERA-Interim re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally- refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  6. Impact of Variable-Resolution Meshes on Regional Climate Simulations

    NASA Astrophysics Data System (ADS)

    Fowler, L. D.; Skamarock, W. C.; Bruyere, C. L.

    2013-12-01

    The Model for Prediction Across Scales (MPAS) is currently being used for seasonal-scale simulations on globally-uniform and regionally-refined meshes. Our ongoing research aims at analyzing simulations of tropical convective activity and tropical cyclone development during one hurricane season over the North Atlantic Ocean, contrasting statistics obtained with a variable-resolution mesh against those obtained with a quasi-uniform mesh. Analyses focus on the spatial distribution, frequency, and intensity of convective and grid-scale precipitations, and their relative contributions to the total precipitation as a function of the horizontal scale. Multi-month simulations initialized on May 1st 2005 using NCEP/NCAR re-analyses indicate that MPAS performs satisfactorily as a regional climate model for different combinations of horizontal resolutions and transitions between the coarse and refined meshes. Results highlight seamless transitions for convection, cloud microphysics, radiation, and land-surface processes between the quasi-uniform and locally-refined meshes, despite the fact that the physics parameterizations were not developed for variable resolution meshes. Our goal of analyzing the performance of MPAS is twofold. First, we want to establish that MPAS can be successfully used as a regional climate model, bypassing the need for nesting and nudging techniques at the edges of the computational domain as done in traditional regional climate modeling. Second, we want to assess the performance of our convective and cloud microphysics parameterizations as the horizontal resolution varies between the lower-resolution quasi-uniform and higher-resolution locally-refined areas of the global domain.

  7. Arbitrary Lagrangian-Eulerian Method with Local Structured Adaptive Mesh Refinement for Modeling Shock Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R W; Pember, R B; Elliott, N S

    2001-10-22

    A new method that combines staggered grid Arbitrary Lagrangian-Eulerian (ALE) techniques with structured local adaptive mesh refinement (AMR) has been developed for solution of the Euler equations. This method facilitates the solution of problems currently at and beyond the boundary of soluble problems by traditional ALE methods by focusing computational resources where they are required through dynamic adaption. Many of the core issues involved in the development of the combined ALEAMR method hinge upon the integration of AMR with a staggered grid Lagrangian integration method. The novel components of the method are mainly driven by the need to reconcile traditionalmore » AMR techniques, which are typically employed on stationary meshes with cell-centered quantities, with the staggered grids and grid motion employed by Lagrangian methods. Numerical examples are presented which demonstrate the accuracy and efficiency of the method.« less

  8. A methodology for quadrilateral finite element mesh coarsening

    DOE PAGES

    Staten, Matthew L.; Benzley, Steven; Scott, Michael

    2008-03-27

    High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedralmore » meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. Finally, this method appears to be extensible to hexahedral meshes in three dimensions.« less

  9. Adaptive mesh refinement and load balancing based on multi-level block-structured Cartesian mesh

    NASA Astrophysics Data System (ADS)

    Misaka, Takashi; Sasaki, Daisuke; Obayashi, Shigeru

    2017-11-01

    We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier-Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.

  10. A template-based approach for parallel hexahedral two-refinement

    DOE PAGES

    Owen, Steven J.; Shih, Ryan M.; Ernst, Corey D.

    2016-10-17

    Here, we provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.3more » prior to smoothing.« less

  11. A template-based approach for parallel hexahedral two-refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Steven J.; Shih, Ryan M.; Ernst, Corey D.

    Here, we provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.3more » prior to smoothing.« less

  12. Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model

    DOE PAGES

    Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans; ...

    2016-11-09

    Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less

  13. Analyzing the Adaptive Mesh Refinement (AMR) Characteristics of a High-Order 2D Cubed-Sphere Shallow-Water Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Jared O.; Jablonowski, Christiane; Johansen, Hans

    Adaptive mesh refinement (AMR) is a technique that has been featured only sporadically in atmospheric science literature. This study aims to demonstrate the utility of AMR for simulating atmospheric flows. Several test cases are implemented in a 2D shallow-water model on the sphere using the Chombo-AMR dynamical core. This high-order finite-volume model implements adaptive refinement in both space and time on a cubed-sphere grid using a mapped-multiblock mesh technique. The tests consist of the passive advection of a tracer around moving vortices, a steady-state geostrophic flow, an unsteady solid-body rotation, a gravity wave impinging on a mountain, and the interactionmore » of binary vortices. Both static and dynamic refinements are analyzed to determine the strengths and weaknesses of AMR in both complex flows with small-scale features and large-scale smooth flows. The different test cases required different AMR criteria, such as vorticity or height-gradient based thresholds, in order to achieve the best accuracy for cost. The simulations show that the model can accurately resolve key local features without requiring global high-resolution grids. The adaptive grids are able to track features of interest reliably without inducing noise or visible distortions at the coarse–fine interfaces. Finally and furthermore, the AMR grids keep any degradations of the large-scale smooth flows to a minimum.« less

  14. Adaptive Mesh Refinement for Microelectronic Device Design

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Lou, John; Norton, Charles

    1999-01-01

    Finite element and finite volume methods are used in a variety of design simulations when it is necessary to compute fields throughout regions that contain varying materials or geometry. Convergence of the simulation can be assessed by uniformly increasing the mesh density until an observable quantity stabilizes. Depending on the electrical size of the problem, uniform refinement of the mesh may be computationally infeasible due to memory limitations. Similarly, depending on the geometric complexity of the object being modeled, uniform refinement can be inefficient since regions that do not need refinement add to the computational expense. In either case, convergence to the correct (measured) solution is not guaranteed. Adaptive mesh refinement methods attempt to selectively refine the region of the mesh that is estimated to contain proportionally higher solution errors. The refinement may be obtained by decreasing the element size (h-refinement), by increasing the order of the element (p-refinement) or by a combination of the two (h-p refinement). A successful adaptive strategy refines the mesh to produce an accurate solution measured against the correct fields without undue computational expense. This is accomplished by the use of a) reliable a posteriori error estimates, b) hierarchal elements, and c) automatic adaptive mesh generation. Adaptive methods are also useful when problems with multi-scale field variations are encountered. These occur in active electronic devices that have thin doped layers and also when mixed physics is used in the calculation. The mesh needs to be fine at and near the thin layer to capture rapid field or charge variations, but can coarsen away from these layers where field variations smoothen and charge densities are uniform. This poster will present an adaptive mesh refinement package that runs on parallel computers and is applied to specific microelectronic device simulations. Passive sensors that operate in the infrared portion of the spectrum as well as active device simulations that model charge transport and Maxwell's equations will be presented.

  15. Mesh quality control for multiply-refined tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1994-01-01

    A new algorithm for controlling the quality of multiply-refined tetrahedral meshes is presented in this paper. The basic dynamic mesh adaption procedure allows localized grid refinement and coarsening to efficiently capture aerodynamic flow features in computational fluid dynamics problems; however, repeated application of the procedure may significantly deteriorate the quality of the mesh. Results presented show the effectiveness of this mesh quality algorithm and its potential in the area of helicopter aerodynamics and acoustics.

  16. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  17. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  18. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement.

    PubMed

    Garcia-Cantero, Juan J; Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells' overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma's morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes.

  19. Analysis and improvements of Adaptive Particle Refinement (APR) through CPU time, accuracy and robustness considerations

    NASA Astrophysics Data System (ADS)

    Chiron, L.; Oger, G.; de Leffe, M.; Le Touzé, D.

    2018-02-01

    While smoothed-particle hydrodynamics (SPH) simulations are usually performed using uniform particle distributions, local particle refinement techniques have been developed to concentrate fine spatial resolutions in identified areas of interest. Although the formalism of this method is relatively easy to implement, its robustness at coarse/fine interfaces can be problematic. Analysis performed in [16] shows that the radius of refined particles should be greater than half the radius of unrefined particles to ensure robustness. In this article, the basics of an Adaptive Particle Refinement (APR) technique, inspired by AMR in mesh-based methods, are presented. This approach ensures robustness with alleviated constraints. Simulations applying the new formalism proposed achieve accuracy comparable to fully refined spatial resolutions, together with robustness, low CPU times and maintained parallel efficiency.

  20. Carpet: Adaptive Mesh Refinement for the Cactus Framework

    NASA Astrophysics Data System (ADS)

    Schnetter, Erik; Hawley, Scott; Hawke, Ian

    2016-11-01

    Carpet is an adaptive mesh refinement and multi-patch driver for the Cactus Framework (ascl:1102.013). Cactus is a software framework for solving time-dependent partial differential equations on block-structured grids, and Carpet acts as driver layer providing adaptive mesh refinement, multi-patch capability, as well as parallelization and efficient I/O.

  1. Finite element mesh refinement criteria for stress analysis

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1990-01-01

    This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrisochoides, N.; Sukup, F.

    In this paper we present a parallel implementation of the Bowyer-Watson (BW) algorithm using the task-parallel programming model. The BW algorithm constitutes an ideal mesh refinement strategy for implementing a large class of unstructured mesh generation techniques on both sequential and parallel computers, by preventing the need for global mesh refinement. Its implementation on distributed memory multicomputes using the traditional data-parallel model has been proven very inefficient due to excessive synchronization needed among processors. In this paper we demonstrate that with the task-parallel model we can tolerate synchronization costs inherent to data-parallel methods by exploring concurrency in the processor level.more » Our preliminary performance data indicate that the task- parallel approach: (i) is almost four times faster than the existing data-parallel methods, (ii) scales linearly, and (iii) introduces minimum overheads compared to the {open_quotes}best{close_quotes} sequential implementation of the BW algorithm.« less

  3. Array-based, parallel hierarchical mesh refinement algorithms for unstructured meshes

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2016-08-18

    In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in memory refinement). We also describe a high-order boundary reconstruction capability that can be used tomore » project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework "Mesh Oriented dAtaBase" (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. Furthermore, we also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.« less

  4. Adaptive Grid Refinement for Atmospheric Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    van Hooft, Antoon; van Heerwaarden, Chiel; Popinet, Stephane; van der linden, Steven; de Roode, Stephan; van de Wiel, Bas

    2017-04-01

    We validate and benchmark an adaptive mesh refinement (AMR) algorithm for numerical simulations of the atmospheric boundary layer (ABL). The AMR technique aims to distribute the computational resources efficiently over a domain by refining and coarsening the numerical grid locally and in time. This can be beneficial for studying cases in which length scales vary significantly in time and space. We present the results for a case describing the growth and decay of a convective boundary layer. The AMR results are benchmarked against two runs using a fixed, fine meshed grid. First, with the same numerical formulation as the AMR-code and second, with a code dedicated to ABL studies. Compared to the fixed and isotropic grid runs, the AMR algorithm can coarsen and refine the grid such that accurate results are obtained whilst using only a fraction of the grid cells. Performance wise, the AMR run was cheaper than the fixed and isotropic grid run with similar numerical formulations. However, for this specific case, the dedicated code outperformed both aforementioned runs.

  5. Grid refinement in Cartesian coordinates for groundwater flow models using the divergence theorem and Taylor's series.

    PubMed

    Mansour, M M; Spink, A E F

    2013-01-01

    Grid refinement is introduced in a numerical groundwater model to increase the accuracy of the solution over local areas without compromising the run time of the model. Numerical methods developed for grid refinement suffered certain drawbacks, for example, deficiencies in the implemented interpolation technique; the non-reciprocity in head calculations or flow calculations; lack of accuracy resulting from high truncation errors, and numerical problems resulting from the construction of elongated meshes. A refinement scheme based on the divergence theorem and Taylor's expansions is presented in this article. This scheme is based on the work of De Marsily (1986) but includes more terms of the Taylor's series to improve the numerical solution. In this scheme, flow reciprocity is maintained and high order of refinement was achievable. The new numerical method is applied to simulate groundwater flows in homogeneous and heterogeneous confined aquifers. It produced results with acceptable degrees of accuracy. This method shows the potential for its application to solving groundwater heads over nested meshes with irregular shapes. © 2012, British Geological Survey © NERC 2012. Ground Water © 2012, National GroundWater Association.

  6. Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.

    2012-09-01

    Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.

  7. A Robust and Scalable Software Library for Parallel Adaptive Refinement on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Lou, John Z.; Norton, Charles D.; Cwik, Thomas A.

    1999-01-01

    The design and implementation of Pyramid, a software library for performing parallel adaptive mesh refinement (PAMR) on unstructured meshes, is described. This software library can be easily used in a variety of unstructured parallel computational applications, including parallel finite element, parallel finite volume, and parallel visualization applications using triangular or tetrahedral meshes. The library contains a suite of well-designed and efficiently implemented modules that perform operations in a typical PAMR process. Among these are mesh quality control during successive parallel adaptive refinement (typically guided by a local-error estimator), parallel load-balancing, and parallel mesh partitioning using the ParMeTiS partitioner. The Pyramid library is implemented in Fortran 90 with an interface to the Message-Passing Interface (MPI) library, supporting code efficiency, modularity, and portability. An EM waveguide filter application, adaptively refined using the Pyramid library, is illustrated.

  8. Filament capturing with the multimaterial moment-of-fluid method*

    DOE PAGES

    Jemison, Matthew; Sussman, Mark; Shashkov, Mikhail

    2015-01-15

    A novel method for capturing two-dimensional, thin, under-resolved material configurations, known as “filaments,” is presented in the context of interface reconstruction. This technique uses a partitioning procedure to detect disconnected regions of material in the advective preimage of a cell (indicative of a filament) and makes use of the existing functionality of the Multimaterial Moment-of-Fluid interface reconstruction method to accurately capture the under-resolved feature, while exactly conserving volume. An algorithm for Adaptive Mesh Refinement in the presence of filaments is developed so that refinement is introduced only near the tips of filaments and where the Moment-of-Fluid reconstruction error is stillmore » large. Comparison to the standard Moment-of-Fluid method is made. As a result, it is demonstrated that using filament capturing at a given resolution yields gains in accuracy comparable to introducing an additional level of mesh refinement at significantly lower cost.« less

  9. Performance Evaluation of Various STL File Mesh Refining Algorithms Applied for FDM-RP Process

    NASA Astrophysics Data System (ADS)

    Ledalla, Siva Rama Krishna; Tirupathi, Balaji; Sriram, Venkatesh

    2018-06-01

    Layered manufacturing machines use the stereolithography (STL) file to build parts. When a curved surface is converted from a computer aided design (CAD) file to STL, it results in a geometrical distortion and chordal error. Parts manufactured with this file, might not satisfy geometric dimensioning and tolerance requirements due to approximated geometry. Current algorithms built in CAD packages have export options to globally reduce this distortion, which leads to an increase in the file size and pre-processing time. In this work, different mesh subdivision algorithms are applied on STL file of a complex geometric features using MeshLab software. The mesh subdivision algorithms considered in this work are modified butterfly subdivision technique, loops sub division technique and general triangular midpoint sub division technique. A comparative study is made with respect to volume and the build time using the above techniques. It is found that triangular midpoint sub division algorithm is more suitable for the geometry under consideration. Only the wheel cap part is then manufactured on Stratasys MOJO FDM machine. The surface roughness of the part is measured on Talysurf surface roughness tester.

  10. Unstructured Euler flow solutions using hexahedral cell refinement

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1991-01-01

    An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.

  11. An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows

    NASA Astrophysics Data System (ADS)

    Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky

    2018-06-01

    We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian-Lagrangian approach. This enables us to refine the computational mesh in the vicinity of the droplet parcels and accurately resolve the coupling between the two phases.

  12. Mesh refinement in finite element analysis by minimization of the stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1989-01-01

    Most finite element packages provide means to generate meshes automatically. However, the user is usually confronted with the problem of not knowing whether the mesh generated is appropriate for the problem at hand. Since the accuracy of the finite element results is mesh dependent, mesh selection forms a very important step in the analysis. Indeed, in accurate analyses, meshes need to be refined or rezoned until the solution converges to a value so that the error is below a predetermined tolerance. A-posteriori methods use error indicators, developed by using the theory of interpolation and approximation theory, for mesh refinements. Some use other criterions, such as strain energy density variation and stress contours for example, to obtain near optimal meshes. Although these methods are adaptive, they are expensive. Alternatively, a priori methods, until now available, use geometrical parameters, for example, element aspect ratio. Therefore, they are not adaptive by nature. An adaptive a-priori method is developed. The criterion is that the minimization of the trace of the stiffness matrix with respect to the nodal coordinates, leads to a minimization of the potential energy, and as a consequence provide a good starting mesh. In a few examples the method is shown to provide the optimal mesh. The method is also shown to be relatively simple and amenable to development of computer algorithms. When the procedure is used in conjunction with a-posteriori methods of grid refinement, it is shown that fewer refinement iterations and fewer degrees of freedom are required for convergence as opposed to when the procedure is not used. The mesh obtained is shown to have uniform distribution of stiffness among the nodes and elements which, as a consequence, leads to uniform error distribution. Thus the mesh obtained meets the optimality criterion of uniform error distribution.

  13. An assessment of the adaptive unstructured tetrahedral grid, Euler Flow Solver Code FELISA

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Erickson, Larry L.

    1994-01-01

    A three-dimensional solution-adaptive Euler flow solver for unstructured tetrahedral meshes is assessed, and the accuracy and efficiency of the method for predicting sonic boom pressure signatures about simple generic models are demonstrated. Comparison of computational and wind tunnel data and enhancement of numerical solutions by means of grid adaptivity are discussed. The mesh generation is based on the advancing front technique. The FELISA code consists of two solvers, the Taylor-Galerkin and the Runge-Kutta-Galerkin schemes, both of which are spacially discretized by the usual Galerkin weighted residual finite-element methods but with different explicit time-marching schemes to steady state. The solution-adaptive grid procedure is based on either remeshing or mesh refinement techniques. An alternative geometry adaptive procedure is also incorporated.

  14. NeuroTessMesh: A Tool for the Generation and Visualization of Neuron Meshes and Adaptive On-the-Fly Refinement

    PubMed Central

    Garcia-Cantero, Juan J.; Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis

    2017-01-01

    Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been integrated into NeuroTessMesh, available to the scientific community, to generate, visualize, and save the adaptive resolution meshes. PMID:28690511

  15. Refined numerical solution of the transonic flow past a wedge

    NASA Technical Reports Server (NTRS)

    Liang, S.-M.; Fung, K.-Y.

    1985-01-01

    A numerical procedure combining the ideas of solving a modified difference equation and of adaptive mesh refinement is introduced. The numerical solution on a fixed grid is improved by using better approximations of the truncation error computed from local subdomain grid refinements. This technique is used to obtain refined solutions of steady, inviscid, transonic flow past a wedge. The effects of truncation error on the pressure distribution, wave drag, sonic line, and shock position are investigated. By comparing the pressure drag on the wedge and wave drag due to the shocks, a supersonic-to-supersonic shock originating from the wedge shoulder is confirmed.

  16. Development of an adaptive hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  17. Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2014-01-01

    This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.

  18. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows

    NASA Astrophysics Data System (ADS)

    Yuan, H. Z.; Wang, Y.; Shu, C.

    2017-12-01

    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  19. Solution adaptive grids applied to low Reynolds number flow

    NASA Astrophysics Data System (ADS)

    de With, G.; Holdø, A. E.; Huld, T. A.

    2003-08-01

    A numerical study has been undertaken to investigate the use of a solution adaptive grid for flow around a cylinder in the laminar flow regime. The main purpose of this work is twofold. The first aim is to investigate the suitability of a grid adaptation algorithm and the reduction in mesh size that can be obtained. Secondly, the uniform asymmetric flow structures are ideal to validate the mesh structures due to mesh refinement and consequently the selected refinement criteria. The refinement variable used in this work is a product of the rate of strain and the mesh cell size, and contains two variables Cm and Cstr which determine the order of each term. By altering the order of either one of these terms the refinement behaviour can be modified.

  20. A short note on the use of the red-black tree in Cartesian adaptive mesh refinement algorithms

    NASA Astrophysics Data System (ADS)

    Hasbestan, Jaber J.; Senocak, Inanc

    2017-12-01

    Mesh adaptivity is an indispensable capability to tackle multiphysics problems with large disparity in time and length scales. With the availability of powerful supercomputers, there is a pressing need to extend time-proven computational techniques to extreme-scale problems. Cartesian adaptive mesh refinement (AMR) is one such method that enables simulation of multiscale, multiphysics problems. AMR is based on construction of octrees. Originally, an explicit tree data structure was used to generate and manipulate an adaptive Cartesian mesh. At least eight pointers are required in an explicit approach to construct an octree. Parent-child relationships are then used to traverse the tree. An explicit octree, however, is expensive in terms of memory usage and the time it takes to traverse the tree to access a specific node. For these reasons, implicit pointerless methods have been pioneered within the computer graphics community, motivated by applications requiring interactivity and realistic three dimensional visualization. Lewiner et al. [1] provides a concise review of pointerless approaches to generate an octree. Use of a hash table and Z-order curve are two key concepts in pointerless methods that we briefly discuss next.

  1. An adaptive embedded mesh procedure for leading-edge vortex flows

    NASA Technical Reports Server (NTRS)

    Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.

    1989-01-01

    A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.

  2. A new parallelization scheme for adaptive mesh refinement

    DOE PAGES

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.; ...

    2016-05-06

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  3. A new parallelization scheme for adaptive mesh refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loffler, Frank; Cao, Zhoujian; Brandt, Steven R.

    Here, we present a new method for parallelization of adaptive mesh refinement called Concurrent Structured Adaptive Mesh Refinement (CSAMR). This new method offers the lower computational cost (i.e. wall time x processor count) of subcycling in time, but with the runtime performance (i.e. smaller wall time) of evolving all levels at once using the time step of the finest level (which does more work than subcycling but has less parallelism). We demonstrate our algorithm's effectiveness using an adaptive mesh refinement code, AMSS-NCKU, and show performance on Blue Waters and other high performance clusters. For the class of problem considered inmore » this paper, our algorithm achieves a speedup of 1.7-1.9 when the processor count for a given AMR run is doubled, consistent with our theoretical predictions.« less

  4. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  5. Development of quadrilateral spline thin plate elements using the B-net method

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Li, Chong-Jun

    2013-08-01

    The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previouswork, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B-net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian coordinates. In this paper, a thin plate spline element is developed based on the spline element L8 and the refined technique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.

  6. A User's Guide to AMR1D: An Instructional Adaptive Mesh Refinement Code for Unstructured Grids

    NASA Technical Reports Server (NTRS)

    deFainchtein, Rosalinda

    1996-01-01

    This report documents the code AMR1D, which is currently posted on the World Wide Web (http://sdcd.gsfc.nasa.gov/ESS/exchange/contrib/de-fainchtein/adaptive _mesh_refinement.html). AMR1D is a one-dimensional finite element fluid-dynamics solver, capable of adaptive mesh refinement (AMR). It was written as an instructional tool for AMR on unstructured mesh codes. It is meant to illustrate the minimum requirements for AMR on more than one dimension. For that purpose, it uses the same type of data structure that would be necessary on a two-dimensional AMR code (loosely following the algorithm described by Lohner).

  7. PLUM: Parallel Load Balancing for Unstructured Adaptive Meshes. Degree awarded by Colorado Univ.

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid

    1998-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing large-scale problems that require grid modifications to efficiently resolve solution features. By locally refining and coarsening the mesh to capture physical phenomena of interest, such procedures make standard computational methods more cost effective. Unfortunately, an efficient parallel implementation of these adaptive methods is rather difficult to achieve, primarily due to the load imbalance created by the dynamically-changing nonuniform grid. This requires significant communication at runtime, leading to idle processors and adversely affecting the total execution time. Nonetheless, it is generally thought that unstructured adaptive- grid techniques will constitute a significant fraction of future high-performance supercomputing. Various dynamic load balancing methods have been reported to date; however, most of them either lack a global view of loads across processors or do not apply their techniques to realistic large-scale applications.

  8. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  9. Analysis of Adaptive Mesh Refinement for IMEX Discontinuous Galerkin Solutions of the Compressible Euler Equations with Application to Atmospheric Simulations

    DTIC Science & Technology

    2013-01-01

    ξi be the Legendre -Gauss-Lobatto (LGL) points defined as the roots of (1 − ξ2)P ′N (ξ) = 0, where PN (ξ) is the N th order Legendre polynomial . The...mesh refinement. By expanding the solution in a basis of high order polynomials in each element, one can dynamically adjust the order of these basis...on refining the mesh while keeping the polynomial order constant across the elements. If we choose to allow non-conforming elements, the challenge in

  10. PARAMESH: A Parallel Adaptive Mesh Refinement Community Toolkit

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Olson, Kevin M.; Mobarry, Clark; deFainchtein, Rosalinda; Packer, Charles

    1999-01-01

    In this paper, we describe a community toolkit which is designed to provide parallel support with adaptive mesh capability for a large and important class of computational models, those using structured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is designed to provide an application developer with an easy route to extend an existing serial code which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement. Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The package can provide them with an incremental evolutionary path for their code, converting it first to uniformly refined parallel code, and then later if they so desire, adding adaptivity.

  11. Parallel Tetrahedral Mesh Adaptation with Dynamic Load Balancing

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Gabow, Harold N.

    1999-01-01

    The ability to dynamically adapt an unstructured grid is a powerful tool for efficiently solving computational problems with evolving physical features. In this paper, we report on our experience parallelizing an edge-based adaptation scheme, called 3D_TAG. using message passing. Results show excellent speedup when a realistic helicopter rotor mesh is randomly refined. However. performance deteriorates when the mesh is refined using a solution-based error indicator since mesh adaptation for practical problems occurs in a localized region., creating a severe load imbalance. To address this problem, we have developed PLUM, a global dynamic load balancing framework for adaptive numerical computations. Even though PLUM primarily balances processor workloads for the solution phase, it reduces the load imbalance problem within mesh adaptation by repartitioning the mesh after targeting edges for refinement but before the actual subdivision. This dramatically improves the performance of parallel 3D_TAG since refinement occurs in a more load balanced fashion. We also present optimal and heuristic algorithms that, when applied to the default mapping of a parallel repartitioner, significantly reduce the data redistribution overhead. Finally, portability is examined by comparing performance on three state-of-the-art parallel machines.

  12. Fixed mesh refinement in the characteristic formulation of general relativity

    NASA Astrophysics Data System (ADS)

    Barreto, W.; de Oliveira, H. P.; Rodriguez-Mueller, B.

    2017-08-01

    We implement a spatially fixed mesh refinement under spherical symmetry for the characteristic formulation of General Relativity. The Courant-Friedrich-Levy condition lets us deploy an adaptive resolution in (retarded-like) time, even for the nonlinear regime. As test cases, we replicate the main features of the gravitational critical behavior and the spacetime structure at null infinity using the Bondi mass and the News function. Additionally, we obtain the global energy conservation for an extreme situation, i.e. in the threshold of the black hole formation. In principle, the calibrated code can be used in conjunction with an ADM 3+1 code to confirm the critical behavior recently reported in the gravitational collapse of a massless scalar field in an asymptotic anti-de Sitter spacetime. For the scenarios studied, the fixed mesh refinement offers improved runtime and results comparable to code without mesh refinement.

  13. The finite cell method for polygonal meshes: poly-FCM

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  14. A Domain-Decomposed Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.

    2000-01-01

    Preliminary verification and validation of an efficient Euler solver for adaptively refined Cartesian meshes with embedded boundaries is presented. The parallel, multilevel method makes use of a new on-the-fly parallel domain decomposition strategy based upon the use of space-filling curves, and automatically generates a sequence of coarse meshes for processing by the multigrid smoother. The coarse mesh generation algorithm produces grids which completely cover the computational domain at every level in the mesh hierarchy. A series of examples on realistically complex three-dimensional configurations demonstrate that this new coarsening algorithm reliably achieves mesh coarsening ratios in excess of 7 on adaptively refined meshes. Numerical investigations of the scheme's local truncation error demonstrate an achieved order of accuracy between 1.82 and 1.88. Convergence results for the multigrid scheme are presented for both subsonic and transonic test cases and demonstrate W-cycle multigrid convergence rates between 0.84 and 0.94. Preliminary parallel scalability tests on both simple wing and complex complete aircraft geometries shows a computational speedup of 52 on 64 processors using the run-time mesh partitioner.

  15. Efficient Unstructured Cartesian/Immersed-Boundary Method with Local Mesh Refinement to Simulate Flows in Complex 3D Geometries

    NASA Astrophysics Data System (ADS)

    de Zelicourt, Diane; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit

    2008-11-01

    Image-guided computational fluid dynamics has recently gained attention as a tool for predicting the outcome of different surgical scenarios. Cartesian Immersed-Boundary methods constitute an attractive option to tackle the complexity of real-life anatomies. However, when such methods are applied to the branching, multi-vessel configurations typically encountered in cardiovascular anatomies the majority of the grid nodes of the background Cartesian mesh end up lying outside the computational domain, increasing the memory and computational overhead without enhancing the numerical resolution in the region of interest. To remedy this situation, the method presented here superimposes local mesh refinement onto an unstructured Cartesian grid formulation. A baseline unstructured Cartesian mesh is generated by eliminating all nodes that reside in the exterior of the flow domain from the grid structure, and is locally refined in the vicinity of the immersed-boundary. The potential of the method is demonstrated by carrying out systematic mesh refinement studies for internal flow problems ranging in complexity from a 90 deg pipe bend to an actual, patient-specific anatomy reconstructed from magnetic resonance.

  16. Parallel Adaptive Mesh Refinement Library

    NASA Technical Reports Server (NTRS)

    Mac-Neice, Peter; Olson, Kevin

    2005-01-01

    Parallel Adaptive Mesh Refinement Library (PARAMESH) is a package of Fortran 90 subroutines designed to provide a computer programmer with an easy route to extension of (1) a previously written serial code that uses a logically Cartesian structured mesh into (2) a parallel code with adaptive mesh refinement (AMR). Alternatively, in its simplest use, and with minimal effort, PARAMESH can operate as a domain-decomposition tool for users who want to parallelize their serial codes but who do not wish to utilize adaptivity. The package builds a hierarchy of sub-grids to cover the computational domain of a given application program, with spatial resolution varying to satisfy the demands of the application. The sub-grid blocks form the nodes of a tree data structure (a quad-tree in two or an oct-tree in three dimensions). Each grid block has a logically Cartesian mesh. The package supports one-, two- and three-dimensional models.

  17. Modeling NIF experimental designs with adaptive mesh refinement and Lagrangian hydrodynamics

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Anderson, R. W.; Wang, P.; Gunney, B. T. N.; Becker, R.; Eder, D. C.; MacGowan, B. J.; Schneider, M. B.

    2006-06-01

    Incorporation of adaptive mesh refinement (AMR) into Lagrangian hydrodynamics algorithms allows for the creation of a highly powerful simulation tool effective for complex target designs with three-dimensional structure. We are developing an advanced modeling tool that includes AMR and traditional arbitrary Lagrangian-Eulerian (ALE) techniques. Our goal is the accurate prediction of vaporization, disintegration and fragmentation in National Ignition Facility (NIF) experimental target elements. Although our focus is on minimizing the generation of shrapnel in target designs and protecting the optics, the general techniques are applicable to modern advanced targets that include three-dimensional effects such as those associated with capsule fill tubes. Several essential computations in ordinary radiation hydrodynamics need to be redesigned in order to allow for AMR to work well with ALE, including algorithms associated with radiation transport. Additionally, for our goal of predicting fragmentation, we include elastic/plastic flow into our computations. We discuss the integration of these effects into a new ALE-AMR simulation code. Applications of this newly developed modeling tool as well as traditional ALE simulations in two and three dimensions are applied to NIF early-light target designs.

  18. Mesh Generation via Local Bisection Refinement of Triangulated Grids

    DTIC Science & Technology

    2015-06-01

    Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented

  19. Simulation of violent free surface flow by AMR method

    NASA Astrophysics Data System (ADS)

    Hu, Changhong; Liu, Cheng

    2018-05-01

    A novel CFD approach based on adaptive mesh refinement (AMR) technique is being developed for numerical simulation of violent free surface flows. CIP method is applied to the flow solver and tangent of hyperbola for interface capturing with slope weighting (THINC/SW) scheme is implemented as the free surface capturing scheme. The PETSc library is adopted to solve the linear system. The linear solver is redesigned and modified to satisfy the requirement of the AMR mesh topology. In this paper, our CFD method is outlined and newly obtained results on numerical simulation of violent free surface flows are presented.

  20. Multiscale Simulations of Magnetic Island Coalescence

    NASA Technical Reports Server (NTRS)

    Dorelli, John C.

    2010-01-01

    We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.

  1. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  2. Unstructured and adaptive mesh generation for high Reynolds number viscous flows

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    1991-01-01

    A method for generating and adaptively refining a highly stretched unstructured mesh suitable for the computation of high-Reynolds-number viscous flows about arbitrary two-dimensional geometries was developed. The method is based on the Delaunay triangulation of a predetermined set of points and employs a local mapping in order to achieve the high stretching rates required in the boundary-layer and wake regions. The initial mesh-point distribution is determined in a geometry-adaptive manner which clusters points in regions of high curvature and sharp corners. Adaptive mesh refinement is achieved by adding new points in regions of large flow gradients, and locally retriangulating; thus, obviating the need for global mesh regeneration. Initial and adapted meshes about complex multi-element airfoil geometries are shown and compressible flow solutions are computed on these meshes.

  3. Innovative Language-Based & Object-Oriented Structured AMR Using Fortran 90 and OpenMP

    NASA Technical Reports Server (NTRS)

    Norton, C.; Balsara, D.

    1999-01-01

    Parallel adaptive mesh refinement (AMR) is an important numerical technique that leads to the efficient solution of many physical and engineering problems. In this paper, we describe how AMR programing can be performed in an object-oreinted way using the modern aspects of Fortran 90 combined with the parallelization features of OpenMP.

  4. Solution of free-boundary problems using finite-element/Newton methods and locally refined grids - Application to analysis of solidification microstructure

    NASA Technical Reports Server (NTRS)

    Tsiveriotis, K.; Brown, R. A.

    1993-01-01

    A new method is presented for the solution of free-boundary problems using Lagrangian finite element approximations defined on locally refined grids. The formulation allows for direct transition from coarse to fine grids without introducing non-conforming basis functions. The calculation of elemental stiffness matrices and residual vectors are unaffected by changes in the refinement level, which are accounted for in the loading of elemental data to the global stiffness matrix and residual vector. This technique for local mesh refinement is combined with recently developed mapping methods and Newton's method to form an efficient algorithm for the solution of free-boundary problems, as demonstrated here by sample calculations of cellular interfacial microstructure during directional solidification of a binary alloy.

  5. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  6. Progress in Computational Simulation of Earthquakes

    NASA Technical Reports Server (NTRS)

    Donnellan, Andrea; Parker, Jay; Lyzenga, Gregory; Judd, Michele; Li, P. Peggy; Norton, Charles; Tisdale, Edwin; Granat, Robert

    2006-01-01

    GeoFEST(P) is a computer program written for use in the QuakeSim project, which is devoted to development and improvement of means of computational simulation of earthquakes. GeoFEST(P) models interacting earthquake fault systems from the fault-nucleation to the tectonic scale. The development of GeoFEST( P) has involved coupling of two programs: GeoFEST and the Pyramid Adaptive Mesh Refinement Library. GeoFEST is a message-passing-interface-parallel code that utilizes a finite-element technique to simulate evolution of stress, fault slip, and plastic/elastic deformation in realistic materials like those of faulted regions of the crust of the Earth. The products of such simulations are synthetic observable time-dependent surface deformations on time scales from days to decades. Pyramid Adaptive Mesh Refinement Library is a software library that facilitates the generation of computational meshes for solving physical problems. In an application of GeoFEST(P), a computational grid can be dynamically adapted as stress grows on a fault. Simulations on workstations using a few tens of thousands of stress and displacement finite elements can now be expanded to multiple millions of elements with greater than 98-percent scaled efficiency on over many hundreds of parallel processors (see figure).

  7. JIGSAW-GEO (1.0): Locally Orthogonal Staggered Unstructured Grid Generation for General Circulation Modelling on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2017-01-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered VoronoiDelaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  8. JIGSAW-GEO (1.0): locally orthogonal staggered unstructured grid generation for general circulation modelling on the sphere

    NASA Astrophysics Data System (ADS)

    Engwirda, Darren

    2017-06-01

    An algorithm for the generation of non-uniform, locally orthogonal staggered unstructured spheroidal grids is described. This technique is designed to generate very high-quality staggered Voronoi-Delaunay meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric simulation, ocean-modelling and numerical weather prediction. Using a recently developed Frontal-Delaunay refinement technique, a method for the construction of high-quality unstructured spheroidal Delaunay triangulations is introduced. A locally orthogonal polygonal grid, derived from the associated Voronoi diagram, is computed as the staggered dual. It is shown that use of the Frontal-Delaunay refinement technique allows for the generation of very high-quality unstructured triangulations, satisfying a priori bounds on element size and shape. Grid quality is further improved through the application of hill-climbing-type optimisation techniques. Overall, the algorithm is shown to produce grids with very high element quality and smooth grading characteristics, while imposing relatively low computational expense. A selection of uniform and non-uniform spheroidal grids appropriate for high-resolution, multi-scale general circulation modelling are presented. These grids are shown to satisfy the geometric constraints associated with contemporary unstructured C-grid-type finite-volume models, including the Model for Prediction Across Scales (MPAS-O). The use of user-defined mesh-spacing functions to generate smoothly graded, non-uniform grids for multi-resolution-type studies is discussed in detail.

  9. Application of Parallel Adjoint-Based Error Estimation and Anisotropic Grid Adaptation for Three-Dimensional Aerospace Configurations

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.

    2005-01-01

    This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge in order to achieve the requested drag tolerance. Although further adaptation was required to meet the requested tolerance, no further cycles were computed in order to avoid large discrepancies between the surface mesh spacing and the refined field spacing.

  10. Multi-Resolution Unstructured Grid-Generation for Geophysical Applications on the Sphere

    NASA Technical Reports Server (NTRS)

    Engwirda, Darren

    2015-01-01

    An algorithm for the generation of non-uniform unstructured grids on ellipsoidal geometries is described. This technique is designed to generate high quality triangular and polygonal meshes appropriate for general circulation modelling on the sphere, including applications to atmospheric and ocean simulation, and numerical weather predication. Using a recently developed Frontal-Delaunay-refinement technique, a method for the construction of high-quality unstructured ellipsoidal Delaunay triangulations is introduced. A dual polygonal grid, derived from the associated Voronoi diagram, is also optionally generated as a by-product. Compared to existing techniques, it is shown that the Frontal-Delaunay approach typically produces grids with near-optimal element quality and smooth grading characteristics, while imposing relatively low computational expense. Initial results are presented for a selection of uniform and non-uniform ellipsoidal grids appropriate for large-scale geophysical applications. The use of user-defined mesh-sizing functions to generate smoothly graded, non-uniform grids is discussed.

  11. Parallel implementation of an adaptive scheme for 3D unstructured grids on the SP2

    NASA Technical Reports Server (NTRS)

    Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.0X speedup on 64 processors when 10 percent of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all the mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  12. Parallel Implementation of an Adaptive Scheme for 3D Unstructured Grids on the SP2

    NASA Technical Reports Server (NTRS)

    Oliker, Leonid; Biswas, Rupak; Strawn, Roger C.

    1996-01-01

    Dynamic mesh adaption on unstructured grids is a powerful tool for computing unsteady flows that require local grid modifications to efficiently resolve solution features. For this work, we consider an edge-based adaption scheme that has shown good single-processor performance on the C90. We report on our experience parallelizing this code for the SP2. Results show a 47.OX speedup on 64 processors when 10% of the mesh is randomly refined. Performance deteriorates to 7.7X when the same number of edges are refined in a highly-localized region. This is because almost all mesh adaption is confined to a single processor. However, this problem can be remedied by repartitioning the mesh immediately after targeting edges for refinement but before the actual adaption takes place. With this change, the speedup improves dramatically to 43.6X.

  13. Adaptive Multilinear Tensor Product Wavelets

    DOE PAGES

    Weiss, Kenneth; Lindstrom, Peter

    2015-08-12

    Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the dependencies involved in the wavelet transform and describe how tomore » generate and represent the coarsest adaptive mesh with nodal function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. In conclusion, we focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.« less

  14. Hierarchical Poly Tree Configurations for the Solution of Dynamically Refined Finte Element Models

    NASA Technical Reports Server (NTRS)

    Gute, G. D.; Padovan, J.

    1993-01-01

    This paper demonstrates how a multilevel substructuring technique, called the Hierarchical Poly Tree (HPT), can be used to integrate a localized mesh refinement into the original finite element model more efficiently. The optimal HPT configurations for solving isoparametrically square h-, p-, and hp-extensions on single and multiprocessor computers is derived. In addition, the reduced number of stiffness matrix elements that must be stored when employing this type of solution strategy is quantified. Moreover, the HPT inherently provides localize 'error-trapping' and a logical, efficient means with which to isolate physically anomalous and analytically singular behavior.

  15. Adaptive mesh refinement for characteristic grids

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan

    2011-05-01

    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.

  16. On the implementation of an accurate and efficient solver for convection-diffusion equations

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Tien

    In this dissertation, we examine several different aspects of computing the numerical solution of the convection-diffusion equation. The solution of this equation often exhibits sharp gradients due to Dirichlet outflow boundaries or discontinuities in boundary conditions. Because of the singular-perturbed nature of the equation, numerical solutions often have severe oscillations when grid sizes are not small enough to resolve sharp gradients. To overcome such difficulties, the streamline diffusion discretization method can be used to obtain an accurate approximate solution in regions where the solution is smooth. To increase accuracy of the solution in the regions containing layers, adaptive mesh refinement and mesh movement based on a posteriori error estimations can be employed. An error-adapted mesh refinement strategy based on a posteriori error estimations is also proposed to resolve layers. For solving the sparse linear systems that arise from discretization, goemetric multigrid (MG) and algebraic multigrid (AMG) are compared. In addition, both methods are also used as preconditioners for Krylov subspace methods. We derive some convergence results for MG with line Gauss-Seidel smoothers and bilinear interpolation. Finally, while considering adaptive mesh refinement as an integral part of the solution process, it is natural to set a stopping tolerance for the iterative linear solvers on each mesh stage so that the difference between the approximate solution obtained from iterative methods and the finite element solution is bounded by an a posteriori error bound. Here, we present two stopping criteria. The first is based on a residual-type a posteriori error estimator developed by Verfurth. The second is based on an a posteriori error estimator, using local solutions, developed by Kay and Silvester. Our numerical results show the refined mesh obtained from the iterative solution which satisfies the second criteria is similar to the refined mesh obtained from the finite element solution.

  17. Spherical Harmonic Decomposition of Gravitational Waves Across Mesh Refinement Boundaries

    NASA Technical Reports Server (NTRS)

    Fiske, David R.; Baker, John; vanMeter, James R.; Centrella, Joan M.

    2005-01-01

    We evolve a linearized (Teukolsky) solution of the Einstein equations with a non-linear Einstein solver. Using this testbed, we are able to show that such gravitational waves, defined by the Weyl scalars in the Newman-Penrose formalism, propagate faithfully across mesh refinement boundaries, and use, for the first time to our knowledge, a novel algorithm due to Misner to compute spherical harmonic components of our waveforms. We show that the algorithm performs extremely well, even when the extraction sphere intersects refinement boundaries.

  18. Numerical Issues for Circulation Control Calculations

    NASA Technical Reports Server (NTRS)

    Swanson, Roy C., Jr.; Rumsey, Christopher L.

    2006-01-01

    Steady-state and time-accurate two-dimensional solutions of the compressible Reynolds-averaged Navier- Stokes equations are obtained for flow over the Lockheed circulation control (CC) airfoil and the General Aviation CC (GACC) airfoil. Numerical issues in computing circulation control flows such as the effects of grid resolution, boundary and initial conditions, and unsteadiness are addressed. For the Lockheed CC airfoil computed solutions are compared with detailed experimental data, which include velocity and Reynolds stress profiles. Three turbulence models, having either one or two transport equations, are considered. Solutions are obtained on a sequence of meshes, with mesh refinement primarily concentrated on the airfoil circular trailing edge. Several effects related to mesh refinement are identified. For example, sometimes sufficient mesh resolution can exclude nonphysical solutions, which can occur in CC airfoil calculations. Also, sensitivities of the turbulence models with mesh refinement are discussed. In the case of the GACC airfoil the focus is on the difference between steady-state and time-accurate solutions. A specific objective is to determine if there is self-excited vortex shedding from the jet slot lip.

