Science.gov

Sample records for mesoporous activated carbon

  1. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  2. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  3. Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.

    PubMed

    Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang

    2011-04-01

    Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids.

  4. [Preparation, characterization and adsorption performance of mesoporous activated carbon with acidic groups].

    PubMed

    Li, Kun-Quan; Li, Ye; Zheng, Zheng; Zhang, Yu-Xuan

    2013-06-01

    Mesoporous activated carbons containing acidic groups were prepared with cotton stalk based fiber as raw materials and H3PO4 as activating agent by one step carbonization method. Effects of impregnation ratio, carbonization temperature and heat preservation time on the yield, elemental composition, oxygen-containing acid functional groups and adsorptive capacity of activated carbon were studied. The adsorption capacity of the prepared activated carbon AC-01 for p-nitroaniline and Pb(II) was studied, and the adsorption mechanism was also suggested according to the equilibrium experimental results. The maximum yield of activated carbons prepared from cotton stalk fiber reached 35.5% when the maximum mesoporous volume and BET surface area were 1.39 cm3 x g(-1) and 1 731 m2 x g(-1), respectively. The activated carbon AC-01 prepared under a H3 PO4/precursor ratio of 3:2 and activated at 900 degrees C for 90 min had a total pore volume of 1.02 cm3 x g(-1), a micoporous ratio of 31%, and a mesoporous ratio of 65%. The pore diameter of the mesoporous activated carbon was mainly distributed in the range of 2-5 nm. The Langmuir maximum adsorption capacities of Pb(II) and p-nitroaniline on cotton stalk fiber activated carbon were 123 mg x g(-1) and 427 mg x g(-1), respectively, which were both higher than those for commercial activated carbon fiber ACF-CK. The equilibrium adsorption experimental data showed that mesopore and oxygen-containing acid functional groups played an important role in the adsorption.

  5. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  6. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  7. Mesoporous carbon materials

    SciTech Connect

    Dai, Sheng; Wang, Xiqing

    2013-08-20

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  8. Mesoporous carbon materials

    SciTech Connect

    Dai, Sheng; Wang, Xiqing

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  9. Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules

    SciTech Connect

    Tamai, Hisashi; Kakii, Takuhiro; Hirota, Yoshifumi

    1996-02-01

    The steam invigoration of pitches (softening points 85 and 280{degrees}C) homogenized with 1-3 wt% of organo rare0earth metal complexes such as Ln(C{sub 5}H{sub 5}){sub 3} or Ln(acac) (Ln=Y, Yb) at 930{degrees}C provided activated carbons with an extremely high mesopore ration, >70%. The resulted activated carbon selectively adsorbs giant molecules such as Vitamin B{sub 12}, blue acid 90 dye, dextran, nystatin, and humic acid, reflecting their large mesopore volumes. To understand what kind of carbon skeleton in pitch is suited for generation of high mesopore ration, the steam invigoration of a series of condensed polynuclear aromatics (COPNA) resins prepared from naphthlene, anthracene, phenanthrene, pyrene, or perylene and p-xylene-{alpha},{alpha}{prime}-diol were conducted in the presence of rare-earth metal complexes. As a result, COPNA resins containing phenanthrene, perylene, and pyrene generated large mesopore volume. 35 refs., 16 figs., 11 tabs.

  10. Mesopore control of high surface area NaOH-activated carbon.

    PubMed

    Tseng, Ru-Ling

    2006-11-15

    Activated carbon with BET surface areas in a narrow range from 2318 to 2474 m2/g was made by soaking the char made from corncob in a concentrated NaOH solution at NaOH/char ratios from 3 to 6; the mesopore volumes of the activated carbon were significantly changed from 21 to 58%. The relationships between pore properties (Sp, Vpore, Vmicro/Vpore, Dp) and NaOH dosage were investigated. Comparisons between the methods of NaOH and KOH activation revealed that NaOH activation can suitably control the mesopore specific volume of the activated carbon. Elemental analysis revealed that the H/C and O/C values of the activated carbons of NaOH/char ratios from 3 to 6 were significantly lower. SEM observation of surface hole variation of the activated carbon ascertained that the reaction process was inner pore etching. Based on the above three measurements and experimental investigations, the assumption made by previous researchers, namely that NaOH and KOH produce similar results, was challenged. Furthermore, the adsorption kinetics was used to investigate the adsorption rate of an Elovich equation to determine the relationships between the adsorption behavior on larger molecules (dyes) and smaller molecules (phenols) and the pore structure of the activated carbon.

  11. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.

    PubMed

    Liu, Chen; Tang, Zhengguang; Chen, Yao; Su, Shijun; Jiang, Wenju

    2010-02-01

    Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.

  12. [Adsorption kinetics and mechanism of lead (II) on polyamine-functionalized mesoporous activated carbon].

    PubMed

    Li, Kun-Quan; Wang, Yan-Jin; Yang, Mei-Rong; Zhu, Zhi-Qiang; Zheng, Zheng

    2014-08-01

    Bagasse mesoporous carbon was prepared by microwave assisted H3 PO4 activation. Amido and imido groups were modified with ethanediamine on the channels' surface of mesoporous carbon through nitric oxidation and amide reaction. The influence of Pb(II) concentration, adsorption time on Pb(II) adsorption on the ethanediamine-modified mesoporous carbon (AC-EDA) was investigated. The adsorption kinetics and mechanism were also discussed. The results showed that AC-EDA had a great performance for Pb(II) adsorption, and more than 70% of Pb(II) was adsorbed in 5 minutes. The adsorption amount of Pb(II) on the carbon increased with the increase of solution pH in acidic conditions. It was found that AC-EDA had different binding energies on different adsorption sites for Pb(II) separation. The Pb(II) adsorption process on AC-EDA was controlled by intra-particle diffusion in the first 3 min, and then film diffusion played the important pole on the adsorption. The adsorption amount increased with the increase of temperature, indicating the adsorption was an endothermic reaction. The high adsorption energy (> 11 kJ x mol(-1)) implied that the) adsorption was a chemical adsorption. The XPS of AC-EDA before and after Pb(II) adsorption showed that the polyamine group was involved in the adsorption, and should be a main factor of the high efficient adsorption.

  13. Surface-functionalized mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  14. Highly basic CaO nanoparticles in mesoporous carbon materials and their excellent catalytic activity.

    PubMed

    Raja, Pradeep Kumar; Chokkalingam, Anand; Priya, Subramaniam V; Balasubramanian, Veerappan V; Benziger, Mercy R; Aldeyab, Salem S; Jayavell, Ramasamy; Ariga, Katsukiho; Vinu, Ajayan

    2012-06-01

    Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.

  15. Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons

    SciTech Connect

    Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; Sohn, Young-Jun; Cheon, Jae Yeong; Joo, Sang Hoon; Yim, Sung-Dae; Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.; Park, Gu-Gon

    2016-03-08

    The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities compared to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.

  16. Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons

    DOE PAGES

    Sun-Mi Hwang; Choi, YongMan; Kim, Min Gyu; ...

    2016-03-08

    The high cost of Pt-based membrane electrode assemblies (MEAs) is a critical hurdle for the commercialization of polymer electrolyte fuel cells (PEFCs). Recently, non-precious metal-based catalysts (NPMCs) have demonstrated much enhanced activity but their oxygen reduction reaction (ORR) activity is still inferior to that of Pt-based catalysts resulting in a much thicker electrode in the MEA. For the reduction of mass transport and ohmic overpotential we adopted a new concept of catalyst that combines an ultra-low amount of Pt nanoclusters with metal–nitrogen (M–Nx) doped ordered mesoporous porphyrinic carbon (FeCo–OMPC(L)). The 5 wt% Pt/FeCo–OMPC(L) showed a 2-fold enhancement in activities comparedmore » to a higher loading of Pt. Our experimental results supported by first-principles calculations indicate that a trace amount of Pt nanoclusters on FeCo–OMPC(L) significantly enhances the ORR activity due to their electronic effect as well as geometric effect from the reduced active sites. Finally, in terms of fuel cell commercialization, this class of catalysts is a promising candidate due to the limited use of Pt in the MEA.« less

  17. Electrochemical performance of microporous and mesoporous activated carbons in neat and diluted 1-ethyl-3-methylimidazolium tetrafluoroborate

    NASA Astrophysics Data System (ADS)

    Kumagai, Seiji; Hatomi, Masaki; Tashima, Daisuke

    2017-03-01

    1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIm·BF4), neat and diluted with propylene carbonate to 1 mol L-1, have been employed as electrolytes of electrical double-layer capacitors (EDLCs). The effects of microporosity and mesoporosity in activated carbon (AC) electrodes on the capacitive and resistive performances upon the use of neat and diluted EMIm·BF4 have been explored. In addition to cyclic voltammetry and galvanostatic charge-discharge tests, electrochemical impedance spectroscopy has been performed employing Kang's equivalent circuit model consisting of three resistances, three constant phase elements, and one bounded Warburg impedance. The overall impedance of the EDLC cell was separated into components of intrinsic resistance, bulk electrolyte, diffusion layer, and Helmholtz layer. The specific capacitance and the equivalent series resistance (ESR) of mesoporous AC were found to be highly dependent on the rate of ionic transfer. Lower cell voltage was identified as being responsible for lower specific capacitance and larger ESR of mesoporous AC, which was similarly seen in the neat and diluted EMIm·BF4, and could be alleviated by increasing the cell voltage. The inferior rate performance and the cell-voltage-dependent performance of mesoporous AC, which were more distinctly observed in the neat EMIm·BF4, could be attributed to the lower mobility of EMIm+ and BF4- in mesopores.

  18. The role of mesopores in MTBE removal with granular activated carbon.

    PubMed

    Redding, Adam M; Cannon, Fred S

    2014-06-01

    This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data.

  19. Mesoporous carbons and polymers

    DOEpatents

    Bell, William; Dietz, Steven

    2001-01-01

    A mesoporous material prepared by polymerizing a resorcinol/formaldehyde system from an aqueous solution containing resorcinol, formaldehyde and a surfactant and optionally pyrolyzing the polymer to form a primarily carbonaceous solid. The material has an average pore size between 4 and 75 nm and is suitable for use in liquid-phase surface limited applications, including sorbent, catalytic, and electrical applications.

  20. Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal.

    PubMed

    Islam, Md Azharul; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-04-01

    Hydrothermal carbonization of biomass wastes presents a promising step in the production of cost-effective activated carbon. In the present work, mesoporous activated carbon (HAC) was prepared by the hydrothermal carbonization of rattan furniture wastes followed by NaOH activation. The textural and morphological characteristics, along with adsorption performance of prepared HAC toward methylene blue (MB) dye, were evaluated. The effects of common adsorption variables on performance resulted in a removal efficiency of 96% for the MB sample at initial concentration of 25mg/L, solution pH of 7, 30°C, and 8h. The Langmuir equation showed the best isotherm data correlation, with a maximum uptake of 359mg/g. The adsorbed amount versus time data was well fitted by a pseudo-second order kinetic model. The prepared HAC with a high surface area of 1135m(2)/g and an average pore size distribution of 35.5Å could be an efficient adsorbent for treatment of synthetic dyes in wastewaters.

  1. Characterization and performance evaluation of an innovative mesoporous activated carbon used for drinking water purification in comparison with commercial carbons.

    PubMed

    Gong, Xu-Jin; Li, Wei-Guang; Wang, Guang-Zhi; Zhang, Duo-Ying; Fan, Wen-Biao; Yin, Zhao-Dong

    2015-09-01

    The preparation, characterization, and performance evaluation of an innovative mesoporous activated carbon (C-XHIT) were conducted in this study. Comparative evaluation with commercial carbons (C-PS and C-ZJ15) and long-term performance evaluation of C-XHIT were conducted in small-scale system-A (S-A) and pilot-scale system-B (S-B-1 and S-B-2 in series), respectively, for treating water from Songhua River. The cumulative uptake of micropollutants varied with KBV (water volume fed to columns divided by the mass of carbons, m(3) H2O/kg carbon) was employed in the performance evaluation. The results identified that mesoporous and microporous volumes were simultaneously well-developed in C-XHIT. Higher mesoporosity (63.94 %) and average pore width (37.91 Å) of C-XHIT ensured a higher adsorption capacity for humic acid compared to C-PS and C-ZJ15. When the KBV of S-A reached 12.58 m(3) H2O/kg carbon, cumulative uptake of organic pollutants achieved by C-XHIT increased by 32.82 and 156.29 % for DOC (QC) and 22.53 and 112.48 % for UV254 (QUV) compared to C-PS and C-ZJ15, respectively; in contrast, the adsorption capacity of NH4 (+)-N did not improve significantly. C-XHIT achieved high average removal efficiencies for DOC (77.43 ± 16.54 %) and UV254 (83.18 ± 13.88 %) in S-B over 253 days of operation (KBV = 62 m(3) H2O/kg carbon). Adsorption dominated the removal of DOC and UV254 in the initial phases of KBV (0-15 m(3) H2O/kg carbon), and simultaneous biodegradation and adsorption were identified as the mechanisms for organic pollutant uptake at KBV above 25 m(3) H2O/kg carbon. The average rates contributed by S-B-1 and S-B-2 for QC and QUV were approximately 0.75 and 0.25, respectively. Good linear and exponential correlations were observed between S-A and S-B in terms of QC and QUV obtained by C-XHIT, respectively, for the same KBV ranges, indicating a rapid and cost-saving evaluation method. The linear correlation between mesoporosity and QC

  2. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-02-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices.

  3. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye--Acid Blue 113.

    PubMed

    Gupta, V K; Gupta, Bina; Rastogi, Arshi; Agarwal, Shilpi; Nayak, Arunima

    2011-02-15

    A mesoporous carbon developed from waste tire rubber, characterized by chemical analysis, FTIR, and SEM studies, was used as an adsorbent for the removal and recovery of a hazardous azo dye, Acid Blue 113. Surface area, porosity, and density were determined. The adsorption of the dye over the prepared adsorbent and a commercial activated carbon was achieved under different pH, adsorbate concentration, sieve size, adsorbent dosage, contact time and temperature conditions. Langmuir and Freundlich adsorption isotherm models were applied and thermodynamic parameters were calculated. Kinetic studies indicated that the adsorption process follow first order kinetics and particle diffusion mechanisms are operative. By percolating the dye solution through fixed-bed columns the bulk removal of the Acid Blue 113 was carried out and necessary parameters were determined to find out the percentage saturation of both the columns. Recovery of the dye was made by eluting 0.1 M NaOH through the column.

  4. Graphitic mesoporous carbon based on aromatic polycondensation as catalyst support for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Kong, Jiangrong; Liu, Yaru; Liu, Qicheng; Zhu, Hongze

    2015-03-01

    Mesoporous carbon is constructed by monolithic polyaromatic mesophase deriving from the hexane insoluble of coal-tar pitch. This carbon material exhibits spherical morphology and layered crystallite, and thereby can be graphitized at 900 °C without destroying the mesoporous structure. Electrochemical measurements indicate that graphitic mesoporous carbon (GMC) support not only improves the activity of Pt electrocatalyst to oxygen reduction reaction (ORR), but also shows higher corrosion resistance than commercial XC-72 carbon black in the acid cathode environment.

  5. Enhancement of visible-light photocatalytic activity of silver and mesoporous carbon co-modified Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Gong, Ming; Liu, Wangping; Mao, Yulin; Le, Shukun; Ju, Shang; Long, Fei; Liu, Xiufang; Liu, Kai; Jiang, Tingshun

    2015-03-01

    Ordered mesoporous carbon CMK-3 was prepared by hard template method using SBA-15 as template, sucrose as carbon source. Flower/sphere-like Bi2WO6 and CMK-3/Bi2WO6 photocatalysts were synthesized by hydrothermal method, and then Ag/Bi2WO6 and Ag/Bi2WO6/CMK-3 composite photocatalysts were prepared via a photoreduction process. The samples were characterized by XRD, UV-vis, TEM (HR-TEM), SEM, N2 physical adsorption and PL and their photocatalytic activities were evaluated by the photocatalytic degradation of methylene blue (MB) under visible light irradiation. The results show that both incorporating of CMK-3 and Ag loading greatly improved the photocatalytic activity of Bi2WO6, and the content of CMK-3 and silver have an impact on the photocatalytic activity of Bi2WO6. The photocatalytic activity of Ag/Bi2WO6/CMK-3 photocatalyst is superior to the activities of CMK-3/Bi2WO6 and Ag/Bi2WO6 under comparable conditions, and Ag/Bi2WO6/CMK-3 photocatalyst has high stability and is easy to be recycled. Also, the mechanism for the enhancement of the photocatalytic activity of CMK-3 and Ag co-modified Bi2WO6 was also investigated.

  6. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage

    PubMed Central

    Xu, Fei; Jin, Shangbin; Zhong, Hui; Wu, Dingcai; Yang, Xiaoqing; Chen, Xiong; Wei, Hao; Fu, Ruowen; Jiang, Donglin

    2015-01-01

    Organic batteries free of toxic metal species could lead to a new generation of consumer energy storage devices that are safe and environmentally benign. However, the conventional organic electrodes remain problematic because of their structural instability, slow ion-diffusion dynamics, and poor electrical conductivity. Here, we report on the development of a redox-active, crystalline, mesoporous covalent organic framework (COF) on carbon nanotubes for use as electrodes; the electrode stability is enhanced by the covalent network, the ion transport is facilitated by the open meso-channels, and the electron conductivity is boosted by the carbon nanotube wires. These effects work synergistically for the storage of energy and provide lithium-ion batteries with high efficiency, robust cycle stability, and high rate capability. Our results suggest that redox-active COFs on conducting carbons could serve as a unique platform for energy storage and may facilitate the design of new organic electrodes for high-performance and environmentally benign battery devices. PMID:25650133

  7. In-Situ-Activated N-Doped Mesoporous Carbon from a Protic Salt and Its Performance in Supercapacitors.

    PubMed

    Mendes, Tiago C; Xiao, Changlong; Zhou, Fengling; Li, Haitao; Knowles, Gregory P; Hilder, Matthias; Somers, Anthony; Howlett, Patrick C; MacFarlane, Douglas R

    2016-12-28

    Protic salts have been recently recognized to be an excellent carbon source to obtain highly ordered N-doped carbon without the need of tedious and time-consuming preparation steps that are usually involved in traditional polymer-based precursors. Herein, we report a direct co-pyrolysis of an easily synthesized protic salt (benzimidazolium triflate) with calcium and sodium citrate at 850 °C to obtain N-doped mesoporous carbons from a single calcination procedure. It was found that sodium citrate plays a role in the final carbon porosity and acts as an in situ activator. This results in a large surface area as high as 1738 m(2)/g with a homogeneous pore size distribution and a moderate nitrogen doping level of 3.1%. X-ray photoelectron spectroscopy (XPS) measurements revealed that graphitic and pyridinic groups are the main nitrogen species present in the material, and their content depends on the amount of sodium citrate used during pyrolysis. Transmission electron microscopy (TEM) investigation showed that sodium citrate assists the formation of graphitic domains and many carbon nanosheets were observed. When applied as supercapacitor electrodes, a specific capacitance of 111 F/g in organic electrolyte was obtained and an excellent capacitance retention of 85.9% was observed at a current density of 10 A/g. At an operating voltage of 3.0 V, the device provided a maximum energy density of 35 W h/kg and a maximum power density of 12 kW/kg.

  8. Preparation of highly developed mesoporous activated carbon fiber from liquefied wood using wood charcoal as additive and its adsorption of methylene blue from solution.

    PubMed

    Ma, Xiaojun; Zhang, Fan; Zhu, Junyan; Yu, Lili; Liu, Xinyan

    2014-07-01

    Activated carbon fiber (C-WACF) with super high surface area and well-developed small mesopores were prepared by liquefied wood and uses wood charcoal (WC) as additive. The characterization and properties of C-WACF were investigated by XRD, XPS and N2 adsorption. Results showed the pore development was significant at temperatures >750°C, and reached a maximum BET surface area (2604.7 m(2)/g) and total pore volume (1.433 cm(3)/g) at 850°C, of which 86.8% was from the contribution of the small mesopores of 2-4 nm. It was also found that the mesopore volume and methylene blue adsorption of C-WACF were highly increased as the temperature increases from 750 to 850°C. Additionally, the reduction of graphitic layers, the obvious changes of functional groups and the more unstable carbons on the surface of C-WACF, which played important roles in the formation of mesopores, were also observed.

  9. Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamad Azuwa; Wan Salleh, Wan Norharyati; Jaafar, Juhana; Rosmi, Mohamad Saufi; Mohd. Hir, Zul Adlan; Abd Mutalib, Muhazri; Ismail, Ahmad Fauzi; Tanemura, Masaki

    2017-01-01

    Regenerated cellulose membrane was used as bio-template nanoreactor for the formation of rutile TiO2 mesoporous, as well as in-situ carbon dopant in acidified sol-gel system. The effects of calcination temperature on the physicochemical characteristic of core-shell nanostructured of bio-templated C-doped mesoporous TiO2 are highlighted in this study. By varying the calcination temperature, the thickness of the carbon shell coating on TiO2, crystallinity, surface area, and optical properties could be tuned as confirmed by HRTEM, nitrogen adsorption/desorption measurement, XRD and UV-vis-NIR spectroscopy. The results suggested that increment in the calcination temperature would lead to the band gap narrowing from 2.95 to 2.80 eV and the thickness of carbon shell increased from 0.40 to 1.20 nm. The x-ray photoelectron spectroscopy showed that the visible light absorption capability was mainly due to the incorporation of carbon dopant at interstitial position in the TiO2 to form Osbnd Tisbnd C or Tisbnd Osbnd C bond. In addition, the formation of the carbon core-shell nanostructured was due to carbonaceous layer grafted onto the surface of TiO2 via Tisbnd Osbnd C and Tisbnd OCO bonds. The result indicated that bio-templated C-doped core-shell mesoporous TiO2 prepared at 300 °C exhibited the highest photocatalytic activity. It is worthy to note that, the calcination temperature provided a huge impact towards improving the physicochemical and photocatalytic properties of the prepared bio-templated C-doped core-shell mesoporous TiO2.

  10. Acid dye removal: comparison of surfactant-modified mesoporous FSM-16 with activated carbon derived from rice husk.

    PubMed

    Mohamed, Mohamed Mokhtar

    2004-04-01

    Cetyltrimethylammonium bromide (CTAB)-modified mesoporous molecular sieve FSM-16, prepared by a hydrothermal process (373 K, 3 days), was tested as an adsorbent for acid dye (acid yellow, AY, and acid blue, AB) removal in comparison with as-prepared FSM-16 and activated carbon (AC) derived from rice husk (50 vol% H3PO4, 773 K, 2.5 h). The adsorption isotherms, sorption kinetics, and pH effects upon acid dyes sorption on the adsorbents were thoroughly investigated. The structures of different adsorbents were characterized by XRD, FTIR spectroscopy, N2 adsorption measurements, and thermogravimetric (TG) analysis. It was found that the ultimate capacity of the adsorbents varied in the order FSM-16 > modified FSM-16 > AC and followed first-order rate kinetics. The adsorption isotherm of acid dyes on FSM-16 is of type IV, according to the IUPAC classification, drastically different from that of CTAB/FSM-16, which showed a type I isotherm. The latter sample had better adsorption performance at low concentration of acid dyes than the former. As compared to activated carbon of microporous character, the CTAB/FSM-16 sample achieved higher performance at low concentrations. This was due to the successful narrowing of the pore opening of FSM-16 using CTAB with maintenance of a considerable portion of the pore volume. Powder XRD and N2 adsorption studies of the CTAB/FSM-16 material indicated that the textural properties of the support were preserved during the hydrothermal synthesis and that the channels remained accessible, despite a significant reduction in surface area (ca. 26%). TG studies, on the other hand, confirmed that the modified material presented a higher hydrophobicity than that of the CTAB-free FSM-16 sample.

  11. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue.

    PubMed

    Marrakchi, F; Ahmed, M J; Khanday, W A; Asif, M; Hameed, B H

    2017-05-01

    In this work, mesoporous-activated carbon (CSAC) was prepared from chitosan flakes (CS) via single-step sodium hydroxide activation for the adsorption of methylene blue (MB). CSAC was prepared using different impregnation ratios of NaOH:CS (1:1, 2:1, 3:1, and 4:1) at 800°C for 90min. The adsorption performance of CSAC was evaluated for MB at different adsorption variables, such MB initial concentrations (25-400mg/L), solution pH (3-11), and temperature (30-50°C). The adsorption isotherm data of CSAC-MB were well fitted to Langmuir model with a maximum adsorption capacity 143.53mg/g at 50°C. Best representation of kinetic data was obtained by the pseudo-second order model. CSAC exhibited excellent adsorption uptake for MB and can potentially be used for other cationic dyes.

  12. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    PubMed

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal.

  13. Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption.

    NASA Astrophysics Data System (ADS)

    Giannakoudakis, Dimitrios; Saroyan, Hayarpi; Lazaridis, Nikolaos; Deliyanni, Eleni

    2016-04-01

    Mesoporous magnetic activated carbon: Effect of preparation route on texture and surface properties and on effect for Reactive Black 5 adsorption. Dimitrios Giannakoudakis1, Hayarpi Saroyan2, Nikolaos Lazaridis2, Eleni Deliyanni2 1 City College of New York, Chemistry Department, 160 Convent Avenue, New York, United States 2 Laboratory of General and oInorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece In this study, the effect of preparation route of a mesoporous magnetic activated carbon on Reactive Black 5 (RB5) adsorption was investigated. The synthesis of the magnetic activated carbon was achieved both with (i) impregnation method (Bmi), and (ii) co-precipitation with two precipitation agents: NaOH (Bm) and NH4OH (Bma). After synthesis, the full characterization with various techniques (SEM, FTIR, XRD, DTA, DTG, VSM) was achieved in order to testify the effect of the preparation route on its textural and surface properties. It was shown that after the precipitation method the prepared carbon presented a collapsed texture and small magnetic properties. Effects of initial solution pH, effect of temperature, adsorption isotherms and kinetics were investigated in order to conclude about the aforementioned effect of the preparation method on dye adsorption performance of the magnetic carbons. The adsorption evaluation of the magnetic activated carbon presented higher adsorption capacity of Bmi carbon (350 mg/g) and lower of Bm (150 mg/g). Equilibrium experiments are also performed studying the effect of contact time (pseudo-first and -second order equations) and temperature (isotherms at 25, 45 and 65 °C fitted to Langmuir and Freundlich model). A full thermodynamic evaluation was carried out, calculating the parameters of enthalpy, free energy and entropy (ΔHο, ΔGο and ΔSο). The characterization with various techniques revealed the possible interactions/forces of dye-composite system.

  14. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    PubMed

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.

  15. Adsorption-desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires.

    PubMed

    Tanthapanichakoon, W; Ariyadejwanich, P; Japthong, P; Nakagawa, K; Mukai, S R; Tamon, H

    2005-04-01

    Liquid-phase adsorption-desorption characteristics and ethanol regeneration efficiency of an activated carbon prepared from waste tires and a commercial activated carbon were investigated. Water vapor adsorption experiments reveal that both activated carbons showed hydrophobic surface characteristics. Adsorption experiments reveal that the prepared activated carbon possessed comparable phenol adsorption capacity as the commercial one but clearly larger adsorption capacity of two reactive dyes, Black 5 and Red 31. It was ascertained that the prepared activated carbon exhibited less irreversible adsorption of phenol and the two dyes than its commercial counterpart. Moreover, ethanol regeneration efficiency of the prepared AC saturated with either dye was higher than that of the commercial AC. Because of its superior liquid-phase adsorption-desorption characteristics as well as higher ethanol regeneration efficiency, the prepared activated carbon is more suitable for wastewater treatment, especially for adsorbing similarly bulky adsorbates.

  16. Mesoporous carbon-enriched palladium nanostructures with redox activity for enzyme-free electrochemical immunoassay of brevetoxin B.

    PubMed

    Lin, Youxiu; Zhou, Qian; Lin, Yuping; Lu, Minghua; Tang, Dianping

    2015-08-05

    A new signal amplification strategy based on mesoporous carbon-enriched palladium nanostructure (MSC-PdNS) was designed for enzyme-free electrochemical immunoassay of brevetoxin B (BTB) in marine toxins. The assay was carried out on a BTB-bovine serum albumin-functionalized electrode by using monoclonal mouse anti-BTB-labeling MSC-PdNS as the signal-transduction tag. A competitive-type assay protocol was successfully introduced to develop a high-efficiency enzyme-free immunoassay accompanying the doped palladium nanostructure into MSC-PdNS toward reduction of H2O2. Under the optimal conditions, the catalytic current decreased with the increment of BTB concentration in the range from 0.01 to 10 ng mL(-1) with a detection limit (LOD) of 5.0 pg mL(-1) BTB at the 3s(blank) criterion. The selectivity and precision were acceptable. In addition, the methodology was further validated for assaying spiked seafood samples, and consistent results between the electrochemical immunoassay and the referenced enzyme immunoassay were obtained. Importantly, the enzyme-free electrochemical immunoassay provides a promising approach for rapid screening of marine toxin because of its simplicity, low cost, sensitivity, specificity and without the need of sample pretreatment.

  17. Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution.

    PubMed

    Kailasam, Kamalakannan; Fischer, Anna; Zhang, Guigang; Zhang, Jinshui; Schwarze, Michael; Schröder, Marc; Wang, Xinchen; Schomäcker, Reinhard; Thomas, Arne

    2015-04-24

    Composites of mesoporous polymeric carbon nitride and tungsten(VI) oxide show very high photocatalytic activity for the evolution of hydrogen from water under visible light and in the presence of sacrificial electron donors. Already addition of very small amounts of WO3 yields up to a twofold increase in the efficiency when compared to bulk carbon nitrides and their composites and more notably even to the best reported mesoporous carbon nitride-based photocatalytic materials. The higher activity can be attributed to the high surface area and synergetic effect of the carbon nitrides and the WO3 resulting in improved charge separation through a photocatalytic solid-state Z-scheme mechanism.

  18. Cobalt- and iron-based nanoparticles hosted in SBA-15 mesoporous silica and activated carbon from biomass: Effect of modification procedure

    NASA Astrophysics Data System (ADS)

    Tsoncheva, Tanya; Genova, Izabela; Paneva, Daniela; Dimitrov, Momtchil; Tsyntsarski, Boyko; Velinov, Nicolay; Ivanova, Radostina; Issa, Gloria; Kovacheva, Daniela; Budinova, Temenujka; Mitov, Ivan; Petrov, Narzislav

    2015-10-01

    Ordered mesoporous silica of SBA-15 type and activated carbon, prepared from waste biomass (peach stones), are used as host matrix of nanosized iron and cobalt particles. The effect of preparation procedure on the state of loaded nanoparticles is in the focus of investigation. The obtained materials are characterized by Boehm method, low temperature physisorption of nitrogen, XRD, UV-Vis, FTIR, Mossbauer spectroscopy and temperature programmed reduction with hydrogen. The catalytic behaviour of the samples is tested in methanol decomposition. The dispersion, oxidative state and catalytic behaviour of loaded cobalt and iron nanoparticles are successfully tuned both by the nature of porous support and the metal precursor used during the samples preparation. Facile effect of active phase deposition from aqueous solution of nitrate precursors is assumed for activated carbon support. For the silica based materials the catalytic activity could be significantly improved when cobalt acetylacetonate is used during the modification. The complex effect of pore topology and surface functionality of different supports on the active phase formation is discussed.

  19. Mesoporous Carbon for Capacitive Deionization of Saline Water

    SciTech Connect

    Tsouris, Costas; Mayes, Richard T; Kiggans, Jim; Sharma, Ms. Ketki; Yiacoumi, Sotira; DePaoli, David W; Dai, Sheng

    2011-01-01

    Self-assembled mesoporous carbon (MC) materials have been synthesized and tested for application in capacitive deionization (CDI) of saline water. MC was prepared by self-assembly of a triblock copolymer with hydrogen-bonded chains via a phenolic resin, such as resorcinol or phloroglucinol in acidic conditions, followed by carbonization and, in some cases, activation by KOH. Carbon synthesized in this way was ground into powder, from which activated MC sheets were produced. In a variation of this process, after the reaction of triblock copolymer with resorcinol or phloroglucinol, the gel that was formed was used to coat a graphite plate and then carbonized. The coated graphite plate in this case was not activated and was tested to serve as current collector during the CDI process. The performance of these MC materials was compared to that of carbon aerogel for salt concentrations ranging between 1000 ppm and 35,000 ppm. Resorcinol-based MC removed up to 15.2 mg salt per gram of carbon, while carbon aerogel removed 5.8 mg salt per gram of carbon. Phloroglucinol-based MC-coated graphite exhibited the highest ion removal capacity at 21 mg of salt per gram of carbon for 35,000 ppm salt concentration.

  20. Direct synthesis of mesoporous carbon from the carbonization of hydroxypropyl- β-cyclodextrin/silica composite and its catalytic performance

    NASA Astrophysics Data System (ADS)

    Wang, Hui Chun; Li, Bao Lin; Li, Jiang Tao; Lin, Pei; Bian, Xiao Bing; Li, Jiang; Zhang, Bo; Wan, Zhuan Xin

    2011-02-01

    A simple and efficient route is reported for the synthesis of mesoporous carbon materials by directly carbonizing hydroxypropyl-β-cyclodextrin-silica composites. The resulting carbon materials, with uniform wormlike mesoporous structure and certain degree graphitic phase characteristics in porous wall, possess narrow pore size distribution, high surface area (>1000 m2 g-1) and pore volume (>1.2 cm3 g-1). It is worth mentioning that the carbon materials have high catalytic activity for the reduction of p-nitrotoluene using hydrazine hydrate as the reducing agent; moreover, the catalytic activity is not reduced notably after being reused for six times.

  1. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    PubMed

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  2. A comparison of the photocatalytic activity between commercial and synthesized mesoporous and nanocrystalline titanium dioxide for 4-nitrophenol degradation: Effect of phase composition, particle size, and addition of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Moro, Piera; Stampachiacchiere, Serena; Donzello, Maria Pia; Fierro, Giuseppe; Moretti, Giuliano

    2015-12-01

    The photodegradation of 4-nitrophenol in aqueous solution was studied by using titania-based photocatalysts, in particular standard commercial titania samples (anatase and rutile, Hunstmann; P25 and Aeroxide VP P90, Evonik) and a mesoporous and nanocrystalline titania synthesized under hydrothermal conditions. A comparison between the commercial products and our preparations made evident a different particle size and phase composition. Moreover, in order to investigate a possible synergism between TiO2 and carbon nanotubes (CNTs), further two samples were purposely synthesized by adding to the reaction mixture used for the catalyst preparation a small amount of single-walled or multi-walled carbon nanotubes (SWCNTs and MWCNTs). Among the investigated solids, the nanocrystalline titania resulted to be the most active photocatalysts. The less active solids were rutile and mesoporous titania. The addition of a small amount of MWCNTs further increased the photoactivity of the nanocrystalline titania.

  3. Mesoporous Carbon-based Materials for Alternative Energy Applications

    NASA Astrophysics Data System (ADS)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  4. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    PubMed Central

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113

  5. Catalyst-free synthesis of transparent, mesoporous diamond monoliths from periodic mesoporous carbon CMK-8

    SciTech Connect

    Zhang, Li; Mohanty, Paritosh; Coombs, Neil; Fei, Yingwei; Mao, Ho-kwang; Landskrom, Kai

    2010-07-19

    We report on the synthesis of optically transparent, mesoporous, monolithic diamond from periodic mesoporous carbon CMK-8 at a pressure of 21 GPa. The phase transformation is already complete at a mild synthesis temperature of 1,300 °C without the need of a catalyst. Surprisingly, the diamond is obtained as a mesoporous material despite the extreme pressure. X-ray diffraction, SEM, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and Z-contrast experiments suggest that the mesoporous diamond is composed of interconnected diamond nanocrystals having diameters around 5–10 nm. The Brunauer Emmett Teller surface area was determined to be 33 m2 g-1 according Kr sorption data. The mesostructure is diminished yet still detectable when the diamond is produced from CMK-8 at 1,600 °C and 21 GPa. The temperature dependence of the porosity indicates that the mesoporous diamond exists metastable and withstands transformation into a dense form at a significant rate due to its high kinetic inertness at the mild synthesis temperature. The findings point toward ultrahard porous materials with potential as mechanically highly stable membranes.

  6. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.

    PubMed

    Kolanthai, Elayaraja; Abinaya Sindu, P; Thanigai Arul, K; Sarath Chandra, V; Manikandan, E; Narayana Kalkura, S

    2017-01-01

    The powder composites are predominantly used for filling of voids in bone and as drug delivery carrier to prevent the infection or inflammatory reaction in the damaged tissues. The objective of this work was to study the synthesis of agarose encapsulation on carbonated hydroxyapatite powder and their biological and drug delivery properties. Mesoporous, nanosized carbonated hydroxyapatite/agarose (CHAp/agarose) powder composites were prepared by solvothermal method and subsequently calcined to study the physico-chemical changes, if it subjected to thermal exposure. The phase of the as-synthesized powder was CHAp/agarose whereas the calcinated samples were non-stoichiometric HAp. The CHAp/agarose nanorods were of length 10-80nm and width 40-190nm for the samples synthesized at temperatures 120°C (ST120) and 150°C (ST150). The calcination process produced spheres (10-50nm) and rods with reduced size (40-120nm length and 20-30nm width). Composites were partially dissolved in SBF solution followed by exhibited better bioactivity than non-stoichiometric HAp confirmed by gravimetric method. Hemo and biocompatibility remained unaffected by presence of agarose or carbonate in the HAp. Specific surface area of the composites was high and exhibited an enhanced amoxicillin and 5-fluorouracil release than the calcined samples. The composites demonstrated a strong antimicrobial activity against E. coli, S. aureus and S. epidermidis. The ST120 showed prolonged drug (AMX and 5-Fcil) release and antimicrobial efficacy than ST150 and calcined samples. This technique would be simple and rapid for composites preparation, to produce high quality crystalline, resorbable, mesoporous and bioactive nanocomposite (CHAp/agarose) powders. This work provides new insight into the role of agarose coated on bioceramics by solvothermal technique and suggests that CHAp/agarose composites powders are promising materials for filling of void in bone and drug delivery applications.

  7. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Cheng, Youliang; Li, Tiehu; Fang, Changqing; Zhang, Maorong; Liu, Xiaolong; Yu, Ruien; Hu, Jingbo

    2013-10-01

    Using coal tar pitch based amphiphilic carbonaceous materials (ACMs) as the precursor and amphiphilic triblock copolymer Plutonic P123 as the only soft template, carbon nanospheres with partially ordered mesopores and hollow carbon nanofibers were synthesized. The concentration of P123, cp, and the mass ratio of P123 to ACM, r, are the key parameters of controlling the shape of the as-prepared products. Mesoporous carbon nanospheres with diameter of 30-150 nm were prepared under the condition of cp = 13.3 g/L and r = 1.2. When cp = 26.7 g/L and r = 2, hollow carbon nanofibers with diameters of 50-200 nm and mesopores/macropores were obtained. Carbon nanospheres and hollow carbon fibers were amorphous materials. The mesoporous carbon nanospheres show good stability in the cyclic voltammograms and their specific capacitance at 10 mV s-1 is 172.1 F/g.

  8. Mesoporous carbon derived from vitamin B12: a high-performance bifunctional catalyst for imine formation.

    PubMed

    Chen, Bo; Shang, Sensen; Wang, Lianyue; Zhang, Yi; Gao, Shuang

    2016-01-11

    Mesoporous carbon derived from natural vitamin B12 is applied for the first time in organic synthesis and exhibits exceptionally high dual activity for imine formation via the cross-coupling of alcohols with amines and the self-coupling of primary amines using molecular oxygen or air as the terminal oxidant.

  9. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  10. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    SciTech Connect

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  11. Ordered mesoporous carbon-titania composites and their enhanced photocatalytic properties.

    PubMed

    Wickramaratne, Nilantha P; Jaroniec, Mietek

    2015-07-01

    A series of ordered mesoporous titania-carbon composites was synthesized by self-assembly of carbon and titania precursors in the presence of Pluronic F127 block copolymer as a template under acidic conditions. Resorcinol and formaldehyde were used as carbon precursors and titanium isopropoxide was employed as titania precursor. Pluronic F127 [poly(ethylene oxide) - poly(propylene oxide) - poly(ethylene oxide) triblock copolymer] was employed as a soft template. The controlled polymerization of phenolic resin precursors and condensation of titania precursor in hydrophilic domains of the block copolymer template followed by carbonization resulted in ordered mesoporous titania-carbon composites. These composites possessed uniform ordered cylindrical mesopores (7-8 nm) created by thermal decomposition of the soft template, crystalline titania particles (anatase phase, 7-8 nm) embedded in the carbon matrix, and high percentage of titania (up to 48%). N2 adsorption analysis showed that the aforementioned composites exhibited large surface area (close to reaching 600 m(2)/g) and enhanced photocatalytic activity toward photodegradation of rhodomine B due to the presence of titania nanoparticles uniformly dispersed in the carbon mesostructure.

  12. One-Pot synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity

    SciTech Connect

    Fulvio, Pasquale F; Mahurin, Shannon Mark; Mayes, Richard T; Bauer, Christopher; Wang, Xiqing; Veith, Gabriel M; Dai, Sheng

    2012-01-01

    Soft-templated phosphorylated mesoporous carbons with homogeneous distributions of phosphate groups were prepared by a 'one-pot' synthesis method using mixtures of phosphoric acid with hydrochloric, or nitric acids in the presence of Pluronic F127 triblock copolymer. Adjusting the various ratios of phosphoric acid used in these mixtures resulted in carbons with distinct adsorption, structural and surface acidity properties. The pore size distributions (PSDs) from nitrogen adsorption at -196 C showed that mesoporous carbons exhibit specific surface areas as high as 551 m{sup 2}/g and mesopores as large as 13 nm. Both structural ordering of the mesopores and the final phosphate contents were strongly dependent on the ratios of H{sub 3}PO{sub 4} in the synthesis gels, as shown by transmission electron microscopy (TEM), X-ray photoelectron (XPS) and energy dispersive X-ray spectroscopy (EDS). The number of surface acid sites determined from temperature programmed desorption of ammonia (NH{sub 3}-TPD) were in the range of 0.3-1.5 mmol/g while the active surface areas are estimated to comprise 5-54% of the total surface areas. Finally, the conversion temperatures for the isopropanol dehydration were lowered by as much as 100 C by transitioning from the least acidic to the most acidic catalysts surface.

  13. Heteroatom doped mesoporous carbon/graphene nanosheets as highly efficient electrocatalysts for oxygen reduction.

    PubMed

    Xu, Peimin; Wu, Dongqing; Wan, Li; Hu, Pengfei; Liu, Ruili

    2014-05-01

    The high cost of platinum (Pt) based catalysts for oxygen reduction reaction (ORR) has restricted the widespread commercialization of fuel cells. Heteroatom (N, B, P, S or Se) doped carbon materials have been regarded as the promising metal-free catalysts for replacing Pt based catalysts owing to their high efficiencies, good stability and relative low cost. In this work, we present a cost-effective synthesis approach for heteroatom (N and S) doped mesoporous carbon/graphene (HMCG) nanosheets by using nano-casting technology with mesoporous silica/graphene nanosheets (MSG) as hard templates, and four different amino acids (alanine, serine, arginine and cystine) as heteroatom (N, S) and carbon precursors. The resulting catalysts exhibited excellent electrocatalytic activity for ORR in alkaline media. In particular, HMCGAla with alanine as precursors showed the highest electron transfer numbers and durability. These results indicated the attractive potential of HMCGs as metal-free catalysts in practical fuel cells.

  14. Morphology control in mesoporous carbon films using solvent vapor annealing.

    PubMed

    Qiang, Zhe; Xue, Jiachen; Cavicchi, Kevin A; Vogt, Bryan D

    2013-03-12

    Ordered mesoporous (2-50 nm) carbon films were fabricated using cooperative self-assembly of a phenolic resin oligomer with a novel block copolymer template (poly(styrene-block-N,N-dimethyl-n-octadecylamine p-styrenesulfonate), (PS-b-PSS-DMODA)) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Due to the high Tg of the PS segment and the strong interactions between the phenolic resin and the PSS-DMODA, the segmental rearrangement is kinetically hindered relative to the cross-linking rate of the phenolic resin, which inhibits long-range ordering and yields a poorly ordered mesoporous carbon with a broad pore size distribution. However, relatively short exposure (2 h) to controlled vapor pressures of methyl ethyl ketone (MEK) yields significant improvements in the long-range ordering and narrows the pore size distribution. The average pore size increases as the solvent vapor pressure during annealing increases, but an upper limit of p/p0 = 0.85 exists above which the films dewet rapidly during solvent vapor annealing. This approach can be extended using mesityl oxide, which has similar solvent qualities to MEK, but is not easily removed by ambient air drying after solvent annealing. This residual solvent can impact the morphology that develops during cross-linking of the films. These results illustrate the ability to fine-tune the mesostructure of ordered mesoporous carbon films through simple changes in the processing without any compositional changes in the initial cast film.

  15. Tailoring the mesoporous texture of graphitic carbon nitride.

    PubMed

    Yang, Jae-Hun; Kim, Gain; Domen, Kazunari; Choy, Jin-Ho

    2013-11-01

    Recently, graphitic carbon nitride (g-C3N4) materials have received a great attention from many researchers due to their various roles as a visible light harvesting photocatalyst, metal-free catalyst, reactive template, nitrogen source of nitridation reaction, etc. g-C3N4 could be prepared by temperature-induced polymerization of cyanamide or melamine. In this study, we report a preparation of mesoporous graphitic carbon nitrides with tailored porous texture including pore size, and specific surface area from cyanamide and colloidal silica nanoparticles (Ludox). At first, cyanamide-silica nanocomposites were prepared by mixing colloidal silica with different size in the range of 7-22 nm and cyanamide, followed by evaporating the solvent in the resulting mixture. Mesoporous g-C3N4 samples were prepared by calcining cyanamide-silica nanocomposite at 550 degrees C for 4 hrs and removing the silica nanoparticles by using ammonium hydrogen fluoride. The formation of g-C3N4 was confirmed by the sharp (002) peak (d = 3.25 A) of graphitic interlayer stacking, and the broad (100) peak (d = 6.86 A) of in-plane repeating unit in the X-ray diffraction patterns. According to N2 adsorption-desorption analysis, the pore size of mesoporous carbon nitrides was similar to the size of colloidal silica used as hard template (7-22 nm). The specific surface area of mesoporous g-C3N4 could be tailored in the range of 189 m2/g-288 m2/g.

  16. NiCo2O4 spinel/ordered mesoporous carbons as noble-metal free electrocatalysts for oxygen reduction reaction and the influence of structure of catalyst support on the electrochemical activity of NiCo2O4

    NASA Astrophysics Data System (ADS)

    Bo, Xiangjie; Zhang, Yufan; Li, Mian; Nsabimana, Anaclet; Guo, Liping

    2015-08-01

    Three ordered mesoporous carbons (OMCs) with different structures are used as catalyst supports for growth of NiCo2O4 spinel. The high surface area of OMCs provides more active sites to adsorb metal precursors. The porous structure confines the growth of NiCo2O4 and supplies more efficient transport passage for reactant molecules to access the active sites. Due to the structural characteristics of OMCs and catalytic properties of NiCo2O4, NiCo2O4/OMCs composites are highly active, cheap, and selective noble metal-free electrocatalysts for the oxygen reduction reaction (ORR) in alkaline solution. The electrochemical activity of NiCo2O4 supported on three OMCs with different structures, surface areas, pore sizes, pore volumes, and defective sites is studied. NiCo2O4/OMCs composites may be further used as efficient and inexpensive noble metal-free ORR catalysts in alkaline solution.

  17. Template-Engaged In Situ Synthesis of Carbon-Doped Monoclinic Mesoporous BiVO4: Photocatalytic Treatment of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Yao, Mingming; Gan, Lihua; Liu, Mingxian; Tripathi, Pranav K.; Liu, Yafei; Hu, Zhonghua

    2015-06-01

    In this paper, carbon-doped monoclinic scheelite mesoporous bismuth vanadate was synthesized through template-engaged in situ method. The bismuth nitrate pentahydrate and ammonia metavanadate were used as bismuth and vanadium precursors, respectively, glucose as carbon source, and mesoporous SiO2 aerogel as a hard template. Carbon-doped monoclinic mesoporous BiVO4 were obtained by heat treatment of BiVO4/glucose/template to carbonize glucose and form monoclinic crystal, followed by etching with NaOH solution to remove the SiO2 template. The samples were characterized by x-ray diffraction, N2 adsorption and desorption, UV-visible spectroscopy, Energy dispersive spectrometry, Raman spectroscopy, and Transmission electron microscopy. It was found that the sample with a carbon content of 0.5 wt.% possesses a specific surface area of 10.2 m2/g and has mesoporous structure with the most probable pore size of 13.9 nm. The band gap of carbon-doped monoclinic mesoporous BiVO4 was estimated to be 2.33 eV, indicating the superior photocatalytic activity under visible light. The photocatalytic efficiency of carbon-doped monoclinic mesoporous BiVO4 for the degradation of Rhodamine B under visible light (λ > 400 nm) in 120 min reaches 98.7%, Besides, the carbon-doped monoclinic mesoporous BiVO4 photocatalyst still showed high stability: 85% for Rhodamine B degradation after ten recycles.

  18. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation.

  19. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2).

    PubMed

    Chew, Thiam-Leng; Ahmad, Abdul L; Bhatia, Subhash

    2010-01-15

    Separation of carbon dioxide (CO(2)) from gaseous mixture is an important issue for the removal of CO(2) in natural gas processing and power plants. The ordered mesoporous silicas (OMS) with uniform pore structure and high density of silanol groups, have attracted the interest of researchers for separation of carbon dioxide (CO(2)) using adsorption process. These mesoporous silicas after functionalization with amino groups have been studied for the removal of CO(2). The potential of functionalized ordered mesoporous silica membrane for separation of CO(2) is also recognized. The present paper reviews the synthesis of mesoporous silicas and important issues related to the development of mesoporous silicas. Recent studies on the CO(2) separation using ordered mesoporous silicas (OMS) as adsorbent and membrane are highlighted. The future prospectives of mesoporous silica membrane for CO(2) adsorption and separation are also presented and discussed.

  20. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    PubMed

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis.

  1. Direct Electrochemistry and Electrocatalysis of Hemoglobin at Mesoporous Carbon Modified Electrode

    PubMed Central

    Pei, Supeng; Qu, Song; Zhang, Yongming

    2010-01-01

    The novel highly ordered mesoporous carbon (known as FDU-15), prepared by the organic-organic self-assembly method was been used for first time for the immobilization of hemoglobin (Hb) and its bioelectrochemical properties were studied. The resulting Hb/FDU-15 film provided a favorable microenvironment for Hb to perform direct electron transfers at the electrode. The immobilized Hb also displayed its good electrocatalytic activity for the reduction of hydrogen peroxide. The results demonstrate that mesoporous carbon FDU-15 can improve the Hb loading with retention of its bioactivity and greatly promote the direct electron transfer, which can be attributed to its high specific surface area, uniform ordered porous structure, suitable pore size and biocompatibility. Our present study may provide an alternative way for the construction of nanostructure biofunctional surfaces and pave the way for its application to biosensors. PMID:22205867

  2. Preparation of mesoporous activated carbon from palm-date pits: optimization study on removal of bentazon, carbofuran, and 2,4-D using response surface methodology.

    PubMed

    Salman, J M; Abid, F M

    2013-01-01

    Palm-date pits were used to prepare activated carbon by physiochemical activation method, which consisted of potassium hydroxide (KOH) treatment and carbon dioxide (CO(2)) gasification. The effects of variable parameters, activation temperature, activation time and chemical impregnation ratios (KOH: char by weight) on the preparation of activated carbon and for removal of pesticides: bentazon, carbofuran and 2,4-dichlorophenoxyacetic acid (2,4-D) were investigated. Based on the central composite design (CCD), two factor interaction (2FI) and quadratic models were respectively employed to correlate the effect of variable parameters on the preparation of activated carbon used for removal of pesticides with carbon yield. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum conditions for preparing activated carbon from palm-date pits were found to be: activation temperature of 850 °C, activation time of 3 h and chemical impregnation ratio of 3.75, which resulted in an activated carbon yield of 19.5% and bentazon, carbofuran, and 2,4-D removal of 84, 83, and 93%, respectively.

  3. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions

    NASA Astrophysics Data System (ADS)

    Ulaganathan, Mani; Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Ling, Wong Chui; Lim, Tuti Mariana; Srinivasan, Madapusi P.; Yan, Qingyu; Madhavi, Srinivasan

    2015-01-01

    We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

  4. Mesoporous carbons with self-assembled surfaces of defined crystal orientation.

    PubMed

    Jian, Kengqing; Truong, Trung C; Hoffman, Wesley P; Hurt, Robert H

    2008-02-01

    The design of carbon sorbents traditionally focuses on the control of pore structure and the number and type of surface functional groups. The present paper explores the potential of also controlling the carbon crystal structure, or graphene layer orientation, in the immediate vicinity of the internal surfaces. We hypothesize that this crystal structure influences the properties of the carbon surfaces and affects the number and type of active sites for functionalization. Here a series of mesoporous carbons are fabricated by capillary infiltration of mesophase pitch (naphthalene homopolymer) into a series of controlled pore glass templates of different characteristic pore size followed by carbonization and template etching. The liquid crystalline mesogens are known to adopt perpendicular alignment (anchoring) at liquid/silica interfaces, which after carbonization lead to a high concentration of graphene edge sites at the inner surfaces. These surfaces are shown to have elevated chemical reactivity, and the pore structures are shown to be consistent with predictions of a quantitative model based on the negative replica concept. Overall, the use of mesophase pitch for templated mesoporous carbons allows systematic and simultaneous control of both pore structure and interfacial crystal structure through the well-defined rules of liquid crystal surface anchoring.

  5. Mesoporous carbons with self-assembled surfaces of defined crystal orientation

    PubMed Central

    Jian, Kengqing; Truong, Trung C.; Hoffman, Wesley P.; Hurt, Robert H.

    2008-01-01

    The design of carbon sorbents traditionally focuses on the control of pore structure and the number and type of surface functional groups. The present paper explores the potential of also controlling the carbon crystal structure, or graphene layer orientation, in the immediate vicinity of the internal surfaces. We hypothesize that this crystal structure influences the properties of the carbon surfaces and affects the number and type of active sites for functionalization. Here a series of mesoporous carbons are fabricated by capillary infiltration of mesophase pitch (naphthalene homopolymer) into a series of controlled pore glass templates of different characteristic pore size followed by carbonization and template etching. The liquid crystalline mesogens are known to adopt perpendicular alignment (anchoring) at liquid/silica interfaces, which after carbonization lead to a high concentration of graphene edge sites at the inner surfaces. These surfaces are shown to have elevated chemical reactivity, and the pore structures are shown to be consistent with predictions of a quantitative model based on the negative replica concept. Overall, the use of mesophase pitch for templated mesoporous carbons allows systematic and simultaneous control of both pore structure and interfacial crystal structure through the well-defined rules of liquid crystal surface anchoring. PMID:19190761

  6. Mesoporous Nitrogen-Doped Carbon-LiSICON Glass Ceramics as High Performance Cathodes in Solid-State Lithium Oxygen Batteries

    DTIC Science & Technology

    2013-03-18

    SUBTITLE MESOPOROUS NITROGEN-DOPED CARBON-LiSICON GLASS CERAMICS AS HIGH PERFORMANCE CATHODES IN SOLID-STATE LITHIUM -OXYGEN BATTERIES (POSTPRINT) 5a...AFRL-RQ-WP-TP-2015-0054 MESOPOROUS NITROGEN-DOPED CARBON-LiSICON GLASS CERAMICS AS HIGH PERFORMANCE CATHODES IN SOLID-STATE LITHIUM -OXYGEN...superior electrochemical activity of composite 3 for the reduction of oxygen and the higher ionic conductivity of LAGP to transport lithium ions in the

  7. Application of mesoporous carbon to counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Guiqiang; Xing, Wei; Zhuo, Shuping

    The mesoporous carbons were prepared by the carbonation of the triblock copolymer F127/phloroglucinol-formaldehyde composite self-assembled in an acid medium and employed as the catalyst for triiodide reduction in dye-sensitized solar cells (DSCs). The characteristics of mesoporous carbon were analyzed by scanning electron microscopy, transmission electron microscopy, N 2 sorption measurement and X-ray diffraction. The mesoporous carbon with low crystallinity exhibited Brunauer-Emmett-Teller surface area of 400 m 2 g -1, pore diameter of 6.8 nm and pore volume of 0.63 cm 3 g -1. The photovoltaic performances of DSCs with mesoporous carbon counter electrode were improved by increasing the carbon loading on counter electrode due to the charge-transfer resistance of mesoporous carbon counter electrode decreasing with the increase of the carbon loading. However, further carbon loading increase has no obvious effect on the photovoltaic performance of DSCs with carbon electrode when carbon loading exceeds 300 μg cm -2. The overall conversion efficiency of 6.18% was obtained by DSCs composed of mesoporous carbon counter electrode with the carbon loading of 339 μg cm -2. This value is comparable to that of DSCs with conventional platinum counter electrode.

  8. Hollow mesoporous carbon as a near-infrared absorbing carrier compared with mesoporous carbon nanoparticles for chemo-photothermal therapy.

    PubMed

    Li, Xian; Yan, Yue; Lin, Yuanzhe; Jiao, Jian; Wang, Da; Di, Donghua; Zhang, Ying; Jiang, Tongying; Zhao, Qinfu; Wang, Siling

    2017-05-15

    In this study, hollow mesoporous carbon nanoparticles (HMCN) and mesoporous carbon nanoparticles (MCN) were used as near-infrared region (NIR) nanomaterials and drug nanocarriers were prepared using different methods. A comparison between HMCN and MCN was performed with regard to the NIR-induced photothermal effect and drug loading efficiency. The results of NIR-induced photothermal effect test demonstrated that HMCN-COOH had a better photothermal conversion efficacy than MCN-COOH. Given the prominent photothermal effect of HMCN-COOH in vitro, the chemotherapeutic drug DOX was chosen as a model drug to further evaluate the drug loading efficiencies and NIR-triggered drug release behaviors of the nanocarriers. The drug loading efficiency of DOX/HMCN-COOH was found to be up to 76.9%, which was higher than that of DOX/MCN-COOH. In addition, the use of an 808nm NIR laser markedly increased the release of DOX from both carbon carriers in pH 5.0 PBS and pH 7.4 PBS. Cellular photothermal tests involving A549 cells demonstrated that HMCN-COOH had a much higher photothermal efficacy than MCN-COOH. Cell viability experiments and flow cytometry were performed to evaluate the therapeutic effect of DOX/HMCN-COOH and the results obtained demonstrated that DOX/HMCN-COOH had a synergistic therapeutic effect in cancer treatment involving a combination of chemotherapy and photothermal therapy.

  9. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  10. Nitrogen-doped mesoporous carbons for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Liu, Qiming

    2016-08-01

    The mesoporous carbons have been synthesized by using α-D(+)-Glucose, D-Glucosamine hydrochloride or their mixture as carbon precursors and mesoporous silicas (SBA-15 or MCF) as hard templates. The as-prepared products show a large pore volume (0.59-0.97 cm3 g-1), high surface areas (352.72-1152.67 m2 g-1) and rational nitrogen content (ca. 2.5-3.9 wt.%). The results of electrochemical tests demonstrate that both heteroatom doping and suitable pore structure play a decisive role in the performance of supercapacitors. The representative sample of SBA-15 replica obtained using D-Glucosamine hydrochloride only exhibits high specific capacitance (212.8 F g-1 at 0.5 A g-1) and good cycle durability (86.1% of the initial capacitance after 2000 cycles) in 6 M KOH aqueous electrolyte, which is attributed to the contribution of double layer capacitance and pseudo-capacitance. The excellent electrochemical performance makes it a promising electrode material for supercapacitors.

