Science.gov

Sample records for mesoporous silica-magnetite nanocomposite

  1. Synthesis, characterisation and application of silica-magnetite nanocomposites

    NASA Astrophysics Data System (ADS)

    Bruce, Ian J.; Taylor, James; Todd, Michael; Davies, Martin J.; Borioni, Enrico; Sangregorio, Claudio; Sen, Tapas

    2004-12-01

    Silica-magnetite composites were prepared for eventual applications in biomolecular separations (nucleic acids). Their production on large scale has been optimised and they have been extensively characterised in a physical and chemical context. They perform at least as well, if not better than a commercially available equivalent at adsorbing and eluting DNA. Several methods for the preparation of magnetite were compared in order to select one, which produced particles, possessing high magnetic susceptibility, low rate of sedimentation and good chemical stability. Of the main methods studied: (i) oxidative hydrolysis of iron(II) sulphate in alkaline media, (ii) alkaline hydrolysis of iron(II) and iron(III) chloride solutions, and (iii) precipitation from iron(II) and iron(III) chloride solutions by hydrolysis of urea, method (i) produced the 'best' magnetite particles. Silica-magnetite composites were prepared using the 'best' magnetite, and, for comparison, two methods for depositing silica were used to coat the silica onto magnetite nanoparticles, from silicic acid at pH 10 and by acid hydrolysis of tetraethoxysilane (TEOS) at 90 °C. The best method for yielding silica-magnetite composites that worked well in DNA adsorption and elution proved to be that involving silicic acid and this material could be made in 20 g batch sizes. Silica-magnetite composites from the two methods proved to have distinct and different physical and chemical properties. All magnetite and silica-magnetite samples were fully characterised for their relative chemical composition using Fourier-transform infrared, XRF and thermo-gravimetric analysis. Their physical characteristics were determined using scanning electron microscopy and N2 adsorption and Mossbauer spectroscopy was used to confirm the identity of the iron oxides produced. Selected samples were comparatively tested for their ability to adsorb, and subsequently elute, 2-deoxyguanosine-5-monophosphate (GMP) and its non

  2. Application of silica magnetite nanocomposites to the isolation of ultrapure plasmid DNA from bacterial cells

    NASA Astrophysics Data System (ADS)

    Chiang, Chen-Li; Sung, Ching-Shan; Chen, Chuh-Yean

    2006-10-01

    The aim of this study was to develop a simple and rapid method for purification of ultrapure plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe 3O 4) were prepared by chemical precipitation method using Fe 2+, Fe 3+ salt, and ammonium hydroxide under a nitrogen atmosphere. Silica-magnetite nanocomposites were prepared by the method of acid hydrolysis of tetraethoxysilane (TEOS) to coat the silica onto magnetite nanoparticles. DNA was adsorbed to the support under high salt conditions, and recovered directly in water for immediate downstream application, without the need for precipitation. We demonstrated that a useful plasmid, pRSETB-EGFP, encoding for the green fluorescent protein with T7 promoter, could be amplified in Escherichia coli of DE3 strain. Up to approximately 43 μg of high-purity ( A260/ A280 ratio=1.75) plasmid DNA was isolated from 3 ml of an overnight bacterial culture. The eluted plasmid DNA was used directly for restriction enzyme digestion, bacterial cell transformation and polymerase chain reaction (PCR) amplification with success. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmid takes less than 8 min. The silica-magnetite nanocomposites deliver significant time-savings, overall higher yields, lower RNA contamination, and better PCR amplification compared to commercial available silica-based and other methods.

  3. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  4. A highly ordered cubic mesoporous silica/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Wook; Roh, Kwang Chul; Kim, Kwang-Bum

    2013-09-01

    A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites.A highly ordered cubic mesoporous silica (KIT-6)/graphene nanocomposite and 2D KIT-6 nanoflakes were synthesized using a novel synthesis methodology. The non-ionic triblock copolymer, P123, played a dual role as a structure-directing agent in the formation of the cubic mesoporous structure and as a cross-linking agent between mesoporous silica and graphene. The prepared (KIT-6)/graphene nanocomposite could act as a template for the preparation of mesoporous material/graphene nanocomposites. Electronic supplementary information (ESI) available: S1: TEM images of disordered mesoporous silica/graphene nanocomposite; S2: TEM images of KIT-6/GO nanocomposite; S3: Thermogravimetric analysis of KIT-6/GO and KG-400-700; S4: SEM and TEM images of KIT-6; S5: Low angle XRD, Raman spectra, N2 adsorption isotherms, pore size distribution and photographic images of the prepared samples; S6: TEM image and N2 adsorption isotherms of mesoporous carbon/graphene nanocomposite; S7: XPS C1s spectra of the prepared samples. See DOI: 10.1039/c3nr03108j

  5. Novel organic-inorganic hybrid mesoporous materials and nanocomposites

    NASA Astrophysics Data System (ADS)

    Feng, Qiuwei

    Organic-inorganic hybrid mesoporous materials have been prepared successfully via the nonsurfactant templated sol-gel pathway using dibenzoyl-L-tartaric acid (DBTA) as the templating compound. Styrene and methyl methacrylate polymers have been incorporated into the mesoporous silica matrix on the molecular level. The synthetic conditions have been systematically studied and optimized. Titania based mesoporous materials have also been made using nonionic polyethylene glycol surfactant as the pore forming or structure-directing agent. In all of the above mesoporous materials, pore structures have been studied in detail by Transmission Electron Microscopy (TEM), X-ray diffraction and Brunauer-Emmett-Teller (BET) characterizations. The relationship between the template concentration and the pore parameters has been established. This nonsurfactant templated pathway possesses many advantages over the known surfactant approaches such as low cost, environment friendly and biocompatability. To overcome the drawback of nonsurfactant templated mesoporous materials that lack a well ordered pore structure, a flow induced synthesis has been attempted to orientate the sol-gel solution in order to obtain aligned pore structures. The versatility of this nonsurfactant templated pathway can even be extended to the making of organic-inorganic hybrid nanocomposite materials. On the basis of this approach, polymer-silica nanocomposite materials have been prepared using a polymerizable template. It is shown that the organic monomer such as hydroxyethyl methacrylate can act as a template in making nanoporous silica materials and then be further polymerized through a post synthesis technique. The properties and morphology of this new material have been studied by Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Infrared Absorption Spectroscopy (FTIR). Electroactive organic-inorganic hybrid materials have also been synthesized via the sol-gel process. A

  6. Mesoporous nanocomposite coatings for photonic devices: sol-gel approach

    NASA Astrophysics Data System (ADS)

    Islam, Shumaila; Bidin, Noriah; Riaz, Saira; Suan, Lau Pik; Naseem, Shahzad; Sanagi, Mohd. Marsin

    2016-10-01

    Thermally stable, optically active inorganic nanocomposites, i.e., aluminum-silicate (AS) and silica-titania (ST), are synthesized via acid-catalyzed low-temperature sol-gel method in order to get stable, crack-free coating material for photonic devices. The samples are characterized by atomic force microscope, field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett--Teller (BET) surface area, Barrett-Joyner-Halenda (BJH) pore size distribution surface analysis and UV-Vis spectroscopy. Microscopic results show good incorporation of ST and AS particles as composites with grain size within range of 12-17 and 62-109 nm, respectively. EDX analysis substantiated the stoichiometric formation of homogeneous nanocomposites. XRD of the films reveals primary polycrystalline anatase titania phase and mullite phase of ST and AS nanocomposites. FTIR confirms the heterogeneous bond linkage between titania, silica and alumina species. Furthermore, the fabricated samples have mesoporous nature with high surface area, large pore volume and diameter. The tunable refractive index of 1.33-1.35 with high transparency is obtained for synthesized nanocomposites. The experimental findings show that these physically modified and thermally stable alumina- and titania-doped silica-based composite coatings are promising for photonic devices modification.

  7. Recyclable Magnetic Mesoporous Nanocomposite with Improved Sensing Performance toward Nitrite.

    PubMed

    Zhang, Yihe; Su, Zisheng; Li, Bin; Zhang, Liming; Fan, Di; Ma, Heping

    2016-05-18

    A magnetic nanomaterial for nitrite ion detection was demonstrated in the present study. This nanomaterial was prepared by grafting a rhodamine 6G derivative (denoted as Rh 6G-OH) into the channels of core-shell magnetic mesoporous silica nanospheres. The nanocomposite (denoted as Fe3O4@Rh 6G) showed large surface area and improved fluorescent performance to accumulate and recognize NO2(-), and its superparamagnetic behavior played an important role in reusability. The fluorescent intensity decreased linearly along with the NO2(-) concentration in the range of 1-50 μM, and the detection limit was estimated to be 0.8 μM, which was much lower than the maximum limit of nitrite ion in drinking water (65 μM) recommended by World Health Organization. Importantly, Fe3O4@Rh 6G could be magnetically collected and effectively reutilized after six test cycles. PMID:27115527

  8. Desalination of Basal Water by Mesoporous Carbons Nanocomposite Membrane.

    PubMed

    Choi, Jeongdong; Ahn, Youngho; Gamal El-Din, Mohamed; Kim, Eun-Sik

    2016-02-01

    The hydro-transportation process used to obtain bitumen from the Alberta oil sands produces large volume of basal depressurization water (BDW), which contains high salt concentrations. In this research, thin-film nanocomposite (TFN) membrane technology applied to treat BDW in lab-scale, and evaluated water properties before and after the treatment. The average rejection ratios of ionic species were 95.2% and 92.8% by TFN membrane (with ordered mesoporous carbons (OMCs)) and thin-film composite (TFC) (without OMCs) membrane, respectively. The turbidity and total dissolved solids (TDS) were completely rejected in all treatment conditions. Interestingly, the water flux of TFN membrane was dramatically increased compared to TFC membrane. The increase of water flux was believed to be caused by the increased membrane surface hydrophilicity and nano-pore effects by the OMCs. PMID:27433734

  9. Desalination of Basal Water by Mesoporous Carbons Nanocomposite Membrane.

    PubMed

    Choi, Jeongdong; Ahn, Youngho; Gamal El-Din, Mohamed; Kim, Eun-Sik

    2016-02-01

    The hydro-transportation process used to obtain bitumen from the Alberta oil sands produces large volume of basal depressurization water (BDW), which contains high salt concentrations. In this research, thin-film nanocomposite (TFN) membrane technology applied to treat BDW in lab-scale, and evaluated water properties before and after the treatment. The average rejection ratios of ionic species were 95.2% and 92.8% by TFN membrane (with ordered mesoporous carbons (OMCs)) and thin-film composite (TFC) (without OMCs) membrane, respectively. The turbidity and total dissolved solids (TDS) were completely rejected in all treatment conditions. Interestingly, the water flux of TFN membrane was dramatically increased compared to TFC membrane. The increase of water flux was believed to be caused by the increased membrane surface hydrophilicity and nano-pore effects by the OMCs.

  10. Brick-and-Mortar Self-Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites

    SciTech Connect

    Dai, Sheng; Fulvio, Pasquale F; Mayes, Richard T; Wang, Xiqing; Mahurin, Shannon Mark; Bauer, Christopher; Presser, Volker; Mcdonough, John; Gogotsi, Yury

    2011-01-01

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a 'brick-and-mortar' approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  11. Synthesis and structural evolution of mesoporous silica silver nanocomposites

    NASA Astrophysics Data System (ADS)

    Armelao, L.; Bottaro, G.; Campostrini, R.; Gialanella, S.; Ischia, M.; Poli, F.; Tondello, E.

    2007-04-01

    Mesoporous silica materials were prepared by a sol-gel procedure using Si(OCH2CH3)4 (TEOS) as the silica source and the non-ionic alkyl-poly(ethyleneoxide) oligomer Brij76 as the structure-directing agent. Pure inorganic hexagonal-like mesostructured SiO2 powders were obtained after annealing, performed in air between 400 and 600 °C. Upon calcination, the organic template was removed and silica networks with a different amount of Si-OH groups as well as porous features were prepared. Ag-SiO2 nanocomposites were obtained by metallation of the mesoporous silica powders with aqueous solutions of silver acetate. Ag+ ions were chemically grafted on the silica pores by taking advantage of the basic character of acetate anions and the acidic properties of Si-OH groups. Different silver concentrations were achieved on the mesostructured silica powders, depending on their former annealing treatment. For all samples the formation of silver nanoclusters occurred spontaneously at room temperature. Monodispersed, spherical Ag crystallites, with an average diameter of a few nanometres, were obtained starting from the 400 °C-treated silica, whereas clusters with different sizes (3-20 nm) and irregular shapes were grown for metallation of the 600 °C-heated SiO2 matrix. The sample's chemical composition was studied by x-ray photoelectron spectroscopy (XPS) and x-ray excited Auger electron spectroscopy (XE-AES), whereas the porous features were investigated by N2 BET adsorption. Information concerning structure and microstructure was obtained by x-ray diffraction (XRD) and transmission electron microscopy (TEM).

  12. Chemical Insight into the Adsorption of Chromium(III) on Iron Oxide/Mesoporous Silica Nanocomposites.

    PubMed

    Egodawatte, Shani; Datt, Ashish; Burns, Eric A; Larsen, Sarah C

    2015-07-14

    Magnetic iron oxide/mesoporous silica nanocomposites consisting of iron oxide nanoparticles embedded within mesoporous silica (MCM-41) and modified with aminopropyl functional groups were prepared for application to Cr(III) adsorption followed by magnetic recovery of the nanocomposite materials from aqueous solution. The composite materials were extensively characterized using physicochemical techniques, such as powder X-ray diffraction, thermogravimetric and elemental analysis, nitrogen adsorption, and zeta potential measurements. For aqueous Cr(III) at pH 5.4, the iron oxide/mesoporous silica nanocomposite exhibited a superior equilibrium adsorption capacity of 0.71 mmol/g, relative to 0.17 mmol/g for unmodified mesoporous silica. The aminopropyl-functionalized iron oxide/mesoporous silica nanocomposites displayed an equilibrium adsorption capacity of 2.08 mmol/g, the highest adsorption capacity for Cr(III) of all the materials evaluated in this study. Energy-dispersive spectroscopy (EDS) with transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) experiments provided insight into the chemical nature of the adsorbed chromium species.

  13. "Bricks and mortar" self-assembly approach to graphitic mesoporous carbon nanocomposites

    SciTech Connect

    Fulvio, P. F.; Mayes, R.; Wang, X. Q.; Mahurin, S., M.; Bauer, J. C.; Presser, V.; McDonough, J.; Gogotsi, Y.; Dai, S.

    2011-04-20

    Mesoporous carbon materials do not have sufficient ordering at the atomic scale to exhibit good electronic conductivity. To date, mesoporous carbons having uniform mesopores and high surface areas have been prepared from partially-graphitizable precursors in the presence of templates. High temperature thermal treatments above 2000 °C, which are usually required to increase conductivity, result in a partial or total collapse of the mesoporous structures and reduced surface areas induced by growth of graphitic domains, limiting their applications in electric double layer capacitors and lithium-ion batteries. In this work, we successfully implemented a “brick-and-mortar” approach to obtain ordered graphitic mesoporous carbon nanocomposites with tunable mesopore sizes below 850 °C without using graphitization catalysts or high temperature thermal treatments. Phenolic resin-based mesoporous carbons act as mortar to highly conductive carbon blacks and carbon onions (bricks). The capacitance and resistivity of final materials can be tailored by changing the mortar to brick ratios.

  14. Temperature dependence of indigo light emission from mesoporous ZnO/porous silicon nanocomposites.

    PubMed

    Kim, Min Su; Kim, Do Yeob; Lee, Dong-Yul; Kim, Jin Soo; Kim, Jong Su; Kim, Sung-O; Leem, Jae-Young

    2012-07-01

    Nanocomposites of mesoporous zinc oxide (ZnO) and porous silicon (PS) were prepared through a hydrothermal method. Room-temperature (RT) and temperature-dependent photoluminescence (PL) were performed to investigate the optical properties and temperature dependence of the indigo emission peak from the ZnO/PS nanocomposites. An indigo emission peak from the nanocomposites and a red emission peak from the PS were observed in the case of the mesoporous ZnO/PS nanocomposites. At 10 K, the nanocomposites exhibited four emission peaks at 3.108, 2.929, 2.730, and 2.248 eV, which correspond to the DX, AX, DX-1LO, and DX-2LO phonon replicas, respectively. With an increase in temperature from 10 to 275 K, the curves in the intensities of the emission peaks formed an inverted "S" shape while their energies remained nearly constant. At 300 K, however, only the AX emission peak was observed; the DX and LO phonon replicas disappeared. The intensities of the DX and AX emission peaks exhibited anomalous behaviors.

  15. Exchange bias effect in nickel zinc ferrite-mesoporous silica nanocomposites

    NASA Astrophysics Data System (ADS)

    Banerjee, Shilpi; Hajra, Partha; Mada, Mykanth Reddy; Bhaumik, Asim; Bandyopadhyay, Sri; Chakravorty, Dipankar

    2013-04-01

    Nickel zinc ferrite-mesoporous silica nanocomposite (NZF-MS) was synthesized using impregnation method. The microstructure was investigated by transmission electron microscopy. A magnetic exchange bias effect was exhibited by the nanocomposites. This was ascribed to the presence of a ferromagnetic core and antiferromagnetic shell structure. Electron microscopic studies confirmed the presence of a core-shell structure with NZF forming the core. The zero-field cooled magnetization data as a function of temperature indicated the presence of an antiferromagnetic phase which is believed to be formed by the diffusion of Fe3+ or Ni2+ ions into the silica glass.

  16. Nanocomposite hydrogels for cartilage tissue engineering: mesoporous silica nanofibers interlinked with siloxane derived polysaccharide.

    PubMed

    Buchtová, Nela; Réthoré, Gildas; Boyer, Cécile; Guicheux, Jérôme; Rambaud, Frédéric; Vallé, Karine; Belleville, Philippe; Sanchez, Clément; Chauvet, Olivier; Weiss, Pierre; Le Bideau, Jean

    2013-08-01

    Injectable materials for mini-invasive surgery of cartilage are synthesized and thoroughly studied. The concept of these hybrid materials is based on providing high enough mechanical performances along with a good medium for chondrocytes proliferation. The unusual nanocomposite hydrogels presented herein are based on siloxane derived hydroxypropylmethylcellulose (Si-HPMC) interlinked with mesoporous silica nanofibers. The mandatory homogeneity of the nanocomposites is checked by fluorescent methods, which show that the silica nanofibres dispersion is realized down to nanometric scale, suggesting an efficient immobilization of the silica nanofibres onto the Si-HPMC scaffold. Such dispersion and immobilization are reached thanks to the chemical affinity between the hydrophilic silica nanofibers and the pendant silanolate groups of the Si-HPMC chains. Tuning the amount of nanocharges allows tuning the resulting mechanical features of these injectable biocompatible hybrid hydrogels. hASC stem cells and SW1353 chondrocytic cells viability is checked within the nanocomposite hydrogels up to 3 wt% of silica nanofibers.

  17. Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells.

    PubMed

    Han, Gill Sang; Song, Young Hyun; Jin, Young Un; Lee, Jin-Wook; Park, Nam-Gyu; Kang, Bong Kyun; Lee, Jung-Kun; Cho, In Sun; Yoon, Dae Ho; Jung, Hyun Suk

    2015-10-28

    We report on reduced graphene oxide (rGO)/mesoporous (mp)-TiO2 nanocomposite based mesostructured perovskite solar cells that show an improved electron transport property owing to the reduced interfacial resistance. The amount of rGO added to the TiO2 nanoparticles electron transport layer was optimized, and their impacts on film resistivity, electron diffusion, recombination time, and photovoltaic performance were investigated. The rGO/mp-TiO2 nanocomposite film reduces interfacial resistance when compared to the mp-TiO2 film, and hence, it improves charge collection efficiency. This effect significantly increases the short circuit current density and open circuit voltage. The rGO/mp-TiO2 nanocomposite film with an optimal rGO content of 0.4 vol % shows 18% higher photon conversion efficiency compared with the TiO2 nanoparticles based perovskite solar cells.

  18. Amine-Impregnated Mesoporous Silica Nanotube as an Emerging Nanocomposite for CO2 Capture.

    PubMed

    Niu, Mengya; Yang, Huaming; Zhang, Xiangchao; Wang, Yutang; Tang, Aidong

    2016-07-13

    Pristine halloysite nanotubes (HNTs) were pretreated to produce mesoporous silica nanotubes (MSiNTs), which was further impregnated with polyethenimine (PEI) to prepare an emerging nanocomposite MSiNTs/PEI (MP) for CO2 capture. Thermogravimetric analysis (TGA) was employed to analyze the influences of PEI loading amount and adsorption temperature on CO2 adsorption capacity of the nanocomposite. The Brunauer-Emmett-Teller (BET) surface area (SBET) of MSiNTs was six times higher than that of HNTs, and the corresponding pore volume was more than two times higher than that of HNTs. The well dispersion of PEI within the nanotubes of MSiNTs benefits more CO2 gas adsorption, and the adsorption capacity of the nanocomposite could reach 2.75 mmol/g at 85 °C for 2 h. The CO2 adsorption on the nanocomposite was demonstrated to occur via a two-stage process: initially, a sharp linear weight increase at the beginning, and then a relatively slow adsorption step. The adsorption capacity could reach as high as 70% within 2 min. Also, the nanocomposite exhibited good stability on CO2 adsorption/desorption performance, indicating that the as-prepared emerging nanocomposite show an interesting application potential in the field of CO2 capture. PMID:27315143

  19. A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor

    NASA Astrophysics Data System (ADS)

    Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.

    2016-07-01

    Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.

  20. Synthesis of mesoporous sulfur-doped Ta2O5 nanocomposites and their photocatalytic activities.

    PubMed

    Ismail, Adel A; Faisal, M; Harraz, Farid A; Al-Hajry, A; Al-Sehemi, A G

    2016-06-01

    Mesoporous sulfur (S)-doped Ta2O5 nanocomposites have been synthesized for the first time through the sol-gel reaction of tantalum chloride and thiourea in the presence of a F127 triblock copolymer as structure directing agent. The as-formed mesophase S-doped Ta2O5 hybrid gels were calcined at 700°C for 4h to obtain mesoporous S-Ta2O5 nanocomposites. The experimental results indicated that the surface area of the S-doped Ta2O5 was up to 50m(2)g(-1) and the pore diameter was controllable in the range of 3-7.7nm. The S-doped Ta2O5 nanocomposites behave as superior visible light-sensitive photocatalysts and the 1.5at.% S-doped Ta2O5 (S1.5) photocatalyst exhibited excellent photocatalytic activity of ∼92% for the photodegradation of methylene blue, identical to 80% TOC removal after three hours illumination under visible light. The photodegradation rate of S1.5 photocatalyst showed 3.4 times higher than the undoped Ta2O5 due to their narrow bandgap, large surface area, mesostructure and well crystalline state. The S1.5 photocatalyst could be recycled at least five times without an apparent decrease in its photocatalytic efficiency, indicating its high stability for practical applications. To the best of our knowledge, this is the first report that demonstrates one-step synthesis of mesoporous S-doped Ta2O5 nanocomposites as an efficient photocatalysts under visible light illumination. PMID:27017474

  1. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery.

    PubMed

    Wang, Yao; Gu, Hongchen

    2015-01-21

    Advances in nanotechnology and nanomedicine offer great opportunities for the development of nanoscaled theranostic platforms. Among various multifunctional nanocarriers, magnetic mesoporous silica nanocomposites (M-MSNs) attract prominent research interest for their outstanding properties and potential biomedical applications. This Research News article highlights recent progress in the design of core-shell-type M-MSNs for both diagnostic and therapeutic applications. First, an overview of synthetic strategies for three representative core-shell-type M-MSNs with different morphologies and structures is presented. Then, the diagnostic functions of M-MSNs is illustrated for magnetic resonance imaging (MRI) applications. Next, magnetic targeted delivery and stimuli-responsive release of drugs, and effective package of DNA/siRNA inside mesopores using M-MSNs as therapeutic agent carriers are discussed. The article concludes with some important challenges that need to be overcome for further practical applications of M-MSNs in nanomedicine. PMID:25238634

  2. Mesoporous Au/TiO2 nanocomposite microspheres for visible-light photocatalysis.

    PubMed

    Wang, Guannan; Wang, Xiaofei; Liu, Junfeng; Sun, Xiaoming

    2012-04-23

    Mesoporous Au/TiO(2) nanocomposite microspheres have been synthesized by using a microemulsion-based bottom-up self-assembly (EBS) process starting from monodisperse gold and titania nanocrystals as building blocks. The microspheres had large surface areas (above 270 m(2) g(-1)) and open mesopores (about 5 nm), which led to the adsorption-driven concentration of organic molecules in the vicinity of the microspheres. Au nanoparticles, which were stably confined within the microspheres, enhanced the absorption over the broad UV/Vis/NIR spectroscopic range, owing to their strong surface plasmon resonance (SPR); as a result, the Au nanoparticles promoted the visible-light photo-induced degradation of organic compounds.

  3. A highly efficient colorimetric immunoassay using a nanocomposite entrapping magnetic and platinum nanoparticles in ordered mesoporous carbon.

    PubMed

    Kim, Moon Il; Ye, Youngjin; Woo, Min-Ah; Lee, Jinwoo; Park, Hyun Gyu

    2014-01-01

    Nanocomposite to achieve ultrafast immunoassay: a new synergistically integrated nanocomposite consisting of magnetic and platinum nanoparticles, simultaneously entrapped in mesoporous carbon, is developed as a promising enzyme mimetic candidate to achieve ultrafast colorimetric immunoassays. Using new assay system, clinically important target molecules, such as human epidermal growth factor receptor 2 (HER2) and diarrhea-causing rotavirus, can be detected in only 3 min at room temperature with high specificity and sensitivity.

  4. Microwave absorption properties and infrared emissivities of ordered mesoporous C-TiO{sub 2} nanocomposites with crystalline framework

    SciTech Connect

    Wang, Tao; He, Jianping; Zhou, Jianhua; Tang, Jing; Guo, Yunxia; Ding, Xiaochun; Wu, Shichao; Zhao, Jianqing

    2010-12-15

    Ordered mesoporous C-TiO{sub 2} nanocomposites with crystalline framework were prepared by the evaporation-induced triconstituent co-assembly method. The products were characterized by XRD, TEM, N{sub 2} adsorption-desorption and TG. Their microwave absorption properties were investigated by mixing the product and epoxy resin. It is found that the peak with minimum reflection loss value moves to lower frequencies and the ordered mesoporous C-TiO{sub 2} nanocomposite possesses an excellent microwave absorbing property with the maximum reflection loss of -25.4 dB and the bandwidth lower than -10 dB is 6.6 GHz. The attenuation of microwave can be attributed to dielectric loss and their absorption mechanism is discussed in detail. The mesoporous C-TiO{sub 2} nanocomposites also exhibit a lower infrared emissivity in the wavelength from 8 to 14 {mu}m than that of TiO{sub 2}-free powder. -- Graphical abstract: Ordered mesoporous C-TiO{sub 2} nanocomposite with crystalline framework possess excellent microwave absorbing properties with the maximum reflection loss of -25.4 dB and the bandwidth lower than -10 dB is 6.6 GHz. Display Omitted

  5. Investigation of a Mesoporous Silicon Based Ferromagnetic Nanocomposite

    PubMed Central

    2010-01-01

    A semiconductor/metal nanocomposite is composed of a porosified silicon wafer and embedded ferromagnetic nanostructures. The obtained hybrid system possesses the electronic properties of silicon together with the magnetic properties of the incorporated ferromagnetic metal. On the one hand, a transition metal is electrochemically deposited from a metal salt solution into the nanostructured silicon skeleton, on the other hand magnetic particles of a few nanometres in size, fabricated in solution, are incorporated by immersion. The electrochemically deposited nanostructures can be tuned in size, shape and their spatial distribution by the process parameters, and thus specimens with desired ferromagnetic properties can be fabricated. Using magnetite nanoparticles for infiltration into porous silicon is of interest not only because of the magnetic properties of the composite material due to the possible modification of the ferromagnetic/superparamagnetic transition but also because of the biocompatibility of the system caused by the low toxicity of both materials. Thus, it is a promising candidate for biomedical applications as drug delivery or biomedical targeting. PMID:20672039

  6. Multifunctional Gold-Mesoporous Silica Nanocomposites for Enhanced Two-Photon Imaging and Therapy of Cancer Cells

    PubMed Central

    Croissant, Jonas G.; Qi, Christian; Maynadier, Marie; Cattoën, Xavier; Wong Chi Man, Michel; Raehm, Laurence; Mongin, Olivier; Blanchard-Desce, Mireille; Garcia, Marcel; Gary-Bobo, Magali; Durand, Jean-Olivier

    2016-01-01

    Three dimensional sub-micron resolution has made two-photon nanomedicine a very promising medical tool for cancer treatment since current techniques cause significant side effects for lack of spatial selectivity. Two-photon-excited (TPE) photodynamic therapy (PDT) has been achieved via mesoporous nanoscaffolds, but the efficiency of the treatment could still be improved. Herein, we demonstrate the enhancement of the treatment efficiency via gold-mesoporous organosilica nanocomposites for TPE-PDT in cancer cells when compared to mesoporous organosilica particles. We performed the first comparative study of the influence of the shape and spatial position of gold nanoparticles (AuNPs) with mesoporous silica nanoparticles (MSN) functionalized with thiol groups and doped with a two-photon electron donor (2PS). The resulting multifunctional nanocarriers displayed TPE-fluorescence and were imaged inside cells. Furthermore, mesoporous organosilica NPs decorated gold nanospheres (AuNSs) induced 63 percent of selective killing on MCF-7 breast cancer cells. This study thus provides insights for the design of more effective multifunctional two-photon-sensitive nanocomposites via AuNPs for biomedical applications. PMID:26870736

  7. Fabrication and characterization of mesoporous TiO{sub 2}/polypyrrole-based nanocomposite for electrorheological fluid

    SciTech Connect

    Wei Chuan; Zhu Yihua Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-12-01

    Mesoporous TiO{sub 2}/polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO{sub 2}, the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO{sub 2}. Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism.

  8. The plumber's nightmare: a new morphology in block copolymer-ceramic nanocomposites and mesoporous aluminosilicates.

    PubMed

    Finnefrock, Adam C; Ulrich, Ralph; Toombes, Gilman E S; Gruner, Sol M; Wiesner, Ulrich

    2003-10-29

    A novel cubic bicontinuous morphology is found in polymer-ceramic nanocomposites and mesoporous aluminosilicates that are derived by an amphiphilic diblock copolymer, poly(isoprene-b-ethylene oxide) (PI-b-PEO), used as a structure-directing agent for an inorganic aluminosilicate. Small-angle X-ray scattering (SAXS) was employed to unambiguously identify the Im(-)3m crystallographic symmetry of the materials by fitting individual Bragg peak positions in the two-dimensional X-ray images. Structure factor calculations, in conjunction with results from transmission electron microscopy, were used to narrow the range of possible structures consistent with the symmetry and showed the plumber's nightmare morphology to be consistent with the data. The samples are made by deposition onto a substrate that imposes a strain field, generating a lattice distortion. This distortion is quantitatively analyzed and shown to have resulted in shrinkage of the crystallites by approximately one-third in a direction perpendicular to the substrate, in both as-made composites and calcined ceramic materials. Finally, the observation of the bicontinuous block-copolymer-derived hybrid morphology is discussed in the context of a pseudo-ternary morphology diagram and compared to existing studies of ternary phase diagrams of amphiphiles in a mixture of two solvents. The calcined mesoporous materials have potential applications in the fields of catalysis, separation technology, and microelectronics.

  9. Mesoporous Hybrid Polypyrrole-Silica Nanocomposite Films with a Strata-Like Structure.

    PubMed

    Farghaly, Ahmed A; Collinson, Maryanne M

    2016-06-14

    Using a single-potential-step coelectrodeposition route, Ppy-SiO2 nanocomposite films characterized by a multimodal porous structure were cathodically deposited from ethanolic solutions on oxidizable and nonoxidizable substrates for the first time. The materials produced have an interesting and unique strata-like pore structure along their depth. With the exception of a silica-rich inner region, the nanocomposite films are homogeneous in composition. Because the region closest to the electrode surface is silica-rich, the fabrication of Ppy-SiO2 and Ppy free-standing films become possible using a multistep etching strategy. Such films can be captured on a variety of different supports depending on the application, and they maintain their conductivity when interfaced with an electrode surface. These mesoporous composite films form through a unique mechanism that involves the production of two catalysts, OH(-) and NO(+). Through the process of understanding the reaction mechanism, we highlighted the effect of two simultaneous competing redox reactions occurring at the electrode interface on the morphology of the electrodeposited Ppy nanocomposite films and how solvent can influence the Ppy electropolymerization reaction mechanism and hence control the morphology of the final material. In an ethanolic solvent system, the pyrrole monomers undergo a step-growth polymerization, and particulate-like nanostructured films were obtained even upon changing the monomer or acid concentration. In an aqueous-based system, nanowire-like structures were produced, which is consistent with a chain-growth mechanism. Such materials are promising candidates for a wide range of applications including electrochemical sensing, energy storage, and catalysis. PMID:27245273

  10. Mesoporous Hybrid Polypyrrole-Silica Nanocomposite Films with a Strata-Like Structure.

    PubMed

    Farghaly, Ahmed A; Collinson, Maryanne M

    2016-06-14

    Using a single-potential-step coelectrodeposition route, Ppy-SiO2 nanocomposite films characterized by a multimodal porous structure were cathodically deposited from ethanolic solutions on oxidizable and nonoxidizable substrates for the first time. The materials produced have an interesting and unique strata-like pore structure along their depth. With the exception of a silica-rich inner region, the nanocomposite films are homogeneous in composition. Because the region closest to the electrode surface is silica-rich, the fabrication of Ppy-SiO2 and Ppy free-standing films become possible using a multistep etching strategy. Such films can be captured on a variety of different supports depending on the application, and they maintain their conductivity when interfaced with an electrode surface. These mesoporous composite films form through a unique mechanism that involves the production of two catalysts, OH(-) and NO(+). Through the process of understanding the reaction mechanism, we highlighted the effect of two simultaneous competing redox reactions occurring at the electrode interface on the morphology of the electrodeposited Ppy nanocomposite films and how solvent can influence the Ppy electropolymerization reaction mechanism and hence control the morphology of the final material. In an ethanolic solvent system, the pyrrole monomers undergo a step-growth polymerization, and particulate-like nanostructured films were obtained even upon changing the monomer or acid concentration. In an aqueous-based system, nanowire-like structures were produced, which is consistent with a chain-growth mechanism. Such materials are promising candidates for a wide range of applications including electrochemical sensing, energy storage, and catalysis.

  11. Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features: synthesis, characterization, and their oxygen-sensing performance.

    PubMed

    Wang, Yanyan; Li, Bin; Zhang, Liming; Song, Hang

    2013-01-29

    In this paper, the fabrication, characterization, and application in oxygen sensing are reported for a novel multifunctional nanomaterial of [Ru(bpy)(2)phen-MMS] (bpy, 2,2'-bipyridyl; phen, phenathrolin) which was simply prepared by covalently grafting the ruthenium(II) polypyridyl compounds into the channels of magnetic mesoporous silica nanocomposites (MMS). Scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, N(2) adsorption-desorption, a superconducting quantum interference device, UV-vis spectroscopy, and photoluminescence spectra were used to characterize the samples. The well-designed multifunctional nanocomposites show superparamagnetic behavior and ordered mesoporous characteristics and exhibit a strong red-orange metal-to-ligand charge transfer emission. In addition, the obtained nanocomposites give high performance in oxygen sensing with high sensitivity (I(0)/I(100) = 5.2), good Stern-Volmer characteristics (R(2) = 0.9995), and short response/recovery times (t↓ = 6 s and t↑ = 12 s). The magnetic, mesoporous, luminescent, and oxygen-sensing properties of this multifunctional nanostructure make it hold great promise as a novel multifunctional oxygen-sensing system for chemical/biosensor.

  12. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    PubMed

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose.

  13. Amperometric hydrogen peroxide and glucose biosensor based on NiFe2/ordered mesoporous carbon nanocomposites.

    PubMed

    Xiang, Dong; Yin, Longwei; Ma, Jingyun; Guo, Enyan; Li, Qun; Li, Zhaoqiang; Liu, Kegao

    2015-01-21

    Nanocomposites of NiFex embedded in ordered mesoporous carbon (OMC) (x = 0, 1, 2) were prepared by a wet impregnation and hydrogen reduction process and were used to construct electrochemical biosensors for the amperometric detection of hydrogen peroxide (H2O2) or glucose. The NiFe2/OMC nanocomposites were demonstrated to have a large surface area, suitable mesoporous channels, many edge-plane-like defective sites, and a good distribution of alloyed nanoparticles. The NiFe2/OMC and Nafion modified glass carbon electrode (GCE) exhibited excellent electrocatalytic activities toward the reduction of H2O2 as well. By utilizing it as a bioplatform, GOx (glucose oxidase) cross-linked with Nafion was immobilized on the surface of the electrode for the construction of an amperometric glucose biosensor. Our results indicated that the amperometric hydrogen peroxide biosensor (NiFe2/OMC + Nafion + GCE) showed good analytical performances in term of a high sensitivity of 4.29 μA mM(-1) cm(-2), wide linearity from 6.2 to 42,710 μM and a low detection limit of 0.24 μM at a signal-to-noise ratio of 3 (S/N = 3). This biosensor exhibited excellent selectivity, high stability and negligible interference for the detection of H2O2. In addition, the immobilized enzyme on NiFe2/OMC + Nafion + GCE, retaining its bioactivity, exhibited a reversible two-proton and two-electron transfer reaction, a fast heterogeneous electron transfer rate and an effective Michaelis-Menten constant (K) (3.18 mM). The GOx + NiFe2/OMC + Nafion + GCE could be used to detect glucose based on the oxidation of glucose catalyzed by GOx and exhibited a wide detection range of 48.6-12,500 μM with a high sensitivity of 6.9 μA mM(-1) cm(-2) and a low detection limit of 2.7 μM (S/N = 3). The enzymic biosensor maintained a high selectivity and stability features, and shows great promise for application in the detection of glucose. PMID:25429370

  14. Synthesis of mesoporous Mn/TiO2 nanocomposites and investigating the photocatalytic properties in aqueous systems.

    PubMed

    Oseghe, Ekemena Oghenovoh; Ndungu, Patrick Gathura; Jonnalagadda, Sreekanth Babu

    2015-01-01

    Mesoporous 20 wt% Mn/TiO2 nanocomposites were synthesized adopting modified sol-gel method at different pH (pH = 2, 7 and 11) conditions and calcined at 400 °C. Based on the characteristics of the 20 wt% Mn/TiO2 nanocomposites synthesized at pH 11, same procedure was adopted for the synthesis of different wt% Mn/TiO2. The nanocomposite samples and their surface properties were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), mapping, inductively coupled plasma optical emission spectrometry (ICP-OES), Fourier transform infrared (FTIR), and fluorescence spectrometry. The nanocomposites existed in the anatase phase of TiO2 with no peak assigned to Mn on the diffractogram. The photocatalytic activities of the materials were evaluated by monitoring degradation of a model dye (methylene blue (MB)) in presence of visible light and ozone. The nanocomposite synthesized under neutral condition (pH = 7) exhibited the best photocatalytic activity resulting from its relatively smaller crystal size (5.98 nm) and larger pore volume (0.30 cm(3)/g). One percentage of weight Mn/TiO2 showed 100% decolouration of MB in the presence of O3 after 100 min.

  15. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%. PMID:27451259

  16. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process.

    PubMed

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-21

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm(3) g(-1). The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis. PMID:26394819

  17. Fabrication of semi-aromatic polyamide/spherical mesoporous silica nanocomposite reverse osmosis membrane with superior permeability

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yu, Hui; Wu, Feiyang; Song, Jie; Pan, Xianhui; Zhang, Meng

    2016-02-01

    Semi-aromatic polyamide (SAP)/spherical mesoporous silica nanocomposite reverse osmosis (RO) membrane was successfully fabricated using m-phenylene diamine aqueous solution and cyclohexane-1,3,5-tricarbonyl chloride/mesoporous-silica-sphere (MSS) organic solution as main raw materials. The experimental suggests that the microstructures and surface features are significantly different from those of the contrast samples (the full- and semi-aromatic polyamide membranes), including the surface morphology, polymer framework structure, surface charge density, hydrophilicity, and the thickness of barrier layer. It was observed that many MSSs with ca. 1.5 nm of pore size are evenly embedded on the surface of the fabricated SAP/MSS RO membrane. Furthermore, the separation performance testing results indicate that the permeabilities range from 62.53 to 72.73 L/m2 h with the increase of the introduced MSSs from 0.02 to 0.08 w/v % under 1.5 MPa operating pressure and 2000 mg/L NaCl solution, which is obviously better than the contrast samples. Simultaneously, their salt rejections can be still maintained at a comparable level (94.78-91.46%). The excellent separation performance of the nanocomposite RO membrane is closely related to the higher-freedom-degree semi-aromatic framework, the incorporation of MSSs, the improved surface hydrophilicity, the thinner barrier layer, and the enhanced surface negative charge density.

  18. Mesoporous carbon-zirconium oxide nanocomposite derived from carbonized metal organic framework: A coating for solid-phase microextraction.

    PubMed

    Saraji, Mohammad; Mehrafza, Narges

    2016-08-19

    In this paper, a mesoporous carbon-ZrO2 nanocomposite was fabricated on a stainless steel wire for the first time and used as the solid-phase microextraction coating. The fiber was synthesized with the direct carbonization of a Zr-based metal organic framework. With the utilization of the metal organic framework as the precursor, no additional carbon source was used for the synthesis of the mesoporous carbon-ZrO2 nanocomposite coating. The fiber was applied for the determination of BTEX compounds (benzene, toluene, ethylbenzene and m, p-xylenes) in different water samples prior to gas chromatography-flame ionization detection. Such important experimental factors as synthesis time and temperature, salt concentration, equilibrium and extraction time, extraction temperature, desorption time and desorption temperature were studied and optimized. Good linearity in the concentration range of 0.2-200μgL(-1) and detection limits in the range of 0.05-0.56μgL(-1) was achieved for BTEX compounds. The intra- and inter-day relative standard deviations were in the range of 3.5-4.8% and 4.9-6.7%, respectively. The prepared fiber showed high capability for the analysis of BTEX compounds in different water and wastewater samples with good relative recoveries in the range of 93-107%.

  19. Mesoporous ZnS–NiS Nanocomposites for Nonenzymatic Electrochemical Glucose Sensors

    PubMed Central

    Wei, Chengzhen; Cheng, Cheng; Zhao, Junhong; Wang, Zhangtao; Wu, Haipeng; Gu, Kaiyue; Du, Weimin; Pang, Huan

    2015-01-01

    Mesoporous ZnS–NiS composites are prepared via ion- exchange reactions using ZnS as the precursor. The prepared mesoporous ZnS–NiS composite materials have large surface areas (137.9 m2 g−1) compared with the ZnS precursor. More importantly, the application of these mesoporous ZnS–NiS composites as nonenzymatic glucose sensors was successfully explored. Electrochemical sensors based on mesoporous ZnS–NiS composites exhibit a high selectivity and a low detection limit (0.125 μm) toward the oxidation of glucose, which can mainly be attributed to the morphological characteristics of the mesoporous structure with high specific surface area and a rational composition of the two constituents. In addition, the mesoporous ZnS–NiS composites coated on the surface of electrodes can be used to modify the mass transport regime, and this alteration can, in favorable circumstances, facilitate the amperometric discrimination between species. These results suggest that such mesoporous ZnS–NiS composites are promising materials for nonenzymatic glucose sensors. PMID:25861568

  20. Facile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wang, Qihua; Wang, Tingmei

    2015-10-01

    The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume of 1.0 cm3 g-1. The novelty of this approach lies in the use of an inorganic-organic hybrid layer to assist the creation of large-pore morphology on the outermost shell thereby promoting efficient mass transfer or storage. Importantly, the method is reliable and grams of products can be easily prepared. The morphology on the outermost silica shell can be controlled by simply adjusting the VTES-to-TEOS molar ratio (VTES: triethoxyvinylsilane, TEOS: tetraethyl orthosilicate) as well as the etching time. The as-synthesized products exhibit fluorescence performance by incorporating rhodamine B isothiocyanate (RITC) covalently into the inner silica walls, which provide potential application in bioimaging. We also demonstrate the applications of as-synthesized large-pore structured nanocomposites in drug delivery systems and stimuli-responsive nanoreactors for heterogeneous catalysis.The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si- framework of silica nanoparticles together with a selective etching strategy. The as-synthesized products show good monodispersion and a large pore volume

  1. Preparation of magnetic nano-composite: barium hexaferrite loaded in the ordered meso-porous silica matrix (MCM-41).

    PubMed

    Emamian, H R; Honarbakhsh-Raouf, A; Ataie, A

    2010-04-01

    In this work a magnetic nano-composite was synthesized by modified incorporation of iron-barium complex into ordered meso-porous silica (MCM-41) as a matrix. The MCM-41 was synthesized by silylation treatment which was accompanied by pH adjusting. Low angle XRD patterns of both annealed MCM-41 and resulted composite exhibited the characteristic reflection of high quality hexagonal meso-structures. TEM image of the composite material revealed that the hexagonal ordered meso-structure host material was not affected by wet impregnation and subsequent calcination in order to incorporate with barium hexaferrite. Also, TEM images accompanied by EDS analysis confirmed the formation of second phase consists of barium and iron ions inside the MCM-41 channels. The resulted composite material showed a super-paramagnetic nature at room temperature.

  2. High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells

    PubMed Central

    Wang, Hui; Zhang, Songjin; Tian, Xiumei; Liu, Chufeng; Zhang, Lei; Hu, Wenyong; Shao, Yuanzhi; Li, Li

    2016-01-01

    Nanoprobes for combined optical and magnetic resonance imaging have tremendous potential in early cancer diagnosis. Gold nanoparticles (AuNPs) co-doped with Gd2O3 mesoporous silica nanocomposite (Au/Gd@MCM-41) can produce pronounced contrast enhancement for T1 weighted image in magnetic resonance imaging (MRI). Here, we show the remarkably high sensitivity of Au/Gd@MCM-41 to the human poorly differentiated nasopharyngeal carcinoma (NPC) cell line (CNE-2) using fluorescence lifetime imaging (FLIM). The upconversion luminescences from CNE-2 and the normal nasopharyngeal (NP) cells (NP69) after uptake of Au/Gd@MCM-41 show the characteristic of two-photon-induced-radiative recombination of the AuNPs. The presence of the Gd3+ ion induces a much shorter luminescence lifetime in CNE-2 cells. The interaction between AuNPs and Gd3+ ion clearly enhances the optical sensitivity of Au/Gd@MCM-41 to CNE-2. Furthermore, the difference in the autofluorescence between CNE-2 and NP69 cells can be efficiently demonstrated by the emission lifetimes of Au/Gd@MCM-41 through the Forster energy transfers from the endogenous fluorophores to AuNPs. The results suggest that Au/Gd@MCM-41 may impart high optical resolution for the FLIM imaging that differentiates normal and high-grade precancers. PMID:27694966

  3. Adsorptive interaction of bisphenol A with mesoporous titanosilicate/reduced graphene oxide nanocomposite materials: FT-IR and Raman analyses

    NASA Astrophysics Data System (ADS)

    Nguyen-Huy, Chinh; Kim, Nayoung; Nguyen-Phan, Thuy-Duong; Yoo, Ik-Keun; Woo Shin, Eun

    2014-09-01

    Nanocomposite materials containing graphene oxide have attracted tremendous interest as catalysts and adsorbents for water purification. In this study, mesoporous titanosilicate/reduced graphene oxide composite materials with different Ti contents were employed as adsorbents for removing bisphenol A (BPA) from water systems. The adsorptive interaction between BPA and adsorption sites on the composite materials was investigated by Fourier transform infrared (FT-IR) and Raman spectroscopy. Adsorption capacities of BPA at equilibrium, q e (mg/g), decreased with increasing Ti contents, proportional to the surface area of the composite materials. FT-IR observations for fresh and spent adsorbents indicated that BPA adsorbed onto the composite materials by the electrostatic interaction between OH functional groups contained in BPA and on the adsorbents. The electrostatic adsorption sites on the adsorbents were categorized into three hydroxyl groups: Si-OH, Ti-OH, and graphene-OH. In Raman spectra, the intensity ratios of D to G band were decreased after the adsorption of BPA, implying adsorptive interaction of benzene rings of BPA with the sp2 hybrid structure of the reduced graphene oxide.

  4. High sensitivity of gold nanoparticles co-doped with Gd2O3 mesoporous silica nanocomposite to nasopharyngeal carcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Songjin; Tian, Xiumei; Liu, Chufeng; Zhang, Lei; Hu, Wenyong; Shao, Yuanzhi; Li, Li

    2016-10-01

    Nanoprobes for combined optical and magnetic resonance imaging have tremendous potential in early cancer diagnosis. Gold nanoparticles (AuNPs) co-doped with Gd2O3 mesoporous silica nanocomposite (Au/Gd@MCM-41) can produce pronounced contrast enhancement for T1 weighted image in magnetic resonance imaging (MRI). Here, we show the remarkably high sensitivity of Au/Gd@MCM-41 to the human poorly differentiated nasopharyngeal carcinoma (NPC) cell line (CNE-2) using fluorescence lifetime imaging (FLIM). The upconversion luminescences from CNE-2 and the normal nasopharyngeal (NP) cells (NP69) after uptake of Au/Gd@MCM-41 show the characteristic of two-photon-induced-radiative recombination of the AuNPs. The presence of the Gd3+ ion induces a much shorter luminescence lifetime in CNE-2 cells. The interaction between AuNPs and Gd3+ ion clearly enhances the optical sensitivity of Au/Gd@MCM-41 to CNE-2. Furthermore, the difference in the autofluorescence between CNE-2 and NP69 cells can be efficiently demonstrated by the emission lifetimes of Au/Gd@MCM-41 through the Forster energy transfers from the endogenous fluorophores to AuNPs. The results suggest that Au/Gd@MCM-41 may impart high optical resolution for the FLIM imaging that differentiates normal and high-grade precancers.

  5. A pH-Responsive Hydrogel Based on a Tumor-Targeting Mesoporous Silica Nanocomposite for Sustained Cancer Labeling and Therapy.

    PubMed

    Chen, Xin; Liu, Zhongning

    2016-09-01

    A facile strategy is presented to synthesize hyaluronic acid (HA) and a fluorescein isothiocyanate (FITC)-conjugated mesoporous silica nanocomposite (MSN) with multiple functions of fluorescence, tumor-cell targeting, pH-triggered gelation, and enzyme-responsive drug release. This injectable nanocomposite is able to indicate the entire tumor location and provides a microenvironment with rich anticancer drugs in and around tumor tissue for a long time, to avoid recrudescence. In this design, the mesoporous silica serves as the drug container, the FITC serves as a fluorescent probe, and the anchored HA plays multiple roles as drug-release cap, tumor-targeting points, and responsive gel matrix. Owing to the specific affinity between the HA on MSNs and the CD44 antigen over-expressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposites then exploit the pH-responsive interactions (hydrogen bonds) among the HA to self-assemble in situ into a hydrogel around the tumor tissue. The resulting hydrogel gradually releases its payload (doxorubicin, anticancer drugs)-loaded MSNs upon HA degradation in the presence of hyaluronidase-1 (Hyal-1), followed by endocytosis and intracellular drug release. All these properties have distinct benefits for tumor treatment, demonstrating that this device is a promising candidate for oncotherapy applications. PMID:27448182

  6. Mesoporous anatase TiO{sub 2}/reduced graphene oxide nanocomposites: A simple template-free synthesis and their high photocatalytic performance

    SciTech Connect

    Zhou, Qi; Zhong, Yong-Hui; Chen, Xing; Huang, Xing-Jiu; Wu, Yu-Cheng

    2014-03-01

    Graphical abstract: - Highlights: • Mesoporous TiO{sub 2} nanoparticles with anatase phase were assembled on reduced graphene oxide via a template-free one-step hydrothermal method. • The TiO{sub 2}/rGO nanocomposites have better adsorption capacity and photocatalytic degradation efficiency for dyes removal. • Improved dye adsorption and photogenerated charge separation are responsible for enhanced activity. - Abstract: Mesoporous anatase phase TiO{sub 2} was assembled on reduced graphene oxide (rGO) using a template-free one-step hydrothermal process. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area. Morphology of TiO{sub 2} was related to the content of graphene oxide. TiO{sub 2}/rGO nanocomposites exhibited excellent photocatalytic activity for the photo-degradation of methyl orange. The degradation rate was 4.5 times greater than that of pure TiO{sub 2} nanoparticles. This difference was attributed to the thin two-dimensional graphene sheet. The graphene sheet had a large surface area, high adsorption capacity, and acted as a good electron acceptor for the transfer of photo-generated electrons from the conduction band of TiO{sub 2}. The enhanced surface adsorption characteristics and excellent charge transport separation were independent properties of the photocatalytic degradation process.

  7. Tuning magnetoelectric coupling using porosity in multiferroic nanocomposites of ALD-grown Pb(Zr,Ti)O3 and templated mesoporous CoFe2O4

    NASA Astrophysics Data System (ADS)

    Chien, Diana; Buditama, Abraham N.; Schelhas, Laura T.; Kang, Hye Yeon; Robbennolt, Shauna; Chang, Jane P.; Tolbert, Sarah H.

    2016-09-01

    In this manuscript, we examine ways to create multiferroic composites with controlled nanoscale architecture. We accomplished this by uniformly depositing piezoelectric lead zirconate titanate (PZT) into templated mesoporous, magnetostrictive cobalt ferrite (CFO) thin films to form nanocomposites in which strain can be transferred at the interface between the two materials. To study the magnetoelectric coupling, the nanostructure was electrically poled ex situ prior to magnetic measurements. No samples showed a change in in-plane magnetization as a function of voltage due to substrate clamping. Out-of-plane changes were observed, but contrary to expectations based on total PZT volume fraction, mesoporous CFO samples partially filled with PZT showed more change in out-of-plane magnetization than the sample with fully filled pores. This result suggests that residual porosity in the composite adds mechanical flexibility and results in greater magnetoelectric coupling.