  19. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  20. An upwind method for the solution of the 3D Euler and Navier-Stokes equations on adaptively refined meshes

    NASA Astrophysics Data System (ADS)

    Aftosmis, Michael J.

    1992-10-01

    A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.

  1. Investigation of Transitional Flows on Compressor Blades in Cascade

    DTIC Science & Technology

    2011-09-01

    UU NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89) Prescribed by ANSI Std. 239–18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for...mesh was refined by adjusting the number of divisions in the “Edge Sizing” menu and the growth rate in the “sizing” section of the CFX Mesher. The...was determined that a better mesh could be achieved by letting CFX determine the “Min Size,” “Max Size” and “Max Face Size” and refining the mesh

  2. Mesh refinement in a two-dimensional large eddy simulation of a forced shear layer

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Huang, P. G.; Macinnes, J. M.

    1989-01-01

    A series of large eddy simulations are made of a forced shear layer and compared with experimental data. Several mesh densities were examined to separate the effect of numerical inaccuracy from modeling deficiencies. The turbulence model that was used to represent small scale, 3-D motions correctly predicted some gross features of the flow field, but appears to be structurally incorrect. The main effect of mesh refinement was to act as a filter on the scale of vortices that developed from the inflow boundary conditions.

  3. A multilevel correction adaptive finite element method for Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  4. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE PAGES

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    2018-06-07

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  5. Direction-aware Slope Limiter for 3D Cubic Grids with Adaptive Mesh Refinement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velechovsky, Jan; Francois, Marianne M.; Masser, Thomas

    In the context of finite volume methods for hyperbolic systems of conservation laws, slope limiters are an effective way to suppress creation of unphysical local extrema and/or oscillations near discontinuities. We investigate properties of these limiters as applied to piecewise linear reconstructions of conservative fluid quantities in three-dimensional simulations. In particular, we are interested in linear reconstructions on Cartesian adaptively refined meshes, where a reconstructed fluid quantity at a face center depends on more than a single gradient component of the quantity. We design a new slope limiter, which combines the robustness of a minmod limiter with the accuracy ofmore » a van Leer limiter. The limiter is called Direction-Aware Limiter (DAL), because the combination is based on a principal flow direction. In particular, DAL is useful in situations where the Barth–Jespersen limiter for general meshes fails to maintain global linear functions, such as on cubic computational meshes with stencils including only faceneighboring cells. Here, we verify the new slope limiter on a suite of standard hydrodynamic test problems on Cartesian adaptively refined meshes. Lastly, we demonstrate reduced mesh imprinting; for radially symmetric problems such as the Sedov blast wave or the Noh implosion test cases, the results with DAL show better preservation of radial symmetry compared to the other standard methods on Cartesian meshes.« less

  6. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research project demonstrate significant advances in all six research areas. The major conclusions are that statically-adaptive variable-resolution modeling is currently becoming mature in the climate sciences, and that AMR holds outstanding promise for future-generation weather and climate models on high-performance computing architectures.« less

  7. Dynamic mesh adaption for triangular and tetrahedral grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    The following topics are discussed: requirements for dynamic mesh adaption; linked-list data structure; edge-based data structure; adaptive-grid data structure; three types of element subdivision; mesh refinement; mesh coarsening; additional constraints for coarsening; anisotropic error indicator for edges; unstructured-grid Euler solver; inviscid 3-D wing; and mesh quality for solution-adaptive grids. The discussion is presented in viewgraph form.

  8. Wind Farm LES Simulations Using an Overset Methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas; Yellapantula, Shashank

    2017-11-01

    Accurate simulation of wind farm wakes under realistic atmospheric inflow conditions and complex terrain requires modeling a wide range of length and time scales. The computational domain can span several kilometers while requiring mesh resolutions in O(10-6) to adequately resolve the boundary layer on the blade surface. Overset mesh methodology offers an attractive option to address the disparate range of length scales; it allows embedding body-confirming meshes around turbine geomtries within nested wake capturing meshes of varying resolutions necessary to accurately model the inflow turbulence and the resulting wake structures. Dynamic overset hole-cutting algorithms permit relative mesh motion that allow this nested mesh structure to track unsteady inflow direction changes, turbine control changes (yaw and pitch), and wake propagation. An LES model with overset mesh for localized mesh refinement is used to analyze wind farm wakes and performance and compared with local mesh refinements using non-conformal (hanging node) unstructured meshes. Turbine structures will be modeled using both actuator line approaches and fully-resolved structures to test the efficacy of overset methods for wind farm applications. Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a collaborative effort of two DOE organizations - the Office of Science and the National Nuclear Security Administration.

  9. An adaptive multiblock high-order finite-volume method for solving the shallow-water equations on the sphere

    DOE PAGES

    McCorquodale, Peter; Ullrich, Paul; Johansen, Hans; ...

    2015-09-04

    We present a high-order finite-volume approach for solving the shallow-water equations on the sphere, using multiblock grids on the cubed-sphere. This approach combines a Runge--Kutta time discretization with a fourth-order accurate spatial discretization, and includes adaptive mesh refinement and refinement in time. Results of tests show fourth-order convergence for the shallow-water equations as well as for advection in a highly deformational flow. Hierarchical adaptive mesh refinement allows solution error to be achieved that is comparable to that obtained with uniform resolution of the most refined level of the hierarchy, but with many fewer operations.

  10. Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.

  11. Parallel, Gradient-Based Anisotropic Mesh Adaptation for Re-entry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bibb, Karen L.; Gnoffo, Peter A.; Park, Michael A.; Jones, William T.

    2006-01-01

    Two gradient-based adaptation methodologies have been implemented into the Fun3d refine GridEx infrastructure. A spring-analogy adaptation which provides for nodal movement to cluster mesh nodes in the vicinity of strong shocks has been extended for general use within Fun3d, and is demonstrated for a 70 sphere cone at Mach 2. A more general feature-based adaptation metric has been developed for use with the adaptation mechanics available in Fun3d, and is applicable to any unstructured, tetrahedral, flow solver. The basic functionality of general adaptation is explored through a case of flow over the forebody of a 70 sphere cone at Mach 6. A practical application of Mach 10 flow over an Apollo capsule, computed with the Felisa flow solver, is given to compare the adaptive mesh refinement with uniform mesh refinement. The examples of the paper demonstrate that the gradient-based adaptation capability as implemented can give an improvement in solution quality.

  12. Implementation of Implicit Adaptive Mesh Refinement in an Unstructured Finite-Volume Flow Solver

    NASA Technical Reports Server (NTRS)

    Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.

    2013-01-01

    This paper explores the implementation of adaptive mesh refinement in an unstructured, finite-volume solver. Unsteady and steady problems are considered. The effect on the recovery of high-order numerics is explored and the results are favorable. Important to this work is the ability to provide a path for efficient, implicit time advancement. A method using a simple refinement sensor based on undivided differences is discussed and applied to a practical problem: a shock-shock interaction on a hypersonic, inviscid double-wedge. Cases are compared to uniform grids without the use of adapted meshes in order to assess error and computational expense. Discussion of difficulties, advances, and future work prepare this method for additional research. The potential for this method in more complicated flows is described.

  13. Nonconforming mortar element methods: Application to spectral discretizations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Mavriplis, Cathy; Patera, Anthony

    1988-01-01

    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clough, Katy; Figueras, Pau; Finkel, Hal

    In this work, we introduce GRChombo: a new numerical relativity code which incorporates full adaptive mesh refinement (AMR) using block structured Berger-Rigoutsos grid generation. The code supports non-trivial 'many-boxes-in-many-boxes' mesh hierarchies and massive parallelism through the message passing interface. GRChombo evolves the Einstein equation using the standard BSSN formalism, with an option to turn on CCZ4 constraint damping if required. The AMR capability permits the study of a range of new physics which has previously been computationally infeasible in a full 3 + 1 setting, while also significantly simplifying the process of setting up the mesh for these problems. Wemore » show that GRChombo can stably and accurately evolve standard spacetimes such as binary black hole mergers and scalar collapses into black holes, demonstrate the performance characteristics of our code, and discuss various physics problems which stand to benefit from the AMR technique.« less

  15. Updates to Simulation of a Single-Element Lean-Direct Injection Combustor Using Arbitary Polyhedral Meshes

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2015-01-01

    This paper summarizes the procedures of (1) generating control volumes anchored at the nodes of a mesh; and (2) generating staggered control volumes via mesh reconstructions, in terms of either mesh realignment or mesh refinement, as well as presents sample results from their applications to the numerical solution of a single-element LDI combustor using a releasable edition of the National Combustion Code (NCC).

  16. A multigrid method for steady Euler equations on unstructured adaptive grids

    NASA Technical Reports Server (NTRS)

    Riemslagh, Kris; Dick, Erik

    1993-01-01

    A flux-difference splitting type algorithm is formulated for the steady Euler equations on unstructured grids. The polynomial flux-difference splitting technique is used. A vertex-centered finite volume method is employed on a triangular mesh. The multigrid method is in defect-correction form. A relaxation procedure with a first order accurate inner iteration and a second-order correction performed only on the finest grid, is used. A multi-stage Jacobi relaxation method is employed as a smoother. Since the grid is unstructured a Jacobi type is chosen. The multi-staging is necessary to provide sufficient smoothing properties. The domain is discretized using a Delaunay triangular mesh generator. Three grids with more or less uniform distribution of nodes but with different resolution are generated by successive refinement of the coarsest grid. Nodes of coarser grids appear in the finer grids. The multigrid method is started on these grids. As soon as the residual drops below a threshold value, an adaptive refinement is started. The solution on the adaptively refined grid is accelerated by a multigrid procedure. The coarser multigrid grids are generated by successive coarsening through point removement. The adaption cycle is repeated a few times. Results are given for the transonic flow over a NACA-0012 airfoil.

  17. Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2017-01-01

    Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB.

  18. Adapting to life: ocean biogeochemical modelling and adaptive remeshing

    NASA Astrophysics Data System (ADS)

    Hill, J.; Popova, E. E.; Ham, D. A.; Piggott, M. D.; Srokosz, M.

    2014-05-01

    An outstanding problem in biogeochemical modelling of the ocean is that many of the key processes occur intermittently at small scales, such as the sub-mesoscale, that are not well represented in global ocean models. This is partly due to their failure to resolve sub-mesoscale phenomena, which play a significant role in vertical nutrient supply. Simply increasing the resolution of the models may be an inefficient computational solution to this problem. An approach based on recent advances in adaptive mesh computational techniques may offer an alternative. Here the first steps in such an approach are described, using the example of a simple vertical column (quasi-1-D) ocean biogeochemical model. We present a novel method of simulating ocean biogeochemical behaviour on a vertically adaptive computational mesh, where the mesh changes in response to the biogeochemical and physical state of the system throughout the simulation. We show that the model reproduces the general physical and biological behaviour at three ocean stations (India, Papa and Bermuda) as compared to a high-resolution fixed mesh simulation and to observations. The use of an adaptive mesh does not increase the computational error, but reduces the number of mesh elements by a factor of 2-3. Unlike previous work the adaptivity metric used is flexible and we show that capturing the physical behaviour of the model is paramount to achieving a reasonable solution. Adding biological quantities to the adaptivity metric further refines the solution. We then show the potential of this method in two case studies where we change the adaptivity metric used to determine the varying mesh sizes in order to capture the dynamics of chlorophyll at Bermuda and sinking detritus at Papa. We therefore demonstrate that adaptive meshes may provide a suitable numerical technique for simulating seasonal or transient biogeochemical behaviour at high vertical resolution whilst minimising the number of elements in the mesh. More work is required to move this to fully 3-D simulations.

  19. Implementation of local grid refinement (LGR) for the Lake Michigan Basin regional groundwater-flow model

    USGS Publications Warehouse

    Hoard, C.J.

    2010-01-01

    The U.S. Geological Survey is evaluating water availability and use within the Great Lakes Basin. This is a pilot effort to develop new techniques and methods to aid in the assessment of water availability. As part of the pilot program, a regional groundwater-flow model for the Lake Michigan Basin was developed using SEAWAT-2000. The regional model was used as a framework for assessing local-scale water availability through grid-refinement techniques. Two grid-refinement techniques, telescopic mesh refinement and local grid refinement, were used to illustrate the capability of the regional model to evaluate local-scale problems. An intermediate model was developed in central Michigan spanning an area of 454 square miles (mi2) using telescopic mesh refinement. Within the intermediate model, a smaller local model covering an area of 21.7 mi2 was developed and simulated using local grid refinement. Recharge was distributed in space and time using a daily output from a modified Thornthwaite-Mather soil-water-balance method. The soil-water-balance method derived recharge estimates from temperature and precipitation data output from an atmosphere-ocean coupled general-circulation model. The particular atmosphere-ocean coupled general-circulation model used, simulated climate change caused by high global greenhouse-gas emissions to the atmosphere. The surface-water network simulated in the regional model was refined and simulated using a streamflow-routing package for MODFLOW. The refined models were used to demonstrate streamflow depletion and potential climate change using five scenarios. The streamflow-depletion scenarios include (1) natural conditions (no pumping), (2) a pumping well near a stream; the well is screened in surficial glacial deposits, (3) a pumping well near a stream; the well is screened in deeper glacial deposits, and (4) a pumping well near a stream; the well is open to a deep bedrock aquifer. Results indicated that a range of 59 to 50 percent of the water pumped originated from the stream for the shallow glacial and deep bedrock pumping scenarios, respectively. The difference in streamflow reduction between the shallow and deep pumping scenarios was compensated for in the deep well by deriving more water from regional sources. The climate-change scenario only simulated natural conditions from 1991-2044, so there was no pumping stress simulated. Streamflows were calculated for the simulated period and indicated that recharge over the period generally increased from the start of the simulation until approximately 2017, and decreased from then to the end of the simulation. Streamflow was highly correlated with recharge so that the lowest streamflows occurred in the later stress periods of the model when recharge was lowest.

  20. An implementation of a chemical and thermal nonequilibrium flow solver on unstructured meshes and application to blunt bodies

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.

    1994-01-01

    This paper presents a nonequilibrium flow solver, implementation of the algorithm on unstructured meshes, and application to hypersonic flow past blunt bodies. Air is modeled as a mixture of five chemical species, namely O2, N2, O, NO, and N, having two temperatures namely translational and vibrational. The solution algorithm is a cell centered, point implicit upwind scheme that employs Roe's flux difference splitting technique. Implementation of this algorithm on unstructured meshes is described. The computer code is applied to solve Mach 15 flow with and without a Type IV shock interference on a cylindrical body of 2.5mm radius representing a cowl lip. Adaptively generated meshes are employed, and the meshes are refined several times until the solution exhibits detailed flow features and surface pressure and heat flux distributions. Effects of a catalytic wall on surface heat flux distribution are studied. For the Mach 15 Type IV shock interference flow, present results showed a peak heat flux of 544 MW/m2 for a fully catalytic wall and 431 MW/m(exp 2) for a noncatalytic wall. Some of the results are compared with available computational data.

  1. Percept User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carnes, Brian; Kennon, Stephen Ray

    2017-05-01

    This document is the main user guide for the Sierra/Percept capabilities including the mesh_adapt and mesh_transfer tools. Basic capabilities for uniform mesh refinement (UMR) and mesh transfers are discussed. Examples are used to provide illustration. Future versions of this manual will include more advanced features such as geometry and mesh smoothing. Additionally, all the options for the mesh_adapt code will be described in detail. Capabilities for local adaptivity in the context of offline adaptivity will also be included. This page intentionally left blank.

  2. 3D level set methods for evolving fronts on tetrahedral meshes with adaptive mesh refinement

    DOE PAGES

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    2017-03-02

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  3. An adaptive discontinuous Galerkin solver for aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Burgess, Nicholas K.

    This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp-adaptive mesh refinement strategy, where a combination of mesh or h-refinement, and order or p-enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.

  4. High-resolution multi-code implementation of unsteady Navier-Stokes flow solver based on paralleled overset adaptive mesh refinement and high-order low-dissipation hybrid schemes

    NASA Astrophysics Data System (ADS)

    Li, Gaohua; Fu, Xiang; Wang, Fuxin

    2017-10-01

    The low-dissipation high-order accurate hybrid up-winding/central scheme based on fifth-order weighted essentially non-oscillatory (WENO) and sixth-order central schemes, along with the Spalart-Allmaras (SA)-based delayed detached eddy simulation (DDES) turbulence model, and the flow feature-based adaptive mesh refinement (AMR), are implemented into a dual-mesh overset grid infrastructure with parallel computing capabilities, for the purpose of simulating vortex-dominated unsteady detached wake flows with high spatial resolutions. The overset grid assembly (OGA) process based on collection detection theory and implicit hole-cutting algorithm achieves an automatic coupling for the near-body and off-body solvers, and the error-and-try method is used for obtaining a globally balanced load distribution among the composed multiple codes. The results of flows over high Reynolds cylinder and two-bladed helicopter rotor show that the combination of high-order hybrid scheme, advanced turbulence model, and overset adaptive mesh refinement can effectively enhance the spatial resolution for the simulation of turbulent wake eddies.

  5. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE PAGES

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; ...

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  6. Accuracy of the domain method for the material derivative approach to shape design sensitivities

    NASA Technical Reports Server (NTRS)

    Yang, R. J.; Botkin, M. E.

    1987-01-01

    Numerical accuracy for the boundary and domain methods of the material derivative approach to shape design sensitivities is investigated through the use of mesh refinement. The results show that the domain method is generally more accurate than the boundary method, using the finite element technique. It is also shown that the domain method is equivalent, under certain assumptions, to the implicit differentiation approach not only theoretically but also numerically.

  7. Three-dimensional unstructured grid refinement and optimization using edge-swapping

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Barth, Timothy

    1993-01-01

    This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.

  8. Large Eddy simulation of compressible flows with a low-numerical dissipation patch-based adaptive mesh refinement method

    NASA Astrophysics Data System (ADS)

    Pantano, Carlos

    2005-11-01

    We describe a hybrid finite difference method for large-eddy simulation (LES) of compressible flows with a low-numerical dissipation scheme and structured adaptive mesh refinement (SAMR). Numerical experiments and validation calculations are presented including a turbulent jet and the strongly shock-driven mixing of a Richtmyer-Meshkov instability. The approach is a conservative flux-based SAMR formulation and as such, it utilizes refinement to computational advantage. The numerical method for the resolved scale terms encompasses the cases of scheme alternation and internal mesh interfaces resulting from SAMR. An explicit centered scheme that is consistent with a skew-symmetric finite difference formulation is used in turbulent flow regions while a weighted essentially non-oscillatory (WENO) scheme is employed to capture shocks. The subgrid stresses and transports are calculated by means of the streched-vortex model, Misra & Pullin (1997)

  9. Mesh refinement and numerical sensitivity analysis for parameter calibration of partial differential equations

    NASA Astrophysics Data System (ADS)

    Becker, Roland; Vexler, Boris

    2005-06-01

    We consider the calibration of parameters in physical models described by partial differential equations. This task is formulated as a constrained optimization problem with a cost functional of least squares type using information obtained from measurements. An important issue in the numerical solution of this type of problem is the control of the errors introduced, first, by discretization of the equations describing the physical model, and second, by measurement errors or other perturbations. Our strategy is as follows: we suppose that the user defines an interest functional I, which might depend on both the state variable and the parameters and which represents the goal of the computation. First, we propose an a posteriori error estimator which measures the error with respect to this functional. This error estimator is used in an adaptive algorithm to construct economic meshes by local mesh refinement. The proposed estimator requires the solution of an auxiliary linear equation. Second, we address the question of sensitivity. Applying similar techniques as before, we derive quantities which describe the influence of small changes in the measurements on the value of the interest functional. These numbers, which we call relative condition numbers, give additional information on the problem under consideration. They can be computed by means of the solution of the auxiliary problem determined before. Finally, we demonstrate our approach at hand of a parameter calibration problem for a model flow problem.

  10. Adaptively-refined overlapping grids for the numerical solution of systems of hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.

    1995-01-01

    Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.

  11. The value of continuity: Refined isogeometric analysis and fast direct solvers

    DOE PAGES

    Garcia, Daniel; Pardo, David; Dalcin, Lisandro; ...

    2016-08-24

    Here, we propose the use of highly continuous finite element spaces interconnected with low continuity hyperplanes to maximize the performance of direct solvers. Starting from a highly continuous Isogeometric Analysis (IGA) discretization, we introduce C0-separators to reduce the interconnection between degrees of freedom in the mesh. By doing so, both the solution time and best approximation errors are simultaneously improved. We call the resulting method “refined Isogeometric Analysis (rIGA)”. To illustrate the impact of the continuity reduction, we analyze the number of Floating Point Operations (FLOPs), computational times, and memory required to solve the linear system obtained by discretizing themore » Laplace problem with structured meshes and uniform polynomial orders. Theoretical estimates demonstrate that an optimal continuity reduction may decrease the total computational time by a factor between p 2 and p 3, with pp being the polynomial order of the discretization. Numerical results indicate that our proposed refined isogeometric analysis delivers a speed-up factor proportional to p 2. In a 2D mesh with four million elements and p=5, the linear system resulting from rIGA is solved 22 times faster than the one from highly continuous IGA. In a 3D mesh with one million elements and p=3, the linear system is solved 15 times faster for the refined than the maximum continuity isogeometric analysis.« less

  12. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    PubMed

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Anisotropic mesh adaptation for marine ice-sheet modelling

    NASA Astrophysics Data System (ADS)

    Gillet-Chaulet, Fabien; Tavard, Laure; Merino, Nacho; Peyaud, Vincent; Brondex, Julien; Durand, Gael; Gagliardini, Olivier

    2017-04-01

    Improving forecasts of ice-sheets contribution to sea-level rise requires, amongst others, to correctly model the dynamics of the grounding line (GL), i.e. the line where the ice detaches from its underlying bed and goes afloat on the ocean. Many numerical studies, including the intercomparison exercises MISMIP and MISMIP3D, have shown that grid refinement in the GL vicinity is a key component to obtain reliable results. Improving model accuracy while maintaining the computational cost affordable has then been an important target for the development of marine icesheet models. Adaptive mesh refinement (AMR) is a method where the accuracy of the solution is controlled by spatially adapting the mesh size. It has become popular in models using the finite element method as they naturally deal with unstructured meshes, but block-structured AMR has also been successfully applied to model GL dynamics. The main difficulty with AMR is to find efficient and reliable estimators of the numerical error to control the mesh size. Here, we use the estimator proposed by Frey and Alauzet (2015). Based on the interpolation error, it has been found effective in practice to control the numerical error, and has some flexibility, such as its ability to combine metrics for different variables, that makes it attractive. Routines to compute the anisotropic metric defining the mesh size have been implemented in the finite element ice flow model Elmer/Ice (Gagliardini et al., 2013). The mesh adaptation is performed using the freely available library MMG (Dapogny et al., 2014) called from Elmer/Ice. Using a setup based on the inter-comparison exercise MISMIP+ (Asay-Davis et al., 2016), we study the accuracy of the solution when the mesh is adapted using various variables (ice thickness, velocity, basal drag, …). We show that combining these variables allows to reduce the number of mesh nodes by more than one order of magnitude, for the same numerical accuracy, when compared to uniform mesh refinement. For transient solutions where the GL is moving, we have implemented an algorithm where the computation is reiterated allowing to anticipate the GL displacement and to adapt the mesh to the transient solution. We discuss the performance and robustness of this algorithm.

  14. Evolutionary Optimization of a Geometrically Refined Truss

    NASA Technical Reports Server (NTRS)

    Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Structural optimization is a field of research that has experienced noteworthy growth for many years. Researchers in this area have developed optimization tools to successfully design and model structures, typically minimizing mass while maintaining certain deflection and stress constraints. Numerous optimization studies have been performed to minimize mass, deflection, and stress on a benchmark cantilever truss problem. Predominantly traditional optimization theory is applied to this problem. The cross-sectional area of each member is optimized to minimize the aforementioned objectives. This Technical Publication (TP) presents a structural optimization technique that has been previously applied to compliant mechanism design. This technique demonstrates a method that combines topology optimization, geometric refinement, finite element analysis, and two forms of evolutionary computation: genetic algorithms and differential evolution to successfully optimize a benchmark structural optimization problem. A nontraditional solution to the benchmark problem is presented in this TP, specifically a geometrically refined topological solution. The design process begins with an alternate control mesh formulation, multilevel geometric smoothing operation, and an elastostatic structural analysis. The design process is wrapped in an evolutionary computing optimization toolset.

  15. Composite-Grid Techniques and Adaptive Mesh Refinement in Computational Fluid Dynamics

    DTIC Science & Technology

    1990-01-01

    years of hard work. During that period an estimated 410 gallons of strong coffee has flowed under the bridge. It has been with the support of this...thank Peter James Coffee Company for the continuous supply of Vienna Roast . I should also thank my advisor, Joel Ferziger, for getting me started on my...variation confined to some rather narrow zones in the field. These zones (boundary layers, shocks, etc.) cause problems during numerical solution of

  16. Adaptive h -refinement for reduced-order models: ADAPTIVE h -refinement for reduced-order models

    DOE PAGES

    Carlberg, Kevin T.

    2014-11-05

    Our work presents a method to adaptively refine reduced-order models a posteriori without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the state variables using snapshot data. This method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operationsmore » or full-order-model solves. Furthermore, it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.« less

  17. CAS2D: FORTRAN program for nonrotating blade-to-blade, steady, potential transonic cascade flows

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    An exact, full-potential-equation (FPE) model for the steady, irrotational, homentropic and homoenergetic flow of a compressible, homocompositional, inviscid fluid through two dimensional planar cascades of airfoils was derived, together with its appropriate boundary conditions. A computer program, CAS2D, was developed that numerically solves an artificially time-dependent form of the actual FPE. The governing equation was discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field was discretized by providing a boundary-fitted, nonuniform computational mesh. The mesh was generated by using a sequence of conforming mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the FPE was solved iteratively by using successive line overrelaxation. The possible isentropic shocks were correctly captured by adding explicitly an artificial viscosity in a conservative form. In addition, a three-level consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two dimensional cascade flows.

  18. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars

    2016-11-01

    We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.

  19. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  20. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  1. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  2. A Matlab-based finite-difference solver for the Poisson problem with mixed Dirichlet-Neumann boundary conditions

    NASA Astrophysics Data System (ADS)

    Reimer, Ashton S.; Cheviakov, Alexei F.

    2013-03-01

    A Matlab-based finite-difference numerical solver for the Poisson equation for a rectangle and a disk in two dimensions, and a spherical domain in three dimensions, is presented. The solver is optimized for handling an arbitrary combination of Dirichlet and Neumann boundary conditions, and allows for full user control of mesh refinement. The solver routines utilize effective and parallelized sparse vector and matrix operations. Computations exhibit high speeds, numerical stability with respect to mesh size and mesh refinement, and acceptable error values even on desktop computers. Catalogue identifier: AENQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License v3.0 No. of lines in distributed program, including test data, etc.: 102793 No. of bytes in distributed program, including test data, etc.: 369378 Distribution format: tar.gz Programming language: Matlab 2010a. Computer: PC, Macintosh. Operating system: Windows, OSX, Linux. RAM: 8 GB (8, 589, 934, 592 bytes) Classification: 4.3. Nature of problem: To solve the Poisson problem in a standard domain with “patchy surface”-type (strongly heterogeneous) Neumann/Dirichlet boundary conditions. Solution method: Finite difference with mesh refinement. Restrictions: Spherical domain in 3D; rectangular domain or a disk in 2D. Unusual features: Choice between mldivide/iterative solver for the solution of large system of linear algebraic equations that arise. Full user control of Neumann/Dirichlet boundary conditions and mesh refinement. Running time: Depending on the number of points taken and the geometry of the domain, the routine may take from less than a second to several hours to execute.

  3. Adaptive-Mesh-Refinement for hyperbolic systems of conservation laws based on a posteriori stabilized high order polynomial reconstructions

    NASA Astrophysics Data System (ADS)

    Semplice, Matteo; Loubère, Raphaël

    2018-02-01

    In this paper we propose a third order accurate finite volume scheme based on a posteriori limiting of polynomial reconstructions within an Adaptive-Mesh-Refinement (AMR) simulation code for hydrodynamics equations in 2D. The a posteriori limiting is based on the detection of problematic cells on a so-called candidate solution computed at each stage of a third order Runge-Kutta scheme. Such detection may include different properties, derived from physics, such as positivity, from numerics, such as a non-oscillatory behavior, or from computer requirements such as the absence of NaN's. Troubled cell values are discarded and re-computed starting again from the previous time-step using a more dissipative scheme but only locally, close to these cells. By locally decrementing the degree of the polynomial reconstructions from 2 to 0 we switch from a third-order to a first-order accurate but more stable scheme. The entropy indicator sensor is used to refine/coarsen the mesh. This sensor is also employed in an a posteriori manner because if some refinement is needed at the end of a time step, then the current time-step is recomputed with the refined mesh, but only locally, close to the new cells. We show on a large set of numerical tests that this a posteriori limiting procedure coupled with the entropy-based AMR technology can maintain not only optimal accuracy on smooth flows but also stability on discontinuous profiles such as shock waves, contacts, interfaces, etc. Moreover numerical evidences show that this approach is at least comparable in terms of accuracy and cost to a more classical CWENO approach within the same AMR context.

  4. Error estimation and adaptive mesh refinement for parallel analysis of shell structures

    NASA Technical Reports Server (NTRS)

    Keating, Scott C.; Felippa, Carlos A.; Park, K. C.

    1994-01-01

    The formulation and application of element-level, element-independent error indicators is investigated. This research culminates in the development of an error indicator formulation which is derived based on the projection of element deformation onto the intrinsic element displacement modes. The qualifier 'element-level' means that no information from adjacent elements is used for error estimation. This property is ideally suited for obtaining error values and driving adaptive mesh refinements on parallel computers where access to neighboring elements residing on different processors may incur significant overhead. In addition such estimators are insensitive to the presence of physical interfaces and junctures. An error indicator qualifies as 'element-independent' when only visible quantities such as element stiffness and nodal displacements are used to quantify error. Error evaluation at the element level and element independence for the error indicator are highly desired properties for computing error in production-level finite element codes. Four element-level error indicators have been constructed. Two of the indicators are based on variational formulation of the element stiffness and are element-dependent. Their derivations are retained for developmental purposes. The second two indicators mimic and exceed the first two in performance but require no special formulation of the element stiffness mesh refinement which we demonstrate for two dimensional plane stress problems. The parallelizing of substructures and adaptive mesh refinement is discussed and the final error indicator using two-dimensional plane-stress and three-dimensional shell problems is demonstrated.

  5. Numerical simulation of h-adaptive immersed boundary method for freely falling disks

    NASA Astrophysics Data System (ADS)

    Zhang, Pan; Xia, Zhenhua; Cai, Qingdong

    2018-05-01

    In this work, a freely falling disk with aspect ratio 1/10 is directly simulated by using an adaptive numerical model implemented on a parallel computation framework JASMIN. The adaptive numerical model is a combination of the h-adaptive mesh refinement technique and the implicit immersed boundary method (IBM). Our numerical results agree well with the experimental results in all of the six degrees of freedom of the disk. Furthermore, very similar vortex structures observed in the experiment were also obtained.

  6. Computational solution verification and validation applied to a thermal model of a ruggedized instrumentation package

    DOE PAGES

    Scott, Sarah Nicole; Templeton, Jeremy Alan; Hough, Patricia Diane; ...

    2014-01-01

    This study details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification and validation (V&V) process includes solution verification to examine errors associated with the code's solution techniques, and model validation to assess the model's predictive capability for quantities of interest. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing andmore » mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Automated software to vary model inputs was also developed to determine the solution’s sensitivity to numerical and physical parameters. The model was compared with an experiment to demonstrate its accuracy and determine the importance of both modelled and unmodelled physics in quantifying the results' uncertainty. An emphasis is placed on automating the V&V process to enable uncertainty quantification within tight development schedules.« less

  7. High accuracy mantle convection simulation through modern numerical methods - II: realistic models and problems

    NASA Astrophysics Data System (ADS)

    Heister, Timo; Dannberg, Juliane; Gassmöller, Rene; Bangerth, Wolfgang

    2017-08-01

    Computations have helped elucidate the dynamics of Earth's mantle for several decades already. The numerical methods that underlie these simulations have greatly evolved within this time span, and today include dynamically changing and adaptively refined meshes, sophisticated and efficient solvers, and parallelization to large clusters of computers. At the same time, many of the methods - discussed in detail in a previous paper in this series - were developed and tested primarily using model problems that lack many of the complexities that are common to the realistic models our community wants to solve today. With several years of experience solving complex and realistic models, we here revisit some of the algorithm designs of the earlier paper and discuss the incorporation of more complex physics. In particular, we re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate compressibility, and discuss dealing with strongly varying material coefficients, latent heat, and how to track chemical compositions and heterogeneities. Taken together and implemented in a high-performance, massively parallel code, the techniques discussed in this paper then allow for high resolution, 3-D, compressible, global mantle convection simulations with phase transitions, strongly temperature dependent viscosity and realistic material properties based on mineral physics data.

  8. Enhanced Representation of Turbulent Flow Phenomena in Large-Eddy Simulations of the Atmospheric Boundary Layer using Grid Refinement with Pseudo-Spectral Numerics

    NASA Astrophysics Data System (ADS)

    Torkelson, G. Q.; Stoll, R., II

    2017-12-01

    Large Eddy Simulation (LES) is a tool commonly used to study the turbulent transport of momentum, heat, and moisture in the Atmospheric Boundary Layer (ABL). For a wide range of ABL LES applications, representing the full range of turbulent length scales in the flow field is a challenge. This is an acute problem in regions of the ABL with strong velocity or scalar gradients, which are typically poorly resolved by standard computational grids (e.g., near the ground surface, in the entrainment zone). Most efforts to address this problem have focused on advanced sub-grid scale (SGS) turbulence model development, or on the use of massive computational resources. While some work exists using embedded meshes, very little has been done on the use of grid refinement. Here, we explore the benefits of grid refinement in a pseudo-spectral LES numerical code. The code utilizes both uniform refinement of the grid in horizontal directions, and stretching of the grid in the vertical direction. Combining the two techniques allows us to refine areas of the flow while maintaining an acceptable grid aspect ratio. In tests that used only refinement of the vertical grid spacing, large grid aspect ratios were found to cause a significant unphysical spike in the stream-wise velocity variance near the ground surface. This was especially problematic in simulations of stably-stratified ABL flows. The use of advanced SGS models was not sufficient to alleviate this issue. The new refinement technique is evaluated using a series of idealized simulation test cases of neutrally and stably stratified ABLs. These test cases illustrate the ability of grid refinement to increase computational efficiency without loss in the representation of statistical features of the flow field.

  9. A Solution Adaptive Technique Using Tetrahedral Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar Z.

    2000-01-01

    An adaptive unstructured grid refinement technique has been developed and successfully applied to several three dimensional inviscid flow test cases. The method is based on a combination of surface mesh subdivision and local remeshing of the volume grid Simple functions of flow quantities are employed to detect dominant features of the flowfield The method is designed for modular coupling with various error/feature analyzers and flow solvers. Several steady-state, inviscid flow test cases are presented to demonstrate the applicability of the method for solving practical three-dimensional problems. In all cases, accurate solutions featuring complex, nonlinear flow phenomena such as shock waves and vortices have been generated automatically and efficiently.

  10. GENASIS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony

    2014-02-01

    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.

  11. Incremental triangulation by way of edge swapping and local optimization

    NASA Technical Reports Server (NTRS)

    Wiltberger, N. Lyn

    1994-01-01

    This document is intended to serve as an installation, usage, and basic theory guide for the two dimensional triangulation software 'HARLEY' written for the Silicon Graphics IRIS workstation. This code consists of an incremental triangulation algorithm based on point insertion and local edge swapping. Using this basic strategy, several types of triangulations can be produced depending on user selected options. For example, local edge swapping criteria can be chosen which minimizes the maximum interior angle (a MinMax triangulation) or which maximizes the minimum interior angle (a MaxMin or Delaunay triangulation). It should be noted that the MinMax triangulation is generally only locally optical (not globally optimal) in this measure. The MaxMin triangulation, however, is both locally and globally optical. In addition, Steiner triangulations can be constructed by inserting new sites at triangle circumcenters followed by edge swapping based on the MaxMin criteria. Incremental insertion of sites also provides flexibility in choosing cell refinement criteria. A dynamic heap structure has been implemented in the code so that once a refinement measure is specified (i.e., maximum aspect ratio or some measure of a solution gradient for the solution adaptive grid generation) the cell with the largest value of this measure is continually removed from the top of the heap and refined. The heap refinement strategy allows the user to specify either the number of cells desired or refine the mesh until all cell refinement measures satisfy a user specified tolerance level. Since the dynamic heap structure is constantly updated, the algorithm always refines the particular cell in the mesh with the largest refinement criteria value. The code allows the user to: triangulate a cloud of prespecified points (sites), triangulate a set of prespecified interior points constrained by prespecified boundary curve(s), Steiner triangulate the interior/exterior of prespecified boundary curve(s), refine existing triangulations based on solution error measures, and partition meshes based on the Cuthill-McKee, spectral, and coordinate bisection strategies.

  12. Mesh-free data transfer algorithms for partitioned multiphysics problems: Conservation, accuracy, and parallelism

    DOE PAGES

    Slattery, Stuart R.

    2015-12-02

    In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Stuart R.

    In this study we analyze and extend mesh-free algorithms for three-dimensional data transfer problems in partitioned multiphysics simulations. We first provide a direct comparison between a mesh-based weighted residual method using the common-refinement scheme and two mesh-free algorithms leveraging compactly supported radial basis functions: one using a spline interpolation and one using a moving least square reconstruction. Through the comparison we assess both the conservation and accuracy of the data transfer obtained from each of the methods. We do so for a varying set of geometries with and without curvature and sharp features and for functions with and without smoothnessmore » and with varying gradients. Our results show that the mesh-based and mesh-free algorithms are complementary with cases where each was demonstrated to perform better than the other. We then focus on the mesh-free methods by developing a set of algorithms to parallelize them based on sparse linear algebra techniques. This includes a discussion of fast parallel radius searching in point clouds and restructuring the interpolation algorithms to leverage data structures and linear algebra services designed for large distributed computing environments. The scalability of our new algorithms is demonstrated on a leadership class computing facility using a set of basic scaling studies. Finally, these scaling studies show that for problems with reasonable load balance, our new algorithms for both spline interpolation and moving least square reconstruction demonstrate both strong and weak scalability using more than 100,000 MPI processes with billions of degrees of freedom in the data transfer operation.« less

  14. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  15. A unified framework for mesh refinement in random and physical space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jing; Stinis, Panos

    In recent work we have shown how an accurate reduced model can be utilized to perform mesh renement in random space. That work relied on the explicit knowledge of an accurate reduced model which is used to monitor the transfer of activity from the large to the small scales of the solution. Since this is not always available, we present in the current work a framework which shares the merits and basic idea of the previous approach but does not require an explicit knowledge of a reduced model. Moreover, the current framework can be applied for renement in both randommore » and physical space. In this manuscript we focus on the application to random space mesh renement. We study examples of increasing difficulty (from ordinary to partial differential equations) which demonstrate the effciency and versatility of our approach. We also provide some results from the application of the new framework to physical space mesh refinement.« less

  16. Array-based Hierarchical Mesh Generation in Parallel

    DOE PAGES

    Ray, Navamita; Grindeanu, Iulian; Zhao, Xinglin; ...

    2015-11-03

    In this paper, we describe an array-based hierarchical mesh generation capability through uniform refinement of unstructured meshes for efficient solution of PDE's using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial mesh that can be used for a number of purposes such as multi-level methods to generating large meshes. The capability is developed under the parallel mesh framework “Mesh Oriented dAtaBase” a.k.a MOAB. We describe the underlying data structures and algorithms to generate such hierarchies and present numerical results for computational efficiency and mesh quality. Inmore » conclusion, we also present results to demonstrate the applicability of the developed capability to a multigrid finite-element solver.« less

  17. Towards Improved Finite Element Modelling of the Interaction of Elastic Waves with Complex Defect Geometries

    NASA Astrophysics Data System (ADS)

    Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.

    2009-03-01

    A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.

  18. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  19. Adaptive mesh strategies for the spectral element method

    NASA Technical Reports Server (NTRS)

    Mavriplis, Catherine

    1992-01-01

    An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.

  20. Hybrid Multiscale Finite Volume method for multiresolution simulations of flow and reactive transport in porous media

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Tartakovsky, A. M.

    2017-12-01

    We present a multiresolution method for the numerical simulation of flow and reactive transport in porous, heterogeneous media, based on the hybrid Multiscale Finite Volume (h-MsFV) algorithm. The h-MsFV algorithm allows us to couple high-resolution (fine scale) flow and transport models with lower resolution (coarse) models to locally refine both spatial resolution and transport models. The fine scale problem is decomposed into various "local'' problems solved independently in parallel and coordinated via a "global'' problem. This global problem is then coupled with the coarse model to strictly ensure domain-wide coarse-scale mass conservation. The proposed method provides an alternative to adaptive mesh refinement (AMR), due to its capacity to rapidly refine spatial resolution beyond what's possible with state-of-the-art AMR techniques, and the capability to locally swap transport models. We illustrate our method by applying it to groundwater flow and reactive transport of multiple species.

  1. Tsunami modelling with adaptively refined finite volume methods

    USGS Publications Warehouse

    LeVeque, R.J.; George, D.L.; Berger, M.J.

    2011-01-01

    Numerical modelling of transoceanic tsunami propagation, together with the detailed modelling of inundation of small-scale coastal regions, poses a number of algorithmic challenges. The depth-averaged shallow water equations can be used to reduce this to a time-dependent problem in two space dimensions, but even so it is crucial to use adaptive mesh refinement in order to efficiently handle the vast differences in spatial scales. This must be done in a 'wellbalanced' manner that accurately captures very small perturbations to the steady state of the ocean at rest. Inundation can be modelled by allowing cells to dynamically change from dry to wet, but this must also be done carefully near refinement boundaries. We discuss these issues in the context of Riemann-solver-based finite volume methods for tsunami modelling. Several examples are presented using the GeoClaw software, and sample codes are available to accompany the paper. The techniques discussed also apply to a variety of other geophysical flows. ?? 2011 Cambridge University Press.

  2. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.

    PubMed

    Longest, P Worth; Vinchurkar, Samir

    2007-04-01

    A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.

  3. Control surface hinge moment prediction using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Simpson, Christopher David

    The following research determines the feasibility of predicting control surface hinge moments using various computational methods. A detailed analysis is conducted using a 2D GA(W)-1 airfoil with a 20% plain flap. Simple hinge moment prediction methods are tested, including empirical Datcom relations and XFOIL. Steady-state and time-accurate turbulent, viscous, Navier-Stokes solutions are computed using Fun3D. Hinge moment coefficients are computed. Mesh construction techniques are discussed. An adjoint-based mesh adaptation case is also evaluated. An NACA 0012 45-degree swept horizontal stabilizer with a 25% elevator is also evaluated using Fun3D. Results are compared with experimental wind-tunnel data obtained from references. Finally, the costs of various solution methods are estimated. Results indicate that while a steady-state Navier-Stokes solution can accurately predict control surface hinge moments for small angles of attack and deflection angles, a time-accurate solution is necessary to accurately predict hinge moments in the presence of flow separation. The ability to capture the unsteady vortex shedding behavior present in moderate to large control surface deflections is found to be critical to hinge moment prediction accuracy. Adjoint-based mesh adaptation is shown to give hinge moment predictions similar to a globally-refined mesh for a steady-state 2D simulation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koniges, A.E.; Craddock, G.G.; Schnack, D.D.