  11. Mesoporous nitrogen-doped carbon microfibers derived from Mg-biquinoline-dicarboxy compound for efficient oxygen electroreduction

    NASA Astrophysics Data System (ADS)

    Kong, Aiguo; Fan, Xiaohong; Chen, Aoling; Zhang, Hengiang; Shan, Yongkui

    2017-02-01

    An in-situ MgO-templating synthesis route was introduced to obtain the mesoporous nitrogen-doped carbon microfibers by thermal conversion of new Mg-2,2‧-biquinoline 4,4-dicarboxy acid coordination compound (Mg-DCA) microfibers. The investigated crystal structure of Mg-DCA testified that the assembling of Mg2+ and DCA through Mg-O coordination bond and hydrogen bond contributed to the formation of one-dimensional (1D) crystalline Mg-DCA microfibers. The nitrogen-doped carbons derived from the pyrolysis of Mg-DCA showed the well-defined microfiber morphology with high mesopore-surface area. Such mesoporous microfibers exhibited the efficient catalytic activity for oxygen reduction reaction (ORR) in alkaline solutions with better stability and methanol-tolerance performance.

  12. Microporous-mesoporous carbons for energy storage synthesized by activation of carbonaceous material by zinc chloride, potassium hydroxide or mixture of them

    NASA Astrophysics Data System (ADS)

    Härmas, M.; Thomberg, T.; Kurig, H.; Romann, T.; Jänes, A.; Lust, E.

    2016-09-01

    Various electrochemical methods have been applied to establish the electrochemical characteristics of the electrical double layer capacitor (EDLC) consisting of the 1 M triethylmethylammonium tetrafluoroborate solution in acetonitrile and activated carbon based electrodes. Activated microporous carbon materials used for the preparation of electrodes have been synthesized from the hydrothermal carbonization product (HTC) prepared via hydrothermal carbonization process of D-(+)-glucose solution in H2O, followed by activation with ZnCl2, KOH or their mixture. Highest porosity and Brunauer-Emmett-Teller specific surface area (SBET = 2150 m2 g-1), micropore surface area (Smicro = 2140 m2 g-1) and total pore volume (Vtot = 1.01 cm3 g-1) have been achieved for HTC activated using KOH with a mass ratio of 1:4 at 700 °C. The correlations between SBET, Smicro, Vtot and electrochemical characteristics have been studied to investigate the reasons for strong dependence of electrochemical characteristics on the synthesis conditions of carbon materials studied. Wide region of ideal polarizability (ΔV ≤ 3.0 V), very short characteristic relaxation time (0.66 s), and high specific series capacitance (134 F g-1) have been calculated for the mentioned activated carbon material, demonstrating that this system can be used for completing the EDLC with high energy- and power densities.

  13. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4 activation: Adsorption capacity, kinetic and isotherm studies

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Li, Shunxing; Chen, Jianhua; Zhang, Xueliang; Chen, Yiping

    2014-02-01

    Activated carbons with high mesoporosity and abundant oxygen-containing functional groups were prepared from water hyacinth using H3PO4 activation (WHAC) to eliminate Pb(II) in water. Characterizations of the WHAC were performed using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The BET analysis showed that WHAC possesses a high mesoporosity (93.9%) with a BET surface area of 423.6 m2/g. The presence of oxygen-containing functional groups including hydroxyl, carbonyl, carboxyl and phosphate groups renders the WHAC a favorable adsorbent for Pb(II) with the maximum monolayer capacity (qm) 118.8 mg/g. The adsorption behavior follows pseudo-first order kinetic and Langmuir isotherm. The desorption study demonstrated that the WHAC could be readily regenerated using 0.1 M HCl (pH = 1.0). The desorbed WHAC could be reused at least six times without significant adsorption capacity reduction. The adsorption process was spontaneous and endothermic with ΔG (-0.27, -1.13, -3.02, -3.62, -5.54, and -9.31 kJ/mol) and ΔH (38.72 kJ/mol). Under the optimized conditions, a small amount of the adsorbent (1.0 g/L) could remove as much as 90.1% of Pb(II) (50 mg/L) in 20 min at pH 6.0 and temperature of 298 K. Therefore, the WHAC has a great potential to be an economical and efficient adsorbent in the treatment of lead-contaminated water.

  14. Facile fabrication of ordered mesoporous graphitic carbon nitride for RhB photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Luo, Lei; Zhang, Anfeng; Janik, Michael J.; Li, Keyan; Song, Chunshan; Guo, Xinwen

    2017-02-01

    Ordered mesoporous graphitic carbon nitrides were prepared by directly condensing the uniform mixtures of melamine and KIT-6. After removal of the KIT-6 sacrificial template, the carbon nitrides were characterized with TEM, N2 physical adsorption, XRD, FT-IR, XPS, UV-vis and PL spectrometries, and tested for their RhB photocatalytic degradation activity. Together, these characterizations confirmed the as-prepared tunable mesoporous materials with enhanced charge separation efficiency and superior photocatalytic performance. Compared with a conventional bulk g-C3N4, ordered mesoporous g-C3N4 exhibits a larger specific surface area of 279.3 m2/g and a pore size distribution about 4.0 nm and 13.0 nm. Meanwhile, the reduced bandgap energy of 2.77 eV and lower photogenerated electron-hole pair recombination frequency were evidenced by UV-Vis and PL spectra. The RhB photocatalytic degradation activity maximizes with a mass ratio of KIT-6/melamine of 80% (KCN80), and the kinetic constant reaches 0.0760 min-1 which is 16 times higher than that of the bulk sample. Reusability of KCN80 was demonstrated by a lack of evident deactivation after three consecutive reaction periods. The direct condensation of the KIT-6 and melamine mixture does not require pre-casting of the precursor into the pore system of the templates. Owing to its high product yield, improved SBET, reduced bandgap energy and limited charge recombination, the facile-prepared ordered mesoporous g-C3N4 is a practical candidate for further modification.

  15. Polydopamine-graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction

    NASA Astrophysics Data System (ADS)

    Qu, Konggang; Zheng, Yao; Dai, Sheng; Qiao, Shi Zhang

    2015-07-01

    Composite materials combining nitrogen-doped carbon (NC) with active species represent a paramount breakthrough as alternative catalysts to Pt for the oxygen reduction reaction (ORR) due to their competitive activity, low cost and excellent stability. In this paper, a simple strategy is presented to construct graphene oxide-polydopamine (GD) based carbon nanosheets. This approach does not need to modify graphene and use any catalyst for polymerization under ambient conditions, and the obtained carbon nanosheets possess adjustable thicknesses and uniform mesoporous structures without using any template. The thickness of GD hybrids and the carbonization temperature are found to play crucial roles in adjusting the microstructure of the resulting carbon nanosheets and, accordingly their ORR catalytic activity. The optimized carbon nanosheet generated by a GD hybrid of 5 nm thickness after 900 °C carbonization exhibits superior ORR activity with an onset potential of -0.07 V and a kinetic current density of 13.7 mA cm-2 at -0.6 V. The unique mesoporous structure, high surface areas, abundant defects and favorable nitrogen species are believed to significantly benefit the ORR catalytic process. Furthermore, it also shows remarkable durability and excellent methanol tolerance outperforming those of commercial Pt/C. In view of the physicochemical versatility and structural tunability of polydopamine (PDA) materials, our work would shed new light on the understanding and further development of PDA-based carbon materials for highly efficient electrocatalysts.Composite materials combining nitrogen-doped carbon (NC) with active species represent a paramount breakthrough as alternative catalysts to Pt for the oxygen reduction reaction (ORR) due to their competitive activity, low cost and excellent stability. In this paper, a simple strategy is presented to construct graphene oxide-polydopamine (GD) based carbon nanosheets. This approach does not need to modify graphene and use

  16. Novel pitch-based carbons with bimodal distribution of uniform mesopores.

    PubMed

    Gierszal, Kamil P; Jaroniec, Mietek

    2004-11-21

    A new method is proposed for the synthesis of pitch-based carbons with bimodal distribution of uniform mesopores formed by co-imprinting of spherical silica colloids and hexagonally ordered mesoporous particles of SBA-15 into mesophase pitch particles and subsequent silica dissolution.

  17. High-performance carbon nanotube-implanted mesoporous carbon spheres for supercapacitors with low series resistance

    SciTech Connect

    Yi, Bin; Chen, Xiaohua; Guo, Kaimin; Xu, Longshan; Chen, Chuansheng; Yan, Haimei; Chen, Jianghua

    2011-11-15

    Research highlights: {yields} CNTs-implanted porous carbon spheres are prepared by using gelatin as soft template. {yields} Homogeneously distributed CNTs form a well-develop network in carbon spheres. {yields} CNTs act as a reinforcing backbone assisting the formation of pore structure. {yields} CNTs improve electrical conductivity and specific capacitance of supercapacitor. -- Abstract: Carbon nanotube-implanted mesoporous carbon spheres were prepared by an easy polymerization-induced colloid aggregation method using gelatin as a soft template. Scanning electron microscopy, transmission electron microscopy and nitrogen adsorption-desorption measurements reveal that the materials are mesoporous carbon spheres, with a diameter of {approx}0.5-1.0 {mu}m, a specific surface area of 284 m{sup 2}/g and average pore size of 3.9 nm. Using the carbon nanotube-implanted mesoporous carbon spheres as electrode material for supercapacitors in an aqueous electrolyte solution, a low equivalent series resistance of 0.83 {Omega} cm{sup 2} and a maximum specific capacitance of 189 F/g with a measured power density of 8.7 kW/kg at energy density of 6.6 Wh/kg are obtained.

  18. Ion-selective electrodes with colloid-imprinted mesoporous carbon as solid contact.

    PubMed

    Hu, Jinbo; Zou, Xu U; Stein, Andreas; Bühlmann, Philippe

    2014-07-15

    A new type of solid-contact ion-selective electrode (SC-ISE) has been developed that uses colloid-imprinted mesoporous (CIM) carbon with 24 nm diameter, interconnected mesopores as the intermediate layer between a gold electrode and an ionophore-doped ISE membrane. For a demonstration, valinomycin was used as K(+) ionophore, and a good Nernstian response with a slope of 59.5 mV/decade in the range from 10(-5.2) to 10(-1.0) M was observed. The high purity, low content of redox-active surface functional groups and intrinsic hydrophobic characteristics of CIM carbon prepared from mesophase pitch lead to outstanding performance of these sensors, with excellent resistance to the formation of a water layer and no interference caused by light, O2, and CO2. When a redox couple is introduced as an internal reference species, calibration-free SC-ISEs can be made with a standard deviation of E° as low as 0.7 mV. Moreover, the interconnected mesopore structure of ISE membrane-infused CIM carbon facilitates both ion and electron conduction and provides a large interfacial area with good ion-to-electron transduction. Because of the large double layer capacitance of CIM carbon, CIM carbon-based SC-ISEs exhibit excellent potential stability, as shown by chronopotentiometry and continuous potentiometric measurements. The capacitance of these electrodes as determined by chronopotentiometry is 1.0 mF, and the emf drift over 70 h is as low as 1.3 μV/h, making these electrodes the most stable SC-ISEs reported so far.

  19. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  20. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    PubMed Central

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-01-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied. PMID:26856604

  1. Hydrolysis of Cellulose by a Mesoporous Carbon-Fe2(SO4)3/γ-Fe2O3 Nanoparticle-Based Solid Acid Catalyst

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Daizo; Watanabe, Koki; Fukumi, Shinya

    2016-02-01

    Carbon-based solid acid catalysts have shown significant potential in a wide range of applications, and they have been successfully synthesized using simple processes. Magnetically separable mesoporous carbon composites also have enormous potential, especially in separation and adsorption technology. However, existing techniques have been unable to produce a magnetically separable mesoporous solid acid catalyst because no suitable precursors have been identified. Herein we describe a magnetically separable, mesoporous solid acid catalyst synthesized from a newly developed mesoporous carbon-γ-Fe2O3 nanoparticle composite. This material exhibits an equivalent acid density and catalytic activity in the hydrolysis of microcrystalline cellulose, to that of the cellulose-derived conventional catalyst. Since it is magnetically separable, this material can be readily recovered and reused, potentially reducing the environmental impact of industrial processes to which it is applied.

  2. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    PubMed

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  3. Functionalization of mesoporous carbon with superbasic MgO nanoparticles for the efficient synthesis of sulfinamides.

    PubMed

    Chakravarti, Rajashree; Mano, Ajayan; Iwai, Hideo; Aldeyab, Salem S; Kumar, R Pradeep; Kantam, M Lakshmi; Vinu, Ajayan

    2011-06-06

    Highly basic MgO nanoparticles with different sizes have been successfully immobilized over mesoporous carbon with different pore diameters by a simple wet-impregnation method. The prepared catalysts have been characterized by various sophisticated techniques, such as XRD, nitrogen adsorption, electron energy loss spectroscopy, high-resolution TEM, X-ray photoelectron spectroscopy, and the temperature-programmed desorption of CO(2). XRD results reveal that the mesostructure of the support is retained even after the huge loading of MgO nanoparticles inside the mesochannels of the support. It is also demonstrated that the particle size and dispersion of the MgO nanoparticles on the support can be finely controlled by the simple adjustment of the textural parameters of the supports. Among the support materials studied, mesoporous carbon with the largest pore diameter and large pore volume offered highly crystalline small-size cubic-phase MgO nanoparticles with a high dispersion. The basicity of the MgO-supported mesoporous carbons can also be controlled by simply changing the loading of the MgO and the pore diameter of the support. These materials have been employed as heterogeneous catalysts for the first time in the selective synthesis of sulfinamides. Among the catalysts investigated, the support with the large pore diameter and high loading of MgO showed the highest activity with an excellent yield of sulfinamides. The catalyst also showed much higher activity than the pristine MgO nanoparticles. The effects of the reaction parameters, including the solvents and reaction temperature, and textural parameters of the supports in the activity of the catalyst have also been demonstrated. Most importantly, the catalyst was found to be highly stable, showing excellent activity even after the third cycle of reaction.

  4. Enhancing adsorption efficiency of dichloroacetic acid onto mesoporous carbons: Procedure optimization, mechanism and characterization.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Ji, Dongliang; Cao, Yang; Ling, Xiaojia; Chen, Wei

    2015-08-15

    Highly ordered mesoporous carbon may be directly synthesized via supramolecular self-assembly with in situ evaporation-induced crystallization process by controlling thermal reaction temperatures and carbon mass loading. In the present study, the effects of thermal reaction temperatures on the structural characterization and adsorption capacity of mesoporous carbon have been investigated and analyzed with orthogonal test experiments. The results show the carbonization temperature (R=32.1) plays a more important role than the self-assembly temperature (R=8.5) and thermal polymerization temperature (R=10.1) in manipulating the pore texture structures. The optimization grouping temperature was 40-110-500 °C. The optimum mesoporous carbon sample had the highest BET specific surface area (474 m(2)/g), the largest pore volume (0.46 cm(3)/g), and with reasonable uniform pore size distribution. The adsorption evaluation also shows the adsorption capacity is strongly correlated with the pore structure of mesoporous carbon, the optimized mesoporous carbon sample displayed the largest adsorption capacity (350 mg/g) at an initial concentration of 20.0 mg/L of dichloroacetic acid. The study results indicate optimization of thermal reaction parameters is an effective approach for synthesis of ordered mesoporous carbons.

  5. Synthesis of Ordered Mesoporous Phenanthrenequinone-Carbon via π-π Interaction-Dependent Vapor Pressure for Rechargeable Batteries

    PubMed Central

    Kwon, Mi-Sook; Choi, Aram; Park, Yuwon; Cheon, Jae Yeong; Kang, Hyojin; Jo, Yong Nam; Kim, Young-Jun; Hong, Sung You; Joo, Sang Hoon; Yang, Changduk; Lee, Kyu Tae

    2014-01-01

    The π-π interaction-dependent vapour pressure of phenanthrenequinone can be used to synthesize a phenanthrenequinone-confined ordered mesoporous carbon. Intimate contact between the insulating phenanthrenequinone and the conductive carbon framework improves the electrical conductivity. This enables a more complete redox reaction take place. The confinement of the phenanthrenequinone in the mesoporous carbon mitigates the diffusion of the dissolved phenanthrenequinone out of the mesoporous carbon, and improves cycling performance. PMID:25490893

  6. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    SciTech Connect

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; Hensley, Dale K.

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media with pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.

  7. Controlled release of alendronate from nitrogen-doped mesoporous carbon

    DOE PAGES

    Saha, Dipendu; Spurri, Amanda; Chen, Jihua; ...

    2016-04-13

    With this study, we have synthesized a nitrogen doped mesoporous carbon with the BET surface area of 1066 m2/g, total pore volume 0.6 cm3/g and nitrogen content of 0.5%. Total alendronate adsorption in this carbon was ~5%. The release experiments were designed in four different media with sequential pH values of 1.2, 4.5, 6.8 and 7.4 for 3, 1, 3 and 5 h, respectively and at 37 °C to imitate the physiological conditions of stomach, duodenum, small intestine and colon, respectively. Release of the drug demonstrated a controlled fashion; only 20% of the drug was released in the media withmore » pH = 1.2, whereas 64% of the drug was released in pH = 7.4. This is in contrary to pure alendronate that was completely dissolved within 30 min in the first release media (pH = 1.2) only. The relatively larger uptake of alendronate in this carbon and its sustained fashion of release can be attributed to the hydrogen bonding between the drug and the nitrogen functionalities on carbon surface. Based on this result, it can be inferred that this formulation may lower the side effects of oral delivery of alendronate.« less

  8. N-doped mesoporous carbons supported palladium catalysts prepared from chitosan/silica/palladium gel beads.

    PubMed

    Zeng, Minfeng; Wang, Yudong; Liu, Qi; Yuan, Xia; Feng, Ruokun; Yang, Zhen; Qi, Chenze

    2016-08-01

    In this study, a heterogeneous catalyst including palladium nanoparticles supported on nitrogen-doped mesoporous carbon (Pd@N-C) is synthesized from palladium salts as palladium precursor, colloidal silica as template, and chitosan as carbon source. N2 sorption isotherm results show that the prepared Pd@N-C had a high BET surface area (640m(2)g(-1)) with large porosity. The prepared Pd@N-C is high nitrogen-rich as characterized with element analysis. X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and Raman spectroscopy characterization of the catalyst shows that the palladium species with different chemical states are well dispersed on the nitrogen-containing mesoporous carbon. The Pd@N-C is high active and shows excellent stability as applied in Heck coupling reactions. This work supplies a successful method to prepare Pd heterogeneous catalysts with high performance from bulk biopolymer/Pd to high porous nitrogen-doped carbon supported palladium catalytic materials.

  9. Hollow mesoporous carbon nitride nanosphere/three-dimensional graphene composite as high efficient electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Qin, Yong; Li, Juan; Yuan, Jie; Kong, Yong; Tao, Yongxin; Lin, Furong; Li, Shan

    2014-12-01

    Hollow mesoporous carbon nitride nanosphere (HMCN) is firstly prepared via an etching route using hollow mesoporous silica as a sacrificial template. The as-obtained HMCN is a uniform spherical particle with a diameter of ∼300 nm,and possesses a high specific surface area up to 439 m2 g-1. Hollow mesoporous carbon nitride nanosphere/three-dimensional (3D) graphene composite (HMCN-G) is subsequently fabricated via a hydrothermal treatment of HMCN with graphene oxide. As an electrocatalyst for oxygen reduction reaction (ORR), the HMCN-G shows significantly enhanced electrocatalytic activity compared to bulk graphitic carbon nitride (g-C3N4) and HMCN in terms of the electron-transfer number, current density and onset potential. Increased density of catalytically active sites and improved accessibility to electrolyte enabled by the hollow and mesoporous architecture of HMCN, and high conductivity induced from graphene are considered to contribute to the remarkable electrocatalytic performance of the HMCN-G. Furthermore, HMCN-G exhibits superior methanol tolerance to Pt/C catalyst, suggesting that it is a promising metal-free electrocatalyst for polymer electrolyte membrane fuel cell (PEMFC).

  10. Supported mesoporous carbon ultrafiltration membrane and process for making the same

    SciTech Connect

    Strano, Michael; Foley, Henry C.; Agarwal, Hans

    2004-04-13

    A novel supported mesoporous carbon ultrafiltration membrane and process for producing the same. The membranes comprise a mesoporous carbon layer that exists both within and external to the porous support. A liquid polymer precursor composition comprising both carbonizing and noncarbonizing templating polymers is deposited on the porous metal support. The coated support is then heated in an inert-gas atmosphere to pyrolyze the polymeric precursor and form a mesoporous carbon layer on and within the support. The pore-size of the membranes is dependent on the molecular weight of the noncarbonizing templating polymer precursor. The mesoporous carbon layer is stable and can withstand high temperatures and exposure to organic chemicals. Additionally, the porous metal support provides excellent strength properties. The composite structure of the membrane provides novel structural properties and allows for increased operating pressures allowing for greater membrane flow rates. The invention also relates to the use of the novel ultrafiltration membrane to separate macromolecules from solution. An example is shown separating bovine serum albumin from water. The membrane functions by separating and by selective adsorption. Because of the membrane's porous metal support, it is well suited to industrial applications. The unique properties of the supported mesoporous carbon membrane also allow the membrane to be used in transient pressure or temperature swing separations processes. Such processes were not previously possible with existing mesoporous membranes. The present invention, however, possesses the requisite physical properties to perform such novel ultrafiltration processes.

  11. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix.

    PubMed

    Yu, Jingjing; Yu, Donglei; Zhao, Tian; Zeng, Baizhao

    2008-02-15

    Pt nanoparticles were deposited on mesoporous carbon material CMK-3. Glucose oxidase (GOx) was immobilized in the resulting Pt nanoparticles/mesoporous carbon (Pt/CMK-3) matrix, and then the mixture was cast on a glassy carbon electrode (GCE) using gelatin as a binder. The glucose biosensor exhibited excellent current response to glucose after cross-linking with glutaraldehyde. At 0.6V (vs. SCE) the response current was linear to glucose concentration in the range of 0.04-12.2mM. The response time (time for achieving 95% of the maximum current) was 15s and the detection limit (S/N=3) was 1 microM. The Michaelis-Menten constant (K(m)(app)) and the maximum current density (i(max)) were 10.8 mM and 908 microAcm(-2), respectively. The activation energy of the enzymatic reaction was estimated to be 22.54 kJ mol(-1). The biosensor showed good stability. It achieved the maximum response current at about 52 degrees C and retained 95.1% of its initial response current after being stored for 30 days. In addition, some fabrication and operation parameters for the biosensor were optimized in this work. The biosensor was used to monitor the glucose levels of serum samples after being covered with an extra Nafion film to improve its anti-interferent ability and satisfied results were obtained.

  12. Transition metal ion capture using functional mesoporous carbon made with 1,10-phenanthroline☆

    PubMed Central

    Chouyyok, Wilaiwan; Yantasee, Wassana; Shin, Yongsoon; Grudzien, Rafal M.; Fryxell, Glen E.

    2012-01-01

    Functional mesoporous carbon has been built using 1,10-phenanthroline as the fundamental building block, resulting in a nanoporous, high surface area sorbent capable of selectively binding transition metal ions. This material had a specific surface area of 870 m2/g, an average pore size of about 30 Å, and contained as much as 8.2 wt% N. Under acidic conditions, where the 1,10-phenanthroline ligand is protonated, this material was found to be an effective anion exchange material for transition metal anions like PdCl42- and H2VO41-. 1,10-Phenanthroline functionalized mesoporous carbon (“Phen-FMC”) was found to have a high affinity for Cu(II), even down to a pH of 1. At pHs above 5, Phen-FMC was found to bind a variety of transition metal cations (e.g. Co(II), Ni(II), Zn(II), etc.) from filtered ground water, river water and seawater. Phen-FMC displayed rapid sorption kinetics with Co(II) in filtered river water, reaching equilibrium in less than an hour, and easily lowering the [Co(II)] to sub-ppb levels. Phen-FMC was found to be more effective for transition metal ion capture than ion-exchange resin or activated carbon. PMID:23762013

  13. Development of mesophase pitch derived mesoporous carbons through a commercially nanosized template.

    PubMed

    Qiao, W M; Song, Y; Hong, S H; Lim, S Y; Yoon, S-H; Korai, Y; Mochida, I

    2006-04-11

    Mesoporous carbons (MCs) with a high surface area (up to 900 m2/g), large pore volume (up to 2.1 cm3/g), high mesopore ratio (94%), and high yield (70%) were successfully prepared from an AR mesophase pitch, using a commercially nanosized silica template. The removal of the template provided some larger mesopores of 25-50 nm (pore I) with a surface area of ca. 300 m2/g, while the successive carbonization opened the closed pores within the carbon body to give smaller mesopores of 2-10 nm (pore II) with a similar surface area. During the carbonization of pitch precursor, the evaporation of volatile components swells the carbon to introduce the second mesopores among the domains and even microdomain units because of their rearrangements and overlappings in the process. The addition of iron salt with the silica template resulted in a remarkable increase of the surface area (ca. 300 m2/g) by introducing mesopores of 3-5 nm. The resultant MCs maintained some graphitizable natures derived from the anisotropic precursor. Their graphitization at 2400 degrees C provided the graphitic structure with large surface areas (270-460 m2/g) and mesoporosity.

  14. Importance of Micropore-Mesopore Interfaces in Carbon Dioxide Capture by Carbon-Based Materials.

    PubMed

    Durá, Gema; Budarin, Vitaliy L; Castro-Osma, José A; Shuttleworth, Peter S; Quek, Sophie C Z; Clark, James H; North, Michael

    2016-08-01

    Mesoporous carbonaceous materials (Starbons®) derived from low-value/waste bio-resources separate CO2 from CO2 /N2 mixtures. Compared to Norit activated charcoal (AC), Starbons® have much lower microporosities (8-32 % versus 73 %) yet adsorb up to 65 % more CO2 . The presence of interconnected micropores and mesopores is responsible for the enhanced CO2 adsorption. The Starbons® also showed three-four times higher selectivity for CO2 adsorption rather than N2 adsorption compared to AC.

  15. Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal

    NASA Astrophysics Data System (ADS)

    He, Di; Li, Yongli; Wang, inshu; Wu, Junshu; Yang, Yilong; An, Qier

    2017-01-01

    Carbon wrapped and doped mesoporous anatase TiO2 nanocrystals were prepared by a hydrothermal approach in acetic acid aqueous containing chitosan. A designed post-thermal treatment was employed to enhance the incorporation between carbon and TiO2. After hydrothermal process, mesoporous anatase TiO2 formed with wrapped by a few layers of carbon shell. Here chitosan was used as not only the template for the formation of mesopores, but also the carbon source toward the carbon layers coating. Furthermore, chitosan provided doping element into TiO2 lattice and induced to form Tisbnd C bond which caused Ti(III) with oxygen vacancies. The Ti(III)-oxygen vacancy are partly responsible for visible-light response and high photocatalytic activity, which can accelerate electron transfer thus inhibit photogenerated charge recombination. The photocatalytic activity was evaluated using photo-oxidation of gaseous NO under visible light irradiation as the probe reaction. In the optimum result, 71% of NO with starting concentration at ppb level was photo-degraded. Our results also showed that the photogenerated electrons played a key role in photodegradation of NO, as a result, the environmental humidity level had a negligible effect on the photocatalysis.

  16. Influence of spatial configurations on electromagnetic interference shielding of ordered mesoporous carbon/ordered mesoporous silica/silica composites

    PubMed Central

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2013-01-01

    Ordered mesoporous carbons (OMCs), obtained by nanocasting using ordered mesoporous silicas (OMSs) as hard templates, exhibit unique arrangements of ordered regular nanopore/nanowire mesostructures. Here, we used nanocasting combined with hot-pressing to prepare 10 wt% OMC/OMS/SiO2 ternary composites possessing various carbon mesostructure configurations of different dimensionalities (1D isolated CS41 carbon nanowires, 2D hexagonal CMK-3 carbon, and 3D cubic CMK-1 carbon). The electric/dielectric properties and electromagnetic interference (EMI) shielding efficiency (SE) of the composites were influenced by spatial configurations of carbon networks. The complex permittivity and the EMI SE of the composites in the X-band frequency range decreased for the carbon mesostructures in the following order: CMK-3-filled > CMK-1-filled > CS41-filled. Our study provides technical directions for designing and preparing high-performance EMI shielding materials. Our OMC-based silica composites can be used for EMI shielding, especially in high-temperature or corrosive environments, owing to the high stability of the OMC/OMS fillers and the SiO2 matrix. Related shielding mechanisms are also discussed. PMID:24248277

  17. Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes.

    PubMed

    Chen, Kuiyong; Huang, Xiaobin; Wan, Chaoying; Liu, Hong

    2015-05-07

    Oxygen reduction catalysts based on heteroatom-doped mesoporous carbon nanotubes loaded with Co2P nanoparticles were skilfully fabricated. The electronic interaction between the embedded Co2P nanoparticles and the heteroatom-doped carbon structures could strongly promote the ORR catalytic performance of the heteroatom-doped carbon nanotubes.

  18. Facile synthesis and application of a carbon foam with large mesopores.

    PubMed

    Fu, Liling; Qi, Genggeng; Sahore, Ritu; Sougrat, Rachid; DiSalvo, Francis J; Giannelis, Emmanuel P

    2013-11-28

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.

  19. Size Effect of Ordered Mesoporous Carbon Nanospheres for Anodes in Li-Ion Battery

    PubMed Central

    Chang, Pei-Yi; Bindumadhavan, Kartick; Doong, Ruey-An

    2015-01-01

    The present work demonstrates the application of various sizes of ordered mesoporous carbon nanospheres (OMCS) with diameters of 46–130 nm as an active anode material for Li-ion batteries (LIB). The physical and chemical properties of OMCS have been evaluated by performing scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption analysis; small-angle scattering system (SAXS) and X-ray diffraction (XRD). The electrochemical analysis of using various sizes of OMCS as anode materials showed high capacity and rate capability with the specific capacity up to 560 mA·h·g−1 at 0.1 C after 85 cycles. In terms of performance at high current rate compared to other amorphous carbonaceous materials; a stable and extremely high specific capacity of 240 mA·h·g−1 at 5 C after 15 cycles was achieved. Such excellent performance is mainly attributed to the suitable particle size distribution of OMCS and intimate contact between OMCS and conductive additives; which can be supported from the TEM images. Results obtained from this study clearly indicate the excellence of size distribution of highly integrated mesoporous structure of carbon nanospheres for LIB application.

  20. Bromate removal from aqueous solutions by ordered mesoporous carbon.

    PubMed

    Xu, Chunhua; Wang, Xiaohong; Shi, Xiaolei; Lin, Sheng; Zhu, Liujia; Che, Yaming

    2014-01-01

    We investigated the feasibility of using ordered mesoporous carbon (OMC) for bromate removal from water. Batch experiments were performed to study the influence of various experimental parameters such as the effect of contact time, adsorbent dosage, initial bromate concentration, temperature, pH and effect of competing anions on bromate removal by OMC. The adsorption kinetics indicates that the uptake rate ofbromate was rapid at the beginning: 85% adsorption was completed in 1 h and equilibrium was achieved within 3 h. The sorption process was well described with pseudo-second-order kinetics. The maximum adsorption capacity of OMC for bromate removal was 17.6 mg g(-1) at 298 K. The adsorption data fit the Freundlich model well. The amount of bromate removed was found to be proportional to the influent bromate concentration. The effects of competing anions and solution pH (3-11) were negligible. These limited data suggest that OMC can be effectively utilized for bromate removal from drinking water.

  1. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    PubMed

    Zhou, Zhengping; Liu, Guoliang

    2017-02-02

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions.

  2. Utilization of environmentally benign dicyandiamide as a precursor for the synthesis of ordered mesoporous carbon nitride and its application in base-catalyzed reactions.

    PubMed

    Xu, Jie; Chen, Ting; Jiang, Quan; Li, Yong-Xin

    2014-11-01

    Assisted by a new dissolution procedure, dicyandiamide (DCDA), an environmentally benign and cheap precursor, has been employed for the synthesis of mesoporous carbon nitride (CN) materials through a nanocasting approach. The synthesized mesoporous materials possessed high specific surface areas (269-715 m(2) g(-1)) with narrow pore-size distributions (about 5 nm) and faithfully replicated the mesostructures of the SBA-15 and FDU-12 templates. Several characterization techniques, including XRD, SAXS, TEM, Raman and FTIR spectroscopy, XPS, and CO2-TPD, were used to analyze the physicochemical properties of these materials and the results showed that the mesoporous CND materials had graphitic-like structures and consisted of CN heterocycles, as well as amino groups. In a series of Knoevenagel condensation reactions, as exemplified by the reaction of various aldehydes and nitriles, these mesoporous CND materials demonstrated high and stable catalytic activities, owing to an abundance of basic sites.

  3. Surfactant-assisted Nanocasting Route for Synthesis of Highly Ordered Mesoporous Graphitic Carbon and Its Application in CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng

    2016-05-01

    Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant.

  4. Surfactant-assisted Nanocasting Route for Synthesis of Highly Ordered Mesoporous Graphitic Carbon and Its Application in CO2 Adsorption

    PubMed Central

    Wang, Yangang; Bai, Xia; Wang, Fei; Qin, Hengfei; Yin, Chaochuang; Kang, Shifei; Li, Xi; Zuo, Yuanhui; Cui, Lifeng

    2016-01-01

    Highly ordered mesoporous graphitic carbon was synthesized from a simple surfactant-assisted nanocasting route, in which ordered mesoporous silica SBA-15 maintaining its triblock copolymer surfactant was used as a hard template and natural soybean oil (SBO) as a carbon precursor. The hydrophobic domain of the surfactant assisted SBO in infiltration into the template’s mesoporous channels. After the silica template was carbonized and removed, a higher yield of highly-ordered graphitic mesoporous carbon with rod-like morphology was obtained. Because of the improved structural ordering, the mesoporous carbon after amine modification could adsorb more CO2 compared with the amine-functionalized carbon prepared without the assistance of surfactant. PMID:27220563

  5. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery

    PubMed Central

    2015-01-01

    We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip. PMID:25844893

  6. Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery

    NASA Astrophysics Data System (ADS)

    Song, Myeong Jun; Shin, Moo Whan

    2014-11-01

    In this study, we successfully design and synthesize the mesoporous carbon coated carbon nanofibers (CNF@mesoCs) for the Li-air battery. The composites are fabricated via electrospinning technique and nanocasting strategy. After mesoporous carbon coating process, the composites have retained their original one-dimensional structure as pristine carbon nanofibers. Every nanofiber entangles with each other to form a three-dimensional cross-linked web structure. Because of the mesoporous carbon coating on carbon nanofibers, the surface area increases from 708 m2 g-1 to 2194 m2 g-1. We confirm that the mesoporous carbon coated on carbon nanofibers is well-graphitized by analysis of Raman spectra. The graphitized surface of CNF@mesoCs (4.638 S cm-1) is believed to result in their higher electrical conductivity than that of pristine carbon nanofibers (3.0759 S cm-1). Without employment of any binders and metal foams, the cathode of CNF@mesoCs exhibits high discharge capacity of 4000 mA h g-1, which is much higher than that from pristine carbon nanofibers (2750 mA h g-1). This work demonstrates that the fabricated CNF@mesoCs structures have a great potential to be employed as light-weight and efficient electrode for energy storage and conversion devices.

  7. Self-Assembly Synthesis and Functionalization of Mesoporous Carbon Materials for Energy-Related Applications

    SciTech Connect

    Dai, Sheng

    2009-01-01

    Self-Assembly Synthesis and Functionalization of Mesoporous Carbon Materials for Energy-Related Applications Sheng Dai Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6201 Porous carbon materials are ubiquitous in separation, catalysis, and energy storage/conversion. Well-defined mesoporous carbon materials are essential for a number of the aforementioned applications. Ordered porous carbon materials have previously been synthesized using colloidal crystals and presynthesized mesoporous silicas as hard templates. The mesostructures of these carbon materials are connected via ultrathin carbon filaments and can readily collapse under high-temperature conditions. Furthermore, these hard-template methodologies are extremely difficult to adapt to the fabrication of large-scale ordered nanoporous films or monoliths with controlled pore orientations. More recently, my research group at the Oak Ridge National Laboratory and several others around the world have developed alternative methods for synthesis of highly ordered mesoporous carbons via self-assembly. Unlike the mesoporous carbons synthesized via hard-template methods, these mesoporous carbons are highly stable and can be graphitized at high temperature (>2800ᵒC) without significant loss of mesopores. The surface properties of these materials can be further tailored via surface functionalization. This seminar will provide an overview and perspective of the mesoporous carbon materials derived from soft-template synthesis and surface functionalization and their fascinating applications in catalysis, separation, and energy storage devices. Dr. Sheng Dai got his B.S. and M.S. degrees from Zhejiang University in 1984 and 1986, respectively. He subsequently obtained a PhD degree from the University of Tennessee, Knoxville in 1990. He is currently a Senior Staff Scientist and Group Leader of Nanomaterials Group and Center for Nanophase Materials Science of Oak Ridge National Laboratory and

  8. Hyaluronic acid modified mesoporous carbon nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells

    NASA Astrophysics Data System (ADS)

    Wan, Long; Jiao, Jian; Cui, Yu; Guo, Jingwen; Han, Ning; Di, Donghua; Chang, Di; Wang, Pu; Jiang, Tongying; Wang, Siling

    2016-04-01

    In this paper, hyaluronic acid (HA) functionalized uniform mesoporous carbon spheres (UMCS) were synthesized for targeted enzyme responsive drug delivery using a facile electrostatic attraction strategy. This HA modification ensured stable drug encapsulation in mesoporous carbon nanoparticles in an extracellular environment while increasing colloidal stability, biocompatibility, cell-targeting ability, and controlled cargo release. The cellular uptake experiments of fluorescently labeled mesoporous carbon nanoparticles, with or without HA functionalization, demonstrated that HA-UMCS are able to specifically target cancer cells overexpressing CD44 receptors. Moreover, the cargo loaded doxorubicin (DOX) and verapamil (VER) exhibited a dual pH and hyaluronidase-1 responsive release in the tumor microenvironment. In addition, VER/DOX/HA-UMCS exhibited a superior therapeutic effect on an in vivo HCT-116 tumor in BALB/c nude mice. In summary, it is expected that HA-UMCS will offer a new method for targeted co-delivery of drugs to tumors overexpressing CD44 receptors.

  9. Hierarchical mesoporous/microporous carbon with graphitized frameworks for high-performance lithium-ion batteries

    SciTech Connect

    Lv, Yingying; Fang, Yin; Qian, Xufang; Tu, Bo; Wu, Zhangxiong; Asiri, Abdullah M.; Zhao, Dongyuan

    2014-11-01

    A hierarchical meso-/micro-porous graphitized carbon with uniform mesopores and ordered micropores, graphitized frameworks, and extra-high surface area of ∼2200 m{sup 2}/g, was successfully synthesized through a simple one-step chemical vapor deposition process. The commercial mesoporous zeolite Y was utilized as a meso-/ micro-porous template, and the small-molecule methane was employed as a carbon precursor. The as-prepared hierarchical meso-/micro-porous carbons have homogeneously distributed mesopores as a host for electrolyte, which facilitate Li{sup +} ions transport to the large-area micropores, resulting a high reversible lithium ion storage of 1000 mA h/g and a high columbic efficiency of 65% at the first cycle.

  10. Soft-template-carbonization route to highly textured mesoporous carbon-TiO₂ inverse opals for efficient photocatalytic and photoelectrochemical applications.

    PubMed

    Quan, Li Na; Jang, Yoon Hee; Stoerzinger, Kelsey A; May, Kevin J; Jang, Yu Jin; Kochuveedu, Saji Thomas; Shao-Horn, Yang; Kim, Dong Ha

    2014-05-21

    Hierarchically organized mesoporous carbon-TiO2 inverse opal nanostructures were synthesized by complementary colloid and block copolymer (BCP) self-assembly, where the triblock copolymer P123 acts simultaneously as the template and the carbon source. Highly ordered mesoporous inverse opal nanostructures with a nano-textured surface morphology and multiple-length scale nanopores provide increased light-activated surface area and scattering effects, leading to enhanced photoabsorption efficiency and the transport of matter. UV-vis absorption, X-ray photoelectron spectroscopy and Mott-Schottky measurement studies show that incorporation of carbon moieties into TiO2via direct conversion of BCPs creates a new energy level above the valence band of TiO2, resulting in an effective decrease in the band gap. A significantly enhanced visible light photocatalytic activity was demonstrated for the mesoporous carbon-TiO2 inverse opals in terms of the degradation of p-nitrophenol (~79%) and photoelectrochemical water splitting (~0.087%).

  11. Novel mesoporous carbon ceramics composites as electrodes for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Gallo, Jean Marcel R.; Gatti, Giorgio; Graizzaro, Alessandro; Marchese, Leonardo; Pastore, Heloise O.

    2011-10-01

    In this work, a new family of materials for electrodes of direct methanol fuel cell (DMFC) is presented. Mesoporous carbon ceramics (MCCs) are obtained by the addition of commercial graphite into the synthesis gel of SBA-15 mesoporous silica with SiO2/C weight ratios of 1/1 and 1/3. X-ray diffraction confirms both the formation of organized silica and the presence of graphite, and nitrogen physisorption measurements show that the presence of a graphitic phase does not interfere in the silica pore diameter although it diminishes the surface area. The MCCs modified with Pt or PtRu are tested as DMFC electrodes and compared with the commercial support Vulcan XC-72R. When used as cathode, the system using MCC-SBA-15 with SiO2/C weight ratios of 1/1 presents a negligible performance, while the MCC-SBA-15 with SiO2/C weight ratios of 1/3 is 2.9 times less active than the commercial support. On the other side, when used as anode, the MCC-SBA-15 with SiO2/C weight ratios of 1/3 displays performances comparable to Vulcan XC-72R.

  12. Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture.

    PubMed

    Nguyen, Tien Hoa; Kim, Sungjune; Yoon, Minyoung; Bae, Tae-Hyun

    2016-03-08

    To prepare materials with high CO2 adsorption, a series of hierarchical LTA zeolites possessing various mesopore spaces that are decorated with alkylamines was designed and synthesized. The highest CO2 uptake capacity was achieved when (3-aminopropyl)trimethoxysilane (APTMS) was grafted onto the hierarchical LTA zeolite having the largest mesopores. Owing to the contributions of both alkylamine groups grafted onto the mesopore surfaces and active sites in the LTA zeolites, the amount of CO2 that can be taken up on these materials is much higher than for conventional aminosilicas such SBA-15 and MCM-41. Furthermore, the adsorbent shows good CO2 uptake capacity and recyclability in dynamic flow conditions.

  13. Selenium sulfide@mesoporous carbon aerogel composite for rechargeable lithium batteries with good electrochemical performance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhian; Jiang, Shaofeng; Lai, Yanqing; Li, Junming; Song, Junxiao; Li, Jie

    2015-06-01

    Selenium sulfide (SeS2) encapsulated into 3D interconnected mesoporous carbon aerogels (MCA) as a selenium sulfide/carbon composite material was prepared for lithium batteries. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations show the mesoporous structures of the carbon aerogels and the homogeneous distribution of selenium sulfide in the composite. The electrochemical performances of the selenium sulfide@mesoporous carbon aerogel (SeS2@MCA) composite cathode was evaluated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. It is found that the SeS2@MCA cathode shows a better electrochemical performance than the pristine SeS2 cathode. The SeS2@MCA composite with selenium sulfide content of 49.3 wt.% displays an initial discharge capacity of 1150 mAh g-1 at 50 mA g-1 and a reversible discharge capacity of 601 mAh g-1 after 10 cycles at 500 mA g-1. The better electrochemical performance benefit from the high electron conductivity and 3D interconnected porous structures of the carbon aerogels, which contribute to dispersing SeS2 and trapping polysulfide and polyselenide intermediates within the skeleton structure of the mesoporous carbon aerogels.

  14. PdCl2-loading mesoporous copper oxide as a novel and environmentally friendly catalyst for diethyl carbonate synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Pingbo; Zhou, Yan; Fan, Mingming; Jiang, Pingping

    2015-03-01

    PdCl2-loading mesoporous copper oxide (PdCl2/mCuO) catalysts were successfully synthesized via a hard template with copper carbonate basic (Cu2(OH)2CO3), cupric nitrate (Cu(NO3)2·3H2O) and copper citrate (Cu2C6H4O7·2.5H2O) as the copper(II) precursors, respectively. Their catalytic performances were investigated in the synthesis of diethyl carbonate (DEC) by oxidative carbonylation of ethanol with CO and O2. The catalysts were characterized by TGA, XRD, nitrogen adsorption-desorption analysis and SEM with the aim of establishing their composition, morphology and structure. It was observed that the catalysts all showed a good selectivity to diethyl carbonate. However, due to a better mesoporous structure such as a bigger surface area, more uniform particle size and less agglomeration, the PdCl2/mCuO-1 catalyst prepared with Cu2(OH)2CO3 precursor showed a better catalytic activity that the conversion of EtOH was about 4.8% and the STY of DEC was 97.1 mg g-1 h-1. This was because the highly developed mesoporous structure could generate a bigger surface area, which benefited the contact between reactants and active sites, improved the conversion of ethanol, and thus enhanced the catalytic performance. Furthermore, a synthetic procedure diagram about "wet impregnation" method of mesoporous CuO prepared with Cu2(OH)2CO3 precursor was given to illustrate these results intuitively.

  15. Surface-nitrogen-rich ordered mesoporous carbon as an efficient metal-free electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xiao, Chunhui; Chen, Xu; Fan, Zhaoyang; Liang, Jin; Zhang, Bo; Ding, Shujiang

    2016-11-01

    Exploring efficient metal-free electrocatalysts for oxygen reduction reactions (ORR) will have a great impact on the field of fuel cells and metal-air batteries. In this paper, we report a simple and efficient routine to coat ordered mesoporous carbon (CMK-3) with nitrogen-doped carbon via pyrolysis of the surface-self-polymerized polydopamine. The optimized CMK-3 catalyst with a coating of nitrogen-doped carbon demonstrates excellent electrocatalytic activity towards ORR in alkaline media. The coating procedure under optimized conditions lowers the ORR half-wave-potential by 80 mV, giving a genuine metal-free catalyst with an onset ORR potential of 0.96 V (vs reversible hydrogen electrode (RHE)) and half-wave potential of 0.83 V (vs RHE) in 0.1 M KOH, which is much better than other carbon material-based catalysts (such as carbon nanotubes and their composites). The performance of this surface-nitrogen-rich CMK-3 catalyst is also superior to that of N-doped ordered mesoporous carbon synthesized by means of the ‘nanocasting’ technique. Furthermore, the as-prepared catalyst performs comparably in terms of activity, superior durability, and higher tolerance to methanol compared with commercially available Pt/C.

  16. Effect of Heat Treatment on the Nitrogen Content and Its Role on the Carbon Dioxide Adsorption Capacity of Highly Ordered Mesoporous Carbon Nitride.

    PubMed

    Lakhi, Kripal S; Park, Dae-Hwan; Joseph, Stalin; Talapaneni, Siddulu N; Ravon, Ugo; Al-Bahily, Khalid; Vinu, Ajayan

    2017-03-02

    Mesoporous carbon nitrides (MCNs) with rod-shaped morphology and tunable nitrogen contents have been synthesized through a calcination-free method by using ethanol-washed mesoporous SBA-15 as templates at different carbonization temperatures. Carbon tetrachloride and ethylenediamine were used as the sources of carbon and nitrogen, respectively. The resulting MCN materials were characterized with low- and high-angle powder XRD, nitrogen adsorption, high-resolution (HR) SEM, HR-TEM, elemental analysis, X-ray photoelectron spectroscopy, and X-ray absorption near-edge structure techniques. The carbonization temperature plays a critical role in controlling not only the crystallinity, but also the nitrogen content and textural parameters of the samples, including specific surface area and specific pore volume. The nitrogen content of MCN decreases with a concomitant increase in specific surface area and specific pore volume, as well as the crystallinity of the samples, as the carbonization temperature is increased. The results also reveal that the structural order of the materials is retained, even after heat treatment at temperatures up to 900 °C with a significant reduction of the nitrogen content, but the structure is partially damaged at 1000 °C. The carbon dioxide adsorption capacity of these materials is not only dependent on the textural parameters, but also on the nitrogen content. The MCN prepared at 900 °C, which has an optimum BET surface area and nitrogen content, registers a carbon dioxide adsorption capacity of 20.1 mmol g(-1) at 273 K and 30 bar, which is much higher than that of mesoporous silica, MCN-1, activated carbon, and multiwalled carbon nanotubes.

  17. Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Li, Wei; Tan, Jia; Nan, Xi; Liu, Shouxin

    2015-03-01

    Paramagnetic mesoporous carbon spheres with diameters of 1-3 μm were synthesized through the hydrothermal carbonization of carboxymethylcellulose with nickel acetate, followed by high-temperature carbonization in a N2 atmosphere. Monodisperse Ni particles of average size of 2-5 nm were doped into the carbon matrix, and covered the entrances of pores. Ni particles existed as metallic nickel and nickel oxide with ordered lattice structures. The effect of Ni content on the specific surface area, mesopore percentage, and magnetic and adsorption properties were investigated. The highest vitamin B12 adsorption capacity of 103 mg/g was achieved for the sample prepared using 0.04 g of nickel acetate. The Freundlich and Langmuir isotherm models were used to determine the equilibrium uptakes of vitamin B12. Vitamin B12 was physically adsorbed as a monolayer on the carbon spheres. The carbon spheres were easily separated on account of their magnetism.

  18. Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery.

    PubMed

    Vila, M; Cicuéndez, M; Sánchez-Marcos, J; Fal-Miyar, V; Manzano, M; Prieto, C; Vallet-Regi, M

    2013-01-01

    The development of smart materials as bone implants is nowadays a challenging task to optimize their fast osteointegration. Nevertheless, no attempts have been done in joining the possibility of using electrical stimulation and drug delivery together in a material intended for bone tissue engineering. Moreover, the use of this synergy to induce bone healing is still limited until novel drug reservoirs material formulations allow an efficient applicability of the electrical stimuli. Herein, we present the biological response of osteoblasts cells, cultured over carbon nanotubes-mesoporous silica composites while exposed to external electrical stimulus. Moreover, its ability to function as drug delivery systems is also demonstrated. Bone cell metabolism was stimulated and mitochondrial activity was increased up to seven times in the presence of these composites under electrical stimulus, suggesting their potential application in bone regeneration processes.

  19. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Calvillo, L.; Lázaro, M. J.; García-Bordejé, E.; Moliner, R.; Cabot, P. L.; Esparbé, I.; Pastor, E.; Quintana, J. J.

    Ordered mesoporous carbon (OMC) with a specific area of 570 m 2 g -1 was synthesised using mesoporous silica SBA-15 as template. OMC was used as platinum catalyst support using the method of reduction with NaBH 4. Before deposition of platinum, the texture and surface chemistry of the support were modified by oxidation treatments in liquid phase using nitric acid as oxidative agent. During the oxidation process, oxygen surface groups were created, whereas ordered porous structure was maintained, as temperature programmed desorption and transmission electronic microscopy showed, respectively. Platinum supported materials were well dispersed over the mesoporous support and its catalytic performance towards methanol oxidation improved when compared with commercial carbon (Vulcan XC-72).

  20. Fabrication of ordered mesoporous carbon film supporting vanadium oxides for electrochemical supercapacitor

    NASA Astrophysics Data System (ADS)

    Zhao, Chunxia; Li, Junshen; Cao, Jinqiao; Chen, Wen

    2015-11-01

    Ordered mesoporous carbon film supporting vanadium oxide nanoparticles has been synthesized via ultrasound-assistant impregnation method with ordered mesoporous carbon C-FDU15 film as the host and V2O5 sol as the guest precursor. The hybrids exhibit type IV sorption isotherms with H2 hysteresis loop, indicating the well-retained characteristics of ordered mesoporous structure. The capacitance of the materials is enhanced with V2O5 loading. Particularly, the hybrids with 32.26 wt.% V2O5 loading yield an important capacitance of 128 F/g in 1 mol/L KNO3 electrolyte under a potential range from -0.6 V to 0.6 V. The improved specific capacitance of the hybrids is proposed to be the combination of the double-layer capacitance of ordered porous structure and the pseudocapacitance derived from V2O5.

  1. Properties of a three-dimensionally ordered macro-mesoporous carbon-doped TiO2 composite catalyst

    NASA Astrophysics Data System (ADS)

    Sui, Wubin; Zheng, Jingtang; Pittman, Charles U.; Bensalah, Nasr; Wu, Mingbo; Zhao, Yucui

    2014-11-01

    This study aimed to develop an effective, environmentally benign composite catalyst composed of carbon materials and titanium dioxide (TiO2). Carbon-doped titanium dioxide (C-TiO2) was prepared by coating TiO2 onto macro-mesoporous carbon (MMC). The structure, morphology and surface chemistry states of the C-TiO2 were characterized by XRD, TEM, XPS, UV-vis and FTIR. The photocatalytic activity of C-TiO2 was evaluated based on the decomposition of an aqueous methyl orange solution in visible light. C-TiO2 significantly improved photocatalytic activity. A possible mechanism for the improvement of the photocatalytic activity of C-TiO2 in visible light was proposed. The results of the analysis suggested that MMC played key roles as the support, absorbent, location of photo-generated electron transfer, and carbon-doping source during methyl orange photodegradation.

  2. Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption

    PubMed Central

    Hosseini, Soraya; Jahangirian, Hossein; Webster, Thomas J; Soltani, Salman Masoudi; Aroua, Mohamed Kheireddine

    2016-01-01

    Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol–gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV–visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm−2 at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm−2 from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal. PMID:27574426

  3. Synthesis, characterization, and performance evaluation of multilayered photoanodes by introducing mesoporous carbon and TiO2 for humic acid adsorption.

    PubMed

    Hosseini, Soraya; Jahangirian, Hossein; Webster, Thomas J; Soltani, Salman Masoudi; Aroua, Mohamed Kheireddine

    2016-01-01

    Nanostructured photoanodes were prepared via a novel combination of titanium dioxide (TiO2) nanoparticles and mesoporous carbon (C). Four different photoanodes were synthesized by sol-gel spin coating onto a glassy substrate of fluorine-doped tin oxide. The photocatalytic activities of TiO2, TiO2/C/TiO2, TiO2/C/C/TiO2, and TiO2/C/TiO2/C/TiO2 photoanodes were evaluated by exposing the synthesized photoanodes to UV-visible light. The photocurrent density observed in these photoanodes confirmed that an additional layer of mesoporous carbon could successfully increase the photocurrent density. The highest photocurrent density of ~1.022 mA cm(-2) at 1 V/saturated calomel electrode was achieved with TiO2/C/C/TiO2 under an illumination intensity of 100 mW cm(-2) from a solar simulator. The highest value of surface roughness was measured for a TiO2/C/C/TiO2 combination owing to the presence of two continuous layers of mesoporous carbon. The resulting films had a thickness ranging from 1.605 µm to 5.165 µm after the calcination process. The presence of double-layer mesoporous carbon resulted in a 20% increase in the photocurrent density compared with the TiO2/C/TiO2 combination when only a single mesoporous carbon layer was employed. The improved performance of these photoanodes can be attributed to the enhanced porosity and increased void space due to the presence of mesoporous carbon. For the first time, it has been demonstrated here that the photoelectrochemical performance of TiO2 can be improved by integrating several layers of mesoporous carbon. Comparison of the rate of removal of humic acid by the prepared photoanodes showed that the highest performance from TiO2/C/C/TiO2 was due to the highest photocurrent density generated. Therefore, this study showed that optimizing the sequence of mesoporous carbon layers can be a viable and inexpensive method for enhanced humic acid removal.

  4. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell.

    PubMed

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-31

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm(-2) (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  5. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    PubMed Central

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm−2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies. PMID:27243374

  6. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm‑2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  7. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    SciTech Connect

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; Teague, Craig M.; Binder, Andrew J.; Baggetto, Loic; Veith, Gabriel M.; Dai, Sheng; Williamson, Ben

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructures were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO2 capture.

  8. Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors

    DOE PAGES

    Nelson, Kimberly M.; Mahurin, Shannon Mark; Mayes, Richard T.; ...

    2015-10-09

    This paper presents a soft templating approach for mesoporous carbon using the polyphenolic heterogeneous biomass, chestnut tannin, as the carbon precursor. By varying synthesis parameters such as tannin:surfactant ratio, cross-linker, reaction time and acid catalyst, the pore structure could be controllably modulated from lamellar to a more ordered hexagonal array. Carbonization at 600 °C under nitrogen produced a bimodal micro-mesoporous carbonaceous material exhibiting enhanced hydrogen bonding with the soft template, similar to that shown by soft-templating of phenolic-formaldehyde resins, allowing for a tailorable pore size. By utilizing the acidic nature of chestnut tannin (i.e. gallic and ellagic acid), hexagonal-type mesostructuresmore » were formed without the use of an acid catalyst. The porous carbon materials were activated with ammonia to increase the available surface area and incorporate nitrogen-containing functionality which led to a maximum CO2 adsorption capacity at 1 bar of 3.44 mmol/g and 2.27 mmol/g at 0 °C and 25 °C, respectively. The ammonia-activated carbon exhibited multiple peaks in the adsorption energy distribution which indicates heterogeneity of adsorption sites for CO2 capture.« less

  9. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  10. Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent; Qiao, Rui

    2010-01-01

    In the spirit of the theoretical evolution from the Helmholtz model to the Gouy Chapman Stern model for electric double-layer capacitors, we explored the effect of a diffuse layer on the capacitance of mesoporous carbon supercapacitors by solving the Poisson Boltzmann (PB) equation in mesopores of diameters from 2 to 20 nm. To evaluate the effect of pore shape, both slit and cylindrical pores were considered. We found that the diffuse layer does not affect the capacitance significantly. For slit pores, the area-normalized capacitance is nearly independent of pore size, which is not experimentally observed for template carbons. In comparison, for cylindrical pores, PB simulations produce a trend of slightly increasing area-normalized capacitance with pore size, similar to that depicted by the electric double-cylinder capacitor model proposed earlier. These results indicate that it is appropriate to approximate the pore shape of mesoporous carbons as being cylindrical and the electric double-cylinder capacitor model should be used for mesoporous carbons as a replacement of the traditional Helmholtz model.

  11. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    SciTech Connect

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces. The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.

  12. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin

    SciTech Connect

    Saha, Dipendu; Moken, Tara; Chen, Jihua; Hensley, Dale K.; Delaney, Kristen; Hunt, Marcus A.; Nelson, Karl; Spurri, Amada; Benham, Lauren; Brice, Robin; Azoro, Martina

    2015-02-24

    Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m2 g–1 and pore volume 0.63–1.03 cm3 g–1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies on human cells with similar materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.

  13. Micro-/mesoporous carbons for controlled release of antipyrine and indomethacin

    DOE PAGES

    Saha, Dipendu; Moken, Tara; Chen, Jihua; ...