  8. Organic materials as templates for the formation of mesoporous inorganic materials and ordered inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Ziegler, Christopher R.

    Hierarchically structured inorganic materials are everywhere in nature. From unicellular aquatic algae such as diatoms to the bones and/or cartilage that comprise the skeletal systems of vertebrates. Complex mechanisms involving site-specific chemistries and precision kinetics are responsible for the formation of such structures. In the synthetic realm, reproduction of even the most basic hierarchical structure effortlessly produced in nature is difficult. However, through the utilization of self-assembling structures or "templates", such as polymers or amphiphilic surfactants, combined with some favorable interaction between a chosen inorganic, the potential exists to imprint an inorganic material with a morphology dictated via synthetic molecular self-assembly. In doing so, a very basic hierarchical structure is formed on the angstrom and nanometer scales. The work presented herein utilizes the self-assembly of either surfactants or block copolymers with the desired inorganic or inorganic precursor to form templated inorganic structures. Specifically, mesoporous silica spheres and copolymer directed calcium phosphate-polymer composites were formed through the co-assembly of an organic template and a precursor to form the desired mesostructured inorganic. For the case of the mesoporous silica spheres, a silica precursor was mixed with cetyltrimethylammonium bromide and cysteamine, a highly effective biomimetic catalyst for the conversion of alkoxysilanes to silica. Through charge-based interactions between anionic silica species and the micelle-forming cationic surfactant, ordered silica structures resulted. The incorporation of a novel, effective catalyst was found to form highly condensed silica spheres for potential application as catalyst supports or an encapsulation media. Ordered calcium phosphate-polymer composites were formed using two routes. Both routes take advantage of hydrogen bonding and ionic interactions between the calcium and phosphate precursors

  9. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser

    PubMed Central

    Liu, Yang; Xu, Ming; Chen, Qing; Guan, Guannan; Hu, Wen; Zhao, Xiuli; Qiao, Mingxi; Hu, Haiyang; Liang, Ying; Zhu, Heyun; Chen, Dawei

    2015-01-01

    Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer. PMID:26251596

  10. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability

    PubMed Central

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-01-01

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li+ diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe3+ to Fe2+ and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li+ intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method. PMID:27181195

  11. Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Huang, Shao-Zhuan; Jin, Jun; Liu, Jing; Li, Yu; Wang, Hong-En; Chen, Li-Hua; Wang, Bin-Jie; Su, Bao-Lian

    2016-05-01

    A highly crystalline three dimensional (3D) bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite constructed by nanoparticles in the range of 50~100 nm via a rapid microwave assisted solvothermal process followed by carbon coating have been synthesized as cathode material for high performance lithium-ion batteries. The abundant 3D macropores allow better penetration of electrolyte to promote Li+ diffusion, the mesopores provide more electrochemical reaction sites and the carbon layers outside LiFePO4 nanoparticles increase the electrical conductivity, thus ultimately facilitating reverse reaction of Fe3+ to Fe2+ and alleviating electrode polarization. In addition, the particle size in nanoscale can provide short diffusion lengths for the Li+ intercalation-deintercalation. As a result, the 3D macro-mesoporous nanosized LiFePO4/C electrode exhibits excellent rate capability (129.1 mA h/g at 2 C; 110.9 mA h/g at 10 C) and cycling stability (87.2% capacity retention at 2 C after 1000 cycles, 76.3% at 5 C after 500 cycles and 87.8% at 10 C after 500 cycles, respectively), which are much better than many reported LiFePO4/C structures. Our demonstration here offers the opportunity to develop nanoscaled hierarchically porous LiFePO4/C structures for high performance lithium-ion batteries through microwave assisted solvothermal method.

  12. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser.

    PubMed

    Liu, Yang; Xu, Ming; Chen, Qing; Guan, Guannan; Hu, Wen; Zhao, Xiuli; Qiao, Mingxi; Hu, Haiyang; Liang, Ying; Zhu, Heyun; Chen, Dawei

    2015-01-01

    Photothermal therapy (PTT) is widely regarded as a promising technology for cancer treatment. Gold nanorods (GNRs), as excellent PTT agent candidates, have shown high-performance photothermal conversion ability under laser irradiation, yet two major obstacles to their clinical application are the lack of selective accumulation in the target site following systemic administration and the greatly reduced photothermal conversion efficiency caused by self-aggregating in aqueous environment. Herein, we demonstrate that tLyp-1 peptide-functionalized, indocyanine green (ICG)-containing mesoporous silica-coated GNRs (I-TMSG) possessed dual-function as tumor cells-targeting near-infrared (NIR) fluorescent probe and PTT agents. The construction of the nanostructure began with synthesis of GNRs by seed-mediated growth method, followed by the coating of mesoporous silica, the chemical conjugation of PEG and tLyp-1 peptide, and the enclosure of ICG as an NIR imaging agent in the mesoporous. The as-prepared nanoparticles could shield the GNRs against their self-aggregation, improve the stability of ICG, and exhibit negligible dark cytotoxicity. More importantly, such a theranostic nanocomposite could realize the combination of GNRs-based photothermal ablation under NIR illumination, ICG-mediated fluorescent imaging, and tLyp-1-enabled more easy endocytosis into breast cancer cells. All in all, I-TMSG nanoparticles, in our opinion, possessed the strong potential to realize the effective diagnosis and PTT treatment of human mammary cancer. PMID:26251596

  13. Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes

    NASA Astrophysics Data System (ADS)

    Xu, G. B.; Yang, L. W.; Wei, X. L.; Ding, J. W.; Zhong, J. X.; Chu, P. K.

    2016-09-01

    Rational design and self-assembly of nanostructured electrode materials for high-performance energy-storage devices is highly desirable but still challenging. Herein, we design and synthesize hierarchical porous nanocomposite architectures consisting of mesoporous NaTi2(PO4)3 (MNTP) nanocrystals (NCs) with a pore size of about 10 nm and multi-wall carbon nanotube (MWCNT) networks for high-performance sodium ion batteries (SIBs). Our strategy is based on the hetero-assembly of MWCNTs and nanostructured building units by utilizing the screening effect of electrostatic repulsion in a solution engineered ionic strength using highly soluble ammonium salt to form three-dimensional hierarchical assemblies of MWCNT networks and packed MNTP NCs. Subsequent freeze-drying and calcination convert the assemblies into robust hierarchical porous MWCNTs-threaded particles. Calcination of residual ammonium salt introduces nitrogen into the MWCNTs. Such nanoarchitecture enhances electron/ion conductivity and structural stability as anode materials for SIBs. The nanocomposite has high initial Coulombic efficiency of 99%, high rate capability of 74.0 mAhg-1 at 50C, as well as long-term cycling stability with capacity retention of 74.3 mAhg-1 after 2000 cycles with only 0.012% loss per cycle at 10C. The results provide a general and scalable hetero-assembly approach to different types of nanocomposites for high-performance energy storage devices such as LIBs and SIBs.

  14. Green and facile synthesis of an Au nanoparticles@polyoxometalate/ordered mesoporous carbon tri-component nanocomposite and its electrochemical applications.

    PubMed

    Zhang, Yufan; Bo, Xiangjie; Nsabimana, Anaclet; Munyentwali, Alexis; Han, Ce; Li, Mian; Guo, Liping

    2015-04-15

    The one-pot synthesis of a well-defined Au nanoparticles@polyoxometalates/ordered mesoporous carbon (Au@POMs/OMC) tri-component nanocomposite is reported, which is facile, green and rapid. The polyoxometalates were used as both reductant and bridging molecules. The formation of these composite materials was verified by a comprehensive characterization using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectra, scanning electron microscopy, and transmission electron microscopy. The novel nanohybrids of Au@POMs/OMC can provide new features of electrocatalytic activities, because of the synergetic effects of Au nanoparticles and OMC materials. Most importantly, the amperometric measurements show that the Au@POMs/OMC nanohybrids have a high catalytic activity with a good sensitivity, long-term stability, wide linear range, low detection limit, and fast response towards acetaminophenol, H2O2, and NADH detection for application as an enzyme-free biosensor. PMID:25460901

  15. Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue

    NASA Astrophysics Data System (ADS)

    Wu, Xi-Lin; Shi, Yanpeng; Zhong, Shuxian; Lin, Hongjun; Chen, Jian-Rong

    2016-08-01

    Herein, we have developed a facile and low-cost method for the synthesis of novel graphene based nanosorbents. Firstly, well-defined Fe3O4 nanoparticles were decorated onto graphene sheets, and then a layer of mesoporous SiO2 were deposited on the surface of the Fe3O4-graphene composites. The obtained Fe3O4-graphene@mesoporous SiO2 nanocomposites (denoted as MG@m-SiO2) were characterized by scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transformed infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The adsorptive property was investigated by using MG@m-SiO2 as sorbents and Methylene Blue (MB), a common dye, as model of the organic pollutants. Adsorption kinetics, isotherms, thermodynamics as well as effects of pH and adsorbent dose on the adsorption were studied. The adsorption isotherms and kinetics are better described by Langmuir isotherm model and pseudo-second-order kinetic model, respectively. Thermodynamic studies suggest that the adsorption of MB onto the MG@m-SiO2 is endothermic and spontaneous process. The results imply that the MG@m-SiO2 can be served as a cost-effective adsorbent for the removal of organic pollutants from aqueous solutions.

  16. Mesoporous Silica Particles Integrated with All-Inorganic CsPbBr3 Perovskite Quantum-Dot Nanocomposites (MP-PQDs) with High Stability and Wide Color Gamut Used for Backlight Display.

    PubMed

    Wang, Hung-Chia; Lin, Shin-Ying; Tang, An-Cih; Singh, Bheeshma Pratap; Tong, Hung-Chun; Chen, Ching-Yi; Lee, Yu-Chun; Tsai, Tzong-Liang; Liu, Ru-Shi

    2016-07-01

    All-inorganic CsPbX3 (X=I, Br, Cl) perovskite quantum dots (PQDs) have been investigated because of their optical properties, such as tunable wavelength, narrow band, and high quantum efficiency. These features have been used in light emitting diode (LED) devices. LED on-chip fabrication uses mixed green and red quantum dots with silicone gel. However, the ion-exchange effect widens the narrow emission spectrum. Quantum dots cannot be mixed because of anion exchange. We address this issue with a mesoporous PQD nanocomposite that can prevent ion exchange and increase stability. We mixed green quantum-dot-containing mesoporous silica nanocomposites with red PQDs, which can prevent the anion-exchange effect and increase thermal and photo stability. We applied the new PQD-based LEDs for backlight displays. We also used PQDs in an on-chip LED device. Our white LED device for backlight display passed through a color filter with an NTSC value of 113 % and Rec. 2020 of 85 %. PMID:27239980

  17. 3D visualization of TiO2 nanocrystals in mesoporous nanocomposite using energy filtered transmission electron microscopy tomography.

    PubMed

    Gondo, Takashi; Kasama, Takeshi; Kaneko, Kenji

    2014-11-01

    IntroductionMesoporous silica, SBA-15, is one of the best candidate for the supporting material of catalytic nanoparticles because of its relative large and controllable pore size and large specific surface area [1]. So far, various nanoparticles, such as Au, Pt and Pd, have been introduced into the pore for catalytic application [2]. The size of nanoparticles supported inside SBA-15 is restricted by that of the pore, and they are usually ranging from 2 nm and 50 nm in space.It is necessary to anchor the nanoparticles within pores to avoid segregation / sintering of them. However, it is difficult to anchor them within pores in the case of use of deposition-precipitation method due to extreme low iso-electric point (IEP) of silica (∼2). Therefore, TiO2 nanocrystals (IEP 6-8) were then introduced to anchor AuNPs [3].In this study, EFTEM tomography was applied to examine the effectiveness of TiO2 for AuNPs. Materials and methodAu/TiO2-SBA-15 was embedded into epoxy resin for electron microscopy and microtomed to about 30 nm thickness. EFTEM-tomography was operated at 120 kV and using Ti-L ionization edge via three-window method. Prior to EFTEM, STEM-HAADF tomography was also carried out for visualizing AuNPs and for comparison. Result and discussionFigure 1 shows 3D-volume of AuNPs and TiO2 nanocrystals from EFTEM-tomography. TiO2 nanocrystals in the porous material were successfully visualized using EFTEM -tomography, and local relationship between AuNPs and TiO2 nanocrystals were revealed. A large number of TiO2 nanocrystals were randomly distributed in the SBA-15. It was found that most AuNPs were directly on the exposed TiO2 nanocrystals. It implies that TiO2 nanocrystals were exposed on the surface of the pore and anchored AuNPs inside the pores.jmicro;63/suppl_1/i27/DFU081F1F1DFU081F1Fig. 1.3D volume of AuNPs and TiO2 nanocrystals.

  18. S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity.

    PubMed

    Liu, Chao; Han, Ruirui; Ji, Hongmei; Sun, Tao; Zhao, Jin; Chen, Ningna; Chen, Jing; Guo, Xuefeng; Hou, Wenhua; Ding, Weiping

    2016-01-14

    The S-doped mesoporous nanocomposite (S-TNT) of HTiNbO5 nanosheets (NSs) and anatase TiO2 nanoparticles (NPs) with exposed {101} facets has been successfully synthesized by first mixing freeze-dried HTiNbO5 NSs with titanium isopropoxide and then calcination with thiourea in air. The exposed anatase {101} facets can act as a possible reservoir of the photogenerated electrons, yielding a highly reactive surface for the reduction of O2 to O2˙(-). The partial substitution of Ti(4+) by S(6+) in the lattice of TiO2 NPs leads to a charge imbalance in S-TNT and the formation of Ti-O-S bonds. As a result, the formed cationic S-TNT favours adsorption of hydroxide ions (OH(-)(ads)) and thus captures the photo-induced holes to form hydroxyl radicals (˙OH). Moreover, with the formation of Ti-O-S bonds, partial electrons can be transferred from S to O atoms and hence the electron-deficient S atoms might capture photo-induced electrons. The surface-adsorbed SO4(2-) could also act as an efficient electron trapping center to promote the separation of charge carriers. In addition, the Ti(3+) species due to the removal of oxygen atoms during calcination and the associated oxygen vacancy defects on the surface of S-TNT could act as hole and electron scavengers, respectively. Besides, the closely contacted interface is formed between HTiNbO5 NSs and anatase TiO2 NPs due to the common features of TiO6 octahedra in two components, resulting in a nanoscale heterojunction structure to speed up the separation rate of photogenerated charge carriers. The formation of a nano-heterojunction and the incorporation of Ti(3+) and S dopants give rise to the visible and near-infrared light response of S-TNT. The combined effects greatly retard the charge recombination and improve the photocatalytic activity for the degradation of rhodamine B (RhB) and phenol solution under visible light irradiation. The corresponding photocatalytic mechanism was investigated via the active species capture

  19. A self-reductive mesoporous CuO(x)/Fe/silicate nanocomposite as a highly active and stable catalyst for methanol reforming.

    PubMed

    Li, Chien-Cheng; Chen, Yan-Wun; Lin, Ran-Jin; Chang, Ching-Chun; Chen, Kuei-Hsien; Lin, Hong-Ping; Chen, Li-Chyong

    2011-09-01

    A simple and convenient one-pot synthetic route to directly prepare a self-reductive mesoporous copper-iron-silicate (CuO(x)-Fe-silicate)-based catalyst has been developed. The resultant catalyst is highly active and stable in methanol reforming without needing a pre-reduction procedure. PMID:21773606

  20. Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 in MCM-41

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2009-09-30

    The structure of ammonia borane (AB), NH3BH3, infused in mesoporous silica MCM-41 and its evolution over the temperature range of 80 to 300 K was investigated using the atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data in order to understand the origin of improved dehydrogenation properties of the system. Our study shows how X-ray PDF analysis can be used to elucidate the structure of light guest species loaded in mesoporous silica materials despite of its low scattering power of composed elements (N, B, and H) compared to its host (SiO2). PDF analyses of two AB-loaded compositions with weight ratio AB:MCM-41=1:1 and 3:1 provide a strong evidence that AB aggregate, previously found in AB:MCM-41≥1:1 samples, is same species as neat AB. For both of them an orthorhombic to tetragonal structural phase transition occurs at 225 K on warming. On the other hand, AB residing inside meso-pores, which is found in AB:MCM-41=1:2 sample, does not undergo such phase transition. It rather stays in tetragonal phase over a wide temperature range of 110 to 240 K and starts to lose structural correlation above 240 K. This strongly suggests that nano-confinement of AB inside meso-pores stabilizes high temperature tetragonal phase at much lower temperature. These results provide important clues to two critical questions: why nan-compositions of AB leads dehydrogenation to lower temperature and why the neat AB like propoerties are recovered at high AB loading samples. This work was supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Mesoporous carbon/zirconia composites: a potential route to chemically functionalized electrically-conductive mesoporous materials.

    PubMed

    Oh, Jung-Min; Kumbhar, Amar S; Geiculescu, Olt; Creager, Stephen E

    2012-02-14

    Mesoporous nanocomposite materials in which nanoscale zirconia (ZrO(2)) particles are embedded in the carbon skeleton of a templated mesoporous carbon matrix were prepared, and the embedded zirconia sites were used to accomplish chemical functionalization of the interior surfaces of mesopores. These nanocomposite materials offer a unique combination of high porosity (e.g., ∼84% void space), electrical conductivity, and surface tailorability. The ZrO(2)/carbon nanocomposites were characterized by thermogravimetric analysis, nitrogen-adsorption porosimetry, helium pychnometry, powder X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Comparison was made with templated mesoporous carbon samples prepared without addition of ZrO(2). Treatment of the nanocomposites with phenylphosphonic acid was undertaken and shown to result in robust binding of the phosphonic acid to the surface of ZrO(2) particles. Incorporation of nanoscale ZrO(2) surfaces in the mesoporous composite skeleton offers unique promise as a means for anchoring organophosphonates inside of pores through formation of robust covalent Zr-O-P bonds. PMID:22248432

  2. Hierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Bo; Yang, Yue; Chen, Li-Hua; Wang, Yun; Huang, Shao-Zhuan; Tao, Jia-Wei; Ma, Xiao-Ting; Hasan, Tawfique; Li, Yu; Xu, Yan; Su, Bao-Lian

    2016-05-01

    Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500, obtained by calcination at 500 °C in nitrogen, contains an anatase TiO2-C heterostructure with a specific surface area of 66.5 m2 g-1. When evaluated as an anode material at 0.5 C, TiO2/C-500 exhibits a high and reversible lithium storage capacity of 188 mA h g-1, an excellent initial capacity of 283 mA h g-1, a long cycle life with a 94% coulombic efficiency preserved after 200 cycles, and a very low charge transfer resistance. The superior electrochemical performance of TiO2/C-500 is attributed to the synergistic effect of high electrical conductivity, anatase TiO2-C heterostructure, mesopore-macropore network and robust scaffolding architecture. The current material strategy affords a general approach for the design of complex inorganic nanocomposites with structural stability, and tunable and interconnected hierarchical porosity that may lead to the next generation of electrochemical supercapacitors with high energy efficiency and superior power density.Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. TiO2/C has a robust scaffolding architecture, a mesopore-macropore network and TiO2-C heterostructure. TiO2/C-500

  3. Thermally stable polymer composites with improved transparency by using colloidal mesoporous silica nanoparticles as inorganic fillers.

    PubMed

    Suzuki, Norihiro; Zakaria, Mohamed B; Chiang, Ya-Dong; Wu, Kevin C-W; Yamauchi, Yusuke

    2012-05-28

    The colloidal mesoporous silica nanoparticles with small particle sizes (namely, CMS) are used as inorganic fillers of polymers (i.e. epoxy and silicone). From simple calculation, almost all polymers are estimated to be confined in the mesopores. To clarify the superiority of CMS over nonporous silica particles and mesoporous silica particles with much larger size (TMPS-4) as inorganic fillers, a systematic study on mechanical strength and transparency of polymer-silica nanocomposites was conducted. Compared with nonporous silica particles, similar to TMPS-4, CMS shows a greater effect on lowering the CTE. In addition, obtained polymer-CMS nanocomposites show improved transparency than polymer-TMPS-4 nanocomposites.

  4. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer.

    PubMed

    Yang, Guangbao; Gong, Hua; Liu, Teng; Sun, Xiaoqi; Cheng, Liang; Liu, Zhuang

    2015-08-01

    Integrating multiple imaging and therapy functionalities into one single nanoscale platform has been proposed to be a promising strategy in cancer theranostics. In this work, WS2 nanosheets with their surface pre-adsorbed with iron oxide (IO) nanoparticles via self-assembly are coated with a mesoporous silica shell, on to which polyethylene glycol (PEG) is attached. The obtained WS2-IO@MS-PEG composite nanoparticles exhibit many interesting inherent physical properties, including high near-infrared (NIR) light and X-ray absorbance, as well as strong superparamagnetism. In the mean time, the mesoporous silica shell in WS2-IO@MS-PEG could be loaded with a chemotherapy drug, doxorubicin (DOX), whose intracellular release afterwards may be triggered by NIR-induced photothermal heating for enhanced cancer cell killing. Upon systemic administration of such drug-loaded nano-theranostics, efficient tumor homing of WS2-IO@MS-PEG/DOX is observed in tumor-bearing mice as revealed by three-modal fluorescence, magnetic resonance (MR), and X-ray computed tomography (CT) imaging. In vivo combined photothermal & chemotherapy is then carried out with WS2-IO@MS-PEG/DOX, achieving a remarkably synergistic therapeutic effect superior to the respective mono-therapies. Our study highlights the promise of developing multifunctional nanoscale theranostics based on two-dimensional transition metal dichalcogenides (TMDCs) such as WS2 for multimodal imaging-guided combination therapy of cancer. PMID:25985153

  5. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer.

    PubMed

    Yang, Guangbao; Gong, Hua; Liu, Teng; Sun, Xiaoqi; Cheng, Liang; Liu, Zhuang

    2015-08-01

    Integrating multiple imaging and therapy functionalities into one single nanoscale platform has been proposed to be a promising strategy in cancer theranostics. In this work, WS2 nanosheets with their surface pre-adsorbed with iron oxide (IO) nanoparticles via self-assembly are coated with a mesoporous silica shell, on to which polyethylene glycol (PEG) is attached. The obtained WS2-IO@MS-PEG composite nanoparticles exhibit many interesting inherent physical properties, including high near-infrared (NIR) light and X-ray absorbance, as well as strong superparamagnetism. In the mean time, the mesoporous silica shell in WS2-IO@MS-PEG could be loaded with a chemotherapy drug, doxorubicin (DOX), whose intracellular release afterwards may be triggered by NIR-induced photothermal heating for enhanced cancer cell killing. Upon systemic administration of such drug-loaded nano-theranostics, efficient tumor homing of WS2-IO@MS-PEG/DOX is observed in tumor-bearing mice as revealed by three-modal fluorescence, magnetic resonance (MR), and X-ray computed tomography (CT) imaging. In vivo combined photothermal & chemotherapy is then carried out with WS2-IO@MS-PEG/DOX, achieving a remarkably synergistic therapeutic effect superior to the respective mono-therapies. Our study highlights the promise of developing multifunctional nanoscale theranostics based on two-dimensional transition metal dichalcogenides (TMDCs) such as WS2 for multimodal imaging-guided combination therapy of cancer.

  6. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  7. Low-Temperature Pseudomorphic Transformation of Ordered Hierarchical Macro-mesoporous SiO 2 /C Nanocomposite to SiC via Magnesiothermic Reduction

    SciTech Connect

    Shi, Yifeng; Zhang, Fan; Hu, Yong-Sheng; Sun, Xiaohong; Zhang, Yichi; Lee, Hyung Ik; Chen, Liquan; Stucky, Galen D.

    2010-04-01

    A magnesiothermic reduction synthesis approach is reported for direct conversion of SiO₂/C composite nanostructures to corresponding SiC materials without losing their nanostructure morphologies. Crystalline SiC materials can be obtained by this approach at a temperature as low as 600 °C, only approximately half of that applied in the generally used carbothermal reduction and preceramic polymer pyrolysis methods. An ordered hierarchical macro-mesoporous SiC material was synthesized for the first time as a demonstration. This pseudomorphic transformation can be regarded as a general synthesis method for different kinds of SiC nanostructures, and it can also be readily extended to other metal carbide materials as well as TiC.

  8. Folic acid-conjugated TiO2-doped mesoporous carbonaceous nanocomposites loaded with Mitoxantrone HCl for chemo-photodynamic therapy.

    PubMed

    Li, Zhi; Ou-Yang, Ya; Liu, Yang; Wang, Yi-Qiu; Zhu, Xia-Li; Zhang, Zhen-Zhong

    2015-06-01

    Recently, porous carbons have showed great potential in many areas. In this study, TiO2-doped mesoporous carbonaceous (TiO2@C) nanoparticles were obtained by a simple one-pot hydrothermal treatment, folic acid (FA) was conjugated to TiO2@C through an amide bond, then Mitoxantrone HCl (MTX) was adsorbed onto TiO2@C-FA and a drug delivery system, TiO2@C-FA/MTX was obtained. TiO2@C-FA/MTX showed a much faster MTX release at pH 4.5 than at pH 6.0 and pH 7.4. Furthermore, compared with free MTX, this drug delivery system showed a dose-dependent cytotoxicity by varying the irradiance, and afforded higher antitumor efficacy in cultured PC3 cells in vitro. The ability of TiO2@C-FA/MTX to combine chemotherapy with photodynamic activity enhanced the cancer cell killing effect in vitro, demonstrating that TiO2@C-FA/MTX has a great potential for cancer therapy in the future.

  9. Nanoindentation studies of nickel zinc ferrite embedded mesoporous silica template

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Hajra, P.; Mada, M. R.; Bandopadhyay, S.; Chakravorty, D.

    2013-02-01

    Nickel zinc ferrite (NZF) embedded mesoporous silica KIT-6 nanocomposite (NZFMS) was synthesized via impregnation method. The microstructure of the samples was characterized by transmission electron microscopy (TEM). Nanoindentation (NI) studies were carried out on both mesoporous silica (MS) and the nanocomposite NZFMS. It was found that the young's modulus (E) and hardness (H) of the NZFMS were higher than that of the MS. From creep measurement it was observed that the creep-strain rate was greater for NZFMS compared to MS. This arose due to diffusion of Fe3+ ions from nickel zinc ferrite to the silica glass. The results indicate that the NZFMS material shows superplastic behaviour at room temperature.

  10. Self-assembled polymer nanocomposites and their networks

    NASA Astrophysics Data System (ADS)

    Patil, Nitin Vikas

    This dissertation describes new routes to synthesize polymer nanocomposite networks via self-assembly. Polymerizable structure directing agents (referred to as surfmers) obtained by end-group functionalization preserves the structure-directing capabilities of the surfactant for templating ordered mesoporous silica particle growth, while simultaneously generating a reactive matrix for polymer network formation through reactive end groups in the presence of intimately mixed mesoporous silicates. A combination of small angle X-ray scattering, surface area, and microscopy experiments on mesoporous silica indicated the structure directing capabilities of surfmers. Free-radical polymerization of the surfmer leads to novel crosslinked nanocomposites networks. Multiple experiments, including gel permeation chromatography, swelling, and solid state NMR experiments on polymer nanocomposites gave evidence of the polymerization of surfmer leading to formation of crosslink networks. Polymer nanocomposites with varied silica content were prepared. Effects of silica content on polymer nanocomposites were studied on rheometer. Results obtained from rheological experiments indicate that the storage (G') and loss modulus (G") increases with increase in the content of mesoporous silica. In this way, the nanocomposites networks obtained via self-assembly shows independent behavior with respect to frequency in rheological experiments. Additionally, this self-assembled route was extended to synthesize biodegradable and biocompatible polymer nanocomposites networks. The nanocomposite networks obtained with 15% of silica content showed the increase in storage modulus by two orders of magnitude in rheological experiments.

  11. Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds.

    PubMed

    Liu, Yupu; Chen, Junchen; Li, Wei; Shen, Dengke; Zhao, Yujuan; Pal, Manas; Yu, Haijun; Tu, Bo; Zhao, Dongyuan

    2016-09-01

    Indoor organic gaseous pollution is a global health problem, which seriously threats the health and life of human all over the world. Hence, it is important to fabricate new sensing materials with high sensitivity and efficiency for indoor volatile organic compounds. In this study, a series of ordered mesoporous silica-based nanocomposites with uniform carbon coatings on the internal surface of silica mesopore channels were synthesized through a simple template-carbonization strategy. The obtained mesoporous silica-carbon nanocomposites not only possess ordered mesostructures, high surface areas (up to ∼759m(2)g(-1)), large and tunable pore sizes (2.6-10.2nm), but also have the improved hydrophobicity and anti-interference capability to environmental humidity. The sensing performances of the mesoporous silica-carbon nanocomposites to volatile organic compounds, such as ethylbenzene, methylbenzene, benzene, methanol, acetone, formaldehyde, dichloromethane and tetrahydrofuran, were systematically investigated. The relationships between the sensing performances and their properties, including mesostructures, surface areas, pore sizes, carbon contents and surface hydrophilic/hydrophobic interactions, have been achieved. The mesoporous silica-carbon nanocomposites with hexagonal mesostructure exhibit outstanding performance at room temperature to benzene and acetone with high responses, short response (2-3s) and recovery (16-19s) time, strong anti-interference to environmental humidity, and long-term stability (less than ∼5% loss of the frequency shifts after 42days). Therefore, the obtained mesoporous silica-carbon nanocomposites have a hopeful prospect in the field of environmental air quality monitoring.

  12. Mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  13. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  14. Micro-mesoporous materials obtained by zeolite recrystallization: synthesis, characterization and catalytic applications.

    PubMed

    Ivanova, Irina I; Knyazeva, Elena E

    2013-05-01

    The review covers the recent developments in the field of novel micro-mesoporous materials obtained by zeolite recrystallization. The materials are classified into three distinctly different groups depending on the degree of recrystallization: (i) coated mesoporous zeolites (RZEO-1); (ii) micro-mesoporous nanocomposites (RZEO-2); and (iii) mesoporous materials with zeolitic fragments in the walls (RZEO-3). The first part of the review is focused on the analysis of the synthetic strategies leading to different types of recrystallized materials. In the second part, a comprehensive view on their structure, texture and porosity in connection with acidic and diffusion properties is given. The last part is devoted to the catalytic applications of recrystallized materials. The advantages and disadvantages with respect to pure micro- and mesoporous molecular sieves and other hierarchical zeolites are critically analyzed and the future opportunities and perspectives are discussed.

  15. Polyolefin nanocomposites

    DOEpatents

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  16. Hollow mesoporous aluminosilica spheres with perpendicular pore channels as catalytic nanoreactors.

    PubMed

    Fang, Xiaoliang; Liu, Zhaohui; Hsieh, Ming-Feng; Chen, Mei; Liu, Pengxin; Chen, Cheng; Zheng, Nanfeng

    2012-05-22

    The design and synthesis of hollow/yolk-shell mesoporous structures with catalytically active ordered mesoporous shells can infuse new vitality into the applications of these attractive structures. In this study, we report that hollow/yolk-shell structures with catalytically active ordered mesoporous aluminosilica shells can be easily prepared by using silica spheres as the silica precursors. By simply treating with a hot alkaline solution in the presence of sodium aluminate (NaAlO(2)) and cetyltrimethylammonium bromide (CTAB), solid silica spheres can be directly converted into high-quality hollow mesoporous aluminosilica spheres with perpendicular pore channels. On the basis of the proposed formation mechanism of etching followed by co-assembly, the synthesis strategy developed in this work can be extended as a general strategy to prepare ordered mesoporous yolk-shell structures with diverse compositions and morphologies simply by replacing solid silica spheres with silica-coated nanocomposites. The reduction of 4-nitrophenol with yolk-shell structured Au@ordered mesoporous aluminosilica as the catalyst has clearly demonstrated that the highly permeable perpendicular pore channels of mesoporous aluminosilica can effectively prevent the catalytically active yolk from aggregating. Furthermore, with accessible acidity, the yolk-shell structured ordered mesoporous aluminosilica spheres containing Pd yolk exhibit high catalytic activity and recyclability in a one-pot two-step synthesis involving an acid catalysis and subsequent catalytic hydrogenation for desired benzimidazole derivative, which makes the proposed hollow ordered aluminosilica spheres a versatile and practicable scaffold for advanced catalytic nanoreactor systems.

  17. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, Tashi

    Pu(IV), Pu(VI), Eu(III), Ce(III), and Zr(IV). The acetamide phosphonate functionalized silica called Ac-Phos-SBA-15 required more extensive synthesis than the other three functionalized silica materials. Development of functionalized mesoporous silica extractants for actinides is contingent on their synthesis and hydrolytic stability, and these two aspects of the Ac-Phos-SBA-15 material are discussed. This material showed the highest binding affinity for all of the target ions, and the sorption and desorption of Pu(VI) to Ac-Phos-SBA-15 was extensively investigated. Ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes, and could be suitable substrates for the development of actinide sensors based on their electrochemical properties. Three different mesoporous carbon materials were synthesized by collaborators to test their application as radionuclide sorbent materials. The first is called CMK (carbons mesostructured by Korea Advanced Institute of Science and Technology), and was synthesized using a hard silica template with 3D-bicontinuous ordered mesostructure. Highly ordered body-centered cubic mesoporous carbon was synthesized by self-assembly of a phenol resin around a soft polymer template, and this material is known as FDU-16 (Fudan University). Etching of the silica portion of mesoporous carbon-silica composites created the 2D-hexagonal mesoporous carbon called C-CS (carbon from carbon-silica nanocomposites) with a bimodal pore size distribution. The as-synthesized nanocast mesoporous carbon in this work is called UN CMK, and the same material after oxidation treatment with nitric acid is called OX CMK. A portion of both FDU-16-type and C-CS-type ordered mesoporous carbons were oxidized with acidic ammonium persulfate, which created the oxidized carbon materials called FDU-16-COOH and C-CS-COOH, respectively. The mesoporous carbons were characterized by scanning electron microscopy to view

  18. Synthesis and carbon dioxide sorption of layered double hydroxide/silica foam nanocomposites with hierarchical mesostructure.

    PubMed

    Fu, Liling; Qi, Genggeng; Shekhah, Osama; Belmabkhout, Youssef; Estevez, Luis; Eddaoudi, Mohamed; Giannelis, Emmanuel P

    2014-04-01

    Layered double hydroxides (LDHs) with a hierarchical mesostructure are successfully synthesized on mesoporous silica foams by simple impregnation and hydrothermal treatment. The as-synthesized LDH/silica foam nanocomposites show well-defined mesostructures with high surface areas, large pore volumes, and mesopores of 6-7 nm. The nanocomposites act as carbon dioxide (CO2 ) sorbents under simulated flue gas conditions. They also exhibit significantly enhanced CO2 capacities under high-pressure conditions and high CO2 /N2 and CO2 /CH4 selectivities.

  19. A facile one-pot synthesis of colloidal stable, monodisperse, highly PEGylated CuS@mSiO2 nanocomposites for the combination of photothermal therapy and chemotherapy.

    PubMed

    Lu, Feng; Wang, Jinfeng; Yang, Lin; Zhu, Jun-Jie

    2015-06-11

    A facile one-pot approach was developed for the synthesis of colloidal stable, monodisperse, highly PEGylated mesoporous silica coated copper sulfide nanocomposites for the combination of photothermal therapy and chemotherapy. The proposed method can also be extended to the synthesis of other metal sulfide nanocomposites.

  20. Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions

    NASA Astrophysics Data System (ADS)

    Helgeson, Matthew E.; Moran, Shannon E.; An, Harry Z.; Doyle, Patrick S.

    2012-04-01

    We report the formation of mesoporous organohydrogels from oil-in-water nanoemulsions containing an end-functionalized oligomeric gelator in the aqueous phase. The nanoemulsions exhibit an abrupt thermoreversible transition from a low-viscosity liquid to a fractal-like colloidal gel of droplets with mesoscale porosity and solid-like viscoelasticity with moduli approaching 100 kPa, possibly the highest reported for an emulsion-based system. We hypothesize that gelation is brought about by temperature-induced interdroplet bridging of the gelator, as shown by its dependence on the gelator chemistry. The use of photocrosslinkable gelators enables the freezing of the nanoemulsion’s microstructure into a soft hydrogel nanocomposite containing a large fraction of dispersed liquid hydrophobic compartments, and we show its use in the encapsulation and release of lipophilic biomolecules. The tunable structural, mechanical and optical properties of these organohydrogels make them a robust material platform suitable for a wide range of applications.

  1. Application of novel Polypyrrole/thiol-functionalized zeolite Beta/MCM-41 type mesoporous silica nanocomposite for adsorption of Hg2+ from aqueous solution and industrial wastewater: Kinetic, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Javadian, Hamedreza; Taghavi, Mehdi

    2014-01-01

    Hierarchical zeolite consists of both microporous and unordered mesoporous structures. A composite of Polypyrrole/thiol-functionalized Beta/MCM-41 (PPy/SH-Beta/MCM-41) was prepared, characterized by FE-SEM, FT-IR, XRD, TGA and BET analysis and applied in the investigation of its adsorption characteristics for the removal of Hg2+ ions from aqueous solutions. Thiol-functionalized Beta/MCM-41 (SH-Beta/MCM-41) was prepared by 3-mercaptopropyltrimethoxysilane (MPTMS) in the presence of aerosil-200 as a silica source by two-step hydrothermal crystallization procedure. Batch mode experiments were conducted and three kinetic models were used to describe the adsorption process. The experimental data fitted very well with the Pseudo-second-order kinetic model. The calculated thermodynamic parameters (ΔH, ΔS and ΔG) revealed that the adsorption of Hg2+ onto PPy/SH-Beta/MCM-41 is an endothermic and spontaneous process. It was found that temperature has a positive effect on the removal efficiency and that PPy/SH-Beta/MCM-41 is potentially able to remove Hg2+ ions from aqueous solutions at even high concentrations (400 mg L-1). The recovery of Hg2+ from the PPy/SH-Beta/MCM-41 adsorbent was found to be more than 90% using 0.5 M H2SO4, and the ability of the absorbent to be reused for removal of Hg2+ was investigated.

  2. One-dimensional mesoporous Fe2O3@TiO2 core-shell nanocomposites: Rational design, synthesis and application as high-performance photocatalyst in visible and UV light region

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Xie, Yaping; Chen, Haoxin; Guo, Jinxue; Meng, Alan; Li, Chunfang

    2014-10-01

    An ideal photocatalyst for degradation of organic pollutants should combine the features of efficient visible light response, fast electron transport, high electron-hole separation efficiency, and large specific surface area. However, these requirements usually cannot be achieved simultaneously in the present state-of-the-art research. In this work, we develop a rational synthesis strategy for the preparation of one-dimensional (1D) mesoporous Fe2O3@TiO2 core-shell composites. In this strategy, FeOOH nanorods are firstly coated by TiO2 shell, followed by a calcination process. The as-prepared composites are thoroughly investigated with X-ray powder diffraction, scanning electron microscope, energy dispersive spectroscopy, transmission electron microscope, N2 adsorption-desorption isotherms, UV-visible diffuse-reflectance spectra, and photoluminescence spectra. Endowed with the advantages of its composition and specific structural features, the presented sample possesses the combined advantages mentioned above, thus delivering evidently enhanced photocatalytic activity for the degradation of methyl orange under UV light irradiation and Rhodamine B under visible light irradiation. And the possible mechanism of the enhanced photocatalytic performance is proposed.

  3. Mesoporous carbon materials

    SciTech Connect

    Dai, Sheng; Wang, Xiqing

    2012-02-14

    The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

  4. Surface-functionalized mesoporous carbon materials

    DOEpatents

    Dai, Sheng; Gorka, Joanna; Mayes, Richard T.

    2016-02-02

    A functionalized mesoporous carbon composition comprising a mesoporous carbon scaffold having mesopores in which polyvinyl polymer grafts are covalently attached, wherein said mesopores have a size of at least 2 nm and up to 50 nm. Also described is a method for producing the functionalized mesoporous composition, wherein a reaction medium comprising a precursor mesoporous carbon, vinyl monomer, initiator, and solvent is subjected to sonication of sufficient power to result in grafting and polymerization of the vinyl monomer into mesopores of the precursor mesoporous carbon. Also described are methods for using the functionalized mesoporous carbon, particularly in extracting metal ions from metal-containing solutions.

  5. Biocatalytic approach for polymer synthesis and polymer encapsulation in mesoporous materials

    NASA Astrophysics Data System (ADS)

    Ford, Christy

    The goal of this research is to encapsulate enzymatically synthesized polymers within the pores of mesoporous silica. In order to fully understand the effect of polymer incorporation on mesoporous silica structure, the effect of dopant and polymer on micelle shape, the effect of dopant on the final mesoporous silica structure, and the effect of incorporating polymer within mesoporous silica are investigated. Direct entrapment of aromatic molecules within cationic micelles to ultimately fabricate tailored, functional mesoporous silica/polymer composites is investigated. Specifically, the influence of 4-ethylphenol and aniline on the shape of cetyltrimethylammonium bromide (CTAB) micelles and on the structure of mesoporous silica synthesized via the micellar templating is investigated. Small angle neutron scattering indicates that the dopant affects the micellar size, micellar arrangement, and the domain size over which the arrangement extends. Cryo-TEM offers further insight into the micellar shape. The effect of the dopant-to-surfactant molar ratio on the structure of surfactant-templated mesoporous silica is characterized by x-ray diffraction, transmission electron microscopy, and nitrogen sorption techniques. The mesoporous silica undergoes a transition from hexagonal to lamellar with increasing dopant-to-surfactant molar ratio for both 4-ethylphenol and 2-naphthol, suggesting a possible change in the template morphology. A better understanding of the relation between dopant, micellar shape, and mesoporous structure plays a critical role in the development of polymer-ceramic nanocomposites with novel electrooptical, conductive, and fluorescent properties. A novel method for encapsulating polymers in mesoporous silica is presented. The method involves enzymatic synthesis of polyphenols and polyaromatic amines in micellar aggregates, and subsequently condensing silica at the surfactant-water interface. Thus, poly(4-ethylphenol), poly(2-naphthol), and polyaniline

  6. Tailoring the mesoporous texture of graphitic carbon nitride.

    PubMed

    Yang, Jae-Hun; Kim, Gain; Domen, Kazunari; Choy, Jin-Ho

    2013-11-01

    Recently, graphitic carbon nitride (g-C3N4) materials have received a great attention from many researchers due to their various roles as a visible light harvesting photocatalyst, metal-free catalyst, reactive template, nitrogen source of nitridation reaction, etc. g-C3N4 could be prepared by temperature-induced polymerization of cyanamide or melamine. In this study, we report a preparation of mesoporous graphitic carbon nitrides with tailored porous texture including pore size, and specific surface area from cyanamide and colloidal silica nanoparticles (Ludox). At first, cyanamide-silica nanocomposites were prepared by mixing colloidal silica with different size in the range of 7-22 nm and cyanamide, followed by evaporating the solvent in the resulting mixture. Mesoporous g-C3N4 samples were prepared by calcining cyanamide-silica nanocomposite at 550 degrees C for 4 hrs and removing the silica nanoparticles by using ammonium hydrogen fluoride. The formation of g-C3N4 was confirmed by the sharp (002) peak (d = 3.25 A) of graphitic interlayer stacking, and the broad (100) peak (d = 6.86 A) of in-plane repeating unit in the X-ray diffraction patterns. According to N2 adsorption-desorption analysis, the pore size of mesoporous carbon nitrides was similar to the size of colloidal silica used as hard template (7-22 nm). The specific surface area of mesoporous g-C3N4 could be tailored in the range of 189 m2/g-288 m2/g. PMID:24245279

  7. Mesoporous carbons and polymers

    DOEpatents

    Bell, William; Dietz, Steven

    2001-01-01

    A mesoporous material prepared by polymerizing a resorcinol/formaldehyde system from an aqueous solution containing resorcinol, formaldehyde and a surfactant and optionally pyrolyzing the polymer to form a primarily carbonaceous solid. The material has an average pore size between 4 and 75 nm and is suitable for use in liquid-phase surface limited applications, including sorbent, catalytic, and electrical applications.

  8. Synthesis of functional nanocomposites based on solid-phase nanoreactors

    NASA Astrophysics Data System (ADS)

    Tretyakov, Yuri D.; Lukashin, Alexey V.; Eliseev, Andrei A.

    2004-09-01

    Approaches to the synthesis of functional nanocomposites based on zero-, one- and two-dimensional solid-state nanoreactors formed by zeolite cages, pores of mesoporous matrices, or interlayer cavities in layered compounds are considered. It is demonstrated that the use of solid-state nanoreactors opens up extensive opportunities for designing nanocomposites with specified physicochemical properties and makes it possible to avoid the aggregation of nanoparticles and to protect them from exposure to external factors, thus essentially facilitating the practical utility of these materials.

  9. Two-Solvent Method Synthesis of NiO/ZnO Nanoparticles Embedded in Mesoporous SBA-15: Photocatalytic Properties Study

    NASA Astrophysics Data System (ADS)

    Dai, Peng; Yan, Tao-tao; Yu, Xin-xin; Bai, Zhi-man; Wu, Ming-zai

    2016-04-01

    Different loadings of NiO/ZnO nanoparticles embedded in mesoporous silica (SBA-15) were prepared via a two-solvent method with the ordered hexagonal mesoporous structure of SBA-15 kept. X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, diffusive reflective UV-vis spectroscopy, and N2 adsorption porosimetry were employed to characterize the nanocomposites. The results indicate that the ordered hexagonal mesoporous structure of SBA-15 is kept and the absorption band edges of the nanocomposites shift into the ultraviolet light regime. The photocatalytic activity of our samples for degradation of methylene orange was investigated under UV light irradiation, and the results show that the nanocomposites have higher photodegradation ability toward methylene orange than commercial pure P-25. The photocatalytic activity of the nanocomposites was found to be dependent on both the adsorption ability of the SBA-15 and the photocatalytic activity of NiO-ZnO nanoparticles encapsulated in SBA-15. In addition, there is an optimal loading of NiO-ZnO nanoparticles. Too high or low loading will lower the photodegradation ability of the nanocomposites.

  10. Mesoporous aluminum phosphite

    SciTech Connect

    El Haskouri, Jamal; Perez-Cabero, Monica; Guillem, Carmen; Latorre, Julio; Beltran, Aurelio; Beltran, Daniel; Amoros, Pedro

    2009-08-15

    High surface area pure mesoporous aluminum-phosphorus oxide-based derivatives have been synthesized through an S{sup +}I{sup -} surfactant-assisted cooperative mechanism by means of a one-pot preparative procedure from aqueous solution and starting from aluminum atrane complexes and phosphoric and/or phosphorous acids. A soft chemical extraction procedure allows opening the pore system of the parent as-prepared materials by exchanging the surfactant without mesostructure collapse. The nature of the pore wall can be modulated from mesoporous aluminum phosphate (ALPO) up to total incorporation of phosphite entities (mesoporous aluminum phosphite), which results in a gradual evolution of the acidic properties of the final materials. While phosphate groups in ALPO act as network building blocks (bridging Al atoms), the phosphite entities become basically attached to the pore surface, what gives practically empty channels. The mesoporous nature of the final materials is confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM) and N{sub 2} adsorption-desorption isotherms. The materials present regular unimodal pore systems whose order decreases as the phosphite content increases. NMR spectroscopic results confirm the incorporation of oxo-phosphorus entities to the framework of these materials and also provide us useful information concerning the mechanism through which they are formed. - Abstract: TEM image of the mesoporous aluminum phosphite showing the hexagonal disordered pore array that is generated by using surfactant micelles as template. Also a scheme emphasizing the presence of an alumina-rich core and an ALPO-like pore surface is presented.

  11. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs. PMID:27015357

  12. Advanced Mesoporous Spinel Li4Ti5O12/rGO Composites with Increased Surface Lithium Storage Capability for High-Power Lithium-Ion Batteries.

    PubMed

    Ge, Hao; Hao, Tingting; Osgood, Hannah; Zhang, Bing; Chen, Li; Cui, Luxia; Song, Xi-Ming; Ogoke, Ogechi; Wu, Gang

    2016-04-13

    Spinel Li4Ti5O12 (LTO) and reduced graphene oxide (rGO) are attractive anode materials for lithium-ion batteries (LIBs) because of their unique electrochemical properties. Herein, we report a facile one-step hydrothermal method in preparation of a nanocomposite anode consisting of well-dispersed mesoporous LTO particles onto rGO. An important reaction step involves glucose as a novel linker agent and reducing agent during the synthesis. It was found to prevent the aggregation of LTO particles, and to yield mesoporous structures in nanocomposites. Moreover, GO is reduced to rGO by the hydroxyl groups on glucose during the hydrothermal process. When compared to previously reported LTO/graphene electrodes, the newly prepared LTO/rGO nanocomposite has mesoporous characteristics and provides additional surface lithium storage capability, superior to traditional LTO-based materials for LIBs. These unique properties lead to markedly improved electrochemical performance. In particular, the nanocomposite anode delivers an ultrahigh reversible capacity of 193 mA h g(-1) at 0.5 C and superior rate performance capable of retaining a capacity of 168 mA h g(-1) at 30 C between 1.0 and 2.5 V. Therefore, the newly prepared mesoporous LTO/rGO nanocomposite with increased surface lithium storage capability will provide a new opportunity to develop high-power anode materials for LIBs.

  13. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts.

    PubMed

    Sun, Junming; Bao, Xinhe

    2008-01-01

    The preparation and stabilization of nanoparticles are becoming very crucial issues in the field of so-called "nanocatalysis". Recent developments in supramolecular self-assembled porous materials have opened a new way to get nanoparticles hosted in the channels of such materials. In this paper, a new approach towards monodisperse and thermally stable metal nanoparticles by confining them in ordered mesoporous materials is presented, and three aspects are illustrated. Firstly, the recent progress in the functional control of mesoporous materials will be briefly introduced, and the rational tuning of the textures, pore size, and pore length is demonstrated by controlling supramolecular self-assembly behavior. A novel synthesis of short-pore mesoporous materials is emphasized for their easy mass transfer in both biomolecule absorption and the facile assembly of metal nanocomposites within their pore channels. In the second part, the different routes for encapsulating monodisperse nanoparticles inside channels of porous materials are discussed, which mainly includes the ion-exchange/conventional incipient wetness impregnation, in situ encapsulation routes, organometallic methodologies, and surface functionalization schemes. A facile in situ autoreduction route is highlighted to get monodisperse metal nanoparticles with tunable sizes inside the channels of mesoporous silica. Finally, confinement of mesoporous materials is demonstrated to improve the thermal stability of monodisperse metal nanoparticles catalysts and a special emphasis will be focused on the stabilization of the metal nanoparticles with a low Tammann temperature. Several catalytic reactions concerning the catalysis of nanoparticles will be presented. These uniform nanochannels, which confine monodisperse and stable metal nanoparticles catalysts, are of great importance in the exploration of size-dependent catalytic chemistry and further understanding the nature of catalytic reactions. PMID:18668502

  14. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.

    PubMed

    Jin, Renxi; Yang, Yang; Zou, Yongcun; Liu, Xianchun; Xing, Yan

    2014-02-17

    Hollow mesoporous structures have recently aroused intense research interest owing to their unique structural features. Herein, an effective and precisely controlled synthesis of hollow rare-earth silicate spheres with mesoporous shells is reported for the first time, produced by a simple hydrothermal method, using silica spheres as the silica precursors. The as-prepared hollow rare-earth silicate spheres have large specific surface area, high pore volume, and controllable structure parameters. The results demonstrate that the selection of the chelating reagent plays critical roles in forming the hollow mesoporous structures. In addition, a simple and low-energy-consuming approach to synthesize highly stable and dispersive gold nanoparticle-yttrium silicate (AuNPs/YSiO) hollow nanocomposites has also been developed. The reduction of 4-nitrophenol with AuNPs/YSiO hollow nanocomposites as the catalyst has clearly demonstrated that the hollow rare-earth silicate spheres are good carriers for Au nanoparticles. This strategy can be extended as a general approach to prepare multifunctional yolk-shell structures with diverse compositions and morphologies simply by replacing silica spheres with silica-coated nanocomposites.

  15. Mesoporous materials for antihydrogen production.

    PubMed

    Consolati, Giovanni; Ferragut, Rafael; Galarneau, Anne; Di Renzo, Francesco; Quasso, Fiorenza

    2013-05-01

    Antimatter is barely known by the chemist community and this article has the vocation to explain how antimatter, in particular antihydrogen, can be obtained, as well as to show how mesoporous materials could be used as a further improvement for the production of antimatter at very low temperatures (below 1 K). The first experiments with mesoporous materials highlighted in this review show very promising and exciting results. Mesoporous materials such as mesoporous silicon, mesoporous material films, pellets of MCM-41 and silica aerogel show remarkable features for antihydrogen formation. Yet, the characteristics for the best future mesoporous materials (e.g. pore sizes, pore connectivity, shape, surface chemistry) remain to be clearly identified. For now among the best candidates are pellets of MCM-41 and aerogel with pore sizes between 10 and 30 nm, possessing hydrophobic patches on their surface to avoid ice formation at low temperature. From a fundamental standpoint, antimatter experiments could help to shed light on open issues, such as the apparent asymmetry between matter and antimatter in our universe and the gravitational behaviour of antimatter. To this purpose, basic studies on antimatter are necessary and a convenient production of antimatter is required. It is exactly where mesoporous materials could be very useful.

  16. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries.

    PubMed

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-18

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g(-1) during 50 cycles at 2 A g(-1). The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  17. One-pot synthesis of silicon nanoparticles trapped in ordered mesoporous carbon for use as an anode material in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Junsu; Kim, Gil-Pyo; Nam, Inho; Park, Soomin; Yi, Jongheop

    2013-01-01

    Silicon nanoparticles trapped in an ordered mesoporous carbon composite were prepared by a one-step self-assembly with solvent evaporation using the triblock copolymer Pluronic F127 and a resorcinol-formaldehyde polymer as the templating agent and carbon precursor respectively. Such a one-pot synthesis of Si/ordered mesoporous carbon nanocomposite is suitable for large-scale synthesis. Characterization confirmed that the Si nanoparticles were trapped in the ordered mesoporous carbon, as evidenced by transmission electron microscopy, x-ray diffraction analysis and nitrogen sorption isotherms. The composite showed a high reversible capacity above 700 mA h g-1 during 50 cycles at 2 A g-1. The improved electrochemical performance of the composite can be ascribed to the buffering effect of spaces formed in the ordered pore channels during the volume expansion of silicon and the rapid movement of lithium ions through the uniform cylindrical pore structure of the mesopores.