    The purpose of the workshop was to assemble workers, both within and outside of the fusion-related computations areas, for discussion regarding the issues of dynamically adaptive gridding. There were three invited talks related to adaptive gridding application experiences in various related fields of computational fluid dynamics (CFD), and nine short talks reporting on the progress of adaptive techniques in the specific areas of scrape-off-layer (SOL) modeling and magnetohydrodynamic (MHD) stability. Adaptive mesh methods have been successful in a number of diverse fields of CFD for over a decade. The method involves dynamic refinement of computed field profiles in a waymore » that disperses uniformly the numerical errors associated with discrete approximations. Because the process optimizes computational effort, adaptive mesh methods can be used to study otherwise the intractable physical problems that involve complex boundary shapes or multiple spatial/temporal scales. Recent results indicate that these adaptive techniques will be required for tokamak fluid-based simulations involving the diverted tokamak SOL modeling and MHD simulations problems related to the highest priority ITER relevant issues.Individual papers are indexed separately on the energy data bases.« less

  5. Residual Distribution Schemes for Conservation Laws Via Adaptive Quadrature

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Abgrall, Remi; Biegel, Bryan (Technical Monitor)

    2000-01-01

    This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.

  6. Collisionless stellar hydrodynamics as an efficient alternative to N-body methods

    NASA Astrophysics Data System (ADS)

    Mitchell, Nigel L.; Vorobyov, Eduard I.; Hensler, Gerhard

    2013-01-01

    The dominant constituents of the Universe's matter are believed to be collisionless in nature and thus their modelling in any self-consistent simulation is extremely important. For simulations that deal only with dark matter or stellar systems, the conventional N-body technique is fast, memory efficient and relatively simple to implement. However when extending simulations to include the effects of gas physics, mesh codes are at a distinct disadvantage compared to Smooth Particle Hydrodynamics (SPH) codes. Whereas implementing the N-body approach into SPH codes is fairly trivial, the particle-mesh technique used in mesh codes to couple collisionless stars and dark matter to the gas on the mesh has a series of significant scientific and technical limitations. These include spurious entropy generation resulting from discreteness effects, poor load balancing and increased communication overhead which spoil the excellent scaling in massively parallel grid codes. In this paper we propose the use of the collisionless Boltzmann moment equations as a means to model the collisionless material as a fluid on the mesh, implementing it into the massively parallel FLASH Adaptive Mesh Refinement (AMR) code. This approach which we term `collisionless stellar hydrodynamics' enables us to do away with the particle-mesh approach and since the parallelization scheme is identical to that used for the hydrodynamics, it preserves the excellent scaling of the FLASH code already demonstrated on peta-flop machines. We find that the classic hydrodynamic equations and the Boltzmann moment equations can be reconciled under specific conditions, allowing us to generate analytic solutions for collisionless systems using conventional test problems. We confirm the validity of our approach using a suite of demanding test problems, including the use of a modified Sod shock test. By deriving the relevant eigenvalues and eigenvectors of the Boltzmann moment equations, we are able to use high order accurate characteristic tracing methods with Riemann solvers to generate numerical solutions which show excellent agreement with our analytic solutions. We conclude by demonstrating the ability of our code to model complex phenomena by simulating the evolution of a two-armed spiral galaxy whose properties agree with those predicted by the swing amplification theory.

  7. Parallel 3D Mortar Element Method for Adaptive Nonconforming Meshes

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; Mavriplis, Catherine; VanderWijngaart, Rob; Biswas, Rupak

    2004-01-01

    High order methods are frequently used in computational simulation for their high accuracy. An efficient way to avoid unnecessary computation in smooth regions of the solution is to use adaptive meshes which employ fine grids only in areas where they are needed. Nonconforming spectral elements allow the grid to be flexibly adjusted to satisfy the computational accuracy requirements. The method is suitable for computational simulations of unsteady problems with very disparate length scales or unsteady moving features, such as heat transfer, fluid dynamics or flame combustion. In this work, we select the Mark Element Method (MEM) to handle the non-conforming interfaces between elements. A new technique is introduced to efficiently implement MEM in 3-D nonconforming meshes. By introducing an "intermediate mortar", the proposed method decomposes the projection between 3-D elements and mortars into two steps. In each step, projection matrices derived in 2-D are used. The two-step method avoids explicitly forming/deriving large projection matrices for 3-D meshes, and also helps to simplify the implementation. This new technique can be used for both h- and p-type adaptation. This method is applied to an unsteady 3-D moving heat source problem. With our new MEM implementation, mesh adaptation is able to efficiently refine the grid near the heat source and coarsen the grid once the heat source passes. The savings in computational work resulting from the dynamic mesh adaptation is demonstrated by the reduction of the the number of elements used and CPU time spent. MEM and mesh adaptation, respectively, bring irregularity and dynamics to the computer memory access pattern. Hence, they provide a good way to gauge the performance of computer systems when running scientific applications whose memory access patterns are irregular and unpredictable. We select a 3-D moving heat source problem as the Unstructured Adaptive (UA) grid benchmark, a new component of the NAS Parallel Benchmarks (NPB). In this paper, we present some interesting performance results of ow OpenMP parallel implementation on different architectures such as the SGI Origin2000, SGI Altix, and Cray MTA-2.

  8. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.

    PubMed

    Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A

    2018-05-01

    An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.

  9. Airplane Mesh Development with Grid Density Studies

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Thomas, Scott D.; Lawrence, Scott L.; Rimlinger, Mark J.

    1999-01-01

    Automatic Grid Generation Wish List Geometry handling, including CAD clean up and mesh generation, remains a major bottleneck in the application of CFD methods. There is a pressing need for greater automation in several aspects of the geometry preparation in order to reduce set up time and eliminate user intervention as much as possible. Starting from the CAD representation of a configuration, there may be holes or overlapping surfaces which require an intensive effort to establish cleanly abutting surface patches, and collections of many patches may need to be combined for more efficient use of the geometrical representation. Obtaining an accurate and suitable body conforming grid with an adequate distribution of points throughout the flow-field, for the flow conditions of interest, is often the most time consuming task for complex CFD applications. There is a need for a clean unambiguous definition of the CAD geometry. Ideally this would be carried out automatically by smart CAD clean up software. One could also define a standard piece-wise smooth surface representation suitable for use by computational methods and then create software to translate between the various CAD descriptions and the standard representation. Surface meshing remains a time consuming, user intensive procedure. There is a need for automated surface meshing, requiring only minimal user intervention to define the overall density of mesh points. The surface mesher should produce well shaped elements (triangles or quadrilaterals) whose size is determined initially according to the surface curvature with a minimum size for flat pieces, and later refined by the user in other regions if necessary. Present techniques for volume meshing all require some degree of user intervention. There is a need for fully automated and reliable volume mesh generation. In addition, it should be possible to create both surface and volume meshes that meet guaranteed measures of mesh quality (e.g. minimum and maximum angle, stretching ratios, etc.).

  10. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE PAGES

    Gunney, Brian T.N.; Anderson, Robert W.

    2015-12-18

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  11. Advances in Patch-Based Adaptive Mesh Refinement Scalability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunney, Brian T.N.; Anderson, Robert W.

    Patch-based structured adaptive mesh refinement (SAMR) is widely used for high-resolution simu- lations. Combined with modern supercomputers, it could provide simulations of unprecedented size and resolution. A persistent challenge for this com- bination has been managing dynamically adaptive meshes on more and more MPI tasks. The dis- tributed mesh management scheme in SAMRAI has made some progress SAMR scalability, but early al- gorithms still had trouble scaling past the regime of 105 MPI tasks. This work provides two critical SAMR regridding algorithms, which are integrated into that scheme to ensure efficiency of the whole. The clustering algorithm is an extensionmore » of the tile- clustering approach, making it more flexible and efficient in both clustering and parallelism. The partitioner is a new algorithm designed to prevent the network congestion experienced by its prede- cessor. We evaluated performance using weak- and strong-scaling benchmarks designed to be difficult for dynamic adaptivity. Results show good scaling on up to 1.5M cores and 2M MPI tasks. Detailed timing diagnostics suggest scaling would continue well past that.« less

  12. Toward Automatic Verification of Goal-Oriented Flow Simulations

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2014-01-01

    We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.

  13. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space-Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  14. Recent Updates to the Arnold Mirror Modeler and Integration into the Evolving NASA Overall Design System for Large Space Based Optical Systems

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    Since last year, a number of expanded capabilities have been added to the modeler. The support the integration with thermal modeling, the program can now produce simplified thermal models with the same geometric parameters as the more detailed dynamic and even more refined stress models. The local mesh refinement and mesh improvement tools have been expanded and more user friendly. The goal is to provide a means of evaluating both monolithic and segmented mirrors to the same level of fidelity and loading conditions at reasonable man-power efforts. The paper will demonstrate most of these new capabilities.

  15. Toward Effective Shell Modeling of Wrinkled Thin-Film Membranes Exhibiting Stress Concentrations

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sleight, David W.

    2004-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns. An element-level, strain-energy density criterion is suggested for facilitating automated, adaptive mesh refinements specifically aimed at the modeling of thin-film membranes undergoing wrinkling deformations.

  16. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar

    2017-11-01

    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  17. A Parallel Cartesian Approach for External Aerodynamics of Vehicles with Complex Geometry

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Adomavicius, G.

    2001-01-01

    This workshop paper presents the current status in the development of a new approach for the solution of the Euler equations on Cartesian meshes with embedded boundaries in three dimensions on distributed and shared memory architectures. The approach uses adaptively refined Cartesian hexahedra to fill the computational domain. Where these cells intersect the geometry, they are cut by the boundary into arbitrarily shaped polyhedra which receive special treatment by the solver. The presentation documents a newly developed multilevel upwind solver based on a flexible domain-decomposition strategy. One novel aspect of the work is its use of space-filling curves (SFC) for memory efficient on-the-fly parallelization, dynamic re-partitioning and automatic coarse mesh generation. Within each subdomain the approach employs a variety reordering techniques so that relevant data are on the same page in memory permitting high-performance on cache-based processors. Details of the on-the-fly SFC based partitioning are presented as are construction rules for the automatic coarse mesh generation. After describing the approach, the paper uses model problems and 3- D configurations to both verify and validate the solver. The model problems demonstrate that second-order accuracy is maintained despite the presence of the irregular cut-cells in the mesh. In addition, it examines both parallel efficiency and convergence behavior. These investigations demonstrate a parallel speed-up in excess of 28 on 32 processors of an SGI Origin 2000 system and confirm that mesh partitioning has no effect on convergence behavior.

  18. Earth As An Unstructured Mesh and Its Recovery from Seismic Waveform Data

    NASA Astrophysics Data System (ADS)

    De Hoop, M. V.

    2015-12-01

    We consider multi-scale representations of Earth's interior from thepoint of view of their possible recovery from multi- andhigh-frequency seismic waveform data. These representations areintrinsically connected to (geologic, tectonic) structures, that is,geometric parametrizations of Earth's interior. Indeed, we address theconstruction and recovery of such parametrizations using localiterative methods with appropriately designed data misfits andguaranteed convergence. The geometric parametrizations containinterior boundaries (defining, for example, faults, salt bodies,tectonic blocks, slabs) which can, in principle, be obtained fromsuccessive segmentation. We make use of unstructured meshes. For the adaptation and recovery of an unstructured mesh we introducean energy functional which is derived from the Hausdorff distance. Viaan augmented Lagrangian method, we incorporate the mentioned datamisfit. The recovery is constrained by shape optimization of theinterior boundaries, and is reminiscent of Hausdorff warping. We useelastic deformation via finite elements as a regularization whilefollowing a two-step procedure. The first step is an update determinedby the energy functional; in the second step, we modify the outcome ofthe first step where necessary to ensure that the new mesh isregular. This modification entails an array of techniques includingtopology correction involving interior boundary contacting andbreakup, edge warping and edge removal. We implement this as afeed-back mechanism from volume to interior boundary meshesoptimization. We invoke and apply a criterion of mesh quality controlfor coarsening, and for dynamical local multi-scale refinement. Wepresent a novel (fluid-solid) numerical framework based on theDiscontinuous Galerkin method.

  19. eBits: Compact stream of mesh refinements for remote visualization

    DOE PAGES

    Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek

    2016-05-12

    Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag–the LoD at which it will be expanded if it lies in the Rol–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less

  20. eBits: Compact stream of mesh refinements for remote visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sati, Mukul; Lindstrom, Peter; Rossignac, Jarek

    2016-05-12

    Here, we focus on applications where a remote client needs to visualize or process a complex, manifold triangle mesh, M, but only in a relatively small, user controlled, Region of Interest (RoI) at a time. The client first downloads a coarse base mesh, pre-computed on the server via a series of simplification passes on M, one per Level of Detail (LoD), each pass identifying an independent set of triangles, collapsing them, and, for each collapse, storing, in a Vertex Expansion Record (VER), the information needed to reverse the collapse. On each client initiated RoI modification request, the server pushes tomore » the client a selected subset of these VERs, which, when decoded and applied to refine the mesh locally, ensure that the portion in the RoI is always at full resolution. The eBits approach proposed here offers state of the art compression ratios (using less than 2.5 bits per new full resolution RoI triangle when the RoI has more than 2000 vertices to transmit the connectivity for the selective refinements) and fine-grain control (allowing the user to adjust the RoI by small increments). The effectiveness of eBits results from several novel ideas and novel variations of previous solutions. We represent the VERs using persistent labels so that they can be applied in different orders within a given LoD. The server maintains a shadow copy of the client’s mesh. To avoid sending IDs identifying which vertices should be expanded, we either transmit, for each new vertex, a compact encoding of its death tag ​–the LoD at which it will be expanded if it lies in the RoI–or transmit vertex masks for the RoI and its neighboring vertices. We also propose a three-step simplification that reduces the overall transmission cost by increasing both the simplification effectiveness and the regularity of the valences in the resulting meshes.« less

  1. Diffuse interface simulation of bubble rising process: a comparison of adaptive mesh refinement and arbitrary lagrange-euler methods

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Cai, Jiejin; Li, Qiong; Yin, Huaqiang; Yang, Xingtuan

    2018-06-01

    Gas-liquid two phase flow exists in several industrial processes and light-water reactors (LWRs). A diffuse interface based finite element method with two different mesh generation methods namely, the Adaptive Mesh Refinement (AMR) and the Arbitrary Lagrange Euler (ALE) methods is used to model the shape and velocity changes in a rising bubble. Moreover, the calculating speed and mesh generation strategies of AMR and ALE are contrasted. The simulation results agree with the Bhagat's experiments, indicating that both mesh generation methods can simulate the characteristics of bubble accurately. We concluded that: the small bubble rises as elliptical with oscillation, whereas a larger bubble (11 mm > d > 7 mm) rises with a morphology between the elliptical and cap type with a larger oscillation. When the bubble is large (d > 11 mm), it rises up as a cap type, and the amplitude becomes smaller. Moreover, it takes longer to achieve the stable shape from the ellipsoid to the spherical cap type with the increase of the bubble diameter. The results also show that for smaller diameter case, the ALE method uses fewer grids and has a faster calculation speed, but the AMR method can solve the case of a large geometry deformation efficiently.

  2. Self-Avoiding Walks Over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1999-01-01

    Space-filling curves is a popular approach based on a geometric embedding for linearizing computational meshes. We present a new O(n log n) combinatorial algorithm for constructing a self avoiding walk through a two dimensional mesh containing n triangles. We show that for hierarchical adaptive meshes, the algorithm can be locally adapted and easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the runtime partitioning and load balancing of adaptive unstructured grids.

  3. Self-Avoiding Walks over Adaptive Triangular Grids

    NASA Technical Reports Server (NTRS)

    Heber, Gerd; Biswas, Rupak; Gao, Guang R.; Saini, Subhash (Technical Monitor)

    1998-01-01

    In this paper, we present a new approach to constructing a "self-avoiding" walk through a triangular mesh. Unlike the popular approach of visiting mesh elements using space-filling curves which is based on a geometric embedding, our approach is combinatorial in the sense that it uses the mesh connectivity only. We present an algorithm for constructing a self-avoiding walk which can be applied to any unstructured triangular mesh. The complexity of the algorithm is O(n x log(n)), where n is the number of triangles in the mesh. We show that for hierarchical adaptive meshes, the algorithm can be easily parallelized by taking advantage of the regularity of the refinement rules. The proposed approach should be very useful in the run-time partitioning and load balancing of adaptive unstructured grids.

  4. A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn

    2014-01-01

    The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less

  5. Massive parallel 3D PIC simulation of negative ion extraction

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Montellano, Ivar Mauricio; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-09-01

    The 3D PIC-MCC code ONIX is dedicated to modeling Negative hydrogen/deuterium Ion (NI) extraction and co-extraction of electrons from radio-frequency driven, low pressure plasma sources. It provides valuable insight on the complex phenomena involved in the extraction process. In previous calculations, a mesh size larger than the Debye length was used, implying numerical electron heating. Important steps have been achieved in terms of computation performance and parallelization efficiency allowing successful massive parallel calculations (4096 cores), imperative to resolve the Debye length. In addition, the numerical algorithms have been improved in terms of grid treatment, i.e., the electric field near the complex geometry boundaries (plasma grid) is calculated more accurately. The revised model preserves the full 3D treatment, but can take advantage of a highly refined mesh. ONIX was used to investigate the role of the mesh size, the re-injection scheme for lost particles (extracted or wall absorbed), and the electron thermalization process on the calculated extracted current and plasma characteristics. It is demonstrated that all numerical schemes give the same NI current distribution for extracted ions. Concerning the electrons, the pair-injection technique is found well-adapted to simulate the sheath in front of the plasma grid.

  6. Formation of supermassive black holes through fragmentation of torodial supermassive stars.

    PubMed

    Zink, Burkhard; Stergioulas, Nikolaos; Hawke, Ian; Ott, Christian D; Schnetter, Erik; Müller, Ewald

    2006-04-28

    We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

  7. dc3dm: Software to efficiently form and apply a 3D DDM operator for a nonuniformly discretized rectangular planar fault

    NASA Astrophysics Data System (ADS)

    Bradley, A. M.

    2013-12-01

    My poster will describe dc3dm, a free open source software (FOSS) package that efficiently forms and applies the linear operator relating slip and traction components on a nonuniformly discretized rectangular planar fault in a homogeneous elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method (DDM). The key properties of dc3dm are: 1. The mesh can be nonuniform. 2. Work and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy of my method on a nonuniform mesh is the same as that of the standard method on a uniform mesh. Property 2 is achieved using my FOSS package hmmvp [AGU 2012]. A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation, nucleation length, and so required element size, scales reciprocally with effective normal stress. Property 3 assures that if a nonuniform mesh is more efficient than a uniform mesh (in the sense of accuracy per element) at one level of mesh refinement, it will remain so at all further mesh refinements. I use the routine DC3D of Y. Okada, which calculates the stress tensor at a receiver resulting from a rectangular uniform dislocation source in an HE half space. On a uniform mesh, straightforward application of this Green's function (GF) yields a DDM I refer to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the order of accuracy of the DDM. I have developed a method I call IGA that implements the DDM using this GF for a nonuniformly discretized mesh having certain properties. Importantly, IGA's order of accuracy on a nonuniform mesh is the same as DDMu's on a uniform one. Boundary conditions can be periodic in the surface-parallel direction (in both directions if the GF is for a whole space), velocity on any side, and free surface. The mesh must have the following main property: each uniquely sized element must tile each element larger than itself. A mesh generated by a family of quadtrees has this property. Using multiple quadtrees that collectively cover the domain enables the elements to have a small aspect ratio. Mathematically, IGA works as follows. Let Mn be the nonuniform mesh. Define Mu to be the uniform mesh that is composed of the smallest element in Mn. Every element e in Mu has associated subelements in Mn that tile e. First, a linear operator Inu mapping data on Mn to Mu implements smooth (C^1) interpolation; I use cubic (Clough-Tocher) interpolation over a triangulation induced by Mn. Second, a linear operator Gu implements DDMu on Mu. Third, a linear operator Aun maps data on Mu to Mn. These three linear operators implement exact IGA (EIGA): Gn = Aun Gu Inu. Computationally, there are several more details. EIGA has the undesirable property that calculating one entry of Gn for receiver ri requires calculating multiple entries of Gu, no matter how far away from ri the smallest element is. Approximate IGA (AIGA) solves this problem by restricting EIGA to a neighborhood around each receiver. Associated with each neighborhood is a minimum element size s^i that indexes a family of operators Gu^i. The order of accuracy of AIGA is the same as that of EIGA and DDMu if each neighborhood is kept constant in spatial extent as the mesh is refined.

  8. Comparing AMR and SPH Cosmological Simulations. I. Dark Matter and Adiabatic Simulations

    NASA Astrophysics Data System (ADS)

    O'Shea, Brian W.; Nagamine, Kentaro; Springel, Volker; Hernquist, Lars; Norman, Michael L.

    2005-09-01

    We compare two cosmological hydrodynamic simulation codes in the context of hierarchical galaxy formation: the Lagrangian smoothed particle hydrodynamics (SPH) code GADGET, and the Eulerian adaptive mesh refinement (AMR) code Enzo. Both codes represent dark matter with the N-body method but use different gravity solvers and fundamentally different approaches for baryonic hydrodynamics. The SPH method in GADGET uses a recently developed ``entropy conserving'' formulation of SPH, while for the mesh-based Enzo two different formulations of Eulerian hydrodynamics are employed: the piecewise parabolic method (PPM) extended with a dual energy formulation for cosmology, and the artificial viscosity-based scheme used in the magnetohydrodynamics code ZEUS. In this paper we focus on a comparison of cosmological simulations that follow either only dark matter, or also a nonradiative (``adiabatic'') hydrodynamic gaseous component. We perform multiple simulations using both codes with varying spatial and mass resolution with identical initial conditions. The dark matter-only runs agree generally quite well provided Enzo is run with a comparatively fine root grid and a low overdensity threshold for mesh refinement, otherwise the abundance of low-mass halos is suppressed. This can be readily understood as a consequence of the hierarchical particle-mesh algorithm used by Enzo to compute gravitational forces, which tends to deliver lower force resolution than the tree-algorithm of GADGET at early times before any adaptive mesh refinement takes place. At comparable force resolution we find that the latter offers substantially better performance and lower memory consumption than the present gravity solver in Enzo. In simulations that include adiabatic gasdynamics we find general agreement in the distribution functions of temperature, entropy, and density for gas of moderate to high overdensity, as found inside dark matter halos. However, there are also some significant differences in the same quantities for gas of lower overdensity. For example, at z=3 the fraction of cosmic gas that has temperature logT>0.5 is ~80% for both Enzo ZEUS and GADGET, while it is 40%-60% for Enzo PPM. We argue that these discrepancies are due to differences in the shock-capturing abilities of the different methods. In particular, we find that the ZEUS implementation of artificial viscosity in Enzo leads to some unphysical heating at early times in preshock regions. While this is apparently a significantly weaker effect in GADGET, its use of an artificial viscosity technique may also make it prone to some excess generation of entropy that should be absent in Enzo PPM. Overall, the hydrodynamical results for GADGET are bracketed by those for Enzo ZEUS and Enzo PPM but are closer to Enzo ZEUS.

  9. In Search of Grid Converged Solutions

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2010-01-01

    Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.

  10. Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Colella, Phillip

    2007-11-01

    We present a new numerical algorithm for the solution of coupled collisional and collisionless systems, based on the block structured adaptive mesh and time refinement strategy (AMR). We describe the issues associated with the discretization of the system equations and the synchronization of the numerical solution on the hierarchy of grid levels. We implement a code based on a higher order, conservative and directionally unsplit Godunov’s method for hydrodynamics; a symmetric, time centered modified symplectic scheme for collisionless component; and a multilevel, multigrid relaxation algorithm for the elliptic equation coupling the two components. Numerical results that illustrate the accuracy of the code and the relative merit of various implemented schemes are also presented.

  11. User Manual for Beta Version of TURBO-GRD: A Software System for Interactive Two-Dimensional Boundary/ Field Grid Generation, Modification, and Refinement

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Slater, John W.; Henderson, Todd L.; Bidwell, Colin S.; Braun, Donald C.; Chung, Joongkee

    1998-01-01

    TURBO-GRD is a software system for interactive two-dimensional boundary/field grid generation. modification, and refinement. Its features allow users to explicitly control grid quality locally and globally. The grid control can be achieved interactively by using control points that the user picks and moves on the workstation monitor or by direct stretching and refining. The techniques used in the code are the control point form of algebraic grid generation, a damped cubic spline for edge meshing and parametric mapping between physical and computational domains. It also performs elliptic grid smoothing and free-form boundary control for boundary geometry manipulation. Internal block boundaries are constructed and shaped by using Bezier curve. Because TURBO-GRD is a highly interactive code, users can read in an initial solution, display its solution contour in the background of the grid and control net, and exercise grid modification using the solution contour as a guide. This process can be called an interactive solution-adaptive grid generation.

  12. Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Li, Y.

    2016-12-01

    We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.

  13. Adaptive grid methods for RLV environment assessment and nozzle analysis

    NASA Technical Reports Server (NTRS)

    Thornburg, Hugh J.

    1996-01-01

    Rapid access to highly accurate data about complex configurations is needed for multi-disciplinary optimization and design. In order to efficiently meet these requirements a closer coupling between the analysis algorithms and the discretization process is needed. In some cases, such as free surface, temporally varying geometries, and fluid structure interaction, the need is unavoidable. In other cases the need is to rapidly generate and modify high quality grids. Techniques such as unstructured and/or solution-adaptive methods can be used to speed the grid generation process and to automatically cluster mesh points in regions of interest. Global features of the flow can be significantly affected by isolated regions of inadequately resolved flow. These regions may not exhibit high gradients and can be difficult to detect. Thus excessive resolution in certain regions does not necessarily increase the accuracy of the overall solution. Several approaches have been employed for both structured and unstructured grid adaption. The most widely used involve grid point redistribution, local grid point enrichment/derefinement or local modification of the actual flow solver. However, the success of any one of these methods ultimately depends on the feature detection algorithm used to determine solution domain regions which require a fine mesh for their accurate representation. Typically, weight functions are constructed to mimic the local truncation error and may require substantial user input. Most problems of engineering interest involve multi-block grids and widely disparate length scales. Hence, it is desirable that the adaptive grid feature detection algorithm be developed to recognize flow structures of different type as well as differing intensity, and adequately address scaling and normalization across blocks. These weight functions can then be used to construct blending functions for algebraic redistribution, interpolation functions for unstructured grid generation, forcing functions to attract/repel points in an elliptic system, or to trigger local refinement, based upon application of an equidistribution principle. The popularity of solution-adaptive techniques is growing in tandem with unstructured methods. The difficultly of precisely controlling mesh densities and orientations with current unstructured grid generation systems has driven the use of solution-adaptive meshing. Use of derivatives of density or pressure are widely used for construction of such weight functions, and have been proven very successful for inviscid flows with shocks. However, less success has been realized for flowfields with viscous layers, vortices or shocks of disparate strength. It is difficult to maintain the appropriate mesh point spacing in the various regions which require a fine spacing for adequate resolution. Mesh points often migrate from important regions due to refinement of dominant features. An example of this is the well know tendency of adaptive methods to increase the resolution of shocks in the flowfield around airfoils, but in the incorrect location due to inadequate resolution of the stagnation region. This problem has been the motivation for this research.

  14. Center for Efficient Exascale Discretizations Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolev, Tzanio; Dobrev, Veselin; Tomov, Vladimir

    The CEED Software suite is a collection of generally applicable software tools focusing on the following computational motives: PDE discretizations on unstructured meshes, high-order finite element and spectral element methods and unstructured adaptive mesh refinement. All of this software is being developed as part of CEED, a co-design Center for Efficient Exascale Discretizations, within DOE's Exascale Computing Project (ECP) program.

  15. Recent advances in high-order WENO finite volume methods for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael

    2013-10-01

    We present two new families of better than second order accurate Godunov-type finite volume methods for the solution of nonlinear hyperbolic partial differential equations with nonconservative products. One family is based on a high order Arbitrary-Lagrangian-Eulerian (ALE) formulation on moving meshes, which allows to resolve the material contact wave in a very sharp way when the mesh is moved at the speed of the material interface. The other family of methods is based on a high order Adaptive Mesh Refinement (AMR) strategy, where the mesh can be strongly refined in the vicinity of the material interface. Both classes of schemes have several building blocks in common, in particular: a high order WENO reconstruction operator to obtain high order of accuracy in space; the use of an element-local space-time Galerkin predictor step which evolves the reconstruction polynomials in time and that allows to reach high order of accuracy in time in one single step; the use of a path-conservative approach to treat the nonconservative terms of the PDE. We show applications of both methods to the Baer-Nunziato model for compressible multiphase flows.

  16. Predicting mesh density for adaptive modelling of the global atmosphere.

    PubMed

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  17. 3D Numerical Prediction of Gas-Solid Flow Behavior in CFB Risers for Geldart A and B Particles

    NASA Astrophysics Data System (ADS)

    Özel, A.; Fede, P.; Simonin, O.

    In this study, mono-disperse flows in squared risers conducted with A and B-type particles were simulated by Eulerian n-fluid 3D unsteady code. Two transport equations developed in the frame of kinetic theory of granular media supplemented by the interstitial fluid effect and the interaction with the turbulence (Balzer et al., 1996) are resolved to model the effect of velocity fluctuations and inter-particle collisions on the dispersed phase hydrodynamic. The studied flow geometries are three-dimensional vertical cold channels excluding cyclone, tampon and returning pipe of a typical circulating fluidized bed. For both type of particles, parametric studies were carried out to determine influences of boundary conditions, physical parameters and turbulence modeling. The grid dependency was analyzed with mesh refinement in horizontal and axial directions. For B-type particles, the results are in good qualitative agreement with the experiments and numerical predictions are slightly improved by the mesh refinement. On the contrary, the simulations with A-type particles show a less satisfactory agreement with available measurements and are highly sensitive to mesh refinement. Further studies are carried out to improve the A-type particles by modeling subgrid-scale effects in the frame of large-eddy simulation approach.

  18. An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems

    NASA Astrophysics Data System (ADS)

    Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.

    2018-02-01

    By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sentis, Manuel Lorenzo; Gable, Carl W.

    Furthermore, there are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools willmore » provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less

  20. Unstructured mesh generation and adaptivity

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current unstructured mesh generation and adaptivity techniques is given. Basic building blocks taken from the field of computational geometry are first described. Various practical mesh generation techniques based on these algorithms are then constructed and illustrated with examples. Issues of adaptive meshing and stretched mesh generation for anisotropic problems are treated in subsequent sections. The presentation is organized in an education manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  1. A coupled ALE-AMR method for shock hydrodynamics

    DOE PAGES

    Waltz, J.; Bakosi, J.

    2018-03-05

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  2. A coupled ALE-AMR method for shock hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J.; Bakosi, J.

    We present a numerical method combining adaptive mesh refinement (AMR) with arbitrary Lagrangian-Eulerian (ALE) mesh motion for the simulation of shock hydrodynamics on unstructured grids. The primary goal of the coupled method is to use AMR to reduce numerical error in ALE simulations at reduced computational expense relative to uniform fine mesh calculations, in the same manner that AMR has been used in Eulerian simulations. We also identify deficiencies with ALE methods that AMR is able to mitigate, and discuss the unique coupling challenges. The coupled method is demonstrated using three-dimensional unstructured meshes of up to O(10 7) tetrahedral cells.more » Convergence of ALE-AMR solutions towards both uniform fine mesh ALE results and analytic solutions is demonstrated. Speed-ups of 5-10× for a given level of error are observed relative to uniform fine mesh calculations.« less

  3. Adaptively Refined Euler and Navier-Stokes Solutions with a Cartesian-Cell Based Scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian-cell based scheme with adaptive mesh refinement for solving the Euler and Navier-Stokes equations in two dimensions has been developed and tested. Grids about geometrically complicated bodies were generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells were created using polygon-clipping algorithms. The grid was stored in a binary-tree data structure which provided a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations were solved on the resulting grids using an upwind, finite-volume formulation. The inviscid fluxes were found in an upwinded manner using a linear reconstruction of the cell primitives, providing the input states to an approximate Riemann solver. The viscous fluxes were formed using a Green-Gauss type of reconstruction upon a co-volume surrounding the cell interface. Data at the vertices of this co-volume were found in a linearly K-exact manner, which ensured linear K-exactness of the gradients. Adaptively-refined solutions for the inviscid flow about a four-element airfoil (test case 3) were compared to theory. Laminar, adaptively-refined solutions were compared to accepted computational, experimental and theoretical results.

  4. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    DOE PAGES

    Sentis, Manuel Lorenzo; Gable, Carl W.

    2017-06-15

    Furthermore, there are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools willmore » provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. Here in this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.« less

  5. Coupling LaGrit unstructured mesh generation and model setup with TOUGH2 flow and transport: A case study

    NASA Astrophysics Data System (ADS)

    Sentís, Manuel Lorenzo; Gable, Carl W.

    2017-11-01

    There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.

  6. A COMPARISON OF EXPERIMENTS AND THREE-DIMENSIONAL ANALYSIS TECHNIQUES. PART II. UNPOISONED UNIFORM SLAB CORE WITH A PARTIALLY INSERTED HAFNIUM ROD AND A PARTIALLY INSERTED WATER GAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseberry, R.J.

    The experimental measurements and nuclear analysis of a uniformly loaded, unpoisoned slab core with a partially inserted hafnium rod and/or a partially inserted water gap are described. Comparisons of experimental data with calculated results of the UFO core and flux synthesis techniques are given. It is concluded that one of the flux synthesis techniques and the UFO code are able to predict flux distributions to within approximately -5% of experiment for most cases, with a maximum error of approximately -10% for a channel at the core- reflector boundary. The second synthesis technique failed to give comparable agreement with experiment evenmore » when various refinements were used, e.g. increasing the number of mesh points, performing the flux synthesis technique of iteration, and spectrum-weighting the appropriate calculated fluxes through the use of the SWAKRAUM code. These results are comparable to those reported in Part I of this study. (auth)« less

  7. Laser Ray Tracing in a Parallel Arbitrary Lagrangian-Eulerian Adaptive Mesh Refinement Hydrocode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masters, N D; Kaiser, T B; Anderson, R W

    2009-09-28

    ALE-AMR is a new hydrocode that we are developing as a predictive modeling tool for debris and shrapnel formation in high-energy laser experiments. In this paper we present our approach to implementing laser ray-tracing in ALE-AMR. We present the equations of laser ray tracing, our approach to efficient traversal of the adaptive mesh hierarchy in which we propagate computational rays through a virtual composite mesh consisting of the finest resolution representation of the modeled space, and anticipate simulations that will be compared to experiments for code validation.

  8. A 3D front tracking method on a CPU/GPU system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Wurigen; Grove, John

    2011-01-21

    We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

  9. Multi-Material ALE with AMR for Modeling Hot Plasmas and Cold Fragmenting Materials

    NASA Astrophysics Data System (ADS)

    Alice, Koniges; Nathan, Masters; Aaron, Fisher; David, Eder; Wangyi, Liu; Robert, Anderson; David, Benson; Andrea, Bertozzi

    2015-02-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to the microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiently on a dynamically moving and adapting mesh. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. A flexible strength/failure framework allows for pluggable material models, which may require material history arrays to determine the level of accumulated damage or the evolving yield stress in J2 plasticity models. For some applications laser rays are propagating through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. One application area is the modeling of laser/target effects including debris/shrapnel generation. Other application areas include warm dense matter, EUV lithography, and material wall interactions for fusion devices.

  10. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE PAGES

    Grayver, Alexander V.; Kolev, Tzanio V.

    2015-11-01

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  11. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayver, Alexander V.; Kolev, Tzanio V.

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  12. Towards hybrid mesh generation for realistic design environments

    NASA Astrophysics Data System (ADS)

    McMorris, Harlan Tom

    Two different techniques that allow hybrid mesh generation to be easily used in the design environment are presented. The purpose of this research is to allow for hybrid meshes to be used during the design process where the geometry is being varied. The first technique, modular hybrid mesh generation, allows for the replacement of portions of a geometry with a new design shape. The mesh is maintained for the portions of that have not changed during the design process. A new mesh is generated for the new part of the geometry and this piece is added to the existing mesh. The new mesh must match the remaining portions of the geometry plus the element sizes must match exactly across the interfaces. The second technique, hybrid mesh movement, is used when the basic geometry remains the same with only small variations to portions of the geometry. These small variations include changing the cross-section of a wing, twisting a blade or changing the length of some portion of the geometry. The mesh for the original geometry is moved onto the new geometry one step at a time beginning with the curves of the surface, continuing with the surface mesh geometry and ending with the interior points of the mesh. The validity of the hybrid mesh is maintained by applying corrections to the motion of the points. Finally, the quality of the new hybrid mesh is improved to ensure that the new mesh maintains the quality of the original hybrid mesh. Applications of both design techniques are applied to typical example cases from the fields of turbomachinery, aerospace and offshore technology. The example test cases demonstrate the ability of the two techniques to reuse the majority of an existing hybrid mesh for typical design changes. Modular mesh generation is used to change the shape of piece of a seafloor pipeline geometry to a completely different configuration. The hybrid mesh movement technique is used to change the twist of a turbomachinery blade, the tip clearance of a rotor blade and to simulate the aeroelastic bending of a wing. Finally, the movement technique is applied to an offshore application where the solution for the original configuration is used as a starting point for solution for a new configuration. The application of both techniques show that the methods can be a powerful addition to the design environment and will facilitate a rapid turnaround when the design geometry changes.

  13. Computer simulation of refining process of a high consistency disc refiner based on CFD

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Yang, Jianwei; Wang, Jiahui

    2017-08-01

    In order to reduce refining energy consumption, the ANSYS CFX was used to simulate the refining process of a high consistency disc refiner. In the first it was assumed to be uniform Newton fluid of turbulent state in disc refiner with the k-ɛ flow model; then meshed grids and set the boundary conditions in 3-D model of the disc refiner; and then was simulated and analyzed; finally, the viscosity of the pulp were measured. The results show that the CFD method can be used to analyze the pressure and torque on the disc plate, so as to calculate the refining power, and streamlines and velocity vectors can also be observed. CFD simulation can optimize parameters of the bar and groove, which is of great significance to reduce the experimental cost and cycle.

  14. Multiscale Simulation of Gas Film Lubrication During Liquid Droplet Collision

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Khare, Prashant; Ma, Dongjun; Yang, Vigor

    2012-02-01

    Droplet collision plays an elementary role in dense spray combustion process. When two droplets approach each other, a gas film forms in between. The pressure generated within the film prevents motion of approaching droplets. This fluid mechanics is fluid film lubrication that occurs when opposing bearing surfaces are completely separated by fluid film. The lubrication flow in gas film decides the collision outcome, coalescence or bouncing. Present study focuses on gas film drainage process over a wide range of Weber numbers during equal- and unequal-sized droplet collision. The formulation is based on complete set of conservation equations for both liquid and surrounding gas phases. An improved volume-of-fluid technique, augmented by an adaptive mesh refinement algorithm, is used to track liquid/gas interfaces. A unique thickness-based refinement algorithm based on topology of interfacial flow is developed and implemented to efficiently resolve the multiscale problem. The grid size on interface is up O(10-4) of droplet size with a max resolution of 0.015 μm. An advanced visualization technique using the Ray-tracing methodology is used to gain direct insights to detailed physics. Theories are established by analyzing the characteristics of shape changing and flow evolution.

  15. Effect of boundary representation on viscous, separated flows in a discontinuous-Galerkin Navier-Stokes solver

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel A.; Jacobs, Gustaaf B.; Kopriva, David A.

    2016-08-01

    The effect of curved-boundary representation on the physics of the separated flow over a NACA 65(1)-412 airfoil is thoroughly investigated. A method is presented to approximate curved boundaries with a high-order discontinuous-Galerkin spectral element method for the solution of the Navier-Stokes equations. Multiblock quadrilateral element meshes are constructed with the grid generation software GridPro. The boundary of a NACA 65(1)-412 airfoil, defined by a cubic natural spline, is piecewise-approximated by isoparametric polynomial interpolants that represent the edges of boundary-fitted elements. Direct numerical simulation of the airfoil is performed on a coarse mesh and fine mesh with polynomial orders ranging from four to twelve. The accuracy of the curve fitting is investigated by comparing the flows computed on curved-sided meshes with those given by straight-sided meshes. Straight-sided meshes yield irregular wakes, whereas curved-sided meshes produce a regular Karman street wake. Straight-sided meshes also produce lower lift and higher viscous drag as compared with curved-sided meshes. When the mesh is refined by reducing the sizes of the elements, the lift decrease and viscous drag increase are less pronounced. The differences in the aerodynamic performance between the straight-sided meshes and the curved-sided meshes are concluded to be the result of artificial surface roughness introduced by the piecewise-linear boundary approximation provided by the straight-sided meshes.

  16. Computing Normal Shock-Isotropic Turbulence Interaction With Tetrahedral Meshes and the Space-Time CESE Method

    NASA Astrophysics Data System (ADS)

    Venkatachari, Balaji Shankar; Chang, Chau-Lyan

    2016-11-01

    The focus of this study is scale-resolving simulations of the canonical normal shock- isotropic turbulence interaction using unstructured tetrahedral meshes and the space-time conservation element solution element (CESE) method. Despite decades of development in unstructured mesh methods and its potential benefits of ease of mesh generation around complex geometries and mesh adaptation, direct numerical or large-eddy simulations of turbulent flows are predominantly carried out using structured hexahedral meshes. This is due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for unstructured meshes that can resolve multiple physical scales and flow discontinuities simultaneously. The CESE method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to accurately simulate turbulent flows using tetrahedral meshes. As part of the study, various regimes of the shock-turbulence interaction (wrinkled and broken shock regimes) will be investigated along with a study on how adaptive refinement of tetrahedral meshes benefits this problem. The research funding for this paper has been provided by Revolutionary Computational Aerosciences (RCA) subproject under the NASA Transformative Aeronautics Concepts Program (TACP).

  17. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions.

    PubMed

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny

    2018-02-01

    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  18. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  19. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  20. Formulation and Implementation of Inflow/Outflow Boundary Conditions to Simulate Propulsive Effects

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian

    2018-01-01

    Boundary conditions appropriate for simulating flow entering or exiting the computational domain to mimic propulsion effects have been implemented in an adaptive Cartesian simulation package. A robust iterative algorithm to control mass flow rate through an outflow boundary surface is presented, along with a formulation to explicitly specify mass flow rate through an inflow boundary surface. The boundary conditions have been applied within a mesh adaptation framework based on the method of adjoint-weighted residuals. This allows for proper adaptive mesh refinement when modeling propulsion systems. The new boundary conditions are demonstrated on several notional propulsion systems operating in flow regimes ranging from low subsonic to hypersonic. The examples show that the prescribed boundary state is more properly imposed as the mesh is refined. The mass-flowrate steering algorithm is shown to be an efficient approach in each example. To demonstrate the boundary conditions on a realistic complex aircraft geometry, two of the new boundary conditions are also applied to a modern low-boom supersonic demonstrator design with multiple flow inlets and outlets.

  1. Multigrid techniques for unstructured meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1995-01-01

    An overview of current multigrid techniques for unstructured meshes is given. The basic principles of the multigrid approach are first outlined. Application of these principles to unstructured mesh problems is then described, illustrating various different approaches, and giving examples of practical applications. Advanced multigrid topics, such as the use of algebraic multigrid methods, and the combination of multigrid techniques with adaptive meshing strategies are dealt with in subsequent sections. These represent current areas of research, and the unresolved issues are discussed. The presentation is organized in an educational manner, for readers familiar with computational fluid dynamics, wishing to learn more about current unstructured mesh techniques.

  2. Hexahedral finite element mesh coarsening using pillowing technique

    DOEpatents

    Staten, Matthew L [Pittsburgh, PA; Woodbury, Adam C [Provo, UT; Benzley, Steven E [Provo, UT; Shepherd, Jason F [Edgewood, NM

    2012-06-05

    A techniques for coarsening a hexahedral mesh is described. The technique includes identifying a coarsening region within a hexahedral mesh to be coarsened. A boundary sheet of hexahedral elements is inserted into the hexahedral mesh around the coarsening region. A column of hexahedral elements is identified within the boundary sheet. The column of hexahedral elements is collapsed to create an extraction sheet of hexahedral elements contained within the coarsening region. Then, the extraction sheet of hexahedral elements is extracted to coarsen the hexahedral mesh.

  3. A new procedure for dynamic adaption of three-dimensional unstructured grids

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Strawn, Roger

    1993-01-01

    A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.