    2015-02-24

    Here, we have demonstrated the potential of meso- and microporous carbons in controlled release applications and targeted oral drug delivery. We have employed two mesoporous and two microporous carbons for the sustained release of one water-soluble drug (antipyrine) and one water-insoluble drug (indomethacin), using these as models to examine the controlled release characteristics. The micro-/mesoporous carbons were characterized as having a BET surface area of 372–2251 m2 g–1 and pore volume 0.63–1.03 cm3 g–1. The toxicity studies with E. coli bacterial cells did not reveal significant toxicity, which is in accordance with our previous studies on human cells with similarmore » materials. Mucin adsorption tests with type III pork mucin demonstrated 20–30% mucin adsorption by the carbon samples and higher mucin adsorption could be attributed to higher surface area and more oxygen functionalities. Antipyrine and indomethacin loading was 6–78% in these micro-/mesoporous carbons. The signatures in thermogravimetric studies revealed the presence of drug molecules within the porous moieties of the carbon. The partial shifting of the decomposition peak of the drug adsorbed within the carbon pores was caused by the confinement of drug molecules within the narrow pore space of the carbon. The release profiles of both drugs were examined in simulated gastric fluid (pH = 1.2) and in three other release media with respective pH values of 4.5, 6.8 and 7.4, along with varying residence times to simulate the physiological conditions of the stomach, duodenum, small intestine and colon, respectively. All the release profiles manifested diffusion controlled sustained release that corroborates the effective role of micro-/mesoporous carbons as potential drug carriers.« less

  14. Synthesis of Mesoporous Metal Oxides by Structure Replication: Thermal Analysis of Metal Nitrates in Porous Carbon Matrices

    PubMed Central

    Weinberger, Christian; Roggenbuck, Jan; Hanss, Jan; Tiemann, Michael

    2015-01-01

    A variety of metal nitrates were filled into the pores of an ordered mesoporous CMK-3 carbon matrix by solution-based impregnation. Thermal conversion of the metal nitrates into the respective metal oxides, and subsequent removal of the carbon matrix by thermal combustion, provides a versatile means to prepare mesoporous metal oxides (so-called nanocasting). This study aims to monitor the thermally induced processes by thermogravimetric analysis (TGA), coupled with mass ion detection (MS). The highly dispersed metal nitrates in the pores of the carbon matrix tend to react to the respective metal oxides at lower temperature than reported in the literature for pure, i.e., carbon-free, metal nitrates. The subsequent thermal combustion of the CMK-3 carbon matrix also occurs at lower temperature, which is explained by a catalytic effect of the metal oxides present in the pores. This catalytic effect is particularly strong for oxides of redox active metals, such as transition group VII and VIII metals (Mn, Fe, Co, Ni), Cu, and Ce.

  15. Synthesis, characterization and catalytic activity of a novel mesoporous ZSM-5 zeolite

    SciTech Connect

    Ma, Yuanyuan; Hu, Jing; Jia, Lihua; Li, Zhifang; Kan, Qiubin; Wu, Shujie

    2013-05-15

    Highlights: ► Mesoporous ZSM-5 zeolites. ► The strong acidic intensity. ► High activity for the alkylation of phenol and tert-butyl alcohol. ► Remarkable hydrothermal stability. - Abstract: A novel mesoporous ZSM-5 zeolite was hydrothermally synthesized using glucose as a template. Characterizations by XRD, TEM and nitrogen isotherms indicated that ZSM-5 possessed worm-like mesoporous. {sup 27}Al-MAS-NMR and NH{sub 3}-TPD showed that the mesoporous ZSM-5 preserved tetrahedral coordination aluminum and stronger acidity than conventional mesoporous material. As-prepared mesoporous ZSM-5 was successfully used in alkylation reaction of phenol with tert-butanol and exhibited significantly high phenol conversion and 2,4-DTBP selectivity. In addition, the hydrothermal stability was also studied by boiling in water for 7 days and displayed good results.

  16. Correlation between mesopore volume of carbon supports and the immobilization of laccase from Trametes versicolor for the decolorization of Acid Orange 7.

    PubMed

    Ramírez-Montoya, Luis A; Hernández-Montoya, Virginia; Montes-Morán, Miguel A; Cervantes, Francisco J

    2015-10-01

    Immobilization of laccase from Trametes versicolor was carried out using carbon supports prepared from different lignocellulosic wastes. Enzymes were immobilized by physical adsorption. Taguchi methodology was selected for the design of experiments regarding the preparation of the carbon materials, which included the use of activating agents for the promotion of mesoporosity. A good correlation between the mesopore volumes of the carbon supports and the corresponding laccase loadings attained was observed. Specifically, the chemical activation of pecan nut shell with FeCl3 led to a highly mesoporous material that also behaved as the most efficient support for the immobilization of laccase. This particular laccase/carbon support system was used as biocatalyst for the decolorization of aqueous solutions containing Acid Orange 7. Mass spectrometry coupled to a liquid chromatograph allowed us to identify the products of the dye degradation.

  17. Zeolite materials prepared using silicate waste from template synthesis of ordered mesoporous carbon.

    PubMed

    Kim, Yun Kyung; Rajesh, Kizhakke Palleeri; Yu, Jong-Sung

    2013-09-15

    Significant amount of silica waste is generated in the preparation of porous carbon materials using template synthesis. Industrial production of such porous carbon not only creates waste chemicals, but also poses significant environmental concerns and high waste treatment cost. Recycling is proposed as the best solution for tackling such chemical wastes. In this study, etched silica waste released from template synthesis of mesoporous carbon is recycled to produce precious functional microporous zeolite materials. The solid silica template is etched out with NaOH solution to produce silica-free mesoporous carbon. The collected silica waste is recycled to generate zeolites such as LTA and MFI type silica materials. The formation of zeolites is confirmed by FT-IR, XRD, (29)Si NMR, (27)Al NMR, and SEM. This straight forward green chemistry route not only recycles the waste chemicals, but also decreases environmental pollution for better improvement of our living.

  18. Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries

    SciTech Connect

    Guo, Bingkun; Chi, Miaofang; Sun, Xiao-Guang; Dai, Sheng

    2012-01-01

    Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

  19. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    PubMed

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.

  20. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.

    PubMed

    Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb

    2011-04-18

    Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials.

  1. Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products.

    PubMed

    Kochana, Jolanta; Wapiennik, Karolina; Knihnicki, Paweł; Pollap, Aleksandra; Janus, Paula; Oszajca, Marcin; Kuśtrowski, Piotr

    2016-07-01

    A voltammetric biosensor based on tyrosinase (TYR) was developed for determination of tyramine. Carbon material (multi-walled carbon nanotubes or mesoporous carbon CMK-3-type), polycationic polymer-i.e., poly(diallyldimethylammonium chloride) (PDDA), and Nafion were incorporated into titania dioxide sol (TiO2) to create an immobilization matrix. The features of the formed matrix were studied by scanning electron microscopy (SEM) and cyclic voltammetry (CV). The analytical performance of the developed biosensor was evaluated with respect to linear range, sensitivity, limit of detection, long-term stability, repeatability, and reproducibility. The biosensor exhibited electrocatalytic activity toward tyramine oxidation within a linear range from 6 to 130 μM, high sensitivity of 486 μA mM(-1) cm(-2), and limit of detection of 1.5 μM. The apparent Michaelis-Menten constant was calculated to be 66.0 μM indicating a high biological affinity of the developed biosensor for tyramine. Furthermore, its usefulness in determination of tyramine in food product samples was also verified. Graphical abstract Different food samples were analyzed to determine tyramine using biosensor based on tyrosinase.

  2. Atomic-Layer-Deposition Functionalized Carbonized Mesoporous Wood Fiber for High Sulfur Loading Lithium Sulfur Batteries.

    PubMed

    Luo, Chao; Zhu, Hongli; Luo, Wei; Shen, Fei; Fan, Xiulin; Dai, Jiaqi; Liang, Yujia; Wang, Chunsheng; Hu, Liangbing

    2017-04-14

    Lithium-sulfur battery (LSB) as one of the most promising energy storage devices suffers from poor conductivity of sulfur and fast capacity decay triggered by the dissolution of polysulfides. In this work, functionalized carbonized mesoporous wood fiber (f-CMWF) is employed as a host to accommodate sulfur for the first time. Natural wood microfiber has unique hierarchical and mesoporous structure, which is well maintained after carbonization. With such a hierarchical mesoporous structure, a high sulfur loading of 76 wt% is achieved in CMWF electrodes. The pore size of CMWF is tunable by atomic layer deposition (ALD) of 5 nm Al2O3 coating to form the f-CMWF. Such a thin layer coating slightly decreases the sulfur loading to 70%, but remarkably promotes the cyclic stability of sulfur cathode, which delivers an initial capacity of 1115 mAh g-1, and maintains a reversible capacity of 859 mAh g-1 for 450 cycles, corresponding to a slow capacity decay rate of 0.046% per cycle. More importantly, natural wood microfiber is firstly used as a raw material for sulfur encapsulating. This work is also critical for using low cost and mesoporous biomass carbon as bi-functional scaffold for LSB.

  3. Ordered mesoporous carbon/Nafion as a versatile and selective solid-phase microextraction coating.

    PubMed

    Zeng, Jingbin; Zhao, Cuiying; Chen, Jingjing; Subhan, Fazle; Luo, Liwen; Yu, Jianfeng; Cui, Bingwen; Xing, Wei; Chen, Xi; Yan, Zifeng

    2014-10-24

    In this study, ordered mesoporous carbon (OMC) with large surface area (1019m(2)g(-1)), uniform mesoporous structure (pore size distribution centering at 4.2nm) and large pore volume (1.46cm(3)g(-1)) was synthesized using 2D hexagonally mesoporous silica MSU-H as the hard template and sucrose as the carbon precursor. The as-synthesized OMC was immobilized onto a stainless steel wire using Nafion as a binder to prepare an OMC/Nafion solid-phase microextraction (SPME) coating. The extraction characteristics of the OMC/Nafion coating were extensively investigated using a wide range of analytes including non-polar (light petroleum and benzene homologues) and polar compounds (amines and phenols). The OMC/Nafion coating exhibited much better extraction efficiency towards all selected analytes than that of a multi-walled carbon nanotubes/Nafion coating with similar length and thickness, which is ascribed to its high surface area, well-ordered mesoporous structure and large pore volume. When the OMC/Nafion coating was used to extract a mixture containing various kinds of analytes, it possessed excellent extraction selectivity towards aromatic non-polar compounds. In addition, the feasibility of the OMC/Nafion coating for application in electrochemically enhanced SPME was demonstrated using protonated amines as model analytes.

  4. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.

    PubMed

    Lee, Kangsuk; Song, Haeni; Lee, Kwang Hoon; Choi, Soo Hyung; Jang, Jong Hyun; Char, Kookheon; Son, Jeong Gon

    2016-08-31

    Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to subμm) network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability.

  5. Pyrolytic Synthesis of Carbon Nanotubes from Sucrose on a Mesoporous Silicate

    NASA Technical Reports Server (NTRS)

    Abdel-Fattah, Tarek; Siochi, Mia; Crooks, Roy

    2005-01-01

    Multiwall carbon nanotubes were synthesized from sucrose by a pyrolytic technique using mesoporous MCM-41 silicate templates without transition metal catalysts. The Nanotubes were examined in the carbon/silicate composite and after dissolution of the silicate. High resolution transmission electron microscopy study of the multiwall nanotubes showed them to be 15 nm in diameter, 200 nm in length and close-ended. There was variation in crystallinity with some nanotubes showing disordered wall structures.

  6. Hierarchically ordered mesoporous carbon/graphene composites as supercapacitor electrode materials.

    PubMed

    Song, Yanjie; Li, Zhu; Guo, Kunkun; Shao, Ting

    2016-08-25

    Hierarchically ordered mesoporous carbon/graphene (OMC/G) composites have been fabricated by means of a solvent-evaporation-induced self-assembly (EISA) method. The structures of these composites are characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy and nitrogen adsorption-desorption at 77 K. These results indicate that OMC/G composites possess the hierarchically ordered hexagonal p6mm mesostructure with the lattice unit parameter and pore diameter close to 10 nm and 3 nm, respectively. The specific surface area of OMC/G composites after KOH activation is high up to 2109.2 m(2) g(-1), which is significantly greater than OMC after activation (1474.6 m(2) g(-1)). Subsequently, the resulting OMC/G composites as supercapacitor electrode materials exhibit an outstanding capacitance as high as 329.5 F g(-1) in 6 M KOH electrolyte at a current density of 0.5 A g(-1), which is much higher than both OMC (234.2 F g(-1)) and a sample made by mechanical mixing of OMC with graphene (217.7 F g(-1)). In addition, the obtained OMC/G composites display good cyclic stability, and the final capacitance retention is approximately 96% after 5000 cycles. These ordered mesopores in the OMC/G composites are beneficial to the accessibility and rapid diffusion of the electrolyte, while graphene in OMC/G composites can also facilitate the transport of electrons during the processes of charging and discharging owing to its high conductivity, thereby leading to an excellent energy storage performance. The method demonstrated in this work would open up a new route to design and develop graphene-based architectures for supercapacitor applications.

  7. Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobo; Amiinu, Ibrahim Saana; Liu, Shaojun; Cheng, Kun; Mu, Shichun

    2016-07-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been considered as a key step in energy conversion processes. Here, a novel and simple Mg(OH)2 nanocasting method is adopted to fabricate Co and N co-doped porous graphene-like carbon nanosheets (Co@N-PGCS) by using chitosan as both carbon and N sources. The as-obtained Co@N-PGCS shows a mesopore-dominated structure as well as a high specific surface area (1716 cm2 g-1). As a bifunctional electrocatalyst towards both the ORR and OER, it shows favorable ORR performance compared with the commercial Pt/C catalyst with an onset potential of -0.075 V and a half-wave potential of -0.151 V in 0.1 M KOH solutions. Furthermore, it also displays considerable OER properties compared with commercial IrO2. The effective catalytic activity could originate from the introduction of transition metal species and few-layer mesoporous carbon structures.The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been considered as a key step in energy conversion processes. Here, a novel and simple Mg(OH)2 nanocasting method is adopted to fabricate Co and N co-doped porous graphene-like carbon nanosheets (Co@N-PGCS) by using chitosan as both carbon and N sources. The as-obtained Co@N-PGCS shows a mesopore-dominated structure as well as a high specific surface area (1716 cm2 g-1). As a bifunctional electrocatalyst towards both the ORR and OER, it shows favorable ORR performance compared with the commercial Pt/C catalyst with an onset potential of -0.075 V and a half-wave potential of -0.151 V in 0.1 M KOH solutions. Furthermore, it also displays considerable OER properties compared with commercial IrO2. The effective catalytic activity could originate from the introduction of transition metal species and few-layer mesoporous carbon structures. Electronic supplementary information (ESI) available: The XPS fitted results, SEM and TEM images, the K-L equation, and some of the electrochemical

  8. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue

    SciTech Connect

    Zhang, Wei-Min; Jiang, Yao-Quan; Cao, Xiao-Yan; Chen, Meng; Ge, Dong-Lai; Sun, Zhong-Xi

    2013-10-15

    Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporous CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.

  9. Metallic WO2-Carbon Mesoporous Nanowires as Highly Efficient Electrocatalysts for Hydrogen Evolution Reaction.

    PubMed

    Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Liu, Dali; Zhang, Bin

    2015-06-10

    The development of electrocatalysts to generate hydrogen, with good activity and stability, is a great challenge in the fields of chemistry and energy. Here we demonstrate a "hitting three birds with one stone" method to synthesize less toxic metallic WO2-carbon mesoporous nanowires with high concentration of oxygen vacancies (OVs) via calcination of inorganic/organic WO3-ethylenediamine hybrid precursors. The products exhibit excellent performance for H2 generation: the onset overpotential is only 35 mV, the required overpotentials for 10 and 20 mA/cm(2) are 58 and 78 mV, the Tafel slope is 46 mV/decade, the exchange current density is 0.64 mA/cm(2), and the stability is over 10 h. Further studies, in combination with density functional theory, demonstrate that the unusual electronic structure and the large amount of active sites, generated by the high concentration of OVs, as well as the closely attached carbon materials, were key factors for excellent performance. Our results experimentally and theoretically establish metallic transition metal oxides (TMOs) as intriguing novel electrocatalysts for H2 generation. Such TMOs with OVs might be promising candidates for other energy storage and conversion applications.

  10. Structurally ordered mesoporous carbon nanoparticles as transmembrane delivery vehicle in human cancer cells.

    PubMed

    Kim, Tae-Wan; Chung, Po-Wen; Slowing, Igor I; Tsunoda, Makoto; Yeung, Edward S; Lin, Victor S-Y

    2008-11-01

    A structurally ordered, CMK-1 type mesoporous carbon nanoparticle (MCN) material was successfully synthesized by using a MCM-48 type mesoporous silica nanoparticle as template. The structure of MCN was analyzed by a series of different techniques, including the scanning and transmission electron microscopy, powder X-ray diffraction, and N2 sorption analysis. To the best of our knowledge, no study has been reported prior to our investigation on the utilization of these structurally ordered mesoporous carbon nanoparticles for the delivery of membrane impermeable chemical agents inside of eukaryotic cells. The cellular uptake efficiency and biocompatibility of MCN with human cervical cancer cells (HeLa) were investigated. Our results show that the inhibitory concentration (IC50) value of MCN is very high (>50 microg/mL per million cells) indicating that MCN is fairly biocompatible in vitro. Also, a membrane impermeable fluorescence dye, Fura-2, was loaded to the mesoporous matrix of MCN. We demonstrated that the MCN material could indeed serve as a transmembrane carrier for delivering Fura-2 through the cell membrane to release these molecules inside of live HeLa cells. We envision that further developments of this MCN material will lead to a new generation of nanodevices for transmembrane delivery and intracellular release applications.

  11. Importance of Internal Porosity for Glucan Adsorption in Mesoporous Carbon Materials.

    PubMed

    Chung, Po-Wen; Charmot, Alexandre; Click, Timothy; Lin, Yuchun; Bae, YounJue; Chu, Jhih-Wei; Katz, Alexander

    2015-07-07

    To better understand the adsorption of long-chain poly(1 → 4)-β-D-glucans on carbon surfaces as well as interactions responsible for this adsorption, we use a comparative study involving mesoporous carbon-silica composite materials that have been etched to varying degrees and all-atom molecular dynamics simulations. The materials synthesized as part of this etching study consist of an as-synthesized composite material (MCN-MSN), MCN-MSN-0.5 (composite materials consisting of 50% carbon by mass), MCN-MSN-0.3 (composite materials consisting of 70% carbon by mass), and MCN, in which silica etching was conducted using an aqueous ethanolic solution of either NaOH or HF. Data for the adsorption of long-chain glucans to these materials from concentrated aqueous HCl (37 wt %) solution demonstrate a direct relationship between the amount of β-glu adsorption and the magnitude of exposed carbon mesopore surface area, which systematically increases and is also accompanied by an increase in the mesopore size during silica etching. This demonstrates β-glu adsorption as occurring on internal carbon mesopores rather than exclusively on the external carbon surface. These experimental data on adsorption were corroborated by molecular dynamics (MD) simulations of β-glu adsorption to a graphene bilayer separated by a distance of 3.2 nm, chosen to correspond to the carbon mesopore diameter of the experimental system. Simulation results using a variety of β-glu solvent systems demonstrate the rapid adsorption of a β-glu strand on the graphitic carbon surface via axial coupling and are consistent with experimentally observed trends in fast adsorption kinetics. Solvent-mediated effects such as small-scale hydrophobicity and preferential interactions with ions are shown to play important roles in modulating glucan adsorption to carbon surfaces, whereas experimental data on hydrophobically modified silica demonstrate that hydrophobicity in and of itself is insufficient to cause

  12. A nitrogen-doped mesoporous carbon containing an embedded network of carbon nanotubes as a highly efficient catalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Li, Jin-Cheng; Zhao, Shi-Yong; Hou, Peng-Xiang; Fang, Ruo-Pian; Liu, Chang; Liang, Ji; Luan, Jian; Shan, Xu-Yi; Cheng, Hui-Ming

    2015-11-01

    A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst, but also much longer durability and stronger tolerance to methanol crossover than a Pt/C catalyst.A nitrogen-doped mesoporous carbon containing a network of carbon nanotubes (CNTs) was produced for use as a catalyst for the oxygen reduction reaction (ORR). SiO2 nanoparticles were decorated with clusters of Fe atoms to act as catalyst seeds for CNT growth, after which the material was impregnated with aniline. After polymerization of the aniline, the material was pyrolysed and the SiO2 was removed by acid treatment. The resulting carbon-based hybrid also contained some Fe from the CNT growth catalyst and was doped with N from the aniline. The Fe-N species act as active catalytic sites and the CNT network enables efficient electron transport in the material. Mesopores left by the removal of the SiO2 template provide short transport pathways and easy access to ions. As a result, the catalyst showed not only excellent ORR activity, with 59 mV more positive onset potential and 30 mV more positive half-wave potential than a Pt/C catalyst

  13. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Tian-Yu; Huang, Ting; Liu, Xiao-Heng; Yang, Xu-Jie

    2016-02-01

    In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and separation of charge carrier pairs. More importantly, these P-C3N4/ZnIn2S4 heterostructures have been proven to be highly efficient visible light responsive photocatalysts for photo-reduction, and meanwhile exhibit excellent photo-stability during recycling runs. The sufficient evidence reveals that the significantly improved photocatalytic performance is mainly attributed to the more efficient charge carrier separation based on the construction of a close heterogeneous interface. This work may provide new insights into the utilization of P-C3N4/ZnIn2S4 nanocomposites as visible light driven photocatalysts for comprehensive organic transformations in the field of fine chemical engineering.In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and

  14. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode.

    PubMed

    Zhou, Ming; Guo, Li-ping; Lin, Fan-yun; Liu, Hai-xia

    2007-03-21

    In this work, we have developed a convenient and efficient method for the functionalization of ordered mesoporous carbon (OMC) using polyoxometalate H6P2Mo18O62 x H2O (P2Mo18). By the method, glassy carbon (GC) electrode modified with P(2)Mo(18) which was immobilized on the channel surface of OMC was prepared and characterized for the first time. The large specific surface area and porous structure of the modified OMC particles result in high heteropolyacid loading, and the P(2)Mo(18) entrapped in this order matrix is stable. Fourier transform infrared spectroscopy (FTIR), nitrogen adsorption-desorption isotherm and X-ray diffraction (XRD) were employed to give insight into the intermolecular interaction between OMC and P(2)Mo(18). The electrochemical behavior of the modified electrode was studied in detail, including pH-dependence, stability and so on. The cyclic voltammetry (CV) and amperometry studies demonstrated that P(2)Mo(18)/OMC/GC electrode has high stability, fast response and good electrocatalytic activity for the reduction of nitrite, bromate, idonate, and hydrogen peroxide. The mechanism of catalysis on P(2)Mo(18)/OMC/GC electrode was discussed. Moreover, the development of our approach for OMC functionalization suggests the potential applications in catalysis, molecular electronics and sensors.

  15. TiO2-coated mesoporous carbon: conventional vs. microwave-annealing process.

    PubMed

    Coromelci-Pastravanu, Cristina; Ignat, Maria; Popovici, Evelini; Harabagiu, Valeria

    2014-08-15

    The study of coating mesoporous carbon materials with titanium oxide nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon materials in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of mesoporous carbon materials and titanium oxide is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. But, their synthesis is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors, which takes time and money. The thermal heating based techniques are time consuming and often lack control of particle size and morphology. Hence, since there is a growing interest in microwave technology, an alternative way of power input into chemical reactions through dielectric heating is the use of microwaves. This work is focused on the advantages of microwave-assisted synthesis of TiO2-coated mesoporous carbon over conventional thermal heating method. The reviewed studies showed that the microwave-assisted synthesis of such composites allows processes to be completed within a shorter reaction time allowing the nanoparticles formation with superior properties than that obtained by conventional method.

  16. Facile Synthesis of Magnetic Mesoporous Hollow Carbon Microspheres for Rapid Capture of Low-Concentration Peptides

    PubMed Central

    2015-01-01

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g–1 at room temperature and a Brunauer–Emmett–Teller specific surface area of 48.8 m2 g–1 with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications. PMID:24992375

  17. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

    PubMed

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-08-13

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g(-1) at room temperature and a Brunauer-Emmett-Teller specific surface area of 48.8 m(2) g(-1) with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.

  18. Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution

    NASA Astrophysics Data System (ADS)

    Xiong, Kun; Gao, Yuan; Zhou, Lin; Zhang, Xianming

    2016-09-01

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica-carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI-MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N2 adsorption and desorption. The results show that nZVI-MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI-MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI-MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  19. Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica.

    PubMed

    Fukuoka, Atsushi; Kimura, Jun-ichi; Oshio, Tadashi; Sakamoto, Yuzuru; Ichikawa, Masaru

    2007-08-22

    Preferential oxidation (PROX) of CO is an important practical process to purify H2 for use in polymer electrolyte fuel cells. Although many supported noble metal catalysts have been reported so far, their catalytic performances remain insufficient for operation at low temperature. We found that Pt nanoparticles in mesoporous silica give unprecedented activity, selectivity, and durability in the PROX reaction below 353 K. We also studied the promotional effect of mesoporous silica in the Pt-catalyzed PROX reaction by infrared spectroscopy using the isotopic tracer technique. Gas-phase O2 is not directly used for CO oxidation, but the oxygen of mesoporous silica is incorporated into CO2. These results suggest that CO oxidation is promoted by the attack of the surface OH groups to CO on Pt without forming water.

  20. A geometric pore adsorption model for predicting the drug loading capacity of insoluble drugs in mesoporous carbon.

    PubMed

    Gao, Yikun; Zhu, Wenquan; Liu, Jia; Di, Donghua; Chang, Di; Jiang, Tongying; Wang, Siling

    2015-05-15

    In this work, a simple and accurate geometric pore-adsorption model was established and experimentally validated for predicting the drug loading capacity in mesoporous carbon. The model was designed according to the shape of pore channels of mesoporous carbon and the arrangement of drug molecules loaded in the pores. Three different small molecule drugs (celecoxib, fenofibrate and carvedilol) were respectively loaded in mesoporous carbon with different pore sizes. In order to test the accuracy of the established model, nitrogen adsorption-desorption analysis was employed to confirm the pore structure of mesoporous carbon and to calculate the occupation volume of the adsorbed drugs. The adsorption isotherms of celecoxib were systematically investigated to describe the adsorption process. It was found that the experimental results of adsorption capacity were all in the range of the predicted values for all the tested drugs and mesoporous carbon. The occupation volumes calculated from the model also agreed well with the experimental data. These results demonstrated that the established model could accurately provide the range of drug loading capacity, which may provide a useful option for the prediction of the drug loading capacity of small molecule drugs in mesoporous materials.

  1. An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue

    SciTech Connect

    Fukuyama, H.; Terai, S.

    2007-07-01

    Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

  2. Carbon nanofiber mesoporous films: efficient platforms for bio-hydrogen oxidation in biofuel cells.

    PubMed

    de Poulpiquet, Anne; Marques-Knopf, Helena; Wernert, Véronique; Giudici-Orticoni, Marie Thérèse; Gadiou, Roger; Lojou, Elisabeth

    2014-01-28

    The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells.

  3. Nanocomposite of LiFePO4 and mesoporous carbon for high power cathode of lithium rechargeable batteries.

    PubMed

    Kim, Jun-Il; Roh, Kwang Chul; Lee, Jae-Won

    2012-11-01

    A composite of LiFePO4 and MgO-templated disordered mesoporous carbon was prepared through infiltrating a LiFePO4 precursor solution into the mesoporous carbon and growing LiFePO4 nanocrystals in the pore of the carbon. Transmission electron microscope (TEM) and scanning electron microscope (SEM) analysis showed that LiFePO4 nanoparticles are embedded homogeneously in the mesoporous carbon without formation of big LiFePO4 particles out of the pores. The pores of the carbon are believed to suppress crystal growth of LiFePO4. The 3-dimensional conducting carbon network between the LiFePO4 nanoparticles led to excellent cycling stability and rate capability. The composite showed no fade of discharge capacity up to 100 cycles and 85% of the reversible capacity at 0.1 C was retained at 30 C.

  4. Fabrication and characterization of a zirconia/multi-walled carbon nanotube mesoporous composite.

    PubMed

    Wang, Zonghua; Xia, Jianfei; Xia, Yanzhi; Lu, Caiyu; Shi, Guoyu; Zhang, Feifei; Zhu, Fuqiang; Li, Yanhui; Xia, Linhua; Tang, Jie

    2013-10-01

    A zirconia/multi-walled carbon nanotube (ZrO2/MWCNT) mesoporous composite was fabricated via a simple method using a hydrothermal process with the aid of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Transmission electron microscopy (TEM), N2 adsorption-desorption, Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were used to characterize the as-made samples. The cubic ZrO2 nanocrystallites were observed to overlay the surface of MWCNTs, which resulted in the formation of a novel mesoporous-nanotube composite. On the basis of a TEM analysis of the products from controlled experiment, the role of the acid-treated MWCNTs and CTAB was proposed to explain the formation of the mesoporous-nanotube structure. The as-made composite possessed novel properties, such as a high surface area (312 m(2)·g(-1)) and a bimodal mesoporous structure (3.18 nm and 12.4 nm). It was concluded that this composite has important application value due to its one-dimensional hollow structure, excellent electric conductivity and large surface area.

  5. Templated synthesis of pyridine functionalized mesoporous carbons through the cyclotrimerization of diethynylpyridines

    SciTech Connect

    Shin, Yongsoon; Fryxell, Glen E.; Johnson, Charles; Haley, Michael M.

    2008-02-12

    Templated mesoporous carbons designed around the pyridine functionality have been made using the cyclotrimerization of a variety of diethynylpyridines. The substitution pattern of the ethynyl moieties about the pyridine ring system was found to have a significant impact on the structure and properties of the final product. A model is proposed that focuses on the self-assembly of the diethynylpyridine monomer on the silica surface, and the order and orientation of the ethynyl moieties within this monolayer.

  6. Visible Light Assisted Heterogeneous Fenton-like Degradation of Organic Pollutant via α-FeOOH/Mesoporous Carbon Composites.

    PubMed

    Qian, Xufang; Ren, Meng; Zhu, Yao; Yue, Dongting; Han, Yu; Jia, Jinping; Zhao, Yixin

    2017-03-03

    A α-FeOOH/mesoporous carbon (α-FeOOH/MesoC) composite prepared by in situ crystallization of adsorbed ferric ions within carboxyl functionalized mesoporous carbon was developed as a novel visible light assisted heterogeneous Fenton-like catalyst. The visible light active α-FeOOH nanocrystals were encapsulated in the mesoporous frameworks accompanying with surface attached large α-FeOOH microcrystals via C-O-Fe bonding. Assisting with visible light irradiation on α-FeOOH/MesoC, the mineralization efficiency increased owing to the photocatalytic promoted catalyzing H2O2 beyond the photo-thermal effect. The synergistic effect between α-FeOOH and MesoC in α-FeOOH/MesoC composite improved the mineralization efficiency than the mixture catalyst of α-FeOOH and MesoC. The iron leaching is greatly suppressed on the α-FeOOH/MesoC composite. Interestingly, the reused α-FeOOH/MesoC composites showed much higher phenol oxidation and mineralization efficiencies than the fresh catalyst and homogeneous Fenton system (FeSO4/H2O2). The XPS, XRD, FTIR and textural property results reveal that the great enhancement comes from the interfacial emerged oxygen containing groups between α-FeOOH and MesoC after the first heterogeneous Fenton-like reaction. In summary, visible light induced photocatalysis assisted heterogeneous Fenton-like process in the α-FeOOH/MesoC composite system improved the HO• production efficiency and Fe(III)/Fe(II) cycle and further activated the interfacial catalytic sites, which finally realize an extraordinary higher degradation and mineralization efficiency.

  7. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NOx.

    PubMed

    Huang, Yu; Ho, Wingkei; Lee, Shuncheng; Zhang, Lizhi; Li, Guisheng; Yu, Jimmy C

    2008-04-01

    Effective mesoporous nanocrystalline C-doped TiO(2) photocatalysts were synthesized through a direct solution-phase carbonization using titanium tetrachloride and diethanolamine as precursors. X-ray photoelectron spectroscopy (XPS) results revealed that oxygen sites in the TiO(2) lattice were substituted by carbon atoms and formed a C-Ti-O-C structure. The absorption region of the as-prepared TiO(2) was extended to the visible light region in view of the substitution for oxygen sites by carbon atoms. The photocatalytic activities of the as-prepared samples were tested in a flow system on the degradation of NO at typical indoor air levels under simulated solar-light irradiation. The samples showed a more effective removal efficiency than commercial photocatalyst (P25) on the degradation of the common indoor pollutant NO. The parameters significantly affecting the mesoporous structure and removal efficiency on indoor air were also investigated.

  8. Preparation of mesoporous carbon-carbon nanotube composites using the template method.

    PubMed

    Nam, Kidon; Lim, Seongyop; Kim, Sang-Kyung; Peck, Donghyun; Jung, Doohwan

    2011-07-01

    Reported herein is a simple template method for preparing mesoporous carbons (MPCs) from a mesophase pitch, using homemade nano-sized MgOs and MgO-carbon nanotube (CNT) composites as templates. Nano-sized MgO particles containing iron-molybdenum were synthesized through the heat treatment of the precursor ash, and the MgO-CNT composites were prepared via catalytic chemical vapor deposition of CH4 over the MgO-based particles. MPCs with a high surface area of 443-578 m2/g were obtained through the heat treatment of well-mixed mesophase pitch-MgO (or MgO-CNT), followed by mild-acid treatment to remove the MgO and other catalyst components. All the materials (the precursors, nano-particles, and MPCs) were analyzed via powder X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, and high resolution transmission electron microscopy. The formation of the pore structure in the MPCs is discussed, and the potential application of the MPC-CNT composite is demonstrated through cyclic voltammetry.

  9. Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production

    SciTech Connect

    Villa, Alberto; Schiavoni, Marco; Chan-Thaw, Carine E.; Fulvio, Pasquale F.; Mayes, Richard T.; Dai, Sheng; More, Karren L.; Veith, Gabriel M.; Prati, Laura

    2015-06-18

    The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1% Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of Scontaining groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 8C and 7 bar H2) the catalyst shows high selectivity to g-valerolactone (GVL; >95%) and high stability on recycling. However, under more severe conditions (200 8C and pH2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.

  10. Acid-Functionalized Mesoporous Carbon: An Efficient Support for Ruthenium-Catalyzed γ-Valerolactone Production

    DOE PAGES

    Villa, Alberto; Schiavoni, Marco; Chan-Thaw, Carine E.; ...

    2015-06-18

    The hydrogenation of levulinic acid has been studied using Ru supported on ordered mesoporous carbons (OMCs) prepared by soft-templating. P- and S-containing acid groups were introduced by postsynthetic functionalization before the addition of 1% Ru by incipient wetness impregnation. These functionalities and the reaction conditions mediate the activity and selectivity of the levulinic acid hydrogenation. The presence of Scontaining groups (Ru/OMC-S and Ru/OMC-P/S) deactivates the Ru catalysts strongly, whereas the presence of P-containing groups (Ru/OMC-P) enhances the activity compared to that of pristine Ru/OMC. Under mild conditions (70 8C and 7 bar H2) the catalyst shows high selectivity to g-valerolactonemore » (GVL; >95%) and high stability on recycling. However, under more severe conditions (200 8C and pH2=40 bar) Ru/OMC-P is particularly able to promote GVL ring-opening and the consecutive hydrogenation to pentanoic acid.« less

  11. Adsorption equilibrium, kinetics and thermodynamics of dichloroacetic acid from aqueous solution using mesoporous carbon.

    PubMed

    Ding, Ying; Zhu, Jianzhong; Cao, Yang; Chen, Shenglu

    2014-08-01

    The presence of disinfection by-products, such as trihalomethanes and haloacetic acids in water, is believed to be harmful to human health. In this work, mesoporous carbon was synthesized with the evaporation-induced self-assembly method and employed to evaluate the effects of initial concentration, contact time, pH and temperature on the removal of dichloroacetic acid in batch experiments. Adsorption equilibrium was established in 480 min and the maximum adsorption (350mg/g) of dichloroacetic acid on the mesoporous carbon was observed to occur at 308 K and pH 3.0. Freundlich and Langmuir isotherms were used to analyse the equilibrium data at different temperatures; kinetic data were fitted to the pseudo-first-order and pseudo-second-order models and found that the adsorption capacity, mass transfer coefficient and diffusivity of dichloroacetic acid were directly affected by the physical and chemical parameters. In addition, the various thermodynamic parameters, such as Gibbs free energy (Delta G), enthalpy (Delta H = 54.35 kJmol-1) and entropy (Delta S = 258.36 Jmol-1 K-1) were calculated to analyse the adsorption process. The experimental results indicated that the mesoporous carbon was an excellent adsorbent for dichloroacetic acid removal from aqueous solutions.

  12. Mesoporous wormholelike carbon with controllable nanostructure for lithium ion batteries application

    SciTech Connect

    Yang, Xiaoqing; Li, Xinxi; Li, Zhenghui; Zhang, Guoqing; Wu, Dingcai

    2015-06-15

    Highlights: • Wormholelike carbon (WMC) with controllable nanostructure is prepared by sol–gel method. • The reversible capacity of WMC is much higher than that of many other reported nanocarbons. • The effect of pore diameter on Li storage capacity is investigated. - Abstract: A class of mesoporous wormholelike carbon (WMC) with controllable nanostructure was prepared by sol–gel method and then used as the anode material of lithium-ion batteries. Based on the experimental results, it is found that the nanostructure of the as-prepared WMC plays an important role in the electrochemical performances. A suitable mesopore size is necessary for a high performance carbon-based anode material since it can not only guarantee effective mass transport channels but also provide large surface area. As a result, F30 with a mesopore size of 4.4 nm coupled with high surface area of 1077 m{sup 2} g{sup −1} shows a reversible capacity of 630 mAh g{sup −1}, much higher than commercial graphite and many other reported nanocarbons.

  13. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhi; Chen, Li; Meng, Yan; Xie, Jun; Guo, Yong; Xiao, Dan

    2016-12-01

    Honey, a widely existent biomass, consists mainly of carbohydrate and other nitrogen-containing substances such as proteins, enzymes and organic acids. It can be mixed homogeneously with mesoporous silica template for its excellent water-solubility and moderate viscosity. In this work, honey was employed as a nitrogen-containing carbon precursor to prepare nitrogen-doped ordered mesoporous carbons (OMCs). The obtained honey derived mesoporous nitrogen-doped carbons (HMNCs) with dilated interlayer spacings of 0.387-0.395 nm, narrow pore size distributions centering at around 4 nm and satisfactory N contents of 1.38-4.32 wt% offer superb dual functionality for lithium ion battery (LIB) and sodium ion battery (NIB) anodes. Tested against Li, the optimized HMNC-700 delivers a superior reversible capacity of 1359 mA h g-1 after 10 cycles at 100 mA g-1 and excellent rate capability and cycling stability of 722 mA h g-1 after 200 cycles at 1 A g-1. For NIB applications, HMNC-700 offers a high initial reversible capacity of 427 mA h g-1 and stable reversible capacity of 394 mA h g-1 at 100 mA g-1.

  14. A facile method for fabricating TiO2@mesoporous carbon and three-layered nanocomposites

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Jin, Haibao; Zhu, Shenmin; Liu, Yunchun; Long, Mingce; Zhou, Yongfeng; Yan, Deyue

    2012-08-01

    Herein, we report a new and facile method for fabricating TiO2@mesoporous carbon hybrid materials. Uniform polydopamine (PDA) layers were coated onto the surface of titanate nanotubes (TNTs) and TiO2 nanorods (TNDs) through the spontaneous adhesion and self-polymerization of dopamine during the dipping process. Core-shell mesoporous carbon nanotubes with TiO2 nanorods or nanoparticles encapsulated inside (TiO2@MC) were then obtained by transforming PDA layers into carbonaceous ones through calcination in nitrogen at 800 °C. The thickness of the mesoporous carbon layers is tens of nanometers and can be controlled by adjusting the coated PDA layers through the self-polymerization reaction time. In addition, three-layered nanocomposites of TiO2@MC@MO (MO, metal oxide) can be readily prepared by utilizing PDA layers in TNTs@PDA or TNDs@PDA to adsorb the metal ions, followed by the calcination process.

  15. Nitrogen-doped ordered cubic mesoporous carbons as metal-free counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Shao, Leng-Leng; Liu, Yu-Ping; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-06-01

    N-doped ordered cubic mesoporous carbons (N-OCMCs) are synthesized by a one-pot aqueous route from resorcinol and hexamethylenetetramine (HMT) and applied as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The prepared N-OCMCs with ordered cubic mesoporous structure and large surface area offer appropriate electrolyte ions diffusion channels and abundant catalytically active sites for triiodide reduction. Moreover, the temperature dependence of nitrogen content and the nitrogen-doped types are demonstrated to play decisive roles in regulating the electrocatalytic activity of N-OCMC CEs and affecting the photovoltaic performance of DSSCs. The DSSCs based on the N-OCMC CEs achieve an optimum power conversion efficiency of 5.60%, as high as 86.7% of the cell based on the traditional Pt CE, due to that high N-doping amount, and particularly favorable pyridinic-N and graphtitic-N types promote the charge transport and transfer process of the carbon CE. The good catalytic performance could render N-OCMC as a cost-effective CE candidate to Pt in DSSC.

  16. Nanostructured nitrogen-doped mesoporous carbon derived from polyacrylonitrile for advanced lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhao, Xiaohui; Chauhan, Ghanshyam S.; Ahn, Jou-Hyeon

    2016-09-01

    Nitrogen doping in carbon matrix can effectively improve the wettability of electrolyte and increase electric conductivity of carbon by ensuring fast transfer of ions. We synthesized a series of nitrogen-doped mesoporous carbons (CPANs) via in situ polymerization of polyacrylonitrile (PAN) in SBA-15 template followed by carbonization at different temperatures. Carbonization results in the formation of ladder structure which enhances the stability of the matrix. In this study, CPAN-800, carbon matrix synthesized by the carbonization at 800 °C, was found to possess many desirable properties such as high specific surface area and pore volume, moderate nitrogen content, and highly ordered mesoporous structure. Therefore, it was used to prepare S/CPAN-800 composite as cathode material in lithium sulfur (Li-S) batteries. The S/CPAN-800 composite was proved to be an excellent material for Li-S cells which delivered a high initial discharge capacity of 1585 mAh g-1 and enhanced capacity retention of 862 mAh g-1 at 0.1 C after 100 cycles.

  17. Characterization and Bioavailability Study of Baicalin-mesoporous Carbon Nanopowder Solid Dispersion

    PubMed Central

    Cui, Li; Sune, E; Song, Jie; Wang, Jing; Jia, Xiao-bin; Zhang, Zhen-hai

    2016-01-01

    Background: Baicalin is the main bioactive constitute of the dried roots of Scutellaria baicalensis and possesses various biological activities. However, the poor water solubility and low oral bioavailability limit its efficacy. Objective: The present study was conducted to enhance the dissolution and oral bioavailability of baicalin (BA) through a novel mesoporous carbon nanopowder (MCN) drug carrier. Materials and Methods: Solid dispersions (SDs) of BA with MCN were prepared using a solvent evaporation method. The physical state of the formulations was investigated using SEM, differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD). The pharmaceutical performance of pure BA, physical mixture (PM) and SDs was evaluated by performing an in-vitro dissolution test. The pharmacokinetic studies were conducted in SD rats and the analysis of the biological samples was performed on an Acquity UPLC–MS system. The intestinal and renal toxicity test of MCN was also evaluated. Results: The drug release profile indicated that the BA dissolution rate from SDs with a BA/MCN ratio of 1:6 greatly increased in comparison with that of the pure crystalline drug. Furthermore, a pharmacokinetic analysis in rats showed that the BA area under the concentration–time curve for SDs of MCN/BA was 1.83 times larger than that of pure BA. In comparison with the pure drug, the MCN–BA system significantly shortened the time to Tmax and generated higher Cmax. There was no intestinal and renal toxicity of MCN. Conclusion: These results indicated that the oral bioavailability of BA was remarkably improved by the MCN carrier. Additionally, intestinal toxicity test showed that MCN produced no toxicity in the gastrointestinal tract. Our results show that MCN-based SDs could be used to enhance the bioavailability of drugs with poor water solubility. SUMMARY The drug release profile indicated that the BA dissolution rate from SDs with a BA/MCN ratio of 1:6 greatly increased in

  18. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

    PubMed

    Fang, Yin; Lv, Yingying; Che, Renchao; Wu, Haoyu; Zhang, Xuehua; Gu, Dong; Zheng, Gengfeng; Zhao, Dongyuan

    2013-01-30

    We report a new solution deposition method to synthesize an unprecedented type of two-dimensional ordered mesoporous carbon nanosheets via a controlled low-concentration monomicelle close-packing assembly approach. These obtained carbon nanosheets possess only one layer of ordered mesopores on the surface of a substrate, typically the inner walls of anodic aluminum oxide pore channels, and can be further converted into mesoporous graphene nanosheets by carbonization. The atomically flat graphene layers with mesopores provide high surface area for lithium ion adsorption and intercalation, while the ordered mesopores perpendicular to the graphene layer enable efficient ion transport as well as volume expansion flexibility, thus representing a unique orthogonal architecture for excellent lithium ion storage capacity and cycling performance. Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity of 1040 mAh/g at 100 mA/g, and they can retain at 833 mAh/g even after numerous cycles at varied current densities. Even at a large current density of 5 A/g, the reversible capacity is retained around 255 mAh/g, larger than for most other porous carbon-based anodes previously reported, suggesting a remarkably promising candidate for energy storage.

  19. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon.

    PubMed

    Saha, Dipendu; Deng, Shuguang

    2010-05-15

    Ordered mesoporous carbon was synthesized by a self-assembly technique and characterized with TEM, Raman spectroscopy, and nitrogen adsorption/desorption for its physical and pore textural properties. The high BET specific surface area (798 m(2)/g), uniform mesopore-size distribution with a median pore size of 62.6 Å, and large pore volume (0.87 cm(3)/g) make the ordered mesoporous carbon an ideal adsorbent for gas separation and purification applications. Adsorption equilibrium and kinetics of carbon dioxide, methane, nitrous oxide, and ammonia on the ordered mesoporous carbon were measured at 298 K and gas pressures up to 800 Torr. The adsorption equilibrium capacities on the ordered mesoporous carbon at 298 K and 800 Torr for ammonia, carbon dioxide, nitrous oxide, and methane were found to be 6.39, 2.39, 1.5, and 0.53 mmol/g, respectively. Higher adsorption uptakes of methane (3.26 mmol/g at 100 bar) and carbon dioxide (2.21 mmol/g at 13 bar) were also observed at 298 K and elevated pressures. Langmuir, Freundlich, and Toth adsorption equilibrium models were used to correlate all the adsorption isotherms, and a simplified gas diffusion model was applied to analyze the adsorption kinetics data collected at 298 K and four different gas pressures up to 800 Torr.

  20. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li-Ion Storage.

    PubMed

    Hu, Shan; Chen, Wen; Uchaker, Evan; Zhou, Jing; Cao, Guozhong

    2015-12-07

    MoS2 nanocrystals embedded in mesoporous carbon nanofibers are synthesized through an electrospinning process followed by calcination. The resultant nanofibers are 100-150 nm in diameter and constructed from MoS2 nanocrystals with a lateral diameter of around 7 nm with specific surface areas of 135.9 m(2)  g(-1) . The MoS2 @C nanofibers are treated at 450 °C in H2 and comparison samples annealed at 800 °C in N2 . The heat treatments are designed to achieve good crystallinity and desired mesoporous microstructure, resulting in enhanced electrochemical performance. The small amount of oxygen in the nanofibers annealed in H2 contributes to obtaining a lower internal resistance, and thus, improving the conductivity. The results show that the nanofibers obtained at 450 °C in H2 deliver an extraordinary capacity of 1022 mA h g(-1) and improved cyclic stability, with only 2.3 % capacity loss after 165 cycles at a current density of 100 mA g(-1) , as well as an outstanding rate capability. The greatly improved kinetics and cycling stability of the mesoporous MoS2 @C nanofibers can be attributed to the crosslinked conductive carbon nanofibers, the large specific surface area, the good crystallinity of MoS2 , and the robust mesoporous microstructure. The resulting nanofiber electrodes, with short mass- and charge-transport pathways, improved electrical conductivity, and large contact area exposed to electrolyte, permitting fast diffusional flux of Li ions, explains the improved kinetics of the interfacial charge-transfer reaction and the diffusivity of the MoS2 @C mesoporous nanofibers. It is believed that the integration of MoS2 nanocrystals and mesoporous carbon nanofibers may have a synergistic effect, giving a promising anode, and widening the applicability range into high performance and mass production in the Li-ion battery market.

  1. Controllable modification of nanostructured carbon with hollow macroporous core/mesoporous shell and its application as templates in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ren, Xiaona; Xia, Min; Yan, Qingzhi; Ge, Changchun

    2016-10-01

    Controllable modification of hydrophilic groups on tubular nanostructured carbon with hollow macroporous core/mesoporous shell (TNC-HMC/MS) was systematically studied and the mesoporous structure of TNC-HMC/MS has been kept. Different oxidants were used to modify the TNC-HMC/MS. Results revealed that the TNC-HMC/MS could be modified with carboxyl or hydroxy by different oxidants. More importantly, the BET/BJH results indicated that the mesoporous shell of TNC-HMC/MS has not been destroyed. In addition, water-soluble ammonium metatungstate has been encapsulated into the hollow core of TNC-HMC/MS and formed nanodot, bamboo-like and nanowire morphology.

  2. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode.

    PubMed

    Lim, Eunho; Kim, Haegyeom; Jo, Changshin; Chun, Jinyoung; Ku, Kyojin; Kim, Seongseop; Lee, Hyung Ik; Nam, In-Sik; Yoon, Songhun; Kang, Kisuk; Lee, Jinwoo

    2014-09-23

    Recently, hybrid supercapacitors (HSCs), which combine the use of battery and supercapacitor, have been extensively studied in order to satisfy increasing demands for large energy density and high power capability in energy-storage devices. For this purpose, the requirement for anode materials that provide enhanced charge storage sites (high capacity) and accommodate fast charge transport (high rate capability) has increased. Herein, therefore, a preparation of nanocomposite as anode material is presented and an advanced HSC using it is thoroughly analyzed. The HSC comprises a mesoporous Nb2O5/carbon (m-Nb2O5-C) nanocomposite anode synthesized by a simple one-pot method using a block copolymer assisted self-assembly and commercial activated carbon (MSP-20) cathode under organic electrolyte. The m-Nb2O5-C anode provides high specific capacity with outstanding rate performance and cyclability, mainly stemming from its enhanced pseudocapacitive behavior through introduction of a carbon-coated mesostructure within a voltage range from 3.0 to 1.1 V (vs Li/Li(+)). The HSC using the m-Nb2O5-C anode and MSP-20 cathode exhibits excellent energy and power densities (74 W h kg(-1) and 18,510 W kg(-1)), with advanced cycle life (capacity retention: ∼90% at 1000 mA g(-1) after 1000 cycles) within potential range from 1.0 to 3.5 V. In particular, we note that the highest power density (18,510 W kg(-1)) of HSC is achieved at 15 W h kg(-1), which is the highest level among similar HSC systems previously reported. With further study, the HSCs developed in this work could be a next-generation energy-storage device, bridging the performance gap between conventional batteries and supercapacitors.

  3. One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes.

    PubMed

    Orilall, M Christopher; Matsumoto, Futoshi; Zhou, Qin; Sai, Hiroaki; Abruña, Héctor D; DiSalvo, Francis J; Wiesner, Ulrich

    2009-07-08

    Catalyst-electrode design is crucial for the commercialization and widespread use of polymer electrolyte membrane fuel cells. There are considerable challenges in making less expensive, more durable, and more active catalysts. Herein, we report the one-pot synthesis of Pt and Pt-Pb nanoparticles incorporated into the pores of mesoporous niobium oxide-carbon composites. The self-assembly of block copolymers with niobium oxide and metal precursors results in an ordered mesostructured hybrid. Appropriate heat treatment of this hybrid produces highly crystalline, well-ordered mesoporous niobium oxide-carbon composites with Pt (or Pt-Pb) nanoparticles incorporated into the mesopores. The in situ-generated graphitic-like carbon material prevents the collapse of the mesostructure, while the metal oxide crystallizes at high temperatures and enhances the electrical conductivity of the final material. Formic acid electrooxidation with this novel material shows 4 times higher mass activities (3.3 mA/microg) and somewhat lower onset potentials (-0.24 V vs Ag/AgCl) than the best previously reported values employing Pt-Pb intermetallic nanoparticles supported on conducting carbon (0.85 mA/microg and -0.18 V, respectively).

  4. Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst.

    PubMed

    Duan, Feng; Yang, Yuezhu; Li, Yuping; Cao, Hongbin; Wang, Yi; Zhang, Yi

    2014-05-01

    Ordered mesoporous carbon supported iron catalysts (Fe/OMC) were prepared by the incipient wetness impregnation method and investigated in Fenton-like degradation of 4-chlorophenol (4CP) in this work. XRD and TEM characterization showed that the iron oxides were well dispersed on the OMC support and grew bigger with the increasing calcination temperature. The catalyst prepared with a lower calcination temperature showed higher decomposition efficiency towards 4CP and H2O2, but more metals were leached. The effect of different operational parameters such as initial pH, H2O2 dosage, and reaction temperature on the catalytic activity was evaluated. The results showed that 96.1% of 4CP and 47.4% of TOC was removed after 270 min at 30°C, initial pH of 3 and 6.6 mmol/L H2O2. 88% of 4CP removal efficiency was retained after three successive runs, indicating Fe/OMC a stable catalyst for Fenton reaction. 4CP was degraded predominately by the attack of hydroxyl radical formed on the catalyst surface and in the bulk solution due to iron leaching. Based on the degradation intermediates detected by high performance liquid chromatography, possible oxidation pathways were proposed during the 4CP degradation.

  5. A Flexible Platform Containing Graphene Mesoporous Structure and Carbon Nanotube for Hydrogen Evolution

    PubMed Central

    Zhang, Rujing; Li, Xiao; Zhang, Li; Lin, Shuyuan

    2016-01-01

    It is of great significance to design a platform with large surface area and high electrical conductivity for poorly conductive catalyst for hydrogen evolution reaction (HER), such as molybdenum sulfide (MoSx), a promising and cost‐effective nonprecious material. Here, the design and preparation of a free‐standing and tunable graphene mesoporous structure/single‐walled carbon nanotube (GMS/SWCNT) hybrid membrane is reported. Amorphous MoSx is electrodeposited on this platform through a wet chemical process under mild temperature. For MoSx@GMS/SWCNT hybrid electrode with a low catalyst loading of 32 μg cm−2, the onset potential is near 113 mV versus reversible hydrogen electrode (RHE) and a high current density of ≈71 mA cm−2 is achieved at 250 mV versus RHE. The excellent HER performance can be attributed to the large surface area for MoSx deposition, as well as the efficient electron transport and abundant active sites on the amorphous MoSx surface. This novel catalyst is found to outperform most previously reported MoSx‐based HER catalysts. Moreover, the flexibility of the electrode facilitates its stable catalytic performance even in extremely distorted states. PMID:27980998

  6. General synthesis of discrete mesoporous carbon microspheres through a confined self-assembly process in inverse opals.

    PubMed

    Sun, Zhenkun; Liu, Yong; Li, Bin; Wei, Jing; Wang, Minghong; Yue, Qin; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2013-10-22

    A general confined coassembly process has been demonstrated to produce discrete uniform mesoporous carbon microspheres with 0.8-1 μm particle size using 3-D-ordered macroporous silica as the template. The obtained mesoporous carbon microspheres (MC-MSs) have uniform and discrete spherical morphology, variable symmetry (hexagonal p6mm or cubic Im3m) of mesostructures, high specific surface areas (500-1100 m(2)/g), large pore volumes (0.6-2.0 cm(3)/g), and highly accessible large mesopores (7-10.3 nm). The particle size of the carbon microspheres can be easily tuned by simply using templates with different macropore sizes. It was found that the smaller MC-MSs (330 nm) with higher surface-to-volume ratio tend to shape into an integral monolithic MC-MS matrix and larger MC-MSs (>800 nm) with lower surface-to-volume ratio to discrete spherical morphology. This feature is attributed to the difference in shrinkage behavior of mesoporous carbon spheres confined in the macropores caused by the interaction between the silica wall and carbon microspheres. Adsorption experiments indicate that the cobalt-based nanoparticle-incorporated mesoporous carbon microspheres exhibit excellent size selectivity for protein adsorption in a complex solution and good magnetic separability for easy recycling.

  7. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    NASA Astrophysics Data System (ADS)

    Tong, Yue; Zhang, Min; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli

    2016-05-01

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N2 adsorption-desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO2-coated maghemite/CNTs nanoparticles (CNTs/Fe3O4@SiO2 composites) were synthesized by the combination of high temperature decomposition process and an sol-gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO2, respectively. The CNTs/Fe3O4@SiO2 composites revealed a core-shell structure, Then, CNTs/Fe3O4@mSiO2 was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature.

  8. Mesoporous graphene-like nanobowls as Pt electrocatalyst support for highly active and stable methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yan, Zaoxue; He, Guoqiang; Jiang, Zhifeng; Wei, Wei; Gao, Lina; Xie, Jimin

    2015-06-01

    Mesoporous graphene-like nanobowls (GLBs) with high surface area of 1091 m2 g-1, high pore volume of 2.7 cm3 g-1 and average pore diameter of 9.8 nm are synthesized through template method. The GLBs with inherent excellent electrical conductivity and chemical inertia show the properties of well mass transfer, poison resistance and stable loading of smaller Pt particles. Therefore, the Pt/GLB catalyst shows much higher activity and stability than that of commercial Pt/C (TKK) for methanol oxidation reaction (MOR). Therein, the peak current density on Pt/GLB (2075 mA mgPt-1) for MOR is 2.87 times that of commercial Pt/C (723 mA mgPt-1); and the onset potential for the MOR on the former is negatively shifted about 160 mV compared with that on the latter. The catalytic performances of the Pt/GLB are also better than those of the Pt loading on mesoporous amorphous carbon nanobowls (Pt/BLC), indicating promotion effect of graphite on Pt catalytic performance.

  9. Reduction of Plutonium in Acidic Solutions by Mesoporous Carbons

    SciTech Connect

    Parsons-Moss, Tashi; Jones, Stephen; Wang, Jinxiu; Wu, Zhangxiong; Uribe, Eva; Zhao, Dongyuan; Nitsche, Heino

    2015-12-19

    Batch contact experiments with several porous carbon materials showed that carbon solids spontaneously reduce the oxidation state of plutonium in 1-1.5 M acid solutions, without significant adsorption. The final oxidation state and rate of Pu reduction varies with the solution matrix, and also depends on the surface chemistry and surface area of the carbon. It was demonstrated that acidic Pu(VI) solutions can be reduced to Pu(III) by passing through a column of porous carbon particles, offering an easy alternative to electrolysis with a potentiostat.

  10. A direct and quantitative three-dimensional reconstruction of the internal structure of disordered mesoporous carbon with tailored pore size.

    PubMed

    Balach, Juan; Soldera, Flavio; Acevedo, Diego F; Mücklich, Frank; Barbero, César A

    2013-06-01

    A new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m(2)/g.

  11. Investigation of MnO2 and Ordered Mesoporous Carbon Composites as Electrocatalysts for Li-O2 Battery Applications

    PubMed Central

    Chin, Chih-Chun; Yang, Hong-Kai; Chen, Jenn-Shing

    2016-01-01

    The electrocatalytic activities of the MnO2/C composites are examined in Li-O2 cells as the cathode catalysts. Hierarchically mesoporous carbon-supported manganese oxide (MnO2/C) composites are prepared using a combination of soft template and hydrothermal methods. The composites are characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, small angle X-ray scattering, The Brunauer–Emmett–Teller (BET) measurements, galvanostatic charge-discharge methods, and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests indicate that the MnO2/C composites have excellent catalytic activity towards oxygen reduction reactions (ORRs) due to the larger surface area of ordered mesoporous carbon and higher catalytic activity of MnO2. The O2 solubility, diffusion rates of O2 and O2•− coefficients (DO2 and DO2•−), the rate constant (kf) for producing O2•−, and the propylene carbonate (PC)-electrolyte decomposition rate constant (k) of the MnO2/C material were measured by RRDE experiments in the 0.1 M TBAPF6/PC electrolyte. The values of kf and k for MnO2/C are 4.29 × 10−2 cm·s−1 and 2.6 s−1, respectively. The results indicate that the MnO2/C cathode catalyst has higher electrocatalytic activity for the first step of ORR to produce O2•− and achieves a faster PC-electrolyte decomposition rate. PMID:28344278

  12. Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities

    PubMed Central

    Xia, Xin; Pethe, Kevin; Kim, Ryangyeo; Ballell, Lluis; Barros, David; Cechetto, Jonathan; Jeon, HeeKyoung; Kim, Kideok; Garcia-Bennett, Alfonso E.