  18. Engineered monodisperse mesoporous materials

    SciTech Connect

    Saunders, R.S.; Small, J.H.; Lagasse, R.R.; Schroeder, J.L.; Jamison, G.M.

    1997-08-01

    Porous materials technology has developed products with a wide variety of pore sizes ranging from 1 angstrom to 100`s of microns and beyond. Beyond 15{angstrom} it becomes difficult to obtain well ordered, monodisperse pores. In this report the authors describe efforts in making novel porous material having monodisperse, controllable pore sizes spanning the mesoporous range (20--500 {angstrom}). They set forth to achieve this by using unique properties associated with block copolymers--two linear homopolymers attached at their ends. Block copolymers phase separate into monodisperse mesophases. They desired to selectively remove one of the phases and leave the other behind, giving the uniform monodisperse pores. To try to achieve this the authors used ring-opening metathesis polymerization to make the block copolymers. They synthesized a wide variety of monomers and surveyed their polymers by TGA, with the idea that one phase could be made thermally labile while the other phase would be thermally stable. In the precipitated and sol-gel processed materials, they determined by porosimetry measurements that micropores, mesopores, and macropores were created. In the film processed sample there was not much porosity present. They moved to a new system that required much lower thermal treatments to thermally remove over 90% of the labile phase. Film casting followed by thermal treatment and solvent extraction produced the desired monodisperse materials (based solely on SEM results). Modeling using Density Functional Theory was also incorporated into this project. The modeling was able to predict accurately the domain size and spacing vs. molecular weight for a model system, as well as accurate interfacial thicknesses.

  19. Interactions of Plutonium and Lanthanides with Ordered Mesoporous Materials

    NASA Astrophysics Data System (ADS)

    Parsons-Moss, Tashi

    Pu(IV), Pu(VI), Eu(III), Ce(III), and Zr(IV). The acetamide phosphonate functionalized silica called Ac-Phos-SBA-15 required more extensive synthesis than the other three functionalized silica materials. Development of functionalized mesoporous silica extractants for actinides is contingent on their synthesis and hydrolytic stability, and these two aspects of the Ac-Phos-SBA-15 material are discussed. This material showed the highest binding affinity for all of the target ions, and the sorption and desorption of Pu(VI) to Ac-Phos-SBA-15 was extensively investigated. Ordered mesoporous carbons are attractive as sorbents because of their extremely high surface areas and large pore volumes, and could be suitable substrates for the development of actinide sensors based on their electrochemical properties. Three different mesoporous carbon materials were synthesized by collaborators to test their application as radionuclide sorbent materials. The first is called CMK (carbons mesostructured by Korea Advanced Institute of Science and Technology), and was synthesized using a hard silica template with 3D-bicontinuous ordered mesostructure. Highly ordered body-centered cubic mesoporous carbon was synthesized by self-assembly of a phenol resin around a soft polymer template, and this material is known as FDU-16 (Fudan University). Etching of the silica portion of mesoporous carbon-silica composites created the 2D-hexagonal mesoporous carbon called C-CS (carbon from carbon-silica nanocomposites) with a bimodal pore size distribution. The as-synthesized nanocast mesoporous carbon in this work is called UN CMK, and the same material after oxidation treatment with nitric acid is called OX CMK. A portion of both FDU-16-type and C-CS-type ordered mesoporous carbons were oxidized with acidic ammonium persulfate, which created the oxidized carbon materials called FDU-16-COOH and C-CS-COOH, respectively. The mesoporous carbons were characterized by scanning electron microscopy to view

  20. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites. PMID:25172161

  1. Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications.

    PubMed

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2015-01-01

    An 1,4-cis polybutadiene rubber/carboxymethyl starch (CMS)-based silica aerogel nanocomposites as a insulation material was developed that will provide superior thermal insulation properties, flexibility, toughness, durability of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. In this study, reinforced 1,4-cis polybutadiene-CMS-silica aerogel nanocomposites were prepared from a silica aerogel with a surface area 710 m(2) g(-1), a pore size of 25.3 nm and a pore volume of 4.7 cm(3) g(-1). The tensile properties and dynamic mechanical properties of 1,4-cis polybutadiene/CMS nanocomposites were systematically enhanced at low silica loading. Similar improvements in tensile modulus and strength have been observed for 1,4-cis polybutadiene/CMS mesoporous silica aerogel nanocomposites.

  2. Facile Fabrication of Well-Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications.

    PubMed

    Liu, Xianchun; Chen, Dashu; Chen, Lin; Jin, Renxi; Xing, Shuangxi; Xing, Hongzhu; Xing, Yan; Su, Zhongmin

    2016-06-27

    In this paper, a facile strategy is reported for the preparation of well-dispersed Pt nanoparticles in ordered mesoporous silica (Pt@OMS) by using a hybrid mesoporous phenolic resin-silica nanocomposite as the parent material. The phenolic resin polymer is proposed herein to be the key in preventing the aggregation of Pt nanoparticles during their formation process and making contributions both to enhance the surface area and enlarge the pore size of the support. The Pt@OMS proves to be a highly active and stable catalyst for both gas-phase oxidation of CO and liquid-phase hydrogenation of 4-nitrophenol. This work might open new avenues for the preparation of noble metal nanoparticles in mesoporous silica with unique structures for catalytic applications. PMID:27245766

  3. Facile Fabrication of Well-Dispersed Pt Nanoparticles in Mesoporous Silica with Large Open Spaces and Their Catalytic Applications.

    PubMed

    Liu, Xianchun; Chen, Dashu; Chen, Lin; Jin, Renxi; Xing, Shuangxi; Xing, Hongzhu; Xing, Yan; Su, Zhongmin

    2016-06-27

    In this paper, a facile strategy is reported for the preparation of well-dispersed Pt nanoparticles in ordered mesoporous silica (Pt@OMS) by using a hybrid mesoporous phenolic resin-silica nanocomposite as the parent material. The phenolic resin polymer is proposed herein to be the key in preventing the aggregation of Pt nanoparticles during their formation process and making contributions both to enhance the surface area and enlarge the pore size of the support. The Pt@OMS proves to be a highly active and stable catalyst for both gas-phase oxidation of CO and liquid-phase hydrogenation of 4-nitrophenol. This work might open new avenues for the preparation of noble metal nanoparticles in mesoporous silica with unique structures for catalytic applications.

  4. Cancer therapy improvement with mesoporous silica nanoparticles combining photodynamic and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Zhao, Z. X.; Huang, Y. Z.; Shi, S. G.; Tang, S. H.; Li, D. H.; Chen, X. L.

    2014-07-01

    In this work, we develop novel mesoporous silica composite nanoparticles (hm-SiO2(AlC4Pc)@Pd) for the co-delivery of photosensitizer (PS) tetra-substituted carboxyl aluminum phthalocyanine (AlC4Pc) and small Pd nanosheets as a potential dual carrier system to combine photodynamic therapy (PDT) with photothermal therapy (PTT). In the nanocomposite, PS AlC4Pc was covalently conjugated to a mesoporous silica network, and small Pd nanosheets were coated onto the surface of mesoporous silica by both coordination and electrostatic interaction. Since small Pd nanosheets and AlC4Pc display matched maximum absorptions in the 600-800 nm near-infrared (NIR) region, the fabricated hm-SiO2(AlC4Pc)@Pd nanocomposites can generate both singlet oxygen and heat upon 660 nm single continuous wavelength (CW) laser irradiation. In vitro results indicated that the cell-killing efficacy by simultaneous PDT/PTT treatment using hm-SiO2(AlC4Pc)@Pd was higher than PDT or PTT treatment alone after exposure to a 660 nm CW-NIR laser.

  5. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-01

    A series of magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-γ-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials. PMID:25562071

  6. Magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles confined within ordered mesoporous carbons as efficient microwave absorbers.

    PubMed

    Wang, Jiacheng; Zhou, Hu; Zhuang, Jiandong; Liu, Qian

    2015-02-01

    A series of magnetic γ-Fe2O3, Fe3O4, and Fe nanoparticles have been successfully introduced into the mesochannels of ordered mesoporous carbons by the combination of the impregnation of iron salt precursors and then in situ hydrolysis, pyrolysis and reduction processes. The magnetic nanoparticles are uniformly dispersed and confined within the mesopores of mesoporous carbons. Although the as-prepared magnetic mesoporous carbon composites have high contents of magnetic components, they still possess very high specific surface areas and pore volumes. The magnetic hysteresis loops measurements indicate that the magnetic constituents are poorly-crystalline nanoparticles and their saturation magnetization is evidently smaller than bulky magnetic materials. The confinement of magnetic nanoparticles within the mesopores of mesoporous carbons results in the decrease of the complex permittivity and the increase of the complex permeability of the magnetic nanocomposites. The maximum reflection loss (RL) values of -32 dB at 11.3 GHz and a broad absorption band (over 2 GHz) with RL values <-10 dB are obtained for 10-Fe3O4-CMK-3 and 10-γ-Fe2O3-CMK-3 composites in a frequency range of 8.2-12.4 GHz (X-band), showing their great potentials in microwave absorption. This research opens a new method and idea for developing novel magnetic mesoporous carbon composites as high-performance microwave absorbing materials.

  7. Additive-Driven Self-Assembly of Well Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Xinyu; Qian, Gang; Watkins, James; Department of Polymer Science and Engineering, University of Massachusetts Amherst Team

    2014-03-01

    Supercapacitors have attracted significant attention as energy storage devices for applications to meet the requirements of fast charge and discharge, high power density, and long cycle life. Recent research efforts demonstrate that the metal oxide- mesoporous carbon nanocomposite materials are indeed a class of promising electrode materials for high performance supercapacitors. However several major drawbacks for metal oxide-carbon nanocomposite materials remain, such as relatively low loadings of the metal oxide, aggregation of nanoparticles, and the lack of an ordered mesoporous structure. Here we demonstrate that well ordered mesoporous carbon/iron oxide composites can be prepared through simple carbonization of blends of block copolymers serving as the source of carbon and a porogen, e.g., poly(t-butyl acrylate)-block-polyacrylonitrile (PtBA-b-PAN), and iron oxide nanoparticles (NPs). Strong interactions between phenol-functionalized iron oxide NPs and polyacrylonitrile result in a preferential dispersion of the nanoparticles within the PAN domains and leads to ordered nanostructured mesoporous carbon framework containing upto 30 wt This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-1025020).

  8. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells.

    PubMed

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-01-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1-xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650-800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5-1.7 operated at 0.8 V at 750 °C.

  9. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-09-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1‑xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C.

  10. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells

    PubMed Central

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-01-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1−xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650–800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5–1.7 operated at 0.8 V at 750 °C. PMID:27605121

  11. Nanoionics and Nanocatalysts: Conformal Mesoporous Surface Scaffold for Cathode of Solid Oxide Fuel Cells.

    PubMed

    Chen, Yun; Gerdes, Kirk; Song, Xueyan

    2016-01-01

    Nanoionics has become increasingly important in devices and systems related to energy conversion and storage. Nevertheless, nanoionics and nanostructured electrodes development has been challenging for solid oxide fuel cells (SOFCs) owing to many reasons including poor stability of the nanocrystals during fabrication of SOFCs at elevated temperatures. In this study, a conformal mesoporous ZrO2 nanoionic network was formed on the surface of La1-xSrxMnO3/yttria-stabilized zirconia (LSM/YSZ) cathode backbone using Atomic Layer Deposition (ALD) and thermal treatment. The surface layer nanoionic network possesses open mesopores for gas penetration, and features a high density of grain boundaries for enhanced ion-transport. The mesoporous nanoionic network is remarkably stable and retains the same morphology after electrochemical operation at high temperatures of 650-800 °C for 400 hours. The stable mesoporous ZrO2 nanoionic network is further utilized to anchor catalytic Pt nanocrystals and create a nanocomposite that is stable at elevated temperatures. The power density of the ALD modified and inherently functional commercial cells exhibited enhancement by a factor of 1.5-1.7 operated at 0.8 V at 750 °C. PMID:27605121

  12. Periodic mesoporous hydridosilica--synthesis of an "impossible" material and its thermal transformation into brightly photoluminescent periodic mesoporous nanocrystal silicon-silica composite.

    PubMed

    Xie, Zhuoying; Henderson, Eric J; Dag, Ömer; Wang, Wendong; Lofgreen, Jennifer E; Kübel, Christian; Scherer, Torsten; Brodersen, Peter M; Gu, Zhong-Ze; Ozin, Geoffrey A

    2011-04-01

    There has always been a fascination with "impossible" compounds, ones that do not break any rules of chemical bonding or valence but whose structures are unstable and do not exist. This instability can usually be rationalized in terms of chemical or physical restrictions associated with valence electron shells, multiple bonding, oxidation states, catenation, and the inert pair effect. In the pursuit of these "impossible" materials, appropriate conditions have sometimes been found to overcome these instabilities and synthesize missing compounds, yet for others these tricks have yet to be uncovered and the materials remain elusive. In the scientifically and technologically important field of periodic mesoporous silicas (PMS), one such "impossible" material is periodic mesoporous hydridosilica (meso-HSiO(1.5)). It is the archetype of a completely interrupted silica open framework material: its pore walls are comprised of a three-connected three-dimensional network that should be so thermodynamically unstable that any mesopores present would immediately collapse upon removal of the mesopore template. In this study we show that meso-HSiO(1.5) can be synthesized by template-directed self-assembly of HSi(OEt)(3) under aqueous acid-catalyzed conditions and after template extraction remains stable to 300 °C. Above this temperature, bond redistribution reactions initiate a metamorphic transformation which eventually yields periodic mesoporous nanocrystalline silicon-silica, meso-ncSi/SiO(2), a nanocomposite material in which brightly photoluminescent silicon nanocrystallites are embedded within a silica matrix throughout the mesostructure. The integration of the properties of silicon nanocrystallinity with silica mesoporosity provides a wealth of new opportunities for emerging nanotechnologies.

  13. Aligned mesoporous architectures and devices.

    SciTech Connect

    Brinker, C. Jeffrey; Lu, Yunfeng

    2011-03-01

    This is the final report for the Presidential Early Career Award for Science and Engineering - PECASE (LDRD projects 93369 and 118841) awarded to Professor Yunfeng Lu (Tulane University and University of California-Los Angeles). During the last decade, mesoporous materials with tunable periodic pores have been synthesized using surfactant liquid crystalline as templates, opening a new avenue for a wide spectrum of applications. However, the applications are somewhat limited by the unfavorabe pore orientation of these materials. Although substantial effort has been devoted to align the pore channels, fabrication of mesoporous materials with perpendicular pore channels remains challenging. This project focused on fabrication of mesoporous materials with perpendicularly aligned pore channels. We demonstrated structures for use in water purification, separation, sensors, templated synthesis, microelectronics, optics, controlled release, and highly selective catalysts.

  14. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  15. Two-photon absorption and nonlinear refraction of birefringent mesoporous silicon films

    SciTech Connect

    Gayvoronsky, Vladimir Ya; Golovan, Leonid A; Kopylovsky, M A; Gromov, Yu V; Zabotnov, S V; Piskunov, N A; Kashkarov, Pavel K; Timoshenko, Viktor Yu

    2011-03-31

    The self-action of light in birefringent mesoporous silicon films is studied using picosecond laser pulses. Two mechanisms of self-action of light in mesoporous silicon are found. One of them manifests itself at laser intensities below 3 MW cm{sup -2} and tends to saturation. The other dominates at intensities above 10 MW cm{sup -2}. The former is related to the resonant excitation of electronic states on the surface of silicon nanocrystals, whereas the latter is due to the local fields in the nanocomposite. For the aforementioned ranges of the laser intensity, the cubic nonlinear susceptibility of the films exceeds that of single-crystal silicon by six and four orders of magnitude, respectively, and the figure of merit for the films exceeds that for single-crystal silicon by an order of magnitude. (nonlinear-optics phenomena)

  16. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  17. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.

    PubMed

    Li, Chunxia; Yang, Dongmei; Ma, Ping'an; Chen, Yinyin; Wu, Yuan; Hou, Zhiyou; Dai, Yunlu; Zhao, Jihong; Sui, Changping; Lin, Jun

    2013-12-20

    Incorporating the agents for magnetic resonance imaging (MRI), optical imaging, and therapy in one nanostructured matrix to construct multifunctional nanomedical platform has attracted great attention for simultaneous diagnostic and therapeutic applications. In this work, a facile methodology is developed to construct a multifunctional anticancer drug nanocarrier by combining the special advantages of upconversion nanoparticles and mesoporous silica. β-NaYF4 :Yb(3+) , Er(3+) @β-NaGdF4 :Yb(3+) is chosen as it can provide the dual modality of upconversion luminescence and MRI. Then mesoporous silica is directly coated onto the upconversion nanoparticles to form discrete, monodisperse, highly uniform, and core-shell structured nanospheres (labeled as UCNPs@mSiO2 ), which are subsequently functionalized with hydrophilic polymer poly(ethylene glycol) (PEG) to improve the colloidal stability and biocompatibility. The obtained multifunctional nanocomposites can be used as an anticancer drug delivery carrier and applied for imaging. The anticancer drug doxorubicin (DOX) is absorbed into UCNPs@mSiO2 -PEG nanospheres and released in a pH-sensitive pattern. In vitro cell cytotoxicity tests on cancer cells verify that the DOX-loaded UCNPs@mSiO2 -PEG has comparable cytotoxicity with free DOX at the same concentration of DOX. In addition, the T1 -weighted MRI that measures in aqueous solutions reveals that the contrast brightening increases with the concentration of Gd(3+) component. Upconversion luminescence images of UCNPs@mSiO2 -PEG uptaken by cells show green emission under 980 nm infrared laser excitation. Finally, the nanocomposites show low systematic toxicity and high in vivo antitumor therapy efficacy. These findings highlight the fascinating features of upconversion-mesoporous nanocomposites as multimodality imaging contrast agents and nanocarrier for drug molecules.

  18. Analytical and Theranostic Applications of Gold Nanoparticles and Multifunctional Nanocomposites

    PubMed Central

    Khlebtsov, Nikolai; Bogatyrev, Vladimir; Dykman, Lev; Khlebtsov, Boris; Staroverov, Sergey; Shirokov, Alexander; Matora, Larisa; Khanadeev, Vitaly; Pylaev, Timofey; Tsyganova, Natalia; Terentyuk, Georgy

    2013-01-01

    Gold nanoparticles (GNPs) and GNP-based multifunctional nanocomposites are the subject of intensive studies and biomedical applications. This minireview summarizes our recent efforts in analytical and theranostic applications of engineered GNPs and nanocomposites by using plasmonic properties of GNPs and various optical techniques. Specifically, we consider analytical biosensing; visualization and bioimaging of bacterial, mammalian, and plant cells; photodynamic treatment of pathogenic bacteria; and photothermal therapy of xenografted tumors. In addition to recently published reports, we discuss new data on dot immunoassay diagnostics of mycobacteria, multiplexed immunoelectron microscopy analysis of Azospirillum brasilense, materno-embryonic transfer of GNPs in pregnant rats, and combined photodynamic and photothermal treatment of rat xenografted tumors with gold nanorods covered by a mesoporous silica shell doped with hematoporphyrin. PMID:23471188

  19. Mesoporous Silicon-Based Anodes

    NASA Technical Reports Server (NTRS)

    Peramunage, Dharmasena

    2015-01-01

    For high-capacity, high-performance lithium-ion batteries. A new high-capacity anode composite based on mesoporous silicon is being developed. With a structure that resembles a pseudo one-dimensional phase, the active anode material will accommodate significant volume changes expected upon alloying and dealloying with lithium (Li).

  20. Bimodal mesoporous silica with bottleneck pores.

    PubMed

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  1. Magnetic mesoporous material for the sequestration of algae

    SciTech Connect

    Trewyn, Brian G.; Kandel, Kapil; Slowing, Igor Ivan; Lee, Show-Ling

    2014-09-09

    The present invention provides a magnetic mesoporous nanoparticle that includes a mesoporous silicate nanoparticle and iron oxide. The present invention also provides a method of using magnetic mesoporous nanoparticles to sequester microorganisms from a media.

  2. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    SciTech Connect

    Khezri, Khezrollah; Roghani-Mamaqani, Hossein

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  3. SnCo–CMK nanocomposite with improved electrochemical performance for lithium-ion batteries

    SciTech Connect

    Zeng, Lingxing; Deng, Cuilin; Zheng, Cheng; Qiu, Heyuan; Qian, Qingrong; Chen, Qinghua; Wei, Mingdeng

    2015-11-15

    Highlights: • The SnCo–CMK nanocomposite was synthesized using mesoporous carbon as nano-reactor. • Ultrafine SnCo nanoparticles distribute both inside and outside of mesopore channels. • The SnCo–CMK nanocomposite is an alternative anode material for Li-ion intercalation. • A high reversible capacity of 562 mAh g{sup −1} is maintained after 60 cycles at 100 mA g{sup −1}. - Abstract: In the present work, SnCo–CMK nanocomposite was successfully synthesized for the first time via a simple nanocasting route by using mesoporous carbon as nano-reactor. The nanocomposite was then characterized by means of X-ray diffraction (XRD), thermogravimetric analysis (TG), N{sub 2} adsorption–desorption, scanning and transmission electron microscopy (SEM/TEM) respectively. Furthermore, the SnCo–CMK nanocomposite exhibited large reversible capacities, excellent cycling stability and enhanced rate capability when employed as an anode material for lithium-ion batteries. A large reversible capacity of 562 mA h g{sup −1} was obtained after 60 cycles at a current density of 0.1 A g{sup −1} which is attributed to the structure of ‘meso-nano’ SnCo–CMK composite. This unique structure ensures the intimate contact between CMK and SnCo nanoparticles, buffers the large volume expansion and prevents the aggregation of the SnCo nanoparticles during cycling, leading to the excellent cycling stability and enhanced rate capability.

  4. Dealloying of mesoporous PtCu alloy film for the synthesis of mesoporous Pt films with high electrocatalytic activity.

    PubMed

    Li, Cuiling; Malgras, Victor; Aldalbahi, Ali; Yamauchi, Yusuke

    2015-02-01

    Mesoporous Pt film with highly electrocatalytic activity is successfully synthesized by dealloying of mesoporous PtCu alloy film prepared through electrochemical micelle assembly. The resulting mesoporous electrode exhibits high current density and superior stability toward the methanol oxidation reaction.

  5. Synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing nickel oxide nanoparticles using sucrose and nickel acetate in a silica template

    SciTech Connect

    Cao Yulin; Cao Jieming Zheng Mingbo; Liu Jinsong; Ji Guangbin

    2007-02-15

    New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g{sup -1} using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material. - Graphical abstract: Schematic drawings of synthesis routes for the NiOCMK materials.

  6. A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance

    NASA Astrophysics Data System (ADS)

    Fei, Ling; Jiang, Yufeng; Xu, Yun; Chen, Gen; Li, Yuling; Xu, Xun; Deng, Shuguang; Luo, Hongmei

    2014-11-01

    A novel solvent-free thermal reaction of ferrocene and sulfur is developed for preparing iron sulfide and carbon nanocomposites, where ferrocene acts as both iron and carbon source. The prepared composite has iron sulfide sandwiched in carbon matrix. Moreover, ferrocene and sulfur can turn to vapor phase at an elevated temperature, resulting in easy deposition of product on the surface of templates. Sodium chloride was selected as a template due to its nontoxic and water-soluble nature. The NaCl-templated composite shows "sphere on mattress" morphology and exhibits the highest capacity and the longest cyclability ever reported for iron pyrite anode. To obtain mesoporous nanocomposites, SBA-15 was also applied as templates. The mesoporous nanocomposite demonstrates excellent capacity retention capability, indicating the robust structural stability.

  7. Mesoporous Silica: A Suitable Adsorbent for Amines

    PubMed Central

    2009-01-01

    Mesoporous silica with KIT-6 structure was investigated as a preconcentrating material in chromatographic systems for ammonia and trimethylamine. Its adsorption capacity was compared to that of existing commercial materials, showing its increased adsorption power. In addition, KIT-6 mesoporous silica efficiently adsorbs both gases, while none of the employed commercial adsorbents did. This means that KIT-6 Mesoporous silica may be a good choice for integrated chromatography/gas sensing micro-devices. PMID:20628459

  8. Cellular membrane trafficking of mesoporous silica nanoparticles

    SciTech Connect

    Fang, I-Ju

    2012-01-01

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to determine

  9. Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High Energy Lithium Battery

    SciTech Connect

    Liang, Chengdu; Dudney, Nancy J; Howe, Jane Y

    2009-01-01

    We report herein a hierarchically structured sulfur-carbon (S/C) nanocomposite material as the high surface-area cathode for rechargeable lithium batteries. A porous carbon with a uniform distribution of mesopores of 7.3 nm has been synthesized through a soft-template synthesis method. The potassium hydroxide activation of this mesoporous carbon results in a bimodal porous carbon with added microporosity of less than 2 nm to the existing mesopores without deterioration of the integrity of the original mesoporous carbon. Elemental sulfur has been loaded to the micropores through a solution infiltration method. The resulted S/C composites with various loading level of sulfur have a high surface areas and large internal porosities. These materials have been tested as novel cathodes for Li/S batteries. The results show that the cyclability and the utilization of sulfur in the Li/S batteries have been significantly improved. The large internal porosity and surface area of the micro-mesoporous carbon is essential for retaining sulfur in the cathode and therefore maximizing the capacity and lifespan of the cathode.

  10. Investigating the mesostructure of ordered porous silica nanocomposites by transmission electron microscopy techniques

    SciTech Connect

    Bullita, S.; Casula, M. F.; Piludu, M.; Falqui, A.; Carta, D.; Corrias, A.

    2014-10-21

    Nanocomposites made out of FeCo alloy nanocrystals supported onto pre-formed mesoporous ordered silica which features a cubic arrangement of pores (SBA-16) were investigated. Information on the effect of the nanocrystals on the mesostructure (i.e. pore arrangement symmetry, pore size, and shape) were deduced by a multitechnique approach including N2 physisorption, low angle X-ray diffraction, and Transmission electron microscopy. It is shown that advanced transmission electron microscopy techniques are required, however, to gain direct evidence on key compositional and textural features of the nanocomposites. In particular, electron tomography and microtomy techniques make clear that the FeCo nanocrystals are located within the pores of the SBA-16 silica, and that the ordered mesostructure of the nanocomposite is retained throughout the observed specimen.

  11. Magnetic Mesoporous Photonic Cellulose Films.

    PubMed

    Giese, Michael; Blusch, Lina K; Schlesinger, Maik; Meseck, Georg R; Hamad, Wadood Y; Arjmand, Mohammad; Sundararaj, Uttandaraman; MacLachlan, Mark J

    2016-09-13

    Novel hybrid materials of cellulose and magnetic nanoparticles (NPs) were synthesized and characterized. The materials combine the chiral nematic structural features of mesoporous photonic cellulose (MPC) with the magnetic properties of cobalt ferrite (CoFe2O4). The photonic, magnetic, and dielectric properties of the hybrid materials were investigated during the dynamic swelling and deswelling of the MPC films. It was observed that the dielectric properties of the generated MPC films increased tremendously following swelling in water, endorsing efficient swelling ability of the generated mesoporous films. The high magnetic permeability of the developed MPC films in conjunction with their superior dielectric properties, predominantly in the swollen state, makes them interesting for electromagnetic interference shielding applications. PMID:27588561

  12. Novel concept for the preparation of gas selective nanocomposite membranes

    NASA Astrophysics Data System (ADS)

    Drobek, M.; Ayral, A.; Motuzas, J.; Charmette, C.; Loubat, C.; Louradour, E.; Dhaler, D.; Julbe, A.

    2015-07-01

    In this work we report on a novel concept for the preparation of gas selective composite membranes by a simple and robust synthesis protocol involving a controlled in-situpolycondensation of functional alkoxysilanes within the pores of a mesoporous ceramic matrix. This innovative approach targets the manufacture of thin nanocomposite membranes, allowing good compromise between permeability, selectivity and thermomechanical strength. Compared to simple infiltration, the synthesis protocol allows a controlled formation of gas separation membranes from size-adjusted functional alkoxysilanes by a chemical reaction within the mesopores of a ceramic support, without any formation of a thick and continuous layer on the support top-surface. Membrane permeability can thus be effectively controlled by the thickness and pore size of the mesoporous layer, and by the oligomers chain length. The as-prepared composite membranes are expected to possess a good mechanical and thermomechanical resistance and exhibit a thermally activated transport of He and H2 up to 150 °C, resulting in enhanced separation factors for specific gas mixtures e.g. FH2/CO ˜ 10; FH2/CO2 ˜ 3; FH2/CH4 ˜ 62.

  13. Mesoporous carbonates and method of making

    DOEpatents

    Fryxell, Glen; Liu, Jun; Zemanian, Thomas S.

    2004-06-15

    Mesoporous metal carbonate structures are formed by providing a solution containing a non-ionic surfactant and a calcium acetate salt, adding sufficient base to react with the acidic byproducts to be formed by the addition of carbon dioxide, and adding carbon dioxide, thereby forming a mesoporous metal carbonate structure containing the metal from said metal salt.

  14. Ultrastable Mesoporous Aluminosilicates by Grafting Routes.

    PubMed

    Mokaya

    1999-10-01

    A combination of postsynthesis grafting and hydrothermal treatment offers an excellent route for the synthesis of ultrastable mesoporous aluminosilicates with enhanced acidity and catalytic activity. The stability observed (>150 h in boiling water; 4 h at 1000 degrees C) is, for mesoporous silicates, remarkable. Unusually the hydrothermal treatment is beneficial with respect to the use of the stable aluminosilicates as solid acid catalysts.

  15. Mesoporous Carbon-based Materials for Alternative Energy Applications

    NASA Astrophysics Data System (ADS)

    Cross, Kimberly Michelle

    Increasing concerns for the escalating issues activated by the effect of carbon dioxide emissions on the global climate from extensive use of fossil fuels and the limited amount of fossil resources has led to an in-depth search for alternative energy systems, primarily based on nuclear or renewable energy sources. Recent innovations in the production of more efficient devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured materials into electrochemical systems. The aforementioned nano-electrochemical energy systems hold particular promise for alternative energy transportation related technologies including fuel cells, hydrogen storage, and electrochemical supercapacitors. In each of these devices, nanostructured materials can be used to increase the surface area where the critical chemical reactions occur within the same volume and mass, thereby increasing the energy density, power density, electrical efficiency, and physical robustness of the system. Durable corrosion resistant carbon support materials for fuel cells have been designed by adding conductive low cost carbon materials with chemically robust ceramic materials. Since a strict control of the pore size is mandatory to optimize properties for improved performance, chemical activation agents have been utilized as porogens to tune surface areas, pore size distributions, and composition of carbon-based mesoporous materials. Through the use of evaporative self-assembly methods, both randomly disordered and surfactant-templated, ordered carbon-silica nanocomposites have been synthesized with controlled surface area, pore volume, and pore size ranging from 50-800 m2/g, 0.025-0.75 cm3/g, and 2-10 nm, respectively. Multi-walled carbon nanotubes (MWNTs) ranging from 0.05-1.0 wt. % were added to the aforementioned carbon-silica nanocomposites, which provided an additional increase in surface area and improved conductivity. Initially, a conductivity value of 0.0667 S

  16. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    PubMed Central

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  17. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics.

    PubMed

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-06-24

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as "degradation inhibitor" for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas.

  18. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-06-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as “degradation inhibitor” for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas.

  19. Ordered Mesoporous Carbon/Iron Oxide Nanoparticle Composites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Wang, Xinyu; Watkins, James

    2013-03-01

    Novel mesoporous carbon/iron oxide composites were prepared through a simple carbonization procedure of blends of block copolymer precursors containing the source of carbon, i.e., polyacrylonitrile-block-poly(t-butyl acrylate) (PtBA-b-PAN) with iron oxide nanoparticles. The addition of functionalized nanoparticles that selectively hydrogen bond with PAN segments was shown to induce order in otherwise disordered system. The ordered mesostructure of the composites was confirmed by both small x-ray scattering and transmission electron microscopy. The preparation of nanocomposites with pore structure was enabled by the high ?delity preservation of the phase-separated nanostructure between two polymer blocks driven by nanoparticle additive upon carbonization at 700oC. The electrochemical performance of the composite films was compared to that of the neat carbon and the mesoporous carbon without iron oxide nanoparticles. The mesoporous structure together with the high iron contents in such materials make them particularly promising for use in supercapacitor applications. This work was supported by the NSF Center for Hierarchical Manufacturing at the University of Massachusetts (CMMI-0531171).

  20. Mesoporous Nano-Silica Serves as the Degradation Inhibitor in Polymer Dielectrics.

    PubMed

    Yang, Yang; Hu, Jun; He, Jinliang

    2016-01-01

    A new generation of nano-additives for robust high performance nanodielectrics is proposed. It is demonstrated for the first time that mesoporous material could act as "degradation inhibitor" for polymer dielectrics to sequestrate the electrical degradation products then restrain the electrical aging process especially under high temperature conditions, which is superior to the existing additives of nanodielectrics except further increasing the dielectric strength. Polyethylenimine (PEI) loaded nano-scaled mesoporous silica MCM-41 (nano-MS) is doped into the dielectric matrix to prepare the PP/MCM-41-PEI nanocomposites. PEI provides the amines to capture the electrical degradation products while the MCM-41 brackets afford large adsorption surface, bring down the activating temperature of the absorbent then enhance the absorptive capacity. The electrical aging tests confirm the contribution of the mesoporous structure to electrical aging resistance and FT-IR analysis of the electrical degraded regions demonstrates the chemical absorption especially under high temperature conditions. Take the experimental data as examples, extending the aging durability and dielectric strength of polymer dielectrics by 5 times and 16%, respectively, can have substantial commercial significance in energy storage, power electronics and power transmission areas. PMID:27338622

  1. Application of Ni:SiO2 nanocomposite to control the carbon deposition on the carbon dioxide reforming of methane.

    PubMed

    Carreño, N L; Leite, E R; Longo, E; Lisboa-Filho, P N; Valentini, A; Probst, L F; Schreiner, W H

    2002-10-01

    Stable Ni nanoparticles embedded in a mesoporous silica material were used as catalysts for the conversion of methane into synthesis gas. This catalyst has the singular properties of controlling the carbon deposition and deactivation of active sites. A comparative study of our nanocomposites with conventional catalysts showed that impregnation material presented a preferential encapsulation and growth of carbon nanotubes on the metal surface. The impregnated catalyst showed a higher tendency for carbon nanotube and whiskers formation.

  2. Chemical preparation of ferroelectric mesoporous barium titanate thin films: drastic enhancement of Curie temperature induced by mesopore-derived strain.

    PubMed

    Suzuki, Norihiro; Jiang, Xiangfen; Salunkhe, Rahul R; Osada, Minoru; Yamauchi, Yusuke

    2014-09-01

    Mesoporous barium titanate (BT) thin films are synthesized by a surfactant-assisted sol-gel method. The obtained mesoporous BT thin films show enhanced ferroelectricity due to the effective strains induced by mesopores. The Curie temperature (T(c)) of the mesoporous BT reaches approximately 470 °C.

  3. Nanocomposite thermite ink

    DOEpatents

    Tappan, Alexander S.; Cesarano, III, Joseph; Stuecker, John N.

    2011-11-01

    A nanocomposite thermite ink for use in inkjet, screen, and gravure printing. Embodiments of this invention do not require separation of the fuel and oxidizer constituents prior to application of the ink to the printed substrate.

  4. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  5. Multifunctional nanocomposite materials

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V[sub 2]O[sub 5] gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  6. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  7. Surface texture and physicochemical characterization of mesoporous carbon--wrapped Pd-Fe catalysts for low-temperature CO catalytic oxidation.

    PubMed

    Han, Weiliang; Zhang, Guodong; Zhao, Kun; Lu, Gongxuan; Tang, Zhicheng

    2015-11-21

    In this paper, mesoporous carbon (meso-C) with three-dimensional mesoporous channels was synthesized through a nanocasting route using three-dimensional mesoporous silica KIT-6 as the template. Mesoporous carbon wrapped Pd-Fe nanocomposite catalysts were synthesized by the co-precipitation method. The effects of the experimental conditions, such as pH value, Fe loading content and calcination temperature, on CO oxidation were studied in detail. The prepared Pd-Fe/meso-C catalysts showed excellent catalytic activity after optimizing the experimental conditions. The surface tetravalent Pd content, existing forms of Fe species, surface chemical adsorbed oxygen concentration, and pore channels of mesoporous carbon played vital roles in achieving the highest performance for the Pd-Fe/meso-C catalyst. The reaction pathway was conjectured according to the XPS analysis of the Pd-Fe/meso-C catalysts for CO oxidation, which maybe adhered to the Langmuir-Hinshelwood + redox mechanism. The effect of moisture on CO conversion was investigated, and the superior Pd-Fe/meso-C catalyst could maintain its activity beyond 12 h. This catalyst also showed excellent activity compared to the reported values in the existing literature.

  8. Ecodesign of ordered mesoporous silica materials.

    PubMed

    Gérardin, Corine; Reboul, Julien; Bonne, Magali; Lebeau, Bénédicte

    2013-05-01

    Characterized by a regular porosity in terms of pore size and pore network arrangement, ordered mesoporous solids have attracted increasing interest in the last two decades. These materials have been identified as potential candidates for several applications. However, more environmentally friendly and economical synthesis routes of mesoporous silica materials were found to be necessary in order to develop these applications on an industrial scale. Consequently, ecodesign of ordered mesoporous silica has been considerably developed with the objective of optimizing the chemistry and the processing aspects of the material synthesis. In this review, the main strategies developed with this aim are presented and discussed. PMID:23407854

  9. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGES

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  10. Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Sharma, Anshu; Solanki, Pratima R.; Avasthi, D. K.

    2016-08-01

    In the present work, we have studied a nanocomposite of polyaniline nanofiber-graphene microflowers (PANInf-GMF), prepared by an in situ rapid mixing polymerization method. The structural and morphological studies of the nanocomposite (PANInf-GMF) were carried out by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. The mesoporous, nanofibrous and microflower structures were observed by scanning electron microscopy. The functional groups and synergetic effects were observed by FTIR and micro-Raman measurements. The water wettability was carried out by a contact angle measurement technique and found to be super hydrophilic in nature towards water. This nanocomposite was deposited onto indium-tin-oxide coated glass substrate by a drop casting method and used for the detection of cholesterol using an electrochemical technique. The differential pulse voltammetry studies show the appreciable increase in the current with the addition of 1.93 to 464.04 mg dl-1 cholesterol concentration. It is also found that the electrodes were highly selective towards cholesterol when compared to other biological interfering analytes, such as glucose, urea, citric acid, cysteine and ascorbic acid. The sensitivity of the sensor is estimated as 0.101 μA mg-1 dl cm-2 and the lower detection limit as 1.93 mg dl-1. This work will throw light on the preparation of non-enzymatic biosensors based on PANInf-carbon nanostructure composites.

  11. ZnFe2O4-TiO2 Nanoparticles within Mesoporous MCM-41

    PubMed Central

    Tang, Aidong; Deng, Yuehua; Jin, Jiao; Yang, Huaming

    2012-01-01

    A novel nanocomposite ZnFe2O4-TiO2/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N2 adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe2O4-TiO2 nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe2O4 nanoparticles can inhibit the transformation of anatase into rutile phase of TiO2. Incorporation of ZnFe2O4-TiO2 within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO2 to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO2, indicating an interesting application in the photodegradation and photoelectric fields. PMID:22919325

  12. ZnFe2O4-TiO2 nanoparticles within mesoporous MCM-41.

    PubMed

    Tang, Aidong; Deng, Yuehua; Jin, Jiao; Yang, Huaming

    2012-01-01

    A novel nanocomposite ZnFe(2)O(4)-TiO(2)/MCM-41 (ZTM) was synthesized by a sol-gel method and characterized through X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), N(2) adsorption-desorption, Raman spectroscopy, and ultraviolet visible (UV-vis) spectrophotometry. The results confirmed the incorporation of ZnFe(2)O(4)-TiO(2) nanoparticles inside the pores of the mesoporous MCM-41 host without destroying its integrity. ZnFe(2)O(4) nanoparticles can inhibit the transformation of anatase into rutile phase of TiO(2). Incorporation of ZnFe(2)O(4)-TiO(2) within MCM-41 avoided the agglomeration of nanoparticles and reduced the band gap energy of TiO(2) to enhance its visible light photocatalytic activity. UV-vis absorption edges of ZTM nanocomposites redshifted with the increase of Zn/Ti molar ratio. The nanocomposite approach could be a potential choice for enhancing the photoactivity of TiO(2), indicating an interesting application in the photodegradation and photoelectric fields.

  13. Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors.

    PubMed

    Lakshmi, G B V S; Sharma, Anshu; Solanki, Pratima R; Avasthi, D K

    2016-08-26

    In the present work, we have studied a nanocomposite of polyaniline nanofiber-graphene microflowers (PANInf-GMF), prepared by an in situ rapid mixing polymerization method. The structural and morphological studies of the nanocomposite (PANInf-GMF) were carried out by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. The mesoporous, nanofibrous and microflower structures were observed by scanning electron microscopy. The functional groups and synergetic effects were observed by FTIR and micro-Raman measurements. The water wettability was carried out by a contact angle measurement technique and found to be super hydrophilic in nature towards water. This nanocomposite was deposited onto indium-tin-oxide coated glass substrate by a drop casting method and used for the detection of cholesterol using an electrochemical technique. The differential pulse voltammetry studies show the appreciable increase in the current with the addition of 1.93 to 464.04 mg dl(-1) cholesterol concentration. It is also found that the electrodes were highly selective towards cholesterol when compared to other biological interfering analytes, such as glucose, urea, citric acid, cysteine and ascorbic acid. The sensitivity of the sensor is estimated as 0.101 μA mg(-1) dl cm(-2) and the lower detection limit as 1.93 mg dl(-1). This work will throw light on the preparation of non-enzymatic biosensors based on PANInf-carbon nanostructure composites. PMID:27419910

  14. Mesoporous polyaniline nanofiber decorated graphene micro-flowers for enzyme-less cholesterol biosensors

    NASA Astrophysics Data System (ADS)

    Lakshmi, G. B. V. S.; Sharma, Anshu; Solanki, Pratima R.; Avasthi, D. K.

    2016-08-01

    In the present work, we have studied a nanocomposite of polyaniline nanofiber-graphene microflowers (PANInf-GMF), prepared by an in situ rapid mixing polymerization method. The structural and morphological studies of the nanocomposite (PANInf-GMF) were carried out by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared (FTIR) and Raman spectroscopy. The mesoporous, nanofibrous and microflower structures were observed by scanning electron microscopy. The functional groups and synergetic effects were observed by FTIR and micro-Raman measurements. The water wettability was carried out by a contact angle measurement technique and found to be super hydrophilic in nature towards water. This nanocomposite was deposited onto indium-tin-oxide coated glass substrate by a drop casting method and used for the detection of cholesterol using an electrochemical technique. The differential pulse voltammetry studies show the appreciable increase in the current with the addition of 1.93 to 464.04 mg dl‑1 cholesterol concentration. It is also found that the electrodes were highly selective towards cholesterol when compared to other biological interfering analytes, such as glucose, urea, citric acid, cysteine and ascorbic acid. The sensitivity of the sensor is estimated as 0.101 μA mg‑1 dl cm‑2 and the lower detection limit as 1.93 mg dl‑1. This work will throw light on the preparation of non-enzymatic biosensors based on PANInf-carbon nanostructure composites.

  15. Drug Loading of Mesoporous Silicon

    NASA Astrophysics Data System (ADS)

    Moffitt, Anne; Coffer, Jeff; Wang, Mengjia

    2011-03-01

    The nanostructuring of crystalline solids with low aqueous solubilities by their incorporation into mesoporous host materials is one route to improve the bioavailability of such solids. Earlier studies suggest that mesoporous Si (PSi), with pore widths in the range of 5-50 nm, is a candidate for such an approach. In this presentation, we describe efforts to load curcumin into free-standing microparticles of PSi. Curcumin is a compound extracted from turmeric root, which is an ingredient of curry. Curucmin has shown activity against selected cancer cell lines, bacteria, and other medical conditions. However, curcumin has a very low bioavailability due to its extremely low water solubility (0.6 μ g/mL). Incorporation of curcumin was achieved by straightforward loading of the molten solid at 185circ; C. Loading experiments were performed using PSi particles of two different size ranges, 45-75 μ m and 150-250 μ m. Longer loading times and ratio of curcumin to PSi leads to a higher percentage of loaded curcumin in both PSi particle sizes (as determined by weight difference). The extent of curcumin crystallinity was assessed by x-ray diffraction (XRD). The solubility and release kinetics of loaded curcumin from the PSi was determined by extraction into water at 37circ; C, with analysis using UV-VIS spectrometry. NSF-REU and TCU.

  16. Carbon Nanohorns Carried Iron Fluoride Nanocomposite with ultrahigh rate lithium ion storage properties

    PubMed Central

    Fan, Lishuang; Li, Bingjiang; Zhang, Naiqing; Sun, Kening

    2015-01-01

    Novel hierarchical carbon nanohorns (CNHs) carried iron fluoride nanocomposites have been constructed by direct growth of FeF3·0.33H2O nanoparticles on CNHs. In the FeF3·0.33H2O@CNHs nanocomposite, the mesopore CNHs play the role as conductive matrix and robust carrier to support the FeF3·0.33H2O nanoparticles. The intimate conductive contact between the two components can build up an express way of electron transfer for rapid Li+ insertion/extraction. The CNHs can not only suppress the growth and agglomeration of FeF3·0.33H2O during the crystallization process, but also sever as an “elastic confinement” to support FeF3·0.33H2O. As was to be expected, the hierarchical FeF3·0.33H2O@CNHs nanocomposite exhibits impressive rate capability and excellent cycle performance. Markedly, the nanocomposite proves stable, ultrahigh rate lithium ion storage properties of 81 mAh g−1 at charge/discharge rate of 50 C (a discharge/charge process only takes 72 s). The integration of high electron conductivity, confined nano sized FeF3·0.33H2O (~5 nm), hierarchical mesopores CNHs and the “elastic confinement” support, the FeF3·0.33H2O@CNHs nanocomposite demonstrates excellent ultrahigh rate capability and good cycling properties. PMID:26173994

  17. Direct imaging Au nanoparticle migration inside mesoporous silica channels.

    PubMed

    Liu, Zhengwang; Che, Renchao; Elzatahry, Ahmed A; Zhao, Dongyuan

    2014-10-28

    Supported metal nanoparticle (NP) catalysts have been widely used in many industry processes and catalytic reactions. Catalyst deactivation is mainly caused by the sintering of supported metal NPs. Hence, understanding the metal NPs' sintering behaviors has great significance in preventing catalyst deactivation. Here we report the metal particle migration inside/between mesochannels by scanning transmission electron microscopy and electron energy loss spectroscopy via an in situ TEM heating technique. A sintering process is proposed that particle migration predominates, driven by the difference of gravitational potential from the height of the uneven internal surface of the mesopores; when the distance of the gold nanoparticles with a size of about 3 and 5 nm becomes short after migration, the coalescence process is completed, which is driven by an "octopus-claw-like" expansion of a conduction electron cloud outside the Au NPs. The supports containing an abundance of micropores help to suppress particle migration and coalescence. Our findings provide the understanding toward the rational design of supported industrial catalysts and other nanocomposites with enhanced activity and stability for applications such as batteries, catalysis, drug delivery, gas sensors, and solar cells.

  18. Hierarchical multifunctional nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  19. Mesoporous Carbon Membranes for Selective Gas Separations

    SciTech Connect

    2009-04-01

    This factsheet describes a study whose focus is on translating a novel class of material developed at Oak Ridge National Laboratory—selfassembled mesoporous carbon—into robust, efficient membrane systems for selective industrial gas separations.

  20. Eu3+, Tb3+/β-diketonate functionalized mesoporous SBA-15/GaN composites: multi-component chemical bonding assembly, characterization, and luminescence.

    PubMed

    Zhao, Yan; Yan, Bing

    2013-04-01

    GaN-functionalized rare earth (Eu3+ and Tb3+) organic/inorganic mesoporous nanocomposites have been successfully synthesized (designated as RE(L-SBA-15)3(L-GaN); RE=Eu, Tb; L=TAA-Si, BTA-Si). The organosilane precursor materials (L-SBA-15) are synthesized by co-condensation of tetraethylorthosilicate (TEOS) and the functionalized β-diketones (TAA-Si and BTA-Si) in the presence of Pluronic P123 surfactant as a template. The modified β-diketones ligands are also used to covalently bond with surface-modified GaN and formed another precursor L-GaN. Both of the precursors can coordinate with rare earth ions to synthesize the final mesoporous materials via a sol-gel process. FTIR, TEM, XRD, and nitrogen (N2) adsorption/desorption measurements are employed to characterize the mesostructure of RE(L-SBA-15)3(L-GaN). The luminescence properties and thermogravimetric analysis of all the prepared materials are characterized in detail, and the results reveal that a series of uniformed mesopore structure hybrid materials has been achieved. The mesoporous material Eu(BTA-Si-SBA-15)3(BTA-Si-GaN) has better luminescence intensity, higher quantum efficiency, and longer lifetime than Eu(TAA-Si-SBA-15)3(TAA-Si-GaN). While the nanocomposite Tb(TAA-Si-SBA-15)3(TAA-Si-GaN) revealed the strongest characteristic emission of Tb ions than Tb(BTASiSBA-15)(BTASiGaN), the excellent luminescent properties and thermal stability enable the hybrid mesoporous material to have potential applications in optical field.

  1. In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system.

    PubMed

    Foroughi, Firoozeh; Hassanzadeh-Tabrizi, S A; Bigham, Ashkan

    2016-11-01

    In this study, an innovative synthesis process has been developed to produce hydroxyapatite-magnesium ferrite (HA-MgFe2O4) nanocomposite. In addition, the effect of calcination temperature on drug delivery behavior of produced samples was investigated. HA-MgFe2O4 nanocomposite was prepared via one-step modified reverse microemulsion synthesis route. The resulting products were characterized by X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller surface area analysis (BET). The calcined samples at 500 and 700°C demonstrated mesoporous characteristics and large specific surface areas of 88 and 32m(2)/g, respectively. TEM and VSM results showed that the nanocomposite calcined at 700°C has core-shell morphology and a maximum saturation magnetization of 9.47emug(-1). PMID:27524079

  2. Fire retardant polyetherimide nanocomposites

    SciTech Connect

    Lee, J.; Takekoshi, T.; Giannelis, E.P.

    1997-09-01

    Polyetherimide-layered silicates nanocomposites with increased char yield and fire retardancy are described. The use of nanocomposites is a new, environmentally-benign approach to improve fire resistance of polymers. An increase in the aromaticity yields high char residues that normally correlate with higher oxygen index and lower flammability. The often high cost of these materials and the specialized processing techniques required, however, have limited the use of these polymers to certain specialized applications. The effectiveness of fire retardant fillers is also limited since the large amounts required make processing difficult and might inadvertently affect mechanical properties.

  3. Preparation of irregular mesoporous hydroxyapatite

    SciTech Connect

    Wang Hualin Zhai Linfeng; Li Yanhong; Shi Tiejun

    2008-06-03

    An irregular mesoporous hydroxyapatite (meso-HA), Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, is successfully prepared from Ca(NO{sub 3}){sub 2}.4H{sub 2}O and NH{sub 4}H{sub 2}PO{sub 4} using surfactant cetyltrimethyl ammonium bromide (CTAB) as template. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) results reveal that the positive head of CTAB is assembled on the surface precipitated HA and much NH{sub 4}{sup +} is enclosed in precipitated HA before calcination. Field scanning electron microscope (FSEM) reveals that there exist many interconnected pores throughout the HA reticular skeleton. Nitrogen adsorption-desorption experiment exhibits a mesoporous material type IV curve, and pore size distribution calculated from the desorption branch of the isotherms based on Barrett-Joyner-Halenda (BJH) model shows that most pores throughout the HA reticular skeleton are sized at about 40 nm, but the pores are not uniform on the whole, owning to decomposition of the 'organic' CTAB templating structures and ammonium salt enclosed in the precipitated HA. The specific surface area of irregular meso-HA is calculated to be 37.6 m{sup 2}/g according to the Brunauer-Emmett-Teller (BET) equation. Moreover, after polylactic acid/meso-HA (PLA/meso-HA) composites degraded 12 weeks in normal saline at 37 deg. C, the interconnected pores throughout the HA skeleton were enlarged and sized in micron degree, which resemble trabecular bone structure very much.

  4. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pranesh; Saha, Swadhin Kr; Guha, Arun; Saha, Samar Kr

    2012-11-01

    Poly(N-isopropyl acrylamide) (PNIPA) grafted mesoporous silica nanoparticles (MPSNP) leading to novel inorganic/organic core-shell nanocomposite has been synthesized sonochemically in an aqueous medium without additives like cross-linker, hydrophobic agent, organic solvent. The colloidal stability of MPSNP is enhanced significantly due to encapsulation of the polymer. The composites are characterized by TEM, FTIR and TGA. The chemical and biochemical activities of the sonochemically synthesized materials have been studied in the light of reaction with acid-base, protein adsorption, antimicrobial activity, biocompatibility and nonthrombogenic property. Advantages of sonochemical synthesis compared to other techniques have been evaluated.

  5. A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization.

    PubMed

    Jang, Jyongsik; Lim, Byungkwon; Choi, Moonjung

    2005-09-01

    Mesoporous carbons with highly uniform and tunable mesopores were fabricated by one-step vapor deposition polymerization (VDP) using colloidal silica particles as templates and polyacrylonitrile (PAN) as a carbon precursor. PMID:16100607

  6. Polyimide/carbon Nanocomposites

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2003-01-01

    The goal of this product is to design and characterize well-defined conductive nanocomposite materials. The materials will be composed of a polymer matrix composed of rigid-backbone polyimides, and will be filled with modified or unmodified multi-walled carbon nanotubes (MWNTs). The ultimate design of this project is to create composite materials with optical clarity and a high conductivity.