  4. High-fidelity simulations of blast loadings in urban environments using an overset meshing strategy

    NASA Astrophysics Data System (ADS)

    Wang, X.; Remotigue, M.; Arnoldus, Q.; Janus, M.; Luke, E.; Thompson, D.; Weed, R.; Bessette, G.

    2017-05-01

    Detailed blast propagation and evolution through multiple structures representing an urban environment were simulated using the code Loci/BLAST, which employs an overset meshing strategy. The use of overset meshes simplifies mesh generation by allowing meshes for individual component geometries to be generated independently. Detailed blast propagation and evolution through multiple structures, wave reflection and interaction between structures, and blast loadings on structures were simulated and analyzed. Predicted results showed good agreement with experimental data generated by the US Army Engineer Research and Development Center. Loci/BLAST results were also found to compare favorably to simulations obtained using the Second-Order Hydrodynamic Automatic Mesh Refinement Code (SHAMRC). The results obtained demonstrated that blast reflections in an urban setting significantly increased the blast loads on adjacent buildings. Correlations of computational results with experimental data yielded valuable insights into the physics of blast propagation, reflection, and interaction under an urban setting and verified the use of Loci/BLAST as a viable tool for urban blast analysis.

  5. Development of a Navier-Stokes algorithm for parallel-processing supercomputers. Ph.D. Thesis - Colorado State Univ., Dec. 1988

    NASA Technical Reports Server (NTRS)

    Swisshelm, Julie M.

    1989-01-01

    An explicit flow solver, applicable to the hierarchy of model equations ranging from Euler to full Navier-Stokes, is combined with several techniques designed to reduce computational expense. The computational domain consists of local grid refinements embedded in a global coarse mesh, where the locations of these refinements are defined by the physics of the flow. Flow characteristics are also used to determine which set of model equations is appropriate for solution in each region, thereby reducing not only the number of grid points at which the solution must be obtained, but also the computational effort required to get that solution. Acceleration to steady-state is achieved by applying multigrid on each of the subgrids, regardless of the particular model equations being solved. Since each of these components is explicit, advantage can readily be taken of the vector- and parallel-processing capabilities of machines such as the Cray X-MP and Cray-2.

  6. Textile properties of synthetic prolapse mesh in response to uniaxial loading.

    PubMed

    Barone, William R; Moalli, Pamela A; Abramowitch, Steven D

    2016-09-01

    Although synthetic mesh is associated with superior anatomic outcomes for the repair of pelvic organ prolapse, the benefits of mesh have been questioned because of the relatively high complication rates. To date, the mechanisms that result in such complications are poorly understood, yet the textile characteristics of mesh products are believed to play an important role. Interestingly, the pore diameter of synthetic mesh has been shown to impact the host response after hernia repair greatly, and such findings have served as design criteria for prolapse meshes, with larger pores viewed as more favorable. Although pore size and porosity are well-characterized before implantation, the changes in these textile properties after implantation are unclear; the application of mechanical forces has the potential to greatly alter pore geometries in vivo. Understanding the impact of mechanical loading on the textile properties of mesh is essential for the development of more effective devices for prolapse repair. The objective of this study was to determine the effect of tensile loading and pore orientation on mesh porosity and pore dimensions. In this study, the porosity and pore diameter of 4 currently available prolapse meshes were examined in response to uniaxial tensile loads of 0.1, 5, and 10 N while mimicking clinical loading conditions. The textile properties were compared with those observed for the unloaded mesh. Meshes included Gynemesh PS (Ethicon, Somerville, NJ), UltraPro (Artisyn; Ethicon), Restorelle (Coloplast, Minneapolis, MN), and Alyte Y-mesh (Bard, Covington, GA). In addition to the various pore geometries, 3 orientations of Restorelle (0-, 5-, 45-degree offset) and 2 orientations of UltraPro (0-, 90-degree offset) were examined. In response to uniaxial loading, both porosity and pore diameter dramatically decreased for most mesh products. The application of 5 N led to reductions in porosity for nearly all groups, with values decreasing by as much as 87% (P < .05). On loading to 10 N of force, nearly all mesh products that were tested were found to have porosities that approached 0% and 0 pores with diameters >1 mm. In this study, it was shown that the pore size of current prolapse meshes dramatically decreases in response to mechanical loading. These findings suggest that prolapse meshes, which are more likely to experience tensile forces in vivo relative to hernia repair meshes, have pores that are unfavorable for tissue integration after surgical tensioning and/or loading in urogynecologic surgeries. Such decreases in pore geometry support the hypothesis that regional increases in the concentration of mesh leads to an enhanced local foreign body response. Although pore deformation in transvaginal meshes requires further characterization, the findings presented here provide a mechanical understanding that can be used to recognize potential areas of concern for complex mesh geometries. Understanding mesh mechanics in response to surgical and in vivo loading conditions may provide improved design criteria for mesh and a refinement of surgical techniques, ultimately leading to better patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement

    NASA Astrophysics Data System (ADS)

    Dietrich, Tim; Bernuzzi, Sebastiano; Ujevic, Maximiliano; Brügmann, Bernd

    2015-06-01

    We study equal- and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass M =2.7 M⊙, mass ratios q =1 and q =1.16 , four different equations of state (EOSs) and one configuration with a stiff EOS, M =2.5 M⊙ and q =1.5 , which is one of the largest mass ratios simulated in numerical relativity to date. We focus on the postmerger dynamics and study the merger remnant, the dynamical ejecta, and the postmerger gravitational wave spectrum. Although most of the merger remnants are a hypermassive neutron star collapsing to a black hole+disk system on dynamical time scales, stiff EOSs can eventually produce a stable massive neutron star. During the merger process and on very short time scales, about ˜10-3- 10-2M⊙ of material become unbound with kinetic energies ˜1050 erg . Ejecta are mostly emitted around the orbital plane and favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by the nonaxisymmetric oscillations of the remnant neutron star. The stiff EOS configuration consisting of a 1.5 M⊙ and a 1.0 M⊙ neutron star, simulated here for the first time, shows a rather peculiar dynamics. During merger the companion star is very deformed; about ˜0.03 M⊙ of the rest mass becomes unbound from the tidal tail due to the torque generated by the two-core inner structure. The merger remnant is a stable neutron star surrounded by a massive accretion disk of rest mass ˜0.3 M⊙. This and similar configurations might be particularly interesting for electromagnetic counterparts. Comparing results obtained with and without the conservative mesh refinement algorithm, we find that postmerger simulations can be affected by systematic errors if mass conservation is not enforced in the mesh refinement strategy. However, mass conservation also depends on grid details and on the artificial atmosphere setup; the latter are particularly significant in the computation of the dynamical ejecta.

  8. A Cartesian cut cell method for rarefied flow simulations around moving obstacles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechristé, G., E-mail: Guillaume.Dechriste@math.u-bordeaux1.fr; CNRS, IMB, UMR 5251, F-33400 Talence; Mieussens, L., E-mail: Luc.Mieussens@math.u-bordeaux1.fr

    2016-06-01

    For accurate simulations of rarefied gas flows around moving obstacles, we propose a cut cell method on Cartesian grids: it allows exact conservation and accurate treatment of boundary conditions. Our approach is designed to treat Cartesian cells and various kinds of cut cells by the same algorithm, with no need to identify the specific shape of each cut cell. This makes the implementation quite simple, and allows a direct extension to 3D problems. Such simulations are also made possible by using an adaptive mesh refinement technique and a hybrid parallel implementation. This is illustrated by several test cases, including amore » 3D unsteady simulation of the Crookes radiometer.« less

  9. Unstructured 3D Delaunay mesh generation applied to planes, trains and automobiles

    NASA Technical Reports Server (NTRS)

    Blake, Kenneth R.; Spragle, Gregory S.

    1993-01-01

    Technical issues associated with domain-tessellation production, including initial boundary node triangulation and volume mesh refinement, are presented for the 'TGrid' 3D Delaunay unstructured grid generation program. The approach employed is noted to be capable of preserving predefined triangular surface facets in the final tessellation. The capabilities of the approach are demonstrated by generating grids about an entire fighter aircraft configuration, a train, and a wind tunnel model of an automobile.

  10. Reliable and efficient a posteriori error estimation for adaptive IGA boundary element methods for weakly-singular integral equations

    PubMed Central

    Feischl, Michael; Gantner, Gregor; Praetorius, Dirk

    2015-01-01

    We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence. PMID:26085698

  11. Three dimensional adaptive mesh refinement on a spherical shell for atmospheric models with lagrangian coordinates

    NASA Astrophysics Data System (ADS)

    Penner, Joyce E.; Andronova, Natalia; Oehmke, Robert C.; Brown, Jonathan; Stout, Quentin F.; Jablonowski, Christiane; van Leer, Bram; Powell, Kenneth G.; Herzog, Michael

    2007-07-01

    One of the most important advances needed in global climate models is the development of atmospheric General Circulation Models (GCMs) that can reliably treat convection. Such GCMs require high resolution in local convectively active regions, both in the horizontal and vertical directions. During previous research we have developed an Adaptive Mesh Refinement (AMR) dynamical core that can adapt its grid resolution horizontally. Our approach utilizes a finite volume numerical representation of the partial differential equations with floating Lagrangian vertical coordinates and requires resolving dynamical processes on small spatial scales. For the latter it uses a newly developed general-purpose library, which facilitates 3D block-structured AMR on spherical grids. The library manages neighbor information as the blocks adapt, and handles the parallel communication and load balancing, freeing the user to concentrate on the scientific modeling aspects of their code. In particular, this library defines and manages adaptive blocks on the sphere, provides user interfaces for interpolation routines and supports the communication and load-balancing aspects for parallel applications. We have successfully tested the library in a 2-D (longitude-latitude) implementation. During the past year, we have extended the library to treat adaptive mesh refinement in the vertical direction. Preliminary results are discussed. This research project is characterized by an interdisciplinary approach involving atmospheric science, computer science and mathematical/numerical aspects. The work is done in close collaboration between the Atmospheric Science, Computer Science and Aerospace Engineering Departments at the University of Michigan and NOAA GFDL.

  12. Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Martin, Daniel F.

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  13. A New Approach to an Old Technique-The S.U.T.R. First Technique.

    PubMed

    Jones, Frank; Lewis, Catherine; Knight, Darryl; Bacon, Louise; Patel, Vijay; Moore, Carolyn

    2018-04-01

    Ventral and incisional hernias of the abdominal wall are common problems treated by surgeons around the globe. Incisional hernias are common postoperative complications of abdominal laparotomies with a reported incidence of up to 20 per cent. The increasing use of prosthetic mesh in open ventral hernia repairs necessitated the development of different operative techniques used in the repairs. It also required that surgeons become facile with placement of the mesh in different anatomical positions on the abdominal wall. One of the most common locations is placement of the mesh in the underlay position. Many surgeons who use the underlay technique have expressed significant concerns. Among these are fear of an inadvertent bowel injury while placing the mesh, poor visualization during mesh placement, and the inability to use the underlay technique for difficult hernias. We present a very useful, if not, novel technique of open hernia repair using mesh in the underlay position that helps to 1) prevent complications, 2) facilitate easier mesh fixation, 3) simplify open repair of atypical ventral hernias, and 4) reduce total operative time while still adhering to the important fundamental principles of a tension-free hernia repair. This technique as we describe it has been compared with the old parachute technique, but we think this is a significant improvement of that seldom used technique. We believe the use of this technique for the underlay position makes open ventral hernia repair safer, faster, and easier; however, our goal for this article is to describe the procedure in detail. In addition, we recently have started using this technique to fix the mesh when doing the retrorectus approach as well.

  14. Anisotropic three-dimensional inversion of CSEM data using finite-element techniques on unstructured grids

    NASA Astrophysics Data System (ADS)

    Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus

    2018-05-01

    In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.

  15. Testing hydrodynamics schemes in galaxy disc simulations

    NASA Astrophysics Data System (ADS)

    Few, C. G.; Dobbs, C.; Pettitt, A.; Konstandin, L.

    2016-08-01

    We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretized mesh-less code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or GIZMO runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMO runs and secondary spiral arms are more pronounced. By resolving the Jeans length with a greater number of grid cells, we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of GIZMO (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and time-scales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations.

  16. Local Refinement of Analysis-Suitable T-splines

    DTIC Science & Technology

    2011-03-01

    3.2. The extension graph Intersecting T-junction extensions in an extended T-mesh Text can be visualized using an undirected graph . We call this graph ...the extension graph and denote it by E(Text). Each node in E corresponds to a single T-junction extension in Text. If two extensions in Text...intersect then an edge is drawn between the corresponding nodes in E. The extension graph for the extended T-mesh in Figure 7b is shown in Figure 8a. In this

  17. Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells

    DTIC Science & Technology

    1988-11-30

    where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that

  18. Parallel deterministic neutronics with AMR in 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clouse, C.; Ferguson, J.; Hendrickson, C.

    1997-12-31

    AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.

  19. Bioprosthetic Mesh in Abdominal Wall Reconstruction

    PubMed Central

    Baumann, Donald P.; Butler, Charles E.

    2012-01-01

    Mesh materials have undergone a considerable evolution over the last several decades. There has been enhancement of biomechanical properties, improvement in manufacturing processes, and development of antiadhesive laminate synthetic meshes. The evolution of bioprosthetic mesh materials has markedly changed our indications and methods for complex abdominal wall reconstruction. The authors review the optimal properties of bioprosthetic mesh materials, their evolution over time, and their indications for use. The techniques to optimize outcomes are described using bioprosthetic mesh for complex abdominal wall reconstruction. Bioprosthetic mesh materials clearly have certain advantages over other implantable mesh materials in select indications. Appropriate patient selection and surgical technique are critical to the successful use of bioprosthetic materials for abdominal wall repair. PMID:23372454

  20. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer

    NASA Astrophysics Data System (ADS)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri

    2017-02-01

    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self-consistently calculate general-relativistic accretion flows onto compact objects. In addition to the accurate handling of the matter, we provide a self-consistent electromagnetic emission from these scenarios by solving the associated radiative-transfer problem. While magnetic fields are currently excluded from our analysis, the tools presented here can have a number of applications to study accretion flows onto black holes or neutron stars.

  1. Parallel grid library for rapid and flexible simulation development

    NASA Astrophysics Data System (ADS)

    Honkonen, I.; von Alfthan, S.; Sandroos, A.; Janhunen, P.; Palmroth, M.

    2013-04-01

    We present an easy to use and flexible grid library for developing highly scalable parallel simulations. The distributed cartesian cell-refinable grid (dccrg) supports adaptive mesh refinement and allows an arbitrary C++ class to be used as cell data. The amount of data in grid cells can vary both in space and time allowing dccrg to be used in very different types of simulations, for example in fluid and particle codes. Dccrg transfers the data between neighboring cells on different processes transparently and asynchronously allowing one to overlap computation and communication. This enables excellent scalability at least up to 32 k cores in magnetohydrodynamic tests depending on the problem and hardware. In the version of dccrg presented here part of the mesh metadata is replicated between MPI processes reducing the scalability of adaptive mesh refinement (AMR) to between 200 and 600 processes. Dccrg is free software that anyone can use, study and modify and is available at https://gitorious.org/dccrg. Users are also kindly requested to cite this work when publishing results obtained with dccrg. Catalogue identifier: AEOM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU Lesser General Public License version 3 No. of lines in distributed program, including test data, etc.: 54975 No. of bytes in distributed program, including test data, etc.: 974015 Distribution format: tar.gz Programming language: C++. Computer: PC, cluster, supercomputer. Operating system: POSIX. The code has been parallelized using MPI and tested with 1-32768 processes RAM: 10 MB-10 GB per process Classification: 4.12, 4.14, 6.5, 19.3, 19.10, 20. External routines: MPI-2 [1], boost [2], Zoltan [3], sfc++ [4] Nature of problem: Grid library supporting arbitrary data in grid cells, parallel adaptive mesh refinement, transparent remote neighbor data updates and load balancing. Solution method: The simulation grid is represented by an adjacency list (graph) with vertices stored into a hash table and edges into contiguous arrays. Message Passing Interface standard is used for parallelization. Cell data is given as a template parameter when instantiating the grid. Restrictions: Logically cartesian grid. Running time: Running time depends on the hardware, problem and the solution method. Small problems can be solved in under a minute and very large problems can take weeks. The examples and tests provided with the package take less than about one minute using default options. In the version of dccrg presented here the speed of adaptive mesh refinement is at most of the order of 106 total created cells per second. http://www.mpi-forum.org/. http://www.boost.org/. K. Devine, E. Boman, R. Heaphy, B. Hendrickson, C. Vaughan, Zoltan data management services for parallel dynamic applications, Comput. Sci. Eng. 4 (2002) 90-97. http://dx.doi.org/10.1109/5992.988653. https://gitorious.org/sfc++.

  2. Tree-based solvers for adaptive mesh refinement code FLASH - I: gravity and optical depths

    NASA Astrophysics Data System (ADS)

    Wünsch, R.; Walch, S.; Dinnbier, F.; Whitworth, A.

    2018-04-01

    We describe an OctTree algorithm for the MPI parallel, adaptive mesh refinement code FLASH, which can be used to calculate the gas self-gravity, and also the angle-averaged local optical depth, for treating ambient diffuse radiation. The algorithm communicates to the different processors only those parts of the tree that are needed to perform the tree-walk locally. The advantage of this approach is a relatively low memory requirement, important in particular for the optical depth calculation, which needs to process information from many different directions. This feature also enables a general tree-based radiation transport algorithm that will be described in a subsequent paper, and delivers excellent scaling up to at least 1500 cores. Boundary conditions for gravity can be either isolated or periodic, and they can be specified in each direction independently, using a newly developed generalization of the Ewald method. The gravity calculation can be accelerated with the adaptive block update technique by partially re-using the solution from the previous time-step. Comparison with the FLASH internal multigrid gravity solver shows that tree-based methods provide a competitive alternative, particularly for problems with isolated or mixed boundary conditions. We evaluate several multipole acceptance criteria (MACs) and identify a relatively simple approximate partial error MAC which provides high accuracy at low computational cost. The optical depth estimates are found to agree very well with those of the RADMC-3D radiation transport code, with the tree-solver being much faster. Our algorithm is available in the standard release of the FLASH code in version 4.0 and later.

  3. Application of parallel distributed Lagrange multiplier technique to simulate coupled Fluid-Granular flows in pipes with varying Cross-Sectional area

    DOE PAGES

    Kanarska, Yuliya; Walton, Otis

    2015-11-30

    Fluid-granular flows are common phenomena in nature and industry. Here, an efficient computational technique based on the distributed Lagrange multiplier method is utilized to simulate complex fluid-granular flows. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. The particle–particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEMmore » method with some modifications using the volume of an overlapping region as an input to the contact forces. Here, a parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library.« less

  4. Numerical solution of the Navier-Stokes equations for blunt nosed bodies in supersonic flows

    NASA Technical Reports Server (NTRS)

    Warsi, Z. U. A.; Devarayalu, K.; Thompson, J. F.

    1978-01-01

    A time dependent, two dimensional Navier-Stokes code employing the method of body fitted coordinate technique was developed for supersonic flows past blunt bodies of arbitrary shapes. The bow shock ahead of the body is obtained as part of the solution, viz., by shock capturing. A first attempt at mesh refinement in the shock region was made by using the forcing function in the coordinate generating equations as a linear function of the density gradients. The technique displaces a few lines from the neighboring region into the shock region. Numerical calculations for Mach numbers 2 and 4.6 and Reynolds numbers from 320 to 10,000 were performed for a circular cylinder with and without a fairing. Results of Mach number 4.6 and Reynolds number 10,000 for an isothermal wall temperature of 556 K are presented in detail.

  5. Adaptive unstructured triangular mesh generation and flow solvers for the Navier-Stokes equations at high Reynolds number

    NASA Technical Reports Server (NTRS)

    Ashford, Gregory A.; Powell, Kenneth G.

    1995-01-01

    A method for generating high quality unstructured triangular grids for high Reynolds number Navier-Stokes calculations about complex geometries is described. Careful attention is paid in the mesh generation process to resolving efficiently the disparate length scales which arise in these flows. First the surface mesh is constructed in a way which ensures that the geometry is faithfully represented. The volume mesh generation then proceeds in two phases thus allowing the viscous and inviscid regions of the flow to be meshed optimally. A solution-adaptive remeshing procedure which allows the mesh to adapt itself to flow features is also described. The procedure for tracking wakes and refinement criteria appropriate for shock detection are described. Although at present it has only been implemented in two dimensions, the grid generation process has been designed with the extension to three dimensions in mind. An implicit, higher-order, upwind method is also presented for computing compressible turbulent flows on these meshes. Two recently developed one-equation turbulence models have been implemented to simulate the effects of the fluid turbulence. Results for flow about a RAE 2822 airfoil and a Douglas three-element airfoil are presented which clearly show the improved resolution obtainable.

  6. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  7. Three dimensional unstructured multigrid for the Euler equations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1991-01-01

    The three dimensional Euler equations are solved on unstructured tetrahedral meshes using a multigrid strategy. The driving algorithm consists of an explicit vertex-based finite element scheme, which employs an edge-based data structure to assemble the residuals. The multigrid approach employs a sequence of independently generated coarse and fine meshes to accelerate the convergence to steady-state of the fine grid solution. Variables, residuals and corrections are passed back and forth between the various grids of the sequence using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using linear interpolation. The addresses and weights for interpolation are determined in a preprocessing stage using an efficient graph traversal algorithm. The preprocessing operation is shown to require a negligible fraction of the CPU time required by the overall solution procedure, while gains in overall solution efficiencies greater than an order of magnitude are demonstrated on meshes containing up to 350,000 vertices. Solutions using globally regenerated fine meshes as well as adaptively refined meshes are given.

  8. Detached Eddy Simulation of the UH-60 Rotor Wake Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Ahmad, Jasim U.

    2012-01-01

    Time-dependent Navier-Stokes flow simulations have been carried out for a UH-60 rotor with simplified hub in forward flight and hover flight conditions. Flexible rotor blades and flight trim conditions are modeled and established by loosely coupling the OVERFLOW Computational Fluid Dynamics (CFD) code with the CAMRAD II helicopter comprehensive code. High order spatial differences, Adaptive Mesh Refinement (AMR), and Detached Eddy Simulation (DES) are used to obtain highly resolved vortex wakes, where the largest turbulent structures are captured. Special attention is directed towards ensuring the dual time accuracy is within the asymptotic range, and verifying the loose coupling convergence process using AMR. The AMR/DES simulation produced vortical worms for forward flight and hover conditions, similar to previous results obtained for the TRAM rotor in hover. AMR proved to be an efficient means to capture a rotor wake without a priori knowledge of the wake shape.

  9. A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation

    NASA Technical Reports Server (NTRS)

    Tessler, A.; Riggs, H. R.; Dambach, M.

    1998-01-01

    A four-node, quadrilateral smoothing element is developed based upon a penalized-discrete-least-squares variational formulation. The smoothing methodology recovers C1-continuous stresses, thus enabling effective a posteriori error estimation and automatic adaptive mesh refinement. The element formulation is originated with a five-node macro-element configuration consisting of four triangular anisoparametric smoothing elements in a cross-diagonal pattern. This element pattern enables a convenient closed-form solution for the degrees of freedom of the interior node, resulting from enforcing explicitly a set of natural edge-wise penalty constraints. The degree-of-freedom reduction scheme leads to a very efficient formulation of a four-node quadrilateral smoothing element without any compromise in robustness and accuracy of the smoothing analysis. The application examples include stress recovery and error estimation in adaptive mesh refinement solutions for an elasticity problem and an aerospace structural component.

  10. Automatic mesh refinement and parallel load balancing for Fokker-Planck-DSMC algorithm

    NASA Astrophysics Data System (ADS)

    Küchlin, Stephan; Jenny, Patrick

    2018-06-01

    Recently, a parallel Fokker-Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers was developed by the authors. Fokker-Planck-DSMC (FP-DSMC) is an augmentation of the classical DSMC algorithm, which mitigates the near-continuum deficiencies in terms of computational cost of pure DSMC. At each time step, based on a local Knudsen number criterion, the discrete DSMC collision operator is dynamically switched to the Fokker-Planck operator, which is based on the integration of continuous stochastic processes in time, and has fixed computational cost per particle, rather than per collision. In this contribution, we present an extension of the previous implementation with automatic local mesh refinement and parallel load-balancing. In particular, we show how the properties of discrete approximations to space-filling curves enable an efficient implementation. Exemplary numerical studies highlight the capabilities of the new code.

  11. A Cartesian grid approach with hierarchical refinement for compressible flows

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1994-01-01

    Many numerical studies of flows that involve complex geometries are limited by the difficulties in generating suitable grids. We present a Cartesian boundary scheme for two-dimensional, compressible flows that is unfettered by the need to generate a computational grid and so it may be used, routinely, even for the most awkward of geometries. In essence, an arbitrary-shaped body is allowed to blank out some region of a background Cartesian mesh and the resultant cut-cells are singled out for special treatment. This is done within a finite-volume framework and so, in principle, any explicit flux-based integration scheme can take advantage of this method for enforcing solid boundary conditions. For best effect, the present Cartesian boundary scheme has been combined with a sophisticated, local mesh refinement scheme, and a number of examples are shown in order to demonstrate the efficacy of the combined algorithm for simulations of shock interaction phenomena.

  12. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2017-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a flexible UH-60A rotor in forward flight, where the rotor wake interacts with the rotor blades. These flow conditions involved blade vortex interaction and dynamic stall, two common conditions that occur as modern helicopter designs strive to achieve greater flight speeds and payload capacity. These numerical simulations utilized high-order spatial accuracy and delayed detached eddy simulation. Emphasis was placed on understanding how improved rotor wake resolution affects the prediction of the normal force, pitching moment, and chord force of the rotor. Adaptive mesh refinement was used to highly resolve the turbulent rotor wake in a computationally efficient manner. Moreover, blade vortex interaction was found to trigger dynamic stall. Time-dependent flow visualization was utilized to provide an improved understanding of the numerical and physical mechanisms involved with three-dimensional dynamic stall.

  13. Investigation of different simulation approaches on a high-head Francis turbine and comparison with model test data: Francis-99

    NASA Astrophysics Data System (ADS)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2015-01-01

    Numerical investigations of hydraulic turbo machines under steady-state conditions are state of the art in current product development processes. Nevertheless allow increasing computational resources refined discretization methods, more sophisticated turbulence models and therefore better predictions of results as well as the quantification of existing uncertainties. Single stage investigations are done using in-house tools for meshing and set-up procedure. Beside different model domains and a mesh study to reduce mesh dependencies, the variation of several eddy viscosity and Reynolds stress turbulence models are investigated. All obtained results are compared with available model test data. In addition to global values, measured magnitudes in the vaneless space, at runner blade and draft tube positions in term of pressure and velocity are considered. From there it is possible to estimate the influence and relevance of various model domains depending on different operating points and numerical variations. Good agreement can be found for pressure and velocity measurements with all model configurations and, except the BSL-RSM model, all turbulence models. At part load, deviations in hydraulic efficiency are at a large magnitude, whereas at best efficiency and high load operating point efficiencies are close to the measurement. A consideration of the runner side gap geometry as well as a refined mesh is able to improve the results either in relation to hydraulic efficiency or velocity distribution with the drawbacks of less stable numerics and increasing computational time.

  14. Methods for prismatic/tetrahedral grid generation and adaptation

    NASA Technical Reports Server (NTRS)

    Kallinderis, Y.

    1995-01-01

    The present work involves generation of hybrid prismatic/tetrahedral grids for complex 3-D geometries including multi-body domains. The prisms cover the region close to each body's surface, while tetrahedra are created elsewhere. Two developments are presented for hybrid grid generation around complex 3-D geometries. The first is a new octree/advancing front type of method for generation of the tetrahedra of the hybrid mesh. The main feature of the present advancing front tetrahedra generator that is different from previous such methods is that it does not require the creation of a background mesh by the user for the determination of the grid-spacing and stretching parameters. These are determined via an automatically generated octree. The second development is a method for treating the narrow gaps in between different bodies in a multiply-connected domain. This method is applied to a two-element wing case. A High Speed Civil Transport (HSCT) type of aircraft geometry is considered. The generated hybrid grid required only 170 K tetrahedra instead of an estimated two million had a tetrahedral mesh been used in the prisms region as well. A solution adaptive scheme for viscous computations on hybrid grids is also presented. A hybrid grid adaptation scheme that employs both h-refinement and redistribution strategies is developed to provide optimum meshes for viscous flow computations. Grid refinement is a dual adaptation scheme that couples 3-D, isotropic division of tetrahedra and 2-D, directional division of prisms.

  15. Earthquake Rupture Dynamics using Adaptive Mesh Refinement and High-Order Accurate Numerical Methods

    NASA Astrophysics Data System (ADS)

    Kozdon, J. E.; Wilcox, L.

    2013-12-01

    Our goal is to develop scalable and adaptive (spatial and temporal) numerical methods for coupled, multiphysics problems using high-order accurate numerical methods. To do so, we are developing an opensource, parallel library known as bfam (available at http://bfam.in). The first application to be developed on top of bfam is an earthquake rupture dynamics solver using high-order discontinuous Galerkin methods and summation-by-parts finite difference methods. In earthquake rupture dynamics, wave propagation in the Earth's crust is coupled to frictional sliding on fault interfaces. This coupling is two-way, required the simultaneous simulation of both processes. The use of laboratory-measured friction parameters requires near-fault resolution that is 4-5 orders of magnitude higher than that needed to resolve the frequencies of interest in the volume. This, along with earlier simulations using a low-order, finite volume based adaptive mesh refinement framework, suggest that adaptive mesh refinement is ideally suited for this problem. The use of high-order methods is motivated by the high level of resolution required off the fault in earlier the low-order finite volume simulations; we believe this need for resolution is a result of the excessive numerical dissipation of low-order methods. In bfam spatial adaptivity is handled using the p4est library and temporal adaptivity will be accomplished through local time stepping. In this presentation we will present the guiding principles behind the library as well as verification of code against the Southern California Earthquake Center dynamic rupture code validation test problems.

  16. Capturing Multiscale Phenomena via Adaptive Mesh Refinement (AMR) in 2D and 3D Atmospheric Flows

    NASA Astrophysics Data System (ADS)

    Ferguson, J. O.; Jablonowski, C.; Johansen, H.; McCorquodale, P.; Ullrich, P. A.; Langhans, W.; Collins, W. D.

    2017-12-01

    Extreme atmospheric events such as tropical cyclones are inherently complex multiscale phenomena. Such phenomena are a challenge to simulate in conventional atmosphere models, which typically use rather coarse uniform-grid resolutions. To enable study of these systems, Adaptive Mesh Refinement (AMR) can provide sufficient local resolution by dynamically placing high-resolution grid patches selectively over user-defined features of interest, such as a developing cyclone, while limiting the total computational burden of requiring such high-resolution globally. This work explores the use of AMR with a high-order, non-hydrostatic, finite-volume dynamical core, which uses the Chombo AMR library to implement refinement in both space and time on a cubed-sphere grid. The characteristics of the AMR approach are demonstrated via a series of idealized 2D and 3D test cases designed to mimic atmospheric dynamics and multiscale flows. In particular, new shallow-water test cases with forcing mechanisms are introduced to mimic the strengthening of tropical cyclone-like vortices and to include simplified moisture and convection processes. The forced shallow-water experiments quantify the improvements gained from AMR grids, assess how well transient features are preserved across grid boundaries, and determine effective refinement criteria. In addition, results from idealized 3D test cases are shown to characterize the accuracy and stability of the non-hydrostatic 3D AMR dynamical core.

  17. A mortar formulation including viscoelastic layers for vibration analysis

    NASA Astrophysics Data System (ADS)

    Paolini, Alexander; Kollmannsberger, Stefan; Rank, Ernst; Horger, Thomas; Wohlmuth, Barbara

    2018-05-01

    In order to reduce the transfer of sound and vibrations in structures such as timber buildings, thin elastomer layers can be embedded between their components. The influence of these elastomers on the response of the structures in the low frequency range can be determined accurately by using conforming hexahedral finite elements. Three-dimensional mesh generation, however, is yet a non-trivial task and mesh refinements which may be necessary at the junctions can cause a high computational effort. One remedy is to mesh the components independently from each other and to couple them using the mortar method. Further, the hexahedral mesh for the thin elastomer layer itself can be avoided by integrating its elastic behavior into the mortar formulation. The present paper extends this mortar formulation to take damping into account such that frequency response analyses can be performed more accurately. Finally, the proposed method is verified by numerical examples.

  18. A mixed volume grid approach for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Jorgenson, Philip C. E.

    1996-01-01

    An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.

  19. Vertical Scan (V-SCAN) for 3-D Grid Adaptive Mesh Refinement for an atmospheric Model Dynamical Core

    NASA Astrophysics Data System (ADS)

    Andronova, N. G.; Vandenberg, D.; Oehmke, R.; Stout, Q. F.; Penner, J. E.

    2009-12-01

    One of the major building blocks of a rigorous representation of cloud evolution in global atmospheric models is a parallel adaptive grid MPI-based communication library (an Adaptive Blocks for Locally Cartesian Topologies library -- ABLCarT), which manages the block-structured data layout, handles ghost cell updates among neighboring blocks and splits a block as refinements occur. The library has several modules that provide a layer of abstraction for adaptive refinement: blocks, which contain individual cells of user data; shells - the global geometry for the problem, including a sphere, reduced sphere, and now a 3D sphere; a load balancer for placement of blocks onto processors; and a communication support layer which encapsulates all data movement. A major performance concern with adaptive mesh refinement is how to represent calculations that have need to be sequenced in a particular order in a direction, such as calculating integrals along a specific path (e.g. atmospheric pressure or geopotential in the vertical dimension). This concern is compounded if the blocks have varying levels of refinement, or are scattered across different processors, as can be the case in parallel computing. In this paper we describe an implementation in ABLCarT of a vertical scan operation, which allows computing along vertical paths in the correct order across blocks transparent to their resolution and processor location. We test this functionality on a 2D and a 3D advection problem, which tests the performance of the model’s dynamics (transport) and physics (sources and sinks) for different model resolutions needed for inclusion of cloud formation.

  20. Air Vehicle Integration and Technology Research (AVIATR). Task Order 0023: Predictive Capability for Hypersonic Structural Response and Life Prediction: Phase 2 - Detailed Design of Hypersonic Cruise Vehicle Hot-Structure

    DTIC Science & Technology

    2012-02-01

    x Approved for public release; distribution unlimited. I-DEAS/ TMG Thermal analysis software IR Initial Review ITAR International Traffic in Arms...the finite element code I- DEAS/ TMG . A mesh refinement study was conducted on the first panel to determine the mesh density required to accurately...ng neer ng, pera ons ec no ogy oe ng esearc ec no ogy • heat transfer analysis conducted with I-DEAS/ TMG exercises mapping of temperatures to

  1. Simulation of Needle-Type Corona Electrodes by the Finite Element Method

    NASA Astrophysics Data System (ADS)

    Yang, Shiyou; José Márcio, Machado; Nancy Mieko, Abe; Angelo, Passaro

    2007-12-01

    This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.

  2. Mesh-type acoustic vector sensor

    NASA Astrophysics Data System (ADS)

    Zalalutdinov, M. K.; Photiadis, D. M.; Szymczak, W. G.; McMahon, J. W.; Bucaro, J. A.; Houston, B. H.

    2017-07-01

    Motivated by the predictions of a theoretical model developed to describe the acoustic flow force exerted on closely spaced nano-fibers in a viscous medium, we have demonstrated a novel concept for a particle velocity-based directional acoustic sensor. The central element of the concept exploits the acoustically induced normal displacement of a fine mesh as a measure of the collinear projection of the particle velocity in the sound wave. The key observations are (i) the acoustically induced flow force on an individual fiber within the mesh is nearly independent of the fiber diameter and (ii) the mesh-flow interaction can be well-described theoretically by a nearest neighbor coupling approximation. Scaling arguments based on these two observations indicate that the refinement of the mesh down to the nanoscale leads to significant improvements in performance. The combination of the two dimensional nature of the mesh together with the nanoscale dimensions provides a dramatic gain in the total length of fiber exposed to the flow, leading to a sensitivity enhancement by orders of magnitude. We describe the fabrication of a prototype mesh sensor equipped with optical readout. Preliminary measurements carried out over a considerable bandwidth together with the results of numerical simulations are in good agreement with the theory, thus providing a proof of concept.

  3. The impact of hydrophobic hernia mesh coating by omega fatty acid on atraumatic fibrin sealant fixation.

    PubMed

    Gruber-Blum, S; Brand, J; Keibl, C; Redl, H; Fortelny, R H; May, C; Petter-Puchner, A H

    2015-08-01

    Fibrin sealant (FS) is a safe and efficient fixation method in open intraperitoneal hernia repair. While favourable results have been achieved with hydrophilic meshes, hydrophobic (such as Omega fatty acid coated) meshes (OFM) have not been specifically assessed so far. Atrium C-qur lite(®) mesh was tested in rats in models of open onlay and intraperitoneal hernia repair. 44 meshes (2 × 2 cm) were implanted in 30 male Sprague-Dawley rats in open (n = 2 meshes per animal) and intraperitoneal technique (IPOM; n = 1 mesh per animal). Animals were randomised to four groups: onlay and IPOM sutured vs. sealed. Follow-up was 6 weeks, sutured groups serving as controls. Evaluation criteria were mesh dislocation, adhesions and foreign body reaction. FS provided a reliable fixation in onlay technique, whereas OFM meshes dislocated in the IPOM position when sealed only. FS mesh fixation was safe with OFM meshes in open onlay repair. Intraperitoneal placement of hydrophobic meshes requires additional fixation and cannot be achieved with FS alone.

  4. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chipman, V D

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficientlymore » relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.« less

  5. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  6. A Computational Icing Effects Study for a Three-Dimensional Wing: Comparison with Experimental Data and Investigation of Spanwise Variation

    NASA Technical Reports Server (NTRS)

    Thompson, D.; Mogili, P.; Chalasani, S.; Addy, H.; Choo, Y.

    2004-01-01

    Steady-state solutions of the Reynolds-averaged Navier-Stokes (RANS) equations were computed using the Colbalt flow solver for a constant-section, rectangular wing based on an extruded two-dimensional glaze ice shape. The one equation Spalart-Allmaras turbulence model was used. The results were compared with data obtained from a recent wind tunnel test. Computed results indicate that the steady RANS solutions do not accurately capture the recirculating region downstream of the ice accretion, even after a mesh refinement. The resulting predicted reattachment is farther downstream than indicated by the experimental data. Additionally, the solutions computed on a relatively coarse baseline mesh had detailed flow characteristics that were different from those computed on the refined mesh or the experimental data. Steady RANS solutions were also computed to investigate the effects of spanwise variation in the ice shape. The spanwise variation was obtained via a bleeding function that merged the ice shape with the clean wing using a sinusoidal spanwise variation. For these configurations, the results predicted for the extruded shape provided conservative estimates for the performance degradation of the wing. Additionally, the spanwise variation in the ice shape and the resulting differences in the flow fields did not significantly change the location of the primary reattachment.

  7. A new multiscale air quality transport model (Fluidity, 4.1.9) using fully unstructured anisotropic adaptive mesh technology

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-06-01

    A new anisotropic hr-adaptive mesh technique has been applied to modelling of multiscale transport phenomena, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been setup for two-dimensional (2-D) transport phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes.

  8. White Dwarf Mergers On Adaptive Meshes. I. Methodology And Code Verification

    DOE PAGES

    Katz, Max P.; Zingale, Michael; Calder, Alan C.; ...

    2016-03-02

    The Type Ia supernova (SN Ia) progenitor problem is one of the most perplexing and exciting problems in astrophysics, requiring detailed numerical modeling to complement observations of these explosions. One possible progenitor that has merited recent theoretical attention is the white dwarf (WD) merger scenario, which has the potential to naturally explain many of the observed characteristics of SNe Ia. To date there have been relatively few self-consistent simulations of merging WD systems using mesh-based hydrodynamics. This is the first study in a series describing simulations of these systems using a hydrodynamics code with adaptive mesh refinement. In this papermore » we describe our numerical methodology and discuss our implementation in the compressible hydrodynamics code CASTRO, which solves the Euler equations, and the Poisson equation for self-gravity, and couples the gravitational and rotation forces to the hydrodynamics. Standard techniques for coupling gravitation and rotation forces to the hydrodynamics do not adequately conserve the total energy of the system for our problem, but recent advances in the literature allow progress and we discuss our implementation here. We present a set of test problems demonstrating the extent to which our software sufficiently models a system where large amounts of mass are advected on the computational domain over long timescales. Finally, future papers in this series will describe our treatment of the initial conditions of these systems and will examine the early phases of the merger to determine its viability for triggering a thermonuclear detonation.« less

  9. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Aaron M; Collins, Benjamin S; Downar, Thomas

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-Pmore » $$_3$$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.« less

  10. Dynamically adaptive data-driven simulation of extreme hydrological flows

    NASA Astrophysics Data System (ADS)

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2018-02-01

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  11. Procedure for Adapting Direct Simulation Monte Carlo Meshes

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.; Wilmoth, Richard G.; Carlson, Ann B.; Rault, Didier F. G.

    1992-01-01

    A technique is presented for adapting computational meshes used in the G2 version of the direct simulation Monte Carlo method. The physical ideas underlying the technique are discussed, and adaptation formulas are developed for use on solutions generated from an initial mesh. The effect of statistical scatter on adaptation is addressed, and results demonstrate the ability of this technique to achieve more accurate results without increasing necessary computational resources.

  12. Object-Oriented Scientific Programming with Fortran 90

    NASA Technical Reports Server (NTRS)

    Norton, C.

    1998-01-01

    Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.

  13. 3D forward modeling and response analysis for marine CSEMs towed by two ships

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Yin, Chang-Chun; Liu, Yun-He; Ren, Xiu-Yan; Qi, Yan-Fu; Cai, Jing

    2018-03-01

    A dual-ship-towed marine electromagnetic (EM) system is a new marine exploration technology recently being developed in China. Compared with traditional marine EM systems, the new system tows the transmitters and receivers using two ships, rendering it unnecessary to position EM receivers at the seafloor in advance. This makes the system more flexible, allowing for different configurations (e.g., in-line, broadside, and azimuthal and concentric scanning) that can produce more detailed underwater structural information. We develop a three-dimensional goal-oriented adaptive forward modeling method for the new marine EM system and analyze the responses for four survey configurations. Oceanbottom topography has a strong effect on the marine EM responses; thus, we develop a forward modeling algorithm based on the finite-element method and unstructured grids. To satisfy the requirements for modeling the moving transmitters of a dual-ship-towed EM system, we use a single mesh for each of the transmitter locations. This mitigates the mesh complexity by refining the grids near the transmitters and minimizes the computational cost. To generate a rational mesh while maintaining the accuracy for single transmitter, we develop a goal-oriented adaptive method with separate mesh refinements for areas around the transmitting source and those far away. To test the modeling algorithm and accuracy, we compare the EM responses calculated by the proposed algorithm and semi-analytical results and from published sources. Furthermore, by analyzing the EM responses for four survey configurations, we are confirm that compared with traditional marine EM systems with only in-line array, a dual-ship-towed marine system can collect more data.

  14. Quadrilateral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Benzley, Steven E

    2012-10-16

    Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.

  15. Accuracy Quantification of the Loci-CHEM Code for Chamber Wall Heat Transfer in a GO2/GH2 Single Element Model Problem

    NASA Technical Reports Server (NTRS)

    West, Jeff; Westra, Doug; Lin, Jeff; Tucker, Kevin

    2006-01-01

    All solutions with Loci-CHEM achieved demonstrated steady state and mesh convergence. Preconditioning had no effect on solution accuracy and typically yields a 3-5times solution speed-up. The SST turbulence model has superior performance, relative to the data in the head end region, for the rise rate and peak heat flux. It was slightly worse than the others in the downstream region where all over-predicted the data by 30-100%.There was systematic mesh refinement in the unstructured volume and structured boundary layer areas produced only minor solution differences. Mesh convergence was achieved. Overall, Loci-CHEM satisfactorily predicts heat flux rise rate and peak heat flux and significantly over predicts the downstream heat flux.