    2014-01-01

    Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB). Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

  13. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  14. Mesoporous and carbon hybrid structures from layered molecular precursors for Li-ion battery application: the case of β-In2S3.

    PubMed

    Zhang, Ming-Jian; Tian, Lei-Lei; Li, Shuankui; Lin, Ling-Piao; Pan, Feng

    2016-04-04

    A new method was demonstrated to construct mesoporous and carbon hybrid structures of β-In2S3 from the thermal decomposition of layered molecular precursors. When applied to LIBs, they all exhibit good cycling stability and excellent rate performance due to the great uniformity of mesopores and pyrolysis carbon distributed in the materials.

  15. Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid

    PubMed Central

    Lee, Dong-Wook; Jin, Min-Ho; Park, Ji Chan; Lee, Chun-Boo; Oh, Duckkyu; Lee, Sung-Wook; Park, Jin-Woo; Park, Jong-Soo

    2015-01-01

    The development of easier, cheaper, and more ecofriendly synthetic methods for mesoporous materials remains a challenging topic to commercialize them, and the transformation of waste glycerol, as a biodiesel byproduct, into something useful and salable is one of the pending issues to be resolved. Here we first report that mesoporous silica (KIE-6) and carbon (KIE-7) can be simultaneously synthesized by using cheap and ecofriendly crude-waste-glycerol of biodiesel with or without glycerol purification, and we demonstrated the excellent performance of the mesoporous material as a catalyst support for formic acid decomposition. As a result, Pd-MnOx catalysts supported on NH2-functionalized KIE-6 showed the highest catalytic activity (TOF: 540.6 h−1) ever reported for room-temperature formic acid decomposition without additives. Moreover, we conducted life-cycle assessment (LCA) from biomass cultivation through biodiesel production to KIE-6 and KIE-7 preparation, and it was confirmed that CO2 emission during synthesis of KIE-6 and KIE-7 could be reduced by 87.1% and 85.7%, respectively. We believe that our study suggested more ecofriendly and industry-friendly approaches for preparation of mesoporous materials, and utilization of waste glycerol. PMID:26515193

  16. Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Wook; Jin, Min-Ho; Park, Ji Chan; Lee, Chun-Boo; Oh, Duckkyu; Lee, Sung-Wook; Park, Jin-Woo; Park, Jong-Soo

    2015-10-01

    The development of easier, cheaper, and more ecofriendly synthetic methods for mesoporous materials remains a challenging topic to commercialize them, and the transformation of waste glycerol, as a biodiesel byproduct, into something useful and salable is one of the pending issues to be resolved. Here we first report that mesoporous silica (KIE-6) and carbon (KIE-7) can be simultaneously synthesized by using cheap and ecofriendly crude-waste-glycerol of biodiesel with or without glycerol purification, and we demonstrated the excellent performance of the mesoporous material as a catalyst support for formic acid decomposition. As a result, Pd-MnOx catalysts supported on NH2-functionalized KIE-6 showed the highest catalytic activity (TOF: 540.6 h-1) ever reported for room-temperature formic acid decomposition without additives. Moreover, we conducted life-cycle assessment (LCA) from biomass cultivation through biodiesel production to KIE-6 and KIE-7 preparation, and it was confirmed that CO2 emission during synthesis of KIE-6 and KIE-7 could be reduced by 87.1% and 85.7%, respectively. We believe that our study suggested more ecofriendly and industry-friendly approaches for preparation of mesoporous materials, and utilization of waste glycerol.

  17. Spherical nitrogen-doped hollow mesoporous carbon as an efficient bifunctional electrocatalyst for Zn-air batteries

    NASA Astrophysics Data System (ADS)

    Hadidi, Lida; Davari, Elaheh; Iqbal, Muhammad; Purkait, Tapas K.; Ivey, Douglas G.; Veinot, Jonathan G. C.

    2015-12-01

    Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural features of these HMCs were evaluated using scanning electron microscopy and transmission electron microscopy and the N-doping (7.1 at%) was confirmed by X-ray photoelectron spectroscopy (XPS). The oxygen reduction/evolution reaction (ORR/OER) performance of N-doped HMC was evaluated using rotating disk electrode (RDE) voltammetry in an alkaline electrolyte. N-doped HMC demonstrated a high ORR onset potential of -0.055 V (vs. Hg/HgO) and excellent stability. The outstanding bifunctional activity was implemented in a practical Zn-air battery (ZAB), which exhibited a small charge-discharge voltage polarization of 0.89 V and high stability over repeated cycling.Materials based upon porous carbon have gained considerable attention due to their high surface area, electric conductivity, thermal and chemical stability, low density, and availability. These superior properties make them ideal for diverse applications. Doping these carbon nanostructures holds promise of designing the properties of these structures and opening the door to practical applications. Herein, we report the preparation of hollow N-doped mesoporous carbon (HMC) spheres fabricated via polymerization and carbonization of dopamine on a sacrificial spherical SiO2 template that is removed upon hydrofluoric acid etching. The morphology and structural

  18. Mesoporous TiO2@N-doped carbon composite nanospheres synthesized by the direct carbonization of surfactants after sol-gel process for superior lithium storage.

    PubMed

    Zhu, Hongwei; Jing, Yunke; Pal, Manas; Liu, Yupu; Liu, Yang; Wang, Jinxiu; Zhang, Fan; Zhao, Dongyuan

    2017-01-26

    Here, we report mesoporous TiO2@N-doped carbon composite nanospheres synthesized via a double-surfactant-assisted assembly sol-gel process followed by sequential carbonization of surfactants under a N2 atmosphere. The resulting TiO2@N-doped C composite nanospheres are composed of uniformly distributed TiO2 nanocrystals with a diameter of ∼8 nm coated by a N-doped carbon layer that was formed by surfactants. Moreover, a large number of connected mesopores were observed in the nanospheres after high-temperature carbonization treatment. The synthesized nanospheres possess a large specific surface area (∼120 m(2) g(-1)) and a large pore size (4-40 nm), with a well-defined spherical structure and a diameter in the nanoscale range. As an anode material for lithium-ion batteries (LIB), the mesoporous composite nanospheres delivered a reversible capacity of ∼117 mA h g(-1) after 2000 cycles at a current rate as high as 10 C, as well as superior rate capability. The N-doped carbon layers greatly improved the overall electrical conductivity of the mesoporous TiO2 nanospheres. This study provides a remarkable synthetic route for the preparation of mesoporous TiO2-based N-doped carbon composite materials as high-performance anode materials in LIBs.

  19. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries

    SciTech Connect

    Dai, Sheng; Shao, Yuyan; Wang, Xiqing; Engelhard, Mark H; Wang, Congmin; Liu, Jun; YANG, ZHENGUO; Lin, Yuehe

    2010-01-01

    We demonstrate an excellent performance of nitrogen-doped mesoporous carbon (N-MPC) for energy storage in vanadium redox flow batteries. Mesoporous carbon (MPC) is prepared using a soft-template method and doped with nitrogen by heat-treating MPC in NH{sub 3}. N-MPC is characterized with X-ray photoelectron spectroscopy and transmission electron microscopy. The redox reaction of [VO]{sup 2+}/[VO{sub 2}]{sup +} is characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The electrocatalytic kinetics of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is significantly enhanced on N-MPC electrode compared with MPC and graphite electrodes. The reversibility of the redox couple [VO]{sup 2+}/[VO{sub 2}]{sup +} is greatly improved on N-MPC (0.61 for N-MPC vs. 0.34 for graphite), which is expected to increase the energystorage efficiency of redoxflowbatteries. Nitrogen doping facilitates the electron transfer on electrode/electrolyte interface for both oxidation and reduction processes. N-MPC is a promising material for redoxflowbatteries. This also opens up new and wider applications of nitrogen-doped carbon.

  20. Electrochemical capacitor performance of hydrous ruthenium oxide/mesoporous carbon composite electrodes

    NASA Astrophysics Data System (ADS)

    Jang, Jong H.; Han, Sangjin; Hyeon, Taeghwan; Oh, Seung M.

    Ruthenium/carbon composite materials are prepared by impregnating ruthenium(III) acetylacetonate into a mesoporous carbon (average pore diameter=12 mn, pore volume=3.6 cm 3 g -1) and then heat treatment at 320 °C for 2 h under an argon atmosphere. The metallic ruthenium nanoparticles are converted to pseudo-capacitive hydrous ruthenium oxide by electrochemical oxidation at 0.75 V (versus SCE) for 2 h in 2.0 M H 2SO 4. The specific capacitance of the composite electrodes, which is the sum of the double-layer capacitance of mesoporous carbon and the pseudo-capacitance of hydrous ruthenium oxide, reaches 243 F g -1 with heavy loading. As the loading is increased, however, the degree of ruthenium utilization for a pseudo-capacitor becomes poorer, presumably due to a limited conversion to the hydrous oxide form. The rate capability of composite electrodes also decreases with increase in ruthenium loading, due to an increase in both the equivalent series resistance (ESR) and the overall capacitance value. The ESR enlargement is caused mainly an increase in the electrolyte resistance within pores which, in turn, results from a pore narrowing with ruthenium loading Hindered ionic motion in narrowed pores can explain this feature. An increase in the RC time constant with ruthenium loading is further verified by ac impedance measurements.

  1. Flexible carbon cloth electrode modified by hollow core-mesoporous shell carbon as a novel efficient bio-anode for biofuel cell.

    PubMed

    Olyveira, Gabriel M; Kim, Jung Ho; Martins, Marccus V A; Iost, Rodrigo M; Chaudhari, Kiran N; Yu, Jong-Sung; Crespilho, Frank N

    2012-01-01

    A new approach is described to produce an efficient electrode material for biofuel cells using flexible carbon cloth (FCC) and hollow core-mesoporous shell carbon (HCMSC) nanospheres as bio-anode materials. The bio-electrochemical activity of glucose oxidase (GOx) enzyme adsorbed on this bio-anode was evaluated, with the maximum anodic current density varying from 80 microA cm(-2) to 180 microA cm-2 for glucose concentrations up to 5.0 mmol L(-1) for the FCC modified electrode with HCMSCs. The open circuit cell voltage was E(0) = 380 mV, and the catalytic electro-oxidation current of glucose reached 0.1 mA cm(-2) at 0.0 V versus Ag/AgCl. This new system employing HCMSC-based FCC is promising toward novel bio-anodes for biofuel cells using glucose as a fuel.

  2. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%.

  3. Gold and palladium adsorption from leached electronic scrap using ordered mesoporous carbon nanoscaffolds

    SciTech Connect

    McDowell, Rocklan; Dutech, Guy

    2014-09-01

    Ordered mesoporous carbon (OMC) nanoscaffolds are engineered agglomerates of carbon nanotubes held together by small carbon nanofibers with uniform pore sizes, high pore volume, and high channel permeability. These materials exhibit very high affinity for the adsorption of gold from aqueous acidic mixtures. The efficiency of gold recovery is comparable to those typically accomplished using biopolymer-based adsorbents. The adsorption efficiency for other precious metals such as palladium and platinum is lower. Studies on the precious metal (Au, Pd) adsorption on OMC materials from actual liquors of leached electronics will be presented. Adsorption properties will be compared for several different sorbents used for the recovery of precious metals. The leach liquor compositions for three different types of electronic scrap materials (personal computer board, cell phone and tv input/output board) will be presented. The sorption efficiencies for Au, Pd, together with a spectrum of competing and non-competing metals, from such leach mixtures will be compared.

  4. Mesoporous carbon adsorbents from melamine-formaldehyde resin using nanocasting technique for CO2 adsorption.

    PubMed

    Goel, Chitrakshi; Bhunia, Haripada; Bajpai, Pramod K

    2015-06-01

    Mesoporous carbon adsorbents, having high nitrogen content, were synthesized via nanocasting technique with melamine-formaldehyde resin as precursor and mesoporous silica as template. A series of adsorbents were prepared by varying the carbonization temperature from 400 to 700°C. Adsorbents were characterized thoroughly by nitrogen sorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), elemental (CHN) analysis, Fourier transform infrared (FTIR) spectroscopy and Boehm titration. Carbonization temperature controlled the properties of the synthesized adsorbents ranging from surface area to their nitrogen content, which play major role in their application as adsorbents for CO2 capture. The nanostructure of these materials was confirmed by XRD and TEM. Their nitrogen content decreased with an increase in carbonization temperature while other properties like surface area, pore volume, thermal stability and surface basicity increased with the carbonization temperature. These materials were evaluated for CO2 adsorption by fixed-bed column adsorption experiments. Adsorbent synthesized at 700°C was found to have the highest surface area and surface basicity along with maximum CO2 adsorption capacity among the synthesized adsorbents. Breakthrough time and CO2 equilibrium adsorption capacity were investigated from the breakthrough curves and were found to decrease with increase in adsorption temperature. Adsorption process for carbon adsorbent-CO2 system was found to be reversible with stable adsorption capacity over four consecutive adsorption-desorption cycles. From three isotherm models used to analyze the equilibrium data, Temkin isotherm model presented a nearly perfect fit implying the heterogeneous adsorbent surface.

  5. Magnetic motive, ordered mesoporous carbons with partially graphitized framework and controllable surface wettability: preparation, characterization and their selective adsorption of organic pollutants in water

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Liu, Chen; Kong, Weiping; Qi, Chenze

    2016-06-01

    Magnetically active, ordered and stable mesoporous carbons with partially graphitized networks and controllable surface wettability (PR-Fe-P123-800 and PR-Ni-P123-800) have been synthesized through direct carbonization of Fe or Ni functionalized, and ordered mesoporous polymers at 800°C, which could be synthesized from self assembly of resol (phenol/formaldehyde) with block copolymer template (P123) in presence of Fe3+ or Ni2+, and hydrothermal treatment at 200°C. PR-Fe-P123-800 and PR-Ni-P123-800 possess ordered and uniform mesopores, large BET surface areas, good stabilities, controllable surface wettability and partially graphitized framework. The above structural characteristics result in their enhanced selective adsorption property and good reusability for organic pollutants such as RhB, p-nitrophenol and n-heptane in water, which could be easily regenerated through separation under constant magnetic fields and washing with ethanol solvent. The unique magnetically active and adsorptive property found in PR-Fe-P123-800 and PR-Ni-P123-800 will be very important for them to be used as efficient absorbents for removal of various organic pollutants in water.

  6. Periodic Mesoporous Organosilica with a Basic Urea-Derived Framework for Enhanced Carbon Dioxide Capture and Conversion Under Mild Conditions.

    PubMed

    Liu, Mengshuai; Lu, Xingyuan; Shi, Lei; Wang, Fangxiao; Sun, Jianmin

    2017-03-22

    A periodic mesoporous organosilica with a basic urea-derived framework (PMO-UDF) was prepared and characterized thoroughly. The PMO-UDF showed an enhanced CO2 capture capacity at low pressure (≤1 atm) and an exceptional catalytic activity in CO2 coupling reactions with various epoxides to yield the corresponding cyclic carbonates under mild conditions because of the presence of a high surface area, basic pyridine units, and multiple hydrogen-bond donors. The highly stable catalyst could be reused at least six successive times without a significant decrease of the catalytic efficiency or structural deterioration, thus the PMO-UDF composite is considered as a promising material for CO2 capture and conversion.

  7. Dynamics of water confined in mesoporous magnesium carbonate

    NASA Astrophysics Data System (ADS)

    Soininen, Antti J.; Appavou, Marie-Sousai; Frykstrand, Sara; Welch, Ken; Khaneft, Marina; Kriele, Armin; Bellissent-Funel, Marie-Claire; Strømme, Maria; Wuttke, Joachim

    2016-12-01

    We have measured the dynamics of water confined in a porous magnesium carbonate material, Upsalite®, using the high-resolution neutron backscattering spectrometer SPHERES. We found quasielastic scattering that does not flatten out up to 360 K, which means that the dynamics of water are much slower than in other matrix materials. Specifically, a single Lorentzian line could be fitted to the quasielastic part of the acquired spectra between 220 and 360 K. This, accompanied by an elastic line from dynamically frozen water present at all experimental temperatures, even above the melting point, signaled a significant amount of bound or slow water.

  8. Adsorption of microcystin-LR on mesoporous carbons and its potential use in drinking water source.

    PubMed

    Park, Jeong-Ann; Jung, Sung-Mok; Yi, In-Geol; Choi, Jae-Woo; Kim, Song-Bae; Lee, Sang-Hyup

    2017-06-01

    Microcystin-LR (MC-LR) is a common toxin derived from cyanobacterial blooms an effective, rapid and non-toxic method needs to be developed for its removal from drinking water treatment plants (DWTP). For an adsorption-based method, mesoporous carbon can be a promising supplemental adsorbent. The effect of mesoporous carbon (MC1, MC2, and MC3) properties and water quality parameters on the adsorption of MC-LR were investigated and the results were analyzed by kinetic, isotherm, thermodynamic, Derjaguin-Landau-Verwey-Overbeek (DLVO), and intraparticle diffusion models. MC1 was the most appropriate type for the removal of MC-LR with a maximum adsorption capacity of 35,670.49 μg/g. Adsorption of MC-LR is a spontaneous reaction dominated by van der Waals interactions. Pore sizes of 8.5-14 nm enhance the pore diffusion of MC-LR from the surface to the mesopores of MC1. The adsorption capacity was not sensitive to changes in the pH (3.2-8.0) and the existence of organic matter (2-5 mg/L). Furthermore, the final concentration of MC-LR was below the WHO guideline level after a 10-min reaction with 20 mg/L of MC1 in the Nak-Dong River, a drinking water source. The MC-LR adsorption mainly competed with humic substances (500-1000 g/mole); however, they did not have a great effect on adsorption.

  9. High-activity mesoporous Pt/Ru catalysts for methanol oxidation.

    PubMed

    Franceschini, Esteban A; Bruno, Mariano M; Williams, Federico J; Viva, Federico A; Corti, Horacio R

    2013-11-13

    High activity mesoporous Pt/Ru catalysts with 2D-hexagonal structure were synthesized using a triblock poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymer (Pluronic F127) template. The normalized mass activities for the methanol oxidation reaction (MOR) of the Pt/Ru catalysts with a regular array of pores is higher than those reported for nanoparticulated Pt/Ru catalysts. Different kinetic parameters, as Tafel slope and activation energy, were obtained for the MOR on the mesoporous catalysts. Results indicated that catalysts performance depends on pore size. Mass activities and the CO2 conversion efficiency for large pore size mesoporous catalysts (10 nm) are greater than those reported for smaller pore size mesoporous catalysts with similar composition. The effect of pore size on catalysts performance is related to the greater accessibility of methanol to the active areas inside large pores. Consequently, the overall residence time of methanol increases as compared with mesoporous catalyst with small pores.

  10. Metal free nitrogen doped hollow mesoporous graphene-analogous spheres as effective electrocatalyst for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Meng, Hui; Xie, Fangyan; Yuan, Xiaoli; Yu, Wendan; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped hollow mesoporous carbon spheres has been synthesized from mesoporous silica spheres using glycine as carbon and nitrogen precursor. The wall of the spheres is composed by broken graphene. The metal free nitrogen-doped hollow mesoporous carbon spheres are proven to be active electrocatalyst for the oxygen reduction reaction in alkaline solution. A unique advantage of the nitrogen-doped hollow mesoporous carbon sphere is its methanol-tolerant property because of the absence of active metal. The catalytic activity is ascribed to the pyridinic-nitrogen formed during pyrolysis and the graphene-like structure. To the best of our knowledge this is the first report on the nitrogen-doped hollow mesoporous carbon sphere as a metal-free electrocatalyst for the oxygen reduction reaction which is an important reaction in fuel cell. The prepared mesoporous carbon material can also be used as catalyst support and find application both in the anode and cathode of fuel cell.

  11. Electrospun highly ordered mesoporous silica-carbon composite nanofibers for rapid extraction and prefractionation of endogenous peptides.

    PubMed

    Zhu, Gang-Tian; Chen, Xi; He, Xiao-Mei; Wang, Han; Zhang, Zheng; Feng, Yu-Qi

    2015-03-09

    A simple method was developed for the preparation of ordered mesoporous silica-carbon composite nanofibers (OMSCFs). The OMSCFs exhibited high carbon content, continuously long fibrous properties, uniform accessible mesopores, and a large surface area. The OMSCFs were also found to have ion-exchange capacity. On the basis of the size-exclusion effect of the mesopores and mixed-mode hydrophobic/ion-exchange interactions, the OMSCFs were applied for rapid enrichment of endogenous peptides by using a miniaturized solid-phase extraction format. The adsorption mechanism was studied, and the eluting solution was optimized with standard peptide/protein solutions and protein digests. Employing a successive three-step elution strategy, followed by LC-MS/MS analysis, led to excellent performance with this approach in the extraction and prefractionation of peptides from human serum.

  12. Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Huo, Kaifu; An, Weili; Fu, Jijiang; Gao, Biao; Wang, Lei; Peng, Xiang; Cheng, Gary J.; Chu, Paul K.

    2016-08-01

    Nitrogen-doped mesoporous carbon hollow spheres (N-MCHSs) were prepared using mesoporous silica hollow spheres as template and dopamine as carbon precursor. The N-MCHSs demonstrate high specific surface area and vegetable sponge-like mesoporous shell with interconnected "carbon bridges", facilitating continuous electron transport and Li ion diffusion, and making the whole structure more stable. The influence of N contents and N-bonding configuration on the Li storage of N-MCHSs is discussed. The N-MCHSs carbonized at 800 °C demonstrate high reversible capacity and excellent rate performance, delivering a capacity of 485 mAh g-1 at a current of 0.5 A g-1 after 1,100 cycles. Even up to 4.0 A g-1, a high capacity of 214 mAh g-1 can be remained. The high electrochemical performance of N-MCHSs can be ascribed to mesoporous carbon hollow spheres structure and high level pyridinic nitrogen doping.

  13. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations.

    PubMed

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-12-21

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by (13)C and (1)H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required.

  14. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    NASA Astrophysics Data System (ADS)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-12-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required.

  15. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    PubMed Central

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  16. Hierarchically designed three-dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage.

    PubMed

    Yang, Yanbing; Li, Peixu; Wu, Shiting; Li, Xinyang; Shi, Enzheng; Shen, Qicang; Wu, Dehai; Xu, Wenjing; Cao, Anyuan; Yuan, Quan

    2015-04-13

    Mesoporous carbon (m-C) has potential applications as porous electrodes for electrochemical energy storage, but its applications have been severely limited by the inherent fragility and low electrical conductivity. A rational strategy is presented to construct m-C into hierarchical porous structures with high flexibility by using a carbon nanotube (CNT) sponge as a three-dimensional template, and grafting Pt nanoparticles at the m-C surface. This method involves several controllable steps including solution deposition of a mesoporous silica (m-SiO2 ) layer onto CNTs, chemical vapor deposition of acetylene, and etching of m-SiO2 , resulting in a CNT@m-C core-shell or a CNT@m-C@Pt core-shell hybrid structure after Pt adsorption. The underlying CNT network provides a robust yet flexible support and a high electrical conductivity, whereas the m-C provides large surface area, and the Pt nanoparticles improves interfacial electron and ion diffusion. Consequently, specific capacitances of 203 and 311 F g(-1) have been achieved in these CNT@m-C and CNT@m-C@Pt sponges as supercapacitor electrodes, respectively, which can retain 96 % of original capacitance under large degree compression.

  17. Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon for highly effective adsorption of rhodamine B

    NASA Astrophysics Data System (ADS)

    Tang, Lin; Cai, Ye; Yang, Guide; Liu, Yuanyuan; Zeng, Guangming; Zhou, Yaoyu; Li, Sisi; Wang, Jiajia; Zhang, Sheng; Fang, Yan; He, Yibin

    2014-09-01

    Cobalt nanoparticles-embedded magnetic ordered mesoporous carbon (Co/OMC), prepared through a simple method involving infusing and calcination, was used as a highly effective adsorbent for rhodamine B (Rh B) removal. Several techniques, including SEM, HRTEM, nitrogen adsorption-desorption isotherms, XRD, Raman spectra, EDX, zeta potential and VSM measurement, were applied to characterize the adsorbent. Batch tests were conducted to investigate the adsorption performance. The adsorption capacity of the resultant adsorbent was relatively high compared with raw ordered mesoporous carbon (OMC) and reached an equilibrium value of 468 mg/g at 200 mg/L initial Rh B concentration. Removal efficiency even reached 96% within 25 min at 100 mg/L initial Rh B concentration. Besides, the adsorption amount increased with the increase of solution pH, adsorbent dose and initial Rh B concentration. Kinetics study showed that the adsorption agreed well with pseudo-second-order model (R2 = 0.999) and had a significant correlation with intra-particle diffusion model in the both two adsorption periods. Furthermore, thermodynamics research indicated that the adsorption process was endothermic and spontaneous in nature. The adsorption isotherms fitted well with Langmuir model, demonstrating the formation of mono-molecular layer on the surface of Co/OMC during adsorption process. The results confirmed that Co/OMC has the potential superiority in removal of Rh B from aqueous solution.

  18. Preferential adsorption of pentachlorophenol from chlorophenols-containing wastewater using N-doped ordered mesoporous carbon.

    PubMed

    Yang, Bin; Liu, Yunpeng; Li, Zhongjian; Lei, Lecheng; Zhou, Jie; Zhang, Xingwang

    2016-01-01

    Preferential removal of pentachlorophenol (PCP) from chlorophenols-containing wastewater has been attracted more attentions in wastewater treatment, since it is one of the most toxic pollutants. The adsorbent of N-doped ordered mesoporous carbon (M-OMC) with high BET surface area of 1901 m(2)/g, large pore volume of 1.64 cm(3)/g and uniform pore size of 3.45 nm has been successfully synthesized via evaporation-induced self-assembly (EISA) method. The effects of solution pH, pore structure of adsorbent and their surface chemical properties on PCP adsorption by M-OMC were investigated in comparison with ordered mesoporous carbon (OMC), and much higher PCP adsorption capacities of M-OMC were obtained. The significantly preferential adsorption of PCP was achieved in the treatment of tri-component wastewater including PCP, p-chlorophenol (CP) and 2.4.6-trichlorophenol (TCP), and its adsorption process well fitted the pseudo-second-order kinetics model and the Langmuir isotherm. The initial sorption rate of PCP was 103.5 μmol/(g/min), which was 2.97 times of TCP. It may be attributed to the intensification of π-π interaction between PCP and M-OMC with the nitrogen functional groups. Therefore, M-OMC is promising for removal of PCP in the adsorption pretreatment of chlorophenols-containing wastewater.

  19. Preparation and supercapacitive behaviors of the ordered mesoporous/microporous chromium carbide-derived carbons

    NASA Astrophysics Data System (ADS)

    Wu, Chun; Gao, Jiao; Zhao, Qinglan; Zhang, Youwei; Bai, Yansong; Wang, Xingyan; Wang, Xianyou

    2014-12-01

    A series of ordered mesoporous/microporous carbon materials derived from chromium carbide-derived carbons (CDCs) are prepared by nanocasting the chromic acetate and furfuryl alcohol precursor into SBA-15 and subsequent chlorination. The structure and morphology of the CDCs are characterized by N2 adsorption/desorption isotherm, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that all of the synthesized CDCs present large specific surface area and pore volume. Especially, the CDCs-2 prepared at the mass ratio of 1/1 (chromic acetate/furfuryl alcohol) exhibits the chain-like morphology with high surface area (1236 m2 g-1), large pore volume (0.76 cm3 g-1), and the good mesopore size centered at 3.43 nm. The electrochemical properties of all the CDCs are studied by cyclic voltammetry, constant current charge/discharge, electrochemical impedance spectroscopy and cycle life measurements in 6 M KOH electrolyte. The results display that the sample CDCs-2 exhibits a high capacitance of 242.7 F g-1 at the current density of 1 A g-1 and good cycling stability with coulombic efficiency of 100% over 10000 cycles.

  20. Electrochemical control of ion transport through a mesoporous carbon membrane

    SciTech Connect

    Surwade, Sumedh P; Chai, Songhai; Choi, Jai-Pil; Wang, Xiqing; Lee, Jeseung; Vlassiouk, Ivan V; Mahurin, Shannon Mark; Dai, Sheng

    2014-01-01

    The transport of fluids through nanometer scale channels typically on the order of 1 -100 nm often exhibit unique properties compared to the bulk fluid. These phenomena occur because the channel dimensions and molecular size become comparable to the range of several important forces including electrostatic and van der Waals forces. Small changes in properties such as the electric double layer or surface charge can significantly affect molecular transport through the channels. Based on these emerging properties, a variety of nanofluidic devices such as nanofluidic transistors, nanofluidic diodes or lab-on-a-chip devices have been developed3-7 with a diverse range of applications including water purification, biomolecular sensing, DNA separation, and rectified ion transport. Nanofluidic devices are typically fabricated using expensive lithography techniques or sacrificial templates. Here we report a carbon-based, three-dimensional nanofluidic transport membrane that enables gated, or on/off, control of the transport of organic molecular species and metal ions using an applied electrical potential. In the absence of an applied potential, both cationic and anionic molecules freely diffuse across the membrane via a concentration gradient. However, when an electrochemical potential is applied, the transport of ions through the membrane is inhibited.

  1. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Deyang; Yan, Hailong; Lu, Yang; Qiu, Kangwen; Wang, Chunlei; Tang, Chengchun; Zhang, Yihe; Cheng, Chuanwei; Luo, Yongsong

    2014-03-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications.

  2. Hierarchical mesoporous nickel cobaltite nanoneedle/carbon cloth arrays as superior flexible electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Hierarchical mesoporous NiCo2O4 nanoneedle arrays on carbon cloth have been fabricated by a simple hydrothermal approach combined with a post-annealing treatment. Such unique array nanoarchitectures exhibit remarkable electrochemical performance with high capacitance and desirable cycle life at high rates. When evaluated as an electrode material for supercapacitors, the NiCo2O4 nanoneedle arrays supported on carbon cloth was able to deliver high specific capacitance of 660 F g-1 at current densities of 2 A g-1 in 2 M KOH aqueous solution. In addition, the composite electrode shows excellent mechanical behavior and long-term cyclic stability (91.8% capacitance retention after 3,000 cycles). The fabrication method presented here is facile, cost-effective, and scalable, which may open a new pathway for real device applications. PMID:24661431

  3. Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries.

    PubMed

    Wang, Bo; Xu, Binghui; Liu, Tiefeng; Liu, Peng; Guo, Chenfeng; Wang, Shuo; Wang, Qiuming; Xiong, Zhigang; Wang, Dianlong; Zhao, X S

    2014-01-21

    In this work, mesoporous carbon-coated LiFePO4 nanocrystals further co-modified with graphene and Mg(2+) doping (G/LFMP) were synthesized by a modified rheological phase method to improve the speed of lithium storage as well as cycling stability. The mesoporous structure of LiFePO4 nanocrystals was designed and realized by introducing the bead milling technique, which assisted in forming sucrose-pyrolytic carbon nanoparticles as the template for generating mesopores. For comparison purposes, samples modified only with graphene (G/LFP) or Mg(2+) doping (LFMP) as well as pure LiFePO4 (LFP) were also prepared and investigated. Microscopic observation and nitrogen sorption analysis have revealed the mesoporous morphologies of the as-prepared composites. X-ray diffraction (XRD) and Rietveld refinement data demonstrated that the Mg-doped LiFePO4 is a single olivine-type phase and well crystallized with shortened Fe-O and P-O bonds and a lengthened Li-O bond, resulting in an enhanced Li(+) diffusion velocity. Electrochemical properties have also been investigated after assembling coin cells with the as-prepared composites as the cathode active materials. Remarkably, the G/LFMP composite has exhibited the best electrochemical properties, including fast lithium storage performance and excellent cycle stability. That is because the modification of graphene provided active sites for nuclei, restricted the in situ crystallite growth, increased the electronic conductivity and reduced the interface reaction current density, while, Mg(2+) doping improved the intrinsically electronic and ionic transfer properties of LFP crystals. Moreover, in the G/LFMP composite, the graphene component plays the role of "cushion" as it could quickly realize capacity response, buffering the impact to LFMP under the conditions of high-rate charging or discharging, which results in a pre-eminent rate capability and cycling stability.

  4. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation.

    PubMed

    Diez, Noel; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Gryglewicz, Grażyna; Wróbel-Iwaniec, Iwona; Sliwak, Agata; Machnikowski, Jacek; Menendez, Rosa

    2014-08-15

    Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers. This provides an alternative way for the development of a new generation of catalytic material.

  5. Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.

    PubMed

    Zhang, Yuanzhong; Bhaway, Sarang M; Wang, Yi; Cavicchi, Kevin A; Becker, Matthew L; Vogt, Bryan D

    2015-03-25

    Rapid chemical transformation from micelle templated precursors (metal nitrate and citric acid) to ordered mesoporous metal carbonates and oxides is demonstrated using microwave heating for cobalt, copper, manganese and zinc. Without aging requirements, <3 min of microwave processing yields highly ordered mesoporous films.

  6. Preparation of aluminum-containing mesoporous silica with hierarchical macroporous architecture and its enhanced catalytic activities.

    PubMed

    Kamegawa, Takashi; Tanaka, Shota; Seto, Hiroki; Zhou, Dayang; Yamashita, Hiromi

    2013-08-28

    Aluminum-containing mesoporous silica with hierarchical macroporous architecture (Al-MMS) was successfully prepared using a solvent evaporation method through the combination of precursor solution for synthesis of Al-containing mesoporous silica (Al-MS) and poly(methyl methacrylate) (PMMA) colloidal crystals as a hard template. The porous structure and the state of aluminum were investigated using various characterization techniques. The construction of combined structure of Al-MMS, i.e., hierarchical macroporous architecture consisting of thin mesoporous silica frameworks, led to the formation of many mesopore entrances and the shortening of the mesoporous channels. In the tetrahydropyranylation of linear alcohols with dihydropyran (DHP), Al-MMS exhibited higher catalytic activities for the formation of corresponding tetrahydropyranyl ethers as compared to Al-MS. The advantageous structure of Al-MMS enables the efficient transport of reactants to the catalytically active sites, which realizes the significant enhancement of catalytic performances in the reaction of DHP with alcohols having longer alkyl chains.

  7. Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Han, Lu; Zhang, Yue; Chang, Yan-Qin; Chen, Xu-Wei; He, Rong-Huan; Shu, Yang; Wang, Jian-Hua

    2016-09-01

    This work describes a novel and general redox-responsive controlled drug delivery-release nanocarrier with mesoporous carbon nanoparticles (MCNs) gated by customized fluorescent carbon dots (CDs). The modification of MCNs with a disulfide unit enables the system to be sensitive to intracellular glutathione (GSH). The CDs anchoring onto the surface of the MCNs via an electrostatic interaction block the mesopores and thus prevent the leakage of doxorubicin (DOX) loaded inside the channel of the MCNs. Upon the addition of GSH at the physiological environment, the integrity of the system is disrupted due to the dissociation of the disulfide bond; meanwhile stripping the CDs opens the gate and thus triggers the rapid release of the encapsulated DOX. The fluorescence of the CDs is quenched/‘turned off’ when linking to the MCNs, while it is restored/‘turned on’ when detaching the CDs from the surface of the MCNs. Thus the fluorescent CDs serve as both a controllable drug release gatekeeper and a fluorescent probe for the visualization of the drug delivery process. By combining these inherent capabilities, the present drug delivery system may be a promising route for designing custom-made visual controlled-release nanodevices specifically governed by in situ stimulus in the cells.

  8. Gold nanoparticles supported in zirconia-ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst.

    PubMed

    Violi, Ianina L; Zelcer, Andrés; Bruno, Mariano M; Luca, Vittorio; Soler-Illia, Galo J A A

    2015-01-21

    Gold nanoparticles (NP) trapped in the mesopores of mixed zirconia-ceria thin films are prepared in a straightforward and reproducible way. The films exhibit enhanced stability and excellent catalytic activity in nitro-group reduction by borohydride and electrocatalytic activity in CO and ethanol oxidation and oxygen reduction.

  9. Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates.

    PubMed

    Gierszal, Kamil P; Kim, Tae-Wan; Ryoo, Ryong; Jaroniec, Mietek

    2005-12-15

    Adsorption and structural properties of inverse carbon replicas of two ordered siliceous P6mm and Ia3d mesostructures have been studied by nitrogen adsorption, powder X-ray diffraction, and transmission electron microscopy. These carbon replicas were prepared by filling the pores of SBA-15 and KIT-6 siliceous templates with various carbon precursors followed by carbonization and silica dissolution. Sucrose, furfuryl alcohol, acenaphthene, mesophase pitch, and petroleum pitch were used to obtain inverse carbon replicas of SBA-15 and KIT-6. While structural properties of the resulting ordered mesoporous carbons are mainly determined by the hard template used, their adsorption properties depend on the type of the carbon precursor.

  10. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture.

    PubMed

    Kamimura, Yoshihiro; Shimomura, Marie; Endo, Akira

    2014-12-15

    The development of an efficient technique for carbon dioxide (CO2) capture from a variety of large stationary sources is in important global issue. If we are to achieve an energy-efficient and effectively higher CO2 capture process based on an adsorption approach, we need new adsorbent materials realistic enough to provide higher CO2 loading on a volumetric basis. For this reason we have focused on the practical use of high surface area mesoporous ceria as a new application in the field of CO2 capture. In this regard, we demonstrate the simple and inexpensive template-free synthesis of mesoporous ceria with a high surface area up to 200 m(2) g(-1), and characterize it as an effective CO2 adsorbent for the first time. The mesoporous ceria is prepared based on sol-gel chemistry, where the product is simply precipitated by the self-assembly of ceria nanoparticles within a short reaction period at room temperature under highly alkaline conditions with optimized chemical compositions. The results of CO2 adsorption-desorption measurement at 298 K show that the obtained ceria with an enhanced surface area exhibits a noticeably higher CO2 adsorption capacity per volume than commercially available non-porous ceria, activated carbon and zeolite 13X over a wide pressure range with robust stability as well as regenerability. This work enables us to prepare promising new materials for the CO2 capture process based on an easy-to-handle synthesis system, and this effective material will have a broad applicability to the efficient CO2 separation from variety of industrial emission sources. The features of the obtained mesoporous ceria are reported and discussed.

  11. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    PubMed Central

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-01-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g−1 at 100 mA g−1 and maintain a high reversible capacity of 772 mAh g−1 without showing obvious decay after 50 cycles. PMID:25944615

  12. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Shapter, Joseph G.; Yin, Ting; Sun, Rongjin; Cui, Daxiang

    2015-12-01

    An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20-40 nm, length of 30-100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8-10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m2 g-1. The loading of CNT, in terms of the weight ratio of Fe3O4 nanoparticles, can reach as high as 66.5 wt%. Compared to the conventional method of using a Al2O3 membrane as template to fill CNT with iron oxides nanoparticles, our strategy is facile, effective, low cost and easy to scale up to large scale production (~1.42 g per one-pot). When evaluated for lithium storage at 1.0 C (1 C = 928 mA g-1), the mesoporous Fe3O4@CNT can retain at 358.9 mAh g-1 after 60 cycles. Even when cycled at high rate of 20 C, high capacity of 275.2 mAh g-1 could still be achieved. At high rate (10 C) and long life cycling (500 cycles), the cells still exhibit a good capacity of 137.5 mAhg-1.

  13. Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres.

    PubMed

    Meng, Ying; Wang, Shanshan; Li, Chengyi; Qian, Min; Yan, Xueying; Yao, Shuangchao; Peng, Xiyue; Wang, Yi; Huang, Rongqin

    2016-09-01

    Combining controllable photothermal therapy and efficacious gene therapy in a single platform holds great promise in cancer therapy due to the enhanced combined therapeutic effects. Herein, polyethyleneimine-grafted oxidized mesoporous carbon nanospheres (OP) were developed for combined photothermal combined gene therapy in vitro and in vivo. The synthesized OP was characterized to have three dimensional spherical structure with uniformed diameter, ordered mesopores with graphitic domains, high water dispersion with zeta potential of +22 mV, and good biocompatibility. Consequently, OP was exploited as the photothermal convertor with strong NIR absorption and the gene vector via electrostatic interaction, which therefore cannot only deliver the therapeutic gene (pING4) to tumors for gene therapy, but also can eliminate the tumors by photothermal ablation. Moreover, the improved gene therapy accompanied by the NIR photothermally enhanced gene release was also well achieved based on OP. The excellent combined therapeutic effects demonstrated in vitro and in vivo suggested the OP's potential for cancer therapy.

  14. Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Seok-Hwan; Lee, Wan-Jin

    2015-05-01

    Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires (CuO/CNF) as anodes for lithium ion batteries were prepared by coating the Cu2(NO3)(OH)3 on the surface of conductive and elastic CNF via electrophoretic deposition (EPD), followed by thermal treatment in air. The CuO shell stacked with nanoparticles grows radially toward the CNF core, which forms hierarchically mesoporous three-dimensional (3D) coaxial shell-core structure with abundant inner spaces in nanoparticle-stacked CuO shell. The CuO shells with abundant inner spaces on the surface of CNF and high conductivity of 1D CNF increase mainly electrochemical rate capability. The CNF core with elasticity plays an important role in strongly suppressing radial volume expansion by inelastic CuO shell by offering the buffering effect. The CuO/CNF nanowires deliver an initial capacity of 1150 mAh g-1 at 100 mA g-1 and maintain a high reversible capacity of 772 mAh g-1 without showing obvious decay after 50 cycles.

  15. Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent

    NASA Astrophysics Data System (ADS)

    Balach, Juan; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Eckert, Jürgen; Giebeler, Lars

    2016-01-01

    The lithium/sulfur couple is garnering tremendous interest as the next-generation of cost-efficient rechargeable battery systems capable to fulfill emerging energy storage demands. However, the viable commercialization of lithium-sulfur (Li-S) batteries is still an obstacle by fast capacity fading and poor cycling stability mostly caused by the polysulfide shuttle and active sulfur material loss. In this contribution, we show that the surface modification of the commercial polypropylene separator with a nitrogen-doped mesoporous carbon enhances the interfacial interaction between the N-dopants on carbon-coating and the sulfur-related species by coupling interactions. These unique physical and interfacial chemical properties of the N-doped mesoporous carbon-coating promote the chemical adsorption and confinement of lithium (poly)sulfide intermediates in the cathode side, improving the active material utilization and hence the overall electrochemical performance of Li-S batteries: high initial discharge capacity of 1364 mAh g-1 at 0.2C and notable cycling stability with high reversible capacity of 566 mAh g-1 and negligible degradation rate of 0.037% after 1200 cycles at 0.5C. Furthermore, despite the use of a simple-mixed sulfur-carbon black cathode with high-sulfur loading of 3.95 mg cm-2, the cell with a hybrid separator delivers a high areal capacity of ˜3 mAh cm-2.

  16. Mesoporous CLEAs-silica composite microparticles with high activity and enhanced stability

    PubMed Central

    Cui, Jiandong; Jia, Shiru; Liang, Longhao; Zhao, Yamin; Feng, Yuxiao

    2015-01-01

    A novel enzyme immobilization approach was used to generate mesoporous enzymes-silica composite microparticles by co-entrapping gelatinized starch and cross-linked phenylalanine ammonia lyase (PAL) aggregates (CLEAs) containing gelatinized starch into biomemitic silica and subsequently removing the starch by α-amylase treatment. During the preparation process, the gelatinzed starch served as a pore-forming agent to create pores in CLEAs and biomimetic silica. The resulting mesoporous CLEAs-silica composite microparticles exhibited higher activity and stability than native PAL, conventional CLEAs, and PAL encapsulated in biomimetic silica. Furthermore, the mesoporous CLEAs-silica composite microparticles displayed good reusability due to its suitable size and mechanical properties, and had excellent stability for storage. The superior catalytic performances were attributed to the combinational unique structure from the intra-cross-linking among enzyme aggregates and hard mesoporous silica shell, which not only decreased the enzyme-support negative interaction and mass-transfer limitations, but also improved the mechanical properties and monodispersity. This approach will be highly beneficial for preparing various bioactive mesoporous composites with excellent catalytic performance. PMID:26374188

  17. Covalent entrapment of cobalt-iron sulfides in N-doped mesoporous carbon: extraordinary bifunctional electrocatalysts for oxygen reduction and evolution reactions.

    PubMed

    Shen, Mengxia; Ruan, Changping; Chen, Yan; Jiang, Chunhuan; Ai, Kelong; Lu, Lehui

    2015-01-21

    To alleviate the kinetic barriers associated with ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) in electrochemical systems, efficient nonprecious electrocatalysts are urgently required. Here we report a facile soft-template mediated approach for fabrication of nanostructured cobalt-iron double sulfides that are covalently entrapped in nitrogen-doped mesoporous graphitic carbon (Co0.5Fe0.5S@N-MC). Notably, with a positive half-wave potential (0.808 V) and a high diffusion-limiting current density, the composite material delivers unprecedentedly striking ORR electrocatalytic activity among recently reported nonprecious late transition metal chalcogenide materials in alkaline medium. Various characterization techniques, including X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, are conducted to elucidate the correlation between structural features and catalytic activities of the composite. Moderate substitution and well-dispersion of iron in bimetallic sulfide composites are believed to have positive effect on the adsorption and activation of oxygen-containing species, thus leading to conspicuous ORR and OER catalytic enhancement compared to their monometallic counterparts. Besides, the covalent bridge between active sulfide particles and mesoporous carbon shells provides facile pathways for electron and mass transport. Beneficially, the intimate coupling interaction renders prolonged electrocatalytic performances to the composite. Our results may possibly lend a new impetus to the rational design of bi- or multimetallic sulfides encapsulated in porous carbon with improved performance for electrocatalysis and energy storage applications.

  18. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    An, Weili; Fu, Jijiang; Su, Jianjun; Wang, Lei; Peng, Xiang; Wu, Kai; Chen, Qiuyun; Bi, Yajun; Gao, Biao; Zhang, Xuming

    2017-03-01

    SiO2 as lithium ion batteries (LIBs) anode has drawn considerable attentions because of its low cost, high theoretical specific capacity and low discharge potentials but been limited by its low conductivity and electrochemical kinetics, resulting in obvious capacity decay and poor rate performance. Herein, we developed a simple approach to synthesize mesoporous hollow nanosphere (MHSiO2@C) assembled by conformal carbon coating tiny silica nanoparticles through chemical polymerization of dopamine inside the shell of MHSiO2. The continuous carbon can conformally coat on the surface of all primary SiO2 nanoparticles in the shell, which not only enhances the conductivity but also improves the structural stability of the MHSiO2. Compared to raw MHSiO2 and non-conformal carbon coated MHSiO2, the MHSiO2@C demonstrate a high reversible capacity of 440.7 mA h g-1 at a current density of 0.5 A g-1 after 500 cycles and excellent rate performance due to synergetic effect of special structure of MHSiO2 and carbon conformal coating on each silica nanoparticle. Such a special structure will be a promising platform for LIBs. Significantly, this paper offers a direct evidence to prove the advantage of conformal carbon coating and provides consequentially guide in improving the energy storage performance of low-conductivity oxide based electrode materials.

  19. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries.

    PubMed

    Wu, Baoshan; Zhang, Hongzhang; Zhou, Wei; Wang, Meiri; Li, Xianfeng; Zhang, Huamin

    2015-10-21

    Although various kinds of catalysts have been developed for aprotic Li-O2 battery application, the carbon-based cathodes are still vulnerable to attacks from the discharge intermediates or products, as well as the accompanying electrolyte decomposition. To ameliorate this problem, the free-standing and carbon-free CoO nanowire array cathode was purposely designed for Li-O2 batteries. The single CoO nanowire formed as a special mesoporous structure, owing even comparable specific surface area and pore volume to the typical Super-P carbon particles. In addition to the highly selective oxygen reduction/evolution reactions catalytic activity of CoO cathodes, both excellent discharge specific capacity and cycling efficiency of Li-O2 batteries were obtained, with 4888 mAh gCoO(-1) and 50 cycles during 500 h period. Owing to the synergistic effect between elaborate porous structure and selective intermediate absorption on CoO crystal, a unique bimodal growth phenomenon of discharge products was occasionally observed, which further offers a novel mechanism to control the formation/decomposition morphology of discharge products in nanoscale. This research work is believed to shed light on the future development of high-performance aprotic Li-O2 batteries.

  20. Impact of film thickness on the morphology of mesoporous carbon films using organic-organic self-assembly.

    PubMed

    Vogt, Bryan D; Chavez, Vicki L; Dai, Mingzhi; Arreola, M Regina Croda; Song, Lingyan; Feng, Dan; Zhao, Dongyuan; Perera, Ginusha M; Stein, Gila E

    2011-05-03

    Mesoporous polymer and carbon thin films are prepared by the organic-organic self-assembly of an oligomeric phenolic resin with an amphiphilic triblock copolymer template, Pluronic F127. The ratio of resin to template is selected such that a body-centered cubic (Im3m) mesostructure is formed in the bulk. However, well-ordered mesoporous films are not always obtained for thin films (<100 nm), and this behavior is found to be directly correlated with the initial phenolic resin to template ratio. Furthermore, the symmetry of ordered phases is highly dependent on the number of layers of spheres in the film: Monolayers and bilayers are characterized by hexagonal close-packed (HCP) symmetry, while films with approximately 5 layers of spheres exhibit a mixture of HCP and face-centered orthorhombic (FCO) structures. Ultrathick films having more than 30 layers of spheres are similar to the bulk body-centered cubic symmetry with a preferential orientation of the closest-packed (110) plane parallel to the substrate. Film thickness and initial composition of the carbonizable precursors in the template are critical factors in determining the morphology of mesoporous carbon films. These results provide insight into why difficulties have been reported in producing ultrathin ordered mesoporous carbon films using cooperative organic-organic self-assembly.

  1. The Local and Surface Structure of Ordered Mesoporous Carbons from Nitrogen Sorption, NEXAFS and Synchrotron Radiation Studies

    SciTech Connect

    Smith,M.; Lobo, R.

    2006-01-01

    Ordered mesoporous carbon materials were prepared by pyrolysis of sucrose and furfuryl alcohol templated in the ordered mesoporous silicate SBA-15. The structure of SBA-15 template was modified by changing the calcination temperature, we investigate the structural transformation of the silica template with calcination temperature using X-ray diffraction and nitrogen adsorption isotherms. SBA-15 calcined to 300 C has a total pore volume of 1.13 cm{sup 3}/g, a BET surface area of 1100 m2/g, and a pore spacing of 114 Angstroms; when calcined to 90 C the corresponding values are 0.40 cm{sup 3}/g, 330 m{sup 2}/g and 92.5 Angstroms. Despite marked differences in SBA-15 template structure, the pore size distribution of the ordered mesoporous carbons is more dependent on the choice of precursor than on SBA-15 pore geometry. The BET surface areas of ordered mesoporous carbons made from aqueous sucrose solutions (850-1050 m2/g) are independent of template geometry; while surface area of materials made from furfuryl alcohol (530-1190 m2/g) are a reflection of template geometry. Near-edge X-ray fine-structure (NEXAFS) spectroscopy reveal that the template-carbon interaction during the pyrolysis of sucrose-based carbons exerts a strong influence on the surface structure of final product, and that such effects are largely absent in the furfuryl alcohol-based materials. The pair-distribution function (PDF) calculated from high-energy synchrotron scattering measurements corroborates the NEXAFS results, yet also show that the template effect on the bulk carbon is minimal. Template compression acting in conjunction with hydrothermally induced effects exerted on the carbon during pyrolysis drives the resulting carbon to a more graphitic state.

  2. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-07

    A series of magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-γ-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials.

  3. Removal of less biodegradable dissolved organic matters in water by superconducting magnetic separation with magnetic mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Jin, T.; Miura, O.

    2010-11-01

    Less biodegradable dissolved organic matters in water as typified by humic substances are known as precursors of carcinogenic trihalomethanes, and are removed about 60% by current advanced water treatments. However, further increase of the removal ratio is demand. In this study, magnetic mesoporous carbon (MMPC), which can adsorb the substances physically and be efficiently collected by using superconducting high gradient magnetic separation (HGMS), has been synthesized with coconut-shell-based activated carbon and ferric nitrate solution by the gas activation method. The MMPC has the maximum magnetization value of 30.7 emu/g and an adsorption ability of 87% to 10 mg/L humic acid in a short time. The standard MMPC having a magnetization of 6.43 emu/g was able to be separated at magnetic field of 2 T. Used MMPC regained the adsorption ability to 93.1% by N2 reactivation heat treatment. These results show promise for application of current water treatments by superconducting HGMS, which is suitable for high-speed water treatment without secondary wastes.

  4. Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun

    2015-07-01

    Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and

  5. Sandwich-like mesoporous graphene@magnetite@carbon nanosheets for high-rate lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhong, Yongming; Zhou, Xunfu; Li, Xin; Zhang, Shengsen; Liu, Yingju; Yu, Xiaoyuan; Wang, Hongqiang; Li, Qingyu; Fang, Yueping; Li, Jun

    2016-07-01

    Sandwich-like mesoporous GS@Fe3O4@C nanosheets with a 2D nanoarchitecture have been successfully synthesized by one-step solvothermal treatment. Such type of 2D nanoarchitecture is made up of a number of Fe3O4 nanoparticles uniformly grown on a graphene sheet and an even amorphous carbon layer covering on their surface. The Li-cycling properties of GS@Fe3O4@C nanosheets have been evaluated by galvanostatic discharge-charge cycling and impedance spectroscopy. Results indicate that the GS@Fe3O4@C nanosheets with about 5 wt % of graphene content provides a very high discharge capacity of 913.2 mAh g-1 at a current densities of 200 mA g-1 after 100 cycles and reveals a stable discharge capacity of 483.2 mAh g-1 at a rate of 1600 mA g-1.

  6. Combined Au-plasmonic nanoparticles with mesoporous carbon material (CMK-3) for photocatalytic water splitting

    SciTech Connect

    Hung, Wei Hsuan E-mail: yinm@sari.ac.cn; Lai, Sz Nian; Su, Cheng Yi; Yin, Min E-mail: yinm@sari.ac.cn; Li, Dongdong; Xue, Xinzhong; Tseng, Chuan Ming

    2015-08-17

    The conventional TiO{sub 2} photoelectrode for water splitting was integrated with ordered mesoporous carbon material (CMK-3) and Au metal nanoparticles (NPs) to improve the photocatalytic efficiency under visible light irradiation. Compared to TiO{sub 2}, Au/TiO{sub 2}-CMK-3 photoelectrode demonstrated over two orders of magnitude enhancement of photocurrent under 532 nm laser irradiation due to the generation of hot electron and near field from Au NPs. Furthermore, the improvement of free carrier transport and additional long-wavelength absorption can be achieved by exploiting the superior conductivity and blackbody-like property of CMK-3. This proposed enhancement mechanism was proved by the measurements of photoluminescence emission spectrum and electrochemical impedance spectroscopy.

  7. Synthesis of hierarchical macro-/mesoporous solid-solution photocatalysts by a polymerization-carbonization-oxidation route: the case of Ce(0.49)Zr(0.37)Bi(0.14)O(1.93).

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-08-02

    A hierarchical macro-/mesoporous Ce(0.49)Zr(0.37)Bi(0.14)O(1.93) solid-solution network has been synthesized on a large scale by means of a simple and general polymerization-carbonization-oxidation synthetic route. The as-prepared product has been characterized by SEM, XRD, TEM, BET surface area measurement, UV/Vis diffuse-reflectance spectroscopy, energy-dispersive X-ray spectroscopy (EDS), and photoelectrochemistry measurements. The photocatalytic activity of the product has been demonstrated through the photocatalytic degradation of methyl orange. Structural characterization has indicated that the hierarchical macro-/mesoporous solid-solution network not only contains numerous macropores, but also possesses an interior mesoporous structure. The mesopore size and BET surface area of the network have been measured as 2-25 nm and 140.5 m(2) g(-1), respectively. The hierarchical macro-/mesoporous solid-solution network with open and accessible pores was found to be well-preserved after calcination at 800 degrees C, indicating especially high thermal stability. Due to its high specific surface area, the synergistic effect of the coupling of macropores and mesopores, and its high crystallinity, the Ce(0.49)Zr(0.37)Bi(0.14)O(1.93) solid-solution material shows a strong structure-induced enhancement of visible-light harvest and exhibits significantly improved visible-light photocatalytic activity in the photodegradation of methyl orange compared with those of its other forms, such as mesoporous hollow spheres and bulk particles.

  8. Phosphorous and nitrogen dual heteroatom doped mesoporous carbon synthesized via microwave method for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Nasini, Udaya B.; Bairi, Venu Gopal; Ramasahayam, Sunil Kumar; Bourdo, Shawn E.; Viswanathan, Tito; Shaikh, Ali U.

    2014-03-01

    Phosphorus (P) and nitrogen (N) dual heteroatom doped mesoporous carbon (PNDC) synthesized by microwave assisted carbonization of tannin cross-linked to melamine in the presence of polyphosphoric acid was evaluated electrochemically for supercapacitor application. Controlling the N content by varying the amount of tannin to melamine in the carbonization process produced varying nitrogen, phosphorus and oxygen functionalities along with different physical properties. Electrochemical characterization studies revealed that N content is responsible for pseudocapacitance and high surface area plays a vital role in improving the capacitative behavior by enhanced electric double layer formation. In 1.0 M H2SO4 and 6.0 M KOH, PNDC-2 showed a high specific capacitance of 271 F g-1 and 236 F g-1, respectively. XPS results demonstrate the presence of pyridinic-N, quaternary-N as well as quinone type oxygen functionalities, which accounts for redox reactions and likely play an important role in the transportation of electrons during the charge/discharge process. Thus, the microwave assisted synthesis of doped carbon can provide a novel method of synthesizing materials useful for the fabrication of cheap and high performance supercapacitors.

  9. A carbon foam with a bimodal micro–mesoporous structure prepared from larch sawdust for the gas-phase toluene adsorption

    SciTech Connect

    Liu, Shouxin; Huang, Zhanhua; Wang, Rui

    2013-07-15

    Highlights: ► Network carbon foam containing a bimodal pore distribution was prepared from Larch. ► Liquefaction route was used for the preparation of morphology controllable carbon. ► Pore structure of carbon foam was controlled through KOH activation. - Abstract: A carbon foam with a bimodal micro–mesopore distribution, was prepared by submitting larch sawdust to liquefaction, resinification, foaming, carbonization and KOH activation. The morphology, pore texture and crystal microstructure was characterized by scanning and transmission electron microscopy, nitrogen adsorption analysis and X-ray powder diffraction. A honeycomb structure with adjacent cells was observed for the precursor of carbon foam. After KOH activation, the cell wall of precursor shrunk and broke. This lead to the formation of a well-connected 3D network and developed ligament pore structure (surface area of 554–1918 m{sup 2}/g) containing bimodal pores, 2.1 and 3.9 nm in diameter. The porous carbon foam prepared at 700 °C exhibited a much higher gas-phase toluene removal than commercial activated carbon fiber owing to the 3D network and bimodal pore structure.

  10. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates.

    PubMed

    Kato, Katsuya; Seelan, Sindhu

    2010-06-01

    Burkholderia cepacia lipase was immobilized on various types of phenyl-functionalized mesoporous silicates (MPS). MPS, anchored with a phenyl group on the silica wall and with three dimensional (3D) mesoporosity, showed highest lipase adsorption capacity and best activities both in aqueous and organic reagents.