  7. Towards 2D nanocomposites

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Sook; Yu, Changqian; Hayes, Robert; Granick, Steve

    2015-03-01

    Polymer vesicles (``polymersomes'') are an intriguing class of soft materials, commonly used to encapsulate small molecules or particles. Here we reveal they can also effectively incorporate nanoparticles inside their polymer membrane, leading to novel ``2D nanocomposites.'' The embedded nanoparticles alter the capacity of the polymersomes to bend and to stretch upon external stimuli.

  8. A functional mesoporous ionic crystal based on polyoxometalate.

    PubMed

    Kawahara, Ryosuke; Niinomi, Kazuma; Kondo, Junko N; Hibino, Mitsuhiro; Mizuno, Noritaka; Uchida, Sayaka

    2016-02-21

    A mesoporous ionic crystal is synthesized with a polyoxometalate and a macrocation with polar cyano groups. The compound possesses one-dimensional mesopores with an opening of 3.0 × 2.0 nm. The compound shows high proton conductivity and catalytic activity, which are due to the water molecules in the mesopores. PMID:26804446

  9. Large magnetodielectric effect in composites of Fe2O3·SiO2 nanoglass and mesoporous silica

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumi; Maiti, Ramaprasad; Saha, Shyamal Kumar; Chakravorty, Dipankar

    2016-06-01

    Composites of Fe2O3·SiO2 nanoglasses and mesoporous silica having a pore diameter of 5.5 nm were synthesized using hydrothermal and sol gel methods. The samples exhibited ferromagnetic behaviour which was the result of antiferromagnetic interaction between Fe2+ and Fe3+ ions in the nanoglass. The nanocomposites showed rather large values of magnetodielectric parameter, the range being 7.9%–51.19% depending on the nanoglass composition and the measuring frequency. The experimental data were satisfactorily fitted to Catalan’s model substantiating the fact that the dielectric permittivity changes were caused by the Maxwell–Wagner space charge polarization arising at the interfaces of the mesoporous silica and the iron-containing Nanosilica glass phase. Also, there were substantial changes in magnetoresistance (in the range 16.79%–33.47%) up to an applied magnetic field of 15 kOe. The large magnetodielectric effect observed in these nanocomposites makes them suitable for application as magnetic sensors.

  10. Synthesis and visible light photocatalysis of Fe-doped TiO{sub 2} mesoporous layers deposited on hollow glass microbeads

    SciTech Connect

    Cui Lifeng; Wang Yuansheng; Niu Mutong; Chen Guoxin; Cheng Yao

    2009-10-15

    Nano-composite of Fe-doped anatase TiO{sub 2} nanocrystals loaded on the hollow glass microbeads was prepared by co-thermal hydrolysis deposition and calcining treatment. The adherence of TiO{sub 2} mesoporous layers to the surfaces of hollow glass microbeads prevented the aggregation of TiO{sub 2} nanoparticles and benefited to their catalytic activity. The doping of Fe ions makes the absorption edge of the TiO{sub 2} based nano-composite red-shifted into the visible region. An effective photodegradation of the methyl orange aqueous solution was achieved under visible light (lambda>420 nm) irradiation, revealing the potential applicability of such nano-composite in some industry fields, such as air and water purifications. - Graphical abstract: Nano-composite of Fe-doped anatase TiO{sub 2} nanocrystals loaded on the hollow glass microbeads was prepared by co-thermal hydrolysis deposition. Photodegradation of the methyl orange was achieved under visible light irradiation, revealing the potential applicability of such nano-composite in some industry fields.

  11. Unusually Huge Charge Storage Capacity of Mn3O4-Graphene Nanocomposite Achieved by Incorporation of Inorganic Nanosheets.

    PubMed

    Adpakpang, Kanyaporn; Jin, Xiaoyan; Lee, Seul; Oh, Seung Mi; Lee, Nam-Suk; Hwang, Seong-Ju

    2016-06-01

    Remarkable improvement in electrode performance of Mn3O4-graphene nanocomposites for lithium ion batteries can be obtained by incorporation of a small amount of exfoliated layered MnO2 or RuO2 nanosheets. The metal oxide nanosheet-incorporated Mn3O4-reduced graphene oxide (rGO) nanocomposites are synthesized via growth of Mn3O4 nanocrystals in the mesoporous networks of rGO and MnO2/RuO2 2D nanosheets. Incorporation of metal oxide nanosheets is highly effective in optimizing porous composite structure and charge transport properties, resulting in a remarkable increase of discharge capacity of Mn3O4-rGO nanocomposite with significant improvement of cyclability and rate performance. The observed enormous discharge capacity of synthesized Mn3O4-rGO-MnO2 nanocomposite (∼1600 mA·h·g(-1) for the 100th cycle) is the highest value among reported data for Mn3O4-rGO nanocomposite. Despite much lower electrical conductivity of MnO2 than RuO2, the MnO2-incorporated nanocomposite at optimal composition (2.5 wt %) shows even larger discharge capacities with comparable rate characteristics compared with the RuO2-incorporated homologue. This finding underscores that the electrode performance of the resulting nanosheet-incorporated nanocomposite is strongly dependent on its pore and composite structures rather than on the intrinsic electrical conductivity of the additive nanosheet. The present study clearly demonstrates that, regardless of electrical conductivity, incorporation of metal oxide 2D nanosheet is an effective way to efficiently optimize the electrode functionality of graphene-based nanocomposites. PMID:27120268

  12. MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor

    PubMed Central

    Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng

    2013-01-01

    We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767

  13. Facile mesoporous template-assisted hydrothermal synthesis of ordered mesoporous magnesium silicate as an efficient adsorbent

    NASA Astrophysics Data System (ADS)

    Lu, Qingshan; Li, Qiang; Zhang, Jingjing; Li, Jingfeng; Lu, Jinhua

    2016-01-01

    Mesoporous materials with unique structure as well as special morphology have potential applications in pollutant adsorption. In this work, using mesoporous silica SBA-15 filled with carbon (C@SBA-15) as both silicon source and assisted template, the ordered mesoporous magnesium silicate (Mg3Si4O9(OH)4) has been fabricated at 140 °C by a novel and facile hydrothermal method. During the hydrothermal process, the magnesium silicate grew along the silica walls at the expense of consuming silica and deposited on the carbon surface of the C@SBA-15. Meanwhile, the rigid carbon inside the pores of the SBA-15 supported the magnesium silicate as mesoporous walls under hydrothermal condition. The obtained magnesium silicate possessed ordered mesoporous structure, high specific surface area of 446 m2/g, large pore volume of 0.84 cm3/g, and hierarchical structure assembled with ultrathin nanosheets of 15 nm in thickness. These characteristics endow the ordered mesoporous magnesium silicate with the fast adsorption rate and high adsorption capacity of 382 mg/g for methylene blue. In addition, this synthesis method opens a new approach to fabricate other ordered mesoporous silicates.

  14. Corrosion behavior of mesoporous transition metal nitrides

    SciTech Connect

    Yang, Minghui; Allen, Amy J.; Nguyen, Minh T.; Ralston, Walter T.; MacLeod, Michelle J.; DiSalvo, Francis J.

    2013-09-15

    Transition metal nitrides (TMN) have many desirable characteristics such as high hardness and good thermal stability under reducing conditions. This work reports an initial survey of the chemical stability of mesoporous TMNs (TM=Nb, V, Cr and Ti) in water at 80 °C at neutral, acidic and alkaline pH. The mesoporous TMNs had specific surface areas of 25–60 m{sup 2}/g with average pore sizes ranging from 10 to 50 nm. The high surface areas of these materials enhance the rate of corrosion per unit mass over that of a bulk material, making detection of corrosion much easier. The products were characterized by Rietveld refinement of powder X-ray diffraction (PXRD) patterns and by scanning electron microscopy (SEM). Several nitrides have corrosion rates that are, within error, not distinguishable from zero (±1 Å/day). Of the nitrides examined, CrN appears to be the most corrosion resistant under acidic conditions. None of the nitrides studied are corrosion resistant under alkaline conditions. - Graphical abstract: Corrosion behavior of mesoporous transition metal nitrides (TM=Nb, V, Cr and Ti) in acidic and alkaline solutions at 80 °C for 2 weeks. Display Omitted - highlights: • Corrosion rates of mesoporous transition metal nitrides in aqueous solution is reported. • The mesoporous TMNs had surface areas of 25–60 m{sup 2}/g. • CrN is the most corrosion resistant under the conditions studied.

  15. Carbon Nanotube Synthesis Using Mesoporous Silica Templates

    SciTech Connect

    Zheng, Feng; Liang, Liang; Gao, Yufei; Sukamto, Johanes H.; Aardahl, Chris L.

    2002-07-01

    Well-aligned carbon nanotubes (CNTs) were grown on mesoporous silica films by chemical vapor deposition (CVD). Ethylene was used as the carbon source and CVD was performed at 1023 K and atmospheric pressure. The films were doped with Fe during gelation, and three different structure directing agents were used for mesoporous silica synthesis: polyoxyethylene (10) cetyl ether (C16EO10), Pluronic tri-block copolymer (P123), and cetyltriethylammonium chloride (CTAC). A high degree of CNT alignment on C16EO10-mesoporous silica films was produced at Fe:Si molar ratio of 1.80. Similar alignment of CNTs was achieved on the other two types of films but on CTAC-mesoporous silica films, CNTs only grew parallel to the substrate surface from the cracks in the films because of the in-plane arrangement of the mesopores in such films. Considerable progress has been made in producing multi-walled carbon nanotubes (CNTs) by catalytic CVD techniques. If CNTs are to be integrated into certain useful devices, it is critical to be able to grow highly aligned arrays of CNTs with narrow size distribution and at specific locations on a substrate. Long-range alignment normal to the substrate results from steric crowding if the initial catalyst sites are sufficiently dense. Alignment may be improved with better control of the density of catalytic sites by means of a template of appropriate pore structure. The confinement of CNTs by the pores during the initial growth may also help align CNTs.

  16. In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay.

    PubMed

    Lai, Guosong; Zhang, Haili; Yu, Aimin; Ju, Huangxian

    2015-12-15

    A Prussian blue (PB) functionalized mesoporous carbon nanosphere (MCN) composite was prepared for loading signal antibody and high-content glucose oxidase (GOD) to obtain a new nanoprobe for sensitive electrochemical immunoassay. The MCN nanocarrier with an average diameter of 180 nm was synthesized by using mesoporous silica nanosphere as a hard template in combination with a hydrothermal carbonization method. This hydrophilic carbon nanomaterial provided an ideal platform for in situ deposition of high-content PB to form the MCN-PB nanocomposite. Based on the step-wise assembly of polyelectrolyte and gold nanoparticles (Au NPs) on the negative-charged nanocomposite, signal antibody and high-content GOD were loaded on this nanocarrier to obtain the nanoprobe. After a sandwich immunoreaction at an Au NPs-modified screen-printed carbon electrode based immunosensor, the nanoprobes were quantitatively captured on the electrode surface to produce sensitive electrochemical response with a PB-mediated GOD catalytic reaction for immunoassay. The high loading of PB and GOD on the nanoprobe greatly amplified the electrochemical signal, leading to the development of a new immunoassay method with high sensitivity. Using human immunoglobulin G as a model analyte, excellent analytical performance including a wide linear range from 0.01 to 100 ng/mL and a low detection limit down to 7.8 pg/mL was obtained. Additionally, the immunosensor showed high specificity, satisfactory stability and repeatability as well as acceptable reliability. The PB-mediated GOD electrochemical system well excluded the conventional interference from the dissolved oxygen. Thus this immunoassay method provides great potentials for practical applications. PMID:26201983

  17. In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay.

    PubMed

    Lai, Guosong; Zhang, Haili; Yu, Aimin; Ju, Huangxian

    2015-12-15

    A Prussian blue (PB) functionalized mesoporous carbon nanosphere (MCN) composite was prepared for loading signal antibody and high-content glucose oxidase (GOD) to obtain a new nanoprobe for sensitive electrochemical immunoassay. The MCN nanocarrier with an average diameter of 180 nm was synthesized by using mesoporous silica nanosphere as a hard template in combination with a hydrothermal carbonization method. This hydrophilic carbon nanomaterial provided an ideal platform for in situ deposition of high-content PB to form the MCN-PB nanocomposite. Based on the step-wise assembly of polyelectrolyte and gold nanoparticles (Au NPs) on the negative-charged nanocomposite, signal antibody and high-content GOD were loaded on this nanocarrier to obtain the nanoprobe. After a sandwich immunoreaction at an Au NPs-modified screen-printed carbon electrode based immunosensor, the nanoprobes were quantitatively captured on the electrode surface to produce sensitive electrochemical response with a PB-mediated GOD catalytic reaction for immunoassay. The high loading of PB and GOD on the nanoprobe greatly amplified the electrochemical signal, leading to the development of a new immunoassay method with high sensitivity. Using human immunoglobulin G as a model analyte, excellent analytical performance including a wide linear range from 0.01 to 100 ng/mL and a low detection limit down to 7.8 pg/mL was obtained. Additionally, the immunosensor showed high specificity, satisfactory stability and repeatability as well as acceptable reliability. The PB-mediated GOD electrochemical system well excluded the conventional interference from the dissolved oxygen. Thus this immunoassay method provides great potentials for practical applications.

  18. Silicification of genipin-cross-linked polypeptide hydrogels toward biohybrid materials and mesoporous oxides.

    PubMed

    Jan, Jeng-Shiung; Chen, Pei-Shan; Hsieh, Ping-Lun; Chen, Bo-Yu

    2012-12-01

    A simple and versatile approach is proposed to use cross-linked polypeptide hydrogels as templates for silica mineralization, allowing the synthesis of polypeptide-silica hybrid hydrogels and mesoporous silica (meso-SiO(2)) by subsequent calcination. The experimental data revealed that the cross-linked polypeptide hydrogels comprised of interconnected, membranous network served as templates for the high-fidelity transcription of silica replicas spanning from nanoscale to microscale, resulting in hybrid network comprised of interpenetrated polypeptide nanodomains and silica. The mechanical properties of these as-prepared polypeptide-silica hybrid hydrogels were found to vary with polypeptide chain length and composition. The synergy between cross-link, hydrophobic interaction, and silica deposition can lead to the enhancement of their mechanical properties. The polypeptide-silica hybrid hydrogel with polypeptide and silica content as low as 1.1 wt% can achieve 114 kN/m(2) of compressive strength. By removing the polypeptide nanodomains, mesoporous silicas with average pore sizes ranged between 2 nm and 6 nm can be obtained, depending on polypeptide chain length and composition. The polypeptide-silica hybrid hydrogels demonstrated good cell compatibility and can support cell attachment/proliferation. With the versatility of polymer chemistry and feasibility of amine-catalyzed sol-gel chemistry, the present method is facile for the synthesis of green nanocomposites and biomaterials.

  19. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing.

    PubMed

    Namazi, Hassan; Rakhshaei, Rasul; Hamishehkar, Hamed; Kafil, Hossein Samadi

    2016-04-01

    Existing wound dressings have disadvantages such as lack of antibacterial activity, insufficient oxygen and water vapor permeability, and poor mechanical properties. Hydrogel-based wound dressings swell several times their dry volume and would be helpful to absorb wound exudates and afford a cooling sensation and a moisture environment. To overcome these hassles, a novel antibiotic-eluting nanocomposite hydrogel was designed via incorporation of mesoporous silica MCM-41 as a nano drug carrier into carboxymethylcellulose hydrogel. Tetracycline and methylene blue as antibacterial agents were loaded to the system and showed different release profiles. The prepared nanocomposite hydrogel was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), UV-vis spectroscopy, and scanning electron microscopy (SEM). The prepared nanocomposite hydrogels exhibited an enhanced in vitro swelling, erosion, water vapor and oxygen permeability, and antimicrobial activity. This could effectively increase the time intervals needed to exchange the bandage. The obtained data strongly encourage the use of these nanocomposite hydrogels as wound dressing material. PMID:26740467

  20. Synthesis and characterization of mesoporous hydrocracking catalysts

    NASA Astrophysics Data System (ADS)

    Munir, D.; Usman, M. R.

    2016-08-01

    Mesoporous catalysts have shown great prospective for catalytic reactions due to their high surface area that aids better distribution of impregnated metal. They have been found to contain more adsorption sites and controlled pore diameter. Hydrocracking, in the presence of mesoporous catalyst is considered more efficient and higher conversion of larger molecules is observed as compared to the cracking reactions in smaller microporous cavities of traditional zeolites. In the present study, a number of silica-alumina based mesoporous catalysts are synthesized in the laboratory. The concentration and type of surfactants and quantities of silica and alumina sources are the variables studied in the preparation of catalyst supports. The supports prepared are well characterized using SEM, EDX, and N2-BET techniques. Finally, the catalysts are tested in a high pressure autoclave reactor to study the activity and selectivity of the catalysts for the hydrocracking of a model mixture of plastics comprising of LDPE, HDPE, PP, and PS.

  1. Drug release from ordered mesoporous silicas.

    PubMed

    Doadrio, Antonio L; Salinas, Antonio J; Sánchez-Montero, José M; Vallet-Regí, M

    2015-01-01

    The state-of-the-art in the investigation of drugs release from Silica-based ordered Mesoporous Materials (SMMs) is reviewed. First, the SMM systems used like host matrixes are described. Then, the model drugs studied until now, including their pharmacological action, structure and the mesoporous matrix employed for each drug, are comprehensively listed. Next, the factors influencing the release of drugs from SMMs and the strategies used to control the drug delivery, specially the chemical functionalization of the silica surface, are discussed. In addition, how all these factors were gathered in a kinetic equation that describes the drug release from the mesoporous matrixes is explained. The new application of molecular modeling and docking in the investigation of the drug delivery mechanisms from SMMs is also presented. Finally, the new approaches under investigation in this field are mentioned including the design of smart stimuli-responsive materials and other recent proposals for a future investigation. PMID:26549760

  2. Self-assembly of ordered, conjugated polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    McCaughey, Byron

    This research aims to control the configuration and properties of functional, conjugated polymer systems by tuning the composite nanostructure and molecular interactions. This is accomplished by self-assembly of specific organic and inorganic building blocks. New nanocomposite synthesis schemes are demonstrated for poly(2,5-thienylene ethynylene) (PTE) and polydiacetylene (PDA) that focus on the combination of amphiphiles with hydrophobic and hydrophilic components. The weak molecular interactions between these building blocks result in spontaneous organization into highly ordered amorphous and crystalline structures. Emulsion polymerization, simultaneous monomer incorporation during self-assembly, and PDA supramolecular assembly synthesis paradigms will be discussed. By controlling the interactions, synthesis conditions, and building blocks; this research tunes the structure, molecular conformation, and therefore the optical properties of the resultant composites. Notable results include control of PTE particle size; direction of PTE/silica nanocomposite mesostructure; synthesis of free-standing mesoporous PTE; completely reversible thermochromatic and structural transitions in PDA assemblies; chemical and solvent sensing with PDA; and tunable mechanochromatic response with PDA composites. The synthesis schemes developed in this dissertation research program provide a general route to prepare functional materials with beneficial properties such as thermally controlled optical adsorption, self-healing mesostructure, molecular recognition, and mechanically induced color changes for the detection of damage in plastic composites.

  3. Orientation specific deposition of mesoporous particles

    NASA Astrophysics Data System (ADS)

    Kjellman, Tomas; Bodén, Niklas; Wennerström, Hâkan; Edler, Karen J.; Alfredsson, Viveka

    2014-11-01

    We present a protocol for a facile orientation specific deposition of plate-like mesoporous SBA-15 silica particles onto a surface (mesopores oriented normal to surface). A drop of an aqueous dispersion of particles is placed on the surface and water vaporizes under controlled relative humidity. Three requirements are essential for uniform coverage: particle dispersion should not contain aggregates, a weak attraction between particles and surface is needed, and evaporation rate should be low. Aggregates are removed by stirring/sonication. Weak attraction is realized by introducing cationic groups to the surface. Insight into the mechanisms of the so-called coffee stain effect is also provided.

  4. A Single-Crystalline Mesoporous Quartz Superlattice.

    PubMed

    Matsuno, Takamichi; Kuroda, Yoshiyuki; Kitahara, Masaki; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2016-05-10

    There has been significant interest in the crystallization of nanostructured silica into α-quartz because of its physicochemical properties. We demonstrate a single-crystalline mesoporous quartz superlattice, a silica polymorph with unprecedentedly ordered hierarchical structures on both the several tens of nanometers scale and the atomic one. The mesoporous quartz superlattice consists of periodically arranged α-quartz nanospheres whose crystalline axes are mostly oriented in an assembly. The superlattice is prepared by thermal crystallization of amorphous silica nanospheres constituting a colloidal crystal. We found that the deposition of a strong flux of Li(+) only on the surface of silica nanospheres is effective for crystallization.

  5. Location of laccase in ordered mesoporous materials

    SciTech Connect

    Mayoral, Álvaro; Gascón, Victoria; Blanco, Rosa M.; Márquez-Álvarez, Carlos; Díaz, Isabel

    2014-11-01

    The functionalization with amine groups was developed on the SBA-15, and its effect in the laccase immobilization was compared with that of a Periodic Mesoporous Aminosilica. A method to encapsulate the laccase in situ has now been developed. In this work, spherical aberration (C{sub s}) corrected scanning transmission electron microscopy combined with high angle annular dark field detector and electron energy loss spectroscopy were applied to identify the exact location of the enzyme in the matrix formed by the ordered mesoporous solids.

  6. Highly Thermal Conductive Nanocomposites

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor); Connell, John W. (Inventor); Veca, Lucia Monica (Inventor)

    2015-01-01

    Disclosed are methods for forming carbon-based fillers as may be utilized in forming highly thermal conductive nanocomposite materials. Formation methods include treatment of an expanded graphite with an alcohol/water mixture followed by further exfoliation of the graphite to form extremely thin carbon nanosheets that are on the order of between about 2 and about 10 nanometers in thickness. Disclosed carbon nanosheets can be functionalized and/or can be incorporated in nanocomposites with extremely high thermal conductivities. Disclosed methods and materials can prove highly valuable in many technological applications including, for instance, in formation of heat management materials for protective clothing and as may be useful in space exploration or in others that require efficient yet light-weight and flexible thermal management solutions.

  7. [Multifunctional nanocomposite materials

    SciTech Connect

    Not Available

    1993-01-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg[sup 2+], Li[sup +] and UO[sub 2][sup 2+] selectivity has been measured. The pillared clays appear to show some Li selectivity.

  8. Multifunctional reactive nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Stamatis, Demitrios

    Many multifunctional nanocomposite materials have been developed for use in propellants, explosives, pyrotechnics, and reactive structures. These materials exhibit high reaction rates due to their developed reaction interfacial area. Two applications addressed in this work include nanocomposite powders prepared by arrested reactive milling (ARM) for burn rate modifiers and reactive structures. In burn rate modifiers, addition of reactive nanocomposite powders to aluminized propellants increases the burn rate of aluminum and thus the overall reaction rate of an energetic formulation. Replacing only a small fraction of aluminum by 8Al·MoO3 and 2B·Ti nanocomposite powders enhances the reaction rate with little change to the thermodynamic performance of the formulation; both the rate of pressure rise and maximum pressure measured in the constant volume explosion test increase. For reactive structures, nanocomposite powders with bulk compositions of 8Al·MoO3, 12Al·MoO3, and 8Al·3CuO were prepared by ARM and consolidated using a uniaxial die. Consolidated samples had densities greater than 90% of theoretical maximum density while maintaining their high reactivity. Pellets prepared using 8Al·MoO3 powders were ignited by a CO2 laser. Ignition delays increased at lower laser powers and greater pellet densities. A simplified numerical model describing heating and thermal initiation of the reactive pellets predicted adequately the observed effects of both laser power and pellet density on the measured ignition delays. To investigate the reaction mechanisms in nanocomposite thermites, two types of nanocomposite reactive materials with the same bulk compositions 8Al·MoO3 were prepared by different methods. One of the materials was manufactured by ARM and the other, so called metastable interstitial composite (MIC), by mixing of nano-scaled individual powders. Clear differences in the low-temperature redox reactions, welldetectable by differential scanning calorimetry

  9. Nanocomposites and bone regeneration

    NASA Astrophysics Data System (ADS)

    James, Roshan; Deng, Meng; Laurencin, Cato T.; Kumbar, Sangamesh G.

    2011-12-01

    This manuscript focuses on bone repair/regeneration using tissue engineering strategies, and highlights nanobiotechnology developments leading to novel nanocomposite systems. About 6.5 million fractures occur annually in USA, and about 550,000 of these individual cases required the application of a bone graft. Autogenous and allogenous bone have been most widely used for bone graft based therapies; however, there are significant problems such as donor shortage and risk of infection. Alternatives using synthetic and natural biomaterials have been developed, and some are commercially available for clinical applications requiring bone grafts. However, it remains a great challenge to design an ideal synthetic graft that very closely mimics the bone tissue structurally, and can modulate the desired function in osteoblast and progenitor cell populations. Nanobiomaterials, specifically nanocomposites composed of hydroxyapatite (HA) and/or collagen are extremely promising graft substitutes. The biocomposites can be fabricated to mimic the material composition of native bone tissue, and additionally, when using nano-HA (reduced grain size), one mimics the structural arrangement of native bone. A good understanding of bone biology and structure is critical to development of bone mimicking graft substitutes. HA and collagen exhibit excellent osteoconductive properties which can further modulate the regenerative/healing process following fracture injury. Combining with other polymeric biomaterials will reinforce the mechanical properties thus making the novel nano-HA based composites comparable to human bone. We report on recent studies using nanocomposites that have been fabricated as particles and nanofibers for regeneration of segmental bone defects. The research in nanocomposites, highlight a pivotal role in the future development of an ideal orthopaedic implant device, however further significant advancements are necessary to achieve clinical use.

  10. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    PubMed

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix.

  11. Multilayer graphene rubber nanocomposites

    NASA Astrophysics Data System (ADS)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  12. Metal-Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nicolais, Luigi; Carotenuto, Gianfranco

    2004-09-01

    A unique guide to an essential area of nanoscience Interest in nano-sized metals has increased greatly due to their special characteristics and suitability for a number of advanced applications. As technology becomes more refined-including the ability to effectively manipulate and stabilize metals at the nanoscale-these materials present ever-more workable solutions to a growing range of problems. Metal-Polymer Nanocomposites provides the first guide solely devoted to the unique properties and applications of this essential area of nanoscience. It offers a truly multidisciplinary approach, making the text accessible to readers in physical, chemical, and materials science as well as areas such as engineering and topology. The thorough coverage includes: * The chemical and physical properties of nano-sized metals * Different approaches to the synthesis of metal-polymer nanocomposites (MPN) * Advanced characterization techniques and methods for study of MPN * Real-world applications, including color filters, polarizers, optical sensors, nonlinear optical devices, and more * An extensive list of references on the topics covered A unique, cutting-edge resource for a vital area of nanoscience development, Metal-Polymer Nanocomposites is an invaluable text for students and practitioners of materials science, engineering, polymer science, chemical engineering, electrical engineering, and optics.

  13. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment.

    PubMed

    Wei, Xian-Xian; Cui, Haitao; Guo, Shaoqing; Zhao, Liangfu; Li, Wen

    2013-12-15

    Novel highly active visible light photocatalysts BiOBr-TiO2 nanocomposites were prepared by a facile one-pot solvothermal approach. Series of characterizations verified that the BiOBr nanoscale crystals are highly dispersed in amorphous TiO2 to form the hybrid mesoporous structure. The material shows excellent photocatalytic performance towards photodegradation of Rhodamine B under visible light irradiation. The content ratio between TiO2 and BiOBr plays a key role in the microstructure of the nanocomposites, so as to result in distinguished photocatalytic activity. The sample with a molar ratio of 10 between TiO2 and BiOBr shows the optimum performance. The high photocatalytic activity of BiOBr-TiO2 nanocomposites under visible light could be ascribed to the large surface area, opened mesoporous structure, appropriate band-gap, as well as synergistic effect between TiO2 and BiOBr. Besides, the BiOBr-TiO2 composites render a facile separation due to the three-dimensional superstructure. The BiOBr-TiO2 photocatalyst is very promising for water purification as well as other environmental applications. PMID:24220195

  14. Thermoset-Based Nanocomposites

    NASA Astrophysics Data System (ADS)

    Bhembe, Pele

    2002-03-01

    The field of polymer-Clay nanocomposites has attracted considerable attention as a method of enhancing polymer properties and extending their utility, by using molecular or nanoscale reinforcements rather than conventional particulate field microcomposites. Layered silicates dispersed as a reinforcing phase in a polymer matrix are one of the most important forms of such inorganic-organic nanocomposites, making them the subject of intense research. While a significant amount of work has been published on thermoplastic based nanocomposites, however, comparatively few studies of thermoset-based systems have been published. Thus, our research is centered on elucidating the structure-property relationships of thermoset-based nanocomposites. We have developed a series of layered silicate/thermoset nanocomposites using several thermoset polymers (epoxies(di and tetrafunctional), cyanate esters and PMR-15 polyimide). Wide angle X-ray diffraction suggests that intercalated morphologies were obtained for the cases studied. The glass transition temperature has been found to vary as the organic modifier and its amount is varied. For difunctional epoxy samples dispersed with Cloisite 30B, a commercially available nanoclay, the Tg increased by twenty degrees upon addition of as little as 2viscoelastic behavior of these materials has also been investigated using dynamic mechanical analysis. A modest increase in the glassy storage modulus was obtained as the amount of nanoclay increased, with a significant increase in the plateau modulus. Additionally, master curves have been generated using time-temperature superposition, allowing further analysis of the effect of the nanoclay on the relaxation behavior. Activation energies calculated from Arrhenius plots increase as the clay contents increase. These effects will be discussed in the presentation. The fracture toughness increased upon addition of nanoclays while the CTE decreased. Interestingly, the onset of decomposition

  15. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  16. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.

    PubMed

    Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun

    2016-07-27

    We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides.

  17. A General Method for Constructing Two-Dimensional Layered Mesoporous Mono- and Binary-Transition-Metal Nitride/Graphene as an Ultra-Efficient Support to Enhance Its Catalytic Activity and Durability for Electrocatalytic Application.

    PubMed

    Liu, Baocang; Huo, Lili; Si, Rui; Liu, Jian; Zhang, Jun

    2016-07-27

    We constructed a series of two-dimensional (2D) layered mesoporous mono- and binary-transition-metal nitride/graphene nanocomposites (TMN/G, TM = Ti, Cr, W, Mo, TiCr, TiW, and TiMo) via an efficient and versatile nanocasting strategy for the first time. The 2D layered mesoporous TMN/G is constituted of small TMN nanoparticles composited with graphene nanosheets and has a large surface area with high porosity. Through decoration with well-dispersed Pt nanoparticles, 2D layered mesoporous Pt/TMN/G catalysts can be obtained that display excellent catalytic activity and stability for methanol electro-oxidation reactions (MOR) and oxygen reduction reactions (ORR) in both acidic and alkaline media. The 2D layered mesoporous binary-Pt/TMN/G catalysts possess catalytic activity superior to that of mono-Pt/TMN/G, graphene free Pt/TMN, Pt/G, and Pt/C catalysts. Encouragingly, the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst exhibits the best electrocatalytic performance for both MOR and ORR. The outstanding electrocatalytic performance of the Pt/Ti0.5Cr0.5N/G catalyst is rooted in its large surface area, high porosity, strong interaction among Pt, Ti0.5Cr0.5N, and graphene, an excellent electron transfer property facilitated by N-doped graphene, and the small size of Pt and Ti0.5Cr0.5N nanocrystals. The outstanding catalytic performance provides the 2D layered mesoporous Pt/Ti0.5Cr0.5N/G catalyst with a wide range of application prospects in direct methanol fuel cells in both acidic and alkaline media. The synthetic method may be available for constructing other 2D layered mesoporous metal nitrides, carbides, and phosphides. PMID:27356463

  18. Superior electrochemical properties of manganese dioxide/reduced graphene oxide nanocomposites as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Suk-Woo; Lee, Chang-Wook; Yoon, Seung-Beom; Kim, Myeong-Seong; Jeong, Jun Hui; Nam, Kyung-Wan; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-04-01

    MnO2/reduced graphene oxide (rGO) nanocomposites were synthesized via a simple solution method at room temperature for use in Li-ion batteries. Owing to the mesoporous features as well as the high electrical conductivity of rGO, the overall electronic and ionic conductivities of the nanocomposite were increased, resulting in improved electrochemical properties in terms of specific capacity, rate capability, and cyclability. In particular, as-prepared nanocomposites showed 222 and 115 mAh g-1 at a current density of as high as 5 and 10 A g-1, and the specific capacitance was well maintained after 400 cycles. In addition, MnO2, via composite formation with rGO, permitted the additional conversion reaction between MnO and Mn3O4, resulting in the reduction of the initial irreversible capacity despite the high first discharge capacity caused by the large specific surface area.

  19. Ordered mesoporous alumina-supported metal oxides.

    PubMed

    Morris, Stacy M; Fulvio, Pasquale F; Jaroniec, Mietek

    2008-11-12

    The one-pot synthesis of alumina-supported metal oxides via self-assembly of a metal precursor and aluminum isopropoxide in the presence of triblock copolymer (as a structure directing agent) is described in detail for nickel oxide. The resulting mesoporous mixed metal oxides possess p6 mm hexagonal symmetry, well-developed mesoporosity, relatively high BET surface area, large pore widths, and crystalline pore walls. In comparison to pure alumina, nickel aluminum oxide samples exhibited larger mesopores and improved thermal stability. Also, long-range ordering of the aforementioned samples was observed for nickel molar percentages as high as 20%. The generality of the recipe used for the synthesis of mesoporous nickel aluminum oxide was demonstrated by preparation of other alumina-supported metal oxides such as MgO, CaO, TiO 2, and Cr 2O 3. This method represents an important step toward the facile and reproducible synthesis of ordered mesoporous alumina-supported materials for various applications where large and accessible pores with high loading of catalytically active metal oxides are needed.

  20. Synthesis of Mesoporous Supraparticles on Superamphiphobic Surfaces.

    PubMed

    Wooh, Sanghyuk; Huesmann, Hannah; Tahir, Muhammad Nawaz; Paven, Maxime; Wichmann, Kristina; Vollmer, Doris; Tremel, Wolfgang; Papadopoulos, Periklis; Butt, Hans-Jürgen

    2015-12-01

    A method for mesoporous supraparticle synthesis on superamphiphobic surfaces is designed. Therefore, supraparticles assembled with nanoparticles are synthesized by the evaporation of nanoparticle dispersion drops on the superamphiphobic surface. For synthesis, no further purification is required and no organic solvents are wasted. Moreover, by changing the conditions such as drop size and concentration, supraparticles of different sizes, compositions, and architectures are fabricated.

  1. Mesoporous metal and semiconductor nanowires and nanotubes

    NASA Astrophysics Data System (ADS)

    Luo, Hongmei

    Nanowires and nanotubes are central elements in nanoscience and nanotechnology for applications such as nanoelectronic devices, chemical sensors, and high-density data storage. Among various synthesis methods, the template assisted electrodeposition is particularly attractive because it provides an efficient route to fabricate arrays of nanomatenals of desired composition, size, and aspect ratio. Advanced applications need morphological control. Mesoporous materials with uniform and arranged pores with pore diameters between 2 and 50 nm have attracted much attention due to their unique structures and applications. This dissertation presents the fabrication, structure, and property investigation of magnetic, superconducting metal, and semiconductor nanostructures. We will report three-dimensional (3D) macroporous magnetic and superconducting metal films using opal templates, 2D hexagonal and 3D cubic metal nanowire thin films with tunable 3-10 nm wire diameters using mesoporous silica as templates, mesoporous cobalt and nickel films with hexagonal and lamellar structures direct templated by lyotropic liquid crystal phases. Compared with bulk and dense films, the porous magnetic films show higher coercivities. The cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning the mesostructure and dimension of the nanowires. We will present a novel method, confined-assembly-template assisted (CATA) electrodeposition, by combination of nanoconfinement, supramolecular templating and electrodeposition technique to prepare mesoporous metal and semiconductor nanowires and nanotubes. Mesoporous palladium and cobalt nanowires are obtained by electrodeposition of hexagonal liquid crystal in porous membranes, mesoporous platinum and nickel nanotubes with controlled length are obtained by electrodeposition of lamellar liquid crystal, mesoporous zinc oxide nanowires are obtained by electrodeposition of interfacial SDS surfactant

  2. Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery.

    PubMed

    Lee, Ji Eun; Lee, Nohyun; Kim, Hyoungsu; Kim, Jaeyun; Choi, Seung Hong; Kim, Jeong Hyun; Kim, Taeho; Song, In Chan; Park, Seung Pyo; Moon, Woo Kyung; Hyeon, Taeghwan

    2010-01-20

    Highly versatile nanocomposite nanoparticles were synthesized by decorating the surface of mesoporous dye-doped silica nanoparticles with multiple magnetite nanocrystals. The superparamagnetic property of the magnetite nanocrystals enabled the nanoparticles to be used as a contrast agent in magnetic resonance (MR) imaging, and the dye molecule in the silica framework imparted optical imaging modality. Integrating a multitude of magnetite nanocrystals on the silica surface resulted in remarkable enhancement of MR signal due to the synergistic magnetism. An anticancer drug, doxorubicin (DOX), could be loaded in the pores and induced efficient cell death. In vivo passive targeting and accumulation of the nanoparticles at the tumor sites was confirmed by both T2 MR and fluorescence imaging. Furthermore, apoptotic morphology was clearly detected in tumor tissues of mice treated with DOX loaded nanocomposite nanoparticles, demonstrating that DOX was successfully delivered to the tumor sites and its anticancer activity was retained.

  3. Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

    SciTech Connect

    Radu, Daniela Rodica

    2004-01-01

    The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu2+ as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical drugs. We examined bio-friendly capping molecules such as polyamidoamine dendrimers of generations G2 to G4, to prevent the drug leaching. Next, the drug delivery system employed MSNs loaded with Doxorubicin, an anticancer drug. The results demonstrated that these nano-Trojan horses have ability to deliver Doxorubicin to cancer cells and induce their death. Finally, to demonstrate the potential of MSN as an universal cellular transmembrane nanovehicle, we anchored positively charged dendrimers on

  4. An introduction to polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Armstrong, Gordon

    2015-11-01

    This review presents an overview of the formulation, characterization and range of applications for polymer nanocomposites. After explaining how material properties at the nanometre scale can vary compared to those observed at longer length scales, typical methods used to formulate and characterize nanocomposites at laboratory and industrial scale will be described. The range of mechanical, electrical and thermal properties obtainable from nanocomposite materials, with examples of current commercial applications, will be outlined. Formulation and characterization of nanoparticle, nanotube and graphene composites will be discussed by reference to nanoclay-based composites, as the latter are presently of most technological relevance. Three brief case studies are presented to demonstrate how structure/property relationships may be controlled in a variety of polymer nanocomposite systems to achieve required performance in a given application. The review will conclude by discussing potential obstacles to commercial uptake of polymer nanocomposites, such as inconsistent protocols to characterize nanocomposites, cost/performance balances, raw material availability, and emerging legislation, and will conclude by discussing the outlook for future development and commercial uptake of polymer nanocomposites.

  5. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  6. Polyolefin cubic silsesquioxane nanocomposites

    NASA Astrophysics Data System (ADS)

    Zheng, Lei

    This thesis focuses on the synthesis and characterization of polyolefin nanocomposites containing polyhedral oligomeric silsesquioxane (POSS) units. Two copolymerization methods were developed utilizing either ring-opening metathesis polymerization or metallocene-catalyzed reactions to incorporate cubic silsesquioxane into polyolefins. Ring-opening metathesis copolymerizations of cyclooctene and the POSS-norbornylene macromonomer have been performed using Grubbs' catalyst RuCl2(=CHPh)(PCy3)2. Random copolymers have been prepared and characterized with POSS loadings as high as 55 wt%. Diimide reduction of these copolymers affords polyethylene-POSS random copolymers. Polyethylene (PE) and isotactic polypropylene (PP) copolymers incorporating POSS have also been prepared using a metallocene/methylaluminoxane (MAO) cocatalyst system. A wide range of POSS concentrations was obtained in these polyolefin POSS copolymers under mild conditions; up to 56 wt% for PE-POSS copolymers and 73 wt% for PP-POSS copolymers were prepared. Copolymerizations of styrene and the POSS-styryl macromonomer have been performed using CpTiCl 3 in conjunction with MAO. Random copolymers of syndiotactic polystyrene and POSS copolymers have been formed and characterized. Novel nanocomposites of PE-POSS have been characterized using Wide Angle X-ray Scattering (WAXS). From both line broadening of the diffraction maxima and also the oriented diffraction in a drawn sample, we conclude that POSS forms anisotropically shaped crystallites. On the basis of this result, a novel approach to obtain nanocomposites containing inorganic nanolayers is proposed. Cubic silsesquioxane (POSS) nanoparticles are used to achieve the nanolayered "clay-like" structure through controlled self-assembly. The organic polymer, covalently connected to POSS, is intended to regulate the POSS crystallization into a two-dimensional lattice. The concept is demonstrated by random copolymers of polybutadiene and POSS. The data from

  7. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    NASA Astrophysics Data System (ADS)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  8. Polyamide 6/Layered Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dębowska, M.; Rudzińska-Girulska, J.; Pigłowski, J.; Dołęga, J.

    2008-05-01

    Polyamide 6 (PA6) and its two exfoliated nanocomposites (PA6/Nf919 and PA6/BZ-COCO), with bentonite (2.5 wt.%) organophilically treated with different cations, were studied. Improved mechanical properties, changes in crystallinity and morphology as well as higher glass transition temperature values were observed for the nanocomposites in comparison to the neat PA6. For the nanocomposite PA6/BZ-COCO, of better surface modification of platelets and better interaction between the polymeric matrix and the organobentonite, higher values of Young's modulus and yielding point together with higher contribution of larger free volume holes to free volume distributions occurred.

  9. Photodegradation of Orange II by mesoporous TiO2.

    PubMed

    Kuang, Liyuan; Zhao, Yaping; Liu, Lu

    2011-09-01

    Mesoporous TiO(2) microspheres were prepared by a hydrothermal reaction and are characterized in this paper. Decoloration and mineralization during photodegradation of Orange II by mesoporous TiO(2) at different pH values, formation of sulfate, relative luminosity to luminous bacteria and recycling experiments of the catalyst were studied. The FTIR results further suggested that the novel mesoporous TiO(2) can not only decolor and mineralize dyes completely but also can be effectively reused several times. On the basis of the research, mesoporous TiO(2) would be a promising photocatalyst for practical use. PMID:21833403

  10. Surface functionalized mesoporous material and method of making same

    DOEpatents

    Feng, Xiangdong [West Richland, WA; Liu, Jun [West Richland, WA; Fryxell, Glen E [Kennewick, WA

    2001-12-04

    According to the present invention, an organized assembly of functional molecules with specific interfacial functionality (functional group(s)) is attached to available surfaces including within mesopores of a mesoporous material. The method of the present invention avoids the standard base soak that would digest the walls between the mesopores by boiling the mesoporous material in water for surface preparation then removing all but one or two layers of water molecules on the internal surface of a pore. Suitable functional molecule precursor is then applied to permeate the hydrated pores and the precursor then undergoes condensation to form the functional molecules on the interior surface(s) of the pore(s).

  11. Some novel polymeric nanocomposites.

    PubMed

    Mark, James E

    2006-12-01

    The nanocomposites described here all involve polymers and were chosen because they are already of commercial importance, show some promise of becoming so, or simply seem interesting. The field is so broad that some topics are mentioned only very briefly, and there is considerable emphasis on the polysiloxane nanocomposites studied by the author's research group. Some are typically prepared using techniques very similar to those used in the new sol-gel approach to ceramics, with either the polymer or the ceramic being the continuous phase. Other dispersed phases include particles responsive to an applied magnetic field, intercalated or exfoliated platelets obtained from clays, mica, or graphite, silsesquioxane nanocages, nanotubes, dual fillers, porous particles, spherical and ellipsoidal polymeric particles, and nanocatalysts. Also described are some typical studies involving theory or simulations on such particle reinforcement. Experiments on ceramics modified by dispersed polymers are equally interesting, but there is less relevant theory. Many of the fields mentioned have become so vast that the approach taken here is simply to describe general approaches and characteristics of the composites, list some specific examples, and provide leading references (with some emphasis on studies that are relatively recent or in the nature of reviews).

  12. Recent advances in biodegradable nanocomposites.

    PubMed

    Pandey, Jitendra K; Kumar, A Pratheep; Misra, Manjusri; Mohanty, Amar K; Drzal, Lawrence T; Singh, Raj Pal

    2005-04-01

    There is growing interest in developing bio-based products and innovative process technologies that can reduce the dependence on fossil fuel and move to a sustainable materials basis. Biodegradable bio-based nanocomposites are the next generation of materials for the future. Renewable resource-based biodegradable polymers including cellulosic plastic (plastic made from wood), corn-derived plastics, and polyhydroxyalkanoates (plastics made from bacterial sources) are some of the potential biopolymers which, in combination with nanoclay reinforcement, can produce nanocomposites for a variety of applications. Nanocomposites of this category are expected to possess improved strength and stiffness with little sacrifice of toughness, reduced gas/water vapor permeability, a lower coefficient of thermal expansion, and an increased heat deflection temperature, opening an opportunity for the use of new, high performance, lightweight green nanocomposite materials to replace conventional petroleum-based composites. The present review addresses this green material, including its technical difficulties and their solutions.

  13. Recycle of silicate waste into mesoporous materials.

    PubMed

    Kim, Jung Ho; Kim, Minwoo; Yu, Jong-Sung

    2011-04-15

    Template synthesis of porous carbon materials usually requires selective removal of template silica from the carbon/silica composites. It not only involves waste of valuable chemicals, but also poses significant environmental concerns including high waste treatment cost. Recycling of silicates released from such nanocasting methods is successfully performed for the first time to regenerate valuable mesoporous MCM and SBA type silica materials, which will not only help in saving valuable chemicals, but also in decreasing chemical waste, contributing in improvement of our environmental standards. This approach can thus improve cost effectiveness for the mass production of nanostructured carbon and others utilizing silica directed nanocasting method by recycling otherwise silicate waste into highly desirable valuable mesoporous silica.

  14. Multifunctional nanocomposite materials. Progress report

    SciTech Connect

    Roy, R.; Komarneni, S.

    1991-11-01

    Objective is to examine the low temperature nanocomposite route in the synthesis of multifunctional materials using two-dimensional clays as hosts. After about 8 months, a significant advance was made in the design and synthesis of novel nanocomposite materials, which are nanometal intercalated clays prepared by a low temperature route. A layered V{sub 2}O{sub 5} gel has been made hydrothermally and its cation exchange properties measured. Several pillared clays have also been synthesized and characterized.

  15. Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor.

    PubMed

    Kruk, Michal; Dufour, Bruno; Celer, Ewa B; Kowalewski, Tomasz; Jaroniec, Mietek; Matyjaszewski, Krzysztof

    2005-05-19

    Mesoporous carbons were synthesized from polyacrylonitrile (PAN) using ordered and disordered mesoporous silica templates and were characterized using transmission electron microscopy (TEM), powder X-ray diffraction, nitrogen adsorption, and thermogravimetry. The pores of the silica templates were infiltrated with carbon precursor (PAN) via polymerization of acrylonitrile from initiation sites chemically bonded to the silica surface. This polymerization method is expected to allow for a uniform filling of the template with PAN and to minimize the introduction of nontemplated PAN, thus mitigating the formation of nontemplated carbon. PAN was stabilized by heating to 573 K under air and carbonized under N2 at 1073 K. The resulting carbons exhibited high total pore volumes (1.5-1.8 cm3 g(-1)), with a primary contribution of the mesopore volume and with relatively low microporosity. The carbons synthesized using mesoporous templates with a 2-dimensional hexagonal structure (SBA-15 silica) and a face-centered cubic structure (FDU-1 silica) exhibited narrow pore size distributions (PSDs), whereas the carbon synthesized using disordered silica gel template had broader PSD. TEM showed that the SBA-15-templated carbon was composed of arrays of long, straight, or curved nanorods aligned in 2-D hexagonal arrays. The carbon replica of FDU-1 silica appeared to be composed of ordered arrays of spheres. XRD provided evidence of some degree of ordering of graphene sheets in the carbon frameworks. Elemental analysis showed that the carbons contain an appreciable amount of nitrogen. The use of our novel infiltration method and PAN as a carbon precursor allowed us to obtain ordered mesoporous carbons (OMCs) with (i) very high mesopore volume, (ii) low microporosity, (iii) low secondary mesoporosity, (iv) large pore diameter (8-12 nm), and (v) semi-graphitic framework, which represent a desirable combination of features that has not been realized before for OMCs. PMID:16852101

  16. The Synthesis of Functional Mesoporous Materials

    SciTech Connect

    Fryxell, Glen E.

    2006-11-01

    The ability to decorate a silica surface with specific ligand fields and/or metal complexes creates powerful new capabilities for catalysis, chemical separations and sensor development. Integrating this with the ability to control the spacing of these complexes across the surface, as well as the symmetry and size of the pore structure, allows the synthetic chemist to hierarchically tailor these structured nanomaterials to specific needs. The next step up the “scale ladder” is provided by the ability to coat these mesoporous materials onto complex shapes, allowing for the intimate integration of these tailored materials into device interfaces. The ability to tailor the pore structure of these mesoporous supports is derived from the surfactant templated synthesis of mesoporous materials, an area which has seen an explosion of activity over the last decade.[1,2] The ability to decorate the surface with the desired functionality requires chemical modification of the oxide interface, most commonly achieved using organosilane self-assembly.[3-6] This manuscript describes recent results from the confluence of these two research areas, with a focus on synthetic manipulation of the morphology and chemistry of the interface, with the ultimate goal of binding metal centers in a chemically useful manner.

  17. Polymer/mesoporous metal oxide composites

    NASA Astrophysics Data System (ADS)

    Ver Meer, Melissa Ann

    Understanding the nature of the interfacial region between an organic polymer matrix and an inorganic filler component is essential in determining how this region impacts the overall bulk properties of the organic/inorganic hybrid composite material. In this work, polystyrene was used as the model polymer matrix coupled with silica-based filler materials to investigate the nature of structure-property relationships in polymer composites. Initial work was conducted on synthesis and characterization of colloidal and mesoporous silica particles melt blended into the polystyrene matrix. Modification of the interface was accomplished by chemically bonding the silica particles with the polystyrene chains through polymerization from the particle surface via atom transfer radical polymerization. High molecular weight polystyrene chains were formed and bulk test samples were evaluated with increased thermal stability of the grafted polymer composite system versus equivalent melt blended polymer composites. Polymer grafting was also conducted from the internal pores of mesoporous silica, further improving the thermal stability of the composite system without degrading dynamic mechanical properties. Characterization of the polymer composites was conducted with gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis and dynamic mechanical analysis. It was also discovered during the polystyrene-silica composite studies that amorphous polystyrene can possess a less mobile phase, evident in a second peak of the loss tangent (tan delta). The long annealing times necessitated by the mesoporous silica composites were replicated in as received polystyrene. This new, less mobile phase is of particular interest in determining the mobility of polymer chains in the interfacial region.

  18. A facile one-pot self-assembly approach to incorporate SnOx nanoparticles in ordered mesoporous carbon with soft templating for fuel cells

    NASA Astrophysics Data System (ADS)

    Huang, Yingqiang; Zhai, Zhicheng; Luo, Zhigang; Liu, Yingju; Liang, Zhurong; Fang, Yueping

    2014-04-01

    Unique SnOx (x = 1,2)/ordered mesoporous carbon nanocomposites (denoted as SnOx/OMC) are firstly synthesized through a ‘one-pot’ synthesis together with the soft template self-assembly approach. The obtained SnOx/OMC nanocomposites with various SnOx contents exhibit uniform pore sizes between 3.9 and 4.2 nm, high specific surface areas between 497 and 595 m2 g-1, and high pore volumes between 0.39 and 0.48 cm3 g-1. With loading of Pt, Pt-SnOx/OMC with relatively low SnOx content exhibits superior electrocatalytic performance, long-term durability, and resistance to CO poisoning for methanol oxidation, as compared to Pt/OMC, PtRu/C and Pt-SnOx/C, which may be attributed not only to the synergetic effect of embedded SnOx, but also to the highly ordered mesostructure with high specific surface areas and large pore volumes affording plenty of surface area for support of Pt nanoparticles. This work supplies an efficient way to synthesize novel ordered mesoporous carbon self-supported metallic oxide as catalyst support and its further potential application to reduce the cost of catalysts in direct methanol fuel cells.

  19. Ordered three- and five-ply nanocomposites from ABC block terpolymer microphase separation with niobia and aluminosilicate sols

    PubMed Central

    Stefik, Morgan; Mahajan, Surbhi; Sai, Hiroaki; Epps, Thomas H.; Bates, Frank S.; Gruner, Sol M; DiSalvo, Francis J.; Wiesner, Ulrich

    2009-01-01

    We report the first use of a non-frustrated block terpolymer for the synthesis of highly ordered oxide nanocomposites containing multiple plies. The morphological behavior of 15 ISO-oxide nanocomposites was investigated spanning a large range of compositions along the ƒI=ƒS isopleth using aluminosilicate and niobia sols. Morphologies were determined by TEM and SAXS measurements. Four morphologies were identified, including core-shell hexagonal, core-shell double gyroid, three-domain lamellae, and core-shell inverse-hexagonal, in order of increasing O+oxide vol fraction. All of the resulting nanocomposites had three- or five-ply morphologies containing domains that were continuous in one, two, or three dimensions. The five-ply core-shell double gyroid phase was only found to be stable when the O+oxide domain was a minority. Removal of the polymer enabled simple and direct synthesis of mesoporous oxide materials while retaining the ordered network structure. We believe that advances in the synthesis of multi-ply nanocomposites will lead to advanced materials and devices containing multiple plies of functional materials. PMID:20209023

  20. Magnetoelectric polymer nanocomposite for flexible electronics

    SciTech Connect

    Alnassar, M. Alfadhel, A.; Ivanov, Yu. P.; Kosel, J.