  16. Low Profile Mesh Plating for Patella Fractures: Video of a Novel Surgical Technique.

    PubMed

    Verbeek, Diederik O; Hickerson, Lindsay E; Warner, Stephen J; Helfet, David L; Lorich, Dean G

    2016-08-01

    Patella fractures can be challenging to treat particularly in the presence of inferior pole comminution. In this video we present a novel surgical technique for the treatment of patella fractures using a small fragment low profile mesh plate. Key points are the surgical exposure with direct visualization of the articular reduction, the preparation of the mesh plate to accommodate patellar anatomy and the augmentation of the construct using Krackow sutures to address inferior pole comminution. Low profile mesh plating allows for multiplanar fixation of patella fractures while avoiding implant and fixation problems related to tension band fixation. Our early experience with this technique is encouraging and it appears that this technique is useful for the treatment of the majority of patella fractures.

  17. Large-scale subject-specific cerebral arterial tree modeling using automated parametric mesh generation for blood flow simulation.

    PubMed

    Ghaffari, Mahsa; Tangen, Kevin; Alaraj, Ali; Du, Xinjian; Charbel, Fady T; Linninger, Andreas A

    2017-12-01

    In this paper, we present a novel technique for automatic parametric mesh generation of subject-specific cerebral arterial trees. This technique generates high-quality and anatomically accurate computational meshes for fast blood flow simulations extending the scope of 3D vascular modeling to a large portion of cerebral arterial trees. For this purpose, a parametric meshing procedure was developed to automatically decompose the vascular skeleton, extract geometric features and generate hexahedral meshes using a body-fitted coordinate system that optimally follows the vascular network topology. To validate the anatomical accuracy of the reconstructed vasculature, we performed statistical analysis to quantify the alignment between parametric meshes and raw vascular images using receiver operating characteristic curve. Geometric accuracy evaluation showed an agreement with area under the curves value of 0.87 between the constructed mesh and raw MRA data sets. Parametric meshing yielded on-average, 36.6% and 21.7% orthogonal and equiangular skew quality improvement over the unstructured tetrahedral meshes. The parametric meshing and processing pipeline constitutes an automated technique to reconstruct and simulate blood flow throughout a large portion of the cerebral arterial tree down to the level of pial vessels. This study is the first step towards fast large-scale subject-specific hemodynamic analysis for clinical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Large-eddy simulation of the passage of a shock wave through homogeneous turbulence

    NASA Astrophysics Data System (ADS)

    Braun, N. O.; Pullin, D. I.; Meiron, D. I.

    2017-11-01

    The passage of a nominally plane shockwave through homogeneous, compressible turbulence is a canonical problem representative of flows seen in supernovae, supersonic combustion engines, and inertial confinement fusion. The interaction of isotropic turbulence with a stationary normal shockwave is considered at inertial range Taylor Reynolds numbers, Reλ = 100 - 2500 , using Large Eddy Simulation (LES). The unresolved, subgrid terms are approximated by the stretched-vortex model (Kosovic et al., 2002), which allows self-consistent reconstruction of the subgrid contributions to the turbulent statistics of interest. The mesh is adaptively refined in the vicinity of the shock to resolve small amplitude shock oscillations, and the implications of mesh refinement on the subgrid modeling are considered. Simulations are performed at a range of shock Mach numbers, Ms = 1.2 - 3.0 , and turbulent Mach numbers, Mt = 0.06 - 0.18 , to explore the parameter space of the interaction at high Reynolds number. The LES shows reasonable agreement with linear analysis and lower Reynolds number direct numerical simulations. LANL Subcontract 305963.

  19. Fully implicit adaptive mesh refinement solver for 2D MHD

    NASA Astrophysics Data System (ADS)

    Philip, B.; Chacon, L.; Pernice, M.

    2008-11-01

    Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)

  20. COMET-AR User's Manual: COmputational MEchanics Testbed with Adaptive Refinement

    NASA Technical Reports Server (NTRS)

    Moas, E. (Editor)

    1997-01-01

    The COMET-AR User's Manual provides a reference manual for the Computational Structural Mechanics Testbed with Adaptive Refinement (COMET-AR), a software system developed jointly by Lockheed Palo Alto Research Laboratory and NASA Langley Research Center under contract NAS1-18444. The COMET-AR system is an extended version of an earlier finite element based structural analysis system called COMET, also developed by Lockheed and NASA. The primary extensions are the adaptive mesh refinement capabilities and a new "object-like" database interface that makes COMET-AR easier to extend further. This User's Manual provides a detailed description of the user interface to COMET-AR from the viewpoint of a structural analyst.

  1. Ramses-GPU: Second order MUSCL-Handcock finite volume fluid solver

    NASA Astrophysics Data System (ADS)

    Kestener, Pierre

    2017-10-01

    RamsesGPU is a reimplementation of RAMSES (ascl:1011.007) which drops the adaptive mesh refinement (AMR) features to optimize 3D uniform grid algorithms for modern graphics processor units (GPU) to provide an efficient software package for astrophysics applications that do not need AMR features but do require a very large number of integration time steps. RamsesGPU provides an very efficient C++/CUDA/MPI software implementation of a second order MUSCL-Handcock finite volume fluid solver for compressible hydrodynamics as a magnetohydrodynamics solver based on the constraint transport technique. Other useful modules includes static gravity, dissipative terms (viscosity, resistivity), and forcing source term for turbulence studies, and special care was taken to enhance parallel input/output performance by using state-of-the-art libraries such as HDF5 and parallel-netcdf.

  2. Surface tension models for a multi-material ALE code with AMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wangyi; Koniges, Alice; Gott, Kevin

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  3. Surface tension models for a multi-material ALE code with AMR

    DOE PAGES

    Liu, Wangyi; Koniges, Alice; Gott, Kevin; ...

    2017-06-01

    A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less

  4. A hybrid multiview stereo algorithm for modeling urban scenes.

    PubMed

    Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep

    2013-01-01

    We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.

  5. Adaptive mesh refinement and adjoint methods in geophysics simulations

    NASA Astrophysics Data System (ADS)

    Burstedde, Carsten

    2013-04-01

    It is an ongoing challenge to increase the resolution that can be achieved by numerical geophysics simulations. This applies to considering sub-kilometer mesh spacings in global-scale mantle convection simulations as well as to using frequencies up to 1 Hz in seismic wave propagation simulations. One central issue is the numerical cost, since for three-dimensional space discretizations, possibly combined with time stepping schemes, a doubling of resolution can lead to an increase in storage requirements and run time by factors between 8 and 16. A related challenge lies in the fact that an increase in resolution also increases the dimensionality of the model space that is needed to fully parametrize the physical properties of the simulated object (a.k.a. earth). Systems that exhibit a multiscale structure in space are candidates for employing adaptive mesh refinement, which varies the resolution locally. An example that we found well suited is the mantle, where plate boundaries and fault zones require a resolution on the km scale, while deeper area can be treated with 50 or 100 km mesh spacings. This approach effectively reduces the number of computational variables by several orders of magnitude. While in this case it is possible to derive the local adaptation pattern from known physical parameters, it is often unclear what are the most suitable criteria for adaptation. We will present the goal-oriented error estimation procedure, where such criteria are derived from an objective functional that represents the observables to be computed most accurately. Even though this approach is well studied, it is rarely used in the geophysics community. A related strategy to make finer resolution manageable is to design methods that automate the inference of model parameters. Tweaking more than a handful of numbers and judging the quality of the simulation by adhoc comparisons to known facts and observations is a tedious task and fundamentally limited by the turnaround times required by human intervention and analysis. Specifying an objective functional that quantifies the misfit between the simulation outcome and known constraints and then minimizing it through numerical optimization can serve as an automated technique for parameter identification. As suggested by the similarity in formulation, the numerical algorithm is closely related to the one used for goal-oriented error estimation. One common point is that the so-called adjoint equation needs to be solved numerically. We will outline the derivation and implementation of these methods and discuss some of their pros and cons, supported by numerical results.

  6. 3D CSEM inversion based on goal-oriented adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with complex geological scenarios by applying it to the inversion of synthetic marine controlled source EM data generated for a complex 3D offshore model with significant seafloor topography.

  7. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  8. FY08 LDRD Final Report A New Method for Wave Propagation in Elastic Media LDRD Project Tracking Code: 05-ERD-079

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, A

    The LDRD project 'A New Method for Wave Propagation in Elastic Media' developed several improvements to the traditional finite difference technique for seismic wave propagation, including a summation-by-parts discretization which is provably stable for arbitrary heterogeneous materials, an accurate treatment of non-planar topography, local mesh refinement, and stable outflow boundary conditions. This project also implemented these techniques in a parallel open source computer code called WPP, and participated in several seismic modeling efforts to simulate ground motion due to earthquakes in Northern California. This research has been documented in six individual publications which are summarized in this report. Of thesemore » publications, four are published refereed journal articles, one is an accepted refereed journal article which has not yet been published, and one is a non-refereed software manual. The report concludes with a discussion of future research directions and exit plan.« less

  9. A Mesh Refinement Study on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Spellman, Regina L.

    2006-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0-in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at four discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density.

  10. Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems

    NASA Technical Reports Server (NTRS)

    Steinthorsson, Erlendur; Modiano, David; Colella, Phillip

    1995-01-01

    To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.

  11. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode`s and pde`s. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  12. Quality factors and local adaption (with applications in Eulerian hydrodynamics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowley, W.P.

    1992-06-17

    Adapting the mesh to suit the solution is a technique commonly used for solving both ode's and pde's. For Lagrangian hydrodynamics, ALE and Free-Lagrange are examples of structured and unstructured adaptive methods. For Eulerian hydrodynamics the two basic approaches are the macro-unstructuring technique pioneered by Oliger and Berger and the micro-structuring technique due to Lohner and others. Here we will describe a new micro-unstructuring technique, LAM, (for Local Adaptive Mesh) as applied to Eulerian hydrodynamics. The LAM technique consists of two independent parts: (1) the time advance scheme is a variation on the artificial viscosity method; (2) the adaption schememore » uses a micro-unstructured mesh with quadrilateral mesh elements. The adaption scheme makes use of quality factors and the relation between these and truncation errors is discussed. The time advance scheme; the adaption strategy; and the effect of different adaption parameters on numerical solutions are described.« less

  13. Laparoscopy-like operative vaginoscopy: a new approach to manage mesh erosions.

    PubMed

    Billone, Valentina; Amorim-Costa, Célia; Campos, Sara; Rabischong, Benoĭt; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz

    2015-01-01

    Mesh erosion through the vagina is the most common complication of synthetic mesh used for pelvic organ prolapse repair. However, conventional transvaginal mesh excision has many technical limitations. We aimed at creating and describing a new surgical technique for transvaginal removal of exposed mesh that would enable better exposition and access, thus facilitating optimal treatment. A step-by-step video showing the technique. A university tertiary care hospital. Five patients previously submitted to pelvic organ prolapse repair using synthetic mesh, presenting mesh erosion through the vagina. Mesh excision using a laparoscopy-like operative vaginoscopy in which standard laparoscopic instruments are used through a single-incision laparoscopic surgery port device placed in the vagina. In all cases, a very good exposure of the mesh was achieved, a minimal tissue traction was required, and the procedures were performed in a very ergonomic way. All the patients were discharged on the same day of the surgery and had a painless postoperative course. So far, there have been no cases of relapse. This seems to be a simple, cheap, and valuable minimally invasive technique with many advantages in comparison with the conventional approach. More cases and time are necessary to access its long-term efficacy. It may possibly be used for the management of other conditions. Copyright © 2015 AAGL. Published by Elsevier Inc. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrnstein, Aaron R.

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration,more » and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO 2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No dramatic or persistent signs of error growth in the passive tracer outgassing or the ocean circulation are observed to result from AMR.« less

  15. Coarsening strategies for unstructured multigrid techniques with application to anisotropic problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1995-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e., the aspect-ratio AR = delta y/delta x is much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotopic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  16. Coarsening Strategies for Unstructured Multigrid Techniques with Application to Anisotropic Problems

    NASA Technical Reports Server (NTRS)

    Morano, E.; Mavriplis, D. J.; Venkatakrishnan, V.

    1996-01-01

    Over the years, multigrid has been demonstrated as an efficient technique for solving inviscid flow problems. However, for viscous flows, convergence rates often degrade. This is generally due to the required use of stretched meshes (i.e. the aspect-ratio AR = (delta)y/(delta)x much less than 1) in order to capture the boundary layer near the body. Usual techniques for generating a sequence of grids that produce proper convergence rates on isotropic meshes are not adequate for stretched meshes. This work focuses on the solution of Laplace's equation, discretized through a Galerkin finite-element formulation on unstructured stretched triangular meshes. A coarsening strategy is proposed and results are discussed.

  17. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  18. Two-dimensional mesh embedding for Galerkin B-spline methods

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Moser, Robert D.

    1995-01-01

    A number of advantages result from using B-splines as basis functions in a Galerkin method for solving partial differential equations. Among them are arbitrary order of accuracy and high resolution similar to that of compact schemes but without the aliasing error. This work develops another property, namely, the ability to treat semi-structured embedded or zonal meshes for two-dimensional geometries. This can drastically reduce the number of grid points in many applications. Both integer and non-integer refinement ratios are allowed. The report begins by developing an algorithm for choosing basis functions that yield the desired mesh resolution. These functions are suitable products of one-dimensional B-splines. Finally, test cases for linear scalar equations such as the Poisson and advection equation are presented. The scheme is conservative and has uniformly high order of accuracy throughout the domain.

  19. Prediction of progressive damage and strength of plain weave composites using the finite element method

    NASA Astrophysics Data System (ADS)

    Srirengan, Kanthikannan

    The overall objective of this research was to develop the finite element code required to efficiently predict the strength of plain weave composite structures. Towards which, three-dimensional conventional progressive damage analysis was implemented to predict the strength of plain weave composites subjected to periodic boundary conditions. Also, modal technique for three-dimensional global/local stress analysis was developed to predict the failure initiation in plain weave composite structures. The progressive damage analysis was used to study the effect of quadrature order, mesh refinement and degradation models on the predicted damage and strength of plain weave composites subjected to uniaxial tension in the warp tow direction. A 1/32sp{nd} part of the representative volume element of a symmetrically stacked configuration was analyzed. The tow geometry was assumed to be sinusoidal. Graphite/Epoxy system was used. Maximum stress criteria and combined stress criteria were used to predict failure in the tows and maximum principal stress criterion was used to predict failure in the matrix. Degradation models based on logical reasoning, micromechanics idealization and experimental comparisons were used to calculate the effective material properties with of damage. Modified Newton-Raphson method was used to determine the incremental solution for each applied strain level. Using a refined mesh and the discount method based on experimental comparisons, the progressive damage and the strength of plain weave composites of waviness ratios 1/3 and 1/6 subjected to uniaxial tension in the warp direction have been characterized. Plain weave composites exhibit a brittle response in uniaxial tension. The strength decreases significantly with the increase in waviness ratio. Damage initiation and collapse were caused dominantly due to intra-tow cracking and inter-tow debonding respectively. The predicted strength of plain weave composites of racetrack geometry and waviness ratio 1/25.7 was compared with analytical predictions and experimental findings and was found to match well. To evaluate the performance of the modal technique, failure initiation in a short woven composite cantilevered plate subjected to end moment and transverse end load was predicted. The global/local predictions were found to reasonably match well with the conventional finite element predictions.

  20. Building Task-Oriented Applications: An Introduction to the Legion Programming Paradigm

    DTIC Science & Technology

    2015-02-01

    These domain definitions are validated prior to execution and represent logical regions that each task can access and manipulate as per the dictates of...Introducing Enzo, an AMR cosmology application, in adaptive mesh refinement - theory and applications. Chicago (IL): Springer Berlin Heidelberg; c2005. p

  1. Use and Analysis of Finite Element Methods for Problems of Solid Mechanics and Fracture

    DTIC Science & Technology

    1993-01-19

    improve global accuracy and convergence rates, specific activities such as mesh refinement may be undertaken local to the crack tips. A criticism ...Sciences, Centro Internacional de Metodos Numnericos en Ingenieria, Barcelona, 1992 11 1 |l!avacek, J Rosenberg, A E Beagles and J R Whiteman

  2. Advances in Parallelization for Large Scale Oct-Tree Mesh Generation

    NASA Technical Reports Server (NTRS)

    O'Connell, Matthew; Karman, Steve L.

    2015-01-01

    Despite great advancements in the parallelization of numerical simulation codes over the last 20 years, it is still common to perform grid generation in serial. Generating large scale grids in serial often requires using special "grid generation" compute machines that can have more than ten times the memory of average machines. While some parallel mesh generation techniques have been proposed, generating very large meshes for LES or aeroacoustic simulations is still a challenging problem. An automated method for the parallel generation of very large scale off-body hierarchical meshes is presented here. This work enables large scale parallel generation of off-body meshes by using a novel combination of parallel grid generation techniques and a hybrid "top down" and "bottom up" oct-tree method. Meshes are generated using hardware commonly found in parallel compute clusters. The capability to generate very large meshes is demonstrated by the generation of off-body meshes surrounding complex aerospace geometries. Results are shown including a one billion cell mesh generated around a Predator Unmanned Aerial Vehicle geometry, which was generated on 64 processors in under 45 minutes.

  3. Method of modifying a volume mesh using sheet extraction

    DOEpatents

    Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM

    2007-02-20

    A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.

  4. Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery

    NASA Astrophysics Data System (ADS)

    Zimkowski, Michael M.

    About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and biocompatibility to function as suitable ventral hernia repair mesh, while offering a reduction in surgical operating time and improving mesh placement characteristics. Future work will include ball-burst tests similar to ASTM D3787-07, direct surgeon feedback studies, and a 30 day chronic porcine model to evaluate the SMP surgical mesh in a realistic hernia repair environment, using laparoscopic techniques for typical ventral hernia repair.

  5. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  6. Investigation of instabilities affecting detonations: Improving the resolution using block-structured adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Ravindran, Prashaanth

    The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.

  7. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Chacón, Luis; Pernice, Michael

    2008-10-01

    An implicit structured adaptive mesh refinement (SAMR) solver for 2D reduced magnetohydrodynamics (MHD) is described. The time-implicit discretization is able to step over fast normal modes, while the spatial adaptivity resolves thin, dynamically evolving features. A Jacobian-free Newton-Krylov method is used for the nonlinear solver engine. For preconditioning, we have extended the optimal "physics-based" approach developed in [L. Chacón, D.A. Knoll, J.M. Finn, An implicit, nonlinear reduced resistive MHD solver, J. Comput. Phys. 178 (2002) 15-36] (which employed multigrid solver technology in the preconditioner for scalability) to SAMR grids using the well-known Fast Adaptive Composite grid (FAC) method [S. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989]. A grid convergence study demonstrates that the solver performance is independent of the number of grid levels and only depends on the finest resolution considered, and that it scales well with grid refinement. The study of error generation and propagation in our SAMR implementation demonstrates that high-order (cubic) interpolation during regridding, combined with a robustly damping second-order temporal scheme such as BDF2, is required to minimize impact of grid errors at coarse-fine interfaces on the overall error of the computation for this MHD application. We also demonstrate that our implementation features the desired property that the overall numerical error is dependent only on the finest resolution level considered, and not on the base-grid resolution or on the number of refinement levels present during the simulation. We demonstrate the effectiveness of the tool on several challenging problems.

  8. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow

    NASA Astrophysics Data System (ADS)

    Henshaw, William D.; Schwendeman, Donald W.

    2006-08-01

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.

  9. Multiresolution strategies for the numerical solution of optimal control problems

    NASA Astrophysics Data System (ADS)

    Jain, Sachin

    There exist many numerical techniques for solving optimal control problems but less work has been done in the field of making these algorithms run faster and more robustly. The main motivation of this work is to solve optimal control problems accurately in a fast and efficient way. Optimal control problems are often characterized by discontinuities or switchings in the control variables. One way of accurately capturing the irregularities in the solution is to use a high resolution (dense) uniform grid. This requires a large amount of computational resources both in terms of CPU time and memory. Hence, in order to accurately capture any irregularities in the solution using a few computational resources, one can refine the mesh locally in the region close to an irregularity instead of refining the mesh uniformly over the whole domain. Therefore, a novel multiresolution scheme for data compression has been designed which is shown to outperform similar data compression schemes. Specifically, we have shown that the proposed approach results in fewer grid points in the grid compared to a common multiresolution data compression scheme. The validity of the proposed mesh refinement algorithm has been verified by solving several challenging initial-boundary value problems for evolution equations in 1D. The examples have demonstrated the stability and robustness of the proposed algorithm. The algorithm adapted dynamically to any existing or emerging irregularities in the solution by automatically allocating more grid points to the region where the solution exhibited sharp features and fewer points to the region where the solution was smooth. Thereby, the computational time and memory usage has been reduced significantly, while maintaining an accuracy equivalent to the one obtained using a fine uniform mesh. Next, a direct multiresolution-based approach for solving trajectory optimization problems is developed. The original optimal control problem is transcribed into a nonlinear programming (NLP) problem that is solved using standard NLP codes. The novelty of the proposed approach hinges on the automatic calculation of a suitable, nonuniform grid over which the NLP problem is solved, which tends to increase numerical efficiency and robustness. Control and/or state constraints are handled with ease, and without any additional computational complexity. The proposed algorithm is based on a simple and intuitive method to balance several conflicting objectives, such as accuracy of the solution, convergence, and speed of the computations. The benefits of the proposed algorithm over uniform grid implementations are demonstrated with the help of several nontrivial examples. Furthermore, two sequential multiresolution trajectory optimization algorithms for solving problems with moving targets and/or dynamically changing environments have been developed. For such problems, high accuracy is desirable only in the immediate future, yet the ultimate mission objectives should be accommodated as well. An intelligent trajectory generation for such situations is thus enabled by introducing the idea of multigrid temporal resolution to solve the associated trajectory optimization problem on a non-uniform grid across time that is adapted to: (i) immediate future, and (ii) potential discontinuities in the state and control variables.

  10. Transvaginal single-incision mesh reconstruction for recurrent or advanced anterior vaginal wall prolapse.

    PubMed

    Marschke, J; Hengst, L; Schwertner-Tiepelmann, N; Beilecke, K; Tunn, R

    2015-05-01

    Single-incision transvaginal mesh for reconstruction of Level I and II prolapses in women with recurrent or advanced prolapse. We evaluated functional, anatomical, sonomorphological and quality-of-life outcome. Data were collected retrospectively for preoperative parameters and at follow-up visits. Anatomical cure was assessed with vaginal examination using the ICS-POP-Q system; introital-ultrasound scan for postvoidal residual and description of mesh characteristics was performed. We applied a visual analogue scale (VAS) and the German Pelvic Floor Questionnaire to assess quality-of-life. Seventy women with cystocele (III: 61.3%/IV: 16%), all post-hysterectomy and in majority (81.4%) after previous cystocele repair, were operated using a single-incision transvaginal technique. Overall anatomical success rate was 95.7% with significant improvement in quality-of-life (p < 0.0001). Mesh erosion occurred in 5.7%, one patient presented symptomatic vaginal vault prolapse. Postvoidal residual declined significantly (58 vs. 2.9%). Sonographic mesh length was 55.7% of implanted mesh with a wide range of mesh position, but no signs of mesh dislocation. There was no de novo dyspareunia reported, one case of preoperative existing dyspareunia worsened. No severe adverse event was observed. We hereby present a trial of a high-risk group of patients requiring reconstruction of anterior and apical vaginal wall in mostly recurrent prolapse situation. Our data support the hypothesis of improved anatomical and functional results and less mesh shrinkage caused by the single-incision technique with fixation in sacrospinous ligament in combination with modification in mesh quality compared to former multi-incision techniques.

  11. Local mesh adaptation technique for front tracking problems

    NASA Astrophysics Data System (ADS)

    Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.

    1998-09-01

    A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.

  12. Wavelet-based Adaptive Mesh Refinement Method for Global Atmospheric Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Rastigejev, Y.

    2011-12-01

    Numerical modeling of global atmospheric chemical transport presents enormous computational difficulties, associated with simulating a wide range of time and spatial scales. The described difficulties are exacerbated by the fact that hundreds of chemical species and thousands of chemical reactions typically are used for chemical kinetic mechanism description. These computational requirements very often forces researches to use relatively crude quasi-uniform numerical grids with inadequate spatial resolution that introduces significant numerical diffusion into the system. It was shown that this spurious diffusion significantly distorts the pollutant mixing and transport dynamics for typically used grid resolution. The described numerical difficulties have to be systematically addressed considering that the demand for fast, high-resolution chemical transport models will be exacerbated over the next decade by the need to interpret satellite observations of tropospheric ozone and related species. In this study we offer dynamically adaptive multilevel Wavelet-based Adaptive Mesh Refinement (WAMR) method for numerical modeling of atmospheric chemical evolution equations. The adaptive mesh refinement is performed by adding and removing finer levels of resolution in the locations of fine scale development and in the locations of smooth solution behavior accordingly. The algorithm is based on the mathematically well established wavelet theory. This allows us to provide error estimates of the solution that are used in conjunction with an appropriate threshold criteria to adapt the non-uniform grid. Other essential features of the numerical algorithm include: an efficient wavelet spatial discretization that allows to minimize the number of degrees of freedom for a prescribed accuracy, a fast algorithm for computing wavelet amplitudes, and efficient and accurate derivative approximations on an irregular grid. The method has been tested for a variety of benchmark problems including numerical simulation of transpacific traveling pollution plumes. The generated pollution plumes are diluted due to turbulent mixing as they are advected downwind. Despite this dilution, it was recently discovered that pollution plumes in the remote troposphere can preserve their identity as well-defined structures for two weeks or more as they circle the globe. Present Global Chemical Transport Models (CTMs) implemented for quasi-uniform grids are completely incapable of reproducing these layered structures due to high numerical plume dilution caused by numerical diffusion combined with non-uniformity of atmospheric flow. It is shown that WAMR algorithm solutions of comparable accuracy as conventional numerical techniques are obtained with more than an order of magnitude reduction in number of grid points, therefore the adaptive algorithm is capable to produce accurate results at a relatively low computational cost. The numerical simulations demonstrate that WAMR algorithm applied the traveling plume problem accurately reproduces the plume dynamics unlike conventional numerical methods that utilizes quasi-uniform numerical grids.

  13. Definition and verification of a complex aircraft for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1986-01-01

    Techniques are reviewed which are of value in CAD/CAM CFD studies of the geometries of new fighter aircraft. In order to refine the computations of the flows to take advantage of the computing power available from supercomputers, it is often necessary to interpolate the geometry of the mesh selected for the numerical analysis of the aircraft shape. Interpolating the geometry permits a higher level of detail in calculations of the flow past specific regions of a design. A microprocessor-based mathematics engine is described for fast image manipulation and rotation to verify that the interpolated geometry will correspond to the design geometry in order to ensure that the flow calculations will remain valid through the interpolation. Applications of the image manipulation system to verify geometrical representations with wire-frame and shaded-surface images are described.

  14. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  15. Effects of geometry on blast-induced loadings

    NASA Astrophysics Data System (ADS)

    Moore, Christopher Dyer

    Simulations of blasts in an urban environment were performed using Loci/BLAST, a full-featured fluid dynamics simulation code, and analyzed. A two-structure urban environment blast case was used to perform a mesh refinement study. Results show that mesh spacing on and around the structure must be 12.5 cm or less to resolve fluid dynamic features sufficiently to yield accurate results. The effects of confinement were illustrated by analyzing a blast initiated from the same location with and without the presence of a neighboring structure. Analysis of extreme pressures and impulses on structures showed that confinement can increase blast loading by more than 200 percent.

  16. An edge-based solution-adaptive method applied to the AIRPLANE code

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Thomas, Scott D.; Cliff, Susan E.

    1995-01-01

    Computational methods to solve large-scale realistic problems in fluid flow can be made more efficient and cost effective by using them in conjunction with dynamic mesh adaption procedures that perform simultaneous coarsening and refinement to capture flow features of interest. This work couples the tetrahedral mesh adaption scheme, 3D_TAG, with the AIRPLANE code to solve complete aircraft configuration problems in transonic and supersonic flow regimes. Results indicate that the near-field sonic boom pressure signature of a cone-cylinder is improved, the oblique and normal shocks are better resolved on a transonic wing, and the bow shock ahead of an unstarted inlet is better defined.

  17. jInv: A Modular and Scalable Framework for Electromagnetic Inverse Problems

    NASA Astrophysics Data System (ADS)

    Belliveau, P. T.; Haber, E.

    2016-12-01

    Inversion is a key tool in the interpretation of geophysical electromagnetic (EM) data. Three-dimensional (3D) EM inversion is very computationally expensive and practical software for inverting large 3D EM surveys must be able to take advantage of high performance computing (HPC) resources. It has traditionally been difficult to achieve those goals in a high level dynamic programming environment that allows rapid development and testing of new algorithms, which is important in a research setting. With those goals in mind, we have developed jInv, a framework for PDE constrained parameter estimation problems. jInv provides optimization and regularization routines, a framework for user defined forward problems, and interfaces to several direct and iterative solvers for sparse linear systems. The forward modeling framework provides finite volume discretizations of differential operators on rectangular tensor product meshes and tetrahedral unstructured meshes that can be used to easily construct forward modeling and sensitivity routines for forward problems described by partial differential equations. jInv is written in the emerging programming language Julia. Julia is a dynamic language targeted at the computational science community with a focus on high performance and native support for parallel programming. We have developed frequency and time-domain EM forward modeling and sensitivity routines for jInv. We will illustrate its capabilities and performance with two synthetic time-domain EM inversion examples. First, in airborne surveys, which use many sources, we achieve distributed memory parallelism by decoupling the forward and inverse meshes and performing forward modeling for each source on small, locally refined meshes. Secondly, we invert grounded source time-domain data from a gradient array style induced polarization survey using a novel time-stepping technique that allows us to compute data from different time-steps in parallel. These examples both show that it is possible to invert large scale 3D time-domain EM datasets within a modular, extensible framework written in a high-level, easy to use programming language.

  18. Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Zhu, J.; Wang, Z.; Fang, F.; Pain, C. C.; Xiang, J.

    2015-10-01

    An integrated method of advanced anisotropic hr-adaptive mesh and discretization numerical techniques has been, for first time, applied to modelling of multiscale advection-diffusion problems, which is based on a discontinuous Galerkin/control volume discretization on unstructured meshes. Over existing air quality models typically based on static-structured grids using a locally nesting technique, the advantage of the anisotropic hr-adaptive model has the ability to adapt the mesh according to the evolving pollutant distribution and flow features. That is, the mesh resolution can be adjusted dynamically to simulate the pollutant transport process accurately and effectively. To illustrate the capability of the anisotropic adaptive unstructured mesh model, three benchmark numerical experiments have been set up for two-dimensional (2-D) advection phenomena. Comparisons have been made between the results obtained using uniform resolution meshes and anisotropic adaptive resolution meshes. Performance achieved in 3-D simulation of power plant plumes indicates that this new adaptive multiscale model has the potential to provide accurate air quality modelling solutions effectively.

  19. Pitfalls in retromuscular mesh repair for incisional hernia: the importance of the "fatty triangle".

    PubMed

    Conze, J; Prescher, A; Klinge, U; Saklak, M; Schumpelick, V

    2004-08-01

    Open retromuscular mesh repair has become a standard procedure in incisional hernia repair. This technique led to a significant decrease of recurrences. Recurrences after this technique typically occur at the upper mesh border and are a result of the technical complexity of reaching the postulated underlay of 5 cm in the region of the linea alba. We performed an anatomical study in human corpses to investigate the abdominal wall with its different structures, with emphasis on the overlap of the mesh under the linea alba. The overlap can be achieved by incision of the posterior lamina of the rectus sheath, on both sides close to the linea alba. The incision opens the preperitoneal space and appears in the shape of a "fatty triangle". The anterior lamina of the rectus sheath above the hernia defect remains intact and facilitates a sufficient thrust bearing for a retromuscular mesh implantation. Knowledge of the anatomy and preparation of the "fatty triangle" enables a mesh positioning according to the principles of retromuscular mesh repair.

  20. Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Thomas, James L. (Technical Monitor)

    2003-01-01

    The accuracy of the least-squares technique for gradient reconstruction on unstructured meshes is examined. While least-squares techniques produce accurate results on arbitrary isotropic unstructured meshes, serious difficulties exist for highly stretched meshes in the presence of surface curvature. In these situations, gradients are typically under-estimated by up to an order of magnitude. For vertex-based discretizations on triangular and quadrilateral meshes, and cell-centered discretizations on quadrilateral meshes, accuracy can be recovered using an inverse distance weighting in the least-squares construction. For cell-centered discretizations on triangles, both the unweighted and weighted least-squares constructions fail to provide suitable gradient estimates for highly stretched curved meshes. Good overall flow solution accuracy can be retained in spite of poor gradient estimates, due to the presence of flow alignment in exactly the same regions where the poor gradient accuracy is observed. However, the use of entropy fixes has the potential for generating large but subtle discretization errors.

  1. Application of Interface Technology in Nonlinear Analysis of a Stitched/RFI Composite Wing Stub Box

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Ransom, Jonathan B.

    1997-01-01

    A recently developed interface technology was successfully employed in the geometrically nonlinear analysis of a full-scale stitched/RFI composite wing box loaded in bending. The technology allows mismatched finite element models to be joined in a variationally consistent manner and reduces the modeling complexity by eliminating transition meshing. In the analysis, local finite element models of nonlinearly deformed wide bays of the wing box are refined without the need for transition meshing to the surrounding coarse mesh. The COMET-AR finite element code, which has the interface technology capability, was used to perform the analyses. The COMET-AR analysis is compared to both a NASTRAN analysis and to experimental data. The interface technology solution is shown to be in good agreement with both. The viability of interface technology for coupled global/local analysis of large scale aircraft structures is demonstrated.

  2. Geometrically Nonlinear Shell Analysis of Wrinkled Thin-Film Membranes with Stress Concentrations

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Sleight, David W.

    2006-01-01

    Geometrically nonlinear shell finite element analysis has recently been applied to solar-sail membrane problems in order to model the out-of-plane deformations due to structural wrinkling. Whereas certain problems lend themselves to achieving converged nonlinear solutions that compare favorably with experimental observations, solutions to tensioned membranes exhibiting high stress concentrations have been difficult to obtain even with the best nonlinear finite element codes and advanced shell element technology. In this paper, two numerical studies are presented that pave the way to improving the modeling of this class of nonlinear problems. The studies address the issues of mesh refinement and stress-concentration alleviation, and the effects of these modeling strategies on the ability to attain converged nonlinear deformations due to wrinkling. The numerical studies demonstrate that excessive mesh refinement in the regions of stress concentration may be disadvantageous to achieving wrinkled equilibrium states, causing the nonlinear solution to lock in the membrane response mode, while totally discarding the very low-energy bending response that is necessary to cause wrinkling deformation patterns.

  3. Controlling the energy of defects and interfaces in the amplitude expansion of the phase-field crystal model

    NASA Astrophysics Data System (ADS)

    Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Elder, Ken R.

    2017-08-01

    One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.

  4. Advances in Rotor Performance and Turbulent Wake Simulation Using DES and Adaptive Mesh Refinement

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    2012-01-01

    Time-dependent Navier-Stokes simulations have been carried out for a rigid V22 rotor in hover, and a flexible UH-60A rotor in forward flight. Emphasis is placed on understanding and characterizing the effects of high-order spatial differencing, grid resolution, and Spalart-Allmaras (SA) detached eddy simulation (DES) in predicting the rotor figure of merit (FM) and resolving the turbulent rotor wake. The FM was accurately predicted within experimental error using SA-DES. Moreover, a new adaptive mesh refinement (AMR) procedure revealed a complex and more realistic turbulent rotor wake, including the formation of turbulent structures resembling vortical worms. Time-dependent flow visualization played a crucial role in understanding the physical mechanisms involved in these complex viscous flows. The predicted vortex core growth with wake age was in good agreement with experiment. High-resolution wakes for the UH-60A in forward flight exhibited complex turbulent interactions and turbulent worms, similar to the V22. The normal force and pitching moment coefficients were in good agreement with flight-test data.

  5. Performance of a Block Structured, Hierarchical Adaptive MeshRefinement Code on the 64k Node IBM BlueGene/L Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenough, Jeffrey A.; de Supinski, Bronis R.; Yates, Robert K.

    2005-04-25

    We describe the performance of the block-structured Adaptive Mesh Refinement (AMR) code Raptor on the 32k node IBM BlueGene/L computer. This machine represents a significant step forward towards petascale computing. As such, it presents Raptor with many challenges for utilizing the hardware efficiently. In terms of performance, Raptor shows excellent weak and strong scaling when running in single level mode (no adaptivity). Hardware performance monitors show Raptor achieves an aggregate performance of 3:0 Tflops in the main integration kernel on the 32k system. Results from preliminary AMR runs on a prototype astrophysical problem demonstrate the efficiency of the current softwaremore » when running at large scale. The BG/L system is enabling a physics problem to be considered that represents a factor of 64 increase in overall size compared to the largest ones of this type computed to date. Finally, we provide a description of the development work currently underway to address our inefficiencies.« less

  6. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  7. Unstructured mesh algorithms for aerodynamic calculations

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.

    1992-01-01

    The use of unstructured mesh techniques for solving complex aerodynamic flows is discussed. The principle advantages of unstructured mesh strategies, as they relate to complex geometries, adaptive meshing capabilities, and parallel processing are emphasized. The various aspects required for the efficient and accurate solution of aerodynamic flows are addressed. These include mesh generation, mesh adaptivity, solution algorithms, convergence acceleration, and turbulence modeling. Computations of viscous turbulent two-dimensional flows and inviscid three-dimensional flows about complex configurations are demonstrated. Remaining obstacles and directions for future research are also outlined.

  8. Creating physically-based three-dimensional microstructures: Bridging phase-field and crystal plasticity models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.

    In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less

  9. The continuing challenge of parastomal hernia: failure of a novel polypropylene mesh repair.

    PubMed Central

    Morris-Stiff, G.; Hughes, L. E.

    1998-01-01

    In an attempt to reduce the high recurrence rate after repair of parastomal hernia, a technique was devised in which non-absorbable mesh was used to provide a permanent closure of the gap between the emerging bowel and abdominal wall. Seven patients were treated during the period 1990-1992. Five-year follow-up has given disappointing results, with recurrent hernia in 29% of cases and serious complications, including obstruction and dense adhesions to the intra-abdominal mesh, in 57% and a mesh-related abscess in 15% of cases. This study highlights a dual problem--failure of a carefully sutured mesh to maintain an occlusive position, and complications of the mesh itself. The poor results obtained with this technique together with the disappointing results with other methods described in the literature confirms that parastomal hernia presents a continuing challenge. Images Figure 1 Figure 2 PMID:9682640

  10. Failure of Anisotropic Unstructured Mesh Adaption Based on Multidimensional Residual Minimization

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Kleb, William L.

    2003-01-01

    An automated anisotropic unstructured mesh adaptation strategy is proposed, implemented, and assessed for the discretization of viscous flows. The adaption criteria is based upon the minimization of the residual fluctuations of a multidimensional upwind viscous flow solver. For scalar advection, this adaption strategy has been shown to use fewer grid points than gradient based adaption, naturally aligning mesh edges with discontinuities and characteristic lines. The adaption utilizes a compact stencil and is local in scope, with four fundamental operations: point insertion, point deletion, edge swapping, and nodal displacement. Evaluation of the solution-adaptive strategy is performed for a two-dimensional blunt body laminar wind tunnel case at Mach 10. The results demonstrate that the strategy suffers from a lack of robustness, particularly with regard to alignment of the bow shock in the vicinity of the stagnation streamline. In general, constraining the adaption to such a degree as to maintain robustness results in negligible improvement to the solution. Because the present method fails to consistently or significantly improve the flow solution, it is rejected in favor of simple uniform mesh refinement.

  11. Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code

    NASA Technical Reports Server (NTRS)

    Mathur, Sanjay

    2011-01-01

    A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.

  12. Preliminary report of a sutureless onlay technique for incisional hernia repair using fibrin glue alone for mesh fixation.

    PubMed

    Stoikes, Nathaniel; Webb, David; Powell, Ben; Voeller, Guy

    2013-11-01

    The Rives repair for ventral/incisional (V/I) hernias involves sublay mesh placement requiring retrorectus dissection and transfascial stitches. Chevrel described a repair by onlaying mesh after a unique primary fascial closure. Although Chevrel fixated mesh to the anterior fascia with sutures, he used fibrin glue for fascial closure reinforcement. We describe an onlay technique with mesh fixated to the anterior fascia solely with fibrin glue without suture fixation. From January 2010 to January 2012, 50 patients underwent a V/I hernia onlay technique with fibrin glue mesh fixation. Records were reviewed for technical details, demographics, mesh characteristics, and postoperative outcomes. Primary fascial closure with interrupted permanent suture was done with or without myofascial advancement flaps. Onlay polypropylene mesh was placed providing 8 cm of overlap. Fibrin glue was applied over the prosthesis and subcutaneous drains were placed. Mean age was 62.4 years. Mean body mass index was 30.1 kg/m(2). Average mesh size was 14.5 cm × 19.1 cm. Mean operative time was 144.4 minutes (range, 38 to 316 minutes). Mean discharge was postoperative Day 2.9 (range, 0 to 15 days). Morbidity included eight seromas, one hematoma, and three wound infections. Seventeen patients required components separation. Mean follow-up was 19.5 months with no recurrences. This is the first series describing fibrin glue alone for mesh fixation for V/I hernia repair. It allows for immediate prosthesis fixation to the anterior fascia. Early results are promising. Potential advantages include less operative time, less technical difficulty, and less long-term pain. A prospective trial is needed to evaluate this approach.

  13. Efficient parallelization for AMR MHD multiphysics calculations; implementation in AstroBEAR

    NASA Astrophysics Data System (ADS)

    Carroll-Nellenback, Jonathan J.; Shroyer, Brandon; Frank, Adam; Ding, Chen

    2013-03-01

    Current adaptive mesh refinement (AMR) simulations require algorithms that are highly parallelized and manage memory efficiently. As compute engines grow larger, AMR simulations will require algorithms that achieve new levels of efficient parallelization and memory management. We have attempted to employ new techniques to achieve both of these goals. Patch or grid based AMR often employs ghost cells to decouple the hyperbolic advances of each grid on a given refinement level. This decoupling allows each grid to be advanced independently. In AstroBEAR we utilize this independence by threading the grid advances on each level with preference going to the finer level grids. This allows for global load balancing instead of level by level load balancing and allows for greater parallelization across both physical space and AMR level. Threading of level advances can also improve performance by interleaving communication with computation, especially in deep simulations with many levels of refinement. While we see improvements of up to 30% on deep simulations run on a few cores, the speedup is typically more modest (5-20%) for larger scale simulations. To improve memory management we have employed a distributed tree algorithm that requires processors to only store and communicate local sections of the AMR tree structure with neighboring processors. Using this distributed approach we are able to get reasonable scaling efficiency (>80%) out to 12288 cores and up to 8 levels of AMR - independent of the use of threading.

  14. Planning the Surgical Correction of Spinal Deformities: Toward the Identification of the Biomechanical Principles by Means of Numerical Simulation

    PubMed Central

    Galbusera, Fabio; Bassani, Tito; La Barbera, Luigi; Ottardi, Claudia; Schlager, Benedikt; Brayda-Bruno, Marco; Villa, Tomaso; Wilke, Hans-Joachim

    2015-01-01

    In decades of technical developments after the first surgical corrections of spinal deformities, the set of devices, techniques, and tools available to the surgeons has widened dramatically. Nevertheless, the rate of complications due to mechanical failure of the fixation or the instrumentation remains rather high. Indeed, basic and clinical research about the principles of deformity correction and the optimal surgical strategies (i.e., the choice of the fusion length, the most appropriate instrumentation, and the degree of tolerable correction) did not progress as much as the implantable devices and the surgical techniques. In this work, a software approach for the biomechanical simulation of the correction of patient-specific spinal deformities aimed to the identification of its biomechanical principles is presented. The method is based on three-dimensional reconstructions of the spinal anatomy obtained from biplanar radiographic images. A user-friendly graphical user interface allows for the planning of the desired deformity correction and to simulate the implantation of pedicle screws. Robust meshing of the instrumented spine is provided by using consolidated computational geometry and meshing libraries. Based on a finite element simulation, the program is able to predict the loads and stresses acting in the instrumentation as well as those in the biological tissues. A simple test case (reduction of a low-grade spondylolisthesis at L3–L4) was simulated as a proof of concept, and showed plausible results. Despite the numerous limitations of this approach which will be addressed in future implementations, the preliminary outcome is promising and encourages a wide effort toward its refinement. PMID:26579518

  15. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Brantley

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided tomore » achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.« less

  16. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

  17. Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications

    NASA Technical Reports Server (NTRS)

    Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.