  11. Hierarchical Ordered Mesoporous Carbon from Phloroglucinol-Glyoxal and its Application in Capacitive Deionization of Brackish Water

    SciTech Connect

    Dai, Sheng; DePaoli, David W; Kiggans, Jim; Mayes, Richard T; Tsouris, Costas; Mahurin, Shannon Mark

    2010-01-01

    Templated carbon materials have recently received tremendous attention due to energy storage and separations applications. Hierarchical structures are ideal for increased mass-transport throughout the carbon material. A new ordered mesoporous carbon material has been developed using glyoxal which exhibits a hierarchical structure with pore sizes up to 200 nm. The hierarchical structure arises from the cross linking reagent and not from the standard spinodal decomposition of a secondary solvent. The carbon material was studied for potential application as a capacitive deionization (CDI) electrode for brackish water. Results indicate that the hierarchical structure provides a pathway for faster adsorption kinetics when compared to standard resorcinol-formaldehyde CDI electrodes.

  12. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.

    PubMed

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-18

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g(-1) during 50 cycles at 2 A g(-1). The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  13. Optimization of mesoporous carbon structures for lithium–sulfur battery applications

    SciTech Connect

    Li, Xiaolin; Cao, Yuliang; Qi, Wen N.; Saraf, Laxmikant V.; Xiao, Jie; Nie, Zimin; Mietek, Jaroniec; Zhang, Jiguang; Schwenzer, Birgit; Liu, Jun

    2011-11-07

    Mesoporous carbon (MC) with tunable pore sizes (22nm, 12nm, 7nm, and 3nm) and pore volumes (from 1.3 to 4.8 cc/g) containing sulfur inside the pores were systematically studied as mesoporous carbon-sulfur (MCS) composite electrodes for Li-S batteries. Investigation on these MCS composites reveals that the pore structure has no influence on the battery performance at full sulfur loading conditions (the pore volume is fully filled by sulfur) but the maximum sulfur loading capability is higher for MC with larger pore volume. MC with large pore volumes, partial sulfur filling (part of the pore volume left unfilled), and surface modification, can have reasonably high sulfur loading, improved electrical and ionic contacts of sulfur with MC and with electrolytes, which subsequently promotes the battery performance. An initial capacity of ~1250 mAh/g (based on sulfur) and 650 mAh/g capacity retention over 100 cycles were obtained with 50 wt% sulfur loading in the MC with 22nm pore size (4.8 cc/g). When the surface of MCS was coated with Clevios P to reduce the dissolve of polysulfide anions in electrolytes, it exhibits a high initial discharge capacity of ~1390 mAh/g and improved cycling stability with capacity retention of ~840 mAh/g over 100 cycles. The reported correlation among the structure, sulfur filling, surface modification and the electrochemical performance of the MCS composite cathodes provides guidance in designing new electrodes for lithium-sulfur batteries

  14. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    SciTech Connect

    Yang, Ying; Gao, Guang; Zhang, Xin; Li, Fuwei

    2016-02-04

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (RuxNi1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophase before pyrolysis and silica removal. The resulting RuxNi1–x–OMC materials are in-depth characterized with X-ray diffraction, N2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru0.9Ni0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h–1) was obtained, and the Ru0.9Ni0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.

  15. High performance sulfur, nitrogen and carbon doped mesoporous anatase-brookite TiO₂ photocatalyst for the removal of microcystin-LR under visible light irradiation.

    PubMed

    El-Sheikh, Said M; Zhang, Geshan; El-Hosainy, Hamza M; Ismail, Adel A; O'Shea, Kevin E; Falaras, Polycarpos; Kontos, Athanassios G; Dionysiou, Dionysios D

    2014-09-15

    Carbon, nitrogen and sulfur (C, N and S) doped mesoporous anatase-brookite nano-heterojunction titania photocatalysts have been synthesized through a simple sol-gel method in the presence of triblock copolymer Pluronic P123. XRD and Raman spectra revealed the formation of anatase and brookite mixed phases. XPS spectra indicated the presence of C, N and S dopants. The TEM images demonstrated the formation of almost monodisperse titania nanoparticles with particle sizes of approximately 10nm. N2 isotherm measurements confirmed that both doped and undoped titania anatase-brookite materials have mesoporous structure. The photocatalytic degradation of the cyanotoxin microcystin-LR (MC-LR) has been investigated using these novel nanomaterials under visible light illumination. The photocatalytic efficiency of the mesoporous titania anatase-brookite photocatalyst dramatically increased with the addition of the C, N and S non-metal, achieving complete degradation (∼ 100 %) of MC-LR. The results demonstrate the advantages of the synthetic approach and the great potential of the visible light activated C, N, and S doped titania photocatalysts for the treatment of organic micropollutants in contaminated waters under visible light.

  16. Activated carbon from biomass

    NASA Astrophysics Data System (ADS)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  17. Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating.

    PubMed

    Cui, Jiandong; Zhao, Yamin; Tan, Zhilei; Zhong, Cheng; Han, Peipei; Jia, Shiru

    2017-05-01

    Cross-linked enzyme aggregates (CLEAs) have recently emerged as a promising method for enzyme immobilization due to its simplicity and low cost. However, a lack of good size and morphological control over the as-prepared CLEAs has limited their practical applications in some cases. Here, monodisperse spherical CLEAs of phenylalanine ammonia lyase (PAL microspheres) were prepared based on CaCO3 microtemplates. The preparation procedure involves filling porous CaCO3 microtemplates with the protein by salt precipitation, glutaraldehyde crosslinking, and dissolution of the microtemplates. The formulation of CaCO3 templates with controlled size was studied in detail. Characterization of the prepared PAL microspheres was investigated. The results showed that the PAL microspheres with high immobilization efficiency (79%) exhibited excellent stability, including increased tolerance to proteolysis, low pH, and denaturants, and excellent mechanical properties. For example, free PAL almost lost all activity after they were incubated in the presence of trypsin for 2min, whereas PAL microspheres still retained 95% of their initial activity. Moreover, scanning electron microscope, transmission electron microscope, and N2 adsorption-desorption isotherms revealed that the resultant PAL microspheres possessed good monodispersity and mesoporous structure instead of the amorphous clusters of conventional CLEAs with few pores. Compared with conventional CLEAs, the monodisperse PAL microspheres with mesoporous make them more potentially useful for biomedical and biotechnological applications.

  18. PEMFC catalyst layers: the role of micropores and mesopores on water sorption and fuel cell activity.

    PubMed

    Soboleva, Tatyana; Malek, Kourosh; Xie, Zhong; Navessin, Titichai; Holdcroft, Steven

    2011-06-01

    The effects of carbon microstructure and ionomer loading on water vapor sorption and retention in catalyst layers (CLs) of PEM fuel cells are investigated using dynamic vapor sorption. Catalyst layers based on Ketjen Black and Vulcan XC-72 carbon blacks, which possess distinctly different surface areas, pore volumes, and microporosities, are studied. It is found that pores <20 nm diameter facilitate water uptake by capillary condensation in the intermediate range of relative humidities. A broad pore size distribution (PSD) is found to enhance water retention in Ketjen Black-based CLs whereas the narrower mesoporous PSD of Vulcan CLs is shown to have an enhanced water repelling action. Water vapor sorption and retention properties of CLs are correlated to electrochemical properties and fuel cell performance. Water sorption enhances electrochemical properties such as the electrochemically active surface area (ESA), double layer capacitance and proton conductivity, particularly when the ionomer content is very low. The hydrophilic properties of a CL on the anode and the cathode are adjusted by choosing the PSD of carbon and the ionomer content. It is shown that a reduction of ionomer content on either cathode or anode of an MEA does not necessarily have a significant detrimental effect on the MEA performance compared to the standard 30 wt % ionomer MEA. Under operation in air and high relative humidity, a cathode with a narrow pore size distribution and low ionomer content is shown to be beneficial due to its low water retention properties. In dry operating conditions, adequate ionomer content on the cathode is crucial, whereas it can be reduced on the anode without a significant impact on fuel cell performance.

  19. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts.

    PubMed

    Jiang, Hongliang; Yao, Yifan; Zhu, Yihua; Liu, Yanyan; Su, Yunhe; Yang, Xiaoling; Li, Chunzhong

    2015-09-30

    It is highly crucial and challenging to develop bifunctional oxygen electrocatalysts for oxygen reduction reactions (ORRs) and oxygen evolution reactions (OERs) in rechargeable metal-air batteries and unitized regenerative fuel cells (URFCs). Herein, a facile and cost-effective strategy is developed to prepare mesoporous Fe-N-doped graphene-like carbon architectures with uniform Fe3C nanoparticles encapsulated in graphitic layers (Fe3C@NG) via a one-step solid-state thermal reaction. The optimized Fe3C@NG800-0.2 catalyst shows comparable ORR activity with the state-of-the-art Pt/C catalyst and OER activity with the benchmarking RuO2 catalyst. The oxygen electrode activity parameter ΔE (the criteria for judging the overall catalytic activity of bifunctional electrocatalysts) value for Fe3C@NG800-0.2 is 0.780 V, which surpasses those of Pt/C and RuO2 catalysts as well as those of most nonprecious metal catalysts. Significantly, excellent long-term catalytic durability holds great promise in fields of rechargeable metal-air batteries and URFCs.

  20. Egg-Box Structure in Cobalt Alginate: A New Approach to Multifunctional Hierarchical Mesoporous N-Doped Carbon Nanofibers for Efficient Catalysis and Energy Storage

    PubMed Central

    2015-01-01

    Carbon nanomaterials with both doped heteroatom and porous structure represent a new class of carbon nanostructures for boosting electrochemical application, particularly sustainable electrochemical energy conversion and storage applications. We herein demonstrate a unique large-scale sustainable biomass conversion strategy for the synthesis of earth-abundant multifunctional carbon nanomaterials with well-defined doped heteroatom level and multimodal pores through pyrolyzing electrospinning renewable natural alginate. The key part for our chemical synthesis is that we found that the egg-box structure in cobalt alginate nanofiber can offer new opportunity to create large mesopores (∼10–40 nm) on the surface of nitrogen-doped carbon nanofibers. The as-prepared hierarchical carbon nanofibers with three-dimensional pathway for electron and ion transport are conceptually new as high-performance multifunctional electrochemical materials for boosting the performance of oxygen reduction reaction (ORR), lithium ion batteries (LIBs), and supercapacitors (SCs). In particular, they show amazingly the same ORR activity as commercial Pt/C catalyst and much better long-term stability and methanol tolerance for ORR than Pt/C via a four-electron pathway in alkaline electrolyte. They also exhibit a large reversible capacity of 625 mAh g–1 at 1 A g–1, good rate capability, and excellent cycling performance for LIBs, making them among the best in all the reported carbon nanomaterials. They also represent highly efficient carbon nanomaterials for SCs with excellent capacitive behavior of 197 F g–1 at 1 A g–1 and superior stability. The present work highlights the importance of biomass-derived multifunctional mesoporous carbon nanomaterials in enhancing electrochemical catalysis and energy storage. PMID:27162980

  1. Synthesis, characterization, and electrochemical performance of nitrogen-modified Pt-Fe alloy nanoparticles supported on ordered mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Zheng, Feng-Sheng; Liu, Shou-Heng; Kuo, Chung-Wen

    2016-03-01

    A method has been demonstrated to synthesize nitrogen-modified Pt-Fe alloyed nanoparticles (9.2-11.3 nm) supported on ordered mesoporous carbon (Pt x Fe100- x N/OMC), which is fabricated by a conventional wet chemical synthesis of Pt-Fe alloyed nanoparticles and followed by carbonization of the nanoparticles with tetraethylenepentamine as nitrogen chelating agent. Among these electrocatalysts, the Pt30Fe70N/OMC has highly catalytic activity for the oxygen reduction reaction (ORR) with significantly enhanced methanol tolerance as well. Combining the results from X-ray diffraction and X-ray absorption spectroscopy, it can be observed that Pt metal in the Pt30Fe70N/OMC is present in the outer shell of Pt-Fe alloys with face-centered cubic crystalline structure. By X-ray photoelectron spectroscopy, the nitrogen-modified Pt surface of Pt30Fe70N/OMC exhibits significant selectivity toward the ORR in the presence of methanol. This enhancement of methanol tolerance could be attributed to the inhibition of methanol adsorption resulting from the modification of the Pt surface with nitrogen.

  2. Efficient optical resolution of amino acid by alanine racemaze chiral analogue supported on mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Jang, D.; Kim, K.; Park, D.; Kim, G.

    2012-09-01

    Optically pure D-amino acids are industrially important chiral building blocks for the synthesis of pharmaceuticals, food ingredients, and drug intermediates. Chemoenzymatic dynamic kinetic-resolution processes have recently been developed for deracemization of amino acids. S-ARCA would be a good candidate for the selective adsorption of D amino acid through the imine formation reaction. The organic phase containing S-ARCA adsorbent, TPPC or Ionic Liquid (as a phase transfer catalyst) in MC were coated on the surfaces of mesoporous carbon C-SBA-15(CMK). The aqueous solution of racemic D/L-amino acid and NaOH were added to the carbon support coated with ARCA. The D/L ratios on ARCA and in solution were determined with increasing reaction time. S-ARCA has a unique property for the selective adsorption of D- amino acid (up to 90% selcetivity) in the racemic mixture. The fixed bed reactor containing ARCA/carbon support was also adopted successfully for the selective separation of amino acid.

  3. Metallic nanocrystallites-incorporated ordered mesoporous carbon as labels for a sensitive simultaneous multianalyte electrochemical immunoassay.

    PubMed

    Fang, Yishan; Huang, Xinjian; Zeng, Qiang; Wang, Lishi

    2015-11-15

    This work reports on a facile, novel multianalyte electrochemical immunoassay for simultaneous detection of a-fetoprotein (AFP) and human epidermal growth factor receptor type-2 (HER-2) using metal-containing nanomaterials confined in the ordered mesoporous carbon matrix (OMC-M) as labels. Well-dispersed uniform metallic nanocrystallites incorporated OMC materials were fabricated through a simple, economical, and green preparative strategy toward phenolic resol as a carbon source and metal nitrate as metal sources. The large amount of metallic nanocrystallites loading on the OMC nanomaterials, greatly amplified the detection signals, and the good biocompatibility of carbon nanotubes-chitosan retained excellent stability for the sandwich-type immunoassay. Under optimal experimental conditions, the proposed immunoassay exhibited high sensitivity and selectivity for the detection of analytes, providing a better linear response range from 0.001 to 150 ng/mL for AFP and for HER-2, with a lower limit of detectionof 0.6p g/mL and 0.35 pg/mL (S/N=3), respectively. The immunosensor exhibited convenience, low cost, rapidity, good specificity, acceptable stability and reproducibility. Moreover, satisfactory results were obtained for the determination of AFP and HER-2 in real human serum samples, indicating that the developed immunoassay has the potential to find application in clinical detection of AFP and HER-2 and other tumor markers as an alternative approach.

  4. Stabilizing Surfactant Templated Cylindrical Mesopores in Polymer and Carbon Films through Composite Formation with Silica Reinforcement

    SciTech Connect

    Song, Lingyan; Feng, Dan; Lee, Hae-Jeong; Wang, Chengqing; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-10-22

    A facile approach to maintain the periodic mesostructure of cylindrical pores in polymer-resin and carbon films after thermal template removal is explored through the reactive coassembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock copolymer Pluronic F127. Without silica, a low porosity, disordered film is formed after pyrolysis despite the presence of an ordered mesostructure prior to template removal. However for silica concentration greater than 25 wt %, pyrolysis at 350 C yields a mesoporous silica-polymer film with well-defined pore mesostructure. These films remain well ordered upon carbonization at 800 C. In addition to the mesostructural stability, the addition of silica to the matrix impacts other morphological characteristics. For example, the average pore size and porosity of the films increase from 3.2 to 7.5 nm and 12 to 45%, respectively, as the concentration of silica in the wall matrix increases from 0 to 32 wt %. The improved thermal stability of the ordered mesostructure with the addition of silica to the matrix is attributed to the reinforcement of the mechanical properties leading to resistance to stress induced collapse of the mesostructure during template removal.

  5. Efficient Photocatalytic Activities of TiO2 Hollow Fibers with Mixed Phases and Mesoporous Walls

    PubMed Central

    Hou, Huilin; Shang, Minghui; Wang, Lin; Li, Wenge; Tang, Bin; Yang, Weiyou

    2015-01-01

    Currently, Degussa P25, with the typical mixed phases of anatase and rutile TiO2, is widely applied as the commercial photocatalysts. However, there are still some of obstacles for the P25 nanoparticles with totally high photocatalytic activities, especially for the catalytic stability due to their inevitable aggregation of the nanoparticles when used as the photocatalysts. In the present work, we reported the exploration of a novel TiO2 photocatalyst, which could offer an ideal platform for synergetic combination of the mixed-phase composition, hollow architecture and mesoporous walls for the desired excellent photocatalytic efficiency and robust stability. The mesoporous TiO2 hollow nanofibers were fabricated via a facile single capillary electrospinning technique, in which the foaming agents were used for creating mesopores throughout the walls of the hollow fibers. The obtained hollow fibers exhibit a high purity and possess the mixed phases of 94.6% anatase and 5.4% rutile TiO2. As compared to P25, the as-fabricated mesoporous TiO2 hollow fibers exhibited much higher efficient photocatalytic activities and stabilities toward the hydrogen evolution with a rate of ~499.1 μmol g−1·h−1 and ~99.5% degradation Rhodamine B (RhB) in 60 min, suggesting their promising application in efficient photocatalysts. PMID:26470013

  6. Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics.

    PubMed

    Singh, Rajendra Kumar; Kim, Tae-Hyun; Mahapatra, Chinmaya; Patel, Kapil Dev; Kim, Hae-Won

    2015-10-20

    The newly developed multifunctional (self-activated fluorescent, mesoporous, and biocompatible) hollow mesoporous silica nanoellipsoids (f-hMS) are potentially useful as a delivery system of drugs for therapeutics and imaging purposes. For the synthesis of f-hMS, self-activated fluorescence hydroxyapatite (fHA) was used as a core template. A mesoporous silica shell was obtained by silica formation and subsequent removal of the fHA core, which resulted in a hollow-cored f-hMS. Although the silica shell provided a highly mesoporous structure, enabling an effective loading of drug molecules, the fluorescent property of fHA was also well-preserved in the f-hMS. Cytochrome c and doxorubicin, used as a model protein and anticancer drug, respectively, were shown to be effectively loaded onto f-hMS and were then released in a sustainable and controllable manner. The f-hMS was effectively taken up by the cells and exhibited fluorescent labeling while preserving excellent cell viability. Overall, the f-hMS nanoreservoir may be useful as a multifunctional carrier system for drug delivery and cell imaging.

  7. Synthesis and photocatalytic activities of Nd-doped TiO2 mesoporous microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xijian; Sun, Yangang; Wang, Yeying; Zhang, Lijuan; Lu, Jie

    2016-11-01

    Nd-doped TiO2 mesoporous microspheres with possessing regular micro/nanostructure were synthesized by a simple and facile method. The structure and optical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption isotherms and UV-Visible absorbance spectroscopy. It was revealed that Nd-doped TiO2 mesoporous microspheres are composed of primary nanoparticles with a particle size of ˜25nm. The photocatalytic activities of all the samples were evaluated by degradation methyl orange (MO) in aqueous solution as a model reaction under xenon lamp light irradiation. The results showed that the doped samples demonstrated a higher photocatalytic activity than TiO2 mesoporous microspheres, and the MO of 10mg/mL almost could be completely degraded by the Nd-doped TiO2 mesoporous sample (the dosage of Nd salt to TiO2 is 6%) under xenon lamp light irradiation within 1h.

  8. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    PubMed

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate.

  9. Effects of CO 2 activation on porous structures of coconut shell-based activated carbons

    NASA Astrophysics Data System (ADS)

    Guo, Shenghui; Peng, Jinhui; Li, Wei; Yang, Kunbin; Zhang, Libo; Zhang, Shimin; Xia, Hongying

    2009-07-01

    In this paper, textural characterization of an activated carbon derived from carbonized coconut shell char obtained at carbonization temperature of 600 °C for 2 h by CO 2 activation was investigated. The effects of activation temperature, activation time and flow rate of CO 2 on the BET surface area, total volume, micropore volume and yield of activated carbons prepared were evaluated systematically. The results showed that: (i) enhancing activation temperature was favorable to the formation of pores, widening of pores and an increase in mesopores; (ii) increasing activation time was favorable to the formation of micropores and mesopores, and longer activation time would result in collapsing of pores; (iii) increasing flow rate of CO 2 was favorable to the reactions of all active sites and formation of pores, further increasing flow rate of CO 2 would lead carbon to burn out and was unfavorable to the formation of pores. The degree of surface roughness of activated carbon prepared was measured by the fractal dimension which was calculated by FHH (Frenkel-Halsey-Hill) theory. The fractal dimensions of activated carbons prepared were greater than 2.6, indicating the activated carbon samples prepared had very irregular structures, and agreed well with those of average micropore size.

  10. Controllable synthesis of nitrogen-doped hollow mesoporous carbon spheres using ionic liquids as template for supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Aibing; Li, Yunqian; Liu, Lei; Yu, Yifeng; Xia, Kechan; Wang, Yuying; Li, Shuhui

    2017-01-01

    We have demonstrated a facile and controllable synthesis of monodispersed nitrogen-doped hollow mesoporous carbon spheres (N-HMCSs) using resorcinol/formaldehyde resin as a carbon precursor, tetraethyl orthosilicate as a structure-assistant agent, ionic liquids (ILs) as soft template, partial carbon sources, and nitrogen sources. The sizes and the architectures including hollow and yolk-shell of resultant carbon spheres can be efficiently controlled through the adjustment of the content of ILs. Alkyl chain length of the ILs also has an important effect on the formation of N-HMCSs. With proper alkyl chain length and content of ILs, the resultant N-HMCSs show monodispersed hollow spheres with high surface areas (up to 1158 m2 g-1), large pore volumes (up to 1.70 cm3 g-1), and uniform mesopore size (5.0 nm). Combining the hollow mesoporous structure, high porosity, large surface area, and nitrogen functionality, the as-synthesized N-HMCSs have good supercapacitor performance with good capacitance (up to 159 F g-1) and favorable capacitance retention (88% capacitive retention after 5000 cycles).

  11. Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis

    PubMed Central

    Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng

    2013-01-01

    Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595

  12. Carbon dioxide adsorption on amine-impregnated mesoporous materials prepared from spent quartz sand.

    PubMed

    Su, Yiteng; Peng, Lihong; Shiue, Angus; Hong, Gui-Bing; Qian, Zhang; Chang, Chang-Tang

    2014-07-01

    Mesoporous MCM-41 was synthesized using cetyltrimethyl ammonium bromide (CTAB) as a cationic surfactant and spent quartz sand as the silica source. Modification of the mesoporous structure to create an absorbent was then completed using 3-aminopropyltrimethoxysilane. Amine-Quartz-MCM (The A-Q-MCM) adsorbents were then characterized by N2 adsorption/desorption, elemental analysis (EA), X-ray fluorescence (XRF), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), as well as the carbon dioxide (CO2) adsorption/desorption performance. In this study, spent quartz sand was utilized to synthesize Quartz-MCM (Q-MCM) and the amine functionalized material, A-Q-MCM, which exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The surface area, pore volume, and pore diameter were found to be as high as 1028 m2/g, 0.907 cm3/g, and 3.04 nm, respectively. Under the condition of CO2 concentration of 5000 ppm, retention time of 50 cc/min, and the dosage of 1 g/cm3, the mean adsorption capacity of CO2 onto A-Q-MCM was about 89 mg/g, and the nitrogen content of A-Q-MCM was 2.74%. The adsorption equilibrium was modeled well using a Freundlich isotherm. Implications: In this study, spent quartz sand was utilized to synthesize Q-MCM. The amine functionalized material exhibited a higher uptake of CO2 at room temperature compared with the nongrafted material. The results showed that Q-MCM is similar to MCM-41 synthesized using commercial methods. The adsorption equilibrium was modeled well using a Freundlich isotherm.

  13. Diffusion-Controlled Drug Release From the Mesoporous Magnesium Carbonate Upsalite(®).

    PubMed

    Zhang, Peng; Zardán Gómez de la Torre, Teresa; Forsgren, Johan; Bergström, Christel A S; Strømme, Maria

    2016-02-01

    In vitro drug release from well-defined particle-size fractions of the mesoporous magnesium carbonate material Upsalite(®) was investigated in detail using ibuprofen, a biopharmaceutics classification system class II drug, as the model compound. The weight of loaded drug corresponded to 30% of the weight of the carrier and the pores were filled to approximately 80%. The incorporated ibuprofen was found to be in an amorphous state and was physisorbed, rather than chemisorbed, to the surfaces of the pore walls. In contrast to ibuprofen in mesoporous silica, there was no detectable drug on the outer surface of the carrier particles. Two ibuprofen doses were loaded into Upsalite(®) particles with size fractions ranging from 25 μm to more than 200 μm. The initial release rate was controlled by the particle size; the dissolution rate of the loaded ibuprofen during this period was more than four times faster than that of the crystalline drug. An extended-release period of about 24 h followed the initial rapid-release period. The features of this extended-release period were dependent on the total drug concentration in the release medium. Detailed analysis of the diffusion of ibuprofen in Upsalite(®) provided the ibuprofen diffusion coefficient (9.8 × 10(-8) cm(2)/s), the constrictivity of the diffusion process (0.47) and the tortuosity of the carrier (15). This relatively high tortuosity value indicates that Upsalite(®) can be used not only to enhance the dissolution rate of poorly soluble drugs but also as a carrier in sustained-release applications by using larger particle sizes or even pellets of the material.

  14. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries

    PubMed Central

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Shapter, Joseph G.; Yin, Ting; Sun, Rongjin; Cui, Daxiang

    2015-01-01

    An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20–40 nm, length of 30–100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8–10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m2 g−1. The loading of CNT, in terms of the weight ratio of Fe3O4 nanoparticles, can reach as high as 66.5 wt%. Compared to the conventional method of using a Al2O3 membrane as template to fill CNT with iron oxides nanoparticles, our strategy is facile, effective, low cost and easy to scale up to large scale production (~1.42 g per one-pot). When evaluated for lithium storage at 1.0 C (1 C = 928 mA g−1), the mesoporous Fe3O4@CNT can retain at 358.9 mAh g−1 after 60 cycles. Even when cycled at high rate of 20 C, high capacity of 275.2 mAh g−1 could still be achieved. At high rate (10 C) and long life cycling (500 cycles), the cells still exhibit a good capacity of 137.5 mAhg−1. PMID:26631536

  15. Synthesis and electrochemical performance of mesoporous SiO{sub 2}–carbon nanofibers composite as anode materials for lithium secondary batteries

    SciTech Connect

    Hyun, Yura; Choi, Jin-Yeong; Park, Heai-Ku; Bae, Jae Young; Lee, Chang-Seop

    2016-10-15

    Highlights: • Mesoporous SiO{sub 2}–carbon nanofibers composite synthesized on Ni foam without any binder. • This composite was directly applied as anode material of Li secondary batteries. • Showed the highest initial (2420 mAh/g) and discharging (2092 mAh/g) capacity. • This material achieved a retention rate of 86.4% after 30 cycles. - Abstract: In this study, carbon nanofibers (CNFs) and mesoporous SiO{sub 2}–carbon nanofibers composite were synthesized and applied as the anode materials in lithium secondary batteries. CNFs and mesoporous SiO{sub 2}–CNFs composite were grown via chemical vapor deposition method with iron-copper catalysts. Mesoporous SiO{sub 2} materials were prepared by sol–gel method using tetraethylorthosilicate as the silica source and cetyltrimethylammoniumchloride as the template. Ethylene was used as the carbon source and passes into a quartz reactor of a tube furnace heated to 600 °C, and the temperature was maintained at 600 °C for 10 min to synthesize CNFs and mesoporous SiO{sub 2}–CNFs composite. The electrochemical characteristics of the as-prepared CNFs and mesoporous SiO{sub 2}–CNFs composite as the anode of lithium secondary batteries were investigated using a three-electrode cell. In particular, the mesoporous SiO{sub 2}–CNFs composites synthesized without binder after depositing mesoporous SiO{sub 2} on Ni foam showed the highest charging and discharging capacity and retention rate. The initial capacity (2420 mAh/g) of mesoporous SiO{sub 2}–CNFs composites decreased to 2092 mAh/g after 30 cycles at a retention rate of 86.4%.

  16. Preparation and drug release behavior of temperature-responsive mesoporous carbons

    SciTech Connect

    Wang Xiufang; Liu Ping; Tian Yong

    2011-06-15

    A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery. - Graphical abstract: The bands located at 1650 and 1549 cm{sup -1} could be assigned to C=O stretching and N-H bending vibrations for polymer PNIPAAm (a). The bands at 1388 and 1369 cm{sup -1} were due to isopropyl group, and the band at 1459 cm{sup -1} was related to the bending vibration of C-H (a). For the PNIPAAm/OMCs composite, the characteristic bands of polymer were still observed besides those for carbon materials and the bands at around 1585 cm{sup -1} and a broad band at about 1100 cm{sup -1} were characteristics for the carbon materials(c). In addition, little shifts of C=O and N-H bands compared to the pure PNIPAAm were also observed (b), indicating a weak interaction between the polymer and carbon material. These results could be a proof that the PNIPAAm has been incorporated into the carbon material. Highlights: > A temperature-responsive PNIPAAm/OMCs composite was successfully synthesized by a simple wetness impregnation technique for the first time. > The inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. > In vitro test of IBU release exhibited a temperature-responsive controlled release delivery.

  17. Graphene Sandwiched by Sulfur-Confined Mesoporous Carbon Nanosheets: A Kinetically Stable Cathode for Li-S Batteries.

    PubMed

    Xin, Sen; You, Ya; Li, Hui-Qin; Zhou, Weidong; Li, Yutao; Xue, Leigang; Cong, Huai-Ping

    2016-12-14

    The practical use of lithium-sulfur batteries for the next-generation energy storage, especially the automobiles, was hindered by low electronic conductivity of sulfur and the resulting poor rate capabilities. Here, we report a sulfur-carbon composite by confining S into a graphene sandwiched in mesoporous carbon nanosheets with a two-dimensional ultrathin morphology, suitable mesopore size and large pore volume, and excellent electronic conductivity. Serving as cathode material for a Li-S battery, the elaborately designed S/C composite leads to "kinetically stable" transmissions of Li ions and electrons, triggering a stable electrochemistry and a record-breaking rate performance. In this way, the S/C composite has been proved a promising cathode material for high-rate Li-S batteries targeted at automobile storage.

  18. Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture.

    PubMed

    Hiremath, Vishwanath; Shavi, Raghavendra; Gil Seo, Jeong

    2017-03-10

    Magnesium oxide (MgO) is a promising candidate for carbon dioxide (CO2) capture at high temperature applicable to pre-combustion capture in an integrated gasification combined cycle (IGCC) scheme. In this work, mesoporous MgO nanoparticles were synthesized via simple complexation-combustion method by using glycine (G) and urea (U) as fuels (F). The obtained sorbents were thoroughly characterized in terms of the crystalline structure, morphology, nature of the fuel, F/O ratio, and their consequent effects on CO2 sorption. It was observed that due to the complexation followed by combustion in the presence of glycine, MgO with crystallite size as small as∼8nm could be derived. The synthesized MgO nanoparticles exhibited exceptionally high CO2 sorption at elevated temperatures. Furthermore, CO2 sorption isotherms in assistance with FT-IR and DSC experiments demonstrated that the low CO2 uptake at ambient temperature (25-100°C) may be due to the formation of monodentate carbonates, whereas predominant bicarbonates enhance the CO2 uptake at elevated temperatures (100-300°C). MgO-1.5(G) obtained the highest sorption corresponding to 1.34mmol/g at 200°C.

  19. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  20. Capturing the Local Adsorption Structures of Carbon Dioxide in Polyamine-Impregnated Mesoporous Silica Adsorbents.

    PubMed

    Huang, Shing-Jong; Hung, Chin-Te; Zheng, Anmin; Lin, Jen-Shan; Yang, Chun-Fei; Chang, Yu-Chi; Deng, Feng; Liu, Shang-Bin

    2014-09-18

    Interactions between amines and carbon dioxide (CO2) are essential to amine-functionalized solid adsorbents for carbon capture, and an in-depth knowledge of these interactions is crucial to adsorbent design and fabrication as well as adsorption/desorption processes. The local structures of CO2 adsorbed on a tetraethylenepentamine-impregnated mesoporous silica SBA-15 were investigated by solid-state (13)C{(14)N} S-RESPDOR MAS NMR technique and theoretical DFT calculations. Two types of adsorption species, namely, secondary and tertiary carbamates as well as distant ammonium groups were identified together with their relative concentrations and relevant (14)N quadrupolar parameters. Moreover, a dipolar coupling of 716 Hz was derived, corresponding to a (13)C-(14)N internuclear distance of 1.45 Å. These experimental data are in excellent agreement with results obtained from DFT calculations, revealing that the distribution of surface primary and secondary amines readily dictates the CO2 adsorption/desorption properties of the adsorbent.

  1. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Zeng, Chao; Qu, Deyu; Tang, Haolin; Li, Yu; Su, Bao-Lian; Qu, Deyang

    2016-07-01

    Nitrogen-doped ordered mesoporous carbons (OMCs) have been synthesized via aqueous cooperative assembly route in the presence of basic amino acids as either polymerization catalysts or nitrogen dopants. This method allows the large-scale production of nitrogen-doped OMCs with tunable composition, structure and morphology while maintaining highly ordered mesostructures. For instances, the nitrogen content can be varied from ∼1 wt% to ∼6.3 wt% and the mesophase can be either 3-D body-centered cubic or 2-D hexagonal. The specific surface area for typical OMCs is around 600 m2 g-1, and further KOH activation can significantly enhance the surface area to 1866 m2 g-1 without destroying the ordered mesostructures. Benefiting from hierarchically ordered porous structure, nitrogen-doping effect and large-scale production availability, the synthesized OMCs show a great potential towards supercapacitor application. When measured in a symmetrical two-electrode configuration with an areal mass loading of ∼3 mg cm-2, the activated OMC exhibits high capacitance (186 F g-1 at 0.25 A g-1) and good rate capability (75% capacity retention at 20 A g-1) in ionic liquid electrolyte. Even as the mass loading is up to ∼12 mg cm-2, the OMC electrode still yields a specific capacitance of 126 F g-1 at 20 A g-1.

  2. MESOPOROUS IRON PHOSPHATE AS AN ACTIVE, SELECTIVE AND RECYCLABLE CATALYST FOR THE SYNTHESIS OF NOPOL BY PRINS CONDENSATION

    EPA Science Inventory


    Mesoporous iron phosphate is found to be a highly active and recyclable heterogeneous catalyst for the selective synthesis of nopol by Prins condensation of ?-pinene and paraformaldehyde in acetonitrile at 80 oC.



  3. Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism

    NASA Astrophysics Data System (ADS)

    Zhou, Yaoyu; Zhang, Fengfeng; Tang, Lin; Zhang, Jiachao; Zeng, Guangming; Luo, Lin; Liu, Yuanyuan; Wang, Pei; Peng, Bo; Liu, Xiaocheng

    2017-03-01

    Highly efficient simultaneous removal of atrazine and Cu(II) was accomplished using synthesized polyacrylic acid-functionalized magnetic ordered mesoporous carbon (P-MMC) as compared to magnetic ordered mesoporous carbon (MMC) and ordered mesoporous carbon (OMC). The mutual effects and interactive mechanism of their adsorption onto P-MMC were investigated systematically by binary, preloading and thermodynamic adsorption procedures. In both binary and preloading systems, the adsorption of atrazine was inhibited to some extent by the presence of Cu(II) because of selective recognition and direct competition, but the presence of atrazine had negligible effect on Cu(II) desorption. With the coexistence of humic acid (0–20 mg L‑1), both atrazine and Cu(II) sorption increased slightly in sole and binary systems. With the concentration of coexisting NaCl increasing from 0 to 100 mM, the adsorption capacity for Cu(II) slightly decreased, but as for atrazine adsorption, it decreased at first, and then increased slightly in sole and binary systems. P-MMC was applied to treat real environmental samples, and the sorption capacities for atrazine and Cu(II) in real samples were all more than 91.47% and 96.43% of those in lab ultrapure water, respectively. Finally, comprehensively considering the relatively good renewability and the superior behavior in the application to real water samples, P-MMC has potential in removal of atrazine, Cu(II) and possibly other persistent organic pollutants from wastewater.

  4. Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism.

    PubMed

    Zhou, Yaoyu; Zhang, Fengfeng; Tang, Lin; Zhang, Jiachao; Zeng, Guangming; Luo, Lin; Liu, Yuanyuan; Wang, Pei; Peng, Bo; Liu, Xiaocheng

    2017-03-02

    Highly efficient simultaneous removal of atrazine and Cu(II) was accomplished using synthesized polyacrylic acid-functionalized magnetic ordered mesoporous carbon (P-MMC) as compared to magnetic ordered mesoporous carbon (MMC) and ordered mesoporous carbon (OMC). The mutual effects and interactive mechanism of their adsorption onto P-MMC were investigated systematically by binary, preloading and thermodynamic adsorption procedures. In both binary and preloading systems, the adsorption of atrazine was inhibited to some extent by the presence of Cu(II) because of selective recognition and direct competition, but the presence of atrazine had negligible effect on Cu(II) desorption. With the coexistence of humic acid (0-20 mg L(-1)), both atrazine and Cu(II) sorption increased slightly in sole and binary systems. With the concentration of coexisting NaCl increasing from 0 to 100 mM, the adsorption capacity for Cu(II) slightly decreased, but as for atrazine adsorption, it decreased at first, and then increased slightly in sole and binary systems. P-MMC was applied to treat real environmental samples, and the sorption capacities for atrazine and Cu(II) in real samples were all more than 91.47% and 96.43% of those in lab ultrapure water, respectively. Finally, comprehensively considering the relatively good renewability and the superior behavior in the application to real water samples, P-MMC has potential in removal of atrazine, Cu(II) and possibly other persistent organic pollutants from wastewater.

  5. Synthesis of multi-wall carbon nanotubes by the pyrolysis of ethanol on Fe/MCM-41 mesoporous molecular sieves

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Li, Yanhui; Zhou, Xuping; Jiang, Tingshun; Li, Changsheng; Yin, Hengbo

    2010-03-01

    Ordered hexagonal arrangement MCM-41 mesoporous molecular sieves were synthesized by the traditional hydrothermal method, and Fe-loaded MCM-41 mesoporous molecular sieves (Fe/MCM-41) were prepared by the wet impregnation method. Their mesoporous structures were testified by X-ray diffraction (XRD) and the N 2 physical adsorption technique. Carbon nanotubes (CNTs) were synthesized by the chemical vapor deposition (CVD) method via the pyrolysis of ethanol at atmospheric pressure using Fe/MCM-41 as a catalytic template. The effect of different reaction temperatures ranging from 600 to 800 ∘C on the formation of CNTs was investigated. The resulting carbon materials were characterized by various physicochemical techniques such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The results show that multi-wall carbon nanotubes (MWCNTs) with an internal diameter of ca. 7.7 nm and an external diameter of ca. 16.9 nm were successfully obtained by the pyrolysis of ethanol at 800 ∘C utilizing Fe/MCM-41 as a catalytic template.

  6. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition

    SciTech Connect

    Atchudan, R.; Joo, Jin.; Pandurangan, A.

    2013-06-01

    Highlights: ► Tailored 3D cubic Ni/KIT-6 with large pores was synthesized successfully. ► The new hybrid g-CNTs in large scale were synthesized using Ni/KIT-6 by CVD method. ► The use of mesoporous material by CVD method would be an ideal choice to prepare g-CNTs at reasonable cost. ► This type of g-CNTs might be a new avenue for nano-electronic applications. - Abstract: The new hybrid of graphenated carbon nanotubes (g-CNTs) was superior to either CNTs or graphene. Mesoporous 3D cubic Ni/KIT-6 were synthesized hydrothermally through organic template route and then were used as catalytic template for the production of g-CNTs using acetylene as a carbon precursor by chemical vapor deposition (CVD) method. The deposited new hybrid carbon materials were purified and analyzed by various physico-chemical techniques such as XRD, TGA, SEM, TEM and Raman spectroscopy techniques. The graphitization of CNTs was confirmed by TGA and HRTEM studies. Thermal stability, surface morphology, and structural morphology of these materials were revealed by TGA, SEM and TEM analysis, respectively. Moreover, the tailored mesoporous Ni/KIT-6 molecular sieves were found to possess better quality and massive quantity of g-CNTs produced compared to other catalytic template route.

  7. Simultaneous removal of atrazine and copper using polyacrylic acid-functionalized magnetic ordered mesoporous carbon from water: adsorption mechanism

    PubMed Central

    Zhou, Yaoyu; Zhang, Fengfeng; Tang, Lin; Zhang, Jiachao; Zeng, Guangming; Luo, Lin; Liu, Yuanyuan; Wang, Pei; Peng, Bo; Liu, Xiaocheng

    2017-01-01

    Highly efficient simultaneous removal of atrazine and Cu(II) was accomplished using synthesized polyacrylic acid-functionalized magnetic ordered mesoporous carbon (P-MMC) as compared to magnetic ordered mesoporous carbon (MMC) and ordered mesoporous carbon (OMC). The mutual effects and interactive mechanism of their adsorption onto P-MMC were investigated systematically by binary, preloading and thermodynamic adsorption procedures. In both binary and preloading systems, the adsorption of atrazine was inhibited to some extent by the presence of Cu(II) because of selective recognition and direct competition, but the presence of atrazine had negligible effect on Cu(II) desorption. With the coexistence of humic acid (0–20 mg L−1), both atrazine and Cu(II) sorption increased slightly in sole and binary systems. With the concentration of coexisting NaCl increasing from 0 to 100 mM, the adsorption capacity for Cu(II) slightly decreased, but as for atrazine adsorption, it decreased at first, and then increased slightly in sole and binary systems. P-MMC was applied to treat real environmental samples, and the sorption capacities for atrazine and Cu(II) in real samples were all more than 91.47% and 96.43% of those in lab ultrapure water, respectively. Finally, comprehensively considering the relatively good renewability and the superior behavior in the application to real water samples, P-MMC has potential in removal of atrazine, Cu(II) and possibly other persistent organic pollutants from wastewater. PMID:28252022

  8. Catalytic reduction-adsorption for removal of p-nitrophenol and its conversion p-aminophenol from water by gold nanoparticles supported on oxidized mesoporous carbon.

    PubMed

    Guo, Pucan; Tang, Lin; Tang, Jing; Zeng, Guangming; Huang, Binbin; Dong, Haoran; Zhang, Yi; Zhou, Yaoyu; Deng, Yaocheng; Ma, Linlin; Tan, Shiru

    2016-05-01

    A highly efficient method for removal of p-nitrophenol and its conversion p-aminophenol from water was proposed using a novel catalyst-adsorbent composite of gold nanoparticles supported on functionalized mesoporous carbon (Au@CMK-3-O). The immobilized gold nanoparticles presented excellent catalytic ability to converse p-nitrophenol into p-aminophenol with the help of sodium borohydride, and the oxidized mesoporous carbon (CMK-3-O) serving as both carrier and adsorbent also exhibited high efficiency to remove p-aminophenol. The morphology and structure of the composite were characterized via SEM, TEM, FTIR and XPS analysis. Moreover, the mechanism of reaction process and the parameters of kinetics and thermodynamics were investigated. The activation energy was figured as 86.8 kJ mol(-1) for the adsorption and reduction of p-nitrophenol to p-aminophenol. The thermodynamic analysis based on the rate constants evaluated by pseudo-first-order model reveals that the adsorption-reduction process is an endothermic procedure with the rise of randomness. The anti-oxidation and regeneration study indicates that Au@CMK-3-O can be reused for 6 times with more than 90% conversion efficiency and keep high activity after exposing in air for 1 month, which possesses great prospects in application of nitroaromatic pollutant removal.

  9. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  10. Direct tri-constituent co-assembly of highly ordered mesoporous carbon counter electrode for dye-sensitized solar cells.

    PubMed

    Peng, Tao; Sun, Weiwei; Sun, Xiaohua; Huang, Niu; Liu, Yumin; Bu, Chenghao; Guo, Shishang; Zhao, Xing-Zhong

    2013-01-07

    Controlling over ordered porosity by self-assembly is challenging in the area of materials science. Materials with highly ordered aperture are favorable candidates in catalysis and energy conversion device. Here we describe a facile process to synthesize highly ordered mesoporous carbon (OMC) by direct tri-constituent co-assembly method, which uses resols as the carbon precursor, tri-block copolymer F127 as the soft template and tetraethoxysilane (TEOS) as the inorganic precursor. The obtained products are characterized by small-angle X-ray diffraction (SAXD), Brunauer-Emmett-Teller (BET) nitrogen sorption-desorption measurement and transmission electron microscope (TEM). The results indicate that the OMC possesses high surface areas of 1209 m(2) g(-1), homogeneous pore size of 4.6 nm and a large pore volume of 1.65 cm(3) g(-1). The advantages of high electrochemical active surface area and favorable accessible porosity of OMC benefit the catalysis of I(3)(-) to I(-). As a result, the OMC counter electrode displays a remarkable property when it was applied in dye-sensitized solar cells (DSSCs). For comparison, carbon black (CB) counter electrode and Pt counter electrode have also been prepared. When these different counter electrodes were applied for dye-sensitized solar cells (DSSCs), the power-conversion efficiency (η) of the DSSCs with CB counter electrode are measured to be 5.10%, whereas the corresponding values is 6.39% for the DSSC with OMC counter electrode, which is comparable to 6.84% of the cell with Pt counter electrode under the same experimental conditions.

  11. Tuning the Interfacial Activity of Mesoporous Silicas for Biphasic Interface Catalysis Reactions.

    PubMed

    Xue, Fen; Zhang, Yabin; Zhang, Fengwei; Ren, Xiaomin; Yang, Hengquan

    2017-03-08

    Interface-active particle materials that are able to assemble at the oil/water interface so as to stabilize droplets, are gaining unprecedented interest due to the intriguing applications in catalysis and materials synthesis, etc. In contrast to these potential applications, this kind of materials are still limited and cannot meet some particular demands of practical utilizations such as rationally designed interfacial activity and high stability against concentrated salts. In this contribution, interface-active mesoporous silica nanospheres (MSS@CxZy) are synthesized through simultaneous incorporation of extremely hydrophilic zwitterionic moiety and hydrophobic octyl moiety in the shell. The textural properties of these materials are characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and nitrogen sorption. The successful decoration of these functionalities in the shell is confirmed by Fourier transform infrared spectra (FT-IR), (13)C nuclear cross-polar magnetic resonance ((13)C CP/MAS NMR), and (29)Si nuclear cross-polar magnetic resonance ((29)Si CP/MAS NMR). The prepared mesoporous silicas exhibit tunable interfacial activity, so that oil-in-water (O/W) and water-in-oil (W/O) Pickering emulsions can be easily obtained by varying the molar fraction of these two functionalities. The MSS@CxZy-stabilized Pickering emulsions exhibit high stability to coalescence even at 6.0 M NaCl and have relatively low surface coverage of droplets due to electrostatic repulsion, which is normally difficult to obtain for conventional particles. Interestingly, such interface-active mesoporous silicas can also carry polyoxometalate that is hosted in the nanopore to assemble at the oil/water interface and thus efficiently promotes biphasic epoxidation reactions without any external stirring, exemplifying an innovative application of theses developed mesoporous silicas.

  12. Effects of the Functionalization of the Ordered Mesoporous Carbon Support Surface on Iron Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins

    PubMed Central

    Hofmann, Jan P.; van Deelen, Tom W.; Lamme, Wouter S.; Krans, Nynke A.; Hensen, Emiel J. M.

    2017-01-01

    Abstract Ordered mesoporous carbon (CMK‐3) with different surface modifications is applied as a support for Fe‐based catalysts in the Fischer–Tropsch to olefins synthesis (FTO) with and without sodium and sulfur promoters. Different concentrations of functional groups do not affect the size (3–5 nm) of Fe particles in the fresh catalysts but iron (carbide) supported on N‐enriched CMK‐3 and a support with a lower concentration of functional groups show higher catalytic activity under industrially relevant FTO conditions (340 °C, 10 bar, H2/CO=2) compared to a support with an O‐enriched surface. The addition of promoters leads to more noticeable enhancements of the catalytic activity (3–5 times higher) and the selectivity to C2–C4 olefins (≈2 times higher) than surface functionalization of the support. Nitrogen surface functionalization and removal of surface groups before impregnation and calcination, however, further increase the activity of the catalysts in the presence of promoters. The confinement of the Fe nanoparticles in the mesopores of CMK‐3 restricts but does not fully prevent particle growth and, consequently, the decrease of activity under FTO conditions. PMID:28286582

  13. Platinum particles supported on mesoporous carbons: fabrication and electrocatalytic performance in methanol-tolerant oxygen-reduction reactions

    NASA Astrophysics Data System (ADS)

    Dong, Cheng-Di; Chen, Chiu-Wen; Chen, Chih-Feng; Hung, Chang-Mao

    2014-08-01

    In this report, we describe the preparation and electrochemical characterization of a Pt electrocatalyst, which was synthesized from hexachloroplatinic acid, using the incipient wetness impregnation method. This carbon mesoporous materials (Pt-CMMs) electrocatalyst was used for catalyzing the oxidation of methanol and its oxygen-reduction reaction. The electrocatalytic oxidation of methanol was studied using linear-sweep voltammograms (LSV), polarization and chronoamperometric measurements. Phase characterizations and morphological analyses were performed using 3D excitation-emission fluorescent matrix (EEFM) spectroscopy, UV-Vis absorption measurements, and X-ray diffraction (XRD) and environmental scanning electron microscopy (ESEM) techniques; the ESEM system was equipped with an energy-dispersive spectrometer (EDS). The oxidation capacity measured using a LSV might explain the high activity exhibited by the Pt-CMM electrocatalysts in methanol-tolerant oxygen reduction, and the results demonstrated that the potential and current density of the main reaction peak of the Pt-CMMs electrocatalyst changed during the reaction. Moreover, EEFM spectroscopy and XRD were determined to be appropriate and effective methods for characterizing Pt clusters that enhance their intrinsic emission from Pt-CMMs electrocatalysts in electrocatalytic-treatment systems. Furthermore, the ESEM-EDS results showed that fresh Pt nanoparticles were highly dispersed on CMMs and featured a 20 nm diameter and a narrow particle-size distribution.

  14. Catalytic reduction of hexavalent chromium by a novel nitrogen-functionalized magnetic ordered mesoporous carbon doped with Pd nanoparticles.

    PubMed

    Li, Sisi; Tang, Lin; Zeng, Guangming; Wang, Jiajia; Deng, Yaocheng; Wang, Jingjing; Xie, Zhihong; Zhou, Yaoyu

    2016-11-01

    Hexavalent chromium Cr(VI) is a toxic water pollutant which can cause serious influence to the health of the human and animals. Therefore, developing new methods to remove hexavalent chromium in water attracts great attention of scholars. In our research, we successfully synthesized a new type of magnetic mesoporous carbon hybrid nitrogen (Fe-NMC) loaded with catalyst Pd nanoparticles (NPs), which performed excellent catalytic reduction efficiency toward Cr(VI). The characterization of Pd/Fe-NMC composite was investigated in detail using scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption measurements. According to the experimental results, we dealt with in-depth discussion and studied on the mechanism of hexavalent chromium removed by Pd/Fe-NMC composite. Furthermore, the batch experiments were conducted to investigate the catalytic reduction ability of composite. It was found that the chromium reduction process conforms to pseudo-first-order reaction kinetics model when the concentrations of chromium and sodium formate were low. It took only 20 min for the Pd/Fe-NMC composite to reach 99.8 % reduction of Cr(VI) (50 mg/L). The results suggested that the Pd/Fe-NMC composite may exhibit significantly improved catalytic activity for the hexavalent chromium reduction at industrial wastewater.

  15. Formation Regularities of Sers-Active Substrates Based on Silver-Coated Mesoporous Silicon

    NASA Astrophysics Data System (ADS)

    Panarin, A.; Khodasevich, I.; Terekhov, S.; Bandarenka, H.; Artsemyeva, K.; Bondarenko, V.; Martinez-Pastor, J.

    2013-05-01

    SERS-active substrates have been fabricated by immersion deposition of Ag on mesoporous silicon. The SERS intensity has been found to alter simultaneously to the periodical repacking of Ag particles which grow according to the Volmer-Weber mechanism. We have determined the crucial parameter ("effective time") for managing the SERS signal intensity. "Effective time" has been calculated as a product of the immersion time by the Ag salt concentration.

  16. SBA-15 Mesoporous Silica Modified with Gallic Acid and Evaluation of Its Cytotoxic Activity

    PubMed Central

    Lewandowski, Dawid

    2015-01-01

    Gallic acid has been covalently conjugated to SBA-15 mesoporous silica surface through different linkers. Cytotoxic activity of the hybrid organic-inorganic systems against HeLa and KB cell lines has been analyzed. Up to 67% of HeLa or KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg mL-1). PMID:26151908

  17. Conversion of succinic acid to 1,4-butanediol via dimethyl succinate over rhenium nano-catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Kim, Jeong Kwon; Lee, Joongwon; Lee, Jong Kwon; Yi, Jongheop; Song, In Kyu

    2014-11-01

    Copper-containing mesoporous carbons (XCu-MC) with different copper content (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) were prepared by a single-step surfactant-templating method. Rhenium nano-catalysts supported on copper-containing mesoporous carbons (Re/XCu-MC) were then prepared by an incipient wetness method. Re/XCu-MC (X = 8.0, 12.7, 15.9, 23.3, and 26.8 wt%) catalysts were characterized by nitrogen adsorption-desorption isotherm, HR-TEM, FT-IR, and H2- TPR analyses. Liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO) via dimethyl succinate (DMS) was carried out over Re/XCu-MC catalysts in a batch reactor. The effect of copper content on the physicochemical properties and catalytic activities of Re/XCu-MC catalysts in the hydrogenation of succinic acid to BDO was investigated. Re/XCu-MC catalysts retained different physicochemical properties depending on copper content. In the hydrogenation of succinic acid to BDO, yield for BDO showed a volcano-shaped trend with respect to copper content. Thus, an optimal copper content was required to achieve maximum catalytic performance of Re/XCu-MC. It was also observed that yield for BDO increased with increasing the amount of hydrogen consumption by copper in the Re/XCu-MC catalysts.

  18. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides

    NASA Astrophysics Data System (ADS)

    Wan, Hao; Qin, Hongqiang; Xiong, Zhichao; Zhang, Weibing; Zou, Hanfa

    2013-10-01

    Magnetic mesoporous carbon microspheres with a yolk-shell structure (YSMMCS) have been prepared via a new in situ carbon source strategy. The material was fabricated by two shells coated onto the Fe3O4 particles; the inner dense and thick silica shell could protect the magnetic core from harsh acidic solvents as well as induce the void between the core and the outer shell for the yolk-shell structure, while the outer organosilica shell was used as the template and carbon source for in situ preparation of a carbon shell with mesoporous structure. A C18-alkyl chain was incorporated in situ as the carbon precursor efficiently, avoiding the conventional infiltration step, which was very difficult to manipulate and time-consuming with the possibility of losing the carbon precursor. The resulting yolk-shell magnetic mesoporous carbon microspheres exhibited a high surface area (273.15 m2 g-1), a large pore volume (0.31 cm3 g-1), and a strong magnetic response (a saturation magnetization value of 34.57 emu g-1). As a result of the void between the core and the outer shell and the π-π stacking effect, adsorption capacity reached 191.64 mg g-1 by using Rhodamine B as a standard analyte, indicating the great potential application of the material as drug carriers. Owing to the inherent hydrophobicity and high surface area, the composite material showed better performance in the enrichment of peptides than a magnetic mesoporous silica material (Fe2O3@nSiO2@mSiO2). According to the LC-MS/MS results, about 51 and 29 nonredundant peptides were identified from tryptic digests of 5 nM BSA. Additionally, taking advantage of the mesoporous structure and strong magnetic response, the material was utilized to selectively extract low abundance endogenous peptides from human serum in the presence of high abundance proteins. Based on the LC-MS/MS results, 962 endogenous peptides were obtained by 2.5 mg YSMMCS relative to 539 endogenous peptides by 5 mg Fe2O3@nSiO2@mSiO2, confirming the

  19. Simultaneous determination of hydroquinone and catechol at gold nanoparticles mesoporous silica modified carbon paste electrode.

    PubMed

    Tashkhourian, J; Daneshi, M; Nami-Ana, F; Behbahani, M; Bagheri, A

    2016-11-15

    A new electrochemical sensor based on gold nanoparticles mesoporous silica modified carbon paste electrode (AuNPs-MPS) was developed for simultaneous determination of hydroquinone and catechol. Morphology and structure of the AuNPs-MPS were characterized by transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The electrochemical behavior of hydroquinone and catechol were investigated using square wave voltammetry and the results indicate that the electrochemical responses are improved significantly at the modified electrode. The observed oxidative peaks separation of about 120mV made possible the simultaneous determination of hydroquinone and catechol in their binary-mixture. Under the optimized condition, a linear dynamic range of 10.0μM-1.0mM range for hydroquinone with the detection limit of 1.2μM and from 30.0μM-1.0mM for catechol with the detection limit of 1.1μM were obtained. The applicability of the method was demonstrated by the recovery studies of hydroquinone and catechol in spiked tap water samples.

  20. Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy

    PubMed Central

    Wang, Huan; Li, Xiangui; Ma, Zhiqiang; Wang, Dan; Wang, Linzhao; Zhan, Jieqiong; She, Lan; Yang, Feng

    2016-01-01

    In this study, a highly effective transmembrane delivery vehicle based on PEGylated oxidized mesoporous carbon nanosphere (oMCN@PEG) was successfully fabricated in a facile strategy. oMCN@PEG exhibited a narrow size distribution of 90 nm, excellent hydrophilicity, good biocompatibility, and a very high loading efficiency for doxorubicin (DOX). The drug system (oMCN@DOX@PEG) exhibited excellent stability under neutral pH conditions, but with dramatic releases of DOX at reduced pH conditions. Pharmacokinetics study revealed that oMCN@DOX@PEG could prolong the circulation of DOX in the blood stream. The endocytosis, cytotoxicity, and anticancer effect in vitro and in vivo of the drug-loaded nanoparticles were also evaluated. Our results showed that the nanoparticles efficiently penetrated the membrane of tumor cells, subsequently released drugs, and efficiently inhibited the growth of cancer cells both in vitro and in vivo. Especially, oMCN@DOX@PEG also exhibited significant antimetastasis effect in advanced stage of malignant cancer, improving the survival time of tumor-bearing mice. The results suggested that oMCN@PEG might be a promising anticancer drug delivery vehicle for cancer therapy. PMID:27175077

  1. Investigation of Mesoporous Graphitic Carbon Nitride as the Adsorbent to Remove Ni (II) Ions.

    PubMed

    Xin, Gang; Xia, Yuanjiao; Lv, Yuhua; Liu, Luman; Yu, Bei

    2016-04-01

    The mesoporous graphitic carbon nitride (mpg-C3N4/r, r was defined as the initial silica/dicyandiamide mass ratio) was successfully synthesized by heating the mixture of silica and dicyandiamide in a nitrogen atmosphere. The morphology and structure of mpg-C3N4/r were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller surface area measurement (BET), X-ray powder diffraction (XRD), and Fourier Transform Infrared spectroscopy (FT-IR). The adsorption performances of Ni (II) ions by mpg-C3N4/r were investigated. With increasing of r value, the BET specific surface area of the synthesized mpg-C3N4/r increased; the highest specific surface area of mpg-C3N4/1.5 increased up to 169.3 m2/g. This work shows that mpg-C3N4/1.5 is a promising, high-efficiency adsorbent that can be used to purify the water of a low Ni (II) ions concentration. The maximum adsorption capacity of Ni(II) ions by mpg-C3N4/1.5 was 15.26 mg/g. The adsorption properties of Ni (II) ions by mpg-C3N4/r complied well with pseudo-second-order kinetics and Langmuir isotherm model.

  2. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine.