    2015-05-07

    This paper reports the fabrication and characterization of a new type of magnetoelectric polymer nanocomposite that exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature. The multiferroic nanocomposite consists of high aspect ratio ferromagnetic iron nanowires embedded inside a ferroelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE). The nanocomposite has been fabricated via a simple low temperature spin coating technique. Structural, ferromagnetic, ferroelectric, and magnetoelectric properties of the developed nanocomposite have been characterized. The nanocomposite films showed isotropic magnetic properties due to the random orientation of the iron nanowires inside the film. In addition, the embedded nanowires did not hinder the ferroelectric phase development of the nanocomposite. The developed nanocomposite showed a high magnetoelectric coupling response of 156 mV/cmOe measured at 3.1 kOe DC bias field. This value is among the highest reported magnetoelectric coupling in two phase particulate polymer nanocomposites.

  1. Effect of Nanofiller Characteristics on Nanocomposite Properties

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  2. Characterization and photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites synthesized by two-solvent method

    SciTech Connect

    Dai, Peng; Zhang, Lili; Zhang, Gongtuo; Li, Guang; Sun, Zhaoqi; Liu, Xiansong; Wu, Mingzai

    2014-08-15

    Schematic between charge genenration and transfer for methylene orange degradation simulated by light. - Highlights: • Two-solvent method is used to prepare ZnO–CuO particles embedded in porous SBA-15. • The absorption edge of (ZnO–CuO)/SBA-15 composite is in the visible light regime. • The absorption intensity of the composite in visible light regime is enhanced. • The (ZnO–CuO)/SBA-15 composite has higher photocatalytic ability than Degussa P-25. - Abstract: Two-solvent method was employed to prepare ZnO–CuO nanoparticles embedded in mesoporous silica SBA-15 ((ZnO–CuO)/SBA-15). The as-obtained (ZnO–CuO)/SBA-15 nanocomposites were characterized by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, N{sub 2} adsorption porosimetry, and diffusive reflective UV–vis spectroscopy. The photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites toward methylene orange was investigated under simulated solar light irradiation, and the measurement results indicated that (ZnO–CuO)/SBA-15 nanocomposites exhibit higher photodegradation activity toward methylene orange than commercial TiO{sub 2} P-25. The photocatalytic activity of (ZnO–CuO)/SBA-15 nanocomposites were found to be dependent on both the adsorption ability of the nanocomposites and the loading dosage of ZnO–CuO nanoparticles in SBA-15. The optimal loading dosage of ZnO–CuO nanoparticles was determined. Too high or too low loading will lower the photodegradation ability of (ZnO–CuO)/SBA-15 nanocomposites.

  3. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    PubMed

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides. PMID:27102225

  4. Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery.

    PubMed

    Chen, Ganchao; Xie, Yusheng; Peltier, Raoul; Lei, Haipeng; Wang, Ping; Chen, Jun; Hu, Yi; Wang, Feng; Yao, Xi; Sun, Hongyan

    2016-05-11

    A stimuli-responsive drug delivery system (DDS) with bioactive surface is constructed by end-capping mesoporous silica nanoparticles (MSNs) with functional peptide-coated gold nanoparticles (GNPs). MSNs are first functionalized with acid-labile α-amide-β-carboxyl groups to carry negative charges, and then capped with positively charged GNPs that are decorated with oligo-lysine-containing peptide. The resulting hybrid delivery system exhibits endo/lysosomal pH triggered drug release, and the incorporation of RGD peptide facilitates targeting delivery to αvβ3 integrin overexpressing cancer cells. The system can serve as a platform for preparing diversified multifunctional nanocomposites using various functional inorganic nanoparticles and bioactive peptides.

  5. How Nano Are Nanocomposites

    SciTech Connect

    Schaefer, Dale W.; Justice, Ryan S.

    2010-10-22

    Composite materials loaded with nanometer-sized reinforcing fillers are widely believed to have the potential to push polymer mechanical properties to extreme values. Realization of anticipated properties, however, has proven elusive. The analysis presented here traces this shortfall to the large-scale morphology of the filler as determined by small-angle X-ray scattering, light scattering, and electron imaging. We examine elastomeric, thermoplastic, and thermoset composites loaded with a variety of nanoscale reinforcing fillers such as precipitated silica, carbon nanotubes (single and multiwalled), and layered silicates. The conclusion is that large-scale disorder is ubiquitous in nanocomposites regardless of the level of dispersion, leading to substantial reduction of mechanical properties (modulus) compared to predictions based on idealized filler morphology.

  6. Characterisations of collagen-silver-hydroxyapatite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ciobanu, C. S.; Popa, C. L.; Petre, C. C.; Jiga, G.; Trusca, R.; Predoi, D.

    2016-05-01

    The XRD analysis were performed to confirm the formation of hydroxyapatite structure in collagen-silver-hydroxyapatite nanocomposites. The molecular interaction in collagen-hydroxyapatite nanocomposites was highlighted by Fourier transform infrared spectroscopy (FTIR) analysis. The SEM showed a nanostructure of collagen-silverhydroxyapatite nanocomposites composed of nano needle-like particles in a veil with collagen texture. The presence of vibrational groups characteristics to the hydroxyapatite structure in collagen-silver-hydroxyapatite (AgHApColl) nanocomposites was investigated by FTIR.

  7. Zeolite Nanoclusters Coated onto the Mesopore Walls of SBA-15

    SciTech Connect

    Do, Trong-On; Nossov, Andrei; Springuel-Huet, Marie-Anne; Schneider, Celine M.; Bretherton, Jeremy L.; Fyfe, Colin A.; Kaliaguine, Serge

    2004-11-10

    Hydrothermal stability and acidity are both essential for the application of mesoporous materials in catalysis.1,2 Several approaches have been aimed at improving these properties;3-8 for example, hydrothermally stable and strongly acidic mesoporous aluminosilicates have been assembled using protozeolitic seeds.

  8. Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst

    SciTech Connect

    Dai, Sheng; Mayes, Richard T; Fulvio, Pasquale F; Ma, Zhen

    2011-01-01

    Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

  9. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  10. Preparation of sandwich-structured graphene/mesoporous silica composites with C8-modified pore wall for highly efficient selective enrichment of endogenous peptides for mass spectrometry analysis.

    PubMed

    Yin, Peng; Wang, Yuhua; Li, Yan; Deng, Chunhui; Zhang, Xiangmin; Yang, Pengyuan

    2012-09-01

    In this study, sandwich-structured graphene/mesoporous silica composites (C8-modified graphene@mSiO(2)) were synthesized by coating mesoporous silica onto hydrophilic graphene nanosheets through a surfactant-mediated cocondensation sol-gel process. The newly prepared C8-modified graphene@mSiO(2) nanocomposites possess unique properties of extended plate-like morphology, good water dispersibility, highly open pore structure, uniform pore size (2.8 nm), high surface area (632 m(2)/g), and C8-modified-interior pore walls. The unique structure of the C8-modified graphene@mSiO(2) composite nanosheets not only provide extended planes with hydrophilic surface that prevents aggregation in solution, but also offer a huge number of C8-modified mesopores with high surface area that can ensure an efficient adsorption of peptides through hydrophobic-hydrophobic interaction between C8-moified pore walls and target molecules. The obtained C8-modified graphene@mSiO(2) materials were utilized for size selectively and specifically enriching peptides in standard peptide mixtures and endogenous peptides in real biological samples (mouse brain tissue). PMID:22837154

  11. Shape matters when engineering mesoporous silica-based nanomedicines.

    PubMed

    Hao, Nanjing; Li, Laifeng; Tang, Fangqiong

    2016-04-01

    Mesoporous silica nanomaterials have been successfully employed in the development of novel carriers for drug delivery. Numerous studies have been reported on engineering mesoporous silica-based carriers for drug loading, release, cellular uptake, and biocompatibility. A number of design parameters that govern the in vitro and in vivo performance of the carriers, including particle diameter, surface chemistry, and pore size, have been tuned to optimize nanomedicine efficacy. However, particle shape, which may generate a high impact on nanomedicine performance, has still not been thoroughly investigated. This is probably due to the limited availability of strategies and techniques to produce non-spherical mesoporous silica nanomaterials. Recent breakthroughs in controlling the particle shape of mesoporous silica nanomaterials have confirmed the important roles of shape on nanomedicine development. This review article introduces various fabrication methods for non-spherical mesoporous silica nanomaterials, including rod, ellipsoid, film, platelet/sheet, and cube, and the roles of particle shape in nanomedicine applications. PMID:26818852

  12. Synthesis and catalytic applications of combined zeolitic/mesoporous materials

    PubMed Central

    Vernimmen, Jarian; Cool, Pegie

    2011-01-01

    Summary In the last decade, research concerning nanoporous siliceous materials has been focused on mesoporous materials with intrinsic zeolitic features. These materials are thought to be superior, because they are able to combine (i) the enhanced diffusion and accessibility for larger molecules and viscous fluids typical of mesoporous materials with (ii) the remarkable stability, catalytic activity and selectivity of zeolites. This review gives an overview of the state of the art concerning combined zeolitic/mesoporous materials. Focus is put on the synthesis and the applications of the combined zeolitic/mesoporous materials. The different synthesis approaches and formation mechanisms leading to these materials are comprehensively discussed and compared. Moreover, Ti-containing nanoporous materials as redox catalysts are discussed to illustrate a potential implementation of combined zeolitic/mesoporous materials. PMID:22259762

  13. [Study on absorbing volatile oil with mesoporous carbon].

    PubMed

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying. PMID:25850263

  14. Mesoporous gallium oxide structurally stabilized by yttrium oxide

    SciTech Connect

    Yada, Mitsunori; Ohya, Masahumi; Machida, Masato; Kijima, Tsuyoshi

    2000-05-16

    Since the synthesis of mesoporous silicas such as MCM-41 and FSM-16 with large internal surface areas and uniform pore sizes, the surfactant templating method has been used to synthesize mesoporous metal oxides, including titanium, aluminum, niobium, and tantalum oxides. The mesostructured metal oxides are taken to be useful not only as catalysts and separating or adsorbing agents but also as functional host materials with optically, electrically, or magnetically unique properties, owing to the shape-specific and/or quantum effects of their thin inorganic skeletons. Mesoporous zirconium oxide and phosphate and hafnium oxide are promising as acid catalysts. Layered and hexagonal mesostructured titanium oxides, for example, were observed to be photocatalytically active. Aluminum and gallium oxides with a mesoporous structure are also expected to serve as a catalytic of other functional material. In this paper, the authors report the synthesis and characterization of mesoporous gallium oxide stabilized by yttrium oxide.

  15. Microwave-induced synthesis of highly dispersed gold nanoparticles within the pore channels of mesoporous silica

    SciTech Connect

    Gu Jinlou; Fan Wei; Shimojima, Atsushi; Okubo, Tatsuya

    2008-04-15

    Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15. - Graphical abstract: A facile and novel strategy has been developed to incorporate gold nanoparticles into the pore channels of mesoporous SBA-15 assisted by microwave radiation (MR) with mild reaction condition and rapid reaction speed. Due to the rapid and homogeneous nucleation, simultaneous propagation and termination by MR, the size of gold nanoparticles are effectively controlled.

  16. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging.

    PubMed

    Chen, Yan; Ai, Kelong; Liu, Jianhua; Sun, Guoying; Yin, Qi; Lu, Lehui

    2015-08-01

    A novel multifunctional envelope-type mesoporous silica nanoparticle (MEMSN) system combining the merits of pH-responsiveness, non-toxicity and biological specificity, is demonstrated for drug delivery and magnetic resonance imaging (MRI). This system is constructed by immobilizing acetals on the surface of mesoporous silica, and then coupling to ultra small lanthanide doped upconverting nanoparticle, which act as a gate keeper. The anticancer drug DOX is thus locked in the pores, and its burst release can be achieved under acidic environment on account of the hydrolyzation reactions of acetals. The nanogated drug release system is highly efficacious for cancer therapy both in vitro and in vivo. Importantly, the nanocomposite could be harmlessly metabolized and degraded into apparently non-toxic products within a few days. The nanoscale effect of the system allows for passive tumor targeting and increased tumor accumulation of the probes via the enhanced permeation and retention (EPR) effect, which is visualized by MRI in vivo. Therefore, such nanosystem should be of great significance in the future development of highly efficient and tumor targeted drug delivery vehicles for cancer chemotherapy. PMID:25988726

  17. Bismuth-doped ordered mesoporous TiO2: visible-light catalyst for simultaneous degradation of phenol and chromium.

    PubMed

    Sajjad, Shamaila; Leghari, Sajjad A K; Chen, Feng; Zhang, Jinlong

    2010-12-10

    A controllable and reproducible synthesis of highly ordered two-dimensional hexagonal mesoporous, crystalline bismuth-doped TiO(2) nanocomposites with variable Bi ratios is reported here. Analyses by transmission electron microscopy, X-ray diffraction, Raman, and X-ray photoelectron spectroscopy reveal that the well-ordered mesostructure is doped with Bi, which exists as Bi(3+) and Bi((3+x+)). The Bi-doped mesoporous TiO(2) (ms-TiO(2)) samples exhibit improved photocatalytic activities for simultaneous phenol oxidation and chromium reduction in aqueous suspension under visible and UV light over the pure ms-TiO(2), P-25, and conventional Bi-doped titania. The high catalytic activity is due to both the unique structural characteristics and the Bi doping. This new material extends the spectral response from UV to the visible region, and reduces electron-hole recombination, which renders the 2.0% Bi-doped ms-TiO(2) photocatalyst highly responsive to visible light. PMID:20957621

  18. Synthesis, Characterization, and Gas-Sensing Properties of Mesoporous Nanocrystalline Sn(x)Ti(1-x)O2.

    PubMed

    Zhong, Cheng; Lin, Zhidong; Guo, Fei; Wang, Xuehua

    2015-06-01

    A nanocomposite mesoporous material composed by SnO2 and TiO2 with the size of -5-9 nm were prepared via a facile wet-chemical approach combining with an annealing process. The microstructure of obtained Sn(x)Ti(1-x)O2 powders were characterized by X-ray diffraction, X-ray Photo-electronic Spectroscopy, scanning electron microscope, transmission electron microscope and nitrogen adsorption-desorption experiment. The gas sensing performances to several gases of the mesoporous material were studied. The sensors of Sn(x)Ti(1-x)O2 (ST10, with 9.1% Ti) exhibited very high responses to volatile organic compounds at 160 degrees C. The order of the responses to volatile gases based on ST10 was ethanol > formaldehyde > acetone > toluene > benzene > methane. Sensor based on ST10 displays a highest sensitivity to hydrogen at 200 degrees C. Sensor responses to H2 at 200 degrees C have been measured and analyzed in a wide concentration range from 5 to 2000 ppm. The solid solution Sn(x)Ti(1-x)O2 can be served as a potential gas-sensing material for a broad range of future sensor applications.

  19. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamon, Cyrille; Sanz-Ortiz, Marta N.; Modin, Evgeny; Hill, Eric H.; Scarabelli, Leonardo; Chuvilin, Andrey; Liz-Marzán, Luis M.

    2016-04-01

    Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the detachment of the supercrystal from the substrate in water, but also allowed small molecule analytes to infiltrate the structure. These nanocomposite substrates show superior Raman enhancement in comparison with gold supercrystals without silica owing to improved accessibility of the plasmonic hot spots to analytes. The patterned supercrystal arrays with enhanced optical and mechanical properties obtained in this work show potential for the practical implementation of nanostructured devices in spatially resolved ultradetection of biomarkers and other analytes.Hierarchical organization of gold nanorods was previously obtained on a substrate, allowing precise control over the morphology of the assemblies and macroscale spatial arrangement. Herein, a thorough description of these gold nanorod assemblies and their orientation within supercrystals is presented together with a sol-gel technique to protect the supercrystals with mesoporous silica films. The internal organization of the nanorods in the supercrystals was characterized by combining focused ion beam ablation and scanning electron microscopy. A mesoporous silica layer is grown both over the supercrystals and between the individual lamellae of gold nanorods inside the structure. This not only prevented the

  20. DNA-Hybrid-Gated Photothermal Mesoporous Silica Nanoparticles for NIR-Responsive and Aptamer-Targeted Drug Delivery.

    PubMed

    Zhang, Yuanxin; Hou, Zhiyao; Ge, Yakun; Deng, Kerong; Liu, Bei; Li, Xuejiao; Li, Quanshun; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Lin, Jun

    2015-09-23

    Near-infrared light is an attractive stimulus due to its noninvasive and deep tissue penetration. Particularly, NIR light is utilized for cancer thermotherapy and on-demand release of drugs by the disruption of the delivery carriers. Here we have prepared a novel NIR-responsive DNA-hybrid-gated nanocarrier based on mesoporous silica-coated Cu1.8S nanoparticles. Cu1.8S nanoparticles, possessing high photothermal conversion efficiency under a 980 nm laser, were chosen as photothermal agents. The mesoporous silica structure could be used for drug storage/delivery and modified with aptamer-modified GC-rich DNA-helix as gatekeepers, drug vectors, and targeting ligand. Simultaneously, the as-produced photothermal effect caused denaturation of DNA double strands, which triggered the drug release of the DNA-helix-loaded hydrophilic drug doxorubicin and mesopore-loaded hydrophobic drug curcumin, resulting in a synergistic therapeutic effect. The Cu1.8S@mSiO2 nanocomposites endocytosed by cancer cells through the aptamer-mediated mode are able to generate rational release of doxorubicin/curcumin under NIR irradiation, strongly enhancing the synergistic growth-inhibitory effect of curcumin against doxorubicin in MCF-7 cells, which is associated with a strong mitochondrial-mediated cell apoptosis progression. The underlying mechanism of apoptosis showed a strong synergistic inhibitory effect both on the expression of Bcl-2, Bcl-xL, Mcl-1, and upregulated caspase 3/9 activity and on the expression level of Bak and Bax. Therefore, Cu1.8S@mSiO2 with efficient synergistic therapeutic efficiency is a potential multifunctional cancer therapy nanoplatform. PMID:26325285

  1. New insight into mesoporous silica for nano metal-organic framework.

    PubMed

    Kondo, Atsushi; Takanashi, Shinji; Maeda, Kazuyuki

    2012-10-15

    A micropore- and mesopore-integrated material was synthesized by using a mesoporous silica and a metal-organic framework (MOF). The composite was composed of nano MOF crystals and mesoporous silica showing high porosity based on the intrinsic micropores of MOF and mesopores of mesoporous silica and additional pore spaces that should be from the void between nano MOF crystals. The composite shows higher adsorption rate of ethanol at 303 K than that of the bulk MOF.

  2. A multifunctional biphasic suspension of mesoporous silica encapsulated with YVO4:Eu3+ and Fe3O4 nanoparticles: synergistic effect towards cancer therapy and imaging

    NASA Astrophysics Data System (ADS)

    Shanta Singh, N.; Kulkarni, Hrishikesh; Pradhan, Lina; Bahadur, D.

    2013-02-01

    Polyol mediated synthesized luminescent YVO4:Eu3+ nanoparticles (NPs) have been encapsulated in mesoporous silica nanoparticles (MSNs) using the sol-gel process. X-ray diffraction and Fourier transform infrared spectroscopy along with transmission electron microscopy confirm the encapsulation of the YVO4:Eu3+ NPs in the SiO2 matrix. N2 adsorption/desorption analysis confirms the mesoporous nature of the MSNs and YVO4:Eu3+-MSNs. No significant quenching of the YVO4:Eu3+ luminescence is observed for YVO4:Eu3+-MSNs. This nanocomposite has been tested as a potential drug carrier. Efficient loading of doxorubicin hydrochloride (DOX), a typical anticancer drug, is observed which reaches up to 93% in 8 mg ml-1 of YVO4:Eu3+-MSNs. pH sensitive release of DOX is observed, with 54% release for pH 4.3 and 31% in a physiological environment (pH 7.4). Both MSNs and YVO4:Eu3+-MSNs nanocomposites do not show accountable toxicity to two cell lines, i.e. HeLa and MCF-7. However, as desired, toxicity is observed when cells are incubated with DOX loaded YVO4:Eu3+-MSNs. Laser scanning confocal microscopy images confirm the uptake of the nanocomposite in both cell lines. The morphology of the cells (MCF-7) changes after incubation with DOX loaded YVO4:Eu3+-MSNs, indicating an interaction of DOX with the cells. More cytotoxicity to both cell lines with ˜90% killing is observed due to the synergistic effect of magnetic fluid hyperthermia and chemotherapy using a biphasic suspension of superparamagnetic iron oxide magnetic nanoparticles and DOX loaded YVO4:Eu3+-MSNs. In addition, an AC magnetic field triggers an enhanced drug release.

  3. A multifunctional biphasic suspension of mesoporous silica encapsulated with YVO4:Eu3+ and Fe3O4 nanoparticles: synergistic effect towards cancer therapy and imaging.

    PubMed

    Shanta Singh, N; Kulkarni, Hrishikesh; Pradhan, Lina; Bahadur, D

    2013-02-15

    Polyol mediated synthesized luminescent YVO(4):Eu(3+) nanoparticles (NPs) have been encapsulated in mesoporous silica nanoparticles (MSNs) using the sol-gel process. X-ray diffraction and Fourier transform infrared spectroscopy along with transmission electron microscopy confirm the encapsulation of the YVO(4):Eu(3+) NPs in the SiO(2) matrix. N(2) adsorption/desorption analysis confirms the mesoporous nature of the MSNs and YVO(4):Eu(3+)-MSNs. No significant quenching of the YVO(4):Eu(3+) luminescence is observed for YVO(4):Eu(3+)-MSNs. This nanocomposite has been tested as a potential drug carrier. Efficient loading of doxorubicin hydrochloride (DOX), a typical anticancer drug, is observed which reaches up to 93% in 8 mg ml(-1) of YVO(4):Eu(3+)-MSNs. pH sensitive release of DOX is observed, with 54% release for pH 4.3 and 31% in a physiological environment (pH 7.4). Both MSNs and YVO(4):Eu(3+)-MSNs nanocomposites do not show accountable toxicity to two cell lines, i.e. HeLa and MCF-7. However, as desired, toxicity is observed when cells are incubated with DOX loaded YVO(4):Eu(3+)-MSNs. Laser scanning confocal microscopy images confirm the uptake of the nanocomposite in both cell lines. The morphology of the cells (MCF-7) changes after incubation with DOX loaded YVO(4):Eu(3+)-MSNs, indicating an interaction of DOX with the cells. More cytotoxicity to both cell lines with ∼90% killing is observed due to the synergistic effect of magnetic fluid hyperthermia and chemotherapy using a biphasic suspension of superparamagnetic iron oxide magnetic nanoparticles and DOX loaded YVO(4):Eu(3+)-MSNs. In addition, an AC magnetic field triggers an enhanced drug release. PMID:23324398

  4. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT–PZT–PC and Cu–PZT–PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu–PZT–PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT–PZT–PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu–PZT–PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT–PZT–PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  5. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  6. The formation of helical mesoporous silica nanotubes

    NASA Astrophysics Data System (ADS)

    Wan, Xiaobing; Pei, Xianfeng; Zhao, Huanyu; Chen, Yuanli; Guo, Yongmin; Li, Baozong; Hanabusa, Kenji; Yang, Yonggang

    2008-08-01

    Three chiral cationic gelators were synthesized. They can form translucent hydrogels in pure water. These hydrogels become highly viscous liquids under strong stirring. Mesoporous silica nanotubes with coiled pore channels in the walls were prepared using the self-assemblies of these gelators as templates. The mechanism of the formation of this hierarchical nanostructure was studied using transmission electron microscopy at different reaction times. The results indicated that there are some interactions between the silica source and the gelator. The morphologies of the self-assemblies of gelators changed gradually during the sol-gel transcription process. It seems that the silica source directed the organic self-assemblies into helical nanostructures.

  7. Fluorescence properties of dye doped mesoporous silica

    SciTech Connect

    Carbonaro, Carlo M. Corpino, Riccardo Ricci, Pier Carlo Chiriu, Daniele; Cannas, Carla

    2014-10-21

    In this paper we present a review of the main results we obtained studying the emission properties of organic-inorganic hybrids obtained combining mesoporous silica and Xantene dyes, in particular the standard reference Rhodamine 6G. The purpose of the review is to show the possibility to efficiently 'dope' the transparent inorganic porous matrix to obtain promising systems for photonic and biomedical applications. The strategies to solve the concentration effect and the leaching phenomenon are discussed within the framework of the single exciton theory.

  8. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    SciTech Connect

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-08-15

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  9. Facile synthesis of highly stable and well-dispersed mesoporous ZrO(2)/carbon composites with high performance in oxidative dehydrogenation of ethylbenzene.

    PubMed

    Li, Qiang; Xu, Jie; Wu, Zhangxiong; Feng, Dan; Yang, Jianping; Wei, Jing; Wu, Qingling; Tu, Bo; Cao, Yong; Zhao, Dongyuan

    2010-09-28

    Highly ordered mesoporous ZrO(2)/carbon (FDU-15) composites have been synthesized via a facile evaporation induced triconstituent co-assembly (EISA) approach by using Pluronic F127 as a template and zirconium oxychloride octahydrate and resol as Zr and carbon sources. The synthesized mesoporous composites exhibit a highly ordered two-dimensional (2-D) hexagonal mesostructure with relatively high specific surface areas (up to 947 m(2) g(-1)), pore sizes around 3.8 nm and high pore volumes (up to 0.71 cm(3) g(-1)). The results clearly show that the crystalline zirconia nanoparticles (ca. 1.9-3.9 nm) are well-dispersed in amorphous matrices of the ordered mesoporous carbon FDU-15 materials, which construct the nanocomposites. The ordered mesostructures of the obtained ZrO(2)/FDU-15 composites can be well-retained even at the high pyrolysis temperature (up to 900 degrees C), suggesting a high thermal stability. The zirconia content of the ZrO(2)/FDU-15 composites can be tunable in a wide range (up to 47%). Moreover, the resultant mesoporous ZrO(2)/FDU-15 composites exhibit high catalytic activity in oxidative dehydrogenation (ODH) of ethylbenzene (EB) to styrene (ST), with high ethylbenzene conversion (59.6%) and styrene selectivity (90.4%), which is mainly attributed to the synergistic catalytic effect between the oxygen-containing groups located on the carbon pore walls and weakly basic sites of the nanocrystalline ZrO(2). Furthermore, the high specific surface areas and opening pore channels are also responsible for their high catalytic activity. Therefore, it is a very promising catalyst material in styrene production on an industrial scale.

  10. Photocatalytical nanocomposites: a review.

    PubMed

    Matejka, Vlastimil; Tokarský, Jonás

    2014-02-01

    This review focuses on photocatalytically active nanocomposites that are based on the photoactive nanoparticles, or nanostructured particles captured on the surface of the different powderized carriers. Nanosized and nanostructured oxides and sulfides with selected metal cations (Ti, Zn, Cd, Fe, etc.) are intensively studied as the photocatalysts for different purposes. The nanodimension of these particles brings several disadvantages, among them being the negative impact on human health, which is a widely discussed topic nowadays. The nanoparticles can permeate through living tissue and enter living cells and thus a strong effort focused on diminishing this problem is the subject of research activities by many groups. One possible way to achieve control of the nanoparticles' mobility is capturing them on the surface of suitable particulate carriers with dimensions on the order of tenths and hundredths of microns whereas this approach leads to formation of new composite material. Clay minerals, silicates, carbonaceous materials, and other particulate matter are intensively studied for these purposes and proper selection of the substrate can bring additional functionality to the final composite. Very often the photoactivity, antibacterial properties, electrical conductivity, and other properties are significantly enhanced in the case of this kind of composite materials. Strong adhesion between the nanoparticles and the surface of the selected substrate is essential for the stability of the final composites. Characterization of the adhesion energies using laboratory experiments is quite difficult and molecular modeling can bring valuable information about the character of interactions at the interface of nanoparticles and substrate. PMID:24749444

  11. Aerogel nanocomposite materials

    SciTech Connect

    Hunt, A.J.; Ayers, M.; Cao, W.

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  12. Stretchable piezoelectric nanocomposite generator

    NASA Astrophysics Data System (ADS)

    Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae

    2016-06-01

    Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.

  13. Based Adaptive Nanocomposite Coatings

    NASA Astrophysics Data System (ADS)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  14. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  15. Biobased and biodegradable polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Qiu, Kaiyan

    In this dissertation, various noncrosslinked and crosslinked biobased and biodegradable polymer nanocomposites were fabricated and characterized. The properties of these polymer nanocomposites, and their relating mechanisms and corresponding applications were studied and discussed in depth. Chapter 1 introduces the research background and objectives of the current research. Chapter 2 presents the development of a novel low cost carbon source for bacterial cellulose (BC) production and fabrication and characterization of biobased polymer nanocomposites using produced BC and soy protein based resins. The carbon source, soy flour extract (SFE), was obtained from defatted soy flour (SF) and BC yield achieved using SFE medium was high. The results of this study showed that SFE consists of five sugars and Acetobacter xylinum metabolized sugars in a specific order. Chapter 3 discusses the fabrication and characterization of biodegradable polymer nanocomposites using BC and polyvinyl alcohol (PVA). These polymer nanocomposites had excellent tensile and thermal properties. Crosslinking of PVA using glutaraldehyde (GA) not only increased the mechanical and thermal properties but the water-resistance. Chapter 4 describes the development and characterization of microfibrillated cellulose (MFC) based biodegradable polymer nanocomposites by blending MFC suspension with PVA. Chemical crosslinking of the polymer nanocomposites was carried out using glyoxal to increase the mechanical and thermal properties as well as to make the PVA partially water-insoluble. Chapter 5 reports the development and characterization of halloysite nanotube (HNT) reinforced biodegradable polymer nanocomposites utilizing HNT dispersion and PVA. Several separation techniques were used to obtain individualized HNT dispersion. The results indicated uniform dispersion of HNTs in both PVA and malonic acid (MA) crosslinked PVA resulted in excellent mechanical and thermal properties of the materials, especially

  16. Polariton dispersion in nanocomposite materials

    SciTech Connect

    Wilson, K. S. Joseph Revathy, V.

    2015-06-24

    The several optical properties of crystals are modified due to nonlinearity associated with high intensity of the incident radiation. In the present work, the linear and nonlinear optical characterization of the nanocomposite materials are also discussed in detail. We explore the possibilities of nonlinear effects in the optical parameters in nanocomposite materials. New modes on the polaritonic gap where the propagation of electromagnetic wave is forbidden, are obtained due to nonlinearity. The presence of gap mode shows the propagation of electromagnetic radiation which may be exploited in optical communications.

  17. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, W.M.H.; Huang, Y.Y.

    1998-07-28

    Methods are disclosed for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physical sorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics. 17 figs.

  18. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    DOEpatents

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  19. Mesoporous Trimetallic PtPdRu Spheres as Superior Electrocatalysts.

    PubMed

    Jiang, Bo; Ataee-Esfahani, Hamed; Li, Cuiling; Alshehri, Saad M; Ahamad, Tansir; Henzie, Joel; Yamauchi, Yusuke

    2016-05-17

    Mesoporous Trimetallic PtPdRu Spheres with well-defined spherical morphology and uniformly sized pores were synthesized in an aqueous solution using ascorbic acid as the reducing agent and triblock copolymer F127 as the pore directing agent. These mesoporous PtPdRu spheres exhibited enhanced electrocatalytic activity compared to commercial Pt black, resulting in a ∼4.9 times improvement in mass activity for the methanol oxidation reaction. The excellent electrocatalytic activity and stability are due to the unique mesoporous architecture and electronic landscape between different elements. PMID:27072776

  20. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution.

  1. Gated Silica Mesoporous Materials in Sensing Applications

    PubMed Central

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-01-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept—that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  2. Continuous microwave flow synthesis of mesoporous hydroxyapatite.

    PubMed

    Akram, Muhammad; Alshemary, Ammar Z; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O; Hussain, Rafaqat

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca(2+) ion released in SBF solution. PMID:26249601

  3. Gated Silica Mesoporous Materials in Sensing Applications.

    PubMed

    Sancenón, Félix; Pascual, Lluís; Oroval, Mar; Aznar, Elena; Martínez-Máñez, Ramón

    2015-08-01

    Silica mesoporous supports (SMSs) have a large specific surface area and volume and are particularly exciting vehicles for delivery applications. Such container-like structures can be loaded with numerous different chemical substances, such as drugs and reporters. Gated systems also contain addressable functions at openings of voids, and cargo delivery can be controlled on-command using chemical, biochemical or physical stimuli. Many of these gated SMSs have been applied for drug delivery. However, fewer examples of their use in sensing protocols have been reported. The approach of applying SMSs in sensing uses another concept-that of loading pores with a reporter and designing a capping mechanism that is selectively opened in the presence of a target analyte, which results in the delivery of the reporter. According to this concept, we provide herein a complete compilation of published examples of probes based on the use of capped SMSs for sensing. Examples for the detection of anions, cations, small molecules and biomolecules are provided. The diverse range of gated silica mesoporous materials presented here highlights their usefulness in recognition protocols. PMID:26491626

  4. High performance thermoelectric nanocomposite device

    DOEpatents

    Yang, Jihui; Snyder, Dexter D.

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  5. Concepts for smart nanocomposite materials

    NASA Astrophysics Data System (ADS)

    Pammi, SriLaxmi; Brown, Courtney; Datta, Saurabh; Kirikera, Goutham R.; Schulz, Mark J.

    2003-10-01

    This paper explores concepts for new smart materials that have extraordinary properties based on nanotechnology. Carbon and boron nitride nanotubes in theory can be used to manufacture fibers that have piezoelectric, pyroelectric, piezoresistive, and electrochemical field properties. Smart nanocomposites designed using these fibers will sense and respond to elastic, thermal, and chemical fields in a positive human-like way to improve the performance of structures, devices, and possibly humans. Remarkable strength, morphing, cooling, energy harvesting, strain and temperature sensing, chemical sensing and filtering, and high natural frequencies and damping will be the properties of these new materials. Synthesis of these unique atomically precise nanotubes, fibers, and nanocomposites is at present challenging and expensive, however, there is the possibility that we can synthesize the strongest and lightest actuators and most efficient sensors man has ever made. A particular advantage of nanotube transducers is their very high load bearing capability. Carbon nanotube electrochemical actuators have a predicted energy density at low frequencies that is thirty times greater than typical piezoceramic materials while boron nitride nanotubes are insulators and can operate at high temperatures, but they have a predicted piezoelectric induced stress constant that is about twenty times smaller than piezoceramic materials. Carbon nanotube fibers and composites exhibit a change in electrical conductivity due to strain that can be used for sensing. Some concepts for nanocomposite material sensors are presented and initial efforts to fabricate carbon nanocomposite load sensors are discussed.

  6. Percolation Threshold in Polycarbonate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2014-03-01

    Nanocomposites have unique mechanical, electrical, magnetic, optical and thermal properties. Many methods could be applied to prepare polymer-inorganic nanocomposites, such as sol-gel processing, in-situ polymerization, particle in-situ formation, blending, and radiation synthesis. The analytical composite models that have been put forth include Voigt and Reuss bounds, Polymer nanocomposites offer the possibility of substantial improvements in material properties such as shear and bulk modulus, yield strength, toughness, film scratch resistance, optical properties, electrical conductivity, gas and solvent transport, with only very small amounts of nanoparticles Experimental results are compared against composite models of Hashin and Shtrikman bounds, Halpin-Tsai model, Cox model, and various Mori and Tanaka models. Examples of numerical modeling are molecular dynamics modeling and finite element modeling of reduced modulus and hardness that takes into account the modulus of the components and the effect of the interface between the hard filler and relatively soft polymer, polycarbonate. Higher nanoparticle concentration results in poor dispersion and adhesion to polymer matrix which results in lower modulus and hardness and departure from the existing composite models. As the level of silica increases beyond a threshold level, aggregates form which results in weakening of the structure. Polymer silica interface is found to be weak as silica is non-interacting promoting interfacial slip at silica-matrix junctions. Our experimental results compare favorably with those of nanocomposites of polyesters where the effect of nanoclay on composite hardness and modulus depended on dispersion of nanoclay in polyester.

  7. Critical aspects in the production of periodically ordered mesoporous titania thin films.

    PubMed

    Soler-Illia, Galo J A A; Angelomé, Paula C; Fuertes, M Cecilia; Grosso, David; Boissiere, Cedric

    2012-04-21

    Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems. PMID:22419250

  8. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery.

    PubMed

    An, Na; Lin, Huiming; Yang, Chunyu; Zhang, Ting; Tong, Ruihan; Chen, Yuhua; Qu, Fengyu

    2016-12-01

    The targeting drug release is significant to the anticancer treatment. In this context, the redox-responsive drug delivery has attracted most attention owing to the intracellular reductive environment, such as the high concentration of glutathione reductase in many cancer cells. Herein, a glutathione sensitive drug delivery nanoplatform was constructed by using core-shell mesoporous silica nanocomposite (Fe3O4@mSiO2) as carrier. By a simple silane coupling reaction, the glutathione cleavable diselenide linker has been prepared and grafted on to Fe3O4@mSiO2 to insure the encapsulation of anticancer drug doxorubicin. The detail release kinetics studies reveal the glutathione triggered drug release, which could be further adjusted by varying the amount of diselenide linker. To improve the tumor-targeting, folic acid was grafted. The cellular uptake and drug release investigation was carried out using HeLa (cervical cancer cell line) as the model cancer cell and L02 and HUVEC (human hepatic cell line and human umbilical vein endothelial cells, non-cancerous cell lines) as control, indicating the enhanced cytotoxicity toward HeLa cells that benefits from the fast endocytosis and enhanced cellular drug release owing to their overexpressing folic acid receptors and high concentration of glutathione. Associating with the magnetic targeting, these novel nanomaterials are expected to be promising in the potential application of tumor-targeting therapy.

  9. Gated magnetic mesoporous silica nanoparticles for intracellular enzyme-triggered drug delivery.

    PubMed

    An, Na; Lin, Huiming; Yang, Chunyu; Zhang, Ting; Tong, Ruihan; Chen, Yuhua; Qu, Fengyu

    2016-12-01

    The targeting drug release is significant to the anticancer treatment. In this context, the redox-responsive drug delivery has attracted most attention owing to the intracellular reductive environment, such as the high concentration of glutathione reductase in many cancer cells. Herein, a glutathione sensitive drug delivery nanoplatform was constructed by using core-shell mesoporous silica nanocomposite (Fe3O4@mSiO2) as carrier. By a simple silane coupling reaction, the glutathione cleavable diselenide linker has been prepared and grafted on to Fe3O4@mSiO2 to insure the encapsulation of anticancer drug doxorubicin. The detail release kinetics studies reveal the glutathione triggered drug release, which could be further adjusted by varying the amount of diselenide linker. To improve the tumor-targeting, folic acid was grafted. The cellular uptake and drug release investigation was carried out using HeLa (cervical cancer cell line) as the model cancer cell and L02 and HUVEC (human hepatic cell line and human umbilical vein endothelial cells, non-cancerous cell lines) as control, indicating the enhanced cytotoxicity toward HeLa cells that benefits from the fast endocytosis and enhanced cellular drug release owing to their overexpressing folic acid receptors and high concentration of glutathione. Associating with the magnetic targeting, these novel nanomaterials are expected to be promising in the potential application of tumor-targeting therapy. PMID:27612716

  10. Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application.

    PubMed

    Yan, Lijiao; Bo, Xiangjie; Zhu, Dongxia; Guo, Liping

    2014-03-01

    Polydopamine (PDA)-coated ordered mesoporous carbons (OMCs) are easily prepared through one-step self-polymerization of dopamine on OMCs matrix at room temperature. Pt nanoparticles (NPs) are deposited on OMCs-PDA via a simple chemical reduction. The PDA layer helps to improve the water-solubility and dispersibility of OMCs, and plays a key role in the deposition of uniform and well-distributed Pt NPs. Transmission electron microscopy images reveal that the ultra-fine Pt NPs with an average size of ~1.8 nm are well-dispersed on the surface of OMCs-PDA. The electrocatalytic behavior of OMCs-PDA/Pt modified glassy carbon (GC) electrode is investigated by cyclic voltammetry and current-time methods using hydrogen peroxide (H2O2) and hydrazine (N2H4) as redox probes. Results show that OMCs-PDA/Pt exhibits improved electrocatalytic activity towards H2O2 reduction and N2H4 oxidation compared with OMCs/Pt. The linear electro-redox responses are found for H2O2 and N2H4 in the range of 2-14324 μM and 1-229 μM with the detection limit (S/N=3) of 0.85 μM and 0.51 μM, respectively. In addition, this new nanocomposite modified electrode exhibits high sensitivity, good anti-interference ability, excellent reproducibility and long-term stability.

  11. Electrochemical design of mesoporous Pt-Ru alloy films with various compositions toward superior electrocatalytic performance.

    PubMed

    Wang, Hongjing; Imura, Masataka; Nemoto, Yoshihiro; Wang, Liang; Jeong, Hu Young; Yokoshima, Tokihiko; Terasaki, Osamu; Yamauchi, Yusuke

    2012-10-01

    Mesoporous Pt-Ru alloy films with various compositions were synthesized by electrochemical plating in an aqueous surfactant solution. After the removal of surfactants, continuous mesoporous Pt-Ru alloy films possessing uniform mesopores with diameter about 7 nm were obtained. The Ru content in the films could be controlled from 0 to 13 at % by changing the precursor compositions. For all the films, the mesostructural periodicities and the mesopore sizes in the films were not changed. Due to the mesoporous structure and the doped Ru content, our mesoporous Pt-Ru films showed superior electrocatalytic activity for methanol oxidation reaction in comparison with the commercially available Pt catalyst.

  12. Phosphorus recovery by mesoporous structure material from wastewater.

    PubMed

    Lee, S H; Lee, B C; Lee, K W; Lee, S H; Choi, Y S; Park, K Y; Iwamoto, M

    2007-01-01

    This study was designed to investigate the fundamental aspects of a possible removal of phosphorous from wastewater by using the mesoporous structure materials for wastewater reuse. The zirconium sulphate with mesoporous structure as a new type of ion exchangers was synthesised by hydrothermal reaction. From the results of X-ray diffraction and transmission electron microscope, it was discovered that the synthesised material had hexagonal mesoporous structure with a pore size of approximately 40-50A. Experimental results showed that the zirconium sulphate with mesoporous structure had very high sorption capacity for the phosphorus. The novel ion exchange occurred between PO4(3-) and SO4(2-), OH-. The amount of phosphate ions exchanged into the solid was as great as 3.4 mmol/g-ZS. Furthermore, it is possible to obtain a higher removal efficiency than other ion exchange media and adsorbents.

  13. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    SciTech Connect

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  14. Responsive mesoporous photonic cellulose films by supramolecular cotemplating.

    PubMed

    Giese, Michael; Blusch, Lina K; Khan, Mostofa K; Hamad, Wadood Y; MacLachlan, Mark J

    2014-08-18

    Cellulose-based materials have been and continue to be exceptionally important for humankind. Considering the bioavailability and societal relevance of cellulose, turning this renewable resource into an active material is a vital step towards sustainability. Herein we report a new form of cellulose-derived material that combines tunable photonic properties with a unique mesoporous structure resulting from a new supramolecular cotemplating method. A composite of cellulose nanocrystals and a urea-formaldehyde resin organizes into a chiral nematic assembly, which yields a chiral nematic mesoporous continuum of desulfated cellulose nanocrystals after alkaline treatment. The mesoporous photonic cellulose (MPC) films undergo rapid and reversible changes in color upon swelling, and can be used for pressure sensing. These new active mesoporous cellulosic materials have potential applications in biosensing, optics, functional membranes, chiral separation, and tissue engineering. PMID:24981200

  15. Novel method to incorporate Si into monodispersed mesoporous carbon spheres.

    PubMed

    Yano, Kazuhisa; Tatsuda, Narihito; Masuda, Takashi; Shimoda, Tatsuya

    2016-10-01

    Liquid silicon precursor is used as a silicon source and very simple and easy method for the incorporation of Si into mesoporous carbon spheres is presented. By using capillary condensation, the liquid precursor, Cyclopentasilane, penetrates into mesopores of carbon spheres homogeneously and subsequent heating brings the decomposition of the precursor and the formation of silicon inside meso-channels of carbon even though the decomposition is done much higher than the boiling point of the precursor. The homogeneous distribution of silicon is verified by EDX mapping of the composite as well as SEM observation of the calcined one. More than 45wt% of Si can be incorporated into mesopores by just one operation. The Si@mesoporous carbon composite works as an anode for a Lithium ion battery. PMID:27344486

  16. Synthesis of mesoporous nano-hydroxyapatite by using zwitterions surfactant

    EPA Science Inventory

    Mesoporous nano-hydroxyapatite (mn-HAP) was successfully synthesized via a novel micelle-templating method using lauryl dimethylaminoacetic acid as zwitterionic surfactant. The systematic use of such a surfactant in combination with microwave energy inputenables the precise contr...

  17. Enzyme catalytic membrane based on a hybrid mesoporous membrane.

    PubMed

    Fu, Wensheng; Yamaguchi, Akira; Kaneda, Hideaki; Teramae, Norio

    2008-02-21

    Immobilization of glucose oxidase (GOD) within a hybrid mesoporous membrane with 12 nm pore diameter was successfully achieved, resulting in catalytically high efficiency during flow of a glucose solution across the membrane. PMID:18253526

  18. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  19. Synthesis, characterization and magnetic behavior of Co/MCM-41 nano-composites

    SciTech Connect

    Cuello, N.; Elías, V.; Crivello, M.; Oliva, M.; Eimer, G.

    2013-09-15

    Synthesis, structure and magnetic properties of Co/MCM-41 as magnetic nano-composites have been investigated. Mesoporous materials with different degrees of metal loading were prepared by wet impregnation and characterized by ICP, XRD, N{sub 2} adsorption, UV–vis DRS, TPR and EPMA-EDS. Cobalt oxide clusters and Co{sub 3}O{sub 4} nano-particles could be confined inside the mesopores of MCM-41, being this fact favored by the Co loading increasing. In addition, larger crystals of Co{sub 3}O{sub 4} detectable by XRD also grow on the surface when the Co loading is enhanced. The magnetic characterization was performed in a SQUID magnetometer using a maximum magnetic applied field µ{sub 0}Ha=1 T. While the samples with the higher Co loadings showed a behavior typically paramagnetic, a superparamagnetic contribution is more notorious for lower loadings, suggesting high Co species dispersion. - Graphical abstract: Room temperature hysteresis loops as a function of the Co content. Display Omitted - Highlights: • Co species as isolated Co{sup 2+}, oxide clusters and Co{sub 3}O{sub 4} nano-particles were detected. • For higher Co loads were detected, by XRD, Co{sub 3}O{sub 4} particles on the external surface. • The confining of Co species inside the mesopores was achieved by increasing Co load. • Paramagnetism from oxide clusters/nano-particles becomes dominant for higher Co loads. • Superparamagnetism can be assigned to Co species of small size and finely dispersed.

  20. Solar hydrogen and solar electricity using mesoporous materials

    NASA Astrophysics Data System (ADS)

    Mahoney, Luther

    The development of cost-effective materials for effective utilization of solar energy is a major challenge for solving the energy problems that face the world. This thesis work relates to the development of mesoporous materials for solar energy applications in the areas of photocatalytic water splitting and the generation of electricity. Mesoporous materials were employed throughout the studies because of their favorable physico-chemical properties such as high surface areas and large porosities. The first project was related to the use of a cubic periodic mesoporous material, MCM-48. The studies showed that chromium loading directly affected the phase of mesoporous silica formed. Furthermore, within the cubic MCM-48 structure, the loading of polychromate species determined the concentration of solar hydrogen produced. In an effort to determine the potential of mesoporous materials, titanium dioxide was prepared using the Evaporation-Induced Self-Assembly (EISA) synthetic method. The aging period directly determined the amount of various phases of titanium dioxide. This method was extended for the preparation of cobalt doped titanium dioxide for solar simulated hydrogen evolution. In another study, metal doped systems were synthesized using the EISA procedure and rhodamine B (RhB) dye sensitized and metal doped titania mesoporous materials were evaluated for visible light hydrogen evolution. The final study employed various mesoporous titanium dioxide materials for N719 dye sensitized solar cell (DSSC) materials for photovoltaic applications. The materials were extensively characterized using powder X-ray diffraction (XRD), nitrogen physisorption, diffuse reflectance spectroscopy (DRS), UV-Vis spectroscopy, Fourier-Transform-Infrared Spectroscopy (FT-IR), Raman spectroscopy, chemisorption, photoluminescence (PL), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). In addition, photoelectrochemical measurements were completed using

  1. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  2. Near-infrared emission from mesoporous crystalline germanium

    SciTech Connect

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard; Korinek, Andreas

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  3. Simple synthesis of mesoporous boron nitride with strong cathodoluminescence emission

    SciTech Connect

    Meng, Xiang-Lin; Lun, Ning; Qi, Yong-Xin; Zhu, Hui-Ling; Han, Fu-Dong; Yin, Long-Wei; Fan, Run-Hua; Bai, Yu-Jun; Bi, Jian-Qiang

    2011-04-15

    Mesoporous BN was prepared at 550 {sup o}C for 10 h or so via a simple reaction between NaBH{sub 4} and CO(NH{sub 2}){sub 2}. X-ray diffraction demonstrates the formation of t-BN with lattice constants a=2.46 and c=6.67 A. High-resolution transmission electron microscopy displays a lot of porous films in the product, which possesses a high surface area of 219 m{sup 2} g{sup -1} and a pore size primarily around 3.8 nm tested by nitrogen adsorption-desorption method. The mesoporous BN exhibits a strong luminescence emission around 3.41 eV in the cathodoluminescence spectra, a high stability in both morphology and structure, and good oxidation resistance up to 800 {sup o}C. The byproducts generated during the reaction are responsible for the formation of the mesoporous BN. -- Graphical abstract: The mesoporous BN with a high specific surface area of 219 m{sup 2} g{sup -1} exhibits a strong luminescence emission around 3.41 eV in the CL spectra, high thermal stability in both morphology and structure, and good oxidation resistance up to 800 {sup o}C. Display Omitted Research highlights: Mesoporous BN was prepared by a simple reaction between NaBH{sub 4} and CO(NH{sub 2}){sub 2} at 550 {sup o}C. The mesoporous BN possesses a high surface area of 219 m{sup 2} g{sup -1}. The mesoporous BN exhibits a strong luminescence emission around 3.41 eV. The mesoporous BN has high stability and good oxidation resistance up to 800 {sup o}C.

  4. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    SciTech Connect

    Cheng, Liang; Shao, Mingwang; Chen, Dayan; Zhang, Yuzhong

    2010-02-15

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC{sub 2}O{sub 4} precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  5. Antibacterial mesoporous molecular sieves modified with polymeric N-halamine.

    PubMed

    Wang, Yingfeng; Li, Lin; Liu, Ying; Ren, Xuehong; Liang, Jie

    2016-12-01

    In this research, a new kind of porous N-halamine material with high antibacterial efficacies was prepared. Poly [5,5-dimethyl-3-(3'-triethoxysilylpropyl)-hydantoin] (PSPH), an N-halamine precursor, was synthesized and grafted onto the surface of mesoporous molecular sieves (SBA-15). The mesoporous molecular sieves modified with the N-halamine polymer could be rendered biocidal upon exposure to dilute household bleach. The modified mesoporous molecular sieves were characterized by SEM, TEM, FTIR, XPS, TGA, XRD and BET analysis. It was found that the PSPH has been successfully grafted on the surface of mesoporous molecular sieves, and the morphology and structure of the modified mesoporous molecular sieves were slightly affected. The N-halamine modified mesoporous molecular sieves showed excellent antibacterial property, and inactivated 100% of S. aureus and E. coli O157:H7 with 8.05 and 7.92 log reductions within 1min of contact, respectively. The modified SBA-15 with high-antibacterial efficiency has potential application in water treatment and biomaterials areas. PMID:27612805

  6. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples.

    PubMed

    Zhao, Xiaoli; Shi, Yali; Wang, Thanh; Cai, Yaqi; Jiang, Guibin

    2008-04-25

    A novel type of superparamagnetic silica-coated (Fe3O4/SiO2 core/shell) magnetite nanoparticle modified by surfactants has been successfully synthesized and was applied as an effective sorbent material for the pre-concentration of several typical phenolic compounds (bisphenol A (BPA), 4-tert-octylphenol (4-OP) and 4-n-nonylphenol (4-NP)) from environmental water samples. Compared with pure magnetic particles, a thin and dense silica layer would protect the iron oxide core from leaching out in acidic conditions. In order to enhance their adsorptive tendency towards organic compounds, cetylpyridinium chloride (CPC) or cetyltrimethylammonium bromide (CTAB) were added, which adsorbed on the surface of the Fe3O4/SiO2 nanoparticles (Fe3O4/SiO2 NPs) and formed mixed hemimicelles. Main factors affecting the adsolubilization of analytes were optimized and comparative study on the use of CPC and CTAB-coated Fe3O4/SiO2 NPs mixed hemimicelles-based SPE was also carried out. CPC-coated Fe3O4/SiO2 NPs system was selected due to lower elution volume required and more effective adsorption of the target compounds. Under selected conditions, concentration factor of 1600 was achieved by using this method to extract 800 mL of different environmental water samples. The detection limits obtained for BPA, 4-OP and 4-NP with HPLC-FLD were 7, 14, and 20 ng/L, respectively.

  7. Polymer-phyllosilicate nanocomposites and their preparation

    DOEpatents

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  8. Mesoporous silica nanoparticles inhibit cellular respiration.