    2013-01-01

    Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.

  18. A hierarchical structure for automatic meshing and adaptive FEM analysis

    NASA Technical Reports Server (NTRS)

    Kela, Ajay; Saxena, Mukul; Perucchio, Renato

    1987-01-01

    A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.

  19. Proposed technique for open repair of a small umbilical hernia and rectus divarication with self-gripping mesh.

    PubMed

    Privett, B J; Ghusn, M

    2016-08-01

    There are a group of patients in which umbilical or epigastric hernias co-exist with rectus divarication. These patients have weak abdominal musculature and are likely to pose a higher risk of recurrence following umbilical hernia repair. We would like to describe a technique for open repair of small (<4 cm) midline hernias in patients with co-existing rectus divarication using self-adhesive synthetic mesh. The use of a self-adhesive mesh avoids the need for suture fixation of the mesh in the superior portion of the abdomen, allowing for a smaller skin incision. In 173 patients, preperitoneal self-fixating mesh has been used for the repair of midline hernias <4 cm in diameter. In 58 of these patients, the mesh was extended superiorly to reinforce a concurrent divarication. The described technique offers a simple option for open repair of small midline hernias in patients with co-existing rectus divarication, to decrease the risk of upper midline recurrence in an at-risk patient group. This initial case series is able to demonstrate a suitably low rate of recurrence and complications.

  20. Long-Term Outcome of Laparoscopic Totally Extraperitoneal Repair of Bilateral Inguinal Hernias with a Large Single Mesh.

    PubMed

    Issa, Nidal; Ohana, Gil; Bachar, Gil Nissim; Powsner, Eldad

    2016-02-01

    A totally extraperitoneal (TEP) approach is currently the technique of choice for the laparoscopic repair of bilateral inguinal hernias in our institution. Most other surgeons use two meshes for the TEP repair, one for each side. We prefer a large single mesh when possible since it allows for easier correct placement of the mesh in one stage. We compared our long-term results of both techniques in terms of late complications and recurrence rates. This study retrospectively evaluated the medical records of 108 patients who underwent bilateral laparoscopic TEP repair in our institution between January 2002 and December 2003. Excluded were patients who had a conversion to a transabdominal preperitoneal or open approach. A total of 73 (67 %) patients fulfilled study entrance criteria and were enrolled: 39 had undergone single mesh repair and 34 had undergone double mesh repair. There were no significant group differences in demographics, operating time, postoperative morbidity, or hospital stay. Likewise, after a median follow-up of 102 months (range 94–115 months), there were no significant group differences between the single and double mesh groups in persistent pain (5.8 vs 2.5 %, respectively; p = 0.476) and recurrence (7.6 vs 8.8 %, respectively; p = 0.55). The use of a large single mesh is an effective and safe alternative technique for TEP repair of bilateral inguinal hernias, and is technically easy to perform.

  1. ALEGRA -- A massively parallel h-adaptive code for solid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, R.M.; Wong, M.K.; Boucheron, E.A.

    1997-12-31

    ALEGRA is a multi-material, arbitrary-Lagrangian-Eulerian (ALE) code for solid dynamics designed to run on massively parallel (MP) computers. It combines the features of modern Eulerian shock codes, such as CTH, with modern Lagrangian structural analysis codes using an unstructured grid. ALEGRA is being developed for use on the teraflop supercomputers to conduct advanced three-dimensional (3D) simulations of shock phenomena important to a variety of systems. ALEGRA was designed with the Single Program Multiple Data (SPMD) paradigm, in which the mesh is decomposed into sub-meshes so that each processor gets a single sub-mesh with approximately the same number of elements. Usingmore » this approach the authors have been able to produce a single code that can scale from one processor to thousands of processors. A current major effort is to develop efficient, high precision simulation capabilities for ALEGRA, without the computational cost of using a global highly resolved mesh, through flexible, robust h-adaptivity of finite elements. H-adaptivity is the dynamic refinement of the mesh by subdividing elements, thus changing the characteristic element size and reducing numerical error. The authors are working on several major technical challenges that must be met to make effective use of HAMMER on MP computers.« less

  2. Using Adaptive Mesh Refinment to Simulate Storm Surge

    NASA Astrophysics Data System (ADS)

    Mandli, K. T.; Dawson, C.

    2012-12-01

    Coastal hazards related to strong storms such as hurricanes and typhoons are one of the most frequently recurring and wide spread hazards to coastal communities. Storm surges are among the most devastating effects of these storms, and their prediction and mitigation through numerical simulations is of great interest to coastal communities that need to plan for the subsequent rise in sea level during these storms. Unfortunately these simulations require a large amount of resolution in regions of interest to capture relevant effects resulting in a computational cost that may be intractable. This problem is exacerbated in situations where a large number of similar runs is needed such as in design of infrastructure or forecasting with ensembles of probable storms. One solution to address the problem of computational cost is to employ adaptive mesh refinement (AMR) algorithms. AMR functions by decomposing the computational domain into regions which may vary in resolution as time proceeds. Decomposing the domain as the flow evolves makes this class of methods effective at ensuring that computational effort is spent only where it is needed. AMR also allows for placement of computational resolution independent of user interaction and expectation of the dynamics of the flow as well as particular regions of interest such as harbors. The simulation of many different applications have only been made possible by using AMR-type algorithms, which have allowed otherwise impractical simulations to be performed for much less computational expense. Our work involves studying how storm surge simulations can be improved with AMR algorithms. We have implemented relevant storm surge physics in the GeoClaw package and tested how Hurricane Ike's surge into Galveston Bay and up the Houston Ship Channel compares to available tide gauge data. We will also discuss issues dealing with refinement criteria, optimal resolution and refinement ratios, and inundation.

  3. Accelerating Large Data Analysis By Exploiting Regularities

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Ellsworth, David

    2003-01-01

    We present techniques for discovering and exploiting regularity in large curvilinear data sets. The data can be based on a single mesh or a mesh composed of multiple submeshes (also known as zones). Multi-zone data are typical to Computational Fluid Dynamics (CFD) simulations. Regularities include axis-aligned rectilinear and cylindrical meshes as well as cases where one zone is equivalent to a rigid-body transformation of another. Our algorithms can also discover rigid-body motion of meshes in time-series data. Next, we describe a data model where we can utilize the results from the discovery process in order to accelerate large data visualizations. Where possible, we replace general curvilinear zones with rectilinear or cylindrical zones. In rigid-body motion cases we replace a time-series of meshes with a transformed mesh object where a reference mesh is dynamically transformed based on a given time value in order to satisfy geometry requests, on demand. The data model enables us to make these substitutions and dynamic transformations transparently with respect to the visualization algorithms. We present results with large data sets where we combine our mesh replacement and transformation techniques with out-of-core paging in order to achieve significant speed-ups in analysis.

  4. Flight Behaviors of a Complex Projectile Using a Coupled Computational Fluid Dynamics (CFD)-based Simulation Technique: Free Motion

    DTIC Science & Technology

    2015-09-01

    million cells each. These 4 canard meshes were then overset with the 10 background projectile body mesh using the Chimera procedure.29 The final... Chimera -overlapped mesh for each of the 2 (fin cant) models consists of approximately 43 million cells. A circumferential cross section (Fig. 4... Chimera procedure requires proper transfer of information between the background mesh and the canard meshes at every time step. However, the advantage

  5. Unstructured Adaptive (UA) NAS Parallel Benchmark. Version 1.0

    NASA Technical Reports Server (NTRS)

    Feng, Huiyu; VanderWijngaart, Rob; Biswas, Rupak; Mavriplis, Catherine

    2004-01-01

    We present a complete specification of a new benchmark for measuring the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. It complements the existing NAS Parallel Benchmark suite. The benchmark involves the solution of a stylized heat transfer problem in a cubic domain, discretized on an adaptively refined, unstructured mesh.

  6. Conventional fascial technique versus mesh repair for advanced pelvic organ prolapse: Analysis of recurrences in treated and untreated compartments.

    PubMed

    Damiani, G R; Riva, D; Pellegrino, A; Gaetani, M; Tafuri, S; Turoli, D; Croce, P; Loverro, G

    2016-01-01

    117 women with severe pelvic organ prolapse (POP; stage > 2) were enrolled to elucidate a 24-month outcome of POP surgery, using conventional or mesh repair with 3 techniques. 59 patients underwent conventional repair and 58 underwent mesh repair. Two types of mesh were used: a trocar-guided transobturator polypropylene (Avaulta, Bard Inc.) and a porcine dermis mesh (Pelvisoft, Bard Inc.). Women with recurrences, who underwent previous unsuccessful conventional repair, were randomised. Primary outcome was the evaluation of anatomic failures (prolapse stage > 1) in treated and untreated compartments. Anatomic failure was observed in 11 of 58 patients (19%; CI 8.9-29) in the mesh group and in 16 of 59 patients (27.1%; p value = 0.3) in the conventional group. 9 of 11 failures in the mesh group (15.5%; CI 6.2-24.8) were observed in the untreated compartment (de novo recurrences), 14.3% in Pelvisoft and 16.7% in Avaulta arm, while only 1 recurrence in the untreated compartment (1.7%) was observed in the conventional group (odds ratio 10.6, p = 0.03).

  7. Proposal and validation of a new model to estimate survival for hepatocellular carcinoma patients.

    PubMed

    Liu, Po-Hong; Hsu, Chia-Yang; Hsia, Cheng-Yuan; Lee, Yun-Hsuan; Huang, Yi-Hsiang; Su, Chien-Wei; Lee, Fa-Yauh; Lin, Han-Chieh; Huo, Teh-Ia

    2016-08-01

    The survival of hepatocellular carcinoma (HCC) patients is heterogeneous. We aim to develop and validate a simple prognostic model to estimate survival for HCC patients (MESH score). A total of 3182 patients were randomised into derivation and validation cohort. Multivariate analysis was used to identify independent predictors of survival in the derivation cohort. The validation cohort was employed to examine the prognostic capabilities. The MESH score allocated 1 point for each of the following parameters: large tumour (beyond Milan criteria), presence of vascular invasion or metastasis, Child-Turcotte-Pugh score ≥6, performance status ≥2, serum alpha-fetoprotein level ≥20 ng/ml, and serum alkaline phosphatase ≥200 IU/L, with a maximal of 6 points. In the validation cohort, significant survival differences were found across all MESH scores from 0 to 6 (all p < 0.01). The MESH system was associated with the highest homogeneity and lowest corrected Akaike information criterion compared with Barcelona Clínic Liver Cancer, Hong Kong Liver Cancer (HKLC), Cancer of the Liver Italian Program, Taipei Integrated Scoring and model to estimate survival in ambulatory HCC Patients systems. The prognostic accuracy of the MESH scores remained constant in patients with hepatitis B- or hepatitis C-related HCC. The MESH score can also discriminate survival for patients from early to advanced stages of HCC. This newly proposed simple and accurate survival model provides enhanced prognostic accuracy for HCC. The MESH system is a useful supplement to the BCLC and HKLC classification schemes in refining treatment strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel Ray; Waltz, Jacob I.

    The level set method is commonly used to model dynamically evolving fronts and interfaces. In this work, we present new methods for evolving fronts with a specified velocity field or in the surface normal direction on 3D unstructured tetrahedral meshes with adaptive mesh refinement (AMR). The level set field is located at the nodes of the tetrahedral cells and is evolved using new upwind discretizations of Hamilton–Jacobi equations combined with a Runge–Kutta method for temporal integration. The level set field is periodically reinitialized to a signed distance function using an iterative approach with a new upwind gradient. We discuss themore » details of these level set and reinitialization methods. Results from a range of numerical test problems are presented.« less

  9. Applying Parallel Adaptive Methods with GeoFEST/PYRAMID to Simulate Earth Surface Crustal Dynamics

    NASA Technical Reports Server (NTRS)

    Norton, Charles D.; Lyzenga, Greg; Parker, Jay; Glasscoe, Margaret; Donnellan, Andrea; Li, Peggy

    2006-01-01

    This viewgraph presentation reviews the use Adaptive Mesh Refinement (AMR) in simulating the Crustal Dynamics of Earth's Surface. AMR simultaneously improves solution quality, time to solution, and computer memory requirements when compared to generating/running on a globally fine mesh. The use of AMR in simulating the dynamics of the Earth's Surface is spurred by future proposed NASA missions, such as InSAR for Earth surface deformation and other measurements. These missions will require support for large-scale adaptive numerical methods using AMR to model observations. AMR was chosen because it has been successful in computation fluid dynamics for predictive simulation of complex flows around complex structures.

  10. Quadrilateral/hexahedral finite element mesh coarsening

    DOEpatents

    Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E

    2012-10-16

    A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.

  11. Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve

    DOE PAGES

    Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.

    2017-07-27

    The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less

  12. Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.

    The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less

  13. Technique for converting non-conforming hexahedral-to-hexahedral interfaces into conforming interfaces

    DOEpatents

    Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos

    2013-03-05

    A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.

  14. A novel finite element analysis of three-dimensional circular crack

    NASA Astrophysics Data System (ADS)

    Ping, X. C.; Wang, C. G.; Cheng, L. P.

    2018-06-01

    A novel singular element containing a part of the circular crack front is established to solve the singular stress fields of circular cracks by using the numerical series eigensolutions of singular stress fields. The element is derived from the Hellinger-Reissner variational principle and can be directly incorporated into existing 3D brick elements. The singular stress fields are determined as the system unknowns appearing as displacement nodal values. The numerical studies are conducted to demonstrate the simplicity of the proposed technique in handling fracture problems of circular cracks. The usage of the novel singular element can avoid mesh refinement near the crack front domain without loss of calculation accuracy and velocity of convergence. Compared with the conventional finite element methods and existing analytical methods, the present method is more suitable for dealing with complicated structures with a large number of elements.

  15. Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.

    PubMed

    Fakhari, Abbas; Lee, Taehun

    2013-02-01

    The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature. Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect.

  16. Computer simulations of phase field drops on super-hydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Fedeli, Livio

    2017-09-01

    We present a novel quasi-Newton continuation procedure that efficiently solves the system of nonlinear equations arising from the discretization of a phase field model for wetting phenomena. We perform a comparative numerical analysis that shows the improved speed of convergence gained with respect to other numerical schemes. Moreover, we discuss the conditions that, on a theoretical level, guarantee the convergence of this method. At each iterative step, a suitable continuation procedure develops and passes to the nonlinear solver an accurate initial guess. Discretization performs through cell-centered finite differences. The resulting system of equations is solved on a composite grid that uses dynamic mesh refinement and multi-grid techniques. The final code achieves three-dimensional, realistic computer experiments comparable to those produced in laboratory settings. This code offers not only new insights into the phenomenology of super-hydrophobicity, but also serves as a reliable predictive tool for the study of hydrophobic surfaces.

  17. Sheet, ligament and droplet formation in swirling primary atomization

    NASA Astrophysics Data System (ADS)

    Shao, Changxiao; Luo, Kun; Chai, Min; Fan, Jianren

    2018-04-01

    We report direct numerical simulations of swirling liquid atomization to understand the physical mechanism underlying the sheet breakup of a non-turbulent liquid swirling jet which lacks in-depth investigation. The volume-of-fluid (VOF) method coupled with adapted mesh refinement (AMR) technique in GERRIS code is employed in the present simulation. The mechanisms of sheet, ligament and droplet formation are investigated. It is observed that the olive-shape sheet structure is similar to the experimental result qualitatively. The numerical results show that surface tension, pressure difference and swirling effect contribute to the contraction and extension of liquid sheet. The ligament formation is partially at the sheet rim or attributed to the extension of liquid hole. Especially, the movement of hairpin vortex exerts by an anti-radial direction force to the sheet surface and leads to the sheet thinness. In addition, droplet formation is attributed to breakup of ligament and central sheet.

  18. Stress Recovery and Error Estimation for Shell Structures

    NASA Technical Reports Server (NTRS)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  19. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  20. Progress in fast, accurate multi-scale climate simulations

    DOE PAGES

    Collins, W. D.; Johansen, H.; Evans, K. J.; ...

    2015-06-01

    We present a survey of physical and computational techniques that have the potential to contribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth with these computational improvements include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enablingmore » improved accuracy and fidelity in simulation of dynamics and allowing more complete representations of climate features at the global scale. At the same time, partnerships with computer science teams have focused on taking advantage of evolving computer architectures such as many-core processors and GPUs. As a result, approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D; Johansen, Hans; Evans, Katherine J

    We present a survey of physical and computational techniques that have the potential to con- tribute to the next generation of high-fidelity, multi-scale climate simulations. Examples of the climate science problems that can be investigated with more depth include the capture of remote forcings of localized hydrological extreme events, an accurate representation of cloud features over a range of spatial and temporal scales, and parallel, large ensembles of simulations to more effectively explore model sensitivities and uncertainties. Numerical techniques, such as adaptive mesh refinement, implicit time integration, and separate treatment of fast physical time scales are enabling improved accuracy andmore » fidelity in simulation of dynamics and allow more complete representations of climate features at the global scale. At the same time, part- nerships with computer science teams have focused on taking advantage of evolving computer architectures, such as many-core processors and GPUs, so that these approaches which were previously considered prohibitively costly have become both more efficient and scalable. In combination, progress in these three critical areas is poised to transform climate modeling in the coming decades.« less

  2. Simplified Technique for Incorporating a Metal Mesh into Record Bases for Mandibular Implant Overdentures.

    PubMed

    Godoy, Antonio; Siegel, Sharon C

    2015-12-01

    Mandibular implant-retained overdentures have become the standard of care for patients with mandibular complete edentulism. As part of the treatment, the mandibular implant-retained overdenture may require a metal mesh framework to be incorporated to strengthen the denture and avoid fracture of the prosthesis. Integrating the metal mesh framework as part of the acrylic record base and wax occlusion rim before the jaw relation procedure will avoid the distortion of the record base and will minimize the chances of processing errors. A simplified method to incorporate the mesh into the record base and occlusion rim is presented in this technique article. © 2015 by the American College of Prosthodontists.

  3. Locally refined block-centred finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and the performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are: (a) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed, and (b) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.

  4. Locally refined block-centered finite-difference groundwater models: Evaluation of parameter sensitivity and the consequences for inverse modelling and predictions

    USGS Publications Warehouse

    Mehl, S.; Hill, M.C.

    2002-01-01

    Models with local grid refinement, as often required in groundwater models, pose special problems for model calibration. This work investigates the calculation of sensitivities and performance of regression methods using two existing and one new method of grid refinement. The existing local grid refinement methods considered are (1) a variably spaced grid in which the grid spacing becomes smaller near the area of interest and larger where such detail is not needed and (2) telescopic mesh refinement (TMR), which uses the hydraulic heads or fluxes of a regional model to provide the boundary conditions for a locally refined model. The new method has a feedback between the regional and local grids using shared nodes, and thereby, unlike the TMR methods, balances heads and fluxes at the interfacing boundary. Results for sensitivities are compared for the three methods and the effect of the accuracy of sensitivity calculations are evaluated by comparing inverse modelling results. For the cases tested, results indicate that the inaccuracies of the sensitivities calculated using the TMR approach can cause the inverse model to converge to an incorrect solution.

  5. Generating unstructured nuclear reactor core meshes in parallel

    DOE PAGES

    Jain, Rajeev; Tautges, Timothy J.

    2014-10-24

    Recent advances in supercomputers and parallel solver techniques have enabled users to run large simulations problems using millions of processors. Techniques for multiphysics nuclear reactor core simulations are under active development in several countries. Most of these techniques require large unstructured meshes that can be hard to generate in a standalone desktop computers because of high memory requirements, limited processing power, and other complexities. We have previously reported on a hierarchical lattice-based approach for generating reactor core meshes. Here, we describe efforts to exploit coarse-grained parallelism during reactor assembly and reactor core mesh generation processes. We highlight several reactor coremore » examples including a very high temperature reactor, a full-core model of the Korean MONJU reactor, a ¼ pressurized water reactor core, the fast reactor Experimental Breeder Reactor-II core with a XX09 assembly, and an advanced breeder test reactor core. The times required to generate large mesh models, along with speedups obtained from running these problems in parallel, are reported. A graphical user interface to the tools described here has also been developed.« less

  6. GPU surface extraction using the closest point embedding

    NASA Astrophysics Data System (ADS)

    Kim, Mark; Hansen, Charles

    2015-01-01

    Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes

  7. Outcomes of Orbital Floor Reconstruction After Extensive Maxillectomy Using the Computer-Assisted Fabricated Individual Titanium Mesh Technique.

    PubMed

    Zhang, Wen-Bo; Mao, Chi; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin

    2015-10-01

    Orbital floor defects after extensive maxillectomy can cause severe esthetic and functional deformities. Orbital floor reconstruction using the computer-assisted fabricated individual titanium mesh technique is a promising method. This study evaluated the application and clinical outcomes of this technique. This retrospective study included 10 patients with orbital floor defects after maxillectomy performed from 2012 through 2014. A 3-dimensional individual stereo model based on mirror images of the unaffected orbit was obtained to fabricate an anatomically adapted titanium mesh using computer-assisted design and manufacturing. The titanium mesh was inserted into the defect using computer navigation. The postoperative globe projection and orbital volume were measured and the incidence of postoperative complications was evaluated. The average postoperative globe projection was 15.91 ± 1.80 mm on the affected side and 16.24 ± 2.24 mm on the unaffected side (P = .505), and the average postoperative orbital volume was 26.01 ± 1.28 and 25.57 ± 1.89 mL, respectively (P = .312). The mean mesh depth was 25.11 ± 2.13 mm. The mean follow-up period was 23.4 ± 7.7 months (12 to 34 months). Of the 10 patients, 9 did not develop diplopia or a decrease in visual acuity and ocular motility. Titanium mesh exposure was not observed in any patient. All patients were satisfied with their postoperative facial symmetry. Orbital floor reconstruction after extensive maxillectomy with an individual titanium mesh fabricated using computer-assisted techniques can preserve globe projection and orbital volume, resulting in successful clinical outcomes. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Laparoscopic repair of inguinal hernias using an intraperitoneal onlay mesh technique and a Parietex composite mesh fixed with fibrin glue (Tissucol). Personal technique and preliminary results.

    PubMed

    Olmi, Stefano; Scaini, Alberto; Erba, Luigi; Bertolini, Aimone; Croce, Enrico

    2007-11-01

    Laparoscopic repair of inguinal hernias is usually achieved by totally extraperitoneal (TEP) or transabdominal preperitoneal (TAPP) techniques. The intraperitoneal onlay mesh (IPOM) could be an interesting alternative as it is much easier to perform and faster to execute. This technique is subject to correct selection of indications and to demonstration of its safety. From January 2003 to January 2006 we performed 61 laparoscopic hernia procedures on 60 selected patients (60 males with a mean age of 60 and mean weight of 76 kg) with an IPOM technique combining the Parietex composite mesh (12 cm circular model) and a fibrin glue (Tissucol) for its fixation. The glue was diluted to increase fixation time and applied to the mesh prior to positioning on the hernia defect. Mean operative time was 10 minutes. Mean hernia diameter was 2.5 cm (+/- 0.8 cm). 10 hernias were direct, 51 were indirect and 10 out of 61 were recurrent. We did not convert any of the laparoscopic procedures. Mean hospital stay was one day; mean recovery time for working and general physical activities was five days. Patients were checked after one week, 1-3-6 months and 1-2 years. Average follow up time was 23.7 months. 1.6 % of patients showed short-term complications: one trocar site haematoma. No additional complications were reported; particularly, we had no recurrence, no seroma, no mesh migration, and no bowel obstruction or fistula. Results of this study show intraperitoneal (IP) tolerance to this kind of mesh and the safety of its fixation with Tissucol. The absence of recurrence and complications could be a good reason to extend the indication of IPOM hernia repair. However, these preliminary results should be confirmed by longer follow-up.

  9. Fluid Structure Interaction Techniques For Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Coupez, Thierry

    2007-05-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each sub-domain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique background computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  10. ISO Guest Observer Data Analysis and LWS Instrument Team Activities

    NASA Technical Reports Server (NTRS)

    Smith, Howard

    2002-01-01

    This project was granted a no-cost extension prompted by the request of the major subcontractor, the Naval Research Laboratory, which had not yet completed its tasks. As of July 2002, they had made substantial progress. They have successfully fabricated a metal mesh grid on polyimide, and also successfully fabricated a 2-layer metal mesh infrared filter using stacks of these metal mesh grids on polyimide; the actual layering was done at SAO. Both warm and cold spectroscopic tests were done on these fabricated devices. The measurements were in good agreement with the theory, and also reasonable performance in absolute terms. NRL is now working on fabricating a 3-layer metal mesh infrared filter, and a prototype is expected in the next month. Testing should occur before the end of the fiscal year. Finally, NRL has preliminarily agreed to hire a new postdoctoral person to refine the modeling of the filters based on the new measurements. The person should arrive this fall. NRL has a new Fourier Transform Spectrometer which will be delivered in the next month, and which will be used to facilitate the testing which has up to now been done in collaboration with NASA Goddard Space Flight Space Center.

  11. Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.

    PubMed

    Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit

    2018-07-01

    We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.

  12. Reaction rates for a generalized reaction-diffusion master equation

    DOE PAGES

    Hellander, Stefan; Petzold, Linda

    2016-01-19

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show inmore » two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules.« less

  13. Reaction rates for a generalized reaction-diffusion master equation

    PubMed Central

    Hellander, Stefan; Petzold, Linda

    2016-01-01

    It has been established that there is an inherent limit to the accuracy of the reaction-diffusion master equation. Specifically, there exists a fundamental lower bound on the mesh size, below which the accuracy deteriorates as the mesh is refined further. In this paper we extend the standard reaction-diffusion master equation to allow molecules occupying neighboring voxels to react, in contrast to the traditional approach in which molecules react only when occupying the same voxel. We derive reaction rates, in two dimensions as well as three dimensions, to obtain an optimal match to the more fine-grained Smoluchowski model, and show in two numerical examples that the extended algorithm is accurate for a wide range of mesh sizes, allowing us to simulate systems that are intractable with the standard reaction-diffusion master equation. In addition, we show that for mesh sizes above the fundamental lower limit of the standard algorithm, the generalized algorithm reduces to the standard algorithm. We derive a lower limit for the generalized algorithm which, in both two dimensions and three dimensions, is on the order of the reaction radius of a reacting pair of molecules. PMID:26871190

  14. Mesh Displacement After Bilateral Inguinal Hernia Repair With No Fixation

    PubMed Central

    Rocha, Gabriela Moreira; Campos, Antonio Carlos Ligocki; Paulin, João Augusto Nocera; Coelho, Julio Cesar Uili

    2017-01-01

    Background and Objectives: About 20% of patients with inguinal hernia present bilateral hernias in the diagnosis. In these cases, laparoscopic procedure is considered gold standard approach. Mesh fixation is considered important step toward avoiding recurrence. However, because of cost and risk of pain, real need for mesh fixation has been debated. For bilateral inguinal hernias, there are few specific data about non fixation and mesh displacement. We assessed mesh movement in patients who had undergone laparoscopic bilateral inguinal hernia repair without mesh fixation and compared the results with those obtained in patients with unilateral hernia. Methods: From January 2012 through May 2014, 20 consecutive patients with bilateral inguinal hernia underwent TEP repair with no mesh fixation. Results were compared with 50 consecutive patients with unilateral inguinal hernia surgically repaired with similar technique. Mesh was marked with 3 clips. Mesh movements were measured by comparing initial radiography performed at the end of surgery, with a second radiographic scan performed 30 days later. Results: Mean movements of all 3 clips in bilateral nonfixation (NF) group were 0.15–0.4 cm compared with 0.1–0.3 cm in unilateral NF group. Overall displacement of bilateral and unilateral NF groups did not show significant difference. Mean overall displacement was 1.9 cm versus 1.8 cm in the bilateral and unilateral NF groups, respectively (P = .78). Conclusions: TEP with no mesh fixation is safe in bilateral inguinal repairs. Early mesh displacement is minimal. This technique can be safely used in most patients with inguinal hernia. PMID:28904521

  15. Transabdominal preperitoneal herniorrhaphy using laser-assisted tissue soldering in a porcine model.

    PubMed

    Lanzafame, Raymond J; Soltz, Barbara A; Stadler, Istvan; Soltz, Robert

    2009-01-01

    Collagen solder is capable of fixation of surgical meshes during laparoscopic herniorrhaphy without compromising tissue integration, increasing adhesions or inflammation. This pilot study describes development of instrumentation and techniques for transabdominal preperitoneal (TAPP) herniorrhaphy using laser-assisted soldering technology. Anesthetized 20-kg to 25-kg female Yorkshire pigs underwent laparoscopy performed using a 3-trocar technique. Peritoneal incisions were made and pockets created in the preperitoneal space for mesh placement. Parietex TEC mesh segments embedded in 60% collagen-solder were soldered to the muscle surface by using a prototype laser (1.45micro, 4.5W CW, 5mm spot, and 55 degrees C set temperature) and custom laparoscopic handpiece. Parietex TEC mesh segments (Control) were affixed to the muscle with fibrin sealant (Tisseel). Peritoneal closure was with staples (Control) or by soldering collagen embedded Vicryl mesh segments over the peritoneal incision (Mesh/TAPP). Segments were inserted using a specially designed introducer. Animals were recovered and underwent second-look laparoscopy at 6 weeks postimplantation. Mesh sites were harvested after animals were euthanized. The mesh-solder constructs were easily inserted and affixed in the TAPP approach. Tisseel tended to drip during application, particularly in vertical and ventral locations. Postoperative healing was similar to Control segments in all cases. Mesh/TAPP closures healed without scarring or adhesion formation. Collagen-based tissue soldering permits normal wound healing and may mitigate or reduce use of staples for laparoscopic mesh fixation and peritoneal closure. Laser-assisted mesh fixation and peritoneal closure is a promising alternative for laparoscopic herniorrhaphy. Further development of this strategy is warranted.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cololla, P.

    This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.

  18. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  19. Refinement and testing of analysis nudging in MPAS-A ...

    EPA Pesticide Factsheets

    The Model for Prediction Across Scales - Atmosphere (MPAS-A) is being adapted to serve as the meteorological driver for EPA’s “next-generation” air-quality model. To serve that purpose, it must be able to function in a diagnostic mode where past meteorological conditions are represented in greater detail and accuracy than can be provided by available observational data and meteorological reanalysis products. MPAS-A has been modified to allow four dimensional data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-A computational mesh. The technique of “analysis nudging” developed for the Penn State / NCAR Mesoscale Model – Version 4 (MM4), and later applied in the Weather Research and Forecasting model (WRF), is applied here in MPAS-A with adaptations for the unstructured Voronoi mesh used in MPAS-A. Test simulations for the periods of January and July 2013, with and without FDDA, are compared to target fields at various vertical levels and to surface-level meteorological observations. The results show the ability to follow target fields with high fidelity while still maintaining conservation of mass as in the original model. The results also show model errors relative to observations continue to be constrained throughout the simulations using FDDA and even show some error reduction during the first few days that could be attributable to the finer resolution of the 92-25 km computa

  20. Challenges of Representing Sub-Grid Physics in an Adaptive Mesh Refinement Atmospheric Model

    NASA Astrophysics Data System (ADS)

    O'Brien, T. A.; Johansen, H.; Johnson, J. N.; Rosa, D.; Benedict, J. J.; Keen, N. D.; Collins, W.; Goodfriend, E.

    2015-12-01

    Some of the greatest potential impacts from future climate change are tied to extreme atmospheric phenomena that are inherently multiscale, including tropical cyclones and atmospheric rivers. Extremes are challenging to simulate in conventional climate models due to existing models' coarse resolutions relative to the native length-scales of these phenomena. Studying the weather systems of interest requires an atmospheric model with sufficient local resolution, and sufficient performance for long-duration climate-change simulations. To this end, we have developed a new global climate code with adaptive spatial and temporal resolution. The dynamics are formulated using a block-structured conservative finite volume approach suitable for moist non-hydrostatic atmospheric dynamics. By using both space- and time-adaptive mesh refinement, the solver focuses computational resources only where greater accuracy is needed to resolve critical phenomena. We explore different methods for parameterizing sub-grid physics, such as microphysics, macrophysics, turbulence, and radiative transfer. In particular, we contrast the simplified physics representation of Reed and Jablonowski (2012) with the more complex physics representation used in the System for Atmospheric Modeling of Khairoutdinov and Randall (2003). We also explore the use of a novel macrophysics parameterization that is designed to be explicitly scale-aware.

  1. A parallel adaptive mesh refinement algorithm

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Hanebutte, Ulf R.

    1993-01-01

    Over recent years, Adaptive Mesh Refinement (AMR) algorithms which dynamically match the local resolution of the computational grid to the numerical solution being sought have emerged as powerful tools for solving problems that contain disparate length and time scales. In particular, several workers have demonstrated the effectiveness of employing an adaptive, block-structured hierarchical grid system for simulations of complex shock wave phenomena. Unfortunately, from the parallel algorithm developer's viewpoint, this class of scheme is quite involved; these schemes cannot be distilled down to a small kernel upon which various parallelizing strategies may be tested. However, because of their block-structured nature such schemes are inherently parallel, so all is not lost. In this paper we describe the method by which Quirk's AMR algorithm has been parallelized. This method is built upon just a few simple message passing routines and so it may be implemented across a broad class of MIMD machines. Moreover, the method of parallelization is such that the original serial code is left virtually intact, and so we are left with just a single product to support. The importance of this fact should not be underestimated given the size and complexity of the original algorithm.

  2. Parallelization of GeoClaw code for modeling geophysical flows with adaptive mesh refinement on many-core systems

    USGS Publications Warehouse

    Zhang, S.; Yuen, D.A.; Zhu, A.; Song, S.; George, D.L.

    2011-01-01

    We parallelized the GeoClaw code on one-level grid using OpenMP in March, 2011 to meet the urgent need of simulating tsunami waves at near-shore from Tohoku 2011 and achieved over 75% of the potential speed-up on an eight core Dell Precision T7500 workstation [1]. After submitting that work to SC11 - the International Conference for High Performance Computing, we obtained an unreleased OpenMP version of GeoClaw from David George, who developed the GeoClaw code as part of his PH.D thesis. In this paper, we will show the complementary characteristics of the two approaches used in parallelizing GeoClaw and the speed-up obtained by combining the advantage of each of the two individual approaches with adaptive mesh refinement (AMR), demonstrating the capabilities of running GeoClaw efficiently on many-core systems. We will also show a novel simulation of the Tohoku 2011 Tsunami waves inundating the Sendai airport and Fukushima Nuclear Power Plants, over which the finest grid distance of 20 meters is achieved through a 4-level AMR. This simulation yields quite good predictions about the wave-heights and travel time of the tsunami waves. ?? 2011 IEEE.

  3. New algorithms for field-theoretic block copolymer simulations: Progress on using adaptive-mesh refinement and sparse matrix solvers in SCFT calculations

    NASA Astrophysics Data System (ADS)

    Sides, Scott; Jamroz, Ben; Crockett, Robert; Pletzer, Alexander

    2012-02-01

    Self-consistent field theory (SCFT) for dense polymer melts has been highly successful in describing complex morphologies in block copolymers. Field-theoretic simulations such as these are able to access large length and time scales that are difficult or impossible for particle-based simulations such as molecular dynamics. The modified diffusion equations that arise as a consequence of the coarse-graining procedure in the SCF theory can be efficiently solved with a pseudo-spectral (PS) method that uses fast-Fourier transforms on uniform Cartesian grids. However, PS methods can be difficult to apply in many block copolymer SCFT simulations (eg. confinement, interface adsorption) in which small spatial regions might require finer resolution than most of the simulation grid. Progress on using new solver algorithms to address these problems will be presented. The Tech-X Chompst project aims at marrying the best of adaptive mesh refinement with linear matrix solver algorithms. The Tech-X code PolySwift++ is an SCFT simulation platform that leverages ongoing development in coupling Chombo, a package for solving PDEs via block-structured AMR calculations and embedded boundaries, with PETSc, a toolkit that includes a large assortment of sparse linear solvers.

  4. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  5. Parametric convergence sensitivity and validation of a finite element model of the human lumbar spine.

    PubMed

    Ayturk, Ugur M; Puttlitz, Christian M

    2011-08-01

    The primary objective of this study was to generate a finite element model of the human lumbar spine (L1-L5), verify mesh convergence for each tissue constituent and perform an extensive validation using both kinematic/kinetic and stress/strain data. Mesh refinement was accomplished via convergence of strain energy density (SED) predictions for each spinal tissue. The converged model was validated based on range of motion, intradiscal pressure, facet force transmission, anterolateral cortical bone strain and anterior longitudinal ligament deformation predictions. Changes in mesh resolution had the biggest impact on SED predictions under axial rotation loading. Nonlinearity of the moment-rotation curves was accurately simulated and the model predictions on the aforementioned parameters were in good agreement with experimental data. The validated and converged model will be utilised to study the effects of degeneration on the lumbar spine biomechanics, as well as to investigate the mechanical underpinning of the contemporary treatment strategies.

  6. Progressive simplification and transmission of building polygons based on triangle meshes

    NASA Astrophysics Data System (ADS)

    Li, Hongsheng; Wang, Yingjie; Guo, Qingsheng; Han, Jiafu

    2010-11-01

    Digital earth is a virtual representation of our planet and a data integration platform which aims at harnessing multisource, multi-resolution, multi-format spatial data. This paper introduces a research framework integrating progressive cartographic generalization and transmission of vector data. The progressive cartographic generalization provides multiple resolution data from coarse to fine as key scales and increments between them which is not available in traditional generalization framework. Based on the progressive simplification algorithm, the building polygons are triangulated into meshes and encoded according to the simplification sequence of two basic operations, edge collapse and vertex split. The map data at key scales and encoded increments between them are stored in a multi-resolution file. As the client submits requests to the server, the coarsest map is transmitted first and then the increments. After data decoding and mesh refinement the building polygons with more details will be visualized. Progressive generalization and transmission of building polygons is demonstrated in the paper.

  7. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1989-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  8. Grid generation for the solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Eiseman, Peter R.; Erlebacher, Gordon

    1987-01-01

    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given.

  9. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    NASA Astrophysics Data System (ADS)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  10. Foundations for a multiscale collaborative Earth model

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas

    2016-01-01

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.

  11. Method of generating a surface mesh

    DOEpatents

    Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  12. Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method

    NASA Technical Reports Server (NTRS)

    Nemec, Marian; Aftosmis, Michael J.

    2004-01-01

    Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented an effective optimization framework that incorporates a direct-CAD interface. In this work, we enhance the capabilities of this framework with efficient gradient computations using the discrete adjoint method. We present details of the adjoint numerical implementation, which reuses the domain decomposition, multigrid, and time-marching schemes of the flow solver. Furthermore, we explain and demonstrate the use of CAD in conjunction with the Cartesian adjoint approach. The final paper will contain a number of complex geometry, industrially relevant examples with many design variables to demonstrate the effectiveness of the adjoint method on Cartesian meshes.

  13. An evaluation of hernia education in surgical residency programs.

    PubMed

    Hope, W W; O'Dwyer, B; Adams, A; Hooks, W B; Kotwall, C A; Clancy, T V

    2014-08-01

    The purpose of this study was to evaluate surgical residents' educational experience related to ventral hernias. A 16-question survey was sent to all program coordinators to distribute to their residents. Consent was obtained following a short introduction of the purpose of the survey. Comparisons based on training level were made using χ(2) test of independence, Fisher's exact, and Fisher's exact with Monte Carlo estimate as appropriate. A p value <0.05 was considered significant. The survey was returned by 183 residents from 250 surgical programs. Resident postgraduate year (PG-Y) level was equivalent among groups. Preferred techniques for open ventral hernia varied; the most common (32 %) was intra-abdominal placement of mesh with defect closure. Twenty-two percent of residents had not heard of the retrorectus technique for hernia repair, 48 % had not performed the operation, and 60 % were somewhat comfortable with and knew the general categories of mesh prosthetics products. Mesh choices, biologic and synthetic, varied among the different products. The most common type of hernia education was teaching in the operating room in 87 %, didactic lecture 69 %, and discussion at journal club 45 %. Number of procedures, comfort level with open and laparoscopic techniques, indications for mesh use and technique, familiarity and use of retrorectus repair, and type of hernia education varied significantly based on resident level (p < 0.05). Exposure to hernia techniques and mesh prosthetics in surgical residency programs appears to vary. Further evaluation is needed and may help in standardizing curriculums for hernia repair for surgical residents.

  14. Parallel Adaptive Simulation of Detonation Waves Using a Weighted Essentially Non-Oscillatory Scheme

    NASA Astrophysics Data System (ADS)

    McMahon, Sean

    The purpose of this thesis was to develop a code that could be used to develop a better understanding of the physics of detonation waves. First, a detonation was simulated in one dimension using ZND theory. Then, using the 1D solution as an initial condition, a detonation was simulated in two dimensions using a weighted essentially non-oscillatory scheme on an adaptive mesh with the smallest lengthscales being equal to 2-3 flamelet lengths. The code development in linking Chemkin for chemical kinetics to the adaptive mesh refinement flow solver was completed. The detonation evolved in a way that, qualitatively, matched the experimental observations, however, the simulation was unable to progress past the formation of the triple point.

  15. Laminar and turbulent flow computations of Type 4 shock-shock interference aerothermal loads using unstructured grids

    NASA Technical Reports Server (NTRS)

    Vemaganti, Gururaja R.

    1994-01-01

    This report presents computations for the Type 4 shock-shock interference flow under laminar and turbulent conditions using unstructured grids. Mesh adaptation was accomplished by remeshing, refinement, and mesh movement. Two two-equation turbulence models were used to analyze turbulent flows. The mean flow governing equations and the turbulence governing equations are solved in a coupled manner. The solution algorithm and the details pertaining to its implementation on unstructured grids are described. Computations were performed at two different freestream Reynolds numbers at a freestream Mach number of 11. Effects of the variation in the impinging shock location are studied. The comparison of the results in terms of wall heat flux and wall pressure distributions is presented.

  16. Improvement of finite element meshes - Heat transfer in an infinite cylinder

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1989-01-01

    An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffnes matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.

  17. Improvement in finite element meshes: Heat transfer in an infinite cylinder

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.; Oswald, Fred B.

    1988-01-01

    An extension of a structural finite element mesh improvement technique to heat conduction analysis is presented. The mesh improvement concept was originally presented by Prager in studying tapered, axially loaded bars. It was further shown that an improved mesh can be obtained by minimizing the trace of the stiffness matrix. These procedures are extended and applied to the analysis of heat conduction in an infinitely long hollow circular cylinder.