    PubMed

    Takanabe, Kazuhiro; Kamata, Kumiko; Wang, Xinchen; Antonietti, Markus; Kubota, Jun; Domen, Kazunari

    2010-10-28

    Spectral sensitization of a mesoporous graphite carbon nitride (mpg-C(3)N(4)) photocatalyst was investigated by depositing magnesium phthalocyanine (MgPc) to expand the absorption to wavelengths longer than those of the principal mpg-C(3)N(4). The obtained sample, MgPc/Pt/mpg-C(3)N(4) (Pt as a cocatalyst) showed stable photocatalytic evolution of hydrogen from aqueous solution in the presence of sacrificial reagents (triethanolamine), even under irradiation at wavelengths longer than 600 nm. Increasing the amount of MgPc led to ordered MgPc aggregation on the photocatalyst surfaces. The rate of photocatalytic hydrogen evolution was highest on a sample with an amount of MgPc corresponding to a monolayer on the Pt/mpg-C(3)N(4) photocatalyst surface. The obtained action spectra of hydrogen evolution and the observation that the amount of evolved hydrogen substantially surpassed the amount of MgPc, confirm that the introduced MgPc functioned as a photocatalytic sensitizer.

  3. Synthesis of rambutan-like MoS2/mesoporous carbon spheres nanocomposites with excellent performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun

    2017-02-01

    A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.

  4. Mesoporous MgTa2O6 thin films with enhanced photocatalytic activity: On the interplay between crystallinity and mesostructure

    PubMed Central

    Wu, Jin-Ming; Djerdj, Igor; von Graberg, Till

    2012-01-01

    Summary Ordered mesoporous, crystalline MgTa2O6 thin films with a mesoscopic nanoarchitecture were synthesized by evaporation-induced self-assembly (EISA) in combination with a sol–gel procedure. Utilization of novel templates, namely the block copolymers KLE (poly(ethylene-co-butylene)-b-poly(ethylene oxide)) and PIB6000 (CH3C(CH3)2(CH2C(CH3)2)107CH2C(CH3)2C6H4O(CH2CH2O)100H), was the key to achieving a stable ordered mesoporous structure even upon crystallization of MgTa2O6 within the mesopore walls. The effect of the calcination temperature on the ability of the mesoporous films to assist the photodegradation of rhodamine B in water was studied. As a result, two maxima in the photocatalytic activity were identified in the calcination temperature range of 550–850 °C, peaking at 700 °C and 790 °C, and the origin of this was investigated by using temperature-dependent X-ray scattering. Optimal activity was obtained when the mesoporous film was heated to 790 °C; at this temperature, crystallinity was significantly high, with MgTa2O6 nanocrystals of 1.6 nm in size (averaged over all reflections), and an ordered mesoporous structure was maintained. When considering the turnover frequency of such photocatalysts, the optimized activity of the present nanoarchitectured MgTa2O6 thin film was ca. four times that of analogous anatase TiO2 films with ordered mesopores. Our study demonstrated that high crystallinity and well-developed mesoporosity have to be achieved in order to optimize the physicochemical performance of mesoporous metal-oxide films. PMID:22428103

  5. Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent.

    PubMed

    Wu, Zhangxiong; Webley, Paul A; Zhao, Dongyuan

    2010-06-15

    Fuctionalization of porous carbon materials through chemical methods orientates the development of new hybrid materials with specific functions. In this paper, a comprehensive study of pore evolution, mesostructural oxidation resistance, and simultaneous surface functionalization of ordered mesoporous carbon FDU-15 under various oxidation conditions is presented for the first time. The mesostructure and pore evolution with increasing oxidative strength are retrieved from XRD, TEM, and N(2) sorption techniques. The textural properties can be conveniently manipulated by changing the oxidation parameters, including different oxidative solution, temperature, and duration. It is revealed that the mesoporous carbon FDU-15 shows excellent structural stability under severe oxidation treatments by acidic (NH(4))(2)S(2)O(8), HNO(3), and H(2)O(2) solutions, much more stable than the mesostructural analogue CMK-3 carbon prepared by the nanocasting method. The surface area and porosity deteriorate to a large extent compared to the pristine carbon, with the micropores/small mesopores as the major contribution to the deterioration. The micropore/small mesopore can be blocked by the attached surface oxides under mild oxidation, while reopened with more carbon layer dissolution under more severe conditions. Simultaneously, high densities of surface oxygen complexes, especially carboxylic groups, can be generated. The contents and properties of the surface oxygen-containing groups are extensively studied by FTIR, TG, elemental analyses, and water and ammonia adsorption techniques. Such surface-functionalized mesoporous carbons can be used as a highly efficient adsorbent for immobilization of heavy metal ions as well as functional organic and biomolecules, with high capacities and excellent binding capabilities. Thus, we believe that the functionalized mesoporous carbon materials can be utilized as a promising solid and stable support for water treatment and organic

  6. Preparation and improved photocatalytic activity of mesoporous WS{sub 2} using combined hydrothermal-evaporation induced self-assembly method

    SciTech Connect

    Vattikuti, S.V. Prabhakar Byon, Chan Reddy, Ch. Venkata

    2016-03-15

    Highlights: • One-step method for synthesis of mesoporous WS{sub 2} was proposed. • Role of CTAB surfactant on formation of mesoporous WS{sub 2} was elucidated. • Possible growth mechanism of the mesoporous structure is also reported. • 0.1 wt% mesoporous WS{sub 2} catalyst exhibited high photocatalytic activity under UV light. - Abstract: In this paper, we report mesoporous WS{sub 2} nanosheets with a crystalline network that were synthesized using CTAB as a structure-directing agent via self-assembly induced by hydrothermal and thermal evaporation. Powder X-ray diffraction, Raman spectra, and high-resolution X-ray photoelectron spectroscopy results confirmed the formation of WS{sub 2} structures. Scanning electron microscopy and transmission electron microscopy were used to observe the as-prepared mesoporous frameworks. The mesoporous WS{sub 2} nanosheets have a surface area of 197 m{sup 2} g{sup −1}. A possible growth mechanism is reported for these mesoporous WS{sub 2} nanosheets. The mesoporous WS{sub 2} nanosheets demonstrate high photocatalytic activity. Among different concentrations, 0.1 wt% mesoporous WS{sub 2} shows superior catalytic activity compared to pristine WS{sub 2} nanosheets.

  7. Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zegeye, Tilahun Awoke; Kuo, Chung-Feng Jeffrey; Wotango, Aselefech Sorsa; Pan, Chun-Jern; Chen, Hung-Ming; Haregewoin, Atetegeb Meazah; Cheng, Ju-Hsiang; Su, Wei-Nien; Hwang, Bing-Joe

    2016-08-01

    Herein, we design hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite (MC-Meso C-doped TiO2/S) as a positive electrode material for lithium-sulfur batteries. The hybrid MC-Meso C-doped TiO2 host material is produced by a low-cost, hydrothermal and annealing process. The resulting conductive material shows dual microporous and mesoporous behavior which enhances the effective trapping of sulfur and polysulfides. The hybrid MC-Meso C-doped TiO2/S composite material possesses rutile TiO2 nanotube structure with successful carbon doping while sulfur is uniformly distributed in the hybrid MC-Meso C-doped TiO2 composite materials after the melt-infusion process. The electrochemical measurement of the hybrid material also shows improved cycle stability and rate performance with high sulfur loading (61.04%). The material delivers an initial discharge capacity of 802 mAh g-1 and maintains it at 578 mAh g-1 with a columbic efficiency greater than 97.1% after 140 cycles at 0.1 C. This improvement is thought to be attributed to the unique hybrid nanostructure of the MC-Meso C-doped TiO2 host and the good dispersion of sulfur in the narrow pores of the MC spheres and the mesoporous C-doped TiO2 support.

  8. Intrinsic catalytic role of mesoporous silica in preferential oxidation of carbon monoxide in excess hydrogen.

    PubMed

    Huang, Shengjun; Hara, Kenji; Fukuoka, Atsushi

    2012-04-10

    We have studied the intrinsic catalytic role of MCM-41 mesoporous silica in preferential oxidation of CO in excess H(2) (PROX). Two types of MCM-41 supports (MCM-41A and MCM-41B) were obtained from the same pristine as-synthesized materials by using different procedures for surfactant removal: one-step calcination or two-step extraction-calcination. Although two kinds of Pt catalysts prepared from the MCM-41 supports exhibit high similarity in apparent physicochemical parameters such as Pt morphology, particle-size distribution, electronic states, support architecture, and pore-size distribution, they show a dramatic difference in catalytic activity (ca. 100 % versus 10 % CO conversions at 298 K). This feature motivated us to investigate the catalytic role of MCM-41 in the PROX reaction. By means of infrared experiments with the isotope tracer technique, it was revealed that the reactive microenvironment at the interface between Pt and the MCM-41A support is the origin of the high activity. On the highly active Pt/MCM-41A catalyst, interfacial silanols play a decisive role in the ignition of CO oxidation, and gaseous O(2) and H(2) are dissociated on CO-free Pt sites created by the interfacial reaction. The dissociated oxygen and hydrogen are proposed to sustain the catalytic cycle in the form of regenerated silanols on the support, which is catalyzed by the Pt surface in the presence of H(2).

  9. Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Ejorh, Dennis; Share, Keith; Cohn, Adam P.; Douglas, Anna; Muralidharan, Nitin; Tovar, Trenton M.; Pint, Cary L.

    2016-10-01

    Despite widespread focus on porous carbons for lithium-sulfur battery cathode materials, electrode design to preserve mass-specific performance and sustained extended cycling stability remains a challenge. Here, we demonstrate electrochemically etched porous silicon as a sacrificial template to produce a new class of functional mesoporous carbons optimized for dual chemical and physical confinement of soluble polysulfides in lithium-sulfur battery cathodes. Melt infiltration loading of sulfur at 60 wt% enables initial discharge capacity of 1350 mAh/gsulfur at rates of 0.1 C - approaching theoretical capacity of 1675 mAh/gsulfur. Cycling performance measured at 0.2 C indicates 81% capacity retention measured over 100 cycles with 830 mAh/gsulfur capacity. Unlike other carbons, this template combines structural properties necessary for sulfur containment and polysulfide confinement to achieve high specific capacity, but also boasts surface-bound oxygen-containing functional groups that are able to chemically anchor the soluble Li2Sn species on the interior of the mesoporous carbon to sustain cycling performance. In turn, this elucidates a scalable and competitive material framework that is capable, without the addition of additional membranes or inactive anchoring materials, of providing the simultaneous anchoring and confinement effects necessary to overcome performance limitations in lithium sulfur batteries.

  10. Sulfur-doped ordered mesoporous carbons: A stability-improving sulfur host for lithium-sulfur battery cathodes

    NASA Astrophysics Data System (ADS)

    Nitze, Florian; Fossum, Kjell; Xiong, Shizhao; Matic, Aleksandar; Palmqvist, Anders E. C.

    2016-06-01

    We report on sulfur-functionalized ordered mesoporous carbons aimed for lithium-sulfur battery electrode applications with improved charge capacity retention. The carbons were obtained by a hard-template strategy using a mixture of furfuryl alcohol and furfuryl mercaptan. For the application as electrode material in lithium-sulfur batteries, the carbons were additionally loaded with sulfur following a traditional melt-diffusion approach. It was found that the sulfur interacts stronger with the sulfur-functionalized carbon matrix than with the non-functionalized material. Electrodes showed very high capacity in the second discharge-charge cycle amounting to approximately 1500, 1200 and 1400 mAh/g (sulfur) for carbon materials with no, medium and high degrees of sulfur functionalization, respectively. More importantly, the sulfur-functionalization of the carbon was found to increase the capacity retention after 50 discharge-charge cycles by 8 and 5% for the carbons with medium and high degrees of sulfur-functionalization, respectively, compared to carbon with no sulfur-functionalization. We attribute this significant improvement to the presence of covalently bound sulfur groups at the internal surface of the functionalized carbon providing efficient anchoring sites for catenation to the sulfur loaded into the pores of the carbons and provide experimental support for this in the form of results from cyclic voltammetry and X-ray photoelectron spectroscopy.

  11. Improved electrochemical performance of SnO2-mesoporous carbon hybrid as a negative electrode for lithium ion battery applications.

    PubMed

    Srinivasan, N R; Mitra, Sagar; Bandyopadhyaya, Rajdip

    2014-04-14

    To utilize the high specific capacity of SnO2 as an anode material in lithium-ion batteries, one has to overcome its poor cycling performance and rate capability, which result from large volume expansion (∼300%) of SnO2 during charging-discharging cycles. Hence, to accommodate the volume change during cycling, SnO2 nanoparticles of 6 nm diameter were synthesized specifically only on the outer surface of the mesopores, present within mesoporous carbon (CMK-5) particles, resulting in an effective buffering layer. To that end, the synthesis process first involves the formation of 3.5 nm SnO2 nanoparticles inside the mesopores of mesoporous silica (SBA-15), the latter being used as a template subsequently to obtain SnO2-CMK-5 hybrid particles. SnO2-CMK-5 exhibits superior rate capabilities, e.g. after 30 cycles, a specific discharge capacity of 598 mA h g(-1), at a current density of 178 mA g(-1). Electrochemical impedance spectroscopy reveals that the SnO2-CMK-5 electrode undergoes a significant reduction in solid-electrolyte interfacial and charge transfer resistances, with a simultaneous increase in the diffusion coefficient of lithium ions, all these in comparison to an electrode made of only SnO2 nanoparticles. This enhances the potential of using the SnO2-CMK-5 hybrid as a negative electrode, in terms of improved discharge capacity and cycling stability, compared to other electrodes, such as only SnO2 or only CMK-5.

  12. Thin-Layer Polymer Wrapped Enzymes Encapsulated in Hierarchically Mesoporous Silica with High Activity and Enhanced Stability

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Meitao; Liang, Chao; Jiang, Huangyong; Shen, Jian; Li, Hexing

    2014-03-01

    A novel soft-hard cooperative approach was developed to synthesize bioactive mesoporous composite by pre-wrapping Penicillin G amidase with poly(acrylaimde) nanogel skin and subsequently incorporating such Penicillin G amidase nanocapsules into hierarchically mesoporous silica. The as-received bioactive mesoporous composite exhibited comparable activity and extraordinarily high stability in comparison with native Penicillin G amidase and could be used repetitively in the water-medium hydrolysis of penicillin G potassium salt. Furthermore, this strategy could be extended to the synthesis of multifunctional bioactive mesoporous composite by simultaneously introducing glucose oxidase nanocapsules and horseradish peroxidase nanocapsules into hierarchically mesoporous silica, which demonstrated a synergic effect in one-pot tandem oxidation reaction. Improvements in the catalytic performances were attributed to the combinational unique structure from soft polymer skin and hard inorganic mesoporous silica shell, which cooperatively helped enzyme molecules to retain their appropriate geometry and simultaneously decreased the enzyme-support negative interaction and mass transfer limitation under heterogeneous conditions.

  13. Thin-Layer Polymer Wrapped Enzymes Encapsulated in Hierarchically Mesoporous Silica with High Activity and Enhanced Stability

    PubMed Central

    Zhang, Fang; Wang, Meitao; Liang, Chao; Jiang, Huangyong; Shen, Jian; Li, Hexing

    2014-01-01

    A novel soft-hard cooperative approach was developed to synthesize bioactive mesoporous composite by pre-wrapping Penicillin G amidase with poly(acrylaimde) nanogel skin and subsequently incorporating such Penicillin G amidase nanocapsules into hierarchically mesoporous silica. The as-received bioactive mesoporous composite exhibited comparable activity and extraordinarily high stability in comparison with native Penicillin G amidase and could be used repetitively in the water-medium hydrolysis of penicillin G potassium salt. Furthermore, this strategy could be extended to the synthesis of multifunctional bioactive mesoporous composite by simultaneously introducing glucose oxidase nanocapsules and horseradish peroxidase nanocapsules into hierarchically mesoporous silica, which demonstrated a synergic effect in one-pot tandem oxidation reaction. Improvements in the catalytic performances were attributed to the combinational unique structure from soft polymer skin and hard inorganic mesoporous silica shell, which cooperatively helped enzyme molecules to retain their appropriate geometry and simultaneously decreased the enzyme-support negative interaction and mass transfer limitation under heterogeneous conditions. PMID:24651701

  14. Thin-layer polymer wrapped enzymes encapsulated in hierarchically mesoporous silica with high activity and enhanced stability.

    PubMed

    Zhang, Fang; Wang, Meitao; Liang, Chao; Jiang, Huangyong; Shen, Jian; Li, Hexing

    2014-03-21

    A novel soft-hard cooperative approach was developed to synthesize bioactive mesoporous composite by pre-wrapping Penicillin G amidase with poly(acrylaimde) nanogel skin and subsequently incorporating such Penicillin G amidase nanocapsules into hierarchically mesoporous silica. The as-received bioactive mesoporous composite exhibited comparable activity and extraordinarily high stability in comparison with native Penicillin G amidase and could be used repetitively in the water-medium hydrolysis of penicillin G potassium salt. Furthermore, this strategy could be extended to the synthesis of multifunctional bioactive mesoporous composite by simultaneously introducing glucose oxidase nanocapsules and horseradish peroxidase nanocapsules into hierarchically mesoporous silica, which demonstrated a synergic effect in one-pot tandem oxidation reaction. Improvements in the catalytic performances were attributed to the combinational unique structure from soft polymer skin and hard inorganic mesoporous silica shell, which cooperatively helped enzyme molecules to retain their appropriate geometry and simultaneously decreased the enzyme-support negative interaction and mass transfer limitation under heterogeneous conditions.

  15. Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics

    NASA Astrophysics Data System (ADS)

    Prasad, Rajendra; Aiyer, Sandhya; Chauhan, Deepak S.; Srivastava, Rohit; Selvaraj, Kaliaperumal

    2016-02-01

    Designing bioresponsive nanocarriers for controlled and efficient intracellular drug release for cancer therapy is a major thrust area in nanomedicine. With recent recognition by the US FDA as a safe material for human trials, mesoporous silica nanoparticles (MSNPs) are being extensively explored as promising theranostic agents. Green fluorescent carbon quantum dots (CQDs), though known as possible alternatives for their more toxic and relatively less efficient predecessors, are less known as gate keepers for drug release control. We report for the first time an efficient bioresponse of CQDs when judiciously designed using glutathione cleavable (redox responsive) disulphide bonds. When the anticancer drug doxorubicin loaded MSNPs are capped with these CQDs, they display promising drug release control on exposure to a mimicked intracellular cancer environment. Their dual functionality is well established with good control on preventing the premature release and exceptional bio-imaging of HeLa cancer cells. Fluorescence images prove selective targeting of HeLa cells by overexpression of folate receptors from the surface functionalised folic acid ligand. Extensive characterisation using XRD, TEM, BET analysis, drug loading tests, drug release kinetics, MTT assay and fluoroscence cell imaging helps in understanding the multifunctionalities of the successful design, extending its scope with exciting prospects towards non-invasive targeted drug delivery and bio-imaging for effective cancer diagnosis and treatment.Designing bioresponsive nanocarriers for controlled and efficient intracellular drug release for cancer therapy is a major thrust area in nanomedicine. With recent recognition by the US FDA as a safe material for human trials, mesoporous silica nanoparticles (MSNPs) are being extensively explored as promising theranostic agents. Green fluorescent carbon quantum dots (CQDs), though known as possible alternatives for their more toxic and relatively less efficient

  16. Supercritical-assistant liquid crystal template approach to synthesize mesoporous titania/multiwalled carbon nanotube composites with high visible-light driven photocatalytic performance

    SciTech Connect

    Liu, Chen; Li, Youji Xu, Peng; Li, Ming; Huo, Pingxiang

    2014-12-15

    Graphical abstract: We investigate the influence of mesoporous titania content upon the visible-light driven photocatalytic performance of MPT/MWCNTs in phenol degradation. - Highlights: • MPT/MWCNTs were fabricated by liquid-crystal template in supercritical CO{sub 2}. • MPT/MWCNTs show high visible-light driven photoactivity for phenol degradation. • MPT/MWCNTs also show high reusable photoactivity under visible irradiation. • MPT content can control visible-light driven photoactivity of MPT/MWCNTs. • MPT is not easily broken away from from MPT/MWCNT composites. - Abstract: Mesoporous titania (MPT) was deposited onto multiwalled carbon nanotubes (MWCNTs) by deposition of titanium sol containing liquid-crystal template with assistant of supercritical CO{sub 2}. The products were characterized with various analytical techniques to determine their structural, morphological, optical absorption and photocatalytic properties. The results indicate that in photocatalytic degradation of phenol under visible light, the mixtures or composites of MPT and MWCNT show the high efficiency because of synergies between absorbing visible light, releasing electrons and facilitating transfer of charge carriers of MWCNTs and providing activated centers of MPT. Because of the mutual constraint between MPT and MWCNTs on the photocatalytic efficiency, the optimal loading of MPT in MPT/MWCNT-3 for phenol degradation is 48%. Because the intimate contact between MWCNTs and MPT is more beneficial to electron transformation, photoactivity of mixture is lower than that of composites with high reusable performance. The optimum conditions of phenol degradation were obtained.

  17. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    PubMed

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  18. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation

    PubMed Central

    Wang, Wenjing; Yuan, Daqiang

    2014-01-01

    Four nanoporous carbons prepared by direct carbonization of non-permanent highly porous MOF [Zn3(BTC)2·(H2O)3]n without any additional carbon precursors. The carbonization temperature plays an important role in the pore structures of the resultant carbons. The Brunauer-Emmett-Teller (BET) surface areas of four carbon materials vary from 464 to 1671 m2 g−1 for different carbonization temperature. All the four carbon materials showed a mesoporous structure centered at ca. 3 nm, high surface area and good physicochemical stability. Hydrogen, methane and carbon dioxide sorption measurements indicated that the C1000 has good gas uptake capabilities. The excess H2 uptake at 77 K and 17.9 bar can reach 32.9 mg g−1 and the total uptake is high to 45 mg g−1. Meanwhile, at 95 bar, the total CH4 uptake can reach as high as 208 mg g−1. Moreover the ideal adsorbed solution theory (IAST) prediction exhibited exceptionally high adsorption selectivity for CO2/CH4 in an equimolar mixture at 298 K and 1 bar (Sads = 27) which is significantly higher than that of some porous materials in the similar condition. PMID:25026895

  19. Mesoporous carbon originated from non-permanent porous MOFs for gas storage and CO2/CH4 separation.

    PubMed

    Wang, Wenjing; Yuan, Daqiang

    2014-07-16

    Four nanoporous carbons prepared by direct carbonization of non-permanent highly porous MOF [Zn3(BTC)2 · (H2O)3]n without any additional carbon precursors. The carbonization temperature plays an important role in the pore structures of the resultant carbons. The Brunauer-Emmett-Teller (BET) surface areas of four carbon materials vary from 464 to 1671 m(2) g(-1) for different carbonization temperature. All the four carbon materials showed a mesoporous structure centered at ca. 3 nm, high surface area and good physicochemical stability. Hydrogen, methane and carbon dioxide sorption measurements indicated that the C1000 has good gas uptake capabilities. The excess H2 uptake at 77 K and 17.9 bar can reach 32.9 mg g(-1) and the total uptake is high to 45 mg g(-1). Meanwhile, at 95 bar, the total CH4 uptake can reach as high as 208 mg g(-1). Moreover the ideal adsorbed solution theory (IAST) prediction exhibited exceptionally high adsorption selectivity for CO2/CH4 in an equimolar mixture at 298 K and 1 bar (S(ads) = 27) which is significantly higher than that of some porous materials in the similar condition.

  20. Nanocasting of carbon films with interdigitated bimodal three-dimensionally ordered mesopores by template-replica coassembly.

    PubMed

    Tian, Zheng; Snyder, Mark A

    2014-10-21

    Carbon films with interdigitated bimodal three-dimensionally ordered mesoporosity (ib3DOm) are realized by a scalable nanoreplication process that removes the common need plaguing hard-templating strategies for multistep prefabrication of porous sacrificial templates. Specifically, evaporation-induced convective codeposition of size-tunable (ca. 20-50 nm) silica nanoparticles with a surrogate molecular carbon precursor (glucose), followed by carbonization and template etching, leads to remarkably ordered, crack-free mesoporous carbon films of tunable thickness (ca. 100-1000 nm) and pore size. Association of the molecular carbon precursor with the assembling pore forming particles is found to transition the system among three distinct film morphologies (collapsed, ib3DOm C, disordered), thereby establishing a pseudophase behavior controlled by silica solids content and incipient glucose concentration. Namely, a parametric window wherein ib3DOm C films can be realized is identified, with a diffuse lower phase boundary associated with collapsing carbon films, and a more distinct order-to-disorder transition encountered at higher glucose concentrations. Mechanistic insight suggests that glucose association with the lysine-silica nanoparticle surface modulates the lattice spacing, d, of the periodically ordered mesopores in the coassembled films, with the onset of the order-to-disorder transition occurring at a critical normalized lattice spacing, dc/D ∼ 1.16. This appears to apply across the phase space associated with D = 50 nm silica particles and to translate among other phase spaces associated with smaller particles (e.g., 30 nm). We briefly demonstrate the robustness of the codeposition process for realizing ib3DOm C films on rough FTO glass substrates and show that, in this form, these materials hold potential as low-cost alternatives to costly platinum electrodes for dye-sensitized solar cells.

  1. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    PubMed

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO3), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m(2)g(-1) was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg(-1) in 1.0 M KOH at a scan rate of 5 mV s(-1). Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg(-1) using Nafion binder is obtained under a current density of 1 Ag(-1) by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  2. Dual-template ordered mesoporous carbon/Fe2O3 nanowires as lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Hu, Junkai; Sun, Chuan-Fu; Gillette, Eleanor; Gui, Zhe; Wang, Yuhuang; Lee, Sang Bok

    2016-06-01

    Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the advantages of both soft and hard single-template methods. The resulting OMCNW/Fe2O3 composite enables a high pore volume, high structural stability, enhanced electrical conductivity and Li+ accessibility. These features collectively enable excellent electrochemical cyclability (1200 cycles) and a reversible Li+ storage capacity as high as 819 mA h g-1 at a current density of 0.5 A g-1. Our findings highlight the synergistic benefits of the dual-template approach to heterogeneous composites for high performance electrochemical energy storage materials.Ordered mesoporous carbons (OMCs) are ideal host materials that can provide the desirable electrical conductivity and ion accessibility for high-capacity oxide electrode materials in lithium-ion batteries (LIBs). To this end, however, it is imperative to establish the correlations among material morphology, pore structure and electrochemical performance. Here, we fabricate an ordered mesoporous carbon nanowire (OMCNW)/Fe2O3 composite utilizing a novel soft-hard dual-template approach. The structure and electrochemical performance of OMCNW/Fe2O3 were systematically compared with single-templated OMC/Fe2O3 and carbon nanowire/Fe2O3 composites. This dual-template strategy presents synergetic effects combining the

  3. The mechanism for increasing the oral bioavailability of poorly water-soluble drugs using uniform mesoporous carbon spheres as a carrier.

    PubMed

    Wang, Tianyi; Zhao, Peng; Zhao, Qinfu; Wang, Bing; Wang, Siling

    2016-01-01

    Uniform mesoporous carbon spheres (UMCS) were used as a carrier to improve the bioavailability of the model drug, celecoxib (CEL). Furthermore, we investigated the mechanism responsible for the improved bioavailability of CEL. The association, adhesion and uptake of UMCS by intestinal epithelial cells were studied by transmission electron microscopy (TEM), fluorescence-activated cell sorting (FACS) and laser confocal scanning microscopy (LCSM). UMCS was found to promote cellular uptake of CEL. Drug transport in Caco-2 cell monolayers proved that UMCS can significantly reduce the rate of drug efflux and improve CEL permeability. The dissolution rate of CEL from drug-loaded samples was markedly improved compared with pure crystalline CEL; moreover, oral bioavailability of CEL loaded into UMCS was also markedly improved compared with that of commercially available capsules. UMCS indicates the advantages and potential of this method to achieve improved oral absorption by increasing the dissolution rate, cellular uptake and permeability of the drug.

  4. One-pot hydrothermal synthesis of mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide hybrid material and its enhanced photocatalytic activity.

    PubMed

    Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun

    2014-09-14

    We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.

  5. Mesoporous carbon with spherical pores as a carrier for celecoxib with needle-like crystallinity: improve dissolution rate and bioavailability.

    PubMed

    Zhu, Wenquan; Zhao, Qinfu; Sun, Changshan; Zhang, Zhiwen; Jiang, Tongying; Sun, Jin; Li, Yaping; Wang, Siling

    2014-06-01

    The purposes of this investigation are to design mesoporous carbon (MC) with spherical pore channels and incorporate CEL to it for changing its needlelike crystal form and improving its dissolution and bioavailability. A series of solid-state characterization methods, such as SEM, TEM, DSC and XRD, were employed to systematically investigate the existing status of celecoxib (CEL) within the pore channels of MC. The pore size, pore volume and surface area of samples were characterized by nitrogen physical absorption. Gastric mucosa irritation test was carried out to evaluate the safety of mesoporous carbon as a drug carrier. Dissolution tests and in vivo pharmacokinetic studies were conducted to confirm the improvement in drug dissolution kinetics and oral bioavailability. Uptake experiments were conducted to investigate the mechanism of the improved oral bioavailability. The results of solid state characterization showed that MC was prepared successfully and CEL was incorporated into the mesoporous channels of the MC. The crystallinity of CEL in MC was affected by different loading methods, which involve evaporation method and melting method. The dissolution rate of CEL from MC was found to be significantly higher than that of pure CEL, which attributed to reduced crystallinity of CEL. The gastric mucosa irritation test indicated that the MC caused no harm to the stomach and produced a protective effect on the gastric mucosa. Uptake experiments indicated that MC enhanced the amount of CEL absorbed by Caco-2 cells. Moreover, oral bioavailability of CEL loaded within the MC was approximately 1.59-fold greater than that of commercial CEL. In conclusion, MC was a safe carrier to load water insoluble drug by controlling the crystallinity or crystal form with improvement in drug dissolution kinetics and oral bioavailability.

  6. Hierarchically structured activated carbon for ultracapacitors

    PubMed Central

    Kim, Mok-Hwa; Kim, Kwang-Bum; Park, Sun-Min; Roh, Kwang Chul

    2016-01-01

    To resolve the pore-associated bottleneck problem observed in the electrode materials used for ultracapacitors, which inhibits the transport of the electrolyte ions, we designed hierarchically structured activated carbon (HAC) by synthesizing a mesoporous silica template/carbon composite and chemically activating it to simultaneously remove the silica template and increase the pore volume. The resulting HAC had a well-designed, unique porous structure, which allowed for large interfaces for efficient electric double-layer formation. Given the unique characteristics of the HAC, we believe that the developed synthesis strategy provides important insights into the design and fabrication of hierarchical carbon nanostructures. The HAC, which had a specific surface area of 1,957 m2 g−1, exhibited an extremely high specific capacitance of 157 F g−1 (95 F cc−1), as well as a high rate capability. This indicated that it had superior energy storage capability and was thus suitable for use in advanced ultracapacitors. PMID:26878820

  7. Immobilization of Zidovudine Derivatives on the SBA-15 Mesoporous Silica and Evaluation of Their Cytotoxic Activity.

    PubMed

    Lewandowski, Dawid; Lewandowska, Marta; Ruszkowski, Piotr; Pińska, Anita; Schroeder, Grzegorz

    2015-01-01

    Novel zidovudine derivatives, able to be covalently conjugated to silica surface, have been obtained and grafted to SBA-15 mesoporous silica. Cytotoxic activity of the hybrid organic-inorganic (zidovudine derivatives-silica) systems against HeLa and KB cell lines has been analyzed. Addition of folic acid had a positive influence on the cytotoxicity. Up to 69% of HeLa and 65% of KB tumor cells growth inhibition has been achieved at low silica concentration used (10 μg/mL).

  8. Magnetic N-doped mesoporous carbon as an adsorbent for the magnetic solid-phase extraction of phthalate esters from soft drinks.

    PubMed

    Li, Menghua; Jiao, Caina; Yang, Xiumin; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2017-02-13

    A new kind of magnetic N-doped mesoporous carbon was prepared by the one-step carbonization of a hybrid precursor (glucose, melamine, and iron chloride) in a N2 atmosphere with a eutectic salt (KCl/ZnCl2 ) as the porogen. The obtained magnetic N-doped mesoporous carbon showed excellent characteristics, such as strong magnetic response, high surface area, large pore volume, and abundant π-electron system, which endow it with a great potential as a magnetic solid-phase extraction adsorbent. To evaluate its adsorption performance, the magnetic N-doped mesoporous carbon was used for the extraction of three phthalate esters from soft drink samples followed by high-performance liquid chromatographic analysis. Under the optimum conditions, the developed method showed a good linearity (1.0-120.0 ng/mL), low limit of detection (0.1-0.3 ng/mL, S/N = 3), and good recoveries (83.2-119.0%) in soft drink samples. The results indicated that the magnetic N-doped mesoporous carbon has an excellent adsorption capacity for phthalate esters and the present method is simple, accurate, and highly efficient for the extraction and determination of phthalate esters in complex matrix samples.

  9. Oxidation of activated carbon: application to vinegar decolorization.

    PubMed

    López, Francisco; Medina, Francisco; Prodanov, Marin; Güell, Carme

    2003-01-15

    This article reports studies on the feasibility of increasing the decoloring capacity of a granular activated carbon (GAC) by using oxidation with air at 350 degrees C to modify its surface activity and porosity. The GAC, obtained from olive stones, had a maximum decolorization capacity of 92% for doses of 20 g/l, while the maximum decolorization capacity of the modified granular activated carbon (MGAC) was about 96% at a dose of 10 g/l. The increase in decoloring capacity is thought to be due to an increase in mesopore area (from 129 to 340 m2/g) in the MGAC. The maximum decoloring values and the doses needed to attain them are very close to values obtained in previous studies using coconut shell powder-activated carbon (94 and 98% for red and white vinegar for a dose of 10 g/l, respectively).

  10. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    PubMed Central

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-01-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M−1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis–Menten kinetics and the apparent Michaelis–Menten was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor. PMID:27877681

  11. Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes.

    PubMed

    Chun, Jinyoung; Jo, Changshin; Sahgong, Sunhye; Kim, Min Gyu; Lim, Eunho; Kim, Dong Hyeon; Hwang, Jongkook; Kang, Eunae; Ryu, Keun Ah; Jung, Yoon Seok; Kim, Youngsik; Lee, Jinwoo

    2016-12-28

    Metal fluorides (MFx) are one of the most attractive cathode candidates for Li ion batteries (LIBs) due to their high conversion potentials with large capacities. However, only a limited number of synthetic methods, generally involving highly toxic or inaccessible reagents, currently exist, which has made it difficult to produce well-designed nanostructures suitable for cathodes; consequently, harnessing their potential cathodic properties has been a challenge. Herein, we report a new bottom-up synthetic method utilizing ammonium fluoride (NH4F) for the preparation of anhydrous MFx (CuF2, FeF3, and CoF2)/mesoporous carbon (MSU-F-C) nanocomposites, whereby a series of metal precursor nanoparticles preconfined in mesoporous carbon were readily converted to anhydrous MFx through simple heat treatment with NH4F under solventless conditions. We demonstrate the versatility, lower toxicity, and efficiency of this synthetic method and, using XRD analysis, propose a mechanism for the reaction. All MFx/MSU-F-C prepared in this study exhibited superior electrochemical performances, through conversion reactions, as the cathode for LIBs. In particular, FeF3/MSU-F-C maintained a capacity of 650 mAh g(-1)FeF3 across 50 cycles, which is ∼90% of its initial capacity. We expect that this facile synthesis method will trigger further research into the development of various nanostructured MFx for use in energy storage and other applications.

  12. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix.

    PubMed

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M(-1) with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten [Formula: see text] was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  13. Enzyme-capped relay-functionalized mesoporous carbon nanoparticles: effective bioelectrocatalytic matrices for sensing and biofuel cell applications.

    PubMed

    Trifonov, Alexander; Herkendell, Katharina; Tel-Vered, Ran; Yehezkeli, Omer; Woerner, Michael; Willner, Itamar

    2013-12-23

    The porous high surface area and conducting properties of mesoporous carbon nanoparticles, CNPs (<500 nm diameter of NPs, pore dimensions ∼6.3 nm), are implemented to design electrically contacted enzyme electrodes for biosensing and biofuel cell applications. The relay units ferrocene methanol, Fc-MeOH, methylene blue, MB(+), and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), ABTS(2-), are loaded in the pores of the mesoporous CNPs, and the pores are capped with glucose oxidase, GOx, horseradish peroxidase, HRP, or bilirubin oxidase, BOD, respectively. The resulting relay/enzyme-functionalized CNPs are immobilized on glassy carbon electrodes, and the relays encapsulated in the pores are sufficiently free to electrically contact the different enzymes with the bulk electrode supports. The Fc-MeOH/GOx CNP-functionalized electrode is implemented for the bioelectrocatalyzed sensing of glucose, and the MB(+)/HRP-modified CNPs are applied for the electrochemical sensing of H2O2. The ABTS(2-)/BOD-modified CNPs provide an effective electrically contacted material for the bioelectrocatalyzed reduction of O2 (kcat = 94 electrons·s(-1)). Integration of the Fc-MeOH/GOx CNP electrode and of the electrically wired ABTS(2-)/BOD CNP electrode as anode and cathode, respectively, yields a biofuel cell revealing a power output of ∼95 μW·cm(-2).

  14. Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes.

    PubMed

    Liu, Hao; Li, Wei; Shen, Dengke; Zhao, Dongyuan; Wang, Guoxiu

    2015-10-14

    Rational design and controllable synthesis of TiO2 based materials with unique microstructure, high reactivity, and excellent electrochemical performance for lithium ion batteries are crucially desired. In this paper, we developed a versatile route to synthesize hollow TiO2/graphitic carbon (H-TiO2/GC) spheres with superior electrochemical performance. The as-prepared mesoporous H-TiO2/GC hollow spheres present a high specific surface area (298 m(2) g(-1)), a high pore volume (0.31 cm(3) g(-1)), a large pore size (∼5 nm), well-defined hollow structure (monodispersed size of 600 nm and inner diameter of ∼400 nm, shell thickness of 100 nm), and small nanocrystals of anatase TiO2 (∼8 nm) conformably encapsulated in ultrathin graphitic carbon layers. As a result, the H-TiO2/GC hollow spheres achieve excellent electrochemical reactivity and stability as an anode material for lithium ion batteries. A high specific capacity of 137 mAh g(-1) can be achieved up to 1000 cycles at a current density of 1 A g(-1) (5 C). We believe that the mesoporous H-TiO2/GC hollow spheres are expected to be applied as a high-performance electrode material for next generation lithium ion batteries.

  15. Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix

    NASA Astrophysics Data System (ADS)

    Guo, Meiqing; Wang, Hefeng; Huang, Di; Han, Zhijun; Li, Qiang; Wang, Xiaojun; Chen, Jing

    2014-06-01

    A functionalized nitrogen-containing ordered mesoporous carbon (N-OMC), which shows good electrical properties, was synthesized by the carbonization of polyaniline inside a SBA-15 mesoporous silica template. Based on this, through entrapping laccase onto the N-OMC/polyvinyl alcohol (PVA) film a facilely fabricated amperometric biosensor was developed. Laccase from Trametes versicolor was assembled on a composite film of a N-OMC/PVA modified Au electrode and the electrochemical behavior was investigated. The results indicated that the N-OMC modified electrode exhibits electrical properties towards catechol. The optimum experimental conditions of a biosensor for the detection of catechol were studied in detail. Under the optimal conditions, the sensitivity of the biosensor was 0.29 A*M-1 with a detection limit of 0.31 μM and a linear detection range from 0.39 μM to 8.98 μM for catechol. The calibration curve followed the Michaelis-Menten kinetics and the apparent Michaelis-Menten \\left( K_{M}^{app} \\right) was 6.28 μM. This work demonstrated that the N-OMC/PVA composite provides a suitable support for laccase immobilization and the construction of a biosensor.

  16. Designed synthesis of carbon-functional magnetic graphene mesoporous silica materials using polydopamine as carbon precursor for the selective enrichment of N-linked glycan.

    PubMed

    Sun, Nianrong; Yao, Jizong; Deng, Chunhui

    2016-02-01

    Glycosylation, which has been confirmed to be associated with many diseases, is an important protein post-translation modification. Taking into account the low abundant of glycan, the purification of complex biological samples is considered to be very significant before mass spectrometry detection. In this work, carbon-functionalized magnetic graphene /mesoporous silica materials (C-Mag G@mSiO2 materials) with high content of carbon were designed and synthesized by using polydopamine as carbon precursor. Taking advantage of the special interaction between carbon and glycan, C-Mag G@mSiO2 materials were successfully applied to enrich N-linked glycans in different complex samples, such as standard glycoprotein digestion, the mixture of standard glycoprotein digestion, glycoprotein and non-glycoprotein, and human serum.

  17. Synthesis of three-dimensionally ordered macro-/mesoporous Pt with high electrocatalytic activity by a dual-templating approach

    NASA Astrophysics Data System (ADS)

    Zhang, Chengwei; Yang, Hui; Sun, Tingting; Shan, Nannan; Chen, Jianfeng; Xu, Lianbin; Yan, Yushan

    2014-01-01

    Three dimensionally ordered macro-/mesoporous (3DOM/m) Pt catalysts are fabricated by chemical reduction employing a dual-templating synthesis approach combining both colloidal crystal (opal) templating (hard-templating) and lyotropic liquid crystal templating (soft-templating) techniques. The macropore walls of the prepared 3DOM/m Pt exhibit a uniform mesoporous structure composed of polycrystalline Pt nanoparticles. Both the size of the mesopores and Pt nanocrystallites are in the range of 3-5 nm. The 3DOM/m Pt catalyst shows a larger electrochemically active surface area (ECSA), and higher catalytic activity as well as better poisoning tolerance for methanol oxidation reaction (MOR) than the commercial Pt black catalyst.

  18. Functionalized mesoporous silica films as a matrix for anchoring electrochemically active guests.

    PubMed

    Fattakhova Rohlfing, Dina; Rathouský, Jirí; Rohlfing, Yven; Bartels, Oliver; Wark, Michael

    2005-11-22

    Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.

  19. Promoting immobilization and catalytic activity of horseradish peroxidase on mesoporous silica through template micelles.

    PubMed

    Wan, Mi Mi; Lin, Wei Gang; Gao, Ling; Gu, Hui Cheng; Zhu, Jian Hua

    2012-07-01

    New concept on the promotion of immobilization and catalytic activity of enzyme on mesoporous silica through template micelles is proposed and realized in this paper. Proper P123 templates are controllable retained in the as-synthesized SBA-15, not only to anchor the horseradish peroxidase (HRP) guest, but also to establish the crowding-like microenvironment around the enzyme. The influence of retaining templates on the pore structure of SBA-15, immobilization, and catalytic activity of HRP is studied, and the possible process of template removal is proposed. Ethanol refluxing of 6 h is conformable to prepare the optimal mesoporous support characterized with the retained templates of about 8%. With the assistance of retained templates in SBA-15, up to 49 mg g(-1) of HRP can be immobilized, 100% more than that on calcined SBA-15. Furthermore, the thermal stability, the resistance of pH variation and denaturing agent urea, and the recycle usage of HRP immobilized are obviously elevated, paving a novel and low-cost route to develop enzyme catalysts.

  20. Bottom-Up Catalytic Approach towards Nitrogen-Enriched Mesoporous Carbons/Sulfur Composites for Superior Li-S Cathodes

    PubMed Central

    Sun, Fugen; Wang, Jitong; Chen, Huichao; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2013-01-01

    We demonstrate a sustainable and efficient approach to produce high performance sulfur/carbon composite cathodes via a bottom-up catalytic approach. The selective oxidation of H2S by a nitrogen-enriched mesoporous carbon catalyst can produce elemental sulfur as a by-product which in-situ deposit onto the carbon framework. Due to the metal-free catalytic characteristic and high catalytic selectivity, the resulting sulfur/carbon composites have almost no impurities that thus can be used as cathode materials with compromising battery performance. The layer-by-layer sulfur deposition allows atomic sulfur binding strongly with carbon framework, providing efficient immobilization of sulfur. The nitrogen atoms doped on the carbon framework can increase the surface interactions with polysulfides, leading to the improvement in the trapping of polysulfides. Thus, the composites exhibit a reversible capacity of 939 mAh g−1 after 100 cycles at 0.2 C and an excellent rate capability of 527 mAh g−1 at 5 C after 70 cycles. PMID:24084754

  1. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    NASA Astrophysics Data System (ADS)

    Byamba-Ochir, Narandalai; Shim, Wang Geun; Balathanigaimani, M. S.; Moon, Hee

    2016-08-01

    Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816-2063 m2/g and of 0.55-1.61 cm3/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  2. Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity.

    PubMed

    Zou, Fei; Jiang, Zheng; Qin, Xiaoqin; Zhao, Yongxiang; Jiang, Luyun; Zhi, Jinfang; Xiao, Tiancun; Edwards, Peter P

    2012-09-04

    An effective, template-free synthesis methodology has been developed for preparing mesoporous nitrogen-doped SrTiO(3) (meso-STON) using glycine as both a nitrogen source and a mesopore creator. The N-doping, large surface area and developed porosity endow meso-STON with excellent activity in visible-light-responsive photodegradation of organic dyes.

  3. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    NASA Astrophysics Data System (ADS)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  4. Highly porous activated carbons from resource-recovered Leucaena leucocephala wood as capacitive deionization electrodes.

    PubMed

    Hou, Chia-Hung; Liu, Nei-Ling; Hsi, Hsing-Cheng

    2015-12-01

    Highly porous activated carbons were resource-recovered from Leucaena leucocephala (Lam.) de Wit. wood through combined chemical and physical activation (i.e., KOH etching followed by CO2 activation). This invasive species, which has severely damaged the ecological economics of Taiwan, was used as the precursor for producing high-quality carbonaceous electrodes for capacitive deionization (CDI). Carbonization and activation conditions strongly influenced the structure of chars and activated carbons. The total surface area and pore volume of activated carbons increased with increasing KOH/char ratio and activation time. Overgasification induced a substantial amount of mesopores in the activated carbons. In addition, the electrochemical properties and CDI electrosorptive performance of the activated carbons were evaluated; cyclic voltammetry and galvanostatic charge/discharge measurements revealed a typical capacitive behavior and electrical double layer formation, confirming ion electrosorption in the porous structure. The activated-carbon electrode, which possessed high surface area and both mesopores and micropores, exhibited improved capacitor characteristics and high electrosorptive performance. Highly porous activated carbons derived from waste L. leucocephala were demonstrated to be suitable CDI electrode materials.

  5. Poly(lactic) acid fibers loaded with mesoporous silica for potential applications in the active food packaging

    NASA Astrophysics Data System (ADS)

    Cacciotti, Ilaria; Nanni, Francesca

    2016-06-01

    Multifunctional fibrous systems based on poly(lactic) acid (PLA), mesoporous silica (SiO2) and ascorbic acid (AA) were produced by means of electrospinning technique, for potential applications in the active food packaging sector, as platform for the controlled release of antioxidant and/or antimicrobial agents with the additional filtering function. The ascorbic acid was physisorbed on the surface of mesoporous silica in order to stabilize it and to extend its antioxidant action. The influence of mesoporous silica and ascorbic acid on the microstructural and mechanical properties was investigated, revealing a revelant mechanical reinforcement in the case of fibers loaded only with SiO2 and a decrement in the case of SiO2 with physisorbed ascorbic acid, due to the worse interface between the fillers and the polymeric matrix.

  6. Hollow mesoporous titania microspheres: New technology and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Feng, Zhenliang; Wei, Wenrui; Wang, Litong; Hong, Ruoyu

    2015-12-01

    Hollow titania microspheres (HTS) were fabricated via a sol-gel process by coating the hydrolysis product of titanium tetrabutoxide (TBOT) onto the amino (-NH2) modified porous polystyrene cross-linked divinyl benzene (PS-DVB) microspheres under changing atmospheric pressure, followed by calcination in nitrogen and air atmosphere. Particularly, the atmospheric pressure was continuously and regularly changed during the formation process of PS-DVB@TiO2 microspheres. Then the TiO2 particles were absorbed into the pores and onto the surface of PS-DVB as well. The resultant HTS (around 2 μm in diameter) featured a high specific surface area (84.37 m2/g), anatase crystal and stable hollow microsphere structure, which led to high photocatalysis activity. The photocatalytic degradation of malachite green (MG) organic dye solution was conducted under ultraviolet (UV) light irradiation, which showed a high photocatalytic ability (81% of MG was degraded after UV irradiation for 88 min). Therefore, it could be potentially applied for the treatment of wastewater contaminated by organic pollutants.

  7. Lanthanum cobaltite perovskite supported onto mesoporous zirconium dioxide: nature of active sites of VOC oxidation.

    PubMed

    Kustov, Alexander L; Tkachenko, Olga P; Kustov, Leonid M; Romanovsky, Boris V

    2011-08-01

    Novel catalytic nano-sized materials based on LaCoO(x) perovskite nanoparticles incapsulated in the mesoporous matrix of zirconia were prepared, characterized by physicochemical methods and tested in complete methanol oxidation. LaCoO(x) nanoparticles were prepared inside the mesopores of ZrO(2) by decomposition of bimetallic La-Co glycine precursor complexes. The catalysts have been studied by diffuse-reflectance FTIR-spectroscopy using such probe molecules as CO, CD(3)CN and CDCl(3) to test low-coordinated metal ions. At low temperatures of decomposition of complexes (up to 400°C), low-coordinated Co(3+) ions predominate in the LaCoO(x) nanoparticles, whereas basically Co(2+) ions are found upon increasing the decomposition temperature to 600°C. The novel nano-sized perovskite catalysts exhibit a very high catalytic activity in the abatement of volatile organic compounds present in air, like methanol and light hydrocarbons.

  8. Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel

    PubMed Central

    Khosravian, Pegah; Shafiee Ardestani, Mehdi; Khoobi, Mehdi; Ostad, Seyed Naser; Dorkoosh, Farid Abedin; Akbari Javar, Hamid; Amanlou, Massoud

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) are known as carriers with high loading capacity and large functionalizable surface area for target-directed delivery. In this study, a series of docetaxel-loaded folic acid- or methionine-functionalized mesoporous silica nanoparticles (DTX/MSN-FA or DTX/MSN-Met) with large pores and amine groups at inner pore surface properties were prepared. The results showed that the MSNs were successfully synthesized, having good pay load and pH-sensitive drug release kinetics. The cellular investigation on MCF-7 cells showed better performance of cytotoxicity and cell apoptosis and an increase in cellular uptake of targeted nanoparticles. In vivo fluorescent imaging on healthy BALB/c mice proved that bare MSN-NH2 are mostly accumulated in the liver but MSN-FA or MSN-Met are more concentrated in the kidney. Importantly, ex vivo fluorescent images of tumor-induced BALB/c mice organs revealed the ability of MSN-FA to reach the tumor tissues. In conclusion, DTX/MSNs exhibited a good anticancer activity and enhanced the possibility of targeted drug delivery for breast cancer. PMID:27980423

  9. Amino-functionalized mesoporous silica modified glassy carbon electrode for ultra-trace copper(II) determination.

    PubMed

    Dai, Xingxin; Qiu, Fagui; Zhou, Xuan; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2014-10-27

    This paper described a facile and direct electrochemical method for the determination of ultra-trace Cu(2+) by employing amino-functionalized mesoporous silica (NH2-MCM-41) as enhanced sensing platform. NH2-MCM-41 was prepared by using a post-grafting process and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and fourier transform infrared (FTIR) spectroscopy. NH2-MCM-41 modified glassy carbon (GC) electrode showed higher sensitivity for anodic stripping voltammetric (ASV) detection of Cu(2+) than that of MCM-41 modified one. The high sensitivity was attributed to synergistic effect between MCM-41 and amino-group, in which the high surface area and special mesoporous morphology of MCM-41 can cause strong physical absorption, and amino-groups are able to chelate copper ions. Some important parameters influencing the sensor response were optimized. Under optimum experimental conditions the sensor linearly responded to Cu(2+) concentration in the range from 5 to 1000 ng L(-1) with a detection limit of 0.9 ng L(-1) (S/N=3). Moreover, the sensor possessed good stability and electrode renewability. In the end, the proposed sensor was applied for determining Cu(2+) in real samples and the accuracy of the results were comparable to those obtained by inductively coupled plasma optical emission spectrometry (ICP-OES) method.

  10. Carboxylated mesoporous carbon microparticles as new approach to improve the oral bioavailability of poorly water-soluble carvedilol.

    PubMed

    Zhang, Yanzhuo; Zhi, Zhizhuang; Li, Xue; Gao, Jian; Song, Yaling

    2013-09-15

    The main objective of this study was to develop carboxylated ordered mesoporous carbon microparticles (c-MCMs) loaded with a poorly water-soluble drug, intended to be orally administered, able to enhance the drug loading capacity and improve the oral bioavailability. A model drug, carvedilol (CAR), was loaded onto c-MCMs via a procedure involving a combination of adsorption equilibrium and solvent evaporation. The physicochemical properties of the drug-loaded composites were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and HPLC. It was found that c-MCM has a high drug loading level up to 41.6%, and higher than that of the mesoporous silica template. Incorporation of CAR in both drug carriers enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. After loading CAR into c-MCMs, its oral bioavailability was compared with the marketed product in dogs. The results showed that the bioavailability of CAR was improved 179.3% compared with that of the commercial product when c-MCM was used as the drug carrier. We believe that the present study will help in the design of oral drug delivery systems for enhanced oral bioavailability of poorly water-soluble drugs.

  11. Adsorption of CO₂, CH₄, and N₂ on ordered mesoporous carbon: approach for greenhouse gases capture and biogas upgrading.

    PubMed

    Yuan, Bin; Wu, Xiaofei; Chen, Yingxi; Huang, Jianhan; Luo, Hongmei; Deng, Shuguang

    2013-05-21

    Separation of CO₂ and N₂ from CH₄ is significantly important in natural gas upgrading, and capture/removal of CO₂, CH₄ from air (N₂) is essential to greenhouse gas emission control. Adsorption equilibrium and kinetics of CO₂, CH₄, and N₂ on an ordered mesoporous carbon (OMC) sample were systematically investigated to evaluate its capability in the above two applications. The OMC was synthesized and characterized with TEM, TGA, small-angle XRD, and nitrogen adsorption/desorption measurements. Pure component adsorption isotherms of CO₂, CH₄, and N₂ were measured at 278, 298, and 318 K and pressures up to 100 kPa, and correlated with the Langmuir model. These data were used to estimate the separation selectivities for CO₂/CH₄, CH₄/N₂, and CO₂/N₂ binary mixtures at different compositions and pressures according to the ideal adsorbed solution theory (IAST) model. At 278 K and 100 kPa, the predicted selectivities for equimolar CO₂/CH₄, CH4/N₂, and CO₂/N₂ are 3.4, 3.7, and 12.8, respectively; and the adsorption capacities for CH₄ and CO₂ are 1.3 and 3.0 mmol/g, respectively. This is the first report of a versatile mesoporous material that displays both high selectivities and large adsorption capacities for separating CO₂/CH₄, CH₄/N₂, and CO₂/N₂ mixtures.

  12. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    PubMed

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  13. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes.

    PubMed

    Kitamura, Koji; Shiratori, Seimei

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  14. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis.

    PubMed

    Lu, Jianwei; Zhang, Peng; Li, Ang; Su, Fengli; Wang, Tuo; Liu, Yuan; Gong, Jinlong

    2013-07-04

    This communication describes a method for facile synthesis of mesoporous anatase TiO2 nanocup crystals. The novel cuplike morphology of TiO2 decorated with gold (Au-TiO2) yields remarkably high photocatalytic activity for degradation of methylene blue under visible light irradiation.

  15. A stable, reusable, and highly active photosynthetic bioreactor by bio-interfacing an individual cyanobacterium with a mesoporous bilayer nanoshell.

    PubMed

    Jiang, Nan; Yang, Xiao-Yu; Deng, Zhao; Wang, Li; Hu, Zhi-Yi; Tian, Ge; Ying, Guo-Liang; Shen, Ling; Zhang, Ming-Xi; Su, Bao-Lian

    2015-05-06

    An individual cyanobacterium cell is interfaced with a nanoporous biohybrid layer within a mesoporous silica layer. The bio-interface acts as an egg membrane for cell protection and growth of outer shell. The resulting bilayer shell provides efficient functions to create a single cell photosynthetic bioreactor with high stability, reusability, and activity.

  16. Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.

    PubMed

    Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju

    2010-08-15

    Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.

  17. Mesoporous poly(melamine-formaldehyde) solid sorbent for carbon dioxide capture.

    PubMed

    Tan, Mei Xuan; Zhang, Yugen; Ying, Jackie Y

    2013-07-01

    Feed the pore: A highly mesoporous melamine-formaldehyde resin is synthesized through a simple, one-step polycondensation reaction by using inexpensive and abundant common industrial chemicals. The material is demonstrated to have a high surface area and a well-defined pore structure. Its high density of CO2 binding pockets with low CO2 binding energy facilitates rapid and reversible CO2 sorption.

  18. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis.

    PubMed

    Lin, Youhui; Li, Zhenhua; Chen, Zhaowei; Ren, Jinsong; Qu, Xiaogang

    2013-04-01

    A significant challenge in chemistry is to create synthetic structures that mimic the complexity and function of natural systems. Here, a self-activated, enzyme-mimetic catalytic cascade has been realized by utilizing expanded mesoporous silica-encapsulated gold nanoparticles (EMSN-AuNPs) as both glucose oxidase- and peroxidase-like artificial enzymes. Specifically, EMSN helps the formation of a high degree of very small and well-dispersed AuNPs, which exhibit an extraordinarily stability and dual enzyme-like activities. Inspired by these unique and attractive properties, we further piece them together into a self-organized artificial cascade reaction, which is usually completed by the oxidase-peroxidase coupled enzyme system. Our finding may pave the way to use matrix as the structural component for the design and development of biomimetic catalysts and to apply enzyme mimics for realizing higher functions.

  19. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti- tumor activity.

    PubMed

    Zhao, Shuang; Yu, Qianqian; Pan, Jiali; Zhou, Yanhui; Cao, Chengwen; Ouyang, Jian-Ming; Liu, Jie

    2017-03-03

    To reduce the side effects and enhance the anti-tumor activities of anticancer drugs in the clinic, the use of nano mesoporous materials, with mesoporous silica (MSN) being the best-studied, has become an effective method of drug delivery. In this study, we successfully synthesized mesoporous selenium (MSe) nanoparticles and first introduced them to the field of drug delivery. Loading MSe with doxorubicin (DOX) is mainly driven by the physical adsorption mechanism of the mesopores, and our results demonstrated that MSe could synergistically enhance the antitumor activity of DOX. Coating the surface of MSe@DOX with Human serum albumin (HSA) generated a unique redox-responsive nanoparticle (HSA-MSe@DOX) that demonstrated glutathione-dependent drug release, increased tumor-targeting effects and enhanced cellular uptake throug nanoparticle interact with SPARC in MCF-7 cells. In vitro, HSA-MSe@DOX prominently induced cancer cell toxicity by synergistically enhancing the effects of MSe and DOX. Moreover, HSA-MSe@DOX possessed tumor-targeting abilities in tumor-bearing nude mice and not only decreased the side effects associated with DOX, but also enhanced its antitumor activity. Therefore, HSA-MSe@DOX is a promising new drug that warrants further evaluation in the treatments of tumors.