    PubMed

    Tao, Zhimin; Morrow, Matthew P; Asefa, Tewodros; Sharma, Krishna K; Duncan, Cole; Anan, Abhishek; Penefsky, Harvey S; Goodisman, Jerry; Souid, Abdul-Kader

    2008-05-01

    We studied the effect of two types of mesoporous silica nanoparticles, MCM-41 and SBA-15, on mitochondrial O 2 consumption (respiration) in HL-60 (myeloid) cells, Jurkat (lymphoid) cells, and isolated mitochondria. SBA-15 inhibited cellular respiration at 25-500 microg/mL; the inhibition was concentration-dependent and time-dependent. The cellular ATP profile paralleled that of respiration. MCM-41 had no noticeable effect on respiration rate. In cells depleted of metabolic fuels, 50 microg/mL SBA-15 delayed the onset of glucose-supported respiration by 12 min and 200 microg/mL SBA-15 by 34 min; MCM-41 also delayed the onset of glucose-supported respiration. Neither SBA-15 nor MCM-41 affected cellular glutathione. Both nanoparticles inhibited respiration of isolated mitochondria and submitochondrial particles.

  9. Enantioselective recognition at mesoporous chiral metal surfaces

    PubMed Central

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-01-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes. PMID:24548992

  10. Polypyrrole–titanium(IV) doped iron(III) oxide nanocomposites: Synthesis, characterization with tunable electrical and electrochemical properties

    SciTech Connect

    Nandi, Debabrata; Ghosh, Arup Kumar; Gupta, Kaushik; De, Amitabha

    2012-08-15

    Highlights: ► Synthesis and characterization of polymer nanocomposite based on titanium doped iron(III) oxide. ► Electrical conductivity increased 100 times in composite with respect to polymer. ► Electrochemical capacitance of polymer composites increased with nanooxide content. ► Thermal stability of the polymer enhanced with nano oxide content. -- Abstract: Titanium(IV)-doped synthetic nanostructured iron(III) oxide (NITO) and polypyrrole (PPy) nanocomposites was fabricated by in situ polymerization using FeCl{sub 3} as initiator. The polymer nanocomposites (PNCs) and pure NITO were characterized by X-ray diffraction, Föurier transform infrared spectroscopy, scanning electron microscopy, electron dispersive X-ray spectroscopy, transmission electron microscopy, etc. Thermo gravimetric and differential thermal analyses showed the enhancement of thermal stability of PNCs than the pure polymer. Electrical conductivity of the PNCs had increased significantly from 0.793 × 10{sup −2} S/cm to 0.450 S/cm with respect to the PPy, and that had been explained by 3-dimensional variable range hopping (VRH) conduction mechanisms. In addition, the specific capacitance of PNCs had increased from 147 F/g to 176 F/g with increasing NITO content than that of pure NITO (26 F/g), presumably due to the growing of mesoporous structure with increasing NITO content in PNCs which reduced the charge transfer resistance significantly.

  11. Thermal degradation kinetics and decomposition mechanism of PBSu nanocomposites with silica-nanotubes and strontium hydroxyapatite nanorods.

    PubMed

    Papageorgiou, D G; Roumeli, E; Chrissafis, K; Lioutas, Ch; Triantafyllidis, K; Bikiaris, D; Boccaccini, A R

    2014-03-14

    Novel poly(butylene succinate) (PBSu) nanocomposites containing 5 and 20 wt% mesoporous strontium hydroxyapatite nanorods (SrHNRs) and silica nanotubes (SiNTs) were prepared by melt-mixing. A systematic investigation of the thermal stability and decomposition kinetics of PBSu was performed using pyrolysis-gas chromatography-mass spectroscopy (Py-GC-MS) and thermogravimetry (TG). Thorough studies of evolving decomposition compounds along with the isoconversional and model-fitting analysis of mass loss data led to the proposal of a decomposition mechanism for PBSu. Moreover, the effects of SrHNRs and SiNTs on the thermal stability and decomposition kinetics of PBSu were also examined in detail. The complementary use of these techniques revealed that the incorporation of SiNTs in PBSu does not induce significant effects neither on its thermal stability nor on its decomposition mechanism. In contrast, the addition of SrHNRs resulted in the catalysis of the initial decomposition steps of PBSu and also in modified decomposition mechanisms and activation energies. The evolving gaseous products of PBSu and their evolution pattern in the SiNT nanocomposites were the same as in neat PBSu, while they were slightly modified for the SrHNR nanocomposites, confirming the findings from thermogravimetric analysis. PMID:24469599

  12. Enhanced retention of aqueous transition metals in mesoporous silica

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Bargar, J.; Brown, G. E.; Maher, K.

    2013-12-01

    Mesoporosity (2-50 nm diameter pores) is abundant within grain coatings and primary silicate minerals in natural environments. Mesopores often contribute significantly to total specific surface area and act as gateways for the transport of subsurface solutes, including nutrients and contaminants, between mineral surfaces and ambient fluids. However, the physiochemical mechanisms of sorption and transport within mesopores cannot be assumed to be the same as for macropores (>50 nm), because of confinement-induced changes in water properties, the structure of electrical double layers, solvation shells and dehydration rates of aquo ions, and the charge and reactive site densities of mineral surfaces. Despite the ubiquity of confined spaces in natural and industrial porous media, few studies have examined the molecular-scale mechanisms and geochemical reactions controlling meso-confinement phenomena in environmentally relevant materials. We conducted batch Zn sorption experiments using synthetic, controlled pore-size (i.e., 7.5-300 nm), metal-oxide beads as model geologic substrates. Comparison of Zn adsorbed onto macroporous and mesoporous silica beads indicates Zn adsorption capacity is increased in mesopores when normalized to surface area. In the presence of a background electrolyte (i.e., NaCl), Zn sorption capacity to macroporous silica is reduced; however, no significant difference in Zn sorption capacity on mesoporous silica was observed between the presence and absence of a background electrolyte. The effect of competing cations is indirect evidence that mesopores promote inner-sphere complexation and reduce outer-sphere complexation. EXAFS characterization of adsorbed zinc to macroporous silica matches that reported for low Zn coverages on silica (Roberts et al., JCIS, 2003), whereas a different spectrum is observed for the mesoporous case. Shell-by-shell fitting indicates that Zn is dominantly in octahedral coordination in macropores, as opposed to

  13. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure.

    PubMed

    Lee, B; Lu, D; Kondo, J N; Domen, K

    2001-10-21

    A new type of mesoporous mixed transition metal oxide of Nb and Ta (NbTa-TIT-1) has been prepared through a two-step calcination, which consists of single crystal particles with wormhole mesoporous structure.

  14. [Multifunctional nanocomposite materials]. Progress report

    SciTech Connect

    Not Available

    1993-04-01

    These novel nanocomposites are microporous nanometal intercalated clays which have been prepared by a polyol process at 200C and a novel microwave-hydrothermal process using ethylene glycol. These novel nanocomposites have been found to be useful in the conversion of coal to asphaltenes. A crystalline tin (IV) arsenate hydroxide hydrate has been made and its lithium selective ion exchange properties have been measured. This exchanger has shown high lithium selectivity. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure have also been studied. Several pillared clays have also been synthesized and their Mg{sup 2+}, Li{sup +} and UO{sub 2}{sup 2+} selectivity has been measured. The pillared clays appear to show some Li selectivity.

  15. Review: nanocomposites in food packaging.

    PubMed

    Arora, Amit; Padua, G W

    2010-01-01

    The development of nanocomposites is a new strategy to improve physical properties of polymers, including mechanical strength, thermal stability, and gas barrier properties. The most promising nanoscale size fillers are montmorillonite and kaolinite clays. Graphite nanoplates are currently under study. In food packaging, a major emphasis is on the development of high barrier properties against the migration of oxygen, carbon dioxide, flavor compounds, and water vapor. Decreasing water vapor permeability is a critical issue in the development of biopolymers as sustainable packaging materials. The nanoscale plate morphology of clays and other fillers promotes the development of gas barrier properties. Several examples are cited. Challenges remain in increasing the compatibility between clays and polymers and reaching complete dispersion of nanoplates. Nanocomposites may advance the utilization of biopolymers in food packaging. PMID:20492194

  16. Multiscale modeling of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Sheidaei, Azadeh

    In recent years, polymer nano-composites (PNCs) have increasingly gained more attention due to their improved mechanical, barrier, thermal, optical, electrical and biodegradable properties in comparison with the conventional micro-composites or pristine polymer. With a modest addition of nanoparticles (usually less than 5wt. %), PNCs offer a wide range of improvements in moduli, strength, heat resistance, biodegradability, as well as decrease in gas permeability and flammability. Although PNCs offer enormous opportunities to design novel material systems, development of an effective numerical modeling approach to predict their properties based on their complex multi-phase and multiscale structure is still at an early stage. Developing a computational framework to predict the mechanical properties of PNC is the focus of this dissertation. A computational framework has been developed to predict mechanical properties of polymer nano-composites. In chapter 1, a microstructure inspired material model has been developed based on statistical technique and this technique has been used to reconstruct the microstructure of Halloysite nanotube (HNT) polypropylene composite. This technique also has been used to reconstruct exfoliated Graphene nanoplatelet (xGnP) polymer composite. The model was able to successfully predict the material behavior obtained from experiment. Chapter 2 is the summary of the experimental work to support the numerical work. First, different processing techniques to make the polymer nanocomposites have been reviewed. Among them, melt extrusion followed by injection molding was used to manufacture high density polyethylene (HDPE)---xGnP nanocomposties. Scanning electron microscopy (SEM) also was performed to determine particle size and distribution and to examine fracture surfaces. Particle size was measured from these images and has been used for calculating the probability density function for GNPs in chapter 1. A series of nanoindentation tests have

  17. Probabilistic Simulation for Nanocomposite Characterization

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Coroneos, Rula M.

    2007-01-01

    A unique probabilistic theory is described to predict the properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths properties of a mononanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions.

  18. Inorganic nanofluorides and related nanocomposites

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Sergei V.; Osiko, Vyacheslav V.; Tkatchenko, E. A.; Fedorov, Pavel P.

    2006-12-01

    The properties and prospects of application of fluoride nanoparticles are discussed. Pyrohydrolysis is considered as the key process determining the chemistry and technology of fluorides; its role increases on going to the nanosize region. The physical and chemical methods for the synthesis of fluoride nanoparticles, one- and two-dimensional nanoobjects as well as approaches to the preparation of nanocomposites (glass ceramics, heterovalent solid solutions with defect clusters, eutectoid composites, etc.) are analysed. Nanotechnology techniques used to produce heterogeneous nanoobjects are outlined.

  19. Silicone nanocomposite coatings for fabrics

    NASA Technical Reports Server (NTRS)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  20. Hybrid polymer-inorganic nanocomposites

    NASA Astrophysics Data System (ADS)

    Pomogailo, Anatolii D.

    2000-01-01

    Approaches to the preparation of organic-inorganic nanocomposites are considered from a unified viewpoint for the first time. The major problems in the development of this new line of research in materials technology, which has arisen on the border of the science of polymers, colloid chemistry and physical chemistry of the ultradisperse state, are discussed. The main methods for the formation of composite materials and polymer-inorganic cross-linked hybrids with interpenetrating networks are analysed. Primary attention is given to sol-gel procedures for their preparation, including template processes, which occur under conditions of strict stereochemical orientation of reactants, intercalation of monomers and polymers into porous and layered matrices and their intracrystalline and post-intercalation transformations. Methods for the synthesis and properties of metallopolymeric polymolecular Langmuir-Blodgett films, which are peculiar supramolecular ensembles incorporating nanosized metal-containing particles, are discussed. The generality of the processes of formation of organic-inorganic nanocomposites in living and nonliving natural objects is demonstrated and the major fields of application of nanocomposites are considered. The bibliography includes 566 references.

  1. The Synthesis of Ag-Doped Mesoporous TiO2

    SciTech Connect

    Li, Xiaohong S.; Fryxell, Glen E.; Wang, Chong M.; Engelhard, Mark H.

    2008-04-15

    Ag-doped mesoporous titanium oxide was prepared using non-ionic surfactants and easily handled titanium precursors, under mild reaction conditions. In contrast to the stabilizing effect of Cd-doping on mesoporous TiO2, Ag-doping was found to significantly destabilize the mesoporous structure.

  2. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  3. "Green" composites and nanocomposites from soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we report preparation of epoxidized soybean oil (ESO) based "green" composites and nanocomposites. The high strength and stiffness composites and nanocomposites are formed through flax fiber and organoclay reinforcement. The epoxy resin, 1,1,1-tris(p-hydroxyphenyl)ethane triglycidyl...

  4. Polymer nanocomposites: structure, interaction, and functionality.

    PubMed

    Keledi, Gergely; Hári, József; Pukánszky, Béla

    2012-03-21

    This feature article discusses the main factors determining the properties of polymer nanocomposites with special attention paid to structure and interactions. Usually more complicated structure develops in nanocomposites than in traditional particulate filled polymers, and that is especially valid for composites prepared from plate-like nanofillers. Besides the usually assumed exfoliated/intercalated morphology, i.e. individual platelets and tactoids, such nanocomposites often contain large particles, and a network structure developing at large extent of exfoliation. Aggregation and orientation are the most important structural phenomena in nanotube or nanofiber reinforced composites, and ag-gregation is a major problem also in composites prepared with spherical particles. The surface characteristics of nanofillers and interactions are rarely determined or known; the related problems are discussed in the paper in detail. The surface of these reinforcements is modified practically always. The goal of the modification is to improve dispersion and/or adhesion in nanotube and spherical particle reinforced composites, and to help exfoliation in nanocomposites containing platelets. However, modification decreases surface energy often leading to decreased interaction with the matrix. Very limited information exists about interphase formation and the properties of the interphase in nanocomposites, although they must influence properties considerably. The properties of nanocomposites are usually far from the expectations, the main reason being insufficient homogeneity, undefined structure and improper adhesion. In spite of considerable difficulties nanocomposites have great potentials especially in functional applications. Several nanocomposite products are already used in industrial practice demonstrated by a few examples in the article. PMID:22349033

  5. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  6. Graphene-based artificial nacre nanocomposites.

    PubMed

    Zhang, Yuanyuan; Gong, Shanshan; Zhang, Qi; Ming, Peng; Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-05-01

    With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for biomimicry, provides an excellent example and guidelines for assembling two-dimensional nanosheets into high performance nanocomposites. The inspiration from nacre overcomes the bottleneck of traditional approaches for constructing nanocomposites, such as poor dispersion, low loading, and weak interface interactions. This tutorial review summarizes recent research on graphene-based artificial nacre nanocomposites and focuses on the design of interface interactions and synergistic effects for constructing high performance nanocomposites. This tutorial review also focuses on a perspective of the dynamic area of graphene-based nanocomposites, commenting on whether the concept is viable and practical, on what has been achieved to date, and most importantly, what is likely to be achieved in the future.

  7. Graphene-based artificial nacre nanocomposites.

    PubMed

    Zhang, Yuanyuan; Gong, Shanshan; Zhang, Qi; Ming, Peng; Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-05-01

    With its extraordinary properties as the strongest and stiffest material ever measured and the best-known electrical conductor, graphene could have promising applications in many fields, especially in the area of nanocomposites. However, processing graphene-based nanocomposites is very difficult. So far, graphene-based nanocomposites exhibit rather poor properties. Nacre, the gold standard for biomimicry, provides an excellent example and guidelines for assembling two-dimensional nanosheets into high performance nanocomposites. The inspiration from nacre overcomes the bottleneck of traditional approaches for constructing nanocomposites, such as poor dispersion, low loading, and weak interface interactions. This tutorial review summarizes recent research on graphene-based artificial nacre nanocomposites and focuses on the design of interface interactions and synergistic effects for constructing high performance nanocomposites. This tutorial review also focuses on a perspective of the dynamic area of graphene-based nanocomposites, commenting on whether the concept is viable and practical, on what has been achieved to date, and most importantly, what is likely to be achieved in the future. PMID:27039951

  8. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Gaier, James R.

    2010-01-01

    Graphene nanosheet bisphenol A polycarbonate nanocomposites (0.027 2.2 vol %) prepared by both emulsion mixing and solution blending methods, followed by compression molding at 287 C, exhibited dc electrical percolation threshold of approx.0.14 and approx.0.38 vol %, respectively. The conductivities of 2.2 vol % graphene nanocomposites were 0.512 and 0.226 S/cm for emulsion and solution mixing. The 1.1 and 2.2 vol % graphene nanocomposites exhibited frequency-independent behavior. Inherent conductivity, extremely high aspect ratio, and nanostructure directed assembly of the graphene using PC nanospheres are the main factors for excellent electrical properties of the nanocomposites. Dynamic tensile moduli of nanocomposites increased with increasing graphene in the nanocomposite. The glass transition temperatures were decreased with increasing graphene for the emulsion series. High-resolution electron microscopy (HR-TEM) and small-angle neutron scattering (SANS) showed isolated graphene with no connectivity path for insulating nanocomposites and connected nanoparticles for the conductive nanocomposites. A stacked disk model was used to obtain the average particle radius, average number of graphene layers per stack, and stack spacing by simulation of the experimental SANS data. Morphology studies indicated the presence of well-dispersed graphene and small graphene stacking with infusion of polycarbonate within the stacks.

  9. Nanocrystal-polymer nanocomposite electrochromic device

    SciTech Connect

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  10. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  11. Porosity control in mesoporous polymers using CO2-swollen block copolymer micelles as templates and their use as catalyst supports.

    PubMed

    Peng, Li; Zhang, Jianling; Yang, Shuliang; Han, Buxing; Sang, Xinxin; Liu, Chengcheng; Yang, Guanying

    2014-10-14

    Mesoporous polymers with tunable large mesopores and thin mesopore walls were synthesized through a CO2-swollen micelle templating route. The mesopore size and porosity properties of the polymers can be easily modulated by adjusting CO2 pressure. The as-synthesized mesocellular polymers are excellent candidate supports for preparing heterogeneous catalysts.

  12. Dynamic Strength Ceramic Nanocomposites Under Pulse Loading

    NASA Astrophysics Data System (ADS)

    Skripnyak, Evgeniya G.; Skripnyak, Vladimir V.; Vaganova, Irina K.; Skripnyak, Vladimir A.

    2015-06-01

    Multi-scale computer simulation approach has been applied to research of strength of nanocomposites under dynamic loading. The influence of mesoscopic substructures on the dynamic strength of ceramic and hybrid nanocomposites, which can be formed using additive manufacturing were numerically investigated. At weak shock wave loadings the shear strength and the spall strength of ceramic and hybrid nanocomposites depends not only phase concentration and porosity, but size parameters of skeleton substructures. The influence of skeleton parameter on the shear strength and the spall strength of ceramic nanocomposites with the same concentration of phases decreases with increasing amplitude of the shock pulse of microsecond duration above the double amplitude of the Hugoniot elastic limit of nanocomposites. This research carried out in 2014 -2015 was supported by grant from The Tomsk State University Academic D.I. Mendeleev Fund Program and also Ministry of Sciences and Education of Russian Federation (State task 2014/223, project 1943, Agreement 14.132.

  13. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  14. Advances in rubber/halloysite nanotubes nanocomposites.

    PubMed

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties. PMID:24749454

  15. Organized thiol functional groups in mesoporous core shell colloids

    SciTech Connect

    Marchena, Martin H.; Granada, Mara; Bordoni, Andrea V.; Joselevich, Maria; Troiani, Horacio; Williams, Federico J.; Wolosiuk, Alejandro

    2012-03-15

    The co-condensation in situ of tetraethoxysilane (TEOS) and mercaptopropyltrimethoxysilane (MPTMS) using cetyltrimethylammonium bromide (CTAB) as a template results in the synthesis of multilayered mesoporous structured SiO{sub 2} colloids with 'onion-like' chemical environments. Thiol groups were anchored to an inner selected SiO{sub 2} porous layer in a bilayered core shell particle producing different chemical regions inside the colloidal layered structure. X-Ray Photoelectron Spectroscopy (XPS) shows a preferential anchoring of the -SH groups in the double layer shell system, while porosimetry and simple chemical modifications confirm that pores are accessible. We can envision the synthesis of interesting colloidal objects with defined chemical environments with highly controlled properties. - Graphical abstract: Mesoporous core shell SiO{sub 2} colloids with organized thiol groups. Highlights: Black-Right-Pointing-Pointer Double shell mesoporous silica colloids templated with CTAB. Black-Right-Pointing-Pointer Sequential deposition of mesoporous SiO{sub 2} layers with different chemistries. Black-Right-Pointing-Pointer XPS shows the selective functionalization of mesoporous layers with thiol groups.

  16. Mesoporous silica nanoparticles in target drug delivery system: A review

    PubMed Central

    Bharti, Charu; Nagaich, Upendra; Pal, Ashok Kumar; Gulati, Neha

    2015-01-01

    Due to lack of specification and solubility of drug molecules, patients have to take high doses of the drug to achieve the desired therapeutic effects for the treatment of diseases. To solve these problems, there are various drug carriers present in the pharmaceuticals, which can used to deliver therapeutic agents to the target site in the body. Mesoporous silica materials become known as a promising candidate that can overcome above problems and produce effects in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles (MSNs) are widely used as a delivery reagent because silica possesses favorable chemical properties, thermal stability, and biocompatibility. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release of the target site. The properties of mesoporous, including pore size, high drug loading, and porosity as well as the surface properties, can be altered depending on additives used to prepare MSNs. Active surface enables functionalization to changed surface properties and link therapeutic molecules. They are used as widely in the field of diagnosis, target drug delivery, bio-sensing, cellular uptake, etc., in the bio-medical field. This review aims to present the state of knowledge of silica containing mesoporous nanoparticles and specific application in various biomedical fields. PMID:26258053

  17. Mesoporous materials used in medicine and environmental applications.

    PubMed

    Gunduz, Oguzhan; Yetmez, Mehmet; Sonmez, Maria; Georgescu, Mihai; Alexandrescu, Laura; Ficai, Anton; Ficai, Denisa; Andronescu, Ecaterina

    2015-01-01

    Mesoporous materials synthesized in the presence of templates, are commonly used for environment and medical applications. Due to the properties it holds, mesoporous silica nanoparticles is an excellent material for use in medical field, biomaterials, active principles delivery systems, enzyme immobilization and imaging. Their structure allows embedding large and small molecules, DNA adsorption and genetic transfer. Using mesoporous silica nanoparticles for delivery of bioactive molecules can protect them against degradation under physiological conditions, allow controlled drugs release and minimize side effects on healthy tissues. Cellular tests performed on mesoporous silica nanoparticles demonstrate that MSN's cytotoxicity is dependent on the size and concentration and suggests the use of larger size nanoparticles is optimal for medical applications. Mesoporous materials possess high biological compatibility, are non-toxic and can be easily modified by functionalizing the surface or inside the pores by grafting or co-condensation method. The structure, composition and pores size of this material can be optimized during synthesis by varying the stoichiometric reactants, reaction conditions, nature of the template's molecules or by functionalization method. PMID:25877095

  18. Diamine Functionalized Cubic Mesoporous Silica for Ibuprofen Controlled Delivery.

    PubMed

    Sivaguru, J; Selvaraj, M; Ravi, S; Park, H; Song, C W; Chun, H H; Ha, C-S

    2015-07-01

    A diamine functionalized cubic mesostructured KIT-6 (N-KIT-6) has been prepared by post-synthetic method using calcined mesoporous KIT-6 with a diamine source, i.e., N-'[3-(tri methoxysilyl)- propyl]'ethylenediamine. The KIT-6 mesoporous silica used for N-KIT-6 was synthesized under weak acidic hydrothermal method using bitemplates, viz., Pluronic P123 and 1-butanol. The synthesized mesoporous materials, KIT-6 and N-KIT-6, have been characterized by the relevant instrumental techniques such as SAXS, N2 sorption isotherm, FT-IR, SEM, TEM and TGA to prove the standard mesoporous materials with the identification of diamine groups. The characterized mesoporous materials, KIT-6 and N-KIT-6, have been extensively used in the potential application of controlled drug delivery, where ibuprofen (IBU) employed as a model drug. The rate of IBU adsorption and release was monitored by UV vis-spectrometer. On the basis of the experimental results of controlled drug delivery system, the results of IBU adsorption and releasing rate in N-KIT-6 are higher than those of KIT-6 because of the higher hydrophobic nature as well as rich basic sites on the surface of inner pore wall silica.

  19. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION

    SciTech Connect

    Wei-Heng Shih; Qiang Zhao; Nanlin Wang

    2002-05-01

    Mesoporous and precipitated alumina were synthesized as the base material for CO{sub 2} adsorbent. The porous alumina is doped with Ba to enhance it CO{sub 2} affinity due to the basicity of Ba. it is shown by gas chromatograph (GC) that the addition of Ba enhances the separation CO{sub 2} from N{sub 2}. It was found that mesoporous alumina has larger specific surface area and better selectivity of CO{sub 2} than precipitated alumina. Ba improves the affinity of mesoporous alumina with CO{sub 2}. Phase may play an important role in selective adsorption of CO{sub 2}. It is speculated that mesoporous alumina is more reactive than precipitated alumina creating the xBaO {center_dot} Al{sub 2}O{sub 3} phase that may be more affinity to CO{sub 2} than N{sub 2}. On the other hand, the barium aluminate phase (Ba{sub 3}Al{sub 2}O{sub 6}) in the mesoporous sample does not help the adsorption of CO{sub 2}.

  20. Synthesis of mesoporous platinum-copper films by electrochemical micelle assembly and their electrochemical applications.

    PubMed

    Li, Cuiling; Yamauchi, Yusuke

    2014-01-13

    We have electrochemically synthesized mesoporous platinum-copper films with various compositions in an aqueous surfactant solution. By tuning the composition ratios of the platinum and copper sources in the precursor solutions, mesoporous bimetallic films with copper contents that dramatically change from 0 to 70 mol % can be successfully prepared. The obtained bimetallic films possess uniformly sized mesopores over the entire area. These mesoporous platinum-copper films are electrochemically active and show composition-dependent catalytic activity and stability for the methanol oxidation reaction. The bimetallic mesoporous films are a promising new class of electrocatalyst for the future.

  1. Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors

    PubMed Central

    2012-01-01

    Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors. PMID:22643113

  2. Unusual reinforcement of silicone rubber compounds containing mesoporous silica particles as inorganic fillers.

    PubMed

    Suzuki, Norihiro; Kiba, Shosuke; Kamachi, Yuichiro; Miyamoto, Nobuyoshi; Yamauchi, Yusuke

    2012-03-14

    We fabricate mesoporous silica/silicone composites in a simple way and systematically examine their thermal stability, swelling characteristic, mechanical strength, and transparency. Simple calculations show that more than 90 vol% of mesopores are filled with silicone rubbers. Compared to non-porous silica/silicone composites, mesoporous silica/silicone composites showed a lower coefficient of linear thermal expansion (CTE). In addition, dramatic improvements of the tensile strength and Young's modulus are obtained with mesoporous silica/silicone composites. Furthermore, mesoporous silica/silicone composites show higher transparency than non-porous silica/silicone composites.

  3. Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    PubMed Central

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-01-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565

  4. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei

    2015-11-01

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  5. Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.

    PubMed

    Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei

    2015-11-23

    The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.

  6. Enzyme-Powered Hollow Mesoporous Janus Nanomotors.

    PubMed

    Ma, Xing; Jannasch, Anita; Albrecht, Urban-Raphael; Hahn, Kersten; Miguel-López, Albert; Schäffer, Erik; Sánchez, Samuel

    2015-10-14

    The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications. PMID:26437378

  7. Mesoporous materials for clean energy technologies.

    PubMed

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity. PMID:24699503

  8. Mesoporous materials for clean energy technologies.

    PubMed

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  9. Photoluminescence of carbon dots from mesoporous silica

    NASA Astrophysics Data System (ADS)

    Nelson, D. K.; Razbirin, B. S.; Starukhin, A. N.; Eurov, D. A.; Kurdyukov, D. A.; Stovpiaga, E. Yu; Golubev, V. G.

    2016-09-01

    Photophysical properties of carbon dots were investigated under various excitation conditions and over a wide temperature region - from room to liquid helium temperatures. The carbon dots (CDs) were synthesized using mesoporous silica particles as a reactor and (3-aminopropyl)triethoxysilane (APTES) as a precursor. The photoluminescence spectra of CDs exhibit a strong dependence on the excitation wavelength and demonstrate a significant inhomogeneous broadening. Lowering sample temperature reveals the doublet structure of the spectra, which is associated with the vibronic structure of radiative transitions. The vibration energy ∼1200 cm-1 is close to the energy of Csbnd O stretching vibration. Long-lived phosphorescence of carbon dots with its decay time ∼0.2 s at T = 80 K was observed. The fluorescence and phosphorescence spectra are shown to be spectrally separated. The long-lived component of the emission was ascribed to optically forbidden triplet-singlet transitions. The value of the singlet-triplet splitting was found to be about 0.3 eV. Photo-induced polarization of the luminescence of carbon dots was revealed. The degree of the linear polarization is dependent on the wavelengths of both excitation and emitted light. The effect indicates a hidden anisotropy of optical dipole transitions in the dots and demonstrates the loss of the dipole orientation during the electron energy relaxation.

  10. Controlled drug release from bifunctionalized mesoporous silica

    SciTech Connect

    Xu Wujun; Gao Qiang; Xu Yao Wu Dong; Sun Yuhan; Shen Wanling; Deng Feng

    2008-10-15

    Serial of trimethylsilyl-carboxyl bifunctionalized SBA-15 (TMS/COOH/SBA-15) have been studied as carriers for controlled release of drug famotidine (Famo). To load Famo with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized by one-pot synthesis under the assistance of KCl. The mesostructure of carboxyl functionalized SBA-15 (COOH/SBA-15) could still be kept even though the content of carboxyl groups was up to 57.2%. Increasing carboxyl content could effectively enhance the loading capacity of Famo. Compared with pure SBA-15, into which Famo could be hardly adsorbed, the largest drug loading capacity of COOH/SBA-15 could achieve 396.9 mg/g. The release of Famo from mesoporous silica was studied in simulated intestine fluid (SIF, pH=7.4). For COOH/SBA-15, the release rate of Famo decreased with narrowing pore size. After grafting TMS groups on the surface of COOH/SBA-15 with hexamethyldisilazane, the release of Famo was greatly delayed with the increasing content of TMS groups. - Graphical abstract: Trimethylsilyl-carboxyl bifunctionalized SBA-15 has been studied as carrier for controlled release of drug famotidine. To load drug with large capacity, SBA-15 with high content of carboxyl groups was successfully synthesized. After grafting trimethylsilyl groups on the surface of carboxyl functionalized SBA-15, the release of Famo was greatly delayed with the increasing content of TMS groups.

  11. Mesoporous junctions and nanocrystalline solar cells

    NASA Astrophysics Data System (ADS)

    Graetzel, Michael

    2000-03-01

    Learning from the concepts used by green plants, we have developed a molecular photovoltaic system based on the sensitization of nanocrystalline TiO2 films. In analogy to photosyntesis, light is absorbed by a monolayer of dye attached to the surface of a wide-band-gap oxide. The mesoporous morphology of the layer provides a substrate characterized by a very large surface area. The roughness factor of a 10-micron thick film reaches easily 1000. Light penetrating the dye loaded TiO2 nanocrystals is therefore collected in an efficient manner, similar to the thylakoid vesicles in green leafs which are stacked in order to enhance solar light harvesting. The excited dye injects an electron in the conduction band of the oxide resulting in efficient and very rapid charge separation. Nearly quantitative conversion of photons in electric current have been achieved with these devices over the whole visible and near-IR range of the spectrum. The overall AM 1.5 solar-to electric power conversion efficiency has reached already 11unravel the dynamics of interfacial charge transfer reactions at these dye- sensitized heterojunctions.

  12. Plutonium complexation by phosphonate-functionalized mesoporous silica

    SciTech Connect

    Parsons-Moss, T; Schwaiger, L K; Hubaud, A; Hu, Y J; Tuysuz, H; Yang, P; Balasubramanian, K; Nitsche, H

    2010-10-27

    MCM-41-type mesoporous silica functionalized with the CMPO-based 'Ac-Phos' silane has been reported in the literature (1) to show good capacity as an acftinide sorbent material, with potential applications in environmental sequestration, aqueous waste separation and/or vitrification, and chemical sensing of actinides in solution. The study explores the complexation of Pu(IV and VI) and other selected actinides and lanthanides by SBA-15 type mesoporous silica functionalized with Ac-Phos. The Pu binding kinetics and binding capacity were determined for both the Ac-Phos functionalized and unmodified SBA-15. They analyzed the binding geometry and redox behavior of Pu(VI) by X-ray absorption spectroscopy (XAS). They discuss the synthesis and characterization of the functionalized mesoporous material, batch sorption experiments, and the detailed analyses of the actinide complexes that are formed. Structural measurements are paired with high-level quantum mechanical modeling to elucidate the binding mechanisms.

  13. Syntheses and applications of periodic mesoporous organosilica nanoparticles

    NASA Astrophysics Data System (ADS)

    Croissant, Jonas G.; Cattoën, Xavier; Wong Chi Man, Michel; Durand, Jean-Olivier; Khashab, Niveen M.

    2015-12-01

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms.

  14. Syntheses and applications of periodic mesoporous organosilica nanoparticles.

    PubMed

    Croissant, Jonas G; Cattoën, Xavier; Wong, Michel Chi Man; Durand, Jean-Olivier; Khashab, Niveen M

    2015-12-28

    Periodic Mesoporous Organosilica (PMO) nanomaterials are envisioned to be one of the most prolific subjects of research in the next decade. Similar to mesoporous silica nanoparticles (MSN), PMO nanoparticles (NPs) prepared from organo-bridged alkoxysilanes have tunable mesopores that could be utilized for many applications such as gas and molecule adsorption, catalysis, drug and gene delivery, electronics, and sensing; but unlike MSN, the diversity in chemical nature of the pore walls of such nanomaterials is theoretically unlimited. Thus, we expect that PMO NPs will attract considerable interest over the next decade. In this review, we will present a comprehensive overview of the synthetic strategies for the preparation of nanoscaled PMO materials, and then describe their applications in catalysis and nanomedicine. The remarkable assets of the PMO structure are also detailed, and insights are provided for the preparation of more complex PMO nanoplatforms. PMID:26585498

  15. Mesoporous materials for energy conversion and storage devices

    NASA Astrophysics Data System (ADS)

    Li, Wei; Liu, Jun; Zhao, Dongyuan

    2016-06-01

    To meet the growing energy demands in a low-carbon economy, the development of new materials that improve the efficiency of energy conversion and storage systems is essential. Mesoporous materials offer opportunities in energy conversion and storage applications owing to their extraordinarily high surface areas and large pore volumes. These properties may improve the performance of materials in terms of energy and power density, lifetime and stability. In this Review, we summarize the primary methods for preparing mesoporous materials and discuss their applications as electrodes and/or catalysts in solar cells, solar fuel production, rechargeable batteries, supercapacitors and fuel cells. Finally, we outline the research and development challenges of mesoporous materials that need to be overcome to increase their contribution in renewable energy applications.

  16. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  17. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented. PMID:15787373

  18. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  19. Adsorption of vitamin E on mesoporous titania nanocrystals

    SciTech Connect

    Shih, C.J.; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C to 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.

  20. Transport properties of hierarchical micro-mesoporous materials.

    PubMed

    Schneider, Daniel; Mehlhorn, Dirk; Zeigermann, Philipp; Kärger, Jörg; Valiullin, Rustem

    2016-06-13

    Adding mesopore networks in microporous materials using the principles of hierarchical structure design is recognized as a promising route for eliminating their transport limitations and, therefore, for improving their value in technological applications. Depending on the routes of physico-chemical procedures or post-synthesis treatments used, very different geometries of the intentionally-added transport mesopores can be obtained. Understanding the structure-dynamics relationships in these complex materials with multiple porosities under different thermodynamical conditions remains a challenging task. In this review, we summarize the results obtained so far on experimental and theoretical studies of diffusion in micro-mesoporous materials. By considering four common classes of bi-porous materials, which are differing by the inter-connectivities of their sup-spaces as one of the most important parameter determining the transport rates, we discuss their generic transport properties and correlate the results delivered by the equilibrium and non-equilibrium techniques of diffusion measurements.

  1. Ordered mesoporous materials based on interfacial assembly and engineering.

    PubMed

    Li, Wei; Yue, Qin; Deng, Yonghui; Zhao, Dongyuan

    2013-10-01

    Ordered mesoporous materials have inspired prominent research interest due to their unique properties and functionalities and potential applications in adsorption, separation, catalysis, sensors, drug delivery, energy conversion and storage, and so on. Thanks to continuous efforts over the past two decades, great achievements have been made in the synthesis and structural characterization of mesoporous materials. In this review, we summarize recent progresses in preparing ordered mesoporous materials from the viewpoint of interfacial assembly and engineering. Five interfacial assembly and synthesis are comprehensively highlighted, including liquid-solid interfacial assembly, gas-liquid interfacial assembly, liquid-liquid interfacial assembly, gas-solid interfacial synthesis, and solid-solid interfacial synthesis, basics about their synthesis pathways, princples and interface engineering strategies.

  2. Novel mesoporous P-doped graphitic carbon nitride nanosheets coupled with ZnIn2S4 nanosheets as efficient visible light driven heterostructures with remarkably enhanced photo-reduction activity

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Liu, Tian-Yu; Huang, Ting; Liu, Xiao-Heng; Yang, Xu-Jie

    2016-02-01

    In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and separation of charge carrier pairs. More importantly, these P-C3N4/ZnIn2S4 heterostructures have been proven to be highly efficient visible light responsive photocatalysts for photo-reduction, and meanwhile exhibit excellent photo-stability during recycling runs. The sufficient evidence reveals that the significantly improved photocatalytic performance is mainly attributed to the more efficient charge carrier separation based on the construction of a close heterogeneous interface. This work may provide new insights into the utilization of P-C3N4/ZnIn2S4 nanocomposites as visible light driven photocatalysts for comprehensive organic transformations in the field of fine chemical engineering.In this report, we rationally designed and fabricated P-C3N4/ZnIn2S4 nanocomposites by in situ immobilizing ZnIn2S4 nanosheets onto the surface of mesoporous P-doped graphite carbon nitrogen (P-C3N4) nanosheets in a mixed solvothermal environment; their application to the photoreduction of 4-nitroaniline was used to estimate the photocatalytic performance. Different to the template route, here the mesoporous P-C3N4 nanosheets were prepared with a template-free strategy. The as-fabricated P-C3N4/ZnIn2S4 nanocomposites were systematically characterized by analyzing the phase structure, chemical components, electronic and optical properties and

  3. Nanoclay-based hierarchical interconnected mesoporous CNT/PPy electrode with improved specific capacitance for high performance supercapacitors.

    PubMed

    Oraon, Ramesh; De Adhikari, Amrita; Tiwari, Santosh Kumar; Nayak, Ganesh Chandra

    2016-05-31

    A natural layered clay known as montmorillonite, a lamellar aluminosilicate with ∼1 nm thickness, has attracted intense attention in ongoing research due to its large natural abundance and environmental friendliness. Endowed with highly active surface sites the nanoclay has been extensively used in various fields viz. catalysis, biosensors etc. even though the role played by nanoclay on energy storage performance has not been elucidated. In this present work, a series of nanoclay (Closite 30B) based hierarchical open interconnected mesoporous electrode materials for supercapacitors (SCs) has been synthesized in the presence of carbon nanotubes (CNTs) and polypyrrole (PPy) by a facile in situ and ex situ approach. The role of nanoclay was explored as a dopant and its substantial doping effect exerted on the electrochemical performance towards energy storage was investigated. A coating of PPy over CNTs and nanoclay was confirmed from FESEM analysis which revealed the genesis of a nanoclay-supported hierarchical interconnected mesoporous framework. Furthermore, a PPy-coated CNT array in the presence of nanoclay was found to be highly porous with a high specific surface area without obvious deterioration. These interconnected structures can contribute to better penetration of electrolyte ions by shortening the path length for rapid transport of ions and electrons even at high rates. Cyclic voltammetry measurements revealed that nanoclay based in situ composite (CNP) and ex situ composite (CPN) exhibited a maximum specific capacitance of 425 F g(-1) and 317 F g(-1), respectively at a scan rate of 10 mV s(-1), which is comparatively higher than that of CP (i.e. PPy-coated CNTs) (76.77 F g(-1)). Similarly, a 273% increase in the specific capacitance of PPy was achieved after nanoclay incorporation in the nanocomposite NP (i.e. PPy-coated nanoclay) as compared to virgin PPy. These results are in good agreement with the specific capacitance performance by galvanostatic

  4. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    PubMed

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  5. The synthesis and application of two mesoporous silica nanoparticles as drug delivery system with different shape

    NASA Astrophysics Data System (ADS)

    Wang, Jiayi; Wang, Zhuyuan; Chen, Hui; Zong, Shenfei; Cui, Yiping

    2015-05-01

    Mesoporous silica nanospheres(MSNSs) have been obtained utilizing the conventional reverse micelles synthesis method while the mesoporous silica nanorods(MSNRs) have been acquired by means of changing certain parameters. Afterwards, the prepared mesoporous silica nanospheres and nanorods were used as drug carriers to load and release the classical cancer therapeutic drug—DOX. According to the absorption spectra, the encapsulation efficiency of the mesoporous silica nanospheres is almost as high as that of the nanospheres. Different from the familiar encapsulation efficiency, the release characteristic curves of the mesoporous silica nanospheres and nanorods possessed certain differences during the release process. Finally incellular fluorescence imaging was achieved to observe the endocytosis of the mesoporous silica materials. Our results show that although both of the two kinds of nanoparticles possess favourable properties for loading and releasing drugs, the mesoporous silica nanospheres perform better in dispersity and controlled release than the nanorods, which probably endow them the potential as incellular drug delivery system.

  6. MAGNETIC IMAGING OF NANOCOMPOSITE MAGNETS

    SciTech Connect

    VOLKOV,V.V.ZHU,Y.

    2003-08-03

    Understanding the structure and magnetic behavior is crucial for optimization of nanocomposite magnets with high magnetic energy products. Many contributing factors such as phase composition, grain size distribution and specific domain configurations reflect a fine balance of magnetic energies at nanometer scale. For instance, magnetocrystalline anisotropy of grains and their orientations, degree of exchange coupling of magnetically soft and hard phases and specific energy of domain walls in a material. Modern microscopy, including Lorentz microscopy, is powerful tool for visualization and microstructure studies of nanocomposite magnets. However, direct interpretation of magnetically sensitive Fresnel/Foucault images for nanomagnets is usually problematic, if not impossible, because of the complex image contrast due to small grain size and sophisticated domain structure. Recently we developed an imaging technique based on Lorentz phase microscopy [l-4], which allows bypassing many of these problems and get quantitative information through magnetic flux mapping at nanometer scale resolution with a magnetically calibrated TEM [5]. This is our first report on application of this technique to nanocomposite magnets. In the present study we examine a nanocomposite magnet of nominal composition Nd{sub 2}Fe{sub 14+{delta}}B{sub 1.45} (14+{delta}=23.3, i.e. ''hard'' Nd{sub 2}Fe{sub 14}B-phase and 47.8 wt% of ''soft'' {alpha}-Fe phase ({delta}=9.3)), produced by Magnequench International, Inc. Conventional TEM/HREM study (Fig. 1-2) suggests that material has a bimodal grain-size distribution with maximum at d{sub max}=25 nm for Nd{sub 2}Fe{sub 14}B phase and d{sub max} = 15 nm for {alpha}-Fe phase (Fig.1c, Fig.2) in agreement with synchrotron X-ray studies (d{sub max}=23.5 nm for Nd{sub 2}Fe{sub 14}B [6]). Lattice parameters for Nd{sub 2}Fe{sub 14}B phase are a=8.80 and c=12.2 {angstrom}, as derived from SAED ring patterns (Fig.1a), again in good agreement with X-ray data

  7. Monolithic gyroidal mesoporous mixed titanium-niobium nitrides.

    PubMed

    Robbins, Spencer W; Sai, Hiroaki; DiSalvo, Francis J; Gruner, Sol M; Wiesner, Ulrich

    2014-08-26

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials.

  8. Hypercrosslinked phenolic polymers with well developed mesoporous frameworks

    DOE PAGES

    Zhang, Jinshui; Qiao, Zhenan -An; Mahurin, Shannon Mark; Jiang, Xueguang; Chai, Song -Hai; Lu, Hanfeng; Nelson, Kimberly M.; Dai, Sheng

    2015-02-12

    A soft chemistry synthetic strategy based on a Friedel Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Furthermore, this soft chemistry synthetic protocol can be further extended to nanotexture other aromatic-based polymers with robust frameworks.

  9. Optical and electronic loss analysis of mesoporous solar cells

    NASA Astrophysics Data System (ADS)

    Kovalsky, Anton; Burda, Clemens

    2016-07-01

    We review the art of complete optical and electronic characterization of the popular mesoporous solar cell motif. An overview is given of how the mesoporous paradigm is applied to solar cell technology, followed by a discussion on the variety of techniques available for thoroughly probing efficiency leaching mechanisms at every stage of the energy transfer pathway. Some attention is dedicated to the rising importance of computational results to augment loss analysis due to the complexity of solar cell devices, which have emergent properties that are important to account for, but difficult to measure, such as parasitic absorption.

  10. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    PubMed Central

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  11. Hypercrosslinked phenolic polymers with well-developed mesoporous frameworks.

    PubMed

    Zhang, Jinshui; Qiao, Zhen-An; Mahurin, Shannon M; Jiang, Xueguang; Chai, Song-Hai; Lu, Hanfeng; Nelson, Kimberly; Dai, Sheng

    2015-04-01

    A soft chemistry synthetic strategy based on a Friedel-Crafts alkylation reaction is developed for the textural engineering of phenolic resin (PR) with a robust mesoporous framework to avoid serious framework shrinkage and maximize retention of organic functional moieties. By taking advantage of the structural benefits of molecular bridges, the resultant sample maintains a bimodal micro-mesoporous architecture with well-preserved organic functional groups, which is effective for carbon capture. Moreover, this soft chemistry synthetic protocol can be further extended to nanotexture other arene-based polymers with robust frameworks. PMID:25683637

  12. Low temperature crystallisation of mesoporous TiO2.

    PubMed

    Kohn, Peter; Pathak, Sandeep; Stefik, Morgan; Ducati, Caterina; Wiesner, Ulrich; Steiner, Ullrich; Guldin, Stefan

    2013-11-01

    Conducting mesoporous TiO2 is rapidly gaining importance for green energy applications. To optimise performance, its porosity and crystallinity must be carefully fine-tuned. To this end, we have performed a detailed study on the temperature dependence of TiO2 crystallisation in mesoporous films. Crystal nucleation and growth of initially amorphous TiO2 derived by hydrolytic sol-gel chemistry is compared to the evolution of crystallinity from nanocrystalline building blocks obtained from non-hydrolytic sol-gel chemistry, and mixtures thereof. Our study addresses the question whether the critical temperature for crystal growth can be lowered by the addition of crystalline nucleation seeds.

  13. Instant gelation synthesis of 3D porous MoS2@C nanocomposites for lithium ion batteries.

    PubMed

    Fei, Ling; Xu, Yun; Wu, Xiaofei; Chen, Gen; Li, Yuling; Li, Binsong; Deng, Shuguang; Smirnov, Sergei; Fan, Hongyou; Luo, Hongmei

    2014-04-01

    Three-dimensional (3D) nanoporous architectures, possessing high surface area, massive pores, and excellent structural stability, are highly desirable for many applications including catalysts and electrode materials in lithium ion batteries. However, the preparation of such materials remains a major challenge. Here, we introduce a novel method, instant gelation, for the synthesis of such materials. The as-prepared porous 3D MoS2@C nanocomposites, with layered MoS2 clusters or strips ingrained in porous and conductive 3D carbon matrix, indeed showed excellent electrochemical performance when applied as anode materials for lithium ion batteries. Its interconnected carbon network ensures good conductivity and fast electron transport; the micro-, and mesoporous nature effectively shortens the lithium ion diffusion path and provides room necessary for volume expansion. The large specific surface area is beneficial for a better contact between electrode materials and electrolyte.

  14. Probabilistic Simulation for Nanocomposite Fracture

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2010-01-01

    A unique probabilistic theory is described to predict the uniaxial strengths and fracture properties of nanocomposites. The simulation is based on composite micromechanics with progressive substructuring down to a nanoscale slice of a nanofiber where all the governing equations are formulated. These equations have been programmed in a computer code. That computer code is used to simulate uniaxial strengths and fracture of a nanofiber laminate. The results are presented graphically and discussed with respect to their practical significance. These results show smooth distributions from low probability to high.

  15. Extruded superparamagnetic saloplastic polyelectrolyte nanocomposites.

    PubMed

    Fu, Jingcheng; Wang, Qifeng; Schlenoff, Joseph B

    2015-01-14

    Iron oxide nanoparticles of diameter ca. 12 nm were dispersed into polyelectrolyte complexes made from poly(styrenesulfonate) and poly(diallyldimethylammonium). These nanocomposites were plasticized with salt water and extruded into dense, tough fibers. Magnetometry of these composites showed they retained the superparamagnetic properties of their constituent nanoparticles with saturation magnetization that scaled with the loading of nanoparticles. Their superparamagnetic response allowed the composites to be heated remotely by radiofrequency fields. While the modulus of fibers was unaffected by the presence of nanoparticles the toughness and tensile strength increased significantly. PMID:25525833

  16. Low TCR nanocomposite strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); Chen, Ximing (Inventor)

    2012-01-01

    A high temperature thin film strain gage sensor capable of functioning at temperatures above 1400.degree. C. The sensor contains a substrate, a nanocomposite film comprised of an indium tin oxide alloy, zinc oxide doped with alumina or other oxide semiconductor and a refractory metal selected from the group consisting of Pt, Pd, Rh, Ni, W, Ir, NiCrAlY and NiCoCrAlY deposited onto the substrate to form an active strain element. The strain element being responsive to an applied force.

  17. Volume 1, 1st Edition, Multiscale Tailoring of Highly Active and Stable Nanocomposite Catalysts, Final Technical Report

    SciTech Connect

    Veser, Goetz

    2009-08-31

    wealth of literature on the formation of mesoporous silica materials motivated investigations of nanocomposite silica catalysts. High surface area silicas are synthesized via sol-gel methods, and the addition of metal-salts lead to the formation of stable nanocomposite Ni- and Fe- silicates. The results of these investigations have increased the fundamental understanding and improved the applicability of nanocatalysts for clean energy applications.

  18. Colorimetric Quantification of Glucose and Cholesterol in Human Blood Using a Nanocomposite Entrapping Magnetic Nanoparticles and Oxidases.

    PubMed

    Kim, Moon Il; Cho, Daeyeon; Park, Hyun Gyu

    2015-10-01

    In this study, a microscale well-plate colorimetric assay for the multiplexed detection of glucose and cholesterol in clinical human blood samples has been developed. This system utilized one-pot nanocomposite entrapping Fe3O4 magnetic nanoparticles (MNPs) as peroxidase mimetics and glucose oxidase (GOx)/cholesterol oxidase (ChOx) in mesoporous silica to detect glucose and cholesterol in blood samples. The sensing mechanism involves the generation of H2O2 by the catalytic action of an immobilized oxidase on the target molecules in the sample. This subsequently activates the MNPs in the mesopores, thereby leading to the conversion of the substrate into a colored end product. This strategy is used to detect the target glucose or cholesterol molecules in the concentration range of 15-250 mg/dL. The response is highly linear and the lower detection limit is 7.5 mg/dL. The aforementioned colorimetric assay is extremely convenient, and it exhibits a high degree of linearity, precision, and reproducibility when employing real human blood samples. Therefore, this assay can be used in clinical practice for the multiplexed and reliable quantification of glucose and cholesterol. PMID:26726446

  19. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol-gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol-gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  20. Contamination-resistant silica antireflective coating with closed ordered mesopores.

    PubMed

    Sun, Jinghua; Zhang, Qinghua; Ding, Ruimin; Lv, Haibing; Yan, Hongwei; Yuan, Xiaodong; Xu, Yao

    2014-08-21

    Porous silica optical antireflective (AR) coatings prepared by traditional sol-gel method have been extensively used for high power laser systems, but a serious drawback is that contamination existing in the high vacuum is easily absorbed by the disordered open pore structure, resulting in a fast decrease in transmittance. To improve the stability of transmittance in vacuum, a contamination-resistant silica AR coating with ordered mesopores completely closed by hydrophobic-oleophobic groups was successfully developed on a fused quartz substrate. The ordered mesopores in the coating were controlled under the direction of surfactant F127 via an evaporation-induced-self-assembling process and then were closed by post-grafting long chain fluoroalkylsilane. The grazing incidence small angle X-ray scattering (GISAXS) and the X-ray reflectivity (XRR) results indicated that the mesopores in the coating constructed a Fmmm orthorhombic symmetry structure with a (010) plane parallel to the substrate. Cage-like mesopores were confirmed by nitrogen adsorption-desorption analysis. The obtained coatings showed low surface roughness, excellent abrase-resistance and high transmittance of 100% on quartz substrate. Especially, the decrease of transmittance tested with polydimethylsiloxane pollution in vacuum within one-month was as small as 0.02%. The laser induced damage threshold was up to 59.8 J cm(-2) at a 12 ns laser pulse of 1053 nm wavelength. This work provides an alternative way to fabricate AR coatings with high stability. PMID:25000419

  1. Incorporation of anti-inflammatory agent into mesoporous silica

    NASA Astrophysics Data System (ADS)

    Rodrigues Braz, Wilson; Lamec Rocha, Natállia; de Faria, Emerson H.; Silva, Márcio L. A. e.; Ciuffi, Katia J.; Tavares, Denise C.; Furtado, Ricardo Andrade; Rocha, Lucas A.; Nassar, Eduardo J.

    2016-09-01

    The unique properties of macroporous, mesoporous, and microporous systems, including their ability to accommodate molecules of different sizes inside their pores and to act as drug delivery systems, have been the object of extensive studies. In this work, mesoporous silica with hexagonal structure was obtained by template synthesis via the sol–gel process. The resulting material was used as support to accommodate the anti-inflammatory agent indomethacin. The alkaline route was used to prepare the mesoporous silica; cetyltrimethylammonium bromide was employed as porogenic agent. The silica particles were functionalized with 3-aminopropyltriethoxysilane alkoxide (APTES) by the sol–gel post-synthesis method. Indomethacin was incorporated into the silica functionalized with APTES and into non-functionalized silica. The resulting systems were characterized by x-ray diffraction (XRD), specific area, infrared spectroscopy, and thermal analyses (TGA). XRD attested to formation of mesoporous silica with hexagonal structure. This structure remained after silica functionalization with APTES and incorporation of indomethacin. Typical infrared spectroscopy vibrations and organic material decomposition during TGA confirmed silica functionalization and drug incorporation. The specific surface area and pore volume of the functionalized material incorporated with indomethacin decreased as compared with the specific surface area and pore volume of the non-functionalized silica containing no drug, suggesting both the functionalizing agent and the drug were present in the silica. Cytotoxicity tests conducted on normal fibroblasts (GM0479A) cells attested that the silica matrix containing indomethacin was less toxic than the free drug.