  18. Improved ALE mesh velocities for complex flows

    DOE PAGES

    Bakosi, Jozsef; Waltz, Jacob I.; Morgan, Nathaniel Ray

    2017-05-31

    A key choice in the development of arbitrary Lagrangian-Eulerian solution algorithms is how to move the computational mesh. The most common approaches are smoothing and relaxation techniques, or to compute a mesh velocity field that produces smooth mesh displacements. We present a method in which the mesh velocity is specified by the irrotational component of the fluid velocity as computed from a Helmholtz decomposition, and excess compression of mesh cells is treated through a noniterative, local spring-force model. This approach allows distinct and separate control over rotational and translational modes. In conclusion, the utility of the new mesh motion algorithmmore » is demonstrated on a number of 3D test problems, including problems that involve both shocks and significant amounts of vorticity.« less

  19. A prospective randomised trial comparing mesh types and fixation in totally extraperitoneal inguinal hernia repairs.

    PubMed

    Cristaudo, Adam; Nayak, Arun; Martin, Sarah; Adib, Reza; Martin, Ian

    2015-05-01

    The totally extraperitoneal (TEP) approach for surgical repair of inguinal hernias has emerged as a popular technique. We conducted a prospective randomised trial to compare patient comfort scores using different mesh types and fixation using this technique. Over a 14 month period, 146 patients underwent 232 TEP inguinal hernia repairs. We compared the comfort scores of patients who underwent these procedures using different types of mesh and fixation. A non-absorbable 15 × 10 cm anatomical mesh fixed with absorbable tacks (Control group) was compared with either a non-absorbable 15 × 10 cm folding slit mesh with absorbable tacks (Group 2), a partially-absorbable 15 × 10 cm mesh with absorbable tacks (Group 3) or a non-absorbable 15 × 10 cm anatomical mesh fixed with 2 ml fibrin sealant (Group 4). Outcomes were compared at 1, 2, 4 and 12 weeks using the Carolina Comfort Scale (CCS) scores. At 1, 2, 4 and 12 weeks, the median global CCS scores were low for all treatment groups. Statistically significant differences were seen only for median CCS scores and subscores with the use of partially-absorbable mesh with absorbable tacks (Group 3) at weeks 2 and 4. However, these were no longer significant at week 12. In this study, the TEP inguinal hernia repair with minimal fixation results in low CCS scores. There were no statistical differences in CCS scores when comparing types of mesh, configuration of the mesh or fixation methods. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  20. Transabdominal Preperitoneal Herniorrhaphy using Laser-Assisted Tissue Soldering in a Porcine Model

    PubMed Central

    Soltz, Barbara A.; Stadler, Istvan; Soltz, Robert

    2009-01-01

    Background and Objectives: Collagen solder is capable of fixation of surgical meshes during laparoscopic herniorrhaphy without compromising tissue integration, increasing adhesions or inflammation. This pilot study describes development of instrumentation and techniques for transabdominal preperitoneal (TAPP) herniorrhaphy using laser-assisted soldering technology. Methods: Anesthetized 20-kg to 25-kg female Yorkshire pigs underwent laparoscopy performed using a 3-trocar technique. Peritoneal incisions were made and pockets created in the preperitoneal space for mesh placement. Parietex TEC mesh segments embedded in 60% collagen-solder were soldered to the muscle surface by using a prototype laser (1.45µ, 4.5W CW, 5mm spot, and 55°C set temperature) and custom laparoscopic handpiece. Parietex TEC mesh segments (Control) were affixed to the muscle with fibrin sealant (Tisseel). Peritoneal closure was with staples (Control) or by soldering collagen embedded Vicryl mesh segments over the peritoneal incision (Mesh/TAPP). Segments were inserted using a specially designed introducer. Animals were recovered and underwent second-look laparoscopy at 6 weeks postimplantation. Mesh sites were harvested after animals were euthanized. Results: The mesh-solder constructs were easily inserted and affixed in the TAPP approach. Tisseel tended to drip during application, particularly in vertical and ventral locations. Postoperative healing was similar to Control segments in all cases. Mesh/TAPP closures healed without scarring or adhesion formation. Discussion and Conclusion: Collagen-based tissue soldering permits normal wound healing and may mitigate or reduce use of staples for laparoscopic mesh fixation and peritoneal closure. Laser-assisted mesh fixation and peritoneal closure is a promising alternative for laparoscopic herniorrhaphy. Further development of this strategy is warranted. PMID:19660214

  1. 3D Compressible Melt Transport with Adaptive Mesh Refinement

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Heister, Timo

    2015-04-01

    Melt generation and migration have been the subject of numerous investigations, but their typical time and length-scales are vastly different from mantle convection, which makes it difficult to study these processes in a unified framework. The equations that describe coupled Stokes-Darcy flow have been derived a long time ago and they have been successfully implemented and applied in numerical models (Keller et al., 2013). However, modelling magma dynamics poses the challenge of highly non-linear and spatially variable material properties, in particular the viscosity. Applying adaptive mesh refinement to this type of problems is particularly advantageous, as the resolution can be increased in mesh cells where melt is present and viscosity gradients are high, whereas a lower resolution is sufficient in regions without melt. In addition, previous models neglect the compressibility of both the solid and the fluid phase. However, experiments have shown that the melt density change from the depth of melt generation to the surface leads to a volume increase of up to 20%. Considering these volume changes in both phases also ensures self-consistency of models that strive to link melt generation to processes in the deeper mantle, where the compressibility of the solid phase becomes more important. We describe our extension of the finite-element mantle convection code ASPECT (Kronbichler et al., 2012) that allows for solving additional equations describing the behaviour of silicate melt percolating through and interacting with a viscously deforming host rock. We use the original compressible formulation of the McKenzie equations, augmented by an equation for the conservation of energy. This approach includes both melt migration and melt generation with the accompanying latent heat effects. We evaluate the functionality and potential of this method using a series of simple model setups and benchmarks, comparing results of the compressible and incompressible formulation and showing the potential of adaptive mesh refinement when applied to melt migration. Our model of magma dynamics provides a framework for modelling processes on different scales and investigating links between processes occurring in the deep mantle and melt generation and migration. This approach could prove particularly useful applied to modelling the generation of komatiites or other melts originating in greater depths. Keller, T., D. A. May, and B. J. P. Kaus (2013), Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust, Geophysical Journal International, 195 (3), 1406-1442. Kronbichler, M., T. Heister, and W. Bangerth (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International, 191 (1), 12-29.

  2. Laparoscopic mesh fixation using laser-assisted tissue soldering in a porcine model.

    PubMed

    Lanzafame, Raymond J; Soltz, Barbara A; Stadler, Istvan; Soltz, Robert

    2009-01-01

    Animal studies using open surgical models indicate that collagen solder is capable of fixation of surgical meshes without interfering with tissue integration, increasing adhesions, or increasing inflammation intraperitoneally. This study describes development of instrumentation and techniques for laparoscopic herniorrhaphy using laser-assisted soldering technology. Anesthetized 20 kg to 25 kg female Yorkshire pigs underwent laparoscopy with a 3-trocar technique. Parietex TET, Parietex TEC, and Prolene mesh segments (5 x 5 cm) were embedded in 55% collagen solder. Segments were inserted by using a specially designed introducer and affixed to the peritoneum by using prototype laser devices (1.45 micro, 4.5 W continuous wave, 5-mm spot, 55 degrees C set temperature) and a custom laparoscopic handpiece (IPOM). Parietex PCO mesh was inserted and affixed using the Endo-hernia stapler (Control). Animals were recovered and underwent second-look laparoscopy at 6 weeks. Mesh sites were harvested after animals were euthanized. The mesh-solder constructs were easily inserted and affixed in an IPOM approach. Prolene mesh tended to curl at its edges as the solder was melted. Postoperative healing was similar to that in Control segments in all cases. Collagen-based tissue soldering permits normal wound healing and may mitigate or reduce the use of staples or other foreign bodies for laparoscopic mesh fixation, prevent tissue ischemia and possibly nerve entrapment, which result in severe postoperative pain and morbidity. Laser-assisted mesh fixation is a promising alternative for laparoscopic herniorrhaphy. Further development of this strategy is warranted.

  3. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  4. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  5. Domain Immersion Technique And Free Surface Computations Applied To Extrusion And Mixing Processes

    NASA Astrophysics Data System (ADS)

    Valette, Rudy; Vergnes, Bruno; Basset, Olivier; Coupez, Thierry

    2007-04-01

    This work focuses on the development of numerical techniques devoted to the simulation of mixing processes of complex fluids such as twin-screw extrusion or batch mixing. In mixing process simulation, the absence of symmetry of the moving boundaries (the screws or the rotors) implies that their rigid body motion has to be taken into account by using a special treatment. We therefore use a mesh immersion technique (MIT), which consists in using a P1+/P1-based (MINI-element) mixed finite element method for solving the velocity-pressure problem and then solving the problem in the whole barrel cavity by imposing a rigid motion (rotation) to nodes found located inside the so called immersed domain, each subdomain (screw, rotor) being represented by a surface CAD mesh (or its mathematical equation in simple cases). The independent meshes are immersed into a unique backgound computational mesh by computing the distance function to their boundaries. Intersections of meshes are accounted for, allowing to compute a fill factor usable as for the VOF methodology. This technique, combined with the use of parallel computing, allows to compute the time-dependent flow of generalized Newtonian fluids including yield stress fluids in a complex system such as a twin screw extruder, including moving free surfaces, which are treated by a "level set" and Hamilton-Jacobi method.

  6. Figuring Out Gas in Galaxies In Enzo (FOGGIE): Resolving the Inner Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    Cosmological hydrodynamical simulations using every common numerical method have struggled to reproduce the multiphase nature of the circumgalactic medium (CGM) revealed by recent observations. However, to date, resolution in these simulations has been aimed at dense regions — the galactic disk and in-falling satellites — while the diffuse CGM never reaches comparable levels of refinement. Taking advantage of the flexible grid structure of the adaptive mesh refinement code Enzo, we force refinement in a region of the CGM of a Milky Way-like galaxy to the same spatial resolution as that of the disk. In this talk, I will present how the physical and structural distributions of the circumgalactic gas change dramatically as a function of the resolution alone. I will also show the implications these changes have for the observational properties of the gas in the context of the observations.

  7. Minimizing donor-site morbidity following bilateral pedicled TRAM breast reconstruction with the double mesh fold over technique.

    PubMed

    Bharti, Gaurav; Groves, Leslie; Sanger, Claire; Thompson, James; David, Lisa; Marks, Malcolm

    2013-05-01

    Transverse rectus abdominus muscle flaps (TRAM) can result in significant abdominal wall donor-site morbidity. We present our experience with bilateral pedicle TRAM breast reconstruction using a double-layered polypropylene mesh fold over technique to repair the rectus fascia. A retrospective study was performed that included patients with bilateral pedicle TRAM breast reconstruction and abdominal reconstruction using a double-layered polypropylene mesh fold over technique. Thirty-five patients met the study criteria with a mean age of 49 years old and mean follow-up of 7.4 years. There were no instances of abdominal hernia and only 2 cases (5.7%) of abdominal bulge. Other abdominal complications included partial umbilical necrosis (14.3%), seroma (11.4%), partial wound dehiscence (8.6%), abdominal weakness (5.7%), abdominal laxity (2.9%), and hematoma (2.9%). The TRAM flap is a reliable option for bilateral autologous breast reconstruction. Using the double mesh repair of the abdominal wall can reduce instances of an abdominal bulge and hernia.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung Yoon; Roberts, Barry L.

    The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.« less

  9. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  10. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  11. Well-posed and stable transmission problems

    NASA Astrophysics Data System (ADS)

    Nordström, Jan; Linders, Viktor

    2018-07-01

    We introduce the notion of a transmission problem to describe a general class of problems where different dynamics are coupled in time. Well-posedness and stability are analysed for continuous and discrete problems using both strong and weak formulations, and a general transmission condition is obtained. The theory is applied to the coupling of fluid-acoustic models, multi-grid implementations, adaptive mesh refinements, multi-block formulations and numerical filtering.

  12. A discontinuous Galerkin method with a bound preserving limiter for the advection of non-diffusive fields in solid Earth geodynamics

    NASA Astrophysics Data System (ADS)

    He, Ying; Puckett, Elbridge Gerry; Billen, Magali I.

    2017-02-01

    Mineral composition has a strong effect on the properties of rocks and is an essentially non-diffusive property in the context of large-scale mantle convection. Due to the non-diffusive nature and the origin of compositionally distinct regions in the Earth the boundaries between distinct regions can be nearly discontinuous. While there are different methods for tracking rock composition in numerical simulations of mantle convection, one must consider trade-offs between computational cost, accuracy or ease of implementation when choosing an appropriate method. Existing methods can be computationally expensive, cause over-/undershoots, smear sharp boundaries, or are not easily adapted to tracking multiple compositional fields. Here we present a Discontinuous Galerkin method with a bound preserving limiter (abbreviated as DG-BP) using a second order Runge-Kutta, strong stability-preserving time discretization method for the advection of non-diffusive fields. First, we show that the method is bound-preserving for a point-wise divergence free flow (e.g., a prescribed circular flow in a box). However, using standard adaptive mesh refinement (AMR) there is an over-shoot error (2%) because the cell average is not preserved during mesh coarsening. The effectiveness of the algorithm for convection-dominated flows is demonstrated using the falling box problem. We find that the DG-BP method maintains sharper compositional boundaries (3-5 elements) as compared to an artificial entropy-viscosity method (6-15 elements), although the over-/undershoot errors are similar. When used with AMR the DG-BP method results in fewer degrees of freedom due to smaller regions of mesh refinement in the neighborhood of the discontinuity. However, using Taylor-Hood elements and a uniform mesh there is an over-/undershoot error on the order of 0.0001%, but this error increases to 0.01-0.10% when using AMR. Therefore, for research problems in which a continuous field method is desired the DG-BP method can provide improved tracking of sharp compositional boundaries. For applications in which strict bound-preserving behavior is desired, use of an element that provides a divergence-free condition on the weak formulation (e.g., Raviart-Thomas) and an improved mesh coarsening scheme for the AMR are required.

  13. Gluteo-vaginal sinus formation complicating posterior intravaginal slingplasty followed by successful IVS removal. A case report and review of the literature.

    PubMed

    Mikos, Themistoklis; Tsalikis, Tryfon; Papanikolaou, Alexios; Pournaropoulos, Fotios; Bontis, John N

    2008-03-01

    Posterior intravaginal slingplasty (IVS) is a technique used for the treatment of apical prolapse. Type III meshes have been mostly used with this technique. In this article, a case of bilateral gluteo-vaginal sinus tract formation that complicated a posterior vaginal slingplasty with a type III mesh is presented. At 3 months follow-up, the patient complained for bulking through the vagina, continuous offensive vaginal discharge, and constant pain at the buttocks. She had prolapse recurrence, and there was defective healing at the gluteal entry points of the posterior IVS. Ten months after the initial surgery, she underwent a laparotomic subtotal hysterectomy and sacrocervicopexy with prolene type I mesh. At the same time, the posterior mesh was removed allowing the surgeon to discover communication of the canal of the mesh extending from gluteal incisions to the vagina epithelium. The sinus tract was managed surgically with excision of the surrounding tissues. There was no recurrence or other complications at 2 months follow-up.

  14. Laparoscopic Sacral Colpopexy: The "6-Points" Technique.

    PubMed

    Schaub, Marie; Lecointre, Lise; Faller, Emilie; Boisramé, Thomas; Baldauf, Jean-Jacques; Wattiez, Arnaud; Akladios, Cherif Youssef

    To illustrate laparoscopic sacral colpopexy for pelvic organ prolapse, a new method using a simplified mesh fixation technique, with only 6 fixing points. Step-by-step explanation of the surgery using video (educative video). The video was approved by the local institutional review board. University Hospital of Strasbourg, France (Canadian Task Force Classification III). Women with multicompartment prolapse. We first dissected the promontorium and vertically incise the posterior parietal peritoneum on the right pelvic sidewall up the pouch of Douglas. We then dissect the rectovaginal septum up to the anal cap, laterally exposing the puborectalis muscle on each side. Middle rectal vessels can be coagulated and cut without increasing the risk of digestive disorders (especially constipation), but it is preferable to conserve them if the space is sufficient for suture. Then, we dissect the vesicovaginal space and realized the subtotal hysterectomy. Finally, we realized the fastening of the anterior and posterior meshes. The particularity is that we performed only 6 points for fixing the meshes: 1 on the puborectalis muscle on each side without tension (to reduce the risk of mesh contracture, dyspareunia, and chronic pelvic pain), 1 for the fixing of the anterior mesh on the anterior vaginal wall at the level of the bladder neck, and 1 on each side of the cervix for the reconstitution of the pericervical ring gathering together the anterior mesh, the pubocervical fascia, and the insertion of the uterosacral ligament at the level of the cervix and the posterior mesh. The sixth stitch fastened 1 of 2 meshes to the anterior paravertebral ligament at the level of the sacral promontory. We finished with the peritonization. The duration of surgery lasts approximately 120 minutes in well-experienced hands. Based on our experience the 6-point technique was relatively simple (few laparoscopic stiches) with few operative difficulties and was also associated with a low rate of reintervention. Surgical management of middle compartment prolapse could be performed quickly and efficiently under laparoscopy with the "6-points" technique. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.

  15. Streaming simplification of tetrahedral meshes.

    PubMed

    Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T

    2007-01-01

    Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.

  16. Hip joint replacement using monofilament polypropylene surgical mesh: an animal model.

    PubMed

    Białecki, Jacek; Majchrzycki, Marian; Szymczak, Antoni; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof

    2014-01-01

    Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform.

  17. LBMD : a layer-based mesh data structure tailored for generic API infrastructures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeida, Mohamed S.; Knupp, Patrick Michael

    2010-11-01

    A new mesh data structure is introduced for the purpose of mesh processing in Application Programming Interface (API) infrastructures. This data structure utilizes a reduced mesh representation to increase its ability to handle significantly larger meshes compared to full mesh representation. In spite of the reduced representation, each mesh entity (vertex, edge, face, and region) is represented using a unique handle, with no extra storage cost, which is a crucial requirement in most API libraries. The concept of mesh layers makes the data structure more flexible for mesh generation and mesh modification operations. This flexibility can have a favorable impactmore » in solver based queries of finite volume and multigrid methods. The capabilities of LBMD make it even more attractive for parallel implementations using Message Passing Interface (MPI) or Graphics Processing Units (GPUs). The data structure is associated with a new classification method to relate mesh entities to their corresponding geometrical entities. The classification technique stores the related information at the node level without introducing any ambiguities. Several examples are presented to illustrate the strength of this new data structure.« less

  18. Dynamic mesh for TCAD modeling with ECORCE

    NASA Astrophysics Data System (ADS)

    Michez, A.; Boch, J.; Touboul, A.; Saigné, F.

    2016-08-01

    Mesh generation for TCAD modeling is challenging. Because densities of carriers can change by several orders of magnitude in thin areas, a significant change of the solution can be observed for two very similar meshes. The mesh must be defined at best to minimize this change. To address this issue, a criterion based on polynomial interpolation on adjacent nodes is proposed that adjusts accurately the mesh to the gradients of Degrees of Freedom. Furthermore, a dynamic mesh that follows changes of DF in DC and transient mode is a powerful tool for TCAD users. But, in transient modeling, adding nodes to a mesh induces oscillations in the solution that appears as spikes at the current collected at the contacts. This paper proposes two schemes that solve this problem. Examples show that using these techniques, the dynamic mesh generator of the TCAD tool ECORCE handle semiconductors devices in DC and transient mode.

  19. A semi-implicit finite element method for viscous lipid membranes

    NASA Astrophysics Data System (ADS)

    Rodrigues, Diego S.; Ausas, Roberto F.; Mut, Fernando; Buscaglia, Gustavo C.

    2015-10-01

    A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme (Codina and Blasco (1997) [33]), the second couples curvature and velocity to improve temporal stability, as proposed by Bänsch (2001) [36]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method.

  20. Adaptive mesh refinement versus subgrid friction interpolation in simulations of Antarctic ice dynamics

    DOE PAGES

    Cornford, S. L.; Martin, D. F.; Lee, V.; ...

    2016-05-13

    At least in conventional hydrostatic ice-sheet models, the numerical error associated with grounding line dynamics can be reduced by modifications to the discretization scheme. These involve altering the integration formulae for the basal traction and/or driving stress close to the grounding line and exhibit lower – if still first-order – error in the MISMIP3d experiments. MISMIP3d may not represent the variety of real ice streams, in that it lacks strong lateral stresses, and imposes a large basal traction at the grounding line. We study resolution sensitivity in the context of extreme forcing simulations of the entire Antarctic ice sheet, using the BISICLES adaptive mesh ice-sheet model with two schemes: the original treatment, and a scheme, which modifies the discretization of the basal traction. The second scheme does indeed improve accuracy – by around a factor of two – for a given mesh spacing, butmore » $$\\lesssim 1$$ km resolution is still necessary. For example, in coarser resolution simulations Thwaites Glacier retreats so slowly that other ice streams divert its trunk. In contrast, with $$\\lesssim 1$$ km meshes, the same glacier retreats far more quickly and triggers the final phase of West Antarctic collapse a century before any such diversion can take place.« less

  1. Laparoscopic Mesh Fixation Using Laser-Assisted Tissue Soldering in a Porcine Model

    PubMed Central

    Soltz, Barbara A.; Stadler, Istvan; Soltz, Robert

    2009-01-01

    Background and Objective: Animal studies using open surgical models indicate that collagen solder is capable of fixation of surgical meshes without interfering with tissue integration, increasing adhesions, or increasing inflammation intraperitoneally. This study describes development of instrumentation and techniques for laparoscopic herniorrhaphy using laser-assisted soldering technology. Study Design and Methods: Anesthetized 20 kg to 25 kg female Yorkshire pigs underwent laparoscopy with a 3-trocar technique. Parietex TET, Parietex TEC, and Prolene mesh segments (5 × 5 cm) were embedded in 55% collagen solder. Segments were inserted by using a specially designed introducer and affixed to the peritoneum by using prototype laser devices (1.45 µ, 4.5 W continuous wave, 5-mm spot, 55° C set temperature) and a custom laparoscopic handpiece (IPOM). Parietex PCO mesh was inserted and affixed using the Endo-hernia stapler (Control). Animals were recovered and underwent second-look laparoscopy at 6 weeks. Mesh sites were harvested after animals were euthanized. Results: The mesh-solder constructs were easily inserted and affixed in an IPOM approach. Prolene mesh tended to curl at its edges as the solder was melted. Postoperative healing was similar to that in Control segments in all cases. Discussion and Conclusion: Collagen-based tissue soldering permits normal wound healing and may mitigate or reduce the use of staples or other foreign bodies for laparoscopic mesh fixation, prevent tissue ischemia and possibly nerve entrapment, which result in severe postoperative pain and morbidity. Laser-assisted mesh fixation is a promising alternative for laparoscopic herniorrhaphy. Further development of this strategy is warranted. PMID:19793465

  2. Orbital Reconstruction: Patient-Specific Orbital Floor Reconstruction Using a Mirroring Technique and a Customized Titanium Mesh.

    PubMed

    Tarsitano, Achille; Badiali, Giovanni; Pizzigallo, Angelo; Marchetti, Claudio

    2016-10-01

    Enophthalmos is a severe complication of primary reconstruction of orbital floor fractures. The goal of secondary reconstruction procedures is to restore symmetrical globe positions to recover function and aesthetics. The authors propose a new method of orbital floor reconstruction using a mirroring technique and a customized titanium mesh, printed using a direct metal laser-sintering method. This reconstructive protocol involves 4 steps: mirroring of the healthy orbit at the affected site, virtual design of a patient-specific orbital floor mesh, CAM procedures for direct laser-sintering of the customized titanium mesh, and surgical insertion of the device. Using a computed tomography data set, the normal, uninjured side of the craniofacial skeleton was reflected onto the contralateral injured side, and a reconstructive orbital floor mesh was designed virtually on the mirrored orbital bone surface. The solid-to-layer files of the mesh were then manufactured using direct metal laser sintering, which resolves the shaping and bending biases inherent in the indirect method. An intraoperative navigation system ensured accuracy of the entire procedure. Clinical outcomes were assessed using 3dMD photogrammetry and computed tomography data in 7 treated patients. The technique described here appears to be a viable method to correct complex orbital floor defects needing delayed reconstruction. This study represents the first step in the development of a wider experimental protocol for orbital floor reconstruction using computer-assisted design-computer-assisted manufacturing technology.

  3. An upwind multigrid method for solving viscous flows on unstructured triangular meshes. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Bonhaus, Daryl Lawrence

    1993-01-01

    A multigrid algorithm is combined with an upwind scheme for solving the two dimensional Reynolds averaged Navier-Stokes equations on triangular meshes resulting in an efficient, accurate code for solving complex flows around multiple bodies. The relaxation scheme uses a backward-Euler time difference and relaxes the resulting linear system using a red-black procedure. Roe's flux-splitting scheme is used to discretize convective and pressure terms, while a central difference is used for the diffusive terms. The multigrid scheme is demonstrated for several flows around single and multi-element airfoils, including inviscid, laminar, and turbulent flows. The results show an appreciable speed up of the scheme for inviscid and laminar flows, and dramatic increases in efficiency for turbulent cases, especially those on increasingly refined grids.

  4. Synchronistic mind-matter correlations in therapeutic practice: a commentary on Connolly (2015).

    PubMed

    Atmanspacher, Harald; Fach, Wolfgang

    2016-02-01

    This commentary adds some ideas and refinements to the inspiring discussion in a recent paper by Connolly () that makes use of a dual-aspect framework developed by us earlier. One key point is that exceptional experiences (of which synchronicities are a special case) cannot in general be identified with experiences of non-categorial or acategorial mental states. In fact, most exceptional experiences reported in the literature are experiences of categorial states. Conversely, there are non-categorial and acategorial states whose experience is not exceptional. Moreover, the psychodynamics of a synchronistic experience contain a subtle mesh of interacting processes pertaining to categorial, non-categorial and acategorial domains. We outline how this mesh may be addressed in particular cases of synchronicity described by Connolly. © 2016, The Society of Analytical Psychology.

  5. Automatic construction of patient-specific finite-element mesh of the spine from IVDs and vertebra segmentations

    NASA Astrophysics Data System (ADS)

    Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.

    2016-03-01

    Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.

  6. Synthetic mesh in the surgical repair of pelvic organ prolapse: current status and future directions.

    PubMed

    Keys, Tristan; Campeau, Lysanne; Badlani, Gopal

    2012-08-01

    In light of the recent Food and Drug Administration public health notification regarding complications associated with transvaginally placed mesh for pelvic organ prolapse (POP) repair, we review recent literature to evaluate current outcomes and complication data, analyze the clinical need for mesh on the basis of genetic and biochemical etiologies of POP, and investigate trends of mesh use via an American Urological Association member survey. Mesh-based techniques show better anatomic results than traditional repair of anterior POP, but subjective outcomes are equivalent. Further research and Level I evidence are required before mesh-based repair of POP can be standardized. Adequate surgical training and patient selection should decrease complication rates. Published by Elsevier Inc.

  7. Discrete Data Transfer Technique for Fluid-Structure Interaction

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    2007-01-01

    This paper presents a general three-dimensional algorithm for data transfer between dissimilar meshes. The algorithm is suitable for applications of fluid-structure interaction and other high-fidelity multidisciplinary analysis and optimization. Because the algorithm is independent of the mesh topology, we can treat structured and unstructured meshes in the same manner. The algorithm is fast and accurate for transfer of scalar or vector fields between dissimilar surface meshes. The algorithm is also applicable for the integration of a scalar field (e.g., coefficients of pressure) on one mesh and injection of the resulting vectors (e.g., force vectors) onto another mesh. The author has implemented the algorithm in a C++ computer code. This paper contains a complete formulation of the algorithm with a few selected results.

  8. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes: Scalable hierarchical PDE sampler using nonmatching meshes

    DOE PAGES

    Osborn, Sarah; Zulian, Patrick; Benson, Thomas; ...

    2018-01-30

    This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less

  9. Scalable hierarchical PDE sampler for generating spatially correlated random fields using nonmatching meshes: Scalable hierarchical PDE sampler using nonmatching meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, Sarah; Zulian, Patrick; Benson, Thomas

    This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less

  10. Parallel performance investigations of an unstructured mesh Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.

    2000-01-01

    A Reynolds-averaged Navier-Stokes solver based on unstructured mesh techniques for analysis of high-lift configurations is described. The method makes use of an agglomeration multigrid solver for convergence acceleration. Implicit line-smoothing is employed to relieve the stiffness associated with highly stretched meshes. A GMRES technique is also implemented to speed convergence at the expense of additional memory usage. The solver is cache efficient and fully vectorizable, and is parallelized using a two-level hybrid MPI-OpenMP implementation suitable for shared and/or distributed memory architectures, as well as clusters of shared memory machines. Convergence and scalability results are illustrated for various high-lift cases.

  11. Delaunay Refinement Mesh Generation

    DTIC Science & Technology

    1997-05-18

    edge is locally Delaunay; thus, by Lemma 3, every edge is Delaunay. Theorem 5 Let V be a set of three or more vertices in the plane that are not all...this document. Delaunay triangulations are valuable in part because they have the following optimality properties. Theorem 6 Among all triangulations of...no locally Delaunay edges. By Theorem 5, a triangulation with no locally Delaunay edges is the Delaunay triangulation. The property of max-min

  12. High-Q Superconducting Coplanar Waveguide Resonators for Integration into Molecule Ion Traps

    DTIC Science & Technology

    2010-05-01

    V12C (3.13) 4 and We = V12 (3.14) 4 w 2 L’ finally yielding 2Wm R Q = wo m - w0L= woRC, (3.15) where wo = 1/ vLC is the resonant frequency of the...small. The primary challenge with simulating the microresonators was refining the mesh while remaining under memory limits of the modeling computer. It

  13. High speed inviscid compressible flow by the finite element method

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Loehner, R.; Morgan, K.

    1984-01-01

    The finite element method and an explicit time stepping algorithm which is based on Taylor-Galerkin schemes with an appropriate artificial viscosity is combined with an automatic mesh refinement process which is designed to produce accurate steady state solutions to problems of inviscid compressible flow in two dimensions. The results of two test problems are included which demonstrate the excellent performance characteristics of the proposed procedures.

  14. Correlation of Structural Analysis and Test Results for the McDonnell Douglas Stitched/RFI All-Composite Wing Stub Box

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Jegley, Dawn C.; Bush, Harold G.; Hinrichs, Stephen C.

    1996-01-01

    The analytical and experimental results of an all-composite wing stub box are presented in this report. The wing stub box, which is representative of an inboard portion of a commercial transport high-aspect-ratio wing, was fabricated from stitched graphite-epoxy material with a Resin Film Infusion manufacturing process. The wing stub box was designed and constructed by the McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology program. The test article contained metallic load-introduction structures on the inboard and outboard ends of the graphite-epoxy wing stub box. The root end of the inboard load introduction structure was attached to a vertical reaction structure, and an upward load was applied to the outermost tip of the outboard load introduction structure to induce bending of the wing stub box. A finite element model was created in which the center portion of the wing-stub-box upper cover panel was modeled with a refined mesh. The refined mesh was required to represent properly the geometrically nonlinear structural behavior of the upper cover panel and to predict accurately the strains in the stringer webs of the stiffened upper cover panel. The analytical and experimental results for deflections and strains are in good agreement.

  15. Simulating Space Capsule Water Landing with Explicit Finite Element Method

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lyle, Karen H.

    2007-01-01

    A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.

  16. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  17. GPU accelerated cell-based adaptive mesh refinement on unstructured quadrilateral grid

    NASA Astrophysics Data System (ADS)

    Luo, Xisheng; Wang, Luying; Ran, Wei; Qin, Fenghua

    2016-10-01

    A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and null memory recycling is realized to improve the efficiency of memory utilization. It is found that results obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050, which demonstrates that parallel running of the cell-based AMR method on GPU is feasible and efficient. Our results also indicate that the new development of GPU architecture benefits the fluid dynamics computing significantly.

  18. High-speed GPU-based finite element simulations for NDT

    NASA Astrophysics Data System (ADS)

    Huthwaite, P.; Shi, F.; Van Pamel, A.; Lowe, M. J. S.

    2015-03-01

    The finite element method solved with explicit time increments is a general approach which can be applied to many ultrasound problems. It is widely used as a powerful tool within NDE for developing and testing inspection techniques, and can also be used in inversion processes. However, the solution technique is computationally intensive, requiring many calculations to be performed for each simulation, so traditionally speed has been an issue. For maximum speed, an implementation of the method, called Pogo [Huthwaite, J. Comp. Phys. 2014, doi: 10.1016/j.jcp.2013.10.017], has been developed to run on graphics cards, exploiting the highly parallelisable nature of the algorithm. Pogo typically demonstrates speed improvements of 60-90x over commercial CPU alternatives. Pogo is applied to three NDE examples, where the speed improvements are important: guided wave tomography, where a full 3D simulation must be run for each source transducer and every different defect size; scattering from rough cracks, where many simulations need to be run to build up a statistical model of the behaviour; and ultrasound propagation within coarse-grained materials where the mesh must be highly refined and many different cases run.

  19. A novel method for pair-matching using three-dimensional digital models of bone: mesh-to-mesh value comparison.

    PubMed

    Karell, Mara A; Langstaff, Helen K; Halazonetis, Demetrios J; Minghetti, Caterina; Frelat, Mélanie; Kranioti, Elena F

    2016-09-01

    The commingling of human remains often hinders forensic/physical anthropologists during the identification process, as there are limited methods to accurately sort these remains. This study investigates a new method for pair-matching, a common individualization technique, which uses digital three-dimensional models of bone: mesh-to-mesh value comparison (MVC). The MVC method digitally compares the entire three-dimensional geometry of two bones at once to produce a single value to indicate their similarity. Two different versions of this method, one manual and the other automated, were created and then tested for how well they accurately pair-matched humeri. Each version was assessed using sensitivity and specificity. The manual mesh-to-mesh value comparison method was 100 % sensitive and 100 % specific. The automated mesh-to-mesh value comparison method was 95 % sensitive and 60 % specific. Our results indicate that the mesh-to-mesh value comparison method overall is a powerful new tool for accurately pair-matching commingled skeletal elements, although the automated version still needs improvement.

  20. Shape optimization of three-dimensional stamped and solid automotive components

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.; Yang, R.-J.; Bennett, J. A.

    1987-01-01

    The shape optimization of realistic, 3-D automotive components is discussed. The integration of the major parts of the total process: modeling, mesh generation, finite element and sensitivity analysis, and optimization are stressed. Stamped components and solid components are treated separately. For stamped parts a highly automated capability was developed. The problem description is based upon a parameterized boundary design element concept for the definition of the geometry. Automatic triangulation and adaptive mesh refinement are used to provide an automated analysis capability which requires only boundary data and takes into account sensitivity of the solution accuracy to boundary shape. For solid components a general extension of the 2-D boundary design element concept has not been achieved. In this case, the parameterized surface shape is provided using a generic modeling concept based upon isoparametric mapping patches which also serves as the mesh generator. Emphasis is placed upon the coupling of optimization with a commercially available finite element program. To do this it is necessary to modularize the program architecture and obtain shape design sensitivities using the material derivative approach so that only boundary solution data is needed.

  1. A versatile embedded boundary adaptive mesh method for compressible flow in complex geometry

    NASA Astrophysics Data System (ADS)

    Al-Marouf, M.; Samtaney, R.

    2017-05-01

    We present an embedded ghost fluid method for numerical solutions of the compressible Navier Stokes (CNS) equations in arbitrary complex domains. A PDE multidimensional extrapolation approach is used to reconstruct the solution in the ghost fluid regions and imposing boundary conditions on the fluid-solid interface, coupled with a multi-dimensional algebraic interpolation for freshly cleared cells. The CNS equations are numerically solved by the second order multidimensional upwind method. Block-structured adaptive mesh refinement, implemented with the Chombo framework, is utilized to reduce the computational cost while keeping high resolution mesh around the embedded boundary and regions of high gradient solutions. The versatility of the method is demonstrated via several numerical examples, in both static and moving geometry, ranging from low Mach number nearly incompressible flows to supersonic flows. Our simulation results are extensively verified against other numerical results and validated against available experimental results where applicable. The significance and advantages of our implementation, which revolve around balancing between the solution accuracy and implementation difficulties, are briefly discussed as well.

  2. Design of Raft Foundations for High-Rise Buildings on Jointed Rock

    NASA Astrophysics Data System (ADS)

    Justo, J. L.; García-Núñez, J.-C.; Vázquez-Boza, M.; Justo, E.; Durand, P.; Azañón, J. M.

    2014-07-01

    This paper presents calculations of displacements and bending moments in a 2-m-thick reinforced-concrete foundation slab using three-dimensional finite-element software. A preliminary paper was presented by Justo et al. (Rock Mech Rock Eng 43:287-304, 2010). The slab is the base of a tower of 137 m height above foundation, supported on jointed and partly weathered basalt and scoria. Installation of rod extensometers at different depths below foundation allowed comparison between measured displacements and displacements calculated using moduli obtained from rock classification systems and three material models: elastic, Mohr-Coulomb and hardening (H). Although all three material models can provide acceptable results, the H model is preferable when there are unloading processes. Acceptable values of settlement may be achieved with medium meshing and an approximate distribution of loads. The absolute values of negative bending moments (tensions below) increase as the rock mass modulus decreases or when the mesh is refined. The paper stresses the importance of adequately representing the details of the distribution of loads and the necessity for fine meshing to obtain acceptable values of bending moments.

  3. AMRZone: A Runtime AMR Data Sharing Framework For Scientific Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenzhao; Tang, Houjun; Harenberg, Steven

    Frameworks that facilitate runtime data sharing across multiple applications are of great importance for scientific data analytics. Although existing frameworks work well over uniform mesh data, they can not effectively handle adaptive mesh refinement (AMR) data. Among the challenges to construct an AMR-capable framework include: (1) designing an architecture that facilitates online AMR data management; (2) achieving a load-balanced AMR data distribution for the data staging space at runtime; and (3) building an effective online index to support the unique spatial data retrieval requirements for AMR data. Towards addressing these challenges to support runtime AMR data sharing across scientific applications,more » we present the AMRZone framework. Experiments over real-world AMR datasets demonstrate AMRZone's effectiveness at achieving a balanced workload distribution, reading/writing large-scale datasets with thousands of parallel processes, and satisfying queries with spatial constraints. Moreover, AMRZone's performance and scalability are even comparable with existing state-of-the-art work when tested over uniform mesh data with up to 16384 cores; in the best case, our framework achieves a 46% performance improvement.« less

  4. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  5. Discretization of three-dimensional free surface flows and moving boundary problems via elliptic grid methods based on variational principles

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Papaioannou, J.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-09-01

    A new boundary-fitted technique to describe free surface and moving boundary problems is presented. We have extended the 2D elliptic grid generator developed by Dimakopoulos and Tsamopoulos (2003) [19] and further advanced by Chatzidai et al. (2009) [18] to 3D geometries. The set of equations arises from the fulfillment of the variational principles established by Brackbill and Saltzman (1982) [21], and refined by Christodoulou and Scriven (1992) [22]. These account for both smoothness and orthogonality of the grid lines of tessellated physical domains. The elliptic-grid equations are accompanied by new boundary constraints and conditions which are based either on the equidistribution of the nodes on boundary surfaces or on the existing 2D quasi-elliptic grid methodologies. The capabilities of the proposed algorithm are first demonstrated in tests with analytically described complex surfaces. The sequence in which these tests are presented is chosen to help the reader build up experience on the best choice of the elliptic grid parameters. Subsequently, the mesh equations are coupled with the Navier-Stokes equations, in order to reveal the full potential of the proposed methodology in free surface flows. More specifically, the problem of gas assisted injection in ducts of circular and square cross-sections is examined, where the fluid domain experiences extreme deformations. Finally, the flow-mesh solver is used to calculate the equilibrium shapes of static menisci in capillary tubes.

  6. Effect of Free-Stream Turbulence Intensity on Transonic Airfoil with Shock Wave

    NASA Astrophysics Data System (ADS)

    Lutsenko, I.; Serikbay, M.; Akiltayev, A.; Rojas-Solórzano, L. R.; Zhao, Y.

    2017-09-01

    Airplanes regularly operate switching between various flight modes such as take-off, climb, cruise, descend and landing. During these flight conditions the free-stream approaching the wings undergo fundamental changes. In transonic flow conditions, typically in the military or aerospace applications, existence of nonlinear and unsteady effects of the airflow stream significantly alters the performance of an airfoil. This paper presents the influence of free-stream turbulence intensity on transonic flow over an airfoil in the presence of a weak shock wave. In particular, NACA 0012 airfoil performance at Ma∞ = 0.7 is considered in terms of drag, lift, turbulence kinetic energy, and turbulence eddy dissipation parameters under the influence of varying angle of attacks and free-stream turbulence. The finite volume method in a commercial CFD package ANSYS-CFX is used to perform the numerical analysis of the flow. Mesh refinement using a mesh-adaption technique based on velocity gradient is presented for more accurate prediction of shocks and boundary layers. A Shear Stress Transport (SST) turbulence model is validated against experimental data available in the literature. Numerical simulations were performed, with free stream turbulence intensity ranging from low (1%), medium (5%) to high (10%) levels. Results revealed that drag and lift coefficients are approximately the same at every aforementioned value of turbulence intensity. However, turbulence kinetic energy and eddy dissipation contours vary as turbulence intensity changes, but their changes are disproportionally small, compared with values adopted for free-stream turbulence.

  7. Application of FUN3D Solver for Aeroacoustics Simulation of a Nose Landing Gear Configuration

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Lockard, David P.; Khorrami, Mehdi R.

    2011-01-01

    Numerical simulations have been performed for a nose landing gear configuration corresponding to the experimental tests conducted in the Basic Aerodynamic Research Tunnel at NASA Langley Research Center. A widely used unstructured grid code, FUN3D, is examined for solving the unsteady flow field associated with this configuration. A series of successively finer unstructured grids has been generated to assess the effect of grid refinement. Solutions have been obtained on purely tetrahedral grids as well as mixed element grids using hybrid RANS/LES turbulence models. The agreement of FUN3D solutions with experimental data on the same size mesh is better on mixed element grids compared to pure tetrahedral grids, and in general improves with grid refinement.

  8. NASA Langley developments in response calculations needed for failure and life prediction

    NASA Technical Reports Server (NTRS)

    Housner, Jerrold M.

    1993-01-01

    NASA Langley developments in response calculations needed for failure and life predictions are discussed. Topics covered include: structural failure analysis in concurrent engineering; accuracy of independent regional modeling demonstrated on classical example; functional interface method accurately joins incompatible finite element models; interface method for insertion of local detail modeling extended to curve pressurized fuselage window panel; interface concept for joining structural regions; motivation for coupled 2D-3D analysis; compression panel with discontinuous stiffener coupled 2D-3D model and axial surface strains at the middle of the hat stiffener; use of adaptive refinement with multiple methods; adaptive mesh refinement; and studies on quantity effect of bow-type initial imperfections on reliability of stiffened panels.

  9. Compact cell-centered discretization stencils at fine-coarse block structured grid interfaces

    NASA Astrophysics Data System (ADS)

    Pletzer, Alexander; Jamroz, Ben; Crockett, Robert; Sides, Scott

    2014-03-01

    Different strategies for coupling fine-coarse grid patches are explored in the context of the adaptive mesh refinement (AMR) method. We show that applying linear interpolation to fill in the fine grid ghost values can produce a finite volume stencil of comparable accuracy to quadratic interpolation provided the cell volumes are adjusted. The volume of fine cells expands whereas the volume of neighboring coarse cells contracts. The amount by which the cells contract/expand depends on whether the interface is a face, an edge, or a corner. It is shown that quadratic or better interpolation is required when the conductivity is spatially varying, anisotropic, the refinement ratio is other than two, or when the fine-coarse interface is concave.

  10. Deposition and post-processing techniques for transparent conductive films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christoforo, Mark Greyson; Mehra, Saahil; Salleo, Alberto

    2017-07-04

    In one embodiment, a method is provided for fabrication of a semitransparent conductive mesh. A first solution having conductive nanowires suspended therein and a second solution having nanoparticles suspended therein are sprayed toward a substrate, the spraying forming a mist. The mist is processed, while on the substrate, to provide a semitransparent conductive material in the form of a mesh having the conductive nanowires and nanoparticles. The nanoparticles are configured and arranged to direct light passing through the mesh. Connections between the nanowires provide conductivity through the mesh.

  11. Concentration and recovery of coliphages from water with bituminous coal.

    PubMed

    Dafale, Nishant; Lakhe, Shrikumar; Yadav, Krishnakant; Purohit, Hemant; Chakrabarti, Tapan

    2008-03-01

    Coliphages represent a process indicator for fecal pollution. The coal bed concentration method prepared for enterovirus was refined for a concentration of coliphages. A bed made from 1.5 g of 120-mesh coal powder was used for concentrating coliphage from 200 mL of a water sample with or without the addition of aluminum chloride at different pH values. The isolated E. coli strain EC-R8 was found to be more susceptible to the desired coliphage and showed significant coliphage-coliform response, with clear plaque used for further studies. The complete coliphage adsorption was achieved with the addition of 0.0005 M AlCl3 at pH 6.0. Adsorbed coliphages were eluted with 3% beef extract in Mcllvaine buffer at pH 7.1, with an average recovery of 78.74%. This concentration technique was applied for the detection of coliphages from the well water of Nagpur city (India) and found to contain coliphages in the range of 2 to 28 plaque-forming units per liter (PFU/L).