  20. Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction

    NASA Astrophysics Data System (ADS)

    Zhong, Lin; Anand, Chokkalingam; Lakhi, Kripal Singh; Lawrence, Geoffrey; Vinu, Ajayan

    2015-08-01

    Recently, mesoporous carbon nitride (MCN) has aroused extensive interest for its potential applications in organocatalysis, photo- and electrochemistry and CO2 capture. However, further surface functionalization of MCN for advanced nanomaterials and catalysis still remains very challenging. Here we show that acidic carboxyl groups can be smoothly introduced onto the surface of well-ordered MCN without annihilation between the introduced acid groups and MCN’s inherent basic groups through a facile UV light oxidation method. The functionalization generates a novel bifunctional nanocatalyst which offers an enzyme-like catalytic performance in the one-pot deacetalization-Knoevenagel reaction of benzaldehyde dimethylacetal and malononitrile with 100% conversion and more than 99% selectivity due to the cooperative catalysis between the acid and base groups separated on the surface of the catalyst. The results provide a general method to create multifunctional nanomaterials and open new opportunities for the development of high efficient catalyst for green organic synthesis.

  1. Enhanced removal of Cd(II) and Pb(II) by composites of mesoporous carbon stabilized alumina

    NASA Astrophysics Data System (ADS)

    Yang, Weichun; Tang, Qiongzhi; Wei, Jingmiao; Ran, Yajun; Chai, Liyuan; Wang, Haiying

    2016-04-01

    A novel adsorbent of mesoporous carbon stabilized alumina (MC/Al2O3) was synthesized through one-pot hard-templating method. The adsorption potential of MC/Al2O3 for Cd(II) and Pb(II) from aqueous solution was investigated compared with the mesoporous carbon. The results indicated the MC/Al2O3 showed excellent performance for Cd(II) and Pb(II) removal, the adsorption capacity reached 49.98 mg g-1 for Cd(II) with initial concentration of 50 mg L-1 and reached 235.57 mg g-1 for Pb(II) with initial concentration of 250 mg L-1, respectively. The kinetics data of Cd(II) adsorption demonstrated that the Cd(II) adsorption rate was fast, and the removal efficiencies with initial concentration of 10 and 50 mg L-1 can reach up 99% within 5 and 20 min, respectively. The pseudo-second-order kinetic model could describe the kinetics of Cd(II) adsorption well, indicating the chemical reaction was the rate-controlling step. The mechanism for Cd(II) and Pb(II) adsorption by MC/Al2O3 was investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared spectroscopy (FTIR), and the results indicated that the excellent performance for Cd(II) and Pb(II) adsorption of MC/Al2O3 was mainly attributed to its high surface area and the special functional groups of hydroxy-aluminum, hydroxyl, carboxylic through the formation of strong surface complexation or ion-exchange. It was concluded that MC/Al2O3 can be recognized as an effective adsorbent for removal of Cd(II) and Pb(II) in aqueous solution.

  2. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    NASA Astrophysics Data System (ADS)

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-09-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h‑1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance.

  3. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    PubMed Central

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-01-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h−1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance. PMID:27666280

  4. Tailored Fabrication of Thoroughly Mesoporous BiVO4 Nanofibers and Their Visible-Light Photocatalytic Activities.

    PubMed

    Liu, Huabing; Hou, Huilin; Gao, Fengmei; Yao, Xiaohong; Yang, Weiyou

    2016-01-27

    Bismuth vanadate (BiVO4) is considered as a potentially attractive candidate for the O2 evolution and photodegradation of organic pollutants. In an effort to develop visible-light-driven photocatalysts with high activities, the thoroughly mesoporous BiVO4 nanofibers were fabricated via a foaming-assisted electrospinning strategy. It was found that the introduced foaming agent of diisopropyl azodiformate within the solutions plays a crucial role on the formation of thoroughly mesoporous BiVO4 nanofibers, making their growth tunable. The obtained mesoporous BiVO4 nanofibers possess well-defined one-dimensional mesoporous architectures with high purity in their morphology and a surface area of 22.5 m(2)/g, which is ∼4 times that of conventional solid counterparts (5.8 m(2)/g). Accordingly, they exhibit much higher efficient photocatalytic activities toward the degradation of rhodamine B under visible-light irradiation, which is 3 times that of conventional solid counterparts, suggesting their promising application as novel and efficient photocatalysts for water purification.

  5. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    PubMed

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.

  6. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters

    NASA Astrophysics Data System (ADS)

    Masoudi Soltani, Salman; Yazdi, Sara Kazemi; Hosseini, Soraya

    2013-05-01

    One-step pyrolysis was applied to synthesize mesoporous charred carbon from used cigarette filters. Proximate analysis suggested that cigarette filters are decent carbon precursors due to their moderate carbon (around 11 %) and low ash (around 0.1 %) contents. To investigate the effects of pyrolysis parameters on porous surface area, a full factorial design of experiment including heating rate, soaking time and pyrolysis temperature was used with each factor at three levels. The analysis of variance revealed that the temperature and heating rate had the most significant effects on total surface area of the synthesized carbon. Response surface model (RSM) was applied to best fit a surface through the experimental data. It was seen that the quadratic RSM model with a reasonable R 2 value of 63 % was the best developed model. The maximum BET surface area (597 m2/g) was reached at a pyrolysis temperature of 900 °C when the precursor was heated at 5 °C/min and hold at this temperature for 3 h. The produced N2 adsorption-desorption isotherm showed a certain degree of mesoporosity in the charred carbon with an average pore size of 3.32 nm calculated by Barrett-Joyner-Halenda method. Scanning electron microscopy also showed the presence of macroporosity on the charred carbon surface. Fourier transform infrared spectroscopy revealed the presence of acidic surface functional groups such as carboxyl and phenol which were accordingly confirmed by Boehm titration. In addition, Boehm titration showed that the produced carbon's surface was more acidic than basic in nature.

  7. Effects of pyrolysis conditions on the porous structure construction of mesoporous charred carbon from used cigarette filters

    NASA Astrophysics Data System (ADS)

    Masoudi Soltani, Salman; Yazdi, Sara Kazemi; Hosseini, Soraya

    2014-06-01

    One-step pyrolysis was applied to synthesize mesoporous charred carbon from used cigarette filters. Proximate analysis suggested that cigarette filters are decent carbon precursors due to their moderate carbon (around 11 %) and low ash (around 0.1 %) contents. To investigate the effects of pyrolysis parameters on porous surface area, a full factorial design of experiment including heating rate, soaking time and pyrolysis temperature was used with each factor at three levels. The analysis of variance revealed that the temperature and heating rate had the most significant effects on total surface area of the synthesized carbon. Response surface model (RSM) was applied to best fit a surface through the experimental data. It was seen that the quadratic RSM model with a reasonable R 2 value of 63 % was the best developed model. The maximum BET surface area (597 m2/g) was reached at a pyrolysis temperature of 900 °C when the precursor was heated at 5 °C/min and hold at this temperature for 3 h. The produced N2 adsorption-desorption isotherm showed a certain degree of mesoporosity in the charred carbon with an average pore size of 3.32 nm calculated by Barrett-Joyner-Halenda method. Scanning electron microscopy also showed the presence of macroporosity on the charred carbon surface. Fourier transform infrared spectroscopy revealed the presence of acidic surface functional groups such as carboxyl and phenol which were accordingly confirmed by Boehm titration. In addition, Boehm titration showed that the produced carbon's surface was more acidic than basic in nature.

  8. Dewatering Peat With Activated Carbon

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1984-01-01

    Proposed process produces enough gas and carbon to sustain itself. In proposed process peat slurry is dewatered to approximately 40 percent moisture content by mixing slurry with activated carbon and filtering with solid/liquid separation techniques.

  9. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage.

    PubMed

    Liu, Wu-Jun; Tian, Ke; He, Yan-Rong; Jiang, Hong; Yu, Han-Qing

    2014-12-02

    Disposal and recycling of the large scale biomass waste is of great concern. Themochemically converting the waste biomass to functional carbon nanomaterials and bio-oil is an environmentally friendly apporach by reducing greenhouse gas emissions and air pollution caused by open burning. In this work, we reported a scalable, "green" method for the synthesis of the nanofibers/mesoporous carbon composites through pyrolysis of the Fe(III)-preloaded biomass, which is controllable by adjustment of temperature and additive of catalyst. It is found that the coupled catalytic action of both Fe and Cl species is able to effectively catalyze the growth of the carbon nanofibers on the mesoporous carbon and form magnetic nanofibers/mesoporous carbon composites (M-NMCCs). The mechanism for the growth of the nanofibers is proposed as an in situ vapor deposition process, and confirmed by the XRD and SEM results. M-NMCCs can be directly used as electrode materials for electrochemical energy storage without further separation, and exhibit favorable energy storage performance with high EDLC capacitance, good retention capability, and excellent stability and durability (more than 98% capacitance retention after 10,000 cycles). Considering that biomass is a naturally abundant and renewable resource (over billions tons biomass produced every year globally) and pyrolysis is a proven technique, M-NMCCs can be easily produced at large scale and become a sustainable and reliable resource for clean energy storage.

  10. Mesoporous CdS-pillared H2Ti3O7 nanohybrids with efficient photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Lin, Bizhou; Zhou, Yi; He, Liwen; Yang, Weiwei; Chen, Yilin; Gao, Bifen

    2015-04-01

    Heterostructured CdS-pillared H2Ti3O7 nanohybrids were prepared by the self-assembly of exfoliated trititanate nanosheets and CdS nanosol particles under the electrostatic interactions. It was revealed that the present nanohybrids were mesoporous with specific surface areas of about 90 m2 g-1. The nanohybrids exhibited high photocatalytic activity and good recurrence stability in the H2 evolution from water splitting. When the preparation molar ratio of H2Ti3O7/CdS was 2:1, the nanohybrid reached a high H2-evolution rate of 1523 μmol h-1 g-1 under a 300 W Xe lamp irradiation, which was 13 times higher than the bare CdS. Apart from the wider spectral responsive range, the superior photocatalytic performance of the nanohybrids was predominantly attributed to the efficient photogenerated charge separation between the trititanate nanosheets and the encapsulated CdS nanoparticles.

  11. Three-Dimensional Network of N-Doped Carbon Ultrathin Nanosheets with Closely Packed Mesopores: Controllable Synthesis and Application in Electrochemical Energy Storage.

    PubMed

    Zhu, Shan; Li, Jiajun; Ma, Liying; Guo, Lichao; Li, Qunying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Zhao, Naiqin

    2016-05-11

    A flexible one-pot strategy for fabricating a 3D network of nitrogen-doped (N-doped) carbon ultrathin nanosheets with closely packed mesopores (N-MCN) via an in situ template method is reported in this research. The self-assembly soluble salts (NaCl and Na2SiO3) serve as hierarchical templates and support the formation of a 3D glucose-urea complex. The organic complex is heat-treated to obtain a 3D N-doped carbon network constructed by mesoporous nanosheets. Especially, both the mesoporous structure and doping content can be easily tuned by adjusting the ratio of raw materials. The large specific surface area and closely packed mesopores facilitate the lithium ion intercalation/deintercalation accordingly. Besides, the nitrogen content improves the lithium storage ability and capacitive properties. Due to the synergistic effect of hierarchical structure and heteroatom composition, the 3D N-MCN shows excellent characteristics as the electrode of a lithium ion battery and supercapacitor, such as ultrahigh reversible storage capacity (1222 mAh g(-1) at 0.1 A g(-1)), stable long cycle performance at high current density (600 cycles at 2 A g(-1)), and high capacitive properties (225 F g(-1) at 1 A g(-1) and 163 F g(-1) at 50 A g(-1)).

  12. Enhanced mercuric chloride adsorption onto sulfur-modified activated carbons derived from waste tires.

    PubMed

    Yuan, Chung-Shin; Wang, Guangzhi; Xue, Sheng-Han; Ie, Iau-Ren; Jen, Yi-Hsiu; Tsai, Hsieh-Hung; Chen, Wei-Jin

    2012-07-01

    A number of activated carbons derived from waste tires were further impregnated by gaseous elemental sulfur at temperatures of 400 and 650 degrees C, with a carbon and sulfur mass ratio of 1:3. The capabilities of sulfur diffusing into the micropores of the activated carbons were significantly different between 400 and 650 degrees C, resulting in obvious dissimilarities in the sulfur content of the activated carbons. The sulfur-impregnated activated carbons were examined for the adsorptive capacity of gas-phase mercuric chloride (HgC1) by thermogravimetric analysis (TGA). The analytical precision of TGA was up to 10(-6) g at the inlet HgCl2 concentrations of 100, 300, and 500 microg/m3, for an adsorption time of 3 hr and an adsorption temperature of 150 degrees C, simulating the flue gas emitted from municipal solid waste (MSW) incinerators. Experimental results showed that sulfur modification can slightly reduce the specific surface area of activated carbons. High-surface-area activated carbons after sulfur modification had abundant mesopores and micropores, whereas low-surface-area activated carbons had abundant macropores and mesopores. Sulfur molecules were evenly distributed on the surface of the inner pores after sulfur modification, and the sulfur content of the activated carbons increased from 2-2.5% to 5-11%. After sulfur modification, the adsorptive capacity of HgCl2 for high-surface-area sulfurized activated carbons reached 1.557 mg/g (22 times higher than the virgin activated carbons). The injection of activated carbons was followed by fabric filtration, which is commonly used to remove HgCl2 from MSW incinerators. The residence time of activated carbons collected in the fabric filter is commonly about 1 hr, but the time required to achieve equilibrium is less than 10 min. Consequently, it is worthwhile to compare the adsorption rates of HgCl2 in the time intervals of < 10 and 10-60 min.

  13. Ammonia-treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction

    SciTech Connect

    Wang, Xiqing; Lee, Je Seung; Zhu, Qing; Liu, Jun; Wang, Yong; Dai, Sheng

    2010-04-13

    Polymer electrolyte membrane fuel cells (PEMFCs) have been considered as promising alternative power sources for many mobile and stationary applications. Compared to the fast hydrogen oxidation at the anode, the sluggish oxygen reduction reaction (ORR) at the cathode requires high-performance catalysts. Currently, platium (Pt) nanoparticles supported on high surface area carbons remain the best catalysts for ORR. However, both instability and high cost of Pt-based catalysts represent two main obstacles limiting the commercial applications of PEMFCs. The instability of supported Pt catalysts is mainly due to the corrosion of carbon support under operation conditions and the agglomation and detachment of Pt particles, leading to a decrease in catalytic surface areas. Development of corrosion resistant supports and enhancement of the interactions between Pt and supports are two strategies to improve the cathode long-term activity.

  14. Comparison on pore development of activated carbon produced from palm shell and coconut shell.

    PubMed

    Daud, Wan Mohd Ashri Wan; Ali, Wan Shabuddin Wan

    2004-05-01

    A series of experiments were conducted to compare the pore development in palm-shell and coconut-shell-based activated carbons produced under identical experimental conditions. Carbonization and activation processes were carried out at 850 degrees C using a fluidized bed reactor. Within the range of burn-off studied, at any burn-off, the micropore and mesopore volumes created in palm-shell-based activated carbon were always higher than those of coconut-shell-based activated carbon. On macropore volume, for palm-shell-based activated carbon, the volume increased with increase in burn-off up to 30% and then decreased. However, for coconut-shell-based activated carbon, the change in macropore volume with burn-off was almost negligible but the absolute macropore volume decreased with burn-off.

  15. Mesoporous Nitrogen Doped Carbon-Glass Ceramic Cathode for High Performance Lithium-Oxygen Battery

    DTIC Science & Technology

    2012-06-01

    3 . DATES COVERED (From - To) June 2012 Conference Proceedings Postprint 01 June 2012 – 01 June 2012 4 . TITLE AND SUBTITLE MESOPOROUS NITROGEN... 3 , a solid-state lithium-oxygen cell with a 2 cm2 area was fabricated (Figure 4 ). Figure 4 . Photograph of a Solid-State lithium-oxygen...0.5 1 1.5 2 2.5 3 3.5 0 2 4 6 8 10 12 Vo lta ge (V ) Cell Capacity (mA.h) 1 2 3 Figure 5. Discharge profiles for a lithium-oxygen cell at 75 C

  16. Low temperature synthesis and visible light driven photocatalytic activity of highly crystalline mesoporous TiO2 particles.

    PubMed

    Gujar, Tanaji P; Anand, Chokkalingam; Shinde, Vaishali R; Ye, Jinhua; Ariga, Katsuhiko; Vinu, Ajayan

    2010-12-01

    Mesoporous TiO2 powder materials with a high crystallinity have been prepared by evaporation induced self assembly (EISA) process using titanium tetraisopropoxide (TTIP) and pluronic P123 surfactant (EO20PO70EO20) as titanium source and structure-directing reagent, respectively. The prepared materials were characterized by low and wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), optical absorption, and N2 adsorption-desorption experiments. The crystallinity of the materials was controlled by varying the calcination temperature. The resulting TiO2 materials showed highly crystalline structure with uniform particle size which increases from 11.8 to 23.8 nm with increasing the calcination temperature from 400 to 600 degrees C, respectively, whereas the specific surface area decreases from 125 to 40 m2/g. TEM and XRD results revealed that the calcination temperature of 600 degrees C is the best condition to obtain highly crystalline mesoporous TiO2. The photocatalytic activity of the TiO2 mesoporous materials with different crystallinity and textural parameters has been studied in the decomposition of methylene blue (MB) dye molecules under visible light irradiation. Among the mesoporous TiO2 materials studied, the material with the highest crystallinity, prepared at 600 degrees C, showed the best photocatalytic performance in the decomposition of MB under visible light in a short time.

  17. One-step preparation of carbon nanotubes doped mesoporous birnessite K2Mn4O9 achieving 77% of theoretical capacitance by a facile redox reaction

    NASA Astrophysics Data System (ADS)

    Kang, Litao; Li, Peiyang; Tao, Keyu; Wang, Xiaomin; Liang, Wei; Gao, Yanfeng

    2016-01-01

    A facile, scalable and cost-efficient redox reaction is developed to prepare micro-powders of a quasi-crystallised, mesoporous birnessite-type manganese oxide, K2Mn4O9. In 1 M KOH electrolyte, the K2Mn4O9 powder shows a high specific capacitance of 754 F g-1 at 1 A g-1 (calculated with the net weight of K2Mn4O9 micro-powder only). Meanwhile, the electrode retains 91% of its initial capacitance after 5000 cycles at a high current density of 5 A g-1. By simply adding carbon nanotubes (CNTs) into the reaction system, the specific capacitances of as-prepared K2Mn4O9/CNTs composites are further increased to 929 and 1055 F g-1 at 1 A g-1 in 1 and 6 M KOH electrolyte (corresponding to 69 and 77% of the theoretical capacitance of MnO2), or 600 and 674 F g-1 at 5 A g-1, respectively. Significantly, a maximum energy density of 62 Wh kg-1 at a power density of 852 W kg-1 could be achieved based on a K2Mn4O9/CNTs//activated carbon asymmetric supercapacitor (ASC). At the same time, the ASC device exhibits a decent long cycle life with 85% specific capacitance retained after 1000 cycles, suggesting its wide application potential in low-cost high energy density storage systems.

  18. Improved performance of electrodes based on carbonized olive stones/S composites by impregnating with mesoporous TiO2 for advanced Lisbnd S batteries

    NASA Astrophysics Data System (ADS)

    Moreno, Noelia; Caballero, Álvaro; Morales, Julián; Rodríguez-Castellón, Enrique

    2016-05-01

    Carbons obtained from biomass have attracted a lot of attention for use as electrodes for Li-ion batteries. Less attention has been paid to their use in Lisbnd S batteries in spite of the higher energy densities. Here, we optimized the electrochemical properties of an activated carbon (OSAC) obtained from olive stones with the help of mesoporous TiO2. The OSAC@TiO2/S hybrid composite exhibited improved electrochemical performance compared with the OSAC/S composite. The presence of TiO2 increased the delivered capacity of the cell by more than 60%, and the rate capability was notably improved. The cell could operate at current densities of 3350 mA g-1 (2 C), releasing an average capacity of 500 mAh g-1 with a coulombic efficiency close to 100%. This improvement in the electrochemical performance is attributed to the sorbent properties of TiO2 towards Li polysulfides and its facility to insert Li, which enhances the electronic and ionic conductivity of the hybrid composite.

  19. The composite capacitive behaviors of the N and S dual doped ordered mesoporous carbon with ultrahigh doping level

    NASA Astrophysics Data System (ADS)

    Zhang, Deyi; Lei, Longyan; Shang, Yonghua; Wang, Kunjie; Wang, Yi

    2016-01-01

    Heteroatoms doping provides a promising strategy for improving the energy density of supercapacitors based on the carbon electrodes. In this paper, we present a N and S dual doped ordered mesoporous carbon with ultrahigh doping level using dimethylglyoxime as pristine precursor. The N doping content of the reported materials varies from 6.6 to 15.6 at.% dependent on the carbonization temperature, and the S doping content varies from 0.46 to 1.01 at.%. Due to the ultrahigh heteroatoms doping content, the reported materials exhibit pronounced pseudo-capacitance. Meanwhile, the reported materials exhibit high surface areas (640⿿869 m2 g⿿1), large pore volume (0.71⿿1.08 cm2 g⿿1) and ordered pore structure. The outstanding textual properties endow the reported materials excellent electrical double-layer capacitance (EDLC). By effectively combining the pseudo-capacitance with EDLC, the reported materials exhibit a surprising energy storage/relax capacity with the highest specific capacitance of 565 F g⿿1, which value is 3.3 times higher than that of pristine CMK-3, and can compete against some conventional pseudo-capacitance materials.

  20. Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane

    PubMed Central

    Wu, Pingping; Bai, Peng; Yan, Zifeng; Zhao, George X. S.

    2016-01-01

    Homogeneous immobilization of gold nanoparticles (Au NPs) on mesoporous silica has been achieved by using a one-pot synthesis method in the presence of organosilane mercapto-propyl-trimethoxysilane (MPTMS). The resultant Au NPs exhibited an excellent catalytic activity in the solvent-free selective oxidation of cyclohexane using molecular oxygen. By establishing the structure-performance relationship, the origin of the high activity of mesoporous supported Au catalyst was identified to be due to the presence of low-coordinated Au (0) sites with high dispersion. Au NPs were confirmed to play a critical role in the catalytic oxidation of cyclohexane by promoting the activation of O2 molecules and accelerating the formation of surface-active oxygen species. PMID:26729288

  1. Recovery of silica from electronic waste for the synthesis of cubic MCM-48 and its application in preparing ordered mesoporous carbon molecular sieves using a green approach

    NASA Astrophysics Data System (ADS)

    Liou, Tzong-Horng

    2012-07-01

    The electronics industry is one of the world's fastest growing manufacturing industries. However, e-waste has become a serious pollution problem. This study reports the recovery of e-waste for preparing valuable MCM-48 and ordered mesoporous carbon for the first time. Specifically, this study adopts an alkali-extracted method to obtain sodium silicate precursors from electronic packaging resin ash. The influence of synthesis variables such as gelation pH, neutral/cationic surfactant ratio, hydrothermal treatment temperature, and calcination temperature on the mesophase of MCM-48 materials is investigated. Experimental results confirm that well-ordered cubic MCM-48 materials were synthesized in strongly acidic and strongly basic media. The resulting mesoporous silica had a high surface area of 1,317 m2/g, mean pore size of about 3.0 nm, and a high purity of 99.87 wt%. Ordered mesoporous carbon with high surface area (1,715 m2/g) and uniform pore size of CMK-1 type was successfully prepared by impregnating MCM-48 template using the resin waste. The carbon structure was sensitive to the sulfuric acid concentration and carbonization temperature. Converting e-waste into MCM-48 materials not only eliminates the disposal problem of e-waste, but also transforms industrial waste into a useful nanomaterial.

  2. Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation.

    PubMed

    Vernersson, T; Bonelli, P R; Cerrella, E G; Cukierman, A L

    2002-06-01

    Canes from Arundo donax, a herbaceous rapid-growing plant, were used as precursor for activated carbon preparation by phosphoric acid activation under a self-generated atmosphere. The influence of the carbonization temperature in the range 400-550 degrees C and of the weight ratio phosphoric acid to precursor (R = 1.5-2.5) on the developed porous structure of the resulting carbons was studied for 1 h of carbonization time. Surface properties of the activated carbons were dependent on a combined effect of the conditions employed. Carbons developed either with R = 1.5 over the range 400-500 degrees C, or with R = 2 at 500 degrees C exhibited surface areas of around 1100 m2/g, the latter conditions promoting a larger pore volume and enhanced mesoporous character. For both ratios, temperature above 500 degrees C led to reduction in porosity development. A similar effect was found for the highest ratio (R = 2.5) and 500 degrees C. The influence of carrying out the carbonization either for times shorter than 1 h or under flowing N2 was also examined at selected conditions (R = 2, 500 degrees C). Shorter times induced increase in the surface area (approximately 1300 m2/g), yielding carbons with smaller mean pore radius. Activated carbons obtained under flowing N2 possessed predominant microporous structures and larger ash contents than the samples derived in the self-generated atmosphere.

  3. Activated carbon from vetiver roots: gas and liquid adsorption studies.

    PubMed

    Gaspard, S; Altenor, S; Dawson, E A; Barnes, P A; Ouensanga, A

    2007-06-01

    Large quantities of lignocellulosic residues result from the industrial production of essential oil from vetiver grass (Vetiveria zizanioides) roots. These residues could be used for the production of activated carbon. The yield of char obtained after vetiver roots pyrolysis follows an equation recently developed [A. Ouensanga, L. Largitte, M.A. Arsene, The dependence of char yield on the amounts of components in precursors for pyrolysed tropical fruit stones and seeds, Micropor. Mesopor. Mater. 59 (2003) 85-91]. The N(2) adsorption isotherm follows either the Freundlich law K(F)P(alpha) which is the small alpha equation limit of a Weibull shaped isotherm or the classical BET isotherm. The surface area of the activated carbons are determined using the BET method. The K(F) value is proportional to the BET surface area. The alpha value increases slightly when the burn-off increases and also when there is a clear increase in the micropore distribution width.

  4. Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Dong, Yanfeng; Liu, Shaohong; Wang, Zhiyu; Liu, Yang; Zhao, Zongbin; Qiu, Jieshan

    2015-04-01

    Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides.Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides. Electronic supplementary information (ESI) available: Experimental details, BET, SEM, XPS and more electrochemical data. See DOI: 10.1039/c5nr01015b

  5. Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage.

    PubMed

    Jia, Xilai; Zhu, Xiao; Cheng, Yanhua; Chen, Zheng; Ning, Guoqing; Lu, Yunfeng; Wei, Fei

    2015-07-01

    Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications.

  6. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Chin; Tseng, Ru-Ling; Hu, Chi-Chang; Wang, Chen-Ching

    Activated carbons prepared from firwoods by means of a steam activation method at 900 °C for 1-7 h are demonstrated as promising materials for supercapacitors. The carbons exhibit high-power, low equivalent series resistance and highly reversible characteristics between -0.1 and 0.9 V in aqueous electrolytes. The pore structure of the carbons is systematically characterized by the t-plot method based on N 2 adsorption isotherms. The adsorption equilibria of tannic acid, methylene blue, 4-chlorophenol and phenol from aqueous solutions on such carbons are perfectly fitted by the Langmuir equation. All the steam-activated carbons prepared at different activation times ( tA) display ideal capacitive performance in aqueous media. This is attributed mainly to the development of mesopores (with an average pore diameter, Dp, between 2.68 and 3.04 nm), which depends strongly on tA. The average specific capacitance of a steam-activated carbon with a tA of 7 h, as estimated from cyclic voltammetic curves measured at 200 mV s -1, reaches 120 F g -1 between -0.1 and 0.9 V in acidic electrolytes. The capacitive characteristics of steam-activated carbons in NaNO 3, H 2SO 4 and HNO 3can be roughly determined by the adsorption data of species with suitable molecular weights. The results indicate that the observed increase in double-layer capacitance arises mainly from the development of mesopores.

  7. Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium-sulfur batteries.

    PubMed

    Dong, Yanfeng; Liu, Shaohong; Wang, Zhiyu; Liu, Yang; Zhao, Zongbin; Qiu, Jieshan

    2015-05-07

    Sandwich-type, two-dimensional hybrid nanosheets were fabricated by the infiltration of nanosized sulfur into graphene-backboned mesoporous carbon with a PPy nanocoating. They exhibit a high reversible capacity for as long as 400 cycles with an ultra slow decay rate of 0.05% per cycle at the high rate of 1-3 C due to the efficient immobilization of polysulfides.

  8. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell.

    PubMed

    Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming

    2013-12-01

    Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required.

  9. Physicochemical and porosity characteristics of thermally regenerated activated carbon polluted with biological activated carbon process.

    PubMed

    Dong, Lihua; Liu, Wenjun; Jiang, Renfu; Wang, Zhansheng

    2014-11-01

    The characteristics of thermally regenerated activated carbon (AC) polluted with biological activated carbon (BAC) process were investigated. The results showed that the true micropore and sub-micropore volume, pH value, bulk density, and hardness of regenerated AC decreased compared to the virgin AC, but the total pore volume increased. XPS analysis displayed that the ash contents of Al, Si, and Ca in the regenerated AC respectively increased by 3.83%, 2.62% and 1.8%. FTIR spectrum showed that the surface functional groups of virgin and regenerated AC did not change significantly. Pore size distributions indicated that the AC regeneration process resulted in the decrease of micropore and macropore (D>10 μm) volume and the increase of mesopore and macropore (0.1 μm

  10. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon.

    PubMed

    Zolfaghari, Ghasem; Esmaili-Sari, Abbas; Anbia, Mansoor; Younesi, Habibollah; Amirmahmoodi, Shahram; Ghafari-Nazari, Ali

    2011-09-15

    Using the Taguchi method, this study presents a systematic optimization approach for removal of lead (Pb) and mercury (Hg) by a nanostructure, zinc oxide-modified mesoporous carbon CMK-3 denoted as Zn-OCMK-3. CMK-3 was synthesized by using SBA-15 and then oxidized by nitric acid. The zinc oxide was loaded to the modified CMK-3 by the equilibrium adsorption of Zn(II) ions from aqueous solution followed by calcination to convert zinc nitrate to zinc oxide. The CMK-3 had porous structure and high specific surface area which can accommodate zinc oxide in a spreading manner, the zinc oxide connects to the carbon surface via oxygen atoms. The controllable factors such as agitation time, initial concentration, temperature, dose and pH of solution have been optimized. Under optimum conditions, the pollutant removal efficiency (PRE) was 97.25% for Pb(II) and 99% for Hg(II). The percentage contribution of each controllable factor was also determined. The initial concentration of pollutant is the most influential factor, and its value of percentage contribution is up to 31% and 43% for Pb and Hg, respectively. Our results show that the Zn-OCMK-3 is an effective nanoadsorbent for lead and mercury pollution remediation. Langmuir and Freundlich adsorption isotherms were used to model the equilibrium adsorption data for Pb(II) and Hg(II).

  11. Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin E.; He, Siyao; Buffington, Keegan; Rudisill, Stephen; Smyrl, William H.; Stein, Andreas

    2015-12-01

    The specific energy of electrochemical double-layer capacitors (EDLCs) can be increased by design of the pore architecture to provide large interfaces between electrodes and electrolyte and efficient access to these surfaces. Colloidal-crystal templated carbon electrodes with interconnected, uniform mesopores have demonstrated high capacitances at fast charge/discharge rates in EDLCs used with ionic liquid electrolytes. Here we aim to enhance capacitive performance further through nitrogen doping, by combining a phenol-formaldehyde precursor with the ionic liquid (IL) 1-ethyl-3-methylimidazolium dicyanoamide (EMI-DCA) as the nitrogen source. The IL content in this precursor affects the resistance, structural integrity, and specific capacitance of the porous electrodes. With an IL content up to 50 wt%, the electrode resistance is reduced while the bicontinuous mesoporous structure of the resulting carbon is preserved. The specific capacitance of an electrode prepared with 50% IL in the precursor increases over 40% at 10 A g-1 compared to mesoporous carbons prepared using only the phenol-formaldehyde resol. With an ionic liquid electrolyte, the maximum specific capacitance is 237 F g-1 at 0.1 A g-1, and a specific capacitance of at least 195 F g-1 is maintained after 1000 cycles at 1 A g-1. A higher IL content in the precursor results in reduced structural order and capacitive performance.

  12. Al-doped TiO2 mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Mu, Wentao; Su, Liqing; Li, Xingying; Guo, Yuyu; Zhang, Shen; Li, Zhe

    2017-04-01

    Pd catalysts supported on Al-doped TiO2 mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO2 to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO2, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen.

  13. Synthesis and photocatalytic activity for water-splitting reaction of nanocrystalline mesoporous titania prepared by hydrothermal method

    SciTech Connect

    Jitputti, Jaturong; Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu

    2007-05-15

    Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method using titanium butoxide as starting material. XRD, SEM, and TEM analyses revealed that the synthesized TiO{sub 2} had anatase structure with crystalline size of about 8 nm. Moreover, the synthesized titania possessed a narrow pore size distribution with average pore diameter and high specific surface area of 215 m{sup 2}/g. The photocatalytic activity of synthesized TiO{sub 2} was evaluated with photocatalytic H{sub 2} production from water-splitting reaction. The photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01). The utilization of mesoporous TiO{sub 2} photocatalyst with high crystallinity of anatase phase promoted great H{sub 2} production. Furthermore, the reaction temperature significantly influences the water-splitting reaction. - Graphical abstract: Nanocrystalline mesoporous TiO{sub 2} was synthesized by hydrothermal method. The physical properties of the synthesized TiO{sub 2} were thoroughly studied in relation to its photocatalytic activity for H{sub 2} evolution from water-splitting reaction. It was found that the photocatalytic activity of synthesized TiO{sub 2} treated with appropriate calcination temperature was considerably higher than that of commercial TiO{sub 2} (Ishihara ST-01)

  14. One-pot template-free preparation of mesoporous TiO{sub 2} hollow spheres and their photocatalytic activity

    SciTech Connect

    Kang, Shizhao; Yin, Dieer; Li, Xiangqing; Li, Liang; Mu, Jin

    2012-11-15

    Highlights: ► Mesoporous TiO{sub 2} hollow spheres were prepared in a one-pot process. ► The process does not involve any templates and surfactants. ► The TiO{sub 2} hollow spheres display high photocatalytic activity. -- Abstract: Mesoporous TiO{sub 2} hollow spheres were prepared in a solvothermal process, which did not involve any templates and surfactants. Meanwhile, the photocatalytic activity of TiO{sub 2} hollow spheres was studied using methyl orange as a probe. The results indicate that the anatase TiO{sub 2} hollow spheres with mesoporous walls and high specific surface area (141 m{sup 2} g{sup −1}) can be obtained using this simple method. The mean diameter and wall thickness of spheres are about 700 nm and 90 nm, respectively. Moreover, the as-prepared TiO{sub 2} hollow spheres display high photocatalytic activity with 98% of degradation ratio of methyl orange after 30 min irradiation.

  15. Direct electrochemistry and electrocatalytic properties of hemoglobin immobilized on a carbon ionic liquid electrode modified with mesoporous molecular sieve MCM-41.

    PubMed

    Li, Yonghong; Zeng, Xiandong; Liu, Xiaoying; Liu, Xinsheng; Wei, Wanzhi; Luo, Shenglian

    2010-08-01

    The direct electron transfer and electrocatalysis of hemoglobin (Hb) entrapped in the MCM-41 modified carbon ionic liquid electrode (CILE) were investigated by using cyclic voltammetry in 0.10 M pH 7.0 phosphate buffer solution (PBS). Due to its uniform pore structure, high surface areas and good biocompatibility, the mesoporous silica sieve MCM-41 provided a suitable matrix for immobilization of biomolecule. The MCM-41 modified CILE showed significant promotion to the direct electron transfer of Hb, which exhibited a pair of well defined and quasi-reversible peaks for heme Fe(III)/Fe(II) with a formal potential of -0.284 V (vs. Ag/AgCl). Additionally, the Hb immobilized on the MCM-41 modified carbon ionic liquid electrode showed excellent electrocatalytic activity toward H(2)O(2). The electrocatalytic current values were linear with increasing concentration of H(2)O(2) in a wide range of 5-310 microM and the corresponding detection limit was calculated to be 5 x 10(-8)M (S/N=3). The surface coverage of Hb immobilized on the MCM-41 modified carbon ionic liquid electrode was about 2.54 x 10(-9) molcm(-2). The Michaelis-Menten constant K(m)(app) of 214 microM indicated that the Hb immobilized on the modified electrode showed high affinity to H(2)O(2). The proposed electrode had high stability and good reproducibility due to the protection effect of MCM-41 and ionic liquid, and it would have wide potential applications in direct electrochemistry, biosensors and biocatalysis.

  16. Mesoporous silica coatings for cephalosporin active release at the bone-implant interface

    NASA Astrophysics Data System (ADS)

    Rădulescu, Dragoş; Voicu, Georgeta; Oprea, Alexandra Elena; Andronescu, Ecaterina; Grumezescu, Valentina; Holban, Alina Maria; Vasile, Bogdan Stefan; Surdu, Adrian Vasile; Grumezescu, Alexandru Mihai; Socol, Gabriel; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Balaure, Paul Cătălin; Rădulescu, Radu; Chifiriuc, Mariana Carmen

    2016-06-01

    In this study, we investigated the potential of MAPLE-deposited coatings mesoporous silica nanoparticles (MSNs) to release Zinforo (ceftarolinum fosmil) in biologically active form. The MSNs were prepared by using a classic procedure with cetyltrimethylammonium bromide as sacrificial template and tetraethylorthosilicate as the monomer. The Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) analyses revealed network-forming granules with diameters under 100 nm and an average pore diameter of 2.33 nm. The deposited films were characterized by SEM, TEM, XRD and IR. Microbiological analyses performed on ceftaroline-loaded films demonstrated that the antibiotic was released in an active form, decreasing the microbial adherence rate and colonization of the surface. Moreover, the in vitro and in vivo assays proved the excellent biodistribution and biocompatibility of the prepared systems. Our results suggest that the obtained bioactive coatings possess a significant potential for the design of drug delivery systems and antibacterial medical-use surfaces, with great applications in bone implantology.

  17. Spacer intercalated disassembly and photodynamic activity of zinc phthalocyanine inside nanochannels of mesoporous silica nanoparticles.

    PubMed

    Ma, Xing; Sreejith, Sivaramapanicker; Zhao, Yanli

    2013-12-26

    Hydrophobic photosensitizer zinc(II) phthalocyanine (ZnPc) was loaded into adamantane (Ad) modified nanochannels of mesoporous silica nanoparticles (MSNPs). The Ad units on the surface of MSNPs were complexed with amino-substituted β-cyclodextrin to enhance the solubility of the hybrid in aqueous solution. The amino groups on β-cyclodextrin also provide functional sites for further conjugation with targeting ligands toward targeted cancer therapy. Since the intercalation of the Ad spacer isolates loaded ZnPc and prevents its aggregation inside MSNPs, ZnPc exhibits its monomeric characteristics to effectively generate cytotoxic singlet oxygen ((1)O2) upon light irradiation (675 nm) in aqueous conditions, leading to efficient photodynamic activity for successful cancer treatment in vitro. Current research presents a convenient approach to maintain the monomeric state of hydrophobic photosensitizer ZnPc by rationally utilizing multifunctional MSNPs as the carriers. The novel hybrid with targeting capability achieves active photodynamic property of monomeric ZnPc in aqueous solution under light irradiation, which may find its way for practical photodynamic therapy in the future.

  18. Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons.

    PubMed

    Jain, Surendra Kumar; Pellenq, Roland J-M; Gubbins, Keith E; Peng, Xuan

    2017-03-07

    Realistic molecular models of silica-templated CMK-1, CMK-3, and CMK-5 carbon materials have been developed by using carbon rods and carbon pipes that were obtained by adsorbing carbon in a model MCM-41 pore. The interactions between the carbon atoms with the silica matrix were described using the PN-Traz potential, and the interaction between the carbon atoms was calculated by the reactive empirical bond order (REBO) potential. Carbon rods and pipes with different thicknesses were obtained by changing the silica-carbon interaction strength, the temperature, and the chemical potential of carbon vapor adsorption. These equilibrium structures were further used to obtain the atomic models of CMK-1, CMK-3, and CMK-5 materials using the same symmetry as found in TEM pictures. These models are further refined and made more realistic by adding interconnections between the carbon rods and carbon pipes. We calculated the geometric pore size distribution of the different models of CMK-5 and found that the presence of interconnections results in some new features in the pore size distribution. Argon adsorption properties were investigated using GCMC simulations to characterize these materials at 77 K. We found that the presence of interconnection results greatly improves the agreement with available experimental data by shifting the capillary condensation to lower pressures. Adding interconnections also induces smoother adsorption/condensation isotherms, and desorption/evaporation curves show a sharp jump. These features reflex the complexity of the nanovoids in CMKs in terms of their pore morphology and topology.

  19. Characterization of the micropore structure of activated carbons by adsorptions of nitrogen and some hydrocarbons

    SciTech Connect

    Guezel, F.

    1999-02-01

    In the present study the effects of the duration of carbonization and physical activation properties of activated carbon from vegetable materials were investigated. Peanut shells were used to obtain active carbon. These shells were activated chemically with ZnCl{sub 2} and/or CO{sub 2} for different times, and the micropore structures of these active carbons were studied by measuring the adsorption isotherms for nitrogen and some hydrocarbons such as benzene, n-butane, isobutane, 2,2-dimethylbutane, and isooctane. As the physical activation time was increased, the primary micropores, which were measured at 0.01 relative pressure, were reduced, and they were replaced by larger secondary and tertiary micropores which were measured at 0.15--0.01 and 0.30--0.15 relative pressures. The ratios of the mesopore volume to the micropore volume also increased as the duration of physical activation increased.

  20. Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Qi, Li; Jia, Mingjun; Wang, Hongyu

    2014-04-01

    Mesoporous nickel cobaltite (NiCo2O4) nanoparticles have been synthesized via a facile hydrothermal strategy with the assistance of sodium dodecyl sulfate (SDS) soft template (ST). Their physicochemical properties have been characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and nitrogen sorption measurements. Their electrocatalytic performances have been examined by cyclic voltammetry (CV), linear sweep voltammetry (LSV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The obtained NiCo2O4 materials exhibit a typical nanoscale crystalline hexagonal morphology with specific surface area (SSA) and mesopore volume of 88.63 m2 g-1 and 0.298 cm3 g-1. Impressively, the SDS-assisted NiCo2O4 electrode shows a catalytic current density of 125 mA cm-2 and 72% retention for consecutive 1000 s at 0.6 V in 1 M KOH and 0.5 M CH3OH electrolytes towards methanol (CH3OH) electrooxidation, which is better than the one without SDS assistance. The pronounced electrocatalytic activity is largely ascribed to their higher surface intensities of Co and Ni species and superior mesoporous nanostructures, which provide the richer electroactive sites and faster electrochemical kinetics, leading to the enhanced electrocatalytic activity.

  1. Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity.

    PubMed

    Zhou, Xiufeng; Lu, Juan; Jiang, Jingjing; Li, Xiaobin; Lu, Mengna; Yuan, Guotao; Wang, Zuoshan; Zheng, Min; Seo, Hyo Jin

    2014-01-16

    N-doped mesoporous TiO2 nanorods were fabricated by a modified and facile sol-gel approach without any templates. Ammonium nitrate was used as a raw source of N dopants, which could produce a lot of gasses such as N2, NO2, and H2O in the process of heating samples. These gasses were proved to be vitally important to form the special mesoporous structure. The samples were characterized by the powder X-ray diffraction, X-ray photoelectron spectrometer, nitrogen adsorption isotherms, scanning electron microscopy, transmission electron microscopy, and UV-visible absorption spectra. The average length and the cross section diameter of the as-prepared samples were ca. 1.5 μm and ca. 80 nm, respectively. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The N-doped mesoporous TiO2 nanorods showed an excellent photocatalytic activity, which may be attributed to the enlarged surface area (106.4 m2 g-1) and the narrowed band gap (2.05 eV). Besides, the rod-like photocatalyst was found to be easy to recycle.

  2. Simple fabrication of N-doped mesoporous TiO2 nanorods with the enhanced visible light photocatalytic activity

    PubMed Central

    2014-01-01

    N-doped mesoporous TiO2 nanorods were fabricated by a modified and facile sol–gel approach without any templates. Ammonium nitrate was used as a raw source of N dopants, which could produce a lot of gasses such as N2, NO2, and H2O in the process of heating samples. These gasses were proved to be vitally important to form the special mesoporous structure. The samples were characterized by the powder X-ray diffraction, X-ray photoelectron spectrometer, nitrogen adsorption isotherms, scanning electron microscopy, transmission electron microscopy, and UV-visible absorption spectra. The average length and the cross section diameter of the as-prepared samples were ca. 1.5 μm and ca. 80 nm, respectively. The photocatalytic activity was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The N-doped mesoporous TiO2 nanorods showed an excellent photocatalytic activity, which may be attributed to the enlarged surface area (106.4 m2 g-1) and the narrowed band gap (2.05 eV). Besides, the rod-like photocatalyst was found to be easy to recycle. PMID:24428848

  3. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    SciTech Connect

    Khezri, Khezrollah; Roghani-Mamaqani, Hossein

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  4. Separating proteins with activated carbon.

    PubMed

    Stone, Matthew T; Kozlov, Mikhail

    2014-07-15

    Activated carbon is applied to separate proteins based on differences in their size and effective charge. Three guidelines are suggested for the efficient separation of proteins with activated carbon. (1) Activated carbon can be used to efficiently remove smaller proteinaceous impurities from larger proteins. (2) Smaller proteinaceous impurities are most efficiently removed at a solution pH close to the impurity's isoelectric point, where they have a minimal effective charge. (3) The most efficient recovery of a small protein from activated carbon occurs at a solution pH further away from the protein's isoelectric point, where it is strongly charged. Studies measuring the binding capacities of individual polymers and proteins were used to develop these three guidelines, and they were then applied to the separation of several different protein mixtures. The ability of activated carbon to separate proteins was demonstrated to be broadly applicable with three different types of activated carbon by both static treatment and by flowing through a packed column of activated carbon.

  5. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation

    SciTech Connect

    Tam, M.S.; Antal, M.J. Jr.

    1999-11-01

    A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

  6. Mesoporous and Nanostructured TiO2 layer with Ultra-High Loading on Nitrogen-Doped Carbon Foams as Flexible and Free-Standing Electrodes for Lithium-Ion Batteries.

    PubMed

    Chu, Shiyong; Zhong, Yijun; Cai, Rui; Zhang, Zhaobao; Wei, Shenying; Shao, Zongping

    2016-12-01

    A simple and green method is developed for the preparation of nanostructured TiO2 supported on nitrogen-doped carbon foams (NCFs) as a free-standing and flexible electrode for lithium-ion batteries (LIBs), in which the TiO2 with 2.5-4 times higher loading than the conventional TiO2 -based flexible electrodes acts as the active material. In addition, the NCFs act as a flexible substrate and efficient conductive networks. The nanocrystalline TiO2 with a uniform size of ≈10 nm form a mesoporous layer covering the wall of the carbon foam. When used directly as a flexible electrode in a LIB, a capacity of 188 mA h g(-1) is achieved at a current density of 200 mA g(-1) for a potential window of 1.0-3.0 V, and a specific capacity of 149 mA h g(-1) after 100 cycles at a current density of 1000 mA g(-1) is maintained. The highly conductive NCF and flexible network, the mesoporous structure and nanocrystalline size of the TiO2 phase, the firm adhesion of TiO2 over the wall of the NCFs, the small volume change in the TiO2 during the charge/discharge processes, and the high cut-off potential contribute to the excellent capacity, rate capability, and cycling stability of the TiO2 /NCFs flexible electrode.

  7. A General Silica-Templating Synthesis of Alkaline Mesoporous Carbon Catalysts for Highly Efficient H2S Oxidation at Room Temperature.

    PubMed

    Zhang, Zixiao; Jiang, Wuyou; Long, Donghui; Wang, Jitong; Qiao, Wenming; Ling, Licheng

    2017-01-25

    A general synthesis of alkaline mesoporous carbons (AMCs) is developed based on a simplified silica-templating method for room-temperature catalytic oxidation of H2S. The key to the success relies on dissolving the silica templates to create the interconnected mesoporous structure as well as leaving parts of the alkaline products in the pores; both of them are prerequisites for H2S oxidation. By adjusting the alkaline etching degree and organic/inorganic ratio, the porosity and basicity of the AMC could be simultaneously tuned, allowing the AMCs direct use for H2S catalytic oxidation with an unprecedented removal capacities of 4.49 ± 0.12 g/g. Such excellent catalytic performance should be attributed to the developed pore structure that stores the product sulfur and the strong basicity that promotes the dissociation of H2S into HS(-) ions. Moreover, this simplified silica-templating method could be easily extended to the preparation of various silica templated mesoporous carbon catalysts. All these AMCs demonstrate a successful combination of low cost with high performance, which may well be the answer for the technical development of industrial H2S removal.

  8. Enhanced electrocatalytic stability of platinum nanoparticles supported on a nitrogen-doped composite of carbon nanotubes and mesoporous titania under oxygen reduction conditions.

    PubMed

    Masa, Justus; Bordoloi, Ankur; Muhler, Martin; Schuhmann, Wolfgang; Xia, Wei

    2012-03-12

    Cheers for titania: An N-doped composite of carbon nanotubes (CNTs) and mesoporous TiO(2) is used as support for Pt nanoparticles applied in the oxygen reduction reaction. The composite Pt/N-TiO(2) -CNT shows a higher stability than Pt particles on carbon black or N-doped CNTs, as indicated by accelerated stress tests of up to 2000 cycles. The enhanced stability is attributed to strong interactions between TiO(2) and Pt and a higher corrosion resistance of TiO(2) as well as CNTs.

  9. Engineering of Hollow Mesoporous Silica Nanoparticles for Remarkably Enhanced Tumor Active Targeting Efficacy

    PubMed Central

    Chen, Feng; Hong, Hao; Shi, Sixiang; Goel, Shreya; Valdovinos, Hector F.; Hernandez, Reinier; Theuer, Charles P.; Barnhart, Todd E.; Cai, Weibo

    2014-01-01

    Hollow mesoporous silica nanoparticle (HMSN) has recently gained increasing interests due to their tremendous potential as an attractive nano-platform for cancer imaging and therapy. However, possibly due to the lack of efficient in vivo targeting strategy and well-developed surface engineering techniques, engineering of HMSN for in vivo active tumor targeting, quantitative tumor uptake assessment, multimodality imaging, biodistribution and enhanced drug delivery have not been achieved to date. Here, we report the in vivo tumor targeted positron emission tomography (PET)/near-infrared fluorescence (NIRF) dual-modality imaging and enhanced drug delivery of HMSN using a generally applicable surface engineering technique. Systematic in vitro and in vivo studies have been performed to investigate the stability, tumor targeting efficacy and specificity, biodistribution and drug delivery capability of well-functionalized HMSN nano-conjugates. The highest uptake of TRC105 (which binds to CD105 on tumor neovasculature) conjugated HMSN in the 4T1 murine breast cancer model was ~10%ID/g, 3 times higher than that of the non-targeted group, making surface engineered HMSN a highly attractive drug delivery nano-platform for future cancer theranostics. PMID:24875656

  10. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons.

    PubMed

    Guardado-Alvarez, Tania M; Sudha Devi, Lekshmi; Russell, Melissa M; Schwartz, Benjamin J; Zink, Jeffrey I

    2013-09-25

    Photoactivation of "snap-top" stoppers over the pore openings of mesoporous silica nanoparticles releases intact cargo molecules from the pores. The on-command release can be stimulated by either one UV photon or two coherent near-IR photons. Two-photon activation is particularly desirable for use in biological systems because it enables good tissue penetration and precise spatial control. Stoppers were assembled by first binding photolabile coumarin-based molecules to the nanoparticle surface. Then, after the particles were loaded with cargo, bulky β-cyclodextrin (CD) molecules were noncovalently associated with the substituted coumarin molecule, blocking the pores and preventing the cargo from escaping. One-photon excitation at 376 nm or two-photon excitation at 800 nm cleaves the bond holding the coumarin to the nanopore, releasing both the CD cap and the cargo. The dynamics of both the cleavage of the cap and the cargo release was monitored using fluorescence spectroscopy. This system traps intact cargo molecules without the necessity of chemical modification, releases them with tissue-penetrating near-IR light, and has possible applications in photostimulated drug delivery.

  11. Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium-Oxygen Batteries (Postprint)

    DTIC Science & Technology

    2011-03-01

    rechargeable lithium– oxygen cell that was based pon metallic lithium anode, polymer electrolyte separator, and carbon-impregnated solid-polymer... electrolyte composite cath- de with gravimetric capacity of 1410mAhg−1 in pure oxygen tmosphere. Even higher cathode capacity of 2120mAhg−1 for ithium–air...concentra- ion of dissolved oxygen in air saturated aqueous solution of 0.1M OH solution. Compared to KB carbon, the N-KB carbon exhibits ne order of higher

  12. Influences of urea–glycerol mixtures as mixed mesopore-controlling agents on tailoring physicochemical properties and photocatalytic H{sub 2} production activity of sol–gel-derived mesoporous-assembled TiO{sub 2} nanocrystals

    SciTech Connect

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2013-01-15

    Graphical abstract: Display Omitted Highlights: ► Mesoporous-assembled TiO{sub 2} nanocrystals were synthesized by modified sol–gel process. ► Urea–glycerol mixtures were applied as mixed mesopore-controlling agents. ► Urea and glycerol contents affected physicochemical properties of synthesized TiO{sub 2}. ► Photocatalytic H{sub 2} production activity also depended on urea and glycerol contents. ► 75 mol% urea and 25 mol% glycerol yielded the most photocatalytically active TiO{sub 2}. -- Abstract: In this work, the mesoporous-assembled TiO{sub 2} nanocrystal photocatalysts were successfully synthesized by a sol–gel process with the aid of urea–glycerol mixtures used as mixed mesopore-controlling agents. The photocatalytic activity of the synthesized mesoporous-assembled TiO{sub 2} nanocrystal photocatalysts was investigated for hydrogen production from the water splitting reaction using methanol as a hole scavenger under UV light irradiation. The synthesized TiO{sub 2} nanocrystal photocatalysts were systematically characterized by TG–DTA, N{sub 2} adsorption–desorption, SEM, high resolution TEM, and XRD analyses. The characterization results showed that the well-controlled contents of urea and glycerol in a urea–glycerol mixture at 75 mol% urea and 25 mol% glycerol resulted in not only the most highly porous network (i.e. the highest specific surface area and total pore volume, and the smallest mean mesopore diameter), but also the smallest crystallite size of the synthesized TiO{sub 2} nanocrystal photocatalyst. The photocatalytic reaction results, hence, revealed a much superior photocatalytic hydrogen production activity of the mesoporous-assembled TiO{sub 2} nanocrystal synthesized with 75 mol% urea and 25 mol% glycerol to the other synthesized TiO{sub 2} nanocrystals, also being much higher than those of the commercially available P-25 TiO{sub 2} and ST-01 TiO{sub 2} powders.

  13. A novel carbon fiber based porous carbon monolith

    SciTech Connect

    Burchell, T.D.; Klett, J.W.; Weaver, C.E.

    1995-07-01

    A novel porous carbon material based on carbon fibers has been developed. The material, when activated, develops a significant micro- or mesopore volume dependent upon the carbon fiber type utilized (isotropic pitch or polyacrylonitrile). The materials will find applications in the field of fluid separations or as a catalyst support. Here, the manufacture and characterization of our porous carbon monoliths are described.

  14. Excellent electrochemical performances of nanocast ordered mesoporous carbons based on tannin-related polyphenols as supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Sanchez-Sanchez, A.; Izquierdo, Maria Teresa; Ghanbaja, Jaafar; Medjahdi, Ghouti; Mathieu, Sandrine; Celzard, Alain; Fierro, Vanessa

    2017-03-01

    Hierarchically porous, oxygen-doped ordered mesoporous carbons (OMCs) were synthesised and compared for the first time from different types of plant-derived polyphenols through a nanocasting route: phloroglucinol, gallic acid, catechin and Mimosa tannin. All are secondary metabolites naturally occurring in various plant species and are available at low cost at the industrial scale. The infiltration was carried out in one single step without using toxic solvents or long polymerisation-stabilisation times. When applied as electrode materials for supercapacitors in 1 M H2SO4 electrolyte, those OMCs led to specific capacitances up to 277 F g-1 at 0.5 mV s-1 and high rate capabilities as measured by cyclic voltammetry, good cycling stabilities up to 5000 cycles and maximum energy densities between 15 and 8 W h kg-1 under exceptionally high power outputs ranging from 200 W kg-1 to 22.1 kW kg-1, respectively, in the range of current density of 0.1-12 A g-1, as determined by galvanostatic charge - discharge. Moreover, electrochemical impedance spectroscopy tests evidenced that the gallic acid-derived electrode exhibited the highest electrical conductivity and the fastest frequency response, making it an excellent candidate for high-power commercial devices.

  15. The electrochemical reactions of SnO2 with Li and Na: A study using thin films and mesoporous carbons

    DOE PAGES

    Górka, Joanna; Baggetto, Loïc; Keum, Jong K.; ...

    2015-02-28

    In this work we have determined the room temperature electrochemical reactivity of SnO2 thin films and mesoporous carbons filled with SnO2 anodes with Na, and compare the results with those obtained during the reaction with Li. We show that SnO2 can reversibly deliver up to 6.2 Li/SnO2 whereas the reaction with Na is significantly limited. The initial discharge capacity is equivalent to less than 4 Na/SnO2, which is expected to correspond to the formation of 2 Na2O and Sn. This limited discharge capacity suggests the negative role of the formed Na2O matrix upon the reversible reaction of Sn clusters. Moreover,more » the reversible cycling of less than 1 Na/SnO2, despite the utilization of 6-7 nm SnO2 particles, is indicative of sluggish reaction kinetics. The origin of this significant capacity reduction is likely due to the formation of a diffusion limiting interface. Furthermore, there is a larger apparent hysteresis compared to Li. These results point to the need to design composite structures of SnO2 nanoparticles with suitable morphological and conductivity components.« less

  16. Mesoporous carbon nitride based biosensor for highly sensitive and selective analysis of phenol and catechol in compost bioremediation.

    PubMed

    Zhou, Yaoyu; Tang, Lin; Zeng, Guangming; Chen, Jun; Cai, Ye; Zhang, Yi; Yang, Guide; Liu, Yuanyuan; Zhang, Chen; Tang, Wangwang

    2014-11-15

    Herein, we reported here a promising biosensor by taking advantage of the unique ordered mesoporous carbon nitride material (MCN) to convert the recognition information into a detectable signal with enzyme firstly, which could realize the sensitive, especially, selective detection of catechol and phenol in compost bioremediation samples. The mechanism including the MCN based on electrochemical, biosensor assembly, enzyme immobilization, and enzyme kinetics (elucidating the lower detection limit, different linear range and sensitivity) was discussed in detail. Under optimal conditions, GCE/MCN/Tyr biosensor was evaluated by chronoamperometry measurements and the reduction current of phenol and catechol was proportional to their concentration in the range of 5.00 × 10(-8)-9.50 × 10(-6)M and 5.00 × 10(-8)-1.25 × 10(-5)M with a correlation coefficient of 0.9991 and 0.9881, respectively. The detection limits of catechol and phenol were 10.24 nM and 15.00 nM (S/N=3), respectively. Besides, the data obtained from interference experiments indicated that the biosensor had good specificity. All the results showed that this material is suitable for load enzyme and applied to the biosensor due to the proposed biosensor exhibited improved analytical performances in terms of the detection limit and specificity, provided a powerful tool for rapid, sensitive, especially, selective monitoring of catechol and phenol simultaneously. Moreover, the obtained results may open the way to other MCN-enzyme applications in the environmental field.