  2. Adsorption of mycotoxins in beverages onto functionalized mesoporous silicas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycotoxins, natural toxins produced by fungi, are a global concern as contaminates of agricultural commodities. Exposure to these toxins can be reduced by the use of binding materials. Templated mesoporous silicas are promising materials with favorable adsorptive properties for dyes, ions, and toxin...

  3. Chemical vapor deposition of mesoporous graphene nanoballs for supercapacitor.

    PubMed

    Lee, Jung-Soo; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2013-07-23

    A mass-producible mesoporous graphene nanoball (MGB) was fabricated via a precursor-assisted chemical vapor deposition (CVD) technique for supercapacitor application. Polystyrene balls and reduced iron created under high temperature and a hydrogen gas environment provide a solid carbon source and a catalyst for graphene growth during the precursor-assisted CVD process, respectively. Carboxylic acid and sulfonic acid functionalization of the polystyrene ball facilitates homogeneous dispersion of the hydrophobic polymer template in the metal precursor solution, thus, resulting in a MGB with a uniform number of graphene layers. The MGB is shown to have a specific surface area of 508 m(2)/g and is mesoporous with a mean mesopore diameter of 4.27 nm. Mesopores are generated by the removal of agglomerated iron domains, permeating down through the soft polystyrene spheres and providing the surface for subsequent graphene growth during the heating process in a hydrogen environment. This technique requires only drop-casting of the precursor/polystyrene solution, allowing for mass-production of multilayer MGBs. The supercapacitor fabricated by the use of the MGB as an electrode demonstrates a specific capacitance of 206 F/g and more than 96% retention of capacitance after 10,000 cycles. The outstanding characteristics of the MGB as an electrode for supercapacitors verify the strong potential for use in energy-related areas. PMID:23782238

  4. Contamination-resistant silica antireflective coating with closed ordered mesopores.

    PubMed

    Sun, Jinghua; Zhang, Qinghua; Ding, Ruimin; Lv, Haibing; Yan, Hongwei; Yuan, Xiaodong; Xu, Yao

    2014-08-21

    Porous silica optical antireflective (AR) coatings prepared by traditional sol-gel method have been extensively used for high power laser systems, but a serious drawback is that contamination existing in the high vacuum is easily absorbed by the disordered open pore structure, resulting in a fast decrease in transmittance. To improve the stability of transmittance in vacuum, a contamination-resistant silica AR coating with ordered mesopores completely closed by hydrophobic-oleophobic groups was successfully developed on a fused quartz substrate. The ordered mesopores in the coating were controlled under the direction of surfactant F127 via an evaporation-induced-self-assembling process and then were closed by post-grafting long chain fluoroalkylsilane. The grazing incidence small angle X-ray scattering (GISAXS) and the X-ray reflectivity (XRR) results indicated that the mesopores in the coating constructed a Fmmm orthorhombic symmetry structure with a (010) plane parallel to the substrate. Cage-like mesopores were confirmed by nitrogen adsorption-desorption analysis. The obtained coatings showed low surface roughness, excellent abrase-resistance and high transmittance of 100% on quartz substrate. Especially, the decrease of transmittance tested with polydimethylsiloxane pollution in vacuum within one-month was as small as 0.02%. The laser induced damage threshold was up to 59.8 J cm(-2) at a 12 ns laser pulse of 1053 nm wavelength. This work provides an alternative way to fabricate AR coatings with high stability.

  5. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  6. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  7. Electrical conduction of a XLPE nanocomposite

    NASA Astrophysics Data System (ADS)

    Park, Yong-Jun; Sim, Jae-Yong; Lim, Kee-Joe; Nam, Jin-Ho; Park, Wan-Gi

    2014-07-01

    The resistivity, breakdown strength, and formation of space charges are very important factors for insulation design of HVDC cable. It is known that a nano-sized metal-oxide inorganic filler reduces the formation of space charges in the polymer nanocomposite. Electrical conduction of cross-linked polyethylene(XLPE) nanocomposite insulating material is investigated in this paper. The conduction currents of two kinds of XLPE nanocomposites and XLPE without nano-filler were measured at temperature of 303 ~ 363 K under the applied electric fields of 10 ~ 50 kV/mm. The current of the nanocomposite specimen is smaller than that of XLPE specimen without nano-filler. The conduction mechanism may be explained in terms of Schottky emission and multi-core model.

  8. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    PubMed

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-01

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption. PMID:26076611

  9. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  10. Graphene oxide nanocomposites and their electrorheology

    SciTech Connect

    Zhang, Wen Ling; Liu, Ying Dan; Choi, Hyoung Jin

    2013-12-15

    Graphical abstract: - Highlights: • GO-based PANI, NCOPA and PS nanocomposites are prepared. • The nanocomposites are adopted as novel electrorheological (ER) candidates. • Their critical ER characteristics and dielectric performance are analyzed. • Typical ER behavior widens applications of GO-based nanocomposites. - Abstract: Graphene oxide (GO), a novel one-atom carbon system, has become one of the most interesting materials recently due to its unique physical and chemical properties in addition to graphene. This article briefly reviews a recent progress of the fabrication of GO-based polyaniline, ionic N-substituted copolyaniline and polystyrene nanocomposites. The critical electrorheological characteristics such as flow response and yield stress from rheological measurement, relaxation time and achievable polarizability from dielectric analysis are also analyzed.

  11. Rapid synthesis of ordered hexagonal mesoporous silica and their incorporation with Ag nanoparticles by solution plasma

    SciTech Connect

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang Yul

    2012-10-15

    Graphical abstract: Overall reactions of mesoporous silica and AgNPs-incorporated mesoporous silica syntheses by solution plasma process (SPP). Highlights: ► SPP for rapid synthesis of mesoporous silica. ► SPP for rapid synthesis of mesoporous silica and AgNPs incorporation. ► Higher surface area and larger pore diameter of mesoporous silica synthesized by SPP. -- Abstract: Rapid synthesis of silica with ordered hexagonal mesopore arrangement was obtained using solution plasma process (SPP) by discharging the mixture of P123 triblock copolymer/TEOS in acid solution. SPP, moreover, was utilized for Ag nanoparticles (AgNPs) incorporation in silica framework as one-batch process using silver nitrate (AgNO{sub 3}) solution as precursor. The turbid silicate gel was clearly observed after discharge for 1 min and the white precipitate formed at 3 min. The mesopore with hexagonal arrangement and AgNPs were observed in mesoporous silica. Two regions of X-ray diffraction patterns (2θ < 2° and 2θ = 35–90°) corresponded to the mesoporous silica and Ag nanocrystal characteristics. Comparing with mesoporous silica prepared by a conventional sol–gel route, surface area and pore diameter of mesoporous silica prepared by solution plasma were observed to be larger. In addition, the increase in Ag loading resulted in the decrease in surface area with insignificant variation in the pore diameter of mesoporous silica. SPP could be successfully utilized not only to enhance gelation time but also to increase surface area and pore diameter of mesoporous silica.

  12. Polysaccharide-based nanocomposites and their applications

    PubMed Central

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  13. Magnetic mesoporous materials for removal of environmental wastes

    SciTech Connect

    Kim, Byoung Chan; Lee, Jinwoo; Um, Wooyong; Kim, Jaeyun; Joo, Jin; Lee, Jin Hyung; Kwak, Ja Hun; Kim, Jae Hyun; Lee, Changha; Lee, Hongshin; Addleman, Raymond S.; Hyeon, Taeghwan; Gu, Man Bock; Kim, Jungbae

    2011-09-15

    We have synthesized two different magnetic mesoporous materials that can be easily separated from aqueous solutions by applying a magnetic field. Synthesized magnetic mesoporous materials, Mag-SBA-15 (magnetic ordered mesoporous silica) and Mag-OMC (magnetic ordered mesoporous carbon), have a high loading capacity of contaminants due to high surface area of the supports and high magnetic activity due to the embedded iron oxide particles. Application of surface-modified Mag-SBA-15 was investigated for the collection of mercury from water. The mercury adsorption using Mag-SBA-15 was rapid during the initial contact time and reached a steady-state condition, with an uptake of approximately 97% after 7 hours. Application of Mag-OMC for collection of organics from water, using fluorescein as an easily trackable model analyte, was explored. The fluorescein was absorbed into Mag-OMC within minutes and the fluorescent intensity of solution was completely disappeared after an hour. In another application, Mag-SBA-15 was used as a host of tyrosinase, and employed as recyclable catalytic scaffolds for tyrosinase-catalyzed biodegradation of catechol. Tyrosinase aggregates in Mag-SBA-15, prepared in a two step process of tyrosinase adsorption and crosslinking, could be used repeatedly for catechol degradation with no serious loss of enzyme activity. Considering these results of cleaning up water from toxic inorganic, organic and biochemical contaminants, magnetic mesoporous materials have a great potential to be employed for the removal of environmental contaminants and potentially for the application in large-scale wastewater treatment plants.

  14. Synthesis of mesoporous zeolite single crystals with cheap porogens

    SciTech Connect

    Tao Haixiang; Li Changlin; Ren Jiawen; Wang Yanqin; Lu Guanzhong

    2011-07-15

    Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals have been successfully synthesized by adding soluble starch or sodium carboxymethyl cellulose (CMC) to a conventional zeolite synthesis system. The obtained samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption analysis, {sup 27}Al magic angle spinning nuclear magnetic resonance ({sup 27}Al MAS NMR), temperature-programmed desorption of ammonia (NH{sub 3}-TPD) and ultraviolet-visible spectroscopy (UV-vis). The SEM images clearly show that all zeolite crystals possess the similar morphology with particle size of about 300 nm, the TEM images reveal that irregular intracrystal pores are randomly distributed in the whole crystal. {sup 27}Al MAS NMR spectra indicate that nearly all of the Al atoms are in tetrahedral co-ordination in ZSM-5, UV-vis spectra confirm that nearly all of titanium atoms are incorporated into the framework of TS-1. The catalytic activity of meso-ZSM-5 in acetalization of cyclohexanone and meso-TS-1 in hydroxylation of phenol was also studied. The synthesis method reported in this paper is cost-effective and environmental friendly, can be easily expended to prepare other hierarchical structured zeolites. - Graphical abstract: Mesoporous zeolite single crystals were synthesized by using cheap porogens as template. Highlights: > Mesoporous zeolite (silicalite-1, ZSM-5, TS-1) single crystals were synthesized. > Soluble starch or sodium carboxymethyl cellulose (CMC) was used as porogens. > The mesoporous zeolites had connected mesopores although closed pores existed. > Higher catalytic activities were obtained.

  15. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  16. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  17. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  18. Near-field radiative heat transfer in mesoporous alumina

    NASA Astrophysics Data System (ADS)

    Jing, Li; Yan-Hui, Feng; Xin-Xin, Zhang; Cong-Liang, Huang; Ge, Wang

    2015-01-01

    The thermal conductivity of mesoporous material has aroused the great interest of scholars due to its wide applications such as insulation, catalyst, etc. Mesoporous alumina substrate consists of uniformly distributed, unconnected cylindrical pores. Near-field radiative heat transfer cannot be ignored, when the diameters of the pores are less than the characteristic wavelength of thermal radiation. In this paper, near-field radiation across a cylindrical pore is simulated by employing the fluctuation dissipation theorem and Green function. Such factors as the diameter of the pore, and the temperature of the material are further analyzed. The research results show that the radiative heat transfer on a mesoscale is 2˜4 orders higher than on a macroscale. The heat flux and equivalent thermal conductivity of radiation across a cylindrical pore decrease exponentially with pore diameter increasing, while increase with temperature increasing. The calculated equivalent thermal conductivity of radiation is further developed to modify the thermal conductivity of the mesoporous alumina. The combined thermal conductivity of the mesoporous alumina is obtained by using porosity weighted dilute medium and compared with the measurement. The combined thermal conductivity of mesoporous silica decreases gradually with pore diameter increasing, while increases smoothly with temperature increasing, which is in good agreement with the experimental data. The larger the porosity, the more significant the near-field effect is, which cannot be ignored. Project supported by the National Natural Science Foundation of China (Grant No. 51422601), the National Basic Research Program of China (Grant No. 2012CB720404), and the National Key Technology Research and Development Program of China (Grant No. 2013BAJ01B03).

  19. Random lasing in a nanocomposite medium

    SciTech Connect

    Smetanin, Sergei N; Basiev, Tasoltan T

    2013-01-31

    The characteristics of a random laser based on a nanocomposite medium consisting of a transparent dielectric and scattering doped nanocrystals are calculated. It is proposed to use ytterbium laser media with a high concentration of active ions as nanocrystals and to use gases, liquids, or solid dielectrics with a refractive index lower than that of nanocrystals as dielectric matrices for nanocrystals. Based on the concept of nonresonant distributed feedback due to the Rayleigh scattering, an expression is obtained for the minimum length of a nanocomposite laser medium at which the random lasing threshold is overcome. Expressions are found for the critical (maximum) and the optimal size of nanocrystals, as well as for the optimal relative refractive index of nanocomposites that corresponds not only to the maximum gain but also to the minimum of the medium threshold length at the optimal size of nanocrystals. It is shown that the optimal relative refractive index of a nanocomposite increases with increasing pump level, but is independent of the other nanocomposite parameters. (nanocomposites)

  20. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(l-lactide) composite

    PubMed Central

    Liu, Zhulin; Ji, Jiajin; Tang, Songchao; Qian, Jun; Yan, Yonggang; Yu, Baoqing; Su, Jiacan; Wei, Jie

    2015-01-01

    Bioactive mesoporous diopside (m-DP) and poly(l-lactide) (PLLA) composite scaffolds with mesoporous/macroporous structure were prepared by the solution-casting and particulate-leaching method. The results demonstrated that the degradability and bioactivity of the mesoporous/macroporous scaffolds were significantly improved by incorporating m-DP into PLLA, and that the improvement was m-DP content-dependent. In addition, the scaffolds containing m-DP showed the ability to neutralize acidic degradation products and prevent the pH from dropping in the solution during the soaking period. Moreover, the scaffolds containing m-DP enhanced attachment, proliferation and alkaline phosphatase activity of MC3T3-E1 cells, which were also m-DP content-dependent. Furthermore, the histological and immunohistochemical analysis results showed that the scaffolds with m-DP significantly promoted new bone formation and improved the materials degraded in vivo, indicating good biocompatibility. The results suggested that the mesoporous/macroporous scaffolds of the m-DP/PLLA composite with osteogenesis had a potential for bone regeneration. PMID:26378120

  1. Light-Induced Hydrogel Based on Tumor-Targeting Mesoporous Silica Nanoparticles as a Theranostic Platform for Sustained Cancer Treatment.

    PubMed

    Chen, Xin; Liu, Zhongning; Parker, Stephen G; Zhang, Xiaojin; Gooding, J Justin; Ru, Yanyan; Liu, Yuhong; Zhou, Yongsheng

    2016-06-29

    Herein, we report a facile fabrication of a polymer (azobenzene and α-cyclodextrin-functionalized hyaluronic acid) and gold nanobipyramids (AuNBs) conjugated mesoporous silica nanoparticles (MSNs) to be used as an injectable drug delivery system for sustained cancer treatment. Because of the specific affinity between the hyaluronic acid (HA) on MSNs and the CD44 antigen overexpressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposite material then exploits thermoresponsive interactions between α-cyclodextrin and azobenzene, and the photothermal properties of gold nanobipyramids, to in situ self-assemble into a hydrogel under near-infrared (NIR) radiation. Upon gelation, the drug (doxorubicin)-loaded MSNs carriers were enclosed in the HA network of the hydrogel, whereas further degradation of the HA in the hydrogel due to the upregulation of hyaluronidase (HAase) around the tumor tissue will result in the release of MSNs from the hydrogel, which can then be taken by tumor cells and deliver their drug to the cell nuclei. This design is able to provide a microenvironment with rich anticancer drugs in, and around, the tumor tissue for time periods long enough to prevent the recrudescence of the disease. The extra efficacy that this strategy affords builds upon the capabilities of conventional therapies. PMID:27265514

  2. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  3. Multitasking mesoporous nanomaterials for biorefinery applications

    SciTech Connect

    Kandel, Kapil

    2013-01-01

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  4. Multitasking mesoporous nanomaterials for biorefinery applications

    NASA Astrophysics Data System (ADS)

    Kandel, Kapil

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications

  5. Fe3O4@mSiO2-FA-CuS-PEG nanocomposites for magnetic resonance imaging and targeted chemo-photothermal synergistic therapy of cancer cells.

    PubMed

    Gao, Zhifang; Liu, Xijian; Deng, Guoying; Zhou, Feng; Zhang, Lijuan; Wang, Qian; Lu, Jie

    2016-09-14

    In this work, a new multifunctional nanoplatform (Fe3O4@mSiO2-FA-CuS-PEG nanocomposite) for magnetic resonance imaging (MRI) and targeted chemo-photothermal therapy, was firstly fabricated on the basis of magnetic mesoporous silica nanoparticles (Fe3O4@mSiO2), on which folic acid (FA) was grafted as the targeting reagent, CuS nanocrystals were attached as the photothermal agent, and polyethylene glycol (PEG) was coupled to improve biocompatibility. The characterization results demonstrated that the fabricated Fe3O4@mSiO2-FA-CuS-PEG nanocomposites not only showed strong magnetism and excellent MRI performance, but also had a high doxorubicin (DOX, an anticancer drug) loading capacity (22.1%). The loaded DOX can be sustainably released, which was apt to be controlled by pH adjustment and near infrared (NIR) laser irradiation. More importantly, targeted delivery of the DOX-loaded Fe3O4@mSiO2-FA-CuS-PEG nanocomposites could be accomplished in HeLa cells via the receptor-mediated endocytosis pathway, and this exhibited synergistic effect of chemotherapy and photothermal therapy against HeLa cells under irradiation with a 915 nm laser. Therefore, the fabricated multifunctional Fe3O4@mSiO2-FA-CuS-PEG nanocomposite has a great potential in image-guided therapy of cancers. PMID:27493065

  6. Direct coating of mesoporous titania on CTAB-capped gold nanorods

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Xu, Pengyu; Li, Yue; Wu, Jian; Xue, Junfei; Zhu, Qiannan; Lu, Xuxing; Ni, Weihai

    2016-03-01

    We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles.We demonstrate a CTAB-templated approach towards direct coating of mesoporous titania on gold nanorods in aqueous solutions. The formation of the mesoporous shell is found to be closely correlated with CTAB concentration and the amount of the titania precursor. This approach can be readily extended to form mesoporous titania shells on other CTAB-capped nanoparticles. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. UV-Vis extinction spectra, SEM images, and TEM images of AuNR@mTiO2 nanostructures. See DOI: 10.1039/c5nr05692f

  7. Post-treatment and characterization of novel luminescent hybrid bimodal mesoporous silicas

    NASA Astrophysics Data System (ADS)

    Li, Yuzhen; Sun, Jihong; Wu, Xia; Lin, Li; Gao, Lin

    2010-08-01

    A novel luminescent hybrid bimodal mesoporous silicas (LHBMS) were synthesized via grafting 1,8-Naphthalic anhydride into the pore channels of bimodal mesoporous silicas (BMMs) for the first time. The resulting samples were characterized by powder X-ray diffraction (XRD), N 2 adsorption/desorption measurement, Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), UV-vis absorption spectroscopy, and Photoluminescence spectroscopy (PL). The results show that 1,8-Naphthalic anhydride organic groups have been successfully introduced into the mesopores of the BMMs and the hybrid silicas are of bimodal mesoporous structure with the ordered small mesopores of around 3 nm and the large mesopores of uniform intra-nanoparticle. The excellent photoluminescent performance of LHBMS has a blue shift compared to that of 2-[3-(triethoxysilyl) propyl-1 H-Benz [de]isoquinoline-1, 3(2 H)-dione, suggesting the existence of the quantum confinement effectiveness.

  8. Synthesis of mesoporous Beta and Sn-Beta zeolites and their catalytic performances.

    PubMed

    Jin, Junjiang; Ye, Xinxin; Li, Yongsheng; Wang, Yanqin; Li, Liang; Gu, Jinlou; Zhao, Wenru; Shi, Jianlin

    2014-06-14

    Mesoporous Beta zeolite has been successfully prepared through hydrothermal synthesis in the presence of cationic ammonium-modified chitosan as the meso-template. Through a subsequent solid-gas reaction between highly dealuminated mesoporous Beta zeolite and SnCl4 steam at an elevated temperature, mesoporous Sn-Beta has been facilely obtained. It was revealed that the addition of cationic chitosan induced the nanocrystal aggregation to particle sizes of ∼300 nm, giving rise to the intercrystalline/interparticle mesoporosity. In the Sn-implanting procedure, Sn species were demonstrated to be doped into the framework of the resulting mesoporous Beta zeolite in a tetrahedral environment without structural collapse. Due to the micro/mesoporous structures, both mesoporous Beta and Sn-Beta exhibited superior performances in α-pinene isomerization, Baeyer-Villiger oxidation of 2-adamantanone by hydrogen peroxide and the isomerization of glucose in water, respectively.

  9. Shape-Morphing Nanocomposite Origami

    PubMed Central

    2015-01-01

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications. PMID:24689908

  10. MULTISCALE MODELING OF POLYMER NANOCOMPOSITES

    SciTech Connect

    Maiti, A

    2007-07-16

    Polymer Nanocomposites are an important class of nanomaterials with potential applications including but not limited to structural and cushion materials, electromagnetic and heat shields, conducting plastics, sensors, and catalysts for various chemical and bio processes. Success in most such applications hinges on molecular-level control of structure and assembly, and a deep understanding of how the overall morphology of various components and the interfaces between them affect the composite properties at the macroscale. The length and time-scales associated with such assemblies are prohibitively large for a full atomistic modeling. Instead we adopt a multiscale methodology in which atomic-level interactions between different components of a composite are incorporated into a coarse-grained simulation of the mesoscale morphology, which is then represented on a numerical grid and the macroscopic properties computed using a finite-elements method.

  11. Green nanocomposites: synthesis and characterization.

    PubMed

    Laza, A L; Jaber, M; Miehé-Brendlé, J; Demais, H; Le Deit, H; Delmotte, L; Vidal, L

    2007-09-01

    A series of intercalated and exfoliated nanocomposites montmorillonite-ulvan was prepared. Ulvan, extracted from the green algae, is a water-soluble polysaccharide biopolymer. Depending on the drying process, air or freeze drying, ulvan were inserted in the interlayer space or adsorbed on the both sides of inorganic layers. The crystallization of water molecules bounded to the ulvan induced the delamination of the layers during the lyophilization. Thermogravimetric experiments show a high percentage (approximately 51%) of organic matter for the freeze dried samples and a lowest one (approximately 17%) for the air dried solids. X-Ray Diffraction patterns exhibit a d(001) varying with the content of organic matter. When the delamination occurs, the (001) reflection disappears. Transmission electron microscopy micrographs show individual layers for the highest amount of ulvan.

  12. Graphite nanoreinforcements in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  13. Synthesis, structure and properties of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Zeng, Changchun

    Over the last decade, the concept of utilizing nanoparticles to enhance polymer performance has drawn a great deal of research interest. Significant property enhancement can be achieved with a small amount of addition of nanoparticles. Spherical, platelet or tube/fiber like particles have all been used in the fabrication of nanocomposites. In this study, we chose platelet like clay particles to study the particle dispersion and properties of polymer nanocomposites and polymer nanocomposite foams. Free radical polymerization of methylmethacrylate (MMA) and styrene (St) in the presence of clay nanoparticles were studied in detail. The effect of interactions between the monomer, the initiator and clay surface modification was studied. By careful surface modification of clay surface and choice of initiator, clay particles can be dispersed uniformly at the nanometer scale (exfoliation). Exfoliation was achieved for PS nanocomposites with a clay concentration as high as 20 wt%. For PMMA, although fully exfoliated nanocomposite was only observed for clay concentration of 5 wt%, substantial exfoliation was observed in the 20 wt% nanocomposite. Nanocomposites were also prepared by extrusion compounding, with or without the aid of CO2. The effect of processing conditions on the degree of clay dispersion was studied. The relationships between clay dispersion, surfactant thermal stability and the resulting thermal properties, e.g., thermal stability, dimension stability, fire resistance were investigated. Novel polymer clay nanocomposite foams were prepared using carbon dioxide as the foaming agent. The role of clay on the foaming process was thoroughly investigated. It was found that clay serves as an efficient nucleation agent. Nucleation efficiency increases as the degree of clay dispersion improves. The exfoliated clay provides the highest nucleation efficiency. Nucleation efficiency can be further improved by tuning the interaction between polymer, CO2 and the surface

  14. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  15. First Synthesis of Continuous Mesoporous Copper Films with Uniformly Sized Pores by Electrochemical Soft Templating.

    PubMed

    Li, Cuiling; Jiang, Bo; Wang, Zhongli; Li, Yunqi; Hossain, Md Shahriar A; Kim, Jung Ho; Takei, Toshiaki; Henzie, Joel; Dag, Ömer; Bando, Yoshio; Yamauchi, Yusuke

    2016-10-01

    Although mesoporous metals have been synthesized by electrochemical methods, the possible compositions have been limited to noble metals (e.g., palladium, platinum, gold) and their alloys. Herein we describe the first fabrication of continuously mesoporous Cu films using polymeric micelles as soft templates to control the growth of Cu under sophisticated electrochemical conditions. Uniformly sized mesopores are evenly distributed over the entire film, and the pore walls are composed of highly crystalized Cu. PMID:27554196

  16. Preparation and characterization of magnetic thermoplastic-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Thu, T. V.; Takamura, T.; Tsetserukou, D.; Sandhu, A.

    2014-02-01

    We developed a facile method for the preparation of magnetic nanocomposites based on the popular thermoplastic, acrylonitrile butadiene styrene (ABS). The nanocomposites were produced by liquid blending of ABS and Ni nanorods (NRs), followed by solvent evaporation. The characterizations showed that the nanocomposites were magnetic and Ni NRs were uniformly distributed in polymer matrix.

  17. Morphological Control of Multifunctional Mesoporous Silica Nanomaterials for Catalysis Applications

    SciTech Connect

    Huh, Seong

    2004-12-19

    I found an efficient method to control the morphology of the organically monofunctionalized mesoporous silica materials by introducing different types of organoalkoxysilanes in a base-catalyzed co-condensation reaction. The monofunctionalized materials exhibit different particle morphologies relative to the pure MCM-41 material. The concentration dependence of the morphology is a critical factor to determine the final particle shape. A proposed mechanism of the shape evolution is also offered. After understanding the role of organoalkoxysilanes in producing various well-shaped nanomaterials, I also obtained a series of bifunctional mesoporous silica materials with certain particle morphology. A series of bifunctional mesoporous silica nanospheres (MSNs) whose physicochemical properties was investigated via solid state NMR techniques and Cu2+ adsorption capacity tests, The ratio of two different organic groups inside of mesopores of these MSNs could be fine-tuned. These MSNs serve as a useful model system to study substrate selectivity in catalytic reactions and sorption phenomena. For example, the Cu2+ adsorption capacity of these materials was dictated by the chemical nature of the mesopores generated by the different organic functional groups. An investigation of the substrate selectivity of the bifunctionalized MSNs in a competitive nitroaldol reaction using an equimolar amount of two competing 4-nitrobenzaldehyde derivatives was performed. Shape-controlled bifunctional MSNs were employed as the catalysts. The properties of the MSNs were investigated using various spectroscopic methods and electron microscopy. The more hydrophobic the surface organic groups are, the higher the ratio of hydrophobic final product. This is the first example to demonstrate the selection of substrate using physicochemical nature of the mesopore surface other than the conventional shape selection in zeolite systems. I also created a cooperative dual catalyst

  18. Using mesoporous carbon electrodes for brackish water desalination.

    PubMed

    Zou, Linda; Li, Lixia; Song, Huaihe; Morris, Gayle

    2008-04-01

    Electrosorptive deionisation is an alternative process to remove salt ions from the brackish water. The porous carbon materials are used as electrodes. When charged in low voltage electric fields, they possess a highly charged surface that induces adsorption of salt ions on the surface. This process is reversible, so the adsorbed salt ions can be desorbed and the electrode can be reused. In the study, an ordered mesoporous carbon (OMC) electrode was developed for electrosorptive desalination. The effects of pore arrangement pattern (ordered and random) and pore size distribution (mesopores and micropores) on the desalination performance was investigated by comparing OMC and activated carbon (AC). It were revealed from X-ray diffraction and N(2) sorption measurements that AC has both micropores and mesopores, whereas ordered mesopores are dominant in OMC. Their performance as potential electrodes to remove salt was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests at a range of electrolyte concentrations and sweep rates. It is deduced that under the same electrochemical condition the specific capacitance values of OMC electrode (i.e. 133 F/g obtained from CV at a sweep rate of 1 mV/s in 0.1M NaCl solution) are larger than those of AC electrode (107 F/g), suggesting that the former has a higher desalting capacity than the latter. Furthermore, the OMC electrode shows a better rate capacity than the AC electrode. In addition, the desalination capacities were quantified by the batch-mode experiment at low voltage of 1.2V in 25 ppm NaCl solution (50 micros/cm conductivity). It was found that the adsorbed ion amounts of OMC and AC electrodes were 11.6 and 4.3 micromol/g, respectively. The excellent electrosorptive desalination performance of OMC electrode might be not only due to the suitable pore size (average of 3.3 nm) for the propagation of the salt ions, but also due to the ordered mesoporous structure that facilitates desorption of the

  19. Using mesoporous carbon electrodes for brackish water desalination.

    PubMed

    Zou, Linda; Li, Lixia; Song, Huaihe; Morris, Gayle

    2008-04-01

    Electrosorptive deionisation is an alternative process to remove salt ions from the brackish water. The porous carbon materials are used as electrodes. When charged in low voltage electric fields, they possess a highly charged surface that induces adsorption of salt ions on the surface. This process is reversible, so the adsorbed salt ions can be desorbed and the electrode can be reused. In the study, an ordered mesoporous carbon (OMC) electrode was developed for electrosorptive desalination. The effects of pore arrangement pattern (ordered and random) and pore size distribution (mesopores and micropores) on the desalination performance was investigated by comparing OMC and activated carbon (AC). It were revealed from X-ray diffraction and N(2) sorption measurements that AC has both micropores and mesopores, whereas ordered mesopores are dominant in OMC. Their performance as potential electrodes to remove salt was evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests at a range of electrolyte concentrations and sweep rates. It is deduced that under the same electrochemical condition the specific capacitance values of OMC electrode (i.e. 133 F/g obtained from CV at a sweep rate of 1 mV/s in 0.1M NaCl solution) are larger than those of AC electrode (107 F/g), suggesting that the former has a higher desalting capacity than the latter. Furthermore, the OMC electrode shows a better rate capacity than the AC electrode. In addition, the desalination capacities were quantified by the batch-mode experiment at low voltage of 1.2V in 25 ppm NaCl solution (50 micros/cm conductivity). It was found that the adsorbed ion amounts of OMC and AC electrodes were 11.6 and 4.3 micromol/g, respectively. The excellent electrosorptive desalination performance of OMC electrode might be not only due to the suitable pore size (average of 3.3 nm) for the propagation of the salt ions, but also due to the ordered mesoporous structure that facilitates desorption of the

  20. Viscoelasticity of Epoxy nano-composites

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2013-03-01

    Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.

  1. Highly enhanced capacitance of MgO-templated mesoporous carbons in low temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Kado, Yuya; Imoto, Kiyoaki; Soneda, Yasushi; Yoshizawa, Noriko

    2014-12-01

    MgO-templated mesoporous carbons with high specific surface areas were employed for the electrode materials of electric double layer capacitors (EDLCs) in low temperature ionic liquids. The mesoporous carbons exhibit strongly enhanced capacitance in ionic liquids at 20 to -40 °C compared to conventional activated carbons. Mesopores in the carbon electrodes provide a smooth pathway for the ions, and minimize the temperature influence on the diffusion resistance of the ions. Thus, this paper confirms that mesoporous carbons work as electrode materials to achieve highly enhanced capacitances below 0 °C in ionic liquids, which leads to wide ranging applications of EDLC devices.

  2. Introduction of bridging and pendant organic groups into mesoporous alumina materials.

    PubMed

    Grant, Stacy M; Woods, Stephan M; Gericke, Arne; Jaroniec, Mietek

    2011-11-01

    Incorporation of organic functionalities into soft-templated mesoporous alumina was performed via organosilane-assisted evaporation induced self-assembly using aluminum alkoxide precursors and block copolymer templates. This strategy permits one to obtain mesoporous alumina-based materials with tailorable adsorption, surface and structural properties. Isocyanurate, ethane, mercaptopropyl, and ureidopropyl-functionalized mesoporous alumina materials were synthesized with relatively high surface area and large pore volume with uniform and wormhole-like mesopores. The presence of organosilyl groups within these hybrid materials was confirmed by IR or Raman spectroscopy and their concentration was determined by elemental analysis.

  3. Aromatization of Ethanol Over Desilicated ZSM-5 Zeolites: Effect of Pore Size in the Mesoporous Region.

    PubMed

    Jun, Jong Won; Hasan, Zubair; Kim, Chul-Ung; Jeong, Soon-Yong; Jhung, Sung Hwa

    2016-05-01

    Mesoporous ZSM-5 zeolites were obtained from microporous ZSM-5 by desilication using aqueous NaOH solutions, and their catalytic activity in the aromatization of ethanol was investigated in order to understand the effects of pore size, in the mesoporous region, on the product distribution and stability of the catalysts. Mesopores generally enhanced the selectivities towards aromatics and stability for aromatization. Mesopores with a maximum pore diameter of around 13 nm were the most effective in the aromatization process (especially for benzene and toluene), suggesting that pore-diameter optimization is necessary for efficient catalysis such as aromatization.

  4. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    PubMed

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species.

  5. Large-Scale, Three–Dimensional, Free–Standing, and Mesoporous Metal Oxide Networks for High–Performance Photocatalysis

    PubMed Central

    Bai, Hua; Li, Xinshi; Hu, Chao; Zhang, Xuan; Li, Junfang; Yan, Yan; Xi, Guangcheng

    2013-01-01

    Mesoporous nanostructures represent a unique class of photocatalysts with many applications, including splitting of water, degradation of organic contaminants, and reduction of carbon dioxide. In this work, we report a general Lewis acid catalytic template route for the high–yield producing single– and multi–component large–scale three–dimensional (3D) mesoporous metal oxide networks. The large-scale 3D mesoporous metal oxide networks possess large macroscopic scale (millimeter–sized) and mesoporous nanostructure with huge pore volume and large surface exposure area. This method also can be used for the synthesis of large–scale 3D macro/mesoporous hierarchical porous materials and noble metal nanoparticles loaded 3D mesoporous networks. Photocatalytic degradation of Azo dyes demonstrated that the large–scale 3D mesoporous metal oxide networks enable high photocatalytic activity. The present synthetic method can serve as the new design concept for functional 3D mesoporous nanomaterials. PMID:23857595

  6. Polymer-organoclay nanocomposites by melt processing

    NASA Astrophysics Data System (ADS)

    Cui, Lili

    2009-12-01

    Polymer-layered silicate nanocomposites based on a variety of polymer matrices and several organoclays were prepared by melt processing. A detailed characterization of the thermal degradation of several commercial and experimental organoclays often used to form polymer nanocomposites was reported. The surfactant type, loading, and purification level of organoclay significantly affect their thermal stability; however, broadly speaking, the results suggest that these differences in thermal stability do not appear to have much effect on the morphology and properties of the nanocomposites formed from them. It seems that the thermal stability of organoclays is not the key factor in organoclay exfoliation in melt processed polymer nanocomposites, since the exfoliation/dispersion process may have been completed on a time scale before the degradation of surfactant progresses to a detrimental level. Polymer nanocomposites have been made from a variety of polymers; however, few matrices have demonstrated the ability to readily exfoliate the organoclay as well as nylon 6, especially for highly hydrophobic materials like polyolefins. Hence, a significant part of this research work was devoted to explore various routes to improve polyolefin-organoclay interactions, and thus, organoclay exfoliation in these systems. Amine grafted polypropylenes and a conventionally used maleic anhydride grafted polypropylene were used as compatibilizers for polypropylene based nanocomposites to improve the organoclay exfoliation. A series of ethylene vinyl acetate copolymers, the polarity of which can be adjusted by varying their vinyl acetate contents, based nanocomposites were prepared as the model system to address the relationship between the polarity of the polymers and their preferences over various organoclay structures. Attempts were made to explore the effect of degree of neutralization of acid groups in ionomers on the morphology and properties of nanocomposites, and it seems that the

  7. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery

    PubMed Central

    2015-01-01

    We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip. PMID:25844893

  8. Preparation and characterization of well ordered mesoporous diopside nanobiomaterial.

    PubMed

    Wei, Jie; Lu, Jingxiong; Yan, Yonggang; Li, Hong; Ma, Jian; Wu, Xiaohui; Dai, Chenglong; Liu, Changsheng

    2011-12-01

    Well ordered mesoporous diopside (OMD) nanobiomaterial was synthesized by a sol-gel process. The in vitro bioactivity of the OMD was evaluated by investigating the apatite-forming ability in simulated body fluid (SBF), and the hemostatic activity of the OMD was determined by measuring the activated partial thromboplastin time (APTT) and prothrombin time (PT) in vitro. The results suggested that the OMD exhibited excellent in vitro bioactivity, with surface apatite formation for OMD exceeding that of non-mesoporous diopside (n-MD) at 7 days. Moreover, the OMD with high surface area possessed good hemostatic property because it could absorb a large number of water from the blood. In conclusion, the prepared OMD had excellent bioactivity and hemostatic activity, which can not only be applied as bone repair biomaterial for bone regeneration, but also as hemostatic agent for surgery hemostasis. PMID:22408987

  9. Impact of Surface Chemistry on Copper Deposition in Mesoporous Silicon.

    PubMed

    Darwich, Walid; Garron, Anthony; Bockowski, Piotr; Santini, Catherine; Gaillard, Frédéric; Haumesser, Paul-Henri

    2016-08-01

    An easy, efficient, and safe process is developed to metallize mesoporous silicon (PSi) with Cu from the decomposition of a solution of mesitylcopper (CuMes) in an imidazolium-based ionic liquid (IL), [C1C4Im][NTf2]. The impregnation of a solution of CuMes in IL affords the deposition of metallic islands not only on the surface but also deep within the pores of a mesoporous Si layer with small pores below 10 nm. Therefore, this process is well suited to efficiently and completely metallize PSi layers. An in-depth mechanistic study shows that metal deposition is due to the reduction of CuMes by surface silane groups rather than by Si oxidation as observed in aqueous or water-containing media. This could open a new route to the chemical metallization of PSi by less-noble metals difficult to attain by a conventional displacement reaction.

  10. Synthesis and characterization of acidic mesoporous borosilicate thin films.

    PubMed

    Xiu, Tongping; Liu, Qian; Wang, Jiacheng

    2009-02-01

    Work on the synthesis and characterization of acidic wormhole-like ordered mesoporous borosilicate thin films (MBSTFs) on silicon wafers is described in this paper. The MBSTFs coated by the dip-coating method were prepared through an evaporation-induced self-assembly (EISA) process using nonionic block copolymers as structure-directing agents. Fourier transform infrared (FT-IR) spectroscopy confirmed the formation of borosiloxane bonds (Si-O-B). High-resolution transmission electron microscopy (HRTEM) and N2 sorption evidenced a wormhole-like mesoporous structure in the MBSTFs obtained. Scanning electron microscopy (SEM) images of the cross sections and surfaces of the samples showed that MBSTFs on silicon wafers were continuous, homogeneous and did not crack. The acidic properties of the MBSTFs were characterized by FT-IR spectra of chemisorbed pyridine. The MBSTFs thus prepared may find their future applications in many fields including chemical sensors, catalysis, optical coating, molecule separation, etc.

  11. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    SciTech Connect

    Munaweera, Imalka; Balkus, Kenneth J. Jr. E-mail: Anthony.DiPasqua@unthsc.edu; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J. E-mail: Anthony.DiPasqua@unthsc.edu

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, {sup 1}H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  12. Impact of Surface Chemistry on Copper Deposition in Mesoporous Silicon.

    PubMed

    Darwich, Walid; Garron, Anthony; Bockowski, Piotr; Santini, Catherine; Gaillard, Frédéric; Haumesser, Paul-Henri

    2016-08-01

    An easy, efficient, and safe process is developed to metallize mesoporous silicon (PSi) with Cu from the decomposition of a solution of mesitylcopper (CuMes) in an imidazolium-based ionic liquid (IL), [C1C4Im][NTf2]. The impregnation of a solution of CuMes in IL affords the deposition of metallic islands not only on the surface but also deep within the pores of a mesoporous Si layer with small pores below 10 nm. Therefore, this process is well suited to efficiently and completely metallize PSi layers. An in-depth mechanistic study shows that metal deposition is due to the reduction of CuMes by surface silane groups rather than by Si oxidation as observed in aqueous or water-containing media. This could open a new route to the chemical metallization of PSi by less-noble metals difficult to attain by a conventional displacement reaction. PMID:27368422

  13. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon.

    PubMed

    Wang, Gang; Dou, Baojuan; Zhang, Zhongshen; Wang, Junhui; Liu, Haier; Hao, Zhengping

    2015-04-01

    Ordered mesoporous carbon (OMC) with high specific surface area and large pore volume was synthesized and tested for use as an adsorbent for volatile organic compound (VOC) disposal. Benzene, cyclohexane and hexane were selected as typical adsorbates due to their different molecular sizes and extensive utilization in industrial processes. In spite of their structural differences, high adsorption amounts were achieved for all three adsorbates, as the pore size of OMC is large enough for the access of these VOCs. In addition, the unusual bimodal-like pore size distribution gives the adsorbates a higher diffusion rate compared with conventional adsorbents such as activated carbon and carbon molecular sieve. Kinetic analysis suggests that the adsorption barriers mainly originated from the difficulty of VOC vapor molecules entering the pore channels of adsorbents. Therefore, its superior adsorption ability toward VOCs, together with a high diffusion rate, makes the ordered mesoporous carbon a promising potential adsorbent for VOC disposal. PMID:25872710

  14. Catalytic conversion of cellulose over mesoporous Y zeolite.

    PubMed

    Park, Young-Kwon; Jun, Bo Ram; Park, Sung Hoon; Jeon, Jong-Ki; Lee, See Hoon; Kim, Seong-Soo; Jeong, Kwang-Eun

    2014-07-01

    Mesoporous Y zeolite (Meso-Y) was applied, for the first time, to the catalytic pyrolysis of cellulose which is a major constituent of lignocellulosic biomass, to produce high-quality bio-oil. A representative mesoporous catalyst Al-MCM-41 was also used to compare its catalytic activity with that of Meso-Y. Pyrolysis-gas chromatography/mass spectrometry was used for the experiments. Meso-Y, with higher acidity, led to larger yields of aromatics and furans with high value-added than Al-MCM-41, resulting in the production of bio-oil with higher quality. The effect of temperature on the catalytic pyrolysis was not significant within the range of 400-500 degrees C. When the Meso-Y to cellulose ratio was increased from 1/1 via 2/1 to 3/1, the deoxygenation efficiency increased, leading to increased yield of aromatics. PMID:24757989

  15. Incorporation of terbium(III) ion into mesoporous silica particles

    NASA Astrophysics Data System (ADS)

    Kataoka, Takuya; Wang, Liyin; Kobayashi, Kouhei; Nishikawa, Masami; Tagaya, Motohiro

    2016-10-01

    Terbium(III)-doped mesoporous silicas were synthesized, and the states of terbium ions in the silica frameworks were investigated. The mesopores were preserved upon doping at terbium ion molar concentrations relative to (Si+Tb) up to 15 mol %, indicating the interaction of terbium ions with Si-O bonds. Significant morphological changes of the particles were observed with increasing the doping concentration. The shapes of the photoluminescence spectra due to the transitions of 5D4 → 7F6 and 5D4 → 7F5 were indicative of the presence of terbium ions in the silica matrix, and the quantum efficiency (2.1-2.8%) and lifetime (1.6-1.9 ms) decreased with increasing the doping concentration up to 15 mol %. Therefore, the terbium ions are considered to be located inside the amorphous silica frameworks, where they electrostatically interact with the O atoms of silanol and siloxane groups.

  16. Chemoradiotherapeutic wrinkled mesoporous silica nanoparticles for use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Munaweera, Imalka; Koneru, Bhuvaneswari; Shi, Yi; Di Pasqua, Anthony J.; Balkus, Kenneth J., Jr.

    2014-11-01

    Over the last decade, the development and application of nanotechnology in cancer detection, diagnosis, and therapy have been widely reported. Engineering of vehicles for the simultaneous delivery of chemo- and radiotherapeutics increases the effectiveness of the therapy and reduces the dosage of each individual drug required to produce an observable therapeutic response. We here developed a novel chemoradiotherapeutic 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid coated/uncoated platinum drug loaded, holmium-containing, wrinkled mesoporous silica nanoparticle. The materials were characterized with TEM, FTIR, 1H NMR, energy dispersive x-ray, inductively coupled plasma-mass spectrometry, and zeta potential measurements. In vitro platinum drug release from both lipid coated and uncoated chemoradiotherapeutic wrinkled mesoporous silica are reported. Various kinetic models were used to analyze the release kinetics. The radioactivity of the chemoradiotherapeutic nanocarriers was measured after neutron-activation.

  17. Mesoporous Silica Nanoparticles and Films for Cargo Delivery

    NASA Astrophysics Data System (ADS)

    Guardado Alvarez, Tania Maria

    Mesoporous silica materials are well known materials that can range from films to nanoparticles. Mesoporous silica nanoparticles (MSNs) and mesoporous silica films have been of increasing interest among the scientific community for its use in cargo delivery. Silica provides ease of functionalization, a robust support and biocompatibility. Several methods have been used in order to give the mesoporous silica nanomaterials different qualities that render them a useful material with different characteristics. Among these methods is surface modification by taking advantage of the OH groups on the surface. When a molecule attached to the surface can act as a molecular machine it transforms the nanomaterial to act as delivery system that can be activated upon command. The work covered in this thesis focuses on the development and synthesis of different mesoporous silica materials for the purpose of trapping and releasing cargo molecules. Chapter 2 focuses in the photoactivation of "snap-top" stoppers over the pore openings of mesoporous silica nanoparticles that releases intact cargo molecules from the pores. The on-command release can be stimulated by either one UV photon or two coherent near-IR photons. Two-photon activation is particularly desirable for use in biological systems because it enables good tissue penetration and precise spatial control. Chapter 3 focuses on the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes intermolecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. The operation of the "snap-top" release mechanism by both one- and two photon is described. This system presents a proof of concept of a near

  18. Is there any microporosity in ordered mesoporous silicas?

    PubMed

    Silvestre-Alberto, A; Jardim, E O; Bruijn, E; Meynen, V; Cool, P; Sepulveda-Escribano, A; Silvestre-Alberto, J; Rodriguez-Reinoso, F

    2009-01-20

    The porous structure of nanostructured silicas MCM-41 and SBA-15 has been characterized using N2 adsorption at 77 K, before and after n-nonane preadsorption, together with immersion calorimetry into liquids of different molecular dimensions. Selective blocking of the microporosity with n-nonane proves experimentally that MCM-41 is exclusively mesoporous while SBA-15 exhibits both micro- and mesopores. Additionally, N2 adsorption experiments on the preadsorbed samples show that the microporosity on SBA-15 is located in intrawall positions, the micropore volume accounting for only approximately 7-8 % of the total pore volume. Calorimetric measurements into n-hexane (0.43 nm), 2-methylpentane (0.49 nm), and 2,2-dimethylbutane (0.56 nm) estimate the size of these micropores to be < or = 0.56 nm.

  19. Ordered micro/mesoporous composite prepared as thin films.

    PubMed

    Petkov, N; Hölzl, M; Metzger, T H; Mintova, S; Bein, T

    2005-03-17

    A new synthesis method for preparation of thin films and powders consisting of zeolite beta nanocrystals embedded in ordered mesoporous silica matrix is described. The final structures possessing bimodal porosity, i.e., high degree of mesophase order and spatially defined microporous zeolite nanocrystals are obtained via simultaneous solvent evaporation of preformed silica/surfactant/ethanol/nanosized zeolite beta assemblies. The films were characterized with grazing-incident diffraction (GID), nitrogen sorption based on gravimetric measurements with quartz crystal microbalance (QCM) devices, and transmission electron microscopy (TEM). It is shown that the incorporation of beta nanocrystals in the mesoporous silica matrix and the mesophase order itself can be controlled through the variation of the fractional amounts of the zeolite nanoparticles and silica/surfactant solutions. The HR-TEM measurements showed that the nanosized Beta microporous crystals are separated and at the same time connected through an ordered mesostructured matrix.

  20. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  1. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  2. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  3. Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction

    SciTech Connect

    Li, Juan; Zhu, Kake; Shang, Jianying; Wang, Donghai; Nie, Zimin; Guo, Ruisong; Liu, Chongxuan; Wang, Zheming; Li, Xiaolin; Liu, Jun

    2012-08-01

    Mesoporous silica with covalently bound salicylic acid molecules incorporated in the structure was synthesized with a one-pot, co-condensation reaction at room temperature. The as-synthesized material has a large surface area, uniform particle size, and an ordered pore structure as determined by characterization with transmission electron microscopy, thermal gravimetric analysis, and infrared spectra, etc. Using the strong fluorescence and metal coordination capability of salicylic acid, functionalized mesoporous silica (FMS) was developed to track and extract radionuclide contaminants, such as uranyl [U(VI)] ions encountered in subsurface environments. Adsorption measurements showed a strong affinity of the FMS toward U(VI) with a Kd value of 105 mL/g, which is four orders of magnitude higher than the adsorption of U(VI) onto most of the sediments in natural environments. The new materials have a potential for synergistic environmental monitoring and remediation of the radionuclide U(VI) from contaminated subsurface environments.

  4. From polymeric "plasticine" to shape-controlled mesoporous carbon.

    PubMed

    Qian, Xu-Fang; Wang, Zheng; Wan, Ying

    2009-07-15

    A soft-phase intercalating process to synthesize mesostructured plasticine by using amphiphilic triblock copolymer F127 as a structure-directing agent, reverse triblock copolymer 25R4 as an intercalating soft matter, and soluble phenolic resin as a carbon source is demonstrated. The "plasticine" has interlayer organic-organic hybrid structure, which is emplastic, sticky, and able to be easily shaped at will. After template removal at 350 degrees C and further carbonization at 600 degrees C, highly ordered mesoporous polymers and carbons can be successively obtained with the maintenance of the original shape. The self-supported, shape-controlled, ordered mesoporous carbon products possess high surface areas (495-777 m(2)/g), large pore volumes (0.32-0.47 cm(3)/g), uniform pore sizes (2.5-4.3 nm) in the nanoscale and hollow tremella-like morphology in the micronscale which may facilitate mass transportation. PMID:19406429

  5. Mesoporous material Al-MCM-41 from natural halloysite

    NASA Astrophysics Data System (ADS)

    Xie, Yaling; Zhang, Yi; Ouyang, Jing; Yang, Huaming

    2014-07-01

    Aluminum-containing hexagonally ordered mesoporous silica (Al-MCM-41) with specific surface area of 509.4 m2/g was first synthesized using natural halloysite as source material by hydrothermal treatment, without addition of silica or aluminum regents. The samples were characterized by X-ray diffraction, transmission electron microscopy, N2 adsorption-desorption measurements, and Fourier transform infrared spectra techniques. The results indicate that process parameters, including calcination temperature, pH value, n(SiO2)/ n(CTAB)/ n(H2O) ratio, and hydrothermal reaction time, show moderate effects on the preparation of Al-MCM-41. SiO2/Al2O3 molar ratio could be effectively modulated by the calcination temperature for halloysite. Furthermore, we first clarified the structural evolution from natural halloysite to mesoporous material Al-MCM-41 at the atomic level.

  6. Surface properties of mesoporous carbon-silica gel adsorbents

    SciTech Connect

    Leboda, R.; Turov, V.V.; Charmas, B.; Skubiszewska-Zieba, J.; Gun'ko, V.M.

    2000-03-01

    Carbon/silica (carbosil) samples prepared utilizing mesoporous silica gel (Si-60) modified by methylene chloride pyrolysis were studied by nitrogen adsorption, quasi-isothermal thermogravimetry, p-nitrophenol adsorption from aqueous solution, and {sup 1}H NMR methods. The structural characteristics and other properties of carbosils depend markedly on the synthetic conditions and the amount of carbon deposited. The changes in the pore size distribution with increasing carbon concentration suggest grafting of carbon mainly in pores, leading to diminution of the mesopore radii. However, heating pure silica gel at the pyrolysis temperature of 550 C leads to an increase in the pore radii. The quasi-isothermal thermogravimetry and {sup 1}H NMR spectroscopy methods used to investigate the water layers on carbosils showed a significant capability of carbosils to adsorb water despite a relatively large content of the hydrophobic carbon deposit, which represents a nonuniform layer incompletely covering the oxide surface.