  12. Effective dimensional reduction algorithm for eigenvalue problems for thin elastic structures: A paradigm in three dimensions

    PubMed Central

    Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.

    2000-01-01

    We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469

  13. Advanced adaptive computational methods for Navier-Stokes simulations in rotorcraft aerodynamics

    NASA Technical Reports Server (NTRS)

    Stowers, S. T.; Bass, J. M.; Oden, J. T.

    1993-01-01

    A phase 2 research and development effort was conducted in area transonic, compressible, inviscid flows with an ultimate goal of numerically modeling complex flows inherent in advanced helicopter blade designs. The algorithms and methodologies therefore are classified as adaptive methods, which are error estimation techniques for approximating the local numerical error, and automatically refine or unrefine the mesh so as to deliver a given level of accuracy. The result is a scheme which attempts to produce the best possible results with the least number of grid points, degrees of freedom, and operations. These types of schemes automatically locate and resolve shocks, shear layers, and other flow details to an accuracy level specified by the user of the code. The phase 1 work involved a feasibility study of h-adaptive methods for steady viscous flows, with emphasis on accurate simulation of vortex initiation, migration, and interaction. Phase 2 effort focused on extending these algorithms and methodologies to a three-dimensional topology.

  14. Hydrocode Analysis of Lateral Stress Gauges in Shocked Tantalum

    NASA Astrophysics Data System (ADS)

    Harris, E. J.; Winter, R. E.

    2007-12-01

    Experiments published by other workers, on the resistance change of manganin stress gauges embedded in a lateral orientation in tantalum targets shocked to a range of stresses, have been analysed using an adaptive mesh refinement hydrocode. It was found that for all of the four experiments the shape of the time profile of the computed lateral stress in the mounting layer closely matched the shape of the experimental lateral stress profiles. However, the calculated lateral stresses at the gauge location in the mounting layer are significantly less than the lateral stresses that would have been produced in the target if no gauge had been present. The perturbation caused by the gauge increased as the strength of the applied shock increased. When the perturbations are taken into account values of flow stress that are significantly smaller than those reported in the original research paper are derived. The work shows that the lateral gauge technique can give valuable information on strength provided high resolution simulation is used to compensate for the perturbations caused by the gauges.

  15. Hydrocode Analysis of Lateral Stress Gauges in Shocked Tantalum

    NASA Astrophysics Data System (ADS)

    Harris, Ernest; Winter, Ron

    2007-06-01

    Experiements published by other workers on the resistance change of manganin stress gauges embedded in a lateral orientation in Tantalum targets have been analysed using an Adaptive Mesh Refinement Hydrocode. It was found that for four experiments the shape of the time profile of the computed lateral stress in the mounting layer closely matched the shape of the experimental lateral stress profiles. However, the calculated lateral stresses at the gauge location in the mounting layer are significantly less than the stresses that would have been produced in the target if no gauge had been present. The perturbation caused by the gauge increased as the strength of the applied shock increased. When the perturbations are taken into account values of flow stress that are significantly smaller than those reported in the original research paper are derived. The work demonstrates that the lateral gauge technique can give valuable information on strength provided high resolution simulation is used to compensate for the perturbations caused by the gauges.

  16. Research on regional numerical weather prediction

    NASA Technical Reports Server (NTRS)

    Kreitzberg, C. W.

    1976-01-01

    Extension of the predictive power of dynamic weather forecasting to scales below the conventional synoptic or cyclonic scales in the near future is assessed. Lower costs per computation, more powerful computers, and a 100 km mesh over the North American area (with coarser mesh extending beyond it) are noted at present. Doubling the resolution even locally (to 50 km mesh) would entail a 16-fold increase in costs (including vertical resolution and halving the time interval), and constraints on domain size and length of forecast. Boundary conditions would be provided by the surrounding 100 km mesh, and time-varying lateral boundary conditions can be considered to handle moving phenomena. More physical processes to treat, more efficient numerical techniques, and faster computers (improved software and hardware) backing up satellite and radar data could produce further improvements in forecasting in the 1980s. Boundary layer modeling, initialization techniques, and quantitative precipitation forecasting are singled out among key tasks.

  17. Application of closed-form solutions to a mesh point field in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Lamorte, M. F.

    1985-01-01

    A computer simulation method is discussed that provides for equivalent simulation accuracy, but that exhibits significantly lower CPU running time per bias point compared to other techniques. This new method is applied to a mesh point field as is customary in numerical integration (NI) techniques. The assumption of a linear approximation for the dependent variable, which is typically used in the finite difference and finite element NI methods, is not required. Instead, the set of device transport equations is applied to, and the closed-form solutions obtained for, each mesh point. The mesh point field is generated so that the coefficients in the set of transport equations exhibit small changes between adjacent mesh points. Application of this method to high-efficiency silicon solar cells is described; and the method by which Auger recombination, ambipolar considerations, built-in and induced electric fields, bandgap narrowing, carrier confinement, and carrier diffusivities are treated. Bandgap narrowing has been investigated using Fermi-Dirac statistics, and these results show that bandgap narrowing is more pronounced and that it is temperature-dependent in contrast to the results based on Boltzmann statistics.

  18. Fog Harvesting with Harps.

    PubMed

    Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B

    2018-04-11

    Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.

  19. Biocompatibility and tissue integration of a novel shape memory surgical mesh for ventral hernia: In vivo animal studies

    PubMed Central

    Zimkowski, Michael M.; Rentschler, Mark E.; Schoen, Jonathan A.; Mandava, Nageswara; Shandas, Robin

    2014-01-01

    Approximately 400,000 ventral hernia repair surgeries are performed each year in the United States. Many of these procedures are performed using laparoscopic minimally invasive techniques and employ the use of surgical mesh. The use of surgical mesh has been shown to reduce recurrence rates compared to standard suture repairs. The placement of surgical mesh in a ventral hernia repair procedure can be challenging, and may even complicate the procedure. Others have attempted to provide commercial solutions to the problems of mesh placement, but these have not been well accepted by the clinical community. In this article, two versions of shape memory polymer (SMP)-modified surgical mesh, and unmodified surgical mesh, were compared by performing laparoscopic manipulation in an acute porcine model. Also, SMP-integrated polyester surgical meshes were implanted in four rats for 30–33 days to evaluate chronic biocompatibility and capacity for tissue integration. Porcine results show that the modified mesh provides a controlled, temperature-activated, automated deployment when compared to an unmodified mesh. In rats, results indicate that implanted SMP-modified meshes exhibit exceptional biocompatibility and excellent integration with surrounding tissue with no noticeable differences from the unmodified counterpart. This article provides further evidence that an SMP-modified surgical mesh promises reduction in surgical placement time and that such a mesh is not substantially different from unmodified meshes in chronic biocompatibility. PMID:24327401

  20. Large-eddy simulations of turbulent flow for grid-to-rod fretting in nuclear reactors

    DOE PAGES

    Bakosi, J.; Christon, M. A.; Lowrie, R. B.; ...

    2013-07-12

    The grid-to-rod fretting (GTRF) problem in pressurized water reactors is a flow-induced vibration problem that results in wear and failure of the fuel rods in nuclear assemblies. In order to understand the fluid dynamics of GTRF and to build an archival database of turbulence statistics for various configurations, implicit large-eddy simulations of time-dependent single-phase turbulent flow have been performed in 3 × 3 and 5 × 5 rod bundles with a single grid spacer. To assess the computational mesh and resolution requirements, a method for quantitative assessment of unstructured meshes with no-slip walls is described. The calculations have been carriedmore » out using Hydra-TH, a thermal-hydraulics code developed at Los Alamos for the Consortium for Advanced Simulation of Light water reactors, a United States Department of Energy Innovation Hub. Hydra-TH uses a second-order implicit incremental projection method to solve the singlephase incompressible Navier-Stokes equations. The simulations explicitly resolve the large scale motions of the turbulent flow field using first principles and rely on a monotonicity-preserving numerical technique to represent the unresolved scales. Each series of simulations for the 3 × 3 and 5 × 5 rod-bundle geometries is an analysis of the flow field statistics combined with a mesh-refinement study and validation with available experimental data. Our primary focus is the time history and statistics of the forces loading the fuel rods. These hydrodynamic forces are believed to be the key player resulting in rod vibration and GTRF wear, one of the leading causes for leaking nuclear fuel which costs power utilities millions of dollars in preventive measures. As a result, we demonstrate that implicit large-eddy simulation of rod-bundle flows is a viable way to calculate the excitation forces for the GTRF problem.« less

  1. Particle-mesh techniques

    NASA Technical Reports Server (NTRS)

    Macneice, Peter

    1995-01-01

    This is an introduction to numerical Particle-Mesh techniques, which are commonly used to model plasmas, gravitational N-body systems, and both compressible and incompressible fluids. The theory behind this approach is presented, and its practical implementation, both for serial and parallel machines, is discussed. This document is based on a four-hour lecture course presented by the author at the NASA Summer School for High Performance Computational Physics, held at Goddard Space Flight Center.

  2. Hip Joint Replacement Using Monofilament Polypropylene Surgical Mesh: An Animal Model

    PubMed Central

    Białecki, Jacek; Klimowicz-Bodys, Małgorzata Dorota; Wierzchoś, Edward; Kołomecki, Krzysztof

    2014-01-01

    Hip joint dysplasia is a deformation of the articular elements (pelvic acetabulum, head of the femur, and/or ligament of the head of the femur) leading to laxity of the hip components and dislocation of the femoral head from the pelvic acetabulum. Diagnosis is based on symptoms observed during clinical and radiological examinations. There are two treatment options: conservative and surgical. The classic surgical procedures are juvenile pubic symphysiodesis (JPS), triple pelvic osteotomy (TPO), total hip replacement (THR), and femoral head and neck resection (FHNE). The aim of this experiment was to present an original technique of filling the acetabulum with a polypropylene implant, resting the femoral neck directly on the mesh. The experiment was performed on eight sheep. The clinical value of the new surgical technique was evaluated using clinical, radiological, and histological methods. This technique helps decrease the loss of limb length by supporting the femoral neck on the mesh equivalent to the femoral head. It also reduces joint pain and leads to the formation of stable and mobile pseudarthrosis. The mesh manifested osteoprotective properties and enabled the formation of a stiff-elastic connection within the hip joint. The method is very cost-effective and the technique itself is simple to perform. PMID:24987672

  3. Quinoa - Adaptive Computational Fluid Dynamics, 0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakosi, Jozsef; Gonzalez, Francisco; Rogers, Brandon

    Quinoa is a set of computational tools that enables research and numerical analysis in fluid dynamics. At this time it remains a test-bed to experiment with various algorithms using fully asynchronous runtime systems. Currently, Quinoa consists of the following tools: (1) Walker, a numerical integrator for systems of stochastic differential equations in time. It is a mathematical tool to analyze and design the behavior of stochastic differential equations. It allows the estimation of arbitrary coupled statistics and probability density functions and is currently used for the design of statistical moment approximations for multiple mixing materials in variable-density turbulence. (2) Inciter,more » an overdecomposition-aware finite element field solver for partial differential equations using 3D unstructured grids. Inciter is used to research asynchronous mesh-based algorithms and to experiment with coupling asynchronous to bulk-synchronous parallel code. Two planned new features of Inciter, compared to the previous release (LA-CC-16-015), to be implemented in 2017, are (a) a simple Navier-Stokes solver for ideal single-material compressible gases, and (b) solution-adaptive mesh refinement (AMR), which enables dynamically concentrating compute resources to regions with interesting physics. Using the NS-AMR problem we plan to explore how to scale such high-load-imbalance simulations, representative of large production multiphysics codes, to very large problems on very large computers using an asynchronous runtime system. (3) RNGTest, a test harness to subject random number generators to stringent statistical tests enabling quantitative ranking with respect to their quality and computational cost. (4) UnitTest, a unit test harness, running hundreds of tests per second, capable of testing serial, synchronous, and asynchronous functions. (5) MeshConv, a mesh file converter that can be used to convert 3D tetrahedron meshes from and to either of the following formats: Gmsh, (http://www.geuz.org/gmsh), Netgen, (http://sourceforge.net/apps/mediawiki/netgen-mesher), ExodusII, (http://sourceforge.net/projects/exodusii), HyperMesh, (http://www.altairhyperworks.com/product/HyperMesh).« less

  4. Self-gripping mesh versus fibrin glue fixation in laparoscopic inguinal hernia repair: a randomized prospective clinical trial in young and elderly patients

    PubMed Central

    Bindi, Marco; Rivelli, Matteo; Solej, Mario; Enrico, Stefano; Martino, Valter

    2016-01-01

    Abstract Laparoscopic transabdominal preperitoneal inguinal hernia repair is a safe and effective technique. In this study we tested the hypothesis that self-gripping mesh used with the laparoscopic approach is comparable to polypropylene mesh in terms of perioperative complications, against a lower overall cost of the procedure. We carried out a prospective randomized trial comparing a group of 30 patients who underwent laparoscopic inguinal hernia repair with self-gripping mesh versus a group of 30 patients who received polypropylene mesh with fibrin glue fixation. There were no statistically significant differences between the two groups with regard to intraoperative variables, early or late intraoperative complications, chronic pain or recurrence. Self-gripping mesh in transabdominal hernia repair was found to be a valid alternative to polypropylene mesh in terms of complications, recurrence and postoperative pain. The cost analysis and comparability of outcomes support the preferential use of self-gripping mesh. PMID:28352842

  5. Patch-based Adaptive Mesh Refinement for Multimaterial Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomov, I; Pember, R; Greenough, J

    2005-10-18

    We present a patch-based direct Eulerian adaptive mesh refinement (AMR) algorithm for modeling real equation-of-state, multimaterial compressible flow with strength. Our approach to AMR uses a hierarchical, structured grid approach first developed by (Berger and Oliger 1984), (Berger and Oliger 1984). The grid structure is dynamic in time and is composed of nested uniform rectangular grids of varying resolution. The integration scheme on the grid hierarchy is a recursive procedure in which the coarse grids are advanced, then the fine grids are advanced multiple steps to reach the same time, and finally the coarse and fine grids are synchronized tomore » remove conservation errors during the separate advances. The methodology presented here is based on a single grid algorithm developed for multimaterial gas dynamics by (Colella et al. 1993), refined by(Greenough et al. 1995), and extended to the solution of solid mechanics problems with significant strength by (Lomov and Rubin 2003). The single grid algorithm uses a second-order Godunov scheme with an approximate single fluid Riemann solver and a volume-of-fluid treatment of material interfaces. The method also uses a non-conservative treatment of the deformation tensor and an acoustic approximation for shear waves in the Riemann solver. This departure from a strict application of the higher-order Godunov methodology to the equation of solid mechanics is justified due to the fact that highly nonlinear behavior of shear stresses is rare. This algorithm is implemented in two codes, Geodyn and Raptor, the latter of which is a coupled rad-hydro code. The present discussion will be solely concerned with hydrodynamics modeling. Results from a number of simulations for flows with and without strength will be presented.« less

  6. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  7. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-07-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  8. Grain Boundary Conformed Volumetric Mesh Generation from a Three-Dimensional Voxellated Polycrystalline Microstructure

    NASA Astrophysics Data System (ADS)

    Lee, Myeong-Jin; Jeon, Young-Ju; Son, Ga-Eun; Sung, Sihwa; Kim, Ju-Young; Han, Heung Nam; Cho, Soo Gyeong; Jung, Sang-Hyun; Lee, Sukbin

    2018-03-01

    We present a new comprehensive scheme for generating grain boundary conformed, volumetric mesh elements from a three-dimensional voxellated polycrystalline microstructure. From the voxellated image of a polycrystalline microstructure obtained from the Monte Carlo Potts model in the context of isotropic normal grain growth simulation, its grain boundary network is approximated as a curvature-maintained conformal triangular surface mesh using a set of in-house codes. In order to improve the surface mesh quality and to adjust mesh resolution, various re-meshing techniques in a commercial software are applied to the approximated grain boundary mesh. It is found that the aspect ratio, the minimum angle and the Jacobian value of the re-meshed surface triangular mesh are successfully improved. Using such an enhanced surface mesh, conformal volumetric tetrahedral elements of the polycrystalline microstructure are created using a commercial software, again. The resultant mesh seamlessly retains the short- and long-range curvature of grain boundaries and junctions as well as the realistic morphology of the grains inside the polycrystal. It is noted that the proposed scheme is the first to successfully generate three-dimensional mesh elements for polycrystals with high enough quality to be used for the microstructure-based finite element analysis, while the realistic characteristics of grain boundaries and grains are maintained from the corresponding voxellated microstructure image.

  9. Failure processes in soft and quasi-brittle materials with nonhomogeneous microstructures

    NASA Astrophysics Data System (ADS)

    Spring, Daniel W.

    Material failure pervades the fields of materials science and engineering; it occurs at various scales and in various contexts. Understanding the mechanisms by which a material fails can lead to advancements in the way we design and build the world around us. For example, in structural engineering, understanding the fracture of concrete and steel can lead to improved structural systems and safer designs; in geological engineering, understanding the fracture of rock can lead to increased efficiency in oil and gas extraction; and in biological engineering, understanding the fracture of bone can lead to improvements in the design of bio-composites and medical implants. In this thesis, we numerically investigate a wide spectrum of failure behavior; in soft and quasi-brittle materials with nonhomogeneous microstructures considering a statistical distribution of material properties. The first topic we investigate considers the influence of interfacial interactions on the macroscopic constitutive response of particle reinforced elastomers. When a particle is embedded into an elastomer, the polymer chains in the elastomer tend to adsorb (or anchor) onto the surface of the particle; creating a region in the vicinity of each particle (often referred to as an interphase) with distinct properties from those in the bulk elastomer. This interphasial region has been known to exist for many decades, but is primarily omitted in computational investigations of such composites. In this thesis, we present an investigation into the influence of interphases on the macroscopic constitutive response of particle filled elastomers undergoing large deformations. In addition, at large deformations, a localized region of failure tends to accumulate around inclusions. To capture this localized region of failure (often referred to as interfacial debonding), we use cohesive zone elements which follow the Park-Paulino-Roesler traction-separation relation. To account for friction, we present a new, coupled cohesive-friction relation and detail its formulation and implementation. In the process of this investigation, we developed a small library of cohesive elements for use with a commercially available finite element analysis software package. Additionally, in this thesis, we present a series of methods for reducing mesh dependency in two-dimensional dynamic cohesive fracture simulations of quasi-brittle materials. In this setting, cracks are only permitted to propagate along element facets, thus a poorly designed discretization of the problem domain can introduce artifacts into the fracture behavior. To reduce mesh induced artifacts, we consider unstructured polygonal finite elements. A randomly-seeded polygonal mesh leads to an isotropic discretization of the problem domain, which does not bias the direction of crack propagation. However, polygonal meshes tend to limit the possible directions a crack may travel at each node, making this discretization a poor candidate for dynamic cohesive fracture simulations. To alleviate this problem, we propose two new topological operators. The first operator we propose is adaptive element-splitting, and the second is adaptive mesh refinement. Both operators are designed to improve the ability of unstructured polygonal meshes to capture crack patterns in dynamic cohesive fracture simulations. However, we demonstrate that element-splitting is more suited to pervasive fracture problems, whereas, adaptive refinement is more suited to problems exhibiting a dominant crack. Finally, we investigate the use of geometric and constitutive design features to regularize pervasive fragmentation behavior in three-dimensions. Throughout pervasive fracture simulations, many cracks initiate, propagate, branch and coalesce simultaneously. Because of the cohesive element method's unique framework, this behavior can be captured in a regularized manner. In this investigation, unstructuring techniques are used to introduce randomness into a numerical model. The behavior of quasi-brittle materials undergoing pervasive fracture and fragmentation is then examined using three examples. The examples are selected to investigate some of the significant factors influencing pervasive fracture and fragmentation behavior; including, geometric features, loading conditions, and material gradation.

  10. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.

    PubMed

    Bah, Mamadou T; Nair, Prasanth B; Browne, Martin

    2009-12-01

    Finite element (FE) analysis of the effect of implant positioning on the performance of cementless total hip replacements (THRs) requires the generation of multiple meshes to account for positioning variability. This process can be labour intensive and time consuming as CAD operations are needed each time a specific orientation is to be analysed. In the present work, a mesh morphing technique is developed to automate the model generation process. The volume mesh of a baseline femur with the implant in a nominal position is deformed as the prosthesis location is varied. A virtual deformation field, obtained by solving a linear elasticity problem with appropriate boundary conditions, is applied. The effectiveness of the technique is evaluated using two metrics: the percentages of morphed elements exceeding an aspect ratio of 20 and an angle of 165 degrees between the adjacent edges of each tetrahedron. Results show that for 100 different implant positions, the first and second metrics never exceed 3% and 3.5%, respectively. To further validate the proposed technique, FE contact analyses are conducted using three selected morphed models to predict the strain distribution in the bone and the implant micromotion under joint and muscle loading. The entire bone strain distribution is well captured and both percentages of bone volume with strain exceeding 0.7% and bone average strains are accurately computed. The results generated from the morphed mesh models correlate well with those for models generated from scratch, increasing confidence in the methodology. This morphing technique forms an accurate and efficient basis for FE based implant orientation and stability analysis of cementless hip replacements.

  11. On the accuracy of least squares methods in the presence of corner singularities

    NASA Technical Reports Server (NTRS)

    Cox, C. L.; Fix, G. J.

    1985-01-01

    Elliptic problems with corner singularities are discussed. Finite element approximations based on variational principles of the least squares type tend to display poor convergence properties in such contexts. Moreover, mesh refinement or the use of special singular elements do not appreciably improve matters. It is shown that if the least squares formulation is done in appropriately weighted space, then optimal convergence results in unweighted spaces like L(2).

  12. A Fluid Structure Interaction Strategy with Application to Low Reynolds Number Flapping Flight

    DTIC Science & Technology

    2010-01-01

    using a predictor - corrector strategy. Dynamic fluid grid adaptation is implemented to reduce the number of grid points and computation costs...governing the dynamics of the ow and the structure are simultaneously advanced in time by using a predictor - corrector strategy. Dynamic uid grid...colleague Patrick Rabenold, the math-guy, who provided the seminal work on adaptive mesh refine- ment for incompressible flow using the Paramesh c

  13. Mathematical Aspects of Finite Element Methods for Incompressible Viscous Flows.

    DTIC Science & Technology

    1986-09-01

    respectively. Here h is a parameter which is usually related to the size of the grid associated with the finite element partitioning of Q. Then one... grid and of not at least performing serious mesh refinement studies. It also points out the usefulness of rigorous results concerning the stability...overconstrained the .1% approximate velocity field. However, by employing different grids for the ’z pressure and velocity fields, the linear-constant

  14. DoD High Performance Computing Modernization Program FY16 Annual Report

    DTIC Science & Technology

    2018-05-02

    vortex shedding from rotor blade tips using adaptive mesh refinement gives Helios the unique capability to assess the interaction of these vortices...with the fuselage and nearby rotor blades . Helios provides all the benefits for rotary-winged aircraft that Kestrel does for fixed-wing aircraft...rotor blade upgrade of the CH-47F Chinook helicopter to achieve up to an estimated 2,000 pounds increase in hover thrust (~10%) with limited

  15. Control of Structure in Turbulent Flows: Bifurcating and Blooming Jets.

    DTIC Science & Technology

    1987-10-10

    injected through computational boundaries. (2) to satisfy no- slip boundary conditions or (3) during ’ grid " refinement when one element may be split...use of fast Poisson solvers on a mesh of M grid points, the operation count for this step can approach 0(M log M). Additional required steps are (1...consider s- three-dimensionai perturbations to the uart vortices. The linear stability calculations ot Pierrehumbert & Widnadl [101 are available for

  16. Biaxial Anisotropic Material Development and Characterization using Rectangular to Square Waveguide

    DTIC Science & Technology

    2015-03-26

    holder 68 Figure 29. Measurement Setup with Test port cables and Network Analyzer VNA and the waveguide adapters are torqued to specification with...calibrated torque wrenches and waveguide flanges are aligned using precision alignment pins. A TRL calibration is performed prior to measuring the sample as...set to 0.0001. This enables the Frequency domain solver to refine the mesh until the tolerance is achieved. Tightening the error tolerance results in

  17. Vaginal Approaches Using Synthetic Mesh to Treat Pelvic Organ Prolapse.

    PubMed

    Moon, Jei Won; Chae, Hee Dong

    2016-02-01

    Pelvic organ prolapse (POP) is a very common condition in elderly women. In women with POP, a sacrocolpopexy or a vaginal hysterectomy with anterior and posterior colporrhaphy has long been considered as the gold standard of treatment. However, in recent decades, the tendency to use a vaginal approach with mesh for POP surgery has been increasing. A vaginal approach using mesh has many advantages, such as its being less invasive than an abdominal approach and easier to do than a laparoscopic approach and its having a lower recurrence rate than a traditional approach. However, the advantages of a vaginal approach with mesh for POP surgery must be weighed against the disadvantages. Specific complications that have been reported when using mesh in POP procedures are mesh erosion, dyspareunia, hematomas, urinary incontinence and so on, and evidence supporting the use of transvaginal surgery with mesh is still lacking. Hence, surgeons should understand the details of the surgical pelvic anatomy, the various surgical techniques for POP surgery, including using mesh, and the possible side effects of using mesh.

  18. Finite element meshing approached as a global minimization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less

  19. A High-Order Method Using Unstructured Grids for the Aeroacoustic Analysis of Realistic Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Lockard, David P.

    1999-01-01

    A method for the prediction of acoustic scatter from complex geometries is presented. The discontinuous Galerkin method provides a framework for the development of a high-order method using unstructured grids. The method's compact form contributes to its accuracy and efficiency, and makes the method well suited for distributed memory parallel computing platforms. Mesh refinement studies are presented to validate the expected convergence properties of the method, and to establish the absolute levels of a error one can expect at a given level of resolution. For a two-dimensional shear layer instability wave and for three-dimensional wave propagation, the method is demonstrated to be insensitive to mesh smoothness. Simulations of scatter from a two-dimensional slat configuration and a three-dimensional blended-wing-body demonstrate the capability of the method to efficiently treat realistic geometries.

  20. Numerical modelling of bifurcation and localisation in cohesive-frictional materials

    NASA Astrophysics Data System (ADS)

    de Borst, René

    1991-12-01

    Methods are reviewed for analysing highly localised failure and bifurcation modes in discretised mechanical systems as typically arise in numerical simulations of failure in soils, rocks, metals and concrete. By the example of a plane-strain biaxial test it is shown that strain softening and lack of normality in elasto-plastic constitutive equations and the ensuing loss of ellipticity of the governing field equations cause a pathological mesh dependence of numerical solutions for such problems, thus rendering the results effectively meaningless. The need for introduction of higher-order continuum models is emphasised to remedy this shortcoming of the conventional approach. For one such a continuum model, namely the unconstrained Cosserat continuum, it is demonstrated that meaningful and convergent solutions (in the sense that a finite width of the localisation zone is computed upon mesh refinement) can be obtained.

  1. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE PAGES

    Senecal, P. K.; Pomraning, E.; Anders, J. W.; ...

    2014-05-28

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  2. Predictions of Transient Flame Lift-Off Length With Comparison to Single-Cylinder Optical Engine Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senecal, P. K.; Pomraning, E.; Anders, J. W.

    A state-of-the-art, grid-convergent simulation methodology was applied to three-dimensional calculations of a single-cylinder optical engine. A mesh resolution study on a sector-based version of the engine geometry further verified the RANS-based cell size recommendations previously presented by Senecal et al. (“Grid Convergent Spray Models for Internal Combustion Engine CFD Simulations,” ASME Paper No. ICEF2012-92043). Convergence of cylinder pressure, flame lift-off length, and emissions was achieved for an adaptive mesh refinement cell size of 0.35 mm. Furthermore, full geometry simulations, using mesh settings derived from the grid convergence study, resulted in excellent agreement with measurements of cylinder pressure, heat release rate,more » and NOx emissions. On the other hand, the full geometry simulations indicated that the flame lift-off length is not converged at 0.35 mm for jets not aligned with the computational mesh. Further simulations suggested that the flame lift-off lengths for both the nonaligned and aligned jets appear to be converged at 0.175 mm. With this increased mesh resolution, both the trends and magnitudes in flame lift-off length were well predicted with the current simulation methodology. Good agreement between the overall predicted flame behavior and the available chemiluminescence measurements was also achieved. Our present study indicates that cell size requirements for accurate prediction of full geometry flame lift-off lengths may be stricter than those for global combustion behavior. This may be important when accurate soot predictions are required.« less

  3. Temperature Knowledge and Model Correlation for the Soil Moisture Active and Passive (SMAP) Reflector Mesh

    NASA Technical Reports Server (NTRS)

    Mikhaylov, Rebecca; Dawson, Douglas; Kwack, Eug

    2014-01-01

    NASA's Earth observing Soil Moisture Active & Passive (SMAP) Mission is scheduled to launch in November 2014 into a 685 km near-polar, sun synchronous orbit. SMAP will provide comprehensive global mapping measurements of soil moisture and freeze/thaw state in order to enhance understanding of the processes that link the water, energy, and carbon cycles. The primary objectives of SMAP are to improve worldwide weather and flood forecasting, enhance climate prediction, and refine drought and agriculture monitoring during its 3 year mission. The SMAP instrument architecture incorporates an L-band radar and an L-band radiometer which share a common feed horn and parabolic mesh reflector. The instrument rotates about the nadir axis at approximately 15 rpm, thereby providing a conically scanning wide swath antenna beam that is capable of achieving global coverage within 3 days. In order to make the necessary precise surface emission measurements from space, a temperature knowledge of 60 deg C for the mesh reflector is required. In order to show compliance, a thermal vacuum test was conducted using a portable solar simulator to illuminate a non flight, but flight-like test article through the quartz window of the vacuum chamber. The molybdenum wire of the antenna mesh is too fine to accommodate thermal sensors for direct temperature measurements. Instead, the mesh temperature was inferred from resistance measurements made during the test. The test article was rotated to five separate angles between 10 deg and 90 deg via chamber breaks to simulate the maximum expected on-orbit solar loading during the mission. The resistance measurements were converted to temperature via a resistance versus temperature calibration plot that was constructed from data collected in a separate calibration test. A simple thermal model of two different representations of the mesh (plate and torus) was created to correlate the mesh temperature predictions to within 60 deg C. The on-orbit mesh temperature will be predicted using the correlated analytical thermal model since direct measurements from in-situ flight thermal sensors are not possible.

  4. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  5. A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

    DOE PAGES

    Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...

    2014-10-28

    We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshesmore » do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work [8, 19, 37, 38, 44] and recent Lagrangian SGH work [33-35, 39, 45]. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes [18] that remove a volume error in the PCH discretization. A 2-stage Runge–Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.« less

  6. [Hernia surgery in urology. Part 2: parastomal, trocar and incisional hernias - fundamentals of clinical diagnostics and treatment].

    PubMed

    Franz, T; Schwalenberg, T; Dietrich, A; Müller, J; Stolzenburg, J-U

    2013-06-01

    Hernias are a common occurrence with a correspondingly huge clinical and economic impact on the healthcare system. Parastomal and trocar hernias are rare in routine urological work. The therapy of parastomal hernias remains problematic but basically the surgeon is able to use conventional techniques with suture repair or procedures with mesh implantation. The conventional parastomal hernia repair with mesh can be classified into sublay, onlay and intraperitoneal techniques. Furthermore, a relocation of the stoma is possible. Trocar hernias represent a rare but hazardous complication. Due to the increase in keyhole surgery there is also the danger of a rise in their occurrence. Incisional hernias occur frequently in patients who have undergone laparotomy and for repair different surgical techniques and types of meshes are available. This article presents an overview of the epidemiology, pathogenesis, clinical symptoms, diagnostic and therapy of parastomal, trocar and incisional hernias.

  7. An efficient technique for the numerical solution of the bidomain equations.

    PubMed

    Whiteley, Jonathan P

    2008-08-01

    Computing the numerical solution of the bidomain equations is widely accepted to be a significant computational challenge. In this study we extend a previously published semi-implicit numerical scheme with good stability properties that has been used to solve the bidomain equations (Whiteley, J.P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006). A new, efficient numerical scheme is developed which utilizes the observation that the only component of the ionic current that must be calculated on a fine spatial mesh and updated frequently is the fast sodium current. Other components of the ionic current may be calculated on a coarser mesh and updated less frequently, and then interpolated onto the finer mesh. Use of this technique to calculate the transmembrane potential and extracellular potential induces very little error in the solution. For the simulations presented in this study an increase in computational efficiency of over two orders of magnitude over standard numerical techniques is obtained.

  8. Current options in umbilical hernia repair in adult patients

    PubMed Central

    Kulaçoğlu, Hakan

    2015-01-01

    Umbilical hernia is a rather common surgical problem. Elective repair after diagnosis is advised. Suture repairs have high recurrence rates; therefore, mesh reinforcement is recommended. Mesh can be placed through either an open or laparoscopic approach with good clinical results. Standard polypropylene mesh is suitable for the open onlay technique; however, composite meshes are required for laparoscopic repairs. Large seromas and surgical site infection are rather common complications that may result in recurrence. Obesity, ascites, and excessive weight gain following repair are obviously potential risk factors. Moreover, smoking may create a risk for recurrence. PMID:26504420

  9. Greater Success of Primary Fascial Closure of the Open Abdomen: A Retrospective Study Analyzing Applied Surgical Techniques, Success of Fascial Closure, and Variables Affecting the Results.

    PubMed

    Kääriäinen, M; Kuuskeri, M; Helminen, M; Kuokkanen, H

    2017-06-01

    The open abdomen technique is a standard procedure in the treatment of intra-abdominal catastrophe. Achieving primary abdominal closure within the initial hospitalization is a main objective. This study aimed to analyze the success of closure rate and the effect of negative pressure wound therapy, mesh-mediated medial traction, and component separation on the results. We present the treatment algorithm used in our institution in open abdomen situations based on these findings. Open abdomen patients (n = 61) treated in Tampere University Hospital from May 2005 until October 2013 were included in the study. Patient characteristics, treatment prior to closure, closure technique, and results were retrospectively collected and analyzed. The first group included patients in whom direct or bridged fascial closure was achieved, and the second group included those in whom only the skin was closed or a free skin graft was used. Background variables and variables related to surgery were compared between groups. Most of the open abdomen patients (72.1%) underwent fascial defect repair during the primary hospitalization, and 70.5% of them underwent direct fascial closure. Negative pressure wound therapy was used as a temporary closure method for 86.9% of the patients. Negative pressure wound therapy combined with mesh-mediated medial traction resulted in the shortest open abdomen time (p = 0.039) and the highest fascial repair rate (p = 0.000) compared to negative pressure wound therapy only or no negative pressure wound therapy. The component separation technique was used for 11 patients; direct fascial closure was achieved in 5 and fascial repair by bridging the defect with mesh was achieved in 6. A total of 8 of 37 (21.6%) patients with mesh repair had a mesh infection. The negative pressure wound therapy combined with mesh-mediated medial traction promotes definitive fascial closure with a high closure rate and a shortened open abdomen time. The component separation technique can be used to facilitate fascial repair but it does not guarantee direct fascial closure in open abdomen patients.

  10. What is the evidence for the use of biologic or biosynthetic meshes in abdominal wall reconstruction?

    PubMed

    Köckerling, F; Alam, N N; Antoniou, S A; Daniels, I R; Famiglietti, F; Fortelny, R H; Heiss, M M; Kallinowski, F; Kyle-Leinhase, I; Mayer, F; Miserez, M; Montgomery, A; Morales-Conde, S; Muysoms, F; Narang, S K; Petter-Puchner, A; Reinpold, W; Scheuerlein, H; Smietanski, M; Stechemesser, B; Strey, C; Woeste, G; Smart, N J

    2018-04-01

    Although many surgeons have adopted the use of biologic and biosynthetic meshes in complex abdominal wall hernia repair, others have questioned the use of these products. Criticism is addressed in several review articles on the poor standard of studies reporting on the use of biologic meshes for different abdominal wall repairs. The aim of this consensus review is to conduct an evidence-based analysis of the efficacy of biologic and biosynthetic meshes in predefined clinical situations. A European working group, "BioMesh Study Group", composed of invited surgeons with a special interest in surgical meshes, formulated key questions, and forwarded them for processing in subgroups. In January 2016, a workshop was held in Berlin where the findings were presented, discussed, and voted on for consensus. Findings were set out in writing by the subgroups followed by consensus being reached. For the review, 114 studies and background analyses were used. The cumulative data regarding biologic mesh under contaminated conditions do not support the claim that it is better than synthetic mesh. Biologic mesh use should be avoided when bridging is needed. In inguinal hernia repair biologic and biosynthetic meshes do not have a clear advantage over the synthetic meshes. For prevention of incisional or parastomal hernias, there is no evidence to support the use of biologic/biosynthetic meshes. In complex abdominal wall hernia repairs (incarcerated hernia, parastomal hernia, infected mesh, open abdomen, enterocutaneous fistula, and component separation technique), biologic and biosynthetic meshes do not provide a superior alternative to synthetic meshes. The routine use of biologic and biosynthetic meshes cannot be recommended.

  11. Three-dimensional analysis of implanted magnetic-resonance-visible meshes.

    PubMed

    Sindhwani, Nikhil; Feola, Andrew; De Keyzer, Frederik; Claus, Filip; Callewaert, Geertje; Urbankova, Iva; Ourselin, Sebastien; D'hooge, Jan; Deprest, Jan

    2015-10-01

    Our primary objective was to develop relevant algorithms for quantification of mesh position and 3D shape in magnetic resonance (MR) images. In this proof-of-principle study, one patient with severe anterior vaginal wall prolapse was implanted with an MR-visible mesh. High-resolution MR images of the pelvis were acquired 6 weeks and 8 months postsurgery. 3D models were created using semiautomatic segmentation techniques. Conformational changes were recorded quantitatively using part-comparison analysis. An ellipticity measure is proposed to record longitudinal conformational changes in the mesh arms. The surface that is the effective reinforcement provided by the mesh is calculated using a novel methodology. The area of this surface is the effective support area (ESA). MR-visible mesh was clearly outlined in the images, which allowed us to longitudinally quantify mesh configuration between 6 weeks and 8 months after implantation. No significant changes were found in mesh position, effective support area, conformation of the mesh's main body, and arm length during the period of observation. Ellipticity profiles show longitudinal conformational changes in posterior arms. This paper proposes novel methodologies for a systematic 3D assessment of the position and morphology of MR-visible meshes. A novel semiautomatic tool was developed to calculate the effective area of support provided by the mesh, a potentially clinically important parameter.

  12. Combined in vivo and ex vivo analysis of mesh mechanics in a porcine hernia model.

    PubMed

    Kahan, Lindsey G; Lake, Spencer P; McAllister, Jared M; Tan, Wen Hui; Yu, Jennifer; Thompson, Dominic; Brunt, L Michael; Blatnik, Jeffrey A

    2018-02-01

    Hernia meshes exhibit variability in mechanical properties, and their mechanical match to tissue has not been comprehensively studied. We used an innovative imaging model of in vivo strain tracking and ex vivo mechanical analysis to assess effects of mesh properties on repaired abdominal walls in a porcine model. We hypothesized that meshes with dissimilar mechanical properties compared to native tissue would alter abdominal wall mechanics more than better-matched meshes. Seven mini-pigs underwent ventral hernia creation and subsequent open repair with one of two heavyweight polypropylene meshes. Following mesh implantation with attached radio-opaque beads, fluoroscopic images were taken at insufflation pressures from 5 to 30 mmHg on postoperative days 0, 7, and 28. At 28 days, animals were euthanized and ex vivo mechanical testing performed on full-thickness samples across repaired abdominal walls. Testing was conducted on 13 mini-pig controls, and on meshes separately. Stiffness and anisotropy (the ratio of stiffness in the transverse versus craniocaudal directions) were assessed. 3D reconstructions of repaired abdominal walls showed stretch patterns. As pressure increased, both meshes expanded, with no differences between groups. Over time, meshes contracted 17.65% (Mesh A) and 0.12% (Mesh B; p = 0.06). Mesh mechanics showed that Mesh A deviated from anisotropic native tissue more than Mesh B. Compared to native tissue, Mesh A was stiffer both transversely and craniocaudally. Explanted repaired abdominal walls of both treatment groups were stiffer than native tissue. Repaired tissue became less anisotropic over time, as mesh properties prevailed over native abdominal wall properties. This technique assessed 3D stretch at the mesh level in vivo in a porcine model. While the abdominal wall expanded, mesh-ingrown areas contracted, potentially indicating stresses at mesh edges. Ex vivo mechanics demonstrate that repaired tissue adopts mesh properties, suggesting that a better-matched mesh could reduce changes to abdominal wall mechanics.

  13. Calculation of grain boundary normals directly from 3D microstructure images

    DOE PAGES

    Lieberman, E. J.; Rollett, A. D.; Lebensohn, R. A.; ...

    2015-03-11

    The determination of grain boundary normals is an integral part of the characterization of grain boundaries in polycrystalline materials. These normal vectors are difficult to quantify due to the discretized nature of available microstructure characterization techniques. The most common method to determine grain boundary normals is by generating a surface mesh from an image of the microstructure, but this process can be slow, and is subject to smoothing issues. A new technique is proposed, utilizing first order Cartesian moments of binary indicator functions, to determine grain boundary normals directly from a voxelized microstructure image. In order to validate the accuracymore » of this technique, the surface normals obtained by the proposed method are compared to those generated by a surface meshing algorithm. Specifically, the local divergence between the surface normals obtained by different variants of the proposed technique and those generated from a surface mesh of a synthetic microstructure constructed using a marching cubes algorithm followed by Laplacian smoothing is quantified. Next, surface normals obtained with the proposed method from a measured 3D microstructure image of a Ni polycrystal are used to generate grain boundary character distributions (GBCD) for Σ3 and Σ9 boundaries, and compared to the GBCD generated using a surface mesh obtained from the same image. Finally, the results show that the proposed technique is an efficient and accurate method to determine voxelized fields of grain boundary normals.« less

  14. A finite element method to correct deformable image registration errors in low-contrast regions

    NASA Astrophysics Data System (ADS)

    Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.

    2012-06-01

    Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.

  15. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1994-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  16. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.

  17. An efficient predictor-corrector-based dynamic mesh method for multi-block structured grid with extremely large deformation and its applications

    NASA Astrophysics Data System (ADS)

    Guo, Tongqing; Chen, Hao; Lu, Zhiliang

    2018-05-01

    Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.

  18. The GeoClaw software for depth-averaged flows with adaptive refinement

    USGS Publications Warehouse

    Berger, M.J.; George, D.L.; LeVeque, R.J.; Mandli, Kyle T.

    2011-01-01

    Many geophysical flow or wave propagation problems can be modeled with two-dimensional depth-averaged equations, of which the shallow water equations are the simplest example. We describe the GeoClaw software that has been designed to solve problems of this nature, consisting of open source Fortran programs together with Python tools for the user interface and flow visualization. This software uses high-resolution shock-capturing finite volume methods on logically rectangular grids, including latitude-longitude grids on the sphere. Dry states are handled automatically to model inundation. The code incorporates adaptive mesh refinement to allow the efficient solution of large-scale geophysical problems. Examples are given illustrating its use for modeling tsunamis and dam-break flooding problems. Documentation and download information is available at www.clawpack.org/geoclaw. ?? 2011.

  19. A freestream-preserving fourth-order finite-volume method in mapped coordinates with adaptive-mesh refinement

    DOE PAGES

    Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...

    2015-12-20

    We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less

  20. CASTRO: A NEW COMPRESSIBLE ASTROPHYSICAL SOLVER. II. GRAY RADIATION HYDRODYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, W.; Almgren, A.; Bell, J.

    We describe the development of a flux-limited gray radiation solver for the compressible astrophysics code, CASTRO. CASTRO uses an Eulerian grid with block-structured adaptive mesh refinement based on a nested hierarchy of logically rectangular variable-sized grids with simultaneous refinement in both space and time. The gray radiation solver is based on a mixed-frame formulation of radiation hydrodynamics. In our approach, the system is split into two parts, one part that couples the radiation and fluid in a hyperbolic subsystem, and another parabolic part that evolves radiation diffusion and source-sink terms. The hyperbolic subsystem is solved explicitly with a high-order Godunovmore » scheme, whereas the parabolic part is solved implicitly with a first-order backward Euler method.« less

Top