  17. Synthesis of graphitic ordered mesoporous carbon with cubic symmetry and its application in lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seop; Jeong, Jinhoo; Cho, Won Il; Kim, Woong

    2016-03-01

    The lithium-sulfur (Li-S) battery faces a couple of major problems in practical applications, including the low conductivity of sulfur and the dissolution of polysulfides. A cathode constructed using a composite of sulfur and ordered mesoporous carbon (OMC) is a promising solution to both problems, as OMCs can have high conductivity and a complex pore structure to trap polysulfides. In this work, we demonstrate that performance of the Li-S battery can be significantly enhanced by using an OMC with a high degree of graphitization and a pore network with cubic symmetry. This graphitic OMC (GOMC) can be produced in a single step using iron phthalocyanine precursor and a silica template with cubic Ia3d symmetry. The GOMC-sulfur (GOMC/S) composite is 175% higher in electrical conductivity compared to the typical OMC-sulfur (OMC/S) composite. In addition, the three-dimensional pore network in GOMC prevents the migration of dissolved polysulfides. These characteristics of GOMC contribute to the improved rate capability and cyclability of the corresponding Li-S battery.

  18. Probing Mechanisms for Enzymatic Activity Enhancement of Organophosphorus Hydrolase in Functionalized Mesoporous Silica

    SciTech Connect

    Chen, Baowei; Lei, Chenghong; Shin, Yongsoon; Liu, Jun

    2009-12-25

    We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC - as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased a-helix/b-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.

  19. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    PubMed

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  20. CO2-assisted synthesis of mesoporous carbon/C-doped ZnO composites for enhanced photocatalytic performance under visible light.

    PubMed

    Wang, Fangxiao; Liang, Lin; Shi, Lei; Liu, Mengshuai; Sun, Jianmin

    2014-11-21

    Visible-light-responsive mesoporous carbon/C-doped ZnO (mC/C-ZnO) composites were fabricated using a facile, fast, one-step process in CO2-expanded ethanol solution. It is a green and sustainable process that does not need tedious pretreatment, surfactants or precipitants. CO2 played triple roles in the synthesis of mC/C-ZnO composites; the first was to provide a simple physical expansion to evenly dope the carbon in the ZnO; the second was to offer some chemical groups such as CO3(2-) and HCO3(-), facilitating the uniform and complete deposition through the coordination of a metallic cation with these anions; and the third was to offer CO3(2-) acting as a template for the formation of mesoporosity in the carbon. When used as a photocatalyst for the photodegradation of RhB and the organic pollutant phenol, the mC/C-ZnO composites with glucose content at 22 wt% (mC/C-ZnO-CE-2) synthesized in CO2-expanded ethanol exhibited better recycling stability and photodegradation rate than the corresponding sample synthesized in pure ethanol. Such improved photocatalytic performance was attributed to the well-mixing of the mesoporous carbon and the small sized C-doped ZnO particles in the mC/C-ZnO-CE-2 composites. The facile and fast synthesis method could be extended to other mesoporous carbon/C-doped metal oxide composites, which are expected to be good photocatalyst candidates, or in other application fields.

  1. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    PubMed

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants.

  2. Bimodal activated carbons derived from resorcinol-formaldehyde cryogels

    PubMed Central

    Szczurek, Andrzej; Amaral-Labat, Gisele; Fierro, Vanessa; Pizzi, Antonio; Celzard, Alain

    2011-01-01

    Resorcinol-formaldehyde cryogels prepared at different dilution ratios have been activated with phosphoric acid at 450 °C and compared with their carbonaceous counterparts obtained by pyrolysis at 900 °C. Whereas the latter were, as expected, highly mesoporous carbons, the former cryogels had very different pore textures. Highly diluted cryogels allowed preparation of microporous materials with high surface areas, but activation of initially dense cryogels led to almost non-porous carbons, with much lower surface areas than those obtained by pyrolysis. The optimal acid concentration for activation, corresponding to stoichiometry between molecules of acid and hydroxyl groups, was 2 M l−1, and the acid–cryogel contact time also had an optimal value. Such optimization allowed us to achieve surface areas and micropore volumes among the highest ever obtained by activation with H3PO4, close to 2200 m2 g−1 and 0.7 cm3 g−1, respectively. Activation of diluted cryogels with a lower acid concentration of 1.2 M l−1 led to authentic bimodal activated carbons, having a surface area as high as 1780 m2 g−1 and 0.6 cm3 g−1 of microporous volume easily accessible through a widely developed macroporosity. PMID:27877405

  3. Breakthrough CO₂ adsorption in bio-based activated carbons.

    PubMed

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.

  4. Sensitive electrochemical microbial biosensor for p-nitrophenylorganophosphates based on electrode modified with cell surface-displayed organophosphorus hydrolase and ordered mesopore carbons.

    PubMed

    Tang, Xiangjiang; Zhang, Tingting; Liang, Bo; Han, Dongfei; Zeng, Lingxing; Zheng, Cheng; Li, Tie; Wei, Mingdeng; Liu, Aihua

    2014-10-15

    A novel electrochemical microbial biosensor for the rapid monitoring of p-nitrophenyl-substituted organophosphates (OPs) compounds based on glass carbon electrode (GCE) modified with both ordered mesopore carbons (OMCs) and cell surface-expressed organophosphorus hydrolase (OPH) (OPH-bacteria/OMCs/GCE) was described in this paper. The genetically engineered Escherichia coli strain surface displayed mutant OPH (S5) with improved enzyme activity and favorable stability was constructed using a newly identified N-terminal of ice nucleation protein as an anchoring motif, which can be used directly without further time-consuming enzyme-extraction and purification, thereafter greatly improved the stability of the enzyme. Compared to OPH-bacteria modified GCE (OPH-bacteria/GCE), the OPH-bacteria/OMCs/GCE not only significantly enhanced the current response but also reduced the oxidation overpotential towards oxidizable p-nitrophenol (p-NP), which was the hydrolysate of p-nitrophenyl-substituted OPs. Under the optimized experimental conditions, at +0.84 V (vs. SCE), the current-time curve was performed with varying OPs concentration. The current response was linear with paraoxon concentration within 0.05-25 μM. Similarly, linear range of 0.05-25 μM was found for parathion, and 0.08-30 μM for methyl parathion. The low limits of detection were evaluated to be 9.0 nM for paraoxon, 10nM for parathion and 15 nM for methyl parathion (S/N=3). Thus, a highly specific, sensitive and rapid microbial biosensor was established, which holds great promise for on-site detection of trace p-nitrophenyl-substituted OPs.

  5. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    PubMed

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  6. Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of mesoporous TiO2 microfibers@nitrogen doped carbon composites

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Rechberger, Felix; Primc, Darinka; Niederberger, Markus

    2015-08-01

    TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After removal of the template, we obtained the final mesoporous TiO2 fibers@N doped carbon composite. Electrochemical tests revealed that the composite electrode exhibited excellent electrochemical properties in terms of specific capacity, rate performance and long term stability.TiO2 has been considered as a promising anode material for lithium ion batteries. However, its poor rate capability originating from the intrinsically low lithium ion diffusivity and its poor electronic conductivity hampers putting such an application into practice. Both issues can be addressed by nanostructure engineering and conductive surface coating. Herein, we report a template-assisted synthesis of micron sized TiO2 fibers consisting of a mesoporous network of anatase nanoparticles of about 7.5 nm and coated by N doped carbon. In a first step, an amorphous layer of TiO2 was deposited on cobalt silicate nanobelts and subsequently transformed into crystalline anatase nanoparticles by hydrothermal treatment. The N doped carbon coating was realized by in situ polymerization of dopamine on the crystalline TiO2 followed by annealing under N2. After

  7. Production of activated carbon from TCR char

    NASA Astrophysics Data System (ADS)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    systematically investigation was started. For this a muffle furnace with a maximum temperature up to 1300 ° C is used. Furthermore the gaseous atmosphere can be controlled. So it is possible to carry out the trials with the absence of oxygen by purging with nitrogen, carbon oxide and/ or steam for example. With the addition of steam the number of mesopores is increased. These pores are responsible for the adsorption performance in liquid phases. The trials for the TCR® chars made from beech wood (reference) and digestate are currently carried out. Additionally the reduction of the ash content of the char by using hydrochloric and acetic acid is investigated, too. These leaching tests are carried out in a lab scale test rig at an operating temperature of 60 ° C and a residence time up to 4 hours. The main objective is to adapt the TCR® process with regard to an optimized activated carbon production from biogenic residues to obtain an economic sustainable concept.

  8. Ionic Liquid Directed Mesoporous Carbon Nanoflakes as an Effiencient Electrode material

    PubMed Central

    Kong, Lirong; Chen, Wei

    2015-01-01

    Supercapacitors are considered to be the most promising approach to meet the pressing requirements for energy storage devices. The electrode materials for supercapacitors have close relationship with their electrochemical properties and thus become the key point to improve their energy storage efficiency. Herein, by using poly (vinylidene fluoride-co-hexafluoropropylene) and ionic liquid as the dual templates, polyacrylonitrile as the carbon precursor, a flake-like carbon material was prepared by a direct carbonization method. In this method, poly (vinylidene fluoride-co-hexafluoropropylene) worked as the separator for the formation of isolated carbon flakes while aggregated ionic liquid worked as the pore template. The obtained carbon flakes exhibited a specific capacitance of 170 F/g at 0.1 A/g, a high energy density of 12.2 Wh/kg and a high power density of 5 kW/kg at the current of 10 A/g. It also maintained a high capacitance retention capability with almost no declination after 500 charge-discharge cycles. The ionic liquid directed method developed here also provided a new idea for the preparation of hierarchically porous carbon nanomaterials. PMID:26656464

  9. Biological activation of carbon filters.

    PubMed

    Seredyńska-Sobecka, Bozena; Tomaszewska, Maria; Janus, Magdalena; Morawski, Antoni W

    2006-01-01

    To prepare biological activated carbon (BAC), raw surface water was circulated through granular activated carbon (GAC) beds. Biological activity of carbon filters was initiated after about 6 months of filter operation and was confirmed by two methods: measurement of the amount of biomass attached to the carbon and by the fluorescein diacetate (FDA) test. The effect of carbon pre-washing on WG-12 carbon properties was also studied. For this purpose, the nitrogen adsorption isotherms at 77K and Fourier transform-infrared (FT-IR) spectra analyses were performed. Moreover, iodine number, decolorizing power and adsorption properties of carbon in relation to phenol were studied. Analysis of the results revealed that after WG-12 carbon pre-washing its BET surface increased a little, the pH value of the carbon water extract decreased from 11.0 to 9.4, decolorizing power remained at the same level, and the iodine number and phenol adsorption rate increased. In preliminary studies of the ozonation-biofiltration process, a model phenol solution with concentration of approximately 10mg/l was applied. During the ozonation process a dose of 1.64 mg O(3)/mg TOC (total organic carbon) was employed and the contact time was 5 min. Four empty bed contact times (EBCTs) in the range of 2.4-24.0 min were used in the biofiltration experiment. The effectiveness of purification was measured by the following parameters: chemical oxygen demand (COD(Mn)), TOC, phenol concentration and UV(254)-absorbance. The parameters were found to decrease with EBCT.

  10. N-Doped Ordered Mesoporous Carbon Originated from a Green Biological Dye for Electrochemical Sensing and High-Pressure CO2 Storage.

    PubMed

    Zhou, Shenghai; Xu, Hongbo; Yuan, Qunhui; Shen, Hangjia; Zhu, Xuefeng; Liu, Yi; Gan, Wei

    2016-01-13

    Herein, a series of nitrogen-doped ordered mesoporous carbons (NOMCs) with tunable porous structure were synthesized via a hard-template method with a green biological dye as precursor, under various carbonization temperatures (700-1100 °C). Compared with the ordered mesoporous silica-modified and unmodified electrodes, the use of electrodes coated by NOMCs (NOMC-700-NOMC-1100) resulted in enhanced signals and well-resolved oxidation peaks in electrocatalytic sensing of catechol and hydroquinone isomers, attributable to NOMCs' open porous structures and increased edge-plane defect sites on the N-doped carbon skeleton. Electrochemical sensors using NOMC-1000-modified electrode were fabricated and proved feasible in tap water sample analyses. The NOMCs were also used as sorbents for high-pressure CO2 storage. The NOMC with the highest N content exhibits the best CO2 absorption capacities of 800.8 and 387.6 mg/g at 273 and 298 K (30 bar), respectively, which is better than those of other NOMC materials and some recently reported CO2 sorbents with well-ordered 3D porous structures. Moreover, this NOMC shows higher affinity for CO2 than for N2, a benefit of its higher nitrogen content in the porous carbon framework.

  11. Heteroatomic SenS8-n Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries.

    PubMed

    Sun, Fugen; Cheng, Hongye; Chen, Jianzhuang; Zheng, Nan; Li, Yongsheng; Shi, Jianlin

    2016-09-27

    A reversible cathode material in an ether-based electrolyte for high-energy lithium batteries was successfully fabricated by homogeneously confining heteroatomic SenS8-n molecules into nitrogen-doped mesoporous carbons (NMCs) via a facile melt-impregnation route. The resultant SenS8-n/NMC composites exhibit highly reversible electrochemical behavior, where selenium sulfides are recovered through the reversible conversion of polysulfoselenide intermediates during discharge-charge cycles. The recovery of selenium sulfide molecules endows the SenS8-n/NMC cathodes with the rational integration of S and Se cathodes. Density functional theory calculations further reveal that heteroatomic selenium sulfide molecules with higher polarizability could bind more strongly with NMCs than homoatomic sulfur molecules, which provides more efficient suppression of the shuttling phenomenon. Therefore, with further assistance of mesopore confinement of the nitrogen-doped carbons, the Se2S6/NMC composite with an optimal Se/S mole ratio of 2/6 presents excellent cycle stability with a high initial Coulombic efficiency of 96.5% and a high reversible capacity of 883 mAh g(-1) after 100 cycles and 780 mAh g(-1) after 200 cycles at 250 mA g(-1). These encouraging results suggest that the heteroatomization of chalcogen (such as S, Se, or Te) molecules in mesostructured carbon hosts is a promising strategy in enhancing the electrochemical performances of chalcogen/carbon-based cathodes for Li batteries.

  12. Self-assembly sandwiches of reduced graphene oxide layers with zeolitic-imidazolate-frameworks-derived mesoporous carbons as polysulfides reservoirs for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Tan, Yingbin; Jia, Zhiqing; Lou, Peili; Cui, Zhonghui; Guo, Xiangxin

    2017-02-01

    Confinement of sulfur and alleviation of the polysulfides dissolution are the key issues for development of high-performance lithium-sulfur (Li-S) batteries. Here, we report self-assembly sandwiches composed of zeolitic-imidazolate-frameworks (ZIF-8)-derived mesoporous carbons (ZIF-8(C)) in between reduced graphene oxide (rGO) layers, which are filled with sulfurs inside and coated with poly(3, 4-ethylenedioxythiophene) (PEDOT) outside (noted as P@rGO/ZIF-8(C)). During the synthesis process, the rGO layers stabilize the structure of ZIF-8 nanocrystals to obtain large specific surface area and high electric conductivity of mesoporous materials (rGO/ZIF-8(C)), ensuring accommodation of a large amount of sulfur and the efficient utilization of the confined sulfur. The mesoporous rGO/ZIF-8(C), PEDOT and N-doping provide physical absorption and chemical binding to the polysulfides during cycles. Consequently, the Li-S batteries with the composite cathodes exhibit the high capacity of 1308 mAh g-1 and 865 mAh g-1 at 0.2 C and 1 C, respectively, and a very low capacity fading of 0.03% per cycle after 500 reversible cycles at 1 C rate. The results indicate that the P@rGO/ZIF-8(C)-S composite cathode may offer a feasible strategy for construction of sulfur cathodes for high-performance Li-S batteries.

  13. Defect induced nickel, nitrogen-codoped mesoporous TiO2 microspheres with enhanced visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Zou, Mingming; Feng, Lu; Ganeshraja, Ayyakannu Sundaram; Xiong, Fengqiang; Yang, Minghui

    2016-10-01

    Nickel, nitrogen-codoped mesoporous TiO2 microspheres (Ni-N-TiO2) with high surface area, and an effective direct band gap energy of ∼2.58 eV. Nickel sulfate used as the Ni source and ammonia gas as the N source here. The efficiency of the as-prepared samples was investigated by monitoring the degradation of Rhodamine B under visible light irradiation. The experimental results indicate that Ni-doped mesoporous TiO2 microspheres show higher photocatalytic activity than mesoporous TiO2 microspheres under visible light irradiation. It mainly due to that the electron trap level (Ni2+/Ni+) promoting the separation of charge carriers and the oxygen vacancies inducing the visible light absorption. In addition, Ni-N-TiO2 shows enhanced activity compared with Ni-TiO2. Codopants and dopants are found to be uniformly distributed in TiO2 matrix. Among the all samples the 0.5% molar quantity of Ni dopant and 500 °C 2 h nitriding condition gives the highest photocatalytic activity. The treatment of ammonia gas on Ni-TiO2 sample induced oxygen vancancies, substitutional and interstitial N. A suitable treatment by ammonia gas also promote separation of charge carriers and the absorption of visible light. The active species generated in the photocatalytic system were also investigated. The strategy presented here gives a promising route towards the development of a metal and non-metal codoped semiconductor materials for applied photocatalysis and related applications.

  14. Mesoporous zinc ferrite: synthesis, characterization, and photocatalytic activity with H2O2/visible light.

    PubMed

    Su, Minhua; He, Chun; Sharma, Virender K; Abou Asi, Mudar; Xia, Dehua; Li, Xiang-zhong; Deng, Huiqi; Xiong, Ya

    2012-04-15

    Mesoporous ZnFe(2)O(4) (meso-ZnFe(2)O(4)) was synthesized by a hydrothermal process in which cetyltrimethylammonium bromide (CTAB) participates in the reaction to produce nanocrystals. Synthesized ZnFe(2)O(4) was characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectra (DRS). The meso-ZnFe(2)O(4) was resulted from the agglomeration of nanoparticles with size of 5-10nm. The photocatalytic activity of ZnFe(2)O(4) under visible light (λ>400 nm) was evaluated by the degradation of Acid Orange II (AOII) at different sintering temperatures, the amount of ZnFe(2)O(4), and the concentration of H(2)O(2). The photocatalytic degradation of AOII was almost complete within 2h in H(2)O(2)/visible light system. The high efficiency for AOII degradation was attributed to the strong absorption of ZnFe(2)O(4) in visible-light region and the generation of reactive OH by H(2)O(2) in the system. The involvement of OH in oxidizing AOII was examined by determining the photocurrent of ZnFe(2)O(4), [OH], and degradation rates using different scavengers. Organic compounds as intermediates of the degradation process were identified by LC/MS. Moreover, ZnFe(2)O(4) retained their degradation efficiencies for a series of repetitive batch runs, indicating the true photocatalytic process.

  15. Mesoporous W₁₈O₄₉ hollow spheres as highly active photocatalysts.

    PubMed

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Lv, Fenglei; Wang, Qingfa; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-09-28

    Mesoporous hollow W18O49 spheres were fabricated by a facile solvent-induced assembly method using anhydrous WCl6 as a precursor and CH3COOH as a solvent. This unique structure exhibited remarkably enhanced photocatalytic and photoelectrocatalytic performance than other morphologies like urchin and nanowire due to the simultaneous enhancement in light harvesting, surface area and adsorption capability.

  16. Ultrahigh porosity in mesoporous MOFs: promises and limitations.

    PubMed

    Senkovska, Irena; Kaskel, Stefan

    2014-07-11

    Mesoporous MOFs are currently record holders in terms of the specific surface area with values exceeding 7000 m(2) g(-1), a textural feature unattained by traditional porous solids such as zeolites, carbons and even by graphene. They are promising candidates for high pressure gas storage and also for conversion or separation of larger molecules, whose size exceeds the pore size of zeolites. The rational strategies for synthesis of mesoporous MOF are outlined and the unambiguous consistent assessment of the surface area of such ultrahighly porous materials, as well as present challenges in the exciting research field, of mesoporous MOFs are discussed. The crystallinity, dynamic properties, functional groups, and wide range tunability render these materials as exceptional solids, but for the implementation in functional devices and even in industrial processes several aspects and effective characteristics (such as volumetric storage capacities, recyclability, mechanical and chemical stability, activation) should be addressed.

  17. Structural characteristics of activated carbons and ibuprofen adsorption affected by bovine serum albumin.

    PubMed

    Melillo, M; Gun'ko, V M; Tennison, S R; Mikhalovska, L I; Phillips, G J; Davies, J G; Lloyd, A W; Kozynchenko, O P; Malik, D J; Streat, M; Mikhalovsky, S V

    2004-03-30

    Structural characteristics of a series of MAST carbons were studied using scanning electron microscopy images and the nitrogen adsorption isotherms analyzed with several models of pores and different adsorption equations. A developed model of pores as a mixture of gaps between spherical nanoparticles and slitlike pores was found appropriate for MAST carbons. Adsorption of ibuprofen [2-(4-isobutylphenyl)propionic acid] on activated carbons possessing different pore size distributions in protein-free and bovine serum albumin (BSA)-containing aqueous solutions reveals the importance of the contribution of mesopores to the total porosity of adsorbents. The influence of the mesoporosity increases when considering the removal of the drug from the protein-containing solution. Cellulose-coated microporous carbon Norit RBX adsorbs significantly smaller amounts of ibuprofen than uncoated micro/mesoporous MAST carbons whose adsorption capability increases with increasing mesoporosity and specific surface area, burnoff dependent variable. A similar effect of broad pores is observed on adsorption of fibrinogen on the same carbons. Analysis of the ibuprofen adsorption data using Langmuir and D'Arcy-Watt equations as the kernel of the Fredholm integral equation shows that the nonuniformity of ibuprofen adsorption complexes diminishes with the presence of BSA. This effect may be explained by a partial adsorption of ibuprofen onto protein molecules immobilized on carbon particles and blocking of a portion of narrow pores.

  18. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light.

    PubMed

    Wang, Xinchen; Maeda, Kazuhiko; Chen, Xiufang; Takanabe, Kazuhiro; Domen, Kazunari; Hou, Yidong; Fu, Xianzhi; Antonietti, Markus

    2009-02-11

    We investigated semiconductor characteristics for polymeric carbon nitride as a metal-free photocatalyst working with visible light and have shown that the efficiency of hydrogen production by photochemical water reduction can be improved by approximately 1 order of magnitude by introducing the right type of mesoporosity into polymeric C(3)N(4). We anticipate a wide rang of potential application of C(3)N(4) as energy transducers for artificial photosynthesis in general, especially with a 3D continuous nanoarchitecture. Moreover, the results of finding photoactivity for carbon nitride nanoparticles can enrich the discussion on prebiotic chemistry of the Earth, as HCN polymer clusters are unequivocal in the solar system.

  19. Activated carbon to the rescue

    SciTech Connect

    Sen, S.

    1996-03-01

    This article describes the response to pipeline spill of ethylene dichloride (EDC) on the property of an oil company. Activated carbon cleanup proceedure was used. During delivery, changeout, transport, storage, thermal reactivation, and return delivery to the site, the carbon never came into direct contact with operating personnel or the atmosphere. More than 10,000 tones of dredge soil and 50 million gallons of surface water were processed during the emergency response.

  20. Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions.

    PubMed

    Liou, Tzong-Horng; Wu, Shao-Jung

    2009-11-15

    The study reports the preparation of activated carbon with a high surface area from rice husk using chemical activation with H(3)PO(4) and ZnCl(2). Activated carbon prepared from rice husk usually exhibits low specific surface areas due to its high ash content. However, experimental results show that base-leaching and acid-washing processes can effectively enhance the adsorption capacity of rice-husk carbon. The study also investigates the effects of preparation parameters on the surface characteristics of the carbon. These parameters include the kind of activating agent, before and after treatment procedures, impregnation ratio and activation temperature. The chemical and physical properties of samples were examined by EA, ICP-MS, XRD, FTIR, SEM and a N(2)-adsorption meter. The surface areas obtained from ZnCl(2) and H(3)PO(4) activation are as high as 2434 and 1741 m(2)/g, respectively. These values are higher than that of activated carbon treated with neither base nor acid (1262 and 508 m(2)/g for ZnCl(2) and H(3)PO(4) activation). Thermogravimetric analysis shows that the activation process can be divided into three parts based on temperature zones. The results of this study will be useful in developing resource recovery systems for agricultural biomass.

  1. Controlling morphology, mesoporosity, crystallinity, and photocatalytic activity of ordered mesoporous TiO{sub 2} films prepared at low temperature

    SciTech Connect

    Elgh, Björn; Yuan, Ning; Palmqvist, Anders E. C.; Cho, Hae Sung; Terasaki, Osamu; Magerl, David; Philipp, Martine; Müller-Buschbaum, Peter; Roth, Stephan V.; Yoon, Kyung Byung

    2014-11-01

    Partly ordered mesoporous titania films with anatase crystallites incorporated into the pore walls were prepared at low temperature by spin-coating a microemulsion-based reaction solution. The effect of relative humidity employed during aging of the prepared films was studied using SEM, TEM, and grazing incidence small angle X-ray scattering to evaluate the mesoscopic order, porosity, and crystallinity of the films. The study shows unambiguously that crystal growth occurs mainly during storage of the films and proceeds at room temperature largely depending on relative humidity. Porosity, pore size, mesoscopic order, crystallinity, and photocatalytic activity of the films increased with relative humidity up to an optimum around 75%.

  2. Comparison of adsorption behavior of PCDD/Fs on carbon nanotubes and activated carbons in a bench-scale dioxin generating system.

    PubMed

    Zhou, Xujian; Li, Xiaodong; Xu, Shuaixi; Zhao, Xiyuan; Ni, Mingjiang; Cen, Kefa

    2015-07-01

    Porous carbon-based materials are commonly used to remove various organic and inorganic pollutants from gaseous and liquid effluents and products. In this study, the adsorption of dioxins on both activated carbons and multi-walled carbon nanotube was internally compared, via series of bench scale experiments. A laboratory-scale dioxin generator was applied to generate PCDD/Fs with constant concentration (8.3 ng I-TEQ/Nm(3)). The results confirm that high-chlorinated congeners are more easily adsorbed on both activated carbons and carbon nanotubes than low-chlorinated congeners. Carbon nanotubes also achieved higher adsorption efficiency than activated carbons even though they have smaller BET-surface. Carbon nanotubes reached the total removal efficiency over 86.8 % to be compared with removal efficiencies of only 70.0 and 54.2 % for the two other activated carbons tested. In addition, because of different adsorption mechanisms, the removal efficiencies of carbon nanotubes dropped more slowly with time than was the case for activated carbons. It could be attributed to the abundant mesopores distributed in the surface of carbon nanotubes. They enhanced the pore filled process of dioxin molecules during adsorption. In addition, strong interactions between the two benzene rings of dioxin molecules and the hexagonal arrays of carbon atoms in the surface make carbon nanotubes have bigger adsorption capacity.

  3. Growth of Hierarchal Mesoporous NiO Nanosheets on Carbon Cloth as Binder-free Anodes for High-performance Flexible Lithium-ion Batteries

    PubMed Central

    Long, Hu; Shi, Tielin; Hu, Hao; Jiang, Shulan; Xi, Shuang; Tang, Zirong

    2014-01-01

    Mesoporous NiO nanosheets were directly grown on three-dimensional (3D) carbon cloth substrate, which can be used as binder-free anode for lithium-ion batteries (LIBs). These mesoporous nanosheets were interconnected with each other and forming a network with interval voids, which give rise to large surface area and efficient buffering of the volume change. The integrated hierarchical electrode maintains all the advantageous features of directly building two-dimensional (2D) nanostructues on 3D conductive substrate, such as short diffusion length, strain relaxation and fast electron transport. As the LIB anode, it presents a high reversible capacity of 892.6 mAh g−1 after 120 cycles at a current density of 100 mA g−1 and 758.1 mAh g−1 at a high charging rate of 700 mA g−1 after 150 cycles. As demonstrated in this work, the hierarchical NiO nanosheets/carbon cloth also shows high flexibility, which can be directly used as the anode to build flexible LIBs. The introduced facile and low-cost method to prepare NiO nanosheets on flexible and conductive carbon cloth substrate is promising for the fabrication of high performance energy storage devices, especially for next-generation wearable electronic devices. PMID:25491432

  4. Silica-templated synthesis of ordered mesoporous tungsten carbide/graphitic carbon composites with nanocrystalline walls and high surface areas via a temperature-programmed carburization route.

    PubMed

    Wu, Zhangxiong; Yang, Yunxia; Gu, Dong; Li, Qiang; Feng, Dan; Chen, Zhenxia; Tu, Bo; Webley, Paul A; Zhao, Dongyuan

    2009-12-01

    Ordered mesostructured tungsten carbide and graphitic carbon composites (WC/C) with nanocrystalline walls are fabricated for the first time by a temperature-programmed carburization approach with phosphotungstic acid (PTA) as a precursor and mesoporous silica materials as hard templates. The mesostructure, crystal phase, and amount of deposited graphitic carbon can be conveniently tuned by controlling the silica template (SBA-15 or KIT-6), carburizing temperature (700-1000 degrees C), the PTA-loading amount, and the carburizing atmosphere (CH(4) or a CH(4)/H(2) mixture). A high level of deposited carbon is favorable for connecting and stabilizing the WC nanocrystallites to achieve high mesostructural regularity, as well as promoting the carburization reaction. Meanwhile, large pore sizes and high mesoporosity of the silica templates can promote WC-phase formation. These novel, ordered, mesoporous WC/C nanocomposites with high surface areas (74-169 m(2) g(-1)), large pore volumes (0.14-0.17 cm(3) g(-1)), narrow pore-size distributions (centered at about 3 nm), and very good oxidation resistance (up to 750 degrees C) have potential applications in fuel-cell catalysts and nanodevices.

  5. Soft-Templated Self-Assembly of Mesoporous Anatase TiO2/Carbon Composite Nanospheres for High-Performance Lithium Ion Batteries.

    PubMed

    Wu, Ruofei; Shen, Shuiyun; Xia, Guofeng; Zhu, Fengjuan; Lastoskie, Christian; Zhang, Junliang

    2016-08-10

    Mesoporous anatase TiO2/carbon composite nanospheres (designated as meso-ATCCNs) were successfully synthesized via a facile soft-templated self-assembly followed by thermal treatment. Structural and morphological analyses reveal that the as-synthesized meso-ATCCNs are composed of primary TiO2 nanoparticles (∼5 nm), combined with in situ deposited carbon either on the surface or between the primary TiO2 nanoparticles. When cycled in an extended voltage window from 0.01 to 3.0 V, meso-ATCCNs exhibit excellent rate capabilities (413.7, 289.7, and 206.8 mAh g(-1) at 200, 1000, and 3000 mA g(-1), respectively) as well as stable cyclability (90% capacity retention over 500 cycles at 1000 mA g(-1)). Compared with both mesoporous TiO2 nanospheres and bulk TiO2, the superior electrochemical performance of the meso-ATCCNs electrode could be ascribed to a synergetic effect induced by hierarchical structure that includes uniform TiO2 nanoparticles, the presence of hydrothermal carbon derived from phenolic resols, a high surface area, and open mesoporosity.

  6. Improvement of the activation of lipase from Candida rugosa following physical and chemical immobilization on modified mesoporous silica.

    PubMed

    Wang, Chunfeng; Li, Yanjing; Zhou, Guowei; Jiang, Xiaojie; Xu, Yunqiang; Bu, Zhaosheng

    2014-12-01

    Lipase from Candida rugosa (CRL) was chemically and physically immobilized onto four types of rod-shaped mesoporous silica (RSMS). RSMS prepared using surfactant P123 and poly(ethylene glycol) as co-templates was functionalized with (3-aminopropyl)triethoxysilane (APTES) to obtain P-RSMS by post-synthesis grafting. Tetraethoxysilane was hydrothermally co-condensed with APTES to obtain C-RSMS. A two-step process using APTES and glutaraldehyde was also performed to obtain G-RSMS. The effects of modification methods (including post-synthesis grafting and co-condensation) and glutaraldehyde on the mesoscopic order, interplanar spacing d100, cell parameter a0, mesoporous structure, and wall thickness of RSMS were studied in detail. Results showed that all samples were mesoporous materials with 2D mesostructures (p6mm). Pore size and d100 decreased, whereas the wall thickness increased after different modifications. CRL was used as a model enzyme to determine the effect of physical and chemical adsorption on loading amount and enzymatic activity. The possible mechanism of CRL immobilization on G-RSMS by chemical adsorption was systematically investigated. The chemical immobilization of CRL on G-RSMS increased the loading amount, hydrolytic activity, thermal stability, and reusability. Moreover, immobilized CRL was employed to catalyze the resolution of 2-octanol by esterification with caprylic acid. The enantiomeric excess of 2-octanol was 45.8% when the reaction was catalyzed by G-RSMS-CRL and decreased to about 38%-39% using the physically immobilized CRL, after 48 h of reaction in hexane.

  7. Production of activated carbons from waste tyres for low temperature NOx control.

    PubMed

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons.

  8. Effect of calcination temperature on physical parameters and photocatalytic activity of mesoporous titania spheres using chitosan/poly(vinyl alcohol) hydrogel beads as a template

    NASA Astrophysics Data System (ADS)

    Jiang, R.; Zhu, H.-Y.; Chen, H.-H.; Yao, J.; Fu, Y.-Q.; Zhang, Z.-Y.; Xu, Y.-M.

    2014-11-01

    Mesoporous titania spheres were prepared by modified sol-gel method using chitosan/poly(vinyl alcohol) hydrogel beads as a template. Effects of calcination temperature on physical parameters were investigated by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform infrared (FT-IR) spectra, thermogravimetry and differential thermal analyses (TG-DTA), high-resolution transmission electron microscope (HRTEM) and scanning electron microscopy (SEM). The photocatalytic activity of mesoporous titania spheres prepared was also evaluated by photocatalytic degradation of phenol as a model molecule under UV irradiation. With increasing calcination temperature, average crystallite size and pore size increased. In contrast, Brunauer-Emmett-Teller (BET) specific surface areas, porosity and pore volumes steadily decreased. Results of characterization proved that prepared titania spheres with highly organized pores were mesoporous structure. The photocatalytic activity of mesoporous titania spheres calcined at 500 °C was more effective than those calcined at other temperatures, which were attributed to the porous structure, large BET surface area, crystalline, and smaller crystallite size. This work may provide new insights into the preparation of novel mesoporous titania spheres and further practical applications in the treatment of wastewater.

  9. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions.

    PubMed

    Lua, Aik Chong; Yang, Ting

    2005-10-15

    Activated carbons with well-developed pore structures were prepared from pistachio-nut shells by chemical activation using zinc chloride under both nitrogen atmosphere and vacuum conditions. The effects of preparation parameters on the carbon pore structure were studied in order to optimize these parameters. It was found that under vacuum conditions, the characteristics of the activated carbons produced are better than those under nitrogen atmosphere. The impregnation ratio, the activation temperature, and the activation hold time are the important parameters that influence the characteristics of the activated carbons. The optimum experimental conditions for preparing predominantly microporous activated carbons with high pore surface area and micropore volume are an impregnation ratio of 0.75, an activation temperature of 400 degrees C, and a hold time of 1 h. Under these conditions, the BET surface areas of the carbons activated under nitrogen atmosphere and vacuum conditions were 1635.37 and 1647.16 m2/g, respectively. However, at a ZnCl2 impregnation ratio of 1.5, a furnace temperature of 500 degrees C, and a hold time of 2 h, the predominantly mesoporous activated carbon prepared under vacuum condition had a BET surface area of 2527 m2/g. Fourier transform infrared spectra were used to detect changes in the surface functional groups of the samples during the different preparation stages.

  10. Assemblies of biomaterials in mesoporous media.

    PubMed

    Vinu, Ajayan; Miyahara, Masahiko; Ariga, Katsuhiko

    2006-06-01

    Assemblies of biomaterials onto mechanically stable inorganic structure are advantageous for the practical applications because of the potential to improve the stability and performance of biomaterials in the biocatalytic processes. Among many kinds of inorganic materials, mesoporous materials such as mesoporous silica and mesoporous carbon have attracted special attention owing to their well-defined structures and perfectly controlled pore geometries, which would lead to unique functions such as size selective adsorption of biomaterials. In the first part of this review, adsorption behaviors of proteins, enzymes, vitamins, and amino acids in aqueous solutions onto mesoporous media are systematically explained. Pore geometries (pore diameter and volume) of mesoporous materials are the crucial factors for the size selective adsorption of biomaterials, especially proteins, which often have a size comparable to pore dimension. The studies on the adsorption of biomaterials on the mesoporous carbon reveal that hydrophobic interaction between guest molecules and surface of the mesoporous materials is an important parameter which controls the amount of biomaterials adsorption. Enhanced adsorption of biomaterials was commonly observed at their isoelectric point, where electrostatic repulsion is minimized between the biomaterials. In addition, several functions such as biomolecular separation, reactor function, controlled drug release, and photochemical properties are discussed in the latter sections. Studies on assemblies of biomaterials in mesoporous media are still in initial stage, but the development of appropriately designed mesoporous materials would powerfully promote researches in these fascinating unexplored fields.

  11. Visualization of Adsorption: Luminescent Mesoporous Silica-Carbon Dots Composite for Rapid and Selective Removal of U(VI) and in Situ Monitoring the Adsorption Behavior.

    PubMed

    Wang, Zhe; Xu, Chao; Lu, Yuexiang; Wu, Fengcheng; Ye, Gang; Wei, Guoyu; Sun, Taoxiang; Chen, Jing

    2017-03-01

    The removal and separation of uranium from aqueous solutions are quite important for resource reclamation and environmental protection. Being one of the most effective techniques for metal separation, adsorption of uranium by a variety of adsorbent materials has been a subject of study with high interest in recent years. However, current methods for monitoring the adsorption process require complicated procedures and tedious measurements, which hinders the development of processes for efficient separation of uranium. In this work, we prepared a type of luminescent mesoporous silica-carbon dots composite material that has high efficiency for the adsorption of uranium and allows simultaneous in situ monitoring of the adsorption process. Carbon dots (CDs) were prepared in situ and introduced onto amino-functionalized ordered mesoporous silica (SBA-NH2) by a facile microplasma-assisted method. The prepared CDs/SBA-NH2 nanocomposites preserved the high specific surface area of the mesoporous silica, as well as the fluorescent properties of the CDs. Compared with bare SBA-NH2, the CDs/SBA-NH2 nanocomposites showed much improved adsorption ability and excellent selectivity for uranyl ions. Moreover, the fluorescence intensity of the composites decreased along with the increase of uranium uptake, indicating that the CDs/SBA-NH2 nanocomposites could be used for on-site monitoring of the adsorption behavior. More interestingly, the adsorption selectivity of the composites for metal ions was in good agreement with the selective fluorescence response of the original CDs, which means that the adsorption selectivity of CDs-based composite materials can be predicted by evaluating the fluorescence selectivity of the CDs for metal ions. As the first study of CDs-based nanocomposites for the adsorption of actinide elements, this work opens a new avenue for the in situ monitoring of adsorption behavior of CDs-based nanocomposites while extending their application areas.

  12. Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy

    PubMed Central

    Chen, Nai-Tzu; Tang, Kuo-Chun; Chung, Ming-Fang; Cheng, Shih-Hsun; Huang, Ching-Mao; Chu, Chia-Hui; Chou, Pi-Tai; Souris, Jeffrey S.; Chen, Chin-Tu; Mou, Chung-Yuan; Lo, Leu-Wei

    2014-01-01

    The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunately, many studies have also shown that often the intensity of pulsed coherent irradiation of GNRs needed results in irreversible deformation of GNRs, greatly reducing their two-photon luminescence (TPL) emission intensity. In this work we report the design, synthesis, and evaluation of mesoporous silica-encased gold nanorods (MS-GNRs) that incorporate photosensitizers (PSs) for two-photon-activated photodynamic therapy (TPA-PDT). The PSs, doped into the nano-channels of the mesoporous silica shell, can be efficiently excited via intra-particle plasmonic resonance energy transfer from the encased two-photon excited gold nanorod and further generates cytotoxic singlet oxygen for cancer eradication. In addition, due to the mechanical support provided by encapsulating mesoporous silica matrix against thermal deformation, the two-photon luminescence stability of GNRs was significantly improved; after 100 seconds of 800 nm repetitive laser pulse with the 30 times higher than average power for imaging acquisition, MS-GNR luminescence intensity exhibited ~260% better resistance to deformation than that of the uncoated gold nanorods. These results strongly suggest that MS-GNRs with embedded PSs might provide a promising photodynamic therapy for the treatment of deeply situated cancers via plasmonic resonance energy transfer. PMID:24955141

  13. Mesoporous hollow carbon spheres for lithium–sulfur batteries: distribution of sulfur and electrochemical performance

    PubMed Central

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten

    2016-01-01

    Summary Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium–sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm−2 were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g−1 based on the mass of sulfur over 500 cycles. PMID:27826497

  14. Mesoporous hollow carbon spheres for lithium-sulfur batteries: distribution of sulfur and electrochemical performance.

    PubMed

    Juhl, Anika C; Schneider, Artur; Ufer, Boris; Brezesinski, Torsten; Janek, Jürgen; Fröba, Michael

    2016-01-01

    Hollow carbon spheres (HCS) with a nanoporous shell are promising for the use in lithium-sulfur batteries because of the large internal void offering space for sulfur and polysulfide storage and confinement. However, there is an ongoing discussion whether the cavity is accessible for sulfur. Yet no valid proof of cavity filling has been presented, mostly due to application of unsuitable high-vacuum methods for the analysis of sulfur distribution. Here we describe the distribution of sulfur in hollow carbon spheres by powder X-ray diffraction and Raman spectroscopy along with results from scanning electron microscopy and nitrogen physisorption. The results of these methods lead to the conclusion that the cavity is not accessible for sulfur infiltration. Nevertheless, HCS/sulfur composite cathodes with areal sulfur loadings of 2.0 mg·cm(-2) were investigated electrochemically, showing stable cycling performance with specific capacities of about 500 mAh·g(-1) based on the mass of sulfur over 500 cycles.

  15. Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery.

    PubMed

    Zhang, Cuimiao; Li, Chunxia; Huang, Shanshan; Hou, Zhiyao; Cheng, Ziyong; Yang, Piaoping; Peng, Chong; Lin, Jun

    2010-04-01

    Multifunctional strontium hydroxyapatite (SrHAp) nanorods with luminescent and mesoporous properties have been successfully synthesized by a hydrothermal method. SEM and TEM images indicate that the mesoporous SrHAp samples consist of monodiperse nanorods with lengths of 120-150 nm, diameters of around 20 nm, and the mesopore size of 3-5 nm. The as-obtained SrHAp nanorods show an intense bright blue emission (centered at 432 nm, lifetime 11.6 ns, quantum efficiency: 22%), which might arise from CO(2)(*-) radical impurities in the crystal lattice under long-wavelength UV-light irradiation. Furthermore, the amount of trisodium citrate has an obvious impact on the particle size and the luminescence properties of the products, respectively. The drug storage/release test indicates that the luminescent SrHAp nanorods show a drug loading and controlled release properties for ibuprofen (IBU). Additionally, the emission intensity of SrHAp in the drug carrier system increases with the cumulative released amount of IBU, making the drug release might be easily tracked and monitored by the change of the luminescence intensity. This luminescent material may be potentially applied in the drug delivery and disease therapy fields.

  16. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells.

    PubMed

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-04

    Unique SnO(x) (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnO(x)/OMC) are firstly synthesized through a 'one-pot' synthesis together with the soft template self-assembly approach. The obtained SnO(x)/OMC nanocomposites with various SnO(x) contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m(2) g(-1), and high pore volumes between 0.39 and 0.48 cm(3) g(-1). With loading of Pt, Pt-SnO(x)/OMC with relatively low SnO(x) content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnO(x)/C, which may be attributed not only to the synergetic effect of embedded SnO(x), but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  17. MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor

    PubMed Central

    Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng

    2013-01-01

    We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767

  18. A Eu3+/Gd3+-EDTA-doped structurally controllable hollow mesoporous carbon for improving the oral bioavailability of insoluble drugs and in vivo tracing

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Zhao, Yating; Cui, Yu; Yue, Yang; Gao, Yikun; Zhao, Qinfu; Liu, Jie; Wang, Siling

    2016-08-01

    A structurally controllable fluorescence-labeled hollow mesoporous carbon (HMC) was simply prepared to improve the oral bioavailability of insoluble drugs and further trace their delivery process in vivo. The hollow structure was derived from an inverse replica process using mesoporous silica as a template and the fluorescent label was prepared by doping the carboxylated HMC with a confinement of Eu3+/Gd3+-EDTA. The physicochemical properties of the composites were systematically characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and photoluminescence spectra tests prior to studying their effects on drug-release behavior and biodistribution. As a result, the thickness of the carrier’s shell was adjusted from 70 nm to 130 nm and the maximum drug loading was up to 73.6%. The model drug carvedilol (CAR) showed sustained release behavior compared to CAR commercial capsules, and the dissolution rate slowed down as the shells got thicker. AUC0-48h and Tmax were enlarged 2.2 and 6.5 fold, respectively, which demonstrated that oral bioavailability was successfully improved. Bioimaging tests showed that the novel carbon vehicle had a long residence time in the gastrointestinal tract. In short, the newly designed HMC is a promising drug carrier for both oral bioavailability improvement and in vivo tracing.

  19. Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Hidayat, A.; Sutrisno, B.

    2016-11-01

    It is well-known that activated carbon is considered to be the general adsorbent due to the large range of applications. Numerous works are being continuously published concerning its use as adsorbent for: treatment of potable water; purification of air; retention of toxins by respirators; removal of organic and inorganic pollutants from flue gases and industrial waste gases and water; recuperation of solvents and hydrocarbons volatilized from petroleum derivatives; catalysis; separation of gas mixtures (molecularsieve activated carbons); storage of natural gas and hydrogen; energy storage in supercapacitors; recovery of gold, silver and othernoble metals; etc. This work presents producing activated carbons from palm empty fruit bunch using both physical activation with CO2 and chemical activation with KOH. The resultant activated carbons were characterized by measuring their porosities and pore size distributions. A comparison of the textural characteristics and surface chemistry of the activated carbon from palm empty fruit bunch by the CO2 and the KOH activation leads to the following findings: An activated carbon by the CO2 activation under the optimum conditions has a BET surface area of 717 m2/g, while that by the KOH activation has a BET surface area of 613 m2/g. The CO2 activation generated a highly microporous carbon (92%) with a Type-I isotherm, while the KOH activation generated a mesoporous one (70%) with a type-IV isotherm, the pore volumes are 0.2135 and 0.7426 cm3.g-1 respectively. The average pore size of the activated carbons is 2.72 and 2.56 nm for KOH activation and CO2 activation, respectively. The FT-IR spectra indicated significant variation in the surface functional groups are quite different for the KOH activated and CO2 activated carbons.

  20. Neutron Scattering Studies of Liquid on or Confined in Nano- and Mesoporous Carbons, Including Carbide-Derived Carbons

    SciTech Connect

    Wesolowski, David J

    2014-07-01

    This project involved the synthesis of microporous graphitic-carbon powders with subnanometer average pore size, and very narrow pore size distributions, and the use of these materials in experimental studies of pore-fluid structure and dynamics. Samples of carbide-derived carbon powder, synthesized by extraction of the metal cations from TiC by a high temperature chlorination process, followed by high temperature vacuum annealing, were prepared by Ranjan Dash and his associates at CRADA partner Y-Carbon, Inc. The resulting material had average pore sizes ranging from 5 to 8 . These powders were used in two experiments conducted by researchers involved in the Energy Frontier Research Center Directed by David J. Wesolowski at ORNL, the Fluid Interface Reactions, Structures and Transport (FIRST) Center. FIRST-funded researchers at Drexel University collaborated with scientists at the Paul Scherrer Institute, Switzerland, to measure the expansion and contraction of the microporous carbon particles during charging and discharging of supercapactor electrodes composed of these particles (Hantell et al., 2011, Electrochemistry Communications, v. 13, pp. 1221-1224.) in an electrolyte composed of tetraethylammonium tetrafluoroborate dissolved in acetonitrile. In the second experiment, researchers at Oak Ridge National Laboratory and Drexel University conducted quasielastic neutron scattering studies of the diffusional dynamics of water imbibed into the micropores of the same material (Chathoth et al., 2011, EuroPhysics Journal, v. 95, pp. 56001/1-6). These studies helped to establish the role of pores approaching the size of the solvent and dissolved ions in altering diffusional dynamics, ion transport and physical response of conducting substrates to ion desolvation and entry into subnamometer pores.

  1. Preparation of activated carbons from raw and biotreated agricultural residues for removal of volatile organic compounds.

    PubMed

    Hsi, Hsing-Cheng; Horng, Richard S; Pan, Tai-An; Lee, Shin-Ku

    2011-05-01

    Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30-90 min, 50% H2O(g),/50% N2), activated carbons with surface areas between 360 and 950 m2 g(-1) were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.

  2. Equilibrium and kinetics analysis of carbon dioxide capture using immobilized amine on a mesoporous silica

    SciTech Connect

    Monazam, E., Shadle, L., Pennline, H., Miller, D., Fauth, D., Hoffman, J., Gray, M.

    2012-01-01

    The equilibrium and conversion-time data on the absorption of carbon dioxide (CO{sub 2}) with amine-based solid sorbent were analyzed over the range of 303–373 K. Data on CO{sub 2} loading on amine based solid sorbent at these temperatures and CO{sub 2} partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO{sub 2} loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40°C and pore-diffusion mechanism at higher temperature.

  3. Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen

    DOE PAGES

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; ...

    2015-11-06

    The composition of anatase TiO2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under both UV-vis andmore » visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO2 was significantly enhanced relative to (N) TiO2.« less

  4. Increased photocatalytic activity of TiO2 mesoporous microspheres from codoping with transition metals and nitrogen

    SciTech Connect

    Mathis, John E.; Lieffers, Justin J.; Mitra, Chandrima; Reboredo, Fernando A.; Bi, Z.; Bridges, Craig A.; Kidder, Michelle K.; Paranthaman, Mariappan Parans

    2015-11-06

    The composition of anatase TiO2 was modified by codoping using combinations of a transition metal and nitrogen in order to increase its photocatalytic activity and extend it performance in the visible region of the electromagnetic spectrum. The transition metals (Mn, Co, Ni, Cu) were added during the hydrothermal preparation of mesoporous TiO2 particles, and the nitrogen was introduced by post-annealing in flowing ammonia gas at high temperature. The samples were analyzed by SEM, XRD, BET, inductively-coupled plasma spectroscopy, and diffuse reflectance UV-vis spectroscopy. The photocatalytic activity was assessed by observing the change in methylene blue concentrations under both UV-vis and visible-only light irradiation. As a result, the photocatalytic activity of the (Mn,N), (Co,N), (Cu,N), and Ni,N) codoped TiO2 was significantly enhanced relative to (N) TiO2.

  5. Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide.

    PubMed

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S K

    2011-10-01

    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500 °C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600 °C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580 m(2)/g) and high pore volume copper powder (2.04 cm(3)/g).

  6. Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Deng, Fangze; Yu, Lin; Cheng, Gao; Lin, Ting; Sun, Ming; Ye, Fei; Li, Yongfeng

    2014-04-01

    Two-dimensional ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper (CFP) are synthesized through a facile solvothermal method combined with a post thermal treatment. The well interconnected ultrathin NiCo2O4 nanosheets directly grown on the carbon nanofibers could allow for easy diffusion of the electrolyte, shorten the transport path of ion and electron and accommodate the strain during cycling. As a result, superior pseudocapacitive performance is achieved with large specific capacitance of 999 F g-1 at a high current density of 20 A g-1. The capacitance loss is 15.6% after 3000 cycles at a current density of 10 A g-1, displaying good cycle ability and high rate capability.

  7. Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO₂-anatase containing silver nanoparticles.

    PubMed

    Roldán, María V; de Oña, Paula; Castro, Yolanda; Durán, Alicia; Faccendini, Pablo; Lagier, Claudia; Grau, Roberto; Pellegri, Nora S

    2014-10-01

    Here we describe the development of novel nanostructured coating systems with improved photocatalytic and antibacterial activities. These systems comprise a layer of SiO2 followed by a layer of mesoporous or dense TiO2-anatase, and doping with silver nanoparticles (Ag NPs). The coatings were synthesized via a sol-gel technique by combining colloidal Ag NPs with TiO2 and SiO2 sols. The photocatalytic activity was studied through methyl orange decomposition under UV light. Results showed a great increase of photocatalytic activity by Ag NPs doping. The most active photocatalyst corresponded to the Ag-SiO2/TiO2 mesoporous system, associated with the porosity of the coatings and with the decrease of e-h recombination for the presence of Ag NPs. All the TiO2 coatings showed a strong bactericidal activity against planktonic forms of Gram-negative (enterohemorrhagic Escherichia coli) and Gram-positive (Listeria monocytogenes) pathogens, as well as a strong germicidal effect against deadly spores of human gas gangrene- and anthrax-producing bacteria (Clostridium perfringens and Bacillus anthracis, respectively). The bactericidal and sporocidal activity was improved by doping the coatings with Ag NPs, even more when nanoparticles were in the outer layer of TiO2, because they are more accessible to the environment. The mechanisms responsible for the increase of photocatalytic and bactericidal behaviors related to Ag NP doping were studied by spectroscopic ellipsometry, UV-vis spectroscopy, photoluminescence and anodic stripping voltammetry. It was found that the separation of the electron-hole pair contributed to the enhancement of photocatalysis, whereas the effect of the local electric field reinforcement was probably present. A possible involvement of a decrease of band-gap energy and dispersion by silver nanoparticles is ruled out. bactericidal efficacy was increased by Ag(+) ion release. Overall, the results included in this article show that the architecture of the

  8. Photoconductivity of activated carbon fibers

    SciTech Connect

    Kuriyama, K.; Dresselhaus, M.S. )

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity. 54 refs., 11 figs., 3 tabs.

  9. Photoconductivity of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    Kuriyama, K.; Dresselhaus, M. S.

    1990-08-01

    The photoconductivity is measured on a high-surface-area disordered carbon material, namely activated carbon fibers, to investigate their electronic properties. Measurements of decay time, recombination kinetics and temperature dependence of the photoconductivity generally reflect the electronic properties of a material. The material studied in this paper is a highly disordered carbon derived from a phenolic precursor, having a huge specific surface area of 1000--2000m{sup 2}/g. Our preliminary thermopower measurements suggest that this carbon material is a p-type semiconductor with an amorphous-like microstructure. The intrinsic electrical conductivity, on the order of 20S/cm at room temperature, increases with increasing temperature in the range 30--290K. In contrast with the intrinsic conductivity, the photoconductivity in vacuum decreases with increasing temperature. The recombination kinetics changes from a monomolecular process at room temperature to a biomolecular process at low temperatures. The observed decay time of the photoconductivity is {approx equal}0.3sec. The magnitude of the photoconductive signal was reduced by a factor of ten when the sample was exposed to air. The intrinsic carrier density and the activation energy for conduction are estimated to be {approx equal}10{sup 21}/cm{sup 3} and {approx equal}20meV, respectively. The majority of the induced photocarriers and of the intrinsic carriers are trapped, resulting in the long decay time of the photoconductivity and the positive temperature dependence of the conductivity.

  10. All-solid-state reference electrodes based on colloid-imprinted mesoporous carbon and their application in disposable paper-based potentiometric sensing devices.

    PubMed

    Hu, Jinbo; Ho, Kieu T; Zou, Xu U; Smyrl, William H; Stein, Andreas; Bühlmann, Philippe

    2015-03-03

    Reference electrodes are used in almost every electroanalytical measurement. Here, all-solid-state reference electrodes are described that employ colloid-imprinted mesoporous (CIM) carbon as solid contact and a poly(vinyl chloride) reference membrane to contact the sample. Such a reference membrane is doped with a moderately hydrophilic ionic liquid and a hydrophobic redox couple, leading to well-defined constant potentials at the interfaces of this membrane to the sample and to the solid contact, respectively. Due to the intrinsic properties of CIM carbon, reference electrodes with a CIM carbon solid contact exhibit excellent resistance to common interfering agents such as light and O2, with outstanding potential stability in continuous potentiometric measurements. The potential drift of CIM carbon-based reference electrodes without redox couple is as low as 1.7 μV/h over 110 h, making them the most stable all-solid-state reference electrodes reported so far. To demonstrate the compatibility of CIM carbon-based reference electrodes with miniaturized potentiometric systems, these reference electrodes were integrated into paper-based potentiometric sensing devices, successfully replacing the conventional reference electrode with its reference electrolyte solution. As a proof of concept, disposable paper-based Cl(-) sensing devices that contain stencil-printed Ag/AgCl-based Cl(-) selective electrodes and CIM carbon-based reference electrodes were constructed. These sensing devices are inexpensive, easy to use, and offer highly reproducible Cl(-) measurements with sample volumes as low as 10 μL.

  11. Hierarchical porous carbons prepared by an easy one-step carbonization and activation of phenol-formaldehyde resins with high performance for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zheng, Zhoujun; Gao, Qiuming

    Hierarchical porous carbons are prepared by an easy one-step process of carbonization and activation derived from phenol-formaldehyde resins, in which potassium hydroxide acts as both the catalyst of polymerization and the activation reagent. The simple one-step preparation saves the cost of carbons and leads to high yield. The porous carbons have high surface areas with abundant pore structures. The plenty of micropores and small mesopores increase the capacitance and make the electrolyte ions diffuse fast into the pores. These hierarchical porous carbons show high performance for supercapacitors possessing of the optimized capacitance of 234 F g -1 in aqueous electrolyte and 137 F g -1 in organic electrolyte with high capacitive retention.

  12. Porous carbon nitride nanosheets for enhanced photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Hong, Jindui; Yin, Shengming; Pan, Yunxiang; Han, Jianyu; Zhou, Tianhua; Xu, Rong

    2014-11-01

    Porous carbon nitride nanosheets (PCNs) have been prepared for the first time by a simple liquid exfoliation method via probe sonication. These mesoporous nanosheets of around 5 nm in thickness combine several advantages including high surface area, enhanced light absorption and excellent water dispersity. It can be used as a versatile support for co-catalyst loading for photocatalytic dye degradation and water reduction. With 3.8 wt% Co3O4 loaded, PCNs can achieve more efficient photocatalytic degradation of Rhodamine B, compared with non-porous C3N4 nanosheets (CNs), bulk porous C3N4 (PCN) and bulk nonporous C3N4 (CN). With 1.0 wt% Pt loaded, CNs and PCN exhibit 7-8 times enhancement in H2 evolution than CN. Remarkably, PCNs with both porous and nanosheet-like features achieve 26 times higher activity in H2 evolution than CN. These significant improvements in photocatalytic activities can be attributed to the high surface area as well as better electron mobility of the two-dimensional nanostructure.Porous carbon nitride nanosheets (PCNs) have been prepared for the first time by a simple liquid exfoliation method via probe sonication. These mesoporous nanosheets of around 5 nm in thickness combine several advantages including high surface area, enhanced light absorption and excellent water dispersity. It can be used as a versatile support for co-catalyst loading for photocatalytic dye degradation and water reduction. With 3.8 wt% Co3O4 loaded, PCNs can achieve more efficient photocatalytic degradation of Rhodamine B, compared with non-porous C3N4 nanosheets (CNs), bulk porous C3N4 (PCN) and bulk nonporous C3N4 (CN). With 1.0 wt% Pt loaded, CNs and PCN exhibit 7-8 times enhancement in H2 evolution than CN. Remarkably, PCNs with both porous and nanosheet-like features achieve 26 times higher activity in H2 evolution than CN. These significant improvements in photocatalytic activities can be attributed to the high surface area as well as better electron mobility of

  13. Solvent-regenerated activated carbon

    SciTech Connect

    McLaughlin, H. )

    1988-07-01

    This report summarizes the results of a University/Industry research project, sponsored by the New York State Energy Research and Development Authority and Fluids Design Corporation. The research project studied the solvent regeneration of activated carbon. Activate carbon was used to remove trace organics from aqueous streams, then regenerated by desorbing the adsorbates with organic solvents. The project included a survey of the potential applications in New York State industries, fundamental research on the adsorption/desorption phenomena, and design of a full-scale process. The economics of the full-scale process were evaluated and compared to alternate available technologies. The result of this work is a versatile process with attractive econ