  7. Systematic comparison of model polymer nanocomposite mechanics.

    PubMed

    Xiao, Senbo; Peter, Christine; Kremer, Kurt

    2016-01-01

    Polymer nanocomposites render a range of outstanding materials from natural products such as silk, sea shells and bones, to synthesized nanoclay or carbon nanotube reinforced polymer systems. In contrast to the fast expanding interest in this type of material, the fundamental mechanisms of their mixing, phase behavior and reinforcement, especially for higher nanoparticle content as relevant for bio-inorganic composites, are still not fully understood. Although polymer nanocomposites exhibit diverse morphologies, qualitatively their mechanical properties are believed to be governed by a few parameters, namely their internal polymer network topology, nanoparticle volume fraction, particle surface properties and so on. Relating material mechanics to such elementary parameters is the purpose of this work. By taking a coarse-grained molecular modeling approach, we study an range of different polymer nanocomposites. We vary polymer nanoparticle connectivity, surface geometry and volume fraction to systematically study rheological/mechanical properties. Our models cover different materials, and reproduce key characteristics of real nanocomposites, such as phase separation, mechanical reinforcement. The results shed light on establishing elementary structure, property and function relationship of polymer nanocomposites. PMID:27623170

  8. Fire retardant effects of polymer nanocomposites.

    PubMed

    Hull, T Richard; Stec, Anna A; Nazare, Shonali

    2009-07-01

    Among the many and varied applications of nanotechnology, the dispersion of nanoscopic fillers to form polymer nanocomposites with improved fire behaviour illustrates the potential and diversity of nanoscience. Different polymers decompose in different ways and fire retardants act to inhibit the decomposition or flaming combustion processes. Polymer nanocomposites form barriers between the fuel and air, reducing the rate of burning, but beyond that there is little consistency in their effects. It is shown that the decomposition products of polypropylene are changed by the presence of nanoclay, although there is only a small influence on the mass loss rate. The rheological properties of molten polymer nanocomposites are radically different from those of virgin polymers, and these will profoundly affect the heat transfer through the material, resulting in a shorter time to ignition and lower peak in the heat release rate, typical of polymer nanocomposites. The dispersion of nanofillers within polymers is generally measured in the cold polymer, but since this does not reflect the condition at the time of ignition, it is proposed that temperature ramped rheological measurements are more appropriate indicators of dispersion. The influence of polymer nanocomposite formation on the yields of toxic products from fire is studied using the ISO 19700 steady state tube furnace, and it is found that under early stages of burning more carbon monoxide and organoirritants are formed, but under the more toxic under-ventilated conditions, less toxic products are formed.

  9. Properties of polypropylene nanocomposites containing silver nanoparticles.

    PubMed

    Jang, Myung Wook; Kim, Ju-Young; Ihn, Kyo Jin

    2007-11-01

    Silver/polypropylene (PP) nanocomposites containing silver nanoparticles smaller than 10 nm were prepared using a new synthetic method. AgNO3 crystals were dissolved into hydrophilic domain of polyoxyethylene maleate-based surfactant (PEOM), which gives self-assembly nano-structures. The AgNO3 in the nano-domains of PEOM was reduced by NaBH4 to form nanoparticles. The colloidal solutions with silver nanoparticles were diluted with ethanol and were mixed with PP pellets. Silver nanocomposites were prepared by extrusion compounding process after drying the pellets. Contents of silver nanoparticles dispersed within PP resin were changed from 100 to 1000 ppm. Formation of silver nanoparticles within PP was confirmed by UV-Vis spectroscopy and TEM. Size and distribution of dispersed silver nanoparticles were also measured by TEM. Silver/PP nanocomposites films showed not only improved thermal stability but also increased mechanical properties compared to neat PP film. Tensile properties of PP nanocomposites were largely improved compared with neat PP resin, and elongation increased also by 175% for the nanocomposites containing 1000 ppm silver nanoparticles.

  10. Mesostructure Control of Polymer-Inorganic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Vaia, R.

    2002-03-01

    Critical to forwarding polymer nanocomposite technology is the development of a detailed understanding of the spatial distribution of the various constituents (inorganic, polymeric and additives), the associated influence on thermodynamic and kinetic (rheological) aspects of the system and techniques to control nano (1-100nm) and meso (100-1000nm) scale morphology. With regard to these issues, in-situ small angle x-ray scattering, associated scattering models, coarse grain simulations, and rheology have been used to examine the phase behavior of organically modified layered silicates (OLS) suspended in pure and binary solvent mixtures. These serve as model systems for examining aspects of morphology development and phase behavior in thermoset and thermoplastic nanocomposites. The phase structure of solvent - OLS system is qualitatively described by Onsager arguments modified to include a crystal-solvate (intercalated phase) and a gelation point. Ternary behavior (binary solvent mixtures) provides evidence for preferential segregation of the polar component to the inorganic surface. The chemical structure of the organic surfactant modifier has a negligible influence on the structure of the intercalated phase, but has a marked effect on the extent and concentration of the dispersed phase. These studies provide insight into the use of polar activators for organosilicate rheolgical control agents and additives to enhance nanocomposite formation (e.g. H20 addition for optimal exfoliated PDMS nanocomposites and incorporation of malic anhydride to produce polypropylene nanocomposites).

  11. Molecular mechanisms of failure in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Gersappe, Dilip

    2003-03-01

    With the emergence of synthetic methods that can produce nanometer sized fillers, resulting in an enormous increase of surface area, polymers reinforced with nanoscale particles should offer the possibility of vastly improved properties. However, experimental evidence suggests that the paradigms that have been used for conventional filled composites cannot account for the behavior of nanocomposites. We examine the role that spherical nanofillers play on the rheology and the strength of the nanocomposite by using Molecular Dynamics simulations. We find that the enhancement of properties in nanocomposites is a result of the equivalence of time scales for motion for the polymer and the filler. We show that the mobility of the nanofiller, rather than its surface area, is key to the performance of the nanocomposite and that this mobility is a complex function of the size of the filler, the attraction between the polymer and the filler, and the thermodynamic state of the matrix. Our results show similarities between the toughening mechanisms in polymer nanocomposites and those postulated for naturally occurring biological materials which also contain nanoscaled assemblies, such as spider silk and abalone adhesive.

  12. Polylactide nanocomposites for packaging materials: A review

    NASA Astrophysics Data System (ADS)

    Widiastuti, Indah

    2016-02-01

    This review aims at highlighting on an attempt for improving the properties of polylactide (PLA) as packaging material by application of nanocomposite technology. PLA is attracting considerable interest because of more eco-friendliness from its origin as contrast to the petrochemical-based polymers and its biodegradability. Despite possessing good mechanical and optical properties, deterioration of the material properties in PLA materials during their service time could occur after prolonged exposure to humidity and high temperature condition. Limited gas barrier is another drawback of PLA material that should be overcome to satisfy the requirement for packaging application. To further extend the range of mechanical and thermal properties achievable, several attempts have been made in modifying the material such as blending with other polymers, use of plasticizing material and development of PLA nanocomposites. Nanocomposite is a fairly new type of composite that has emerged in which the reinforcing filler has nanometer scale dimensions (at least one dimension of the filler is less than 100 nm). In this review, the critical properties of PLA as packaging materials and its degradation mechanism are presented. This paper discusses the current effort and key research challenges in the development of nanocomposites based on biodegradable polymer matrices and nano-fillers. The PLA layered silicate nanocomposites where the filler platelets can be dispersed in the polymer at the nanometer scale owing to the specific filler surface modification, frequently exhibits remarkable improvements of mechanical strength, gas barrier and thermal stability.

  13. Cellulose nanofibrils (CNF) filled boron nitride (BN) nanocomposites

    SciTech Connect

    Sulaiman, Hanisah Syed; Hua, Chia Chin; Zakaria, Sarani

    2015-09-25

    In this study, nanocomposite using cellulose nanofibrils filled with different percentage of boron nitride (CNF-BN) were prepared. The objective of this research is to study the effect of different percentage of BN to the thermal conductivity of the nanocomposite produced. The CNF-BN nanocomposite were characterization by FT-IR, SEM and thermal conductivity. The FT-IR analysis of the CNF-BN nanocomposite shows all the characteristic peaks of cellulose and BN present in all samples. The dispersion of BN in CNF were seen through SEM analysis. The effect of different loading percentage of BN to the thermal conductivity of the nanocomposite were also investigated.

  14. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    SciTech Connect

    Alyoshina, Nonna A.; Parfenyuk, Elena V.

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption process of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.

  15. Adsorption behavior of natural anthocyanin dye on mesoporous silica

    NASA Astrophysics Data System (ADS)

    Kohno, Yoshiumi; Haga, Eriko; Yoda, Keiko; Shibata, Masashi; Fukuhara, Choji; Tomita, Yasumasa; Maeda, Yasuhisa; Kobayashi, Kenkichiro

    2014-01-01

    Because of its non-toxicity, naturally occurring anthocyanin is potentially suitable as a colorant for foods and cosmetics. To the wider use of the anthocyanin, the immobilization on the inorganic host for an easy handling as well as the improvement of the stability is required. This study is focused on the adsorption of significant amount of the natural anthocyanin dye onto mesoporous silica, and on the stability enhancement of the anthocyanin by the complexation. The anthocyanin has successfully been adsorbed on the HMS type mesoporous silica containing small amount of aluminum. The amount of the adsorbed anthocyanin has been increased by modifying the pore wall with n-propyl group to make the silica surface hydrophobic. The light fastness of the adsorbed anthocyanin has been improved by making the composite with the HMS samples containing aluminum, although the degree of the improvement is not so large. It has been proposed that incorporation of the anthocyanin molecule deep inside the mesopore is required for the further enhancement of the stability.

  16. Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules

    NASA Astrophysics Data System (ADS)

    El-Fiqi, Ahmed; Kim, Tae-Hyun; Kim, Meeju; Eltohamy, Mohamed; Won, Jong-Eun; Lee, Eun-Jung; Kim, Hae-Won

    2012-11-01

    Inorganic bioactive nanomaterials are attractive for hard tissue regeneration, including nanocomponents for bone replacement composites and nanovehicles for delivering therapeutics. Bioactive glass nanoparticles (BGn) have recently gained potential usefulness as bone and tooth regeneratives. Here we demonstrate the capacity of the BGn with mesopores to load and deliver therapeutic molecules (drugs and particularly genes). Spherical BGn with sizes of 80-90 nm were produced to obtain 3-5 nm sized mesopores through a sono-reacted sol-gel process. A simulated body fluid test of the mesoporous BGn confirmed their excellent apatite forming ability and the cellular toxicity study demonstrated their good cell viability up to 100 μg ml-1. Small molecules like chemical drug (Na-ampicillin) and gene (small interfering RNA; siRNA) were introduced as model drugs considering the mesopore size of the nanoparticles. Moreover, amine-functionalization allowed switchable surface charge property of the BGn (from -20-30 mV to +20-30 mV). Loading of ampicillin or siRNA saturated within a few hours (~2 h) and reflected the mesopore structure. While the ampicillin released relatively rapidly (~12 h), the siRNA continued to release up to 3 days with almost zero-order kinetics. The siRNA-nanoparticles were easily taken up by the cells, with a transfection efficiency as high as ~80%. The silencing effect of siRNA delivered from the BGn, as examined by using bcl-2 model gene, showed dramatic down-regulation (~15% of control), suggesting the potential use of BGn as a new class of nanovehicles for genes. This, in conjunction with other attractive properties, including size- and mesopore-related high surface area and pore volume, tunable surface chemistry, apatite-forming ability, good cell viability and the possible ion-related stimulatory effects, will potentiate the usefulness of the BGn in hard tissue regeneration.Inorganic bioactive nanomaterials are attractive for hard tissue regeneration

  17. Packaging biological cargoes in mesoporous materials: opportunities for drug delivery

    PubMed Central

    Siefker, Justin; Karande, Pankaj; Coppens, Marc-Olivier

    2014-01-01

    Introduction: Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants. Areas covered: Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments. Expert opinion: The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed. PMID:25016923

  18. Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons.

    PubMed

    Wang, Jitong; Chen, Huichao; Zhou, Huanhuan; Liu, Xiaojun; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2013-01-01

    A high efficiency sorbent for CO2 capture was developed by loading polyethylenimine (PEI) on mesoporous carbons which possessed well-developed mesoporous structures and large pore volume. The physicochemical properties of the sorbent were characterized by N2 adsorption/desorption, scanning electron microscopy (SEM), thermal gravimetric analysis (TG) and Fourier transform infrared spectroscopy (FT-IR) techniques followed by testing for CO2 capture. Factors that affected the sorption capacity of the sorbent were studied. The sorbent exhibited extraordinary capture capacity with CO2 concentration ranging from 5% to 80%. The optimal PEI loading was determined to be 65 wt.% with a CO2 sorption capacity of 4.82 mmol-CO2/g-sorbent in 15% CO2/N2 at 75 degrees C, owing to low mass-transfer resistance and a high utilization ratio of the amine compound (63%). Moisture had a promoting effect on the sorption separation of CO2. In addition, the developed sorbent could be regenerated easily at 100 degrees C, and it exhibited excellent regenerability and stability. These results indicate that this PEI-loaded mesoporous carbon sorbent should have a good potential for CO2 capture in the future.

  19. Synthesis and characterization of nanocrystalline and mesoporous zeolites

    NASA Astrophysics Data System (ADS)

    Petushkov, Anton

    2011-12-01

    Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, beta and Y zeolites were modified with different transition metals and the resulting single- and double metal containing catalyst materials were characterized. Nanocrystalline Silicalite-1 zeolite samples with varying particle size were functionalized with different organosilane groups and the cytotoxic activity of the zeolite nanocrystals was studied as a function of particle size, concentration, organic functional group type, as well as the type of cell line. Framework stability of nanocrystalline NaY zeolite was tested under different pH conditions. The synthesized zeolites used in this work were characterized using a variety of physico-chemical methods, including powder X-ray diffraction, Solid State NMR, nitrogen sorption, electron microscopy, Inductively Coupled Plasma -- Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy.

  20. Rapid removal of bisphenol A on highly ordered mesoporous carbon.

    PubMed

    Sui, Qian; Huang, Jun; Liu, Yousong; Chang, Xiaofeng; Ji, Guangbin; Deng, Shubo; Xie, Tao; Yu, Gang

    2011-01-01

    Bisphenol A (BPA) is of global concern due to its disruption of endocrine systems and ubiquity in the aquatic environment. It is important, therefore, that efforts are made to remove it from the aqueous phase. A novel adsorbent, mesoporous carbon CMK-3, prepared from hexagonal SBA-15 mesoporous silica was studied for BPA removal from aqueous phase, and compared with conventional powdered activated carbon (PAC). Characterization of CMK-3 by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption indicated that prepared CMK-3 had an ordered mesoporous structure with a high specific surface area of 920 m2/g and a pore-size of about 4.9 nm. The adsorption of BPA on CMK-3 followed a pseudo second-order kinetic model. The kinetic constant was 0.00049 g/(mg x min), much higher than the adsorption of BPA on PAC. The adsorption isotherm fitted slightly better with the Freundlich model than the Langmuir model, and adsorption capacity decreased as temperature increased from 10 to 40 degrees C. No significant influence of pH on adsorption was observed at pH 3 to 9; however, adsorption capacity decreased dramatically from pH 9 to 13. PMID:21516989

  1. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    SciTech Connect

    Saha, Dipendu; Warren, Kaitlyn E; Naskar, Amit K

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  2. Transformation of layered polyoxometallate cluster salts into mesoporous materials

    SciTech Connect

    Holland, B.T.; Isbester, P.K.; Munson, E.J.; Stein, A. . Dept. of Chemistry)

    1999-02-01

    A new approach to the formation of mesoporous materials has been developed, based on a two-step salt-gel'' synthesis, in which mesoporous aluminophosphates, galloaluminophosphates, and aluminosilicates have been created. The first step involves pre-organizing charged inorganic clusters (MO[sub 4]Al[sub 12](OH)[sub 24](H[sub 2]O)[sub 12][sup 7+], M = Al or Ga) into a layered mesoscopic material with oppositely charged organic surfactant molecules. In the second step, phosphate or silicate linker molecules are added, which diffuse through the cluster/surfactant salt, react with the clusters, and transform the layered precursor into a non-lamellar mesostructured material. Removal of the surfactant from the alumino- and galloaluminophosphates by anion-exchange and from the aluminosilicates by calcination results in mesoporous materials with BET surface areas up to 630, 455, and 431 m[sup 2]/g, respectively. Direct condensation by calcination of polyoxoaluminate cluster salts without additional linkers produces nanometer-sized one-dimensional strings.

  3. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  4. Selective Response of Mesoporous Silicon to Adsorbants with Nitro Groups

    SciTech Connect

    McLeod, John A.; Kurmaev, Ernst Z.; Sushko, Petr V.; Boyko, Teak D.; Levitsky, Igor A.; Moewes, Alexander

    2012-01-30

    We demonstrate that the electronic structure of mesoporous silicon is affected by adsorption of nitrobased explosive molecules in a compound-selective manner. This selective response is demonstrated by probing the adsorption of two nitro-based molecular explosives (trinitrotoluene and cyclotrimethylenetrinitramine) and a nonexplosive nitro-based aromatic molecule (nitrotoluene) on mesoporous silicon using soft X-ray spectroscopy. The Si atoms strongly interact with adsorbed molecules to form Si-O and Si-N bonds, as evident from the large shifts in emission energy present in the Si L2,3 X-ray emission spectroscopy (XES) measurements. Furthermore, we find that the energy gap (band gap) of mesoporous silicon changes depending on the adsorbant, as estimated from the Si L2,3 XES and 2p X-ray absorption spectroscopy (XAS) measurements. Our ab initio molecular dynamics calculations of model compounds suggest that these changes are due to spontaneous breaking of the nitro groups upon contacting surface Si atoms. This compound-selective change in electronic structure may provide a powerful tool for the detection and identification of trace quantities of airborne explosive molecules.

  5. Morphology control in mesoporous carbon films using solvent vapor annealing.

    PubMed

    Qiang, Zhe; Xue, Jiachen; Cavicchi, Kevin A; Vogt, Bryan D

    2013-03-12

    Ordered mesoporous (2-50 nm) carbon films were fabricated using cooperative self-assembly of a phenolic resin oligomer with a novel block copolymer template (poly(styrene-block-N,N-dimethyl-n-octadecylamine p-styrenesulfonate), (PS-b-PSS-DMODA)) synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Due to the high Tg of the PS segment and the strong interactions between the phenolic resin and the PSS-DMODA, the segmental rearrangement is kinetically hindered relative to the cross-linking rate of the phenolic resin, which inhibits long-range ordering and yields a poorly ordered mesoporous carbon with a broad pore size distribution. However, relatively short exposure (2 h) to controlled vapor pressures of methyl ethyl ketone (MEK) yields significant improvements in the long-range ordering and narrows the pore size distribution. The average pore size increases as the solvent vapor pressure during annealing increases, but an upper limit of p/p0 = 0.85 exists above which the films dewet rapidly during solvent vapor annealing. This approach can be extended using mesityl oxide, which has similar solvent qualities to MEK, but is not easily removed by ambient air drying after solvent annealing. This residual solvent can impact the morphology that develops during cross-linking of the films. These results illustrate the ability to fine-tune the mesostructure of ordered mesoporous carbon films through simple changes in the processing without any compositional changes in the initial cast film. PMID:23394515

  6. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    SciTech Connect

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-15

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide. -- Graphical abstract: Silica mesoporous MCM-41 particles were amino-functionalized, loaded with budesonide and post-coated with bioadhesive polymer (carbopol) in order to achieve prolonged residence of anti-inflammatory drug in GIT. Highlights: • Higher drug loading in amino-functionalized mesoporous silica. • Amino-functionalization and post-coating of the nanoparticles sustained drug release. • Achievement of higher cytoprotective effect with drug loaded into the nanoparticles.

  7. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  8. Tangible nanocomposites with diverse properties for heart valve application

    NASA Astrophysics Data System (ADS)

    Vignesh Vellayappan, Muthu; Balaji, Arunpandian; Priyadarshini Subramanian, Aruna; Aruna John, Agnes; Jaganathan, Saravana Kumar; Murugesan, Selvakumar; Mohandas, Hemanth; Supriyanto, Eko; Yusof, Mustafa

    2015-06-01

    Cardiovascular disease claims millions of lives every year throughout the world. Biomaterials are used widely for the treatment of this fatal disease. With the advent of nanotechnology, the use of nanocomposites has become almost inevitable in the field of biomaterials. The versatile properties of nanocomposites, such as improved durability and biocompatibility, make them an ideal choice for various biomedical applications. Among the various nanocomposites, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane, bacterial cellulose with polyvinyl alcohol, carbon nanotubes, graphene oxide and nano-hydroxyapatite nanocomposites have gained popularity as putative choices for biomaterials in cardiovascular applications owing to their superior properties. In this review, various studies performed utilizing these nanocomposites for improving the mechanical strength, anti-calcification potential and hemocompatibility of heart valves are reviewed and summarized. The primary motive of this work is to shed light on the emerging nanocomposites for heart valve applications. Furthermore, we aim to promote the prospects of these nanocomposites in the campaign against cardiovascular diseases.

  9. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  10. Nanocomposites with High Thermoelectric Figures of Merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2015-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k(sub B)T, wherein k(sub B) is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  11. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Ren, Zhifeng (Inventor); Dresselhaus, Mildred (Inventor)

    2008-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  12. Nanocomposites with high thermoelectric figures of merit

    NASA Technical Reports Server (NTRS)

    Chen, Gang (Inventor); Dresselhaus, Mildred (Inventor); Ren, Zhifeng (Inventor)

    2012-01-01

    The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5k.sub.BT, wherein k.sub.B is the Boltzman constant and T is an average temperature of said nanocomposite composition.

  13. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  14. Bioapplicable, nanostructured and nanocomposite materials for catalytic and biosensor applications

    NASA Astrophysics Data System (ADS)

    Patel, Alpa C.

    Novel, nanostructured porous nanocomposites and bioapplicable materials have been successfully developed for catalytic, sensor and reinforcement applications. For the first time, porous silver nanoparticle/silica composites were synthesized using a simple method of silver nitrate reduction. The glucose template present inside the mesoporous silica material reduces silver nitrate to silver nanoparticles. The particles thus formed are lodged inside the porous silica matrix. Organic/inorganic hybrid nanofiber mats were fabricated for the first time using the electrospinning technology. The fiber mats have high surface area and good mechanical properties. These fibers mats are then used in reinforcement applications, by utilizing them as fillers in dental materials. The mechanical properties of dental materials thus produced are seen to improve dramatically with the addition of just a small amount of fiber sample. An in-situ method was used to produce silver and gold nanoparticles inside porous silica nanofibers via electrospinning. Metal salts used to produce the nanoparticles are mixed with silica and polymer precursors and spun into fibers. The fibers are then heat-treated to reduce the metal salt into metal nanoparticles. The factors affecting the size and distribution of the nanoparticles inside the porous fibers were studied. The fibers thus produced were then tested for catalytic activity. Horseradish peroxidase (HRP) enzyme was also encapsulated in porous silica nanofibers via electrospinning. The fibers showed significant enhancement in enzyme activity, which was three orders of magnitude greater than that of the non-templated, conventional microporous silica materials. The factors affecting the enzyme activity, like pH, temperature, etc., was also studied. The response time of the encapsulated enzymes to the external reagents was ˜ 2 to 3 seconds, showing high efficiency of the fibers to sensor applications. Finally, the encapsulation and alignment of

  15. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  16. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  17. Internal charge behaviour of nanocomposites

    NASA Astrophysics Data System (ADS)

    Nelson, J. Keith; Fothergill, John C.

    2004-05-01

    The incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described. It is shown that the use of nanometric particles results in a substantial change in the behaviour of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers. A variety of diagnostic techniques (including dielectric spectroscopy, electroluminescence, thermally stimulated current and photoluminescence) have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties, leading to Maxwell-Wagner polarization. It is postulated that the particles are surrounded by high charge concentrations in the Gouy-Chapman-Stern layer. Since nanoparticles have very high specific areas, these regions allow limited charge percolation through nano-filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accrue from the nano-formulated material. An optimum loading of about 10% (by weight) is indicated.

  18. Hierarchical Nanocomposites for Device Applications

    NASA Astrophysics Data System (ADS)

    Watkins, James

    We have outlined templating strategies for electronic and optical device fabrication that include self-assembly of well-ordered polymer/nanoparticle hybrids and nanoimprint lithography using novel materials sets. Using additive-driven self-assembly, for example, we demonstrate the formation of periodic nanocomposites with tunable magnetic and optical characteristics containing up to 70 wt. % of metal, metal oxide and/or semiconducting nanoparticles through phase specific interactions of the particles with either linear block copolymer or brush block copolymer (BBCP) templates. The BBCP templates provide direct access to large domain spacings for optical applications and spontaneous alignment within large volume elements. We have further developed highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index and a new imprinting process that allows direct printing of patterned 2-D and 3-D crystalline metal oxide films and composites with feature sizes of less than 100 nm. Applications in flexible electronics, light and energy management, and sensors and will be discussed.

  19. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite

    NASA Astrophysics Data System (ADS)

    Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A.

    2016-07-01

    A polyacrylonitrile (PAN)-based nanocomposite with 20 wt.% Fe-Co/C has been prepared by infrared pyrolysis. Morphological and structural studies revealed that the composite consists of polyacrylonitrile as a plastifier, Fe-Co as a filler alloy, and carbon, which was formed during combustion of the polymer. Electrical resistivity and thermal conductivity of the composite are rather low at ambient temperatures and do not exceed 1 Ohm m and 0.5 W/m K, respectively. However, due to a very low Seebeck coefficient, the calculated figure of merit ZT of the nanocomposite does not exceed 2.1 × 10-8.

  20. Long term property prediction of polyethylene nanocomposites

    NASA Astrophysics Data System (ADS)

    Shaito, Ali Al-Abed

    The amorphous fraction of semicrystalline polymers has long been thought to be a significant contributor to creep deformation. In polyethylene (PE) nanocomposites, the semicrystalline nature of the maleated PE compatibilizer leads to a limited ability to separate the role of the PE in the nanocomposite properties. This dissertation investigates blown films of linear low-density polyethylene (LLDPE) and its nanocomposites with montmorillonite-layered silicate (MLS). Addition of an amorphous ethylene propylene copolymer grafted maleic anhydride (amEP) was utilized to enhance the interaction between the PE and the MLS. The amorphous nature of the compatibilizer was used to differentiate the effect of the different components of the nanocomposites; namely the matrix, the filler, and the compatibilizer on the overall properties. Tensile test results of the nanocomposites indicate that the addition of amEP and MLS separately and together produces a synergistic effect on the mechanical properties of the neat PE. Thermal transitions were analyzed using differential scanning calorimetry (DSC) to determine if the observed improvement in mechanical properties is related to changes in crystallinity. The effect of dispersion of the MLS in the matrix was investigated by using a combination of X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical measurements were correlated to the dispersion of the layered silicate particles in the matrix. The nonlinear time dependent creep of the material was analyzed by examining creep and recovery of the films with a Burger model and the Kohlrausch-Williams-Watts (KWW) relation. The effect of stress on the nonlinear behavior of the nanocomposites was investigated by analyzing creep-recovery at different stress levels. Stress-related creep constants and shift factors were determined for the material by using the Schapery nonlinear viscoelastic equation at room temperature. The effect of temperature on the tensile and creep

  1. Mesoporous hexagonal Co3O4 for high performance lithium ion batteries

    PubMed Central

    Su, Dawei; Xie, Xiuqiang; Munroe, Paul; Dou, Shixue; Wang, Guoxiu

    2014-01-01

    Mesoporous Co3O4 nanoplates were successfully prepared by the conversion of hexagonal β-Co(OH)2 nanoplates. TEM, HRTEM and N2 sorption analysis confirmed the facet crystal structure and inner mesoporous architecture. When applied as anode materials for lithium storage in lithium ion batteries, mesoporous Co3O4 nanocrystals delivered a high specific capacity. At 10 C current rate, as-prepared mesoporous Co3O4 nanoplates delivered a specific capacity of 1203 mAh/g at first cycle and after 200 cycles it can still maintain a satisfied value (330 mAh/g). From ex-situ TEM, SAED and FESEM observation, it was found that mesoporous Co3O4 nanoplates were reduced to Li2O and Co during the discharge process and re-oxidised without losing the mesoporous structure during charge process. Even after 100 cycles, mesoporous Co3O4 crystals still preserved their pristine hexagonal shape and mesoporous nanostructure. PMID:25283174

  2. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions

    SciTech Connect

    Dai, Sheng; Lee, Jeseung; Tsouris, Costas; DePaoli, David W; Wang, Xiqing

    2010-01-01

    Mesoporous carbon with a narrow pore size distribution centered at about 9 nm, which was prepared by self assembly of block copolymer and phloroglucinol-formaldehyde resin via the soft-template method, was activated by CO{sub 2} and potassium hydroxide (KOH). The effects of activation conditions, such as the temperature, activation time, and mass ratio of KOH/C, on the textural properties of the resulting activated mesoporous carbons were investigated. Activated mesoporous carbons exhibit high BET specific surface areas (up to {approx} 2000 m{sup 2} g{sup -1}) and large pore volumes (up to {approx} 1.6 cm{sup 3} g{sup -1}), but still maintain a highly mesoporous structure. Heat treatment of mesoporous carbons by CO{sub 2} generally requires a moderate to high extent of activation in order to increase its BET surface area by 2-3 times, while KOH activation needs a much smaller degree of activation than the former to reach an identical surface area, ensuring high yields of activated mesoporous carbons. In addition, KOH activation allows a controllable degree of activation by adjusting the mass ratio of KOH/C (2-8), as evidenced by the fact that surface area and pore volume increase with the mass ratio of KOH/C. The electrosorption properties of activated mesoporous carbons were investigated by cyclic voltammetry in 0.1 M NaCl aqueous solutions. Upon activation, the electrosorption capacitance of activated mesoporous carbons was greatly enhanced.

  3. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    PubMed

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis. PMID:26695263

  4. Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template.

    PubMed

    Baù, Luca; Bártová, Barbora; Arduini, Maria; Mancin, Fabrizio

    2009-12-28

    A surfactant-free synthesis of mesoporous and hollow silica nanoparticles is reported in which boron acts as the templating agent. Using such a simple and mild procedure as a treatment with water, the boron-rich phase is selectively removed, affording mesoporous pure silica nanoparticles with wormhole-like pores or, depending on the synthetic conditions, silica nanoshells.

  5. Studies on Supercapacitor Electrode Material from Activated Lignin-Derived Mesoporous Carbon

    SciTech Connect

    Saha, Dipendu; Li, Yunchao; Bi, Zhonghe; Chen, Jihua; Keum, Jong Kahk; Hensley, Dale K; Grappe, Hippolyte A.; Meyer III, Harry M; Dai, Sheng; Paranthaman, Mariappan Parans; Naskar, Amit K

    2014-01-01

    We synthesized mesoporous carbon from pre-cross-linked lignin gel impregnated with a surfactant as the pore-forming agent, and then activated the carbon through physical and chemical methods to obtain activated mesoporous carbon. The activated mesoporous carbons exhibited 1.5- to 6-fold increases in porosity with a maximum BET specific surface area of 1148 m2/g and a pore volume of 1.0 cm3/g. Slow physical activation helped retain dominant mesoporosity; however, aggressive chemical activation caused some loss of the mesopore volume fraction. Plots of cyclic voltammetric data with the capacitor electrode made from these carbons showed an almost rectangular curve depicting the behavior of ideal double-layer capacitance. Although the pristine mesoporous carbon exhibited the same range of surface-area-based capacitance as that of other known carbon-based supercapacitors, activation decreased the surface-area-based specific capacitance and increased the gravimetric-specific capacitance of the mesoporous carbons. Surface activation lowered bulk density and electrical conductivity. Warburg impedance as a vertical tail in the lower frequency domain of Nyquist plots supported good supercapacitor behavior for the activated mesoporous carbons. Our work demonstrated that biomass-derived mesoporous carbon materials continue to show potential for use in specific electrochemical applications.

  6. Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application.

    PubMed

    Liu, Baocang; Yu, Shengli; Wang, Qin; Hu, Wenting; Jing, Peng; Liu, Yang; Jia, Wenjing; Liu, Yongxin; Liu, Lixia; Zhang, Jun

    2013-05-01

    Novel hollow mesoporous @M/CeO(2) (M = Au, Pd, and Au-Pd) nanospheres are created. The nanospheres can be used as effective nanoreactors with superior catalytic activity and stability for reduction of 4-nitrophenol due to their hollow mesoporous structural features.

  7. Hydrothermal synthesis of mesoporous metal oxide arrays with enhanced properties for electrochemical energy storage

    SciTech Connect

    Xiao, Anguo Zhou, Shibiao; Zuo, Chenggang; Zhuan, Yongbing; Ding, Xiang

    2015-01-15

    Highlights: • NiO mesoporous nanowall arrays are prepared via hydrothermal method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • NiO mesoporous nanowall arrays show good supercapacitor performance. - Abstract: Mesoporous nanowall NiO arrays are prepared by a facile hydrothermal synthesis method with a following annealing process. The NiO nanowall shows continuous mesopores ranging from 5 to 10 nm and grows vertically on the substrate forming a porous net-like structure with macropores of 20–300 nm. A plausible mechanism is proposed for the growth of mesoporous nanowall NiO arrays. As cathode material of pseudocapacitors, the as-prepared mesoporous nanowall NiO arrays show good pseudocapacitive performances with a high capacitance of 600 F g{sup −1} at 2 A g{sup −1} and impressive high-rate capability with a specific capacitance of 338 F g{sup −1} at 40 A g{sup −1}. In addition, the mesoporous nanowall NiO arrays possess good cycling stability. After 6000 cycles at 2 A g{sup −1}, a high capacitance of 660 F g{sup −1} is attained, and no obvious degradation is observed. The good electrochemical performance is attributed to its highly porous morphology, which provides large reaction surface and short ion diffusion paths, leading to enhanced electrochemical properties.

  8. Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides.

    PubMed

    Zhang, Quanqing; Zhang, Qinghe; Xiong, Zhichao; Wan, Hao; Chen, Xiaoting; Li, Hongmei; Zou, Hanfa

    2016-01-01

    A sandwich-like composite composed of ordered mesoporous carbon-silica shell-coated graphene (denoted as graphene@mSiO2-C) was prepared by an in-situ carbonation strategy. A mesoporous silica shell was synthesized by a sol-gel method, and cetyltrimethyl ammonium bromide inside the mesopores were in-situ carbonized as a carbon source to obtain a carbon-silica shell. The resulting mesoporous carbon-silica material with a sandwich structure possesses a high surface area (600 m(2) g(-1)), large pore volume (0.587 cm(3) g(-1)), highly ordered mesoporous pore (3 nm), and high carbon content (30%). This material shows not only high hydrophobicity of graphene and mesoporous carbon but also a hydrophilic silica framework that ensures excellent dispersibility in aqueous solution. The material can capture many more peptides from bovine serum albumin tryptic digests than mesoporous silica shell-coated graphene, demonstrating great enrichment efficiency for peptides. Furthermore, the prepared composite was applied to the enrichment of low-abundance endogenous peptides in human serum. Based on Matrix-Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry identification, the graphene@mSiO2-C could efficiently size-exclude proteins and enriches the low-abundant peptides on the graphene and mesoporous carbon. And based on the LC-MS/MS results, 892 endogenous peptides were obtained by graphene@mSiO2-C, hinting at its great potential in peptides analysis.

  9. Hard magnetism in structurally engineered silica nanocomposite.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I

    2016-09-21

    Creation of structural complexity by simple experimental control will be an attractive approach for the preparation of nanomaterials, as a classical bottom-up method is supplemented by a more efficient and more direct artificial engineering method. In this study, structural manipulation of MCM-41 type mesoporous silica is investigated by generating and imbedding hard magnetic CoFe2O4 nanoparticles into mesoporous silica. Depending on the heating rate and target temperature, mesoporous silica undergoes a transformation in shape to form hollow silica, framed silica with interior voids, or melted silica with intact mesostructures. Magnetism is governed by the major CoFe2O4 phase, and it is affected by antiferromagnetic hematite (α-Fe2O3) and olivine-type cobalt silicate (Co2SiO4), as seen in its paramagnetic behavior at the annealing temperature of 430 °C. The early formation of Co2SiO4 than what is usually observed implies the effect of the partial substitution of Fe in the sites of Co. Under slow heating (2.5 °C min(-1)) mesostructures are preserved, but with significantly smaller mesopores (d100 = 1.5 nm). In addition, nonstoichiometric CoxFe1-xO with metal vacancies at 600 °C, and spinel Co3O4 at 700 °C accompany major CoFe2O4. The amorphous nature of silica matrix is thought to contribute significantly to these structurally diverse and rich phases, enabled by off-stoichiometry between Si and O, and accelerated by the diffusion of metal cations into SiO4 polyhedra at an elevated temperature. PMID:27537252

  10. Hard magnetism in structurally engineered silica nanocomposite.

    PubMed

    Song, Hyon-Min; Zink, Jeffrey I

    2016-09-21

    Creation of structural complexity by simple experimental control will be an attractive approach for the preparation of nanomaterials, as a classical bottom-up method is supplemented by a more efficient and more direct artificial engineering method. In this study, structural manipulation of MCM-41 type mesoporous silica is investigated by generating and imbedding hard magnetic CoFe2O4 nanoparticles into mesoporous silica. Depending on the heating rate and target temperature, mesoporous silica undergoes a transformation in shape to form hollow silica, framed silica with interior voids, or melted silica with intact mesostructures. Magnetism is governed by the major CoFe2O4 phase, and it is affected by antiferromagnetic hematite (α-Fe2O3) and olivine-type cobalt silicate (Co2SiO4), as seen in its paramagnetic behavior at the annealing temperature of 430 °C. The early formation of Co2SiO4 than what is usually observed implies the effect of the partial substitution of Fe in the sites of Co. Under slow heating (2.5 °C min(-1)) mesostructures are preserved, but with significantly smaller mesopores (d100 = 1.5 nm). In addition, nonstoichiometric CoxFe1-xO with metal vacancies at 600 °C, and spinel Co3O4 at 700 °C accompany major CoFe2O4. The amorphous nature of silica matrix is thought to contribute significantly to these structurally diverse and rich phases, enabled by off-stoichiometry between Si and O, and accelerated by the diffusion of metal cations into SiO4 polyhedra at an elevated temperature.

  11. MgO encapsulated mesoporous zeolite for the side chain alkylation of toluene with methanol.

    PubMed

    Jiang, Nanzhe; Jin, Hailian; Jeong, Eun-Young; Park, Sang-Eon

    2010-01-01

    Side chain alkylation of toluene with methanol was studied over mesoporous zeolite supported MgO catalysts. MgO were supported onto the carbon templated mesoporous silicalite-1 by direct synthesis route under microwave conditions. This direct synthesis route yields the majority of MgO highly dispersed into the mesopores of the silicalite-1 crystals. The vapor phase alkylation of toluene with methanol was performed over these catalysts under vapor phase conditions at atmospheric pressure. Mesoporous silicalite-1 supported MgO catalysts gave improved yields towards side chain alkylated products compared to the bulk MgO. The higher activity exhibited by 5% MgO supported on mesoporous silicalite compared to the one with 1% MgO can be attributed to the large number of weak basic sites observed from the CO2 TPD.

  12. Mesoporous metal oxide microsphere electrode compositions and their methods of making

    DOEpatents

    Parans Paranthaman, Mariappan; Bi, Zhonghe; Bridges, Craig A; Brown, Gilbert M

    2014-12-16

    Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (.mu.m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m.sup.2/g and 500 m.sup.2/g, and wherein the composition has an electrical conductivity of at least 1.times.10.sup.-7 S/cm at 25.degree. C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.

  13. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release.

    PubMed

    Xie, Chunling; Li, Ping; Liu, Yan; Luo, Fei; Xiao, Xiufeng

    2016-10-01

    Nanotube structures such as TiO2 nanotube (TNT) arrays produced by self-ordering electrochemical anodization have been extensively explored for drug delivery applications. In this study, we presented a new implantable drug delivery system that combined mesoporous calcium silicate coating with nanotube structures to achieve a controllable drug release of water soluble and antiphlogistic drug loxoprofen sodium. The results showed that the TiO2 nanotubes/mesoporous calcium silicate composites were successfully fabricated by a simple template method and the deposition of mesoporous calcium silicate increased with the soaking time. Moreover, the rate of deposition of biological mesoporous calcium silicate on amorphous TNTs was better than that on anatase TNTs. Further, zinc-incorporated mesoporous calcium silicate coating, produced by adding a certain concentration of zinc nitrate into the soaking system, displayed improved chemical stability. A significant improvement in the drug release characteristics with reduced burst release and sustained release was demonstrated.

  14. Preparation of TiO2 nanotubes/mesoporous calcium silicate composites with controllable drug release.

    PubMed

    Xie, Chunling; Li, Ping; Liu, Yan; Luo, Fei; Xiao, Xiufeng

    2016-10-01

    Nanotube structures such as TiO2 nanotube (TNT) arrays produced by self-ordering electrochemical anodization have been extensively explored for drug delivery applications. In this study, we presented a new implantable drug delivery system that combined mesoporous calcium silicate coating with nanotube structures to achieve a controllable drug release of water soluble and antiphlogistic drug loxoprofen sodium. The results showed that the TiO2 nanotubes/mesoporous calcium silicate composites were successfully fabricated by a simple template method and the deposition of mesoporous calcium silicate increased with the soaking time. Moreover, the rate of deposition of biological mesoporous calcium silicate on amorphous TNTs was better than that on anatase TNTs. Further, zinc-incorporated mesoporous calcium silicate coating, produced by adding a certain concentration of zinc nitrate into the soaking system, displayed improved chemical stability. A significant improvement in the drug release characteristics with reduced burst release and sustained release was demonstrated. PMID:27287140

  15. Large Enhancement in Electrorheological Activity of Mesoporous Cerium-Doped TIO2 from High Surface Area and Robust Pore Walls

    NASA Astrophysics Data System (ADS)

    Yin, Jianbo; Zhao, Xiaopeng

    Considering the importance of large interfacial or surface polarization to strong electrorheological (ER) effect, we developed a high surface area mesoporous doped TiO2 ER material by using block-copolymer. By comparing the ER experiments between samples with mesopore and without mesopore, we demonstrate a very large enhancement in ER activity of mesoporous ER material and its yield stress is 100 times that of the pure TiO2 ER material and 5-8 times that of single doped TiO2 without mesoporous structure. We give a preliminary discussion about the improvement in ER activity based on previous dielectric analysis.

  16. Bimodal mesoporous carbon synthesized from large organic precursor and amphiphilic tri-block copolymer by self assembly

    SciTech Connect

    Saha, Dipendu; Contescu, Cristian I; Gallego, Nidia C

    2012-01-01

    Owing to several disadvantages of traditional hard template based synthesis, soft-template or self-assembly was adopted to synthesize mesoporous carbon. In this work, we have introduced hexaphenol as a new and large organic precursor for the synthesis of mesoporous carbon by self-assembly with pluronic P123 as structure dictating agent. The resultant mesoporous carbon is bimodal in nature with median pore widths of 29 and 45 and BET surface area of 312 m2/g. Unlike previously synthesized mesoporous carbon, this carbon possesses negligible micropore volume. This mesoporous carbon is very suitable candidate for several applications including membrane separation, chemical sensor or selective sorption of larger molecules.

  17. Fabrication of mesoporous SiO(2)-C-Fe(3)O(4)/gamma-Fe(2)O(3) and SiO(2)-C-Fe magnetic composites.

    PubMed

    Sevilla, Marta; Valdés-Solís, Teresa; Tartaj, Pedro; Fuertes, Antonio B

    2009-12-15

    A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals ( approximately 10+/-3nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO(2)-C-Fe(3)O(4)/gamma-Fe(2)O(3) samples) with a large and accessible porosity made up of wide mesopores (>9nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180mgg(-1) for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field. PMID:19781711

  18. Preparation of magnetic graphene/mesoporous silica composites with phenyl-functionalized pore-walls as the restricted access matrix solid phase extraction adsorbent for the rapid extraction of parabens from water-based skin toners.

    PubMed

    Feng, Jianan; He, Xinying; Liu, Xiaodan; Sun, Xueni; Li, Yan

    2016-09-23

    In this work, phenyl-functionalized magnetic graphene/mesoporous silica composites (MG-mSiO2-Ph) were prepared and applied as restricted access matrix solid phase extraction (RAM-SPE) adsorbents to determine the parabens in commercially available retail cosmetics. MG-mSiO2-Ph composites were synthesized by a surfactant-mediated co-condensation reaction in which mesoporous silica with phenyl-functionalized pore-walls was coated on a magnetic graphene sheet. The obtained nano-composites were proven to be of sufficient quality for an ideal RAM-SPE adsorbent with a large specific surface area of 369m(2)g(-1), uniform mesopores of 2.8nm, and special phenyl-functionalized pore-walls. Parabens, such as methyl paraben, ethyl paraben and propyl paraben, were extracted from water-based skin toners using one step of the RAM-SPE and were then analysed by a HPLC-DAD system. The SPE conditions were optimized by studying the parameters, such as the adsorbent amount, elution solvent type, adsorption time and desorption time, that influence the extraction efficiency. For each analyte, there were good linearities of approximately 0.10-120μgmL(-1) with determination coefficients (R(2))>0.995. The sensitivity was as low as 0.01-0.025μgmL(-1) for the LOD, and the percent recoveries were 98.37-105.84%. The intra-day and inter-day RSDs were 1.44-6.11% (n=6) and 3.12-11.70% (n=6), respectively. The results indicated that this method with novel RAM-SPE adsorbents is sensitive and convenient. The results also offered an attractive alternative for the extraction and determination of paraben preservatives in a complex matrix, such as cosmetics. PMID:27575922

  19. A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets.

    PubMed

    Chen, Yu-Wei; Liu, Ting-Yu; Chen, Po-Jung; Chang, Po-Hsueh; Chen, San-Yuan

    2016-03-01

    A high-sensitivity and low-power theranostic nanosystem that combines with synergistic photothermal therapy and surface-enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self-assembly on the reduced graphene oxide (rGO) nanosheets with nanogap-aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti-epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti-EGFR-PEG-rGO@CPSS-Au-R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS-Au-R6G enhances 5 × 10(6) magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10(-8) m R6G solution) due to the "hot spots" effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti-EGFR-PEG-rGO@CPSS-Au-R6G, in contrast to normal cells (MRC-5). High photothermal therapy efficiency with a low power density (0.5 W cm(-2) ) of near-infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti-EGFR-PEG-rGO@CPSS-Au-R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities. PMID:26814978

  20. A self-supported peapod-like mesoporous TiO2-C array with excellent anode performance in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Zhang, Yan; Wang, Yu

    2015-05-01

    Herein, we introduce a novel peapod-like architectural array with TiO2 nanoparticles encapsulated in graphitized carbon fibers for the first time. The unique peapod-like TiO2 arrays with high conductivity architectures are designed and fabricated for application in Li-ion batteries. Since the as-synthesized TiO2 peapod array is characterized with the large surface area derived from the mesoporous carbon fiber, as well as the high conductivity further enhanced by a thin carbon coating layer, it has shown superior rate capability, high specific capacitances, and excellent cycling stability, e.g. the specific capacity can reach up to 162 mA h g-1 over 200 cycles. A rational and universal approach to fabricate a high-performance TiO2 peapod array for constructing next-generation Li-ion batteries is demonstrated in this paper. Furthermore, due to the specificity of the structure and the versatility of TiO2, the nanocomposite can also be applied in photochemical catalysis, electronics, biomedicine, gas sensing and so on.Herein, we introduce a novel peapod-like architectural array with TiO2 nanoparticles encapsulated in graphitized carbon fibers for the first time. The unique peapod-like TiO2 arrays with high conductivity architectures are designed and fabricated for application in Li-ion batteries. Since the as-synthesized TiO2 peapod array is characterized with the large surface area derived from the mesoporous carbon fiber, as well as the high conductivity further enhanced by a thin carbon coating layer, it has shown superior rate capability, high specific capacitances, and excellent cycling stability, e.g. the specific capacity can reach up to 162 mA h g-1 over 200 cycles. A rational and universal approach to fabricate a high-performance TiO2 peapod array for constructing next-generation Li-ion batteries is demonstrated in this paper. Furthermore, due to the specificity of the structure and the versatility of TiO2, the nanocomposite can also be applied in

  1. Durable Nanocomposites for Superhydrophobicity and Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Steele, Adam

    Anti-wetting surfaces and materials have the potential for dramatic performance improvements such as drag reduction on marine vehicles and fluid power systems as well as anti-fouling on aircraft and wind turbines. Although a wide variety of synthetic superhydrophobic surfaces have been developed and investigated, several critical obstacles remain before industrial application can be realized, including: (1) large surface area application, (2) multi-liquid anti-wetting, (3) environmentally friendly compositions, (4) mechanical durability and adhesion, and (5) long-term performance. In this dissertation, nanocomposite coatings have been investigated to generate high performance anti-wetting surfaces that address these obstacles which may enable application on wind turbine blades. Solution processable materials were used which self-assemble to create anti-wetting nanocomposite surfaces upon spray coating and curing. As a result, the first superoleophobic nanocomposite, the first environmentally friendly superhydrophobic compositions, and the first highly durable superhydrophobic nanocomposite coatings were created. Furthermore, the mechanisms leading to this improved performance were studied.

  2. Co-continuous Metal-Ceramic Nanocomposites

    SciTech Connect

    Zhang, Xiao Feng; Harley, Gabriel; De Jonghe, Lutgard C.

    2005-01-31

    A room temperature technique was developed to produce continuous metal nanowires embedded in random nanoporous ceramic skeletons. The synthesis involves preparation of uniform, nanoporous ceramic preforms, and subsequent electrochemical metal infiltration at room temperature, so to avoid materials incompatibilities frequently encountered in traditional high temperature liquid metal infiltration. Structure and preliminary evaluations of mechanical and electronic properties of copper/alumina nanocomposites are reported.

  3. Memory-effects of magnetic nanocomposites

    NASA Astrophysics Data System (ADS)

    Razzaq, Muhammad Yasar; Behl, Marc; Lendlein, Andreas

    2012-09-01

    The thermally induced shape memory effect (SME) is the capability of a material to fix a temporary (deformed) shape and recover a `memorized' permanent shape in response to heat. SMEs in polymers have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. By the incorporation of magnetic nanoparticles (mNP) into shape-memory polymer (SMP), a magnetically controlled SME has been realized. Magnetic actuation of nanocomposites enables remotely controlled devices based on SMP, which might be useful in medical technology, e.g. remotely controlled catheters or drug delivery systems. Here, an overview of the recent advances in the field of magnetic actuation of SMP is presented. Special emphasis is given on the magnetically controlled recovery of SMP with one switching temperature Tsw (dual-shape effect) or with two Tsws (triple-shape effect). The use of magnetic field to change the apparent switching temperature (Tsw,app) of the dual or triple-shape nanocomposites is described. Finally, the capability of magnetic nanocomposites to remember the magnetic field strength (H) initially used to deform the sample (magnetic-memory effect) is addressed. The distinguished advantages of magnetic heating over conventional heating methods make these multifunctional nanocomposites attractive candidates for in vivo applications.

  4. Polymer nanocomposites for lithium battery applications

    DOEpatents

    Sandi-Tapia, Giselle; Gregar, Kathleen Carrado

    2006-07-18

    A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.

  5. Thermal transport in Si/Ge nanocomposites

    NASA Astrophysics Data System (ADS)

    Huang, Xiaopeng; Huai, Xiulan; Liang, Shiqiang; Wang, Xinwei

    2009-05-01

    In this paper, a systematic study is carried out to investigate the thermal transport in Si/Ge nanocomposites by using molecular dynamics simulation. Emphasis is placed on the effect of nanowire size, heat flux, Si/Ge interface, atomic ratio and defects (voids). The results show that the thermal conductivity of nanowire composites is much lower than that of alloy, which accounts mainly for ZT enhancement and owes a great deal to the effect of interface thermal resistance. A 'reflecting effect' in temperature distribution is observed at the Si/Ge interface, which is largely due to the lack of right quantum temperature correction in the region adjacent to the interface. The thermal conductivity of the nanocomposite is found to have weak dependence on the bulk temperature (200-900 K) and the heat flux in the range (0.5-3.5) × 1010 W m-2. Simulation results reveal that for a constant Si wire dimension, the thermal conductivity of the Si1-xGex nanocomposites increases with x. Our study on the influence of the defects (voids) has the same order of relative thermal conductivity reduction with increasing void density in comparison with the experimental data. Due to the small size (10 nm) of Si nanowires in our nanocomposites, the voids show less effect on thermal conductivity reduction in comparison with the experimental data with 100 nm Si wires.

  6. Nanocomposites in food packaging – A review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A nanocomposite is a multiphase material derived from the combination of two or more components, including a matrix (continuous phase) and a discontinuous nano-dimensional phase with at least one nano-sized dimension (i.e. less than 100 nm). The main types of nanostructures are presented in this ch...

  7. Versatile nanocomposites in phosphoproteomics: a review.

    PubMed

    Najam-ul-Haq, Muhammad; Jabeen, Fahmida; Hussain, Dilshad; Saeed, Adeela; Musharraf, Syed Ghulam; Huck, Christian W; Bonn, Günther K

    2012-10-17

    Protein phosphorylation is one of the most important post-translational modifications. Phosphorylated peptides are present in low abundance in blood serum but play a vital role in regulatory mechanisms and may serve as casual factors in diseases. The enrichment and analysis of phosphorylated peptides directly from human serum and mapping the phosphorylation sites is a challenging task. Versatile nanocomposites of different materials have been synthesized using simple but efficient methodologies for their enrichment. The nanocomposites include magnetic, coated, embedded as well as chemically derivatized materials. Different base materials such as polymers, carbon based and metal oxides are used. The comparison of nanocomposites with respective nanoparticles provides sufficient facts about their efficiency in terms of loading capacity and capture efficiency. The cost for preparing them is low and they hold great promise to be used as chromatographic materials for phosphopeptide enrichment. This review gives an overview of different nanocomposites in phosphoproteomics, discussing the improved efficiency than the individual counterparts and highlighting their significance in phosphopeptide enrichment. PMID:22986130

  8. Memory-effects of magnetic nanocomposites.

    PubMed

    Razzaq, Muhammad Yasar; Behl, Marc; Lendlein, Andreas

    2012-10-21

    The thermally induced shape memory effect (SME) is the capability of a material to fix a temporary (deformed) shape and recover a 'memorized' permanent shape in response to heat. SMEs in polymers have enabled a variety of applications including deployable space structures, biomedical devices, adaptive optical devices, smart dry adhesives and fasteners. By the incorporation of magnetic nanoparticles (mNP) into shape-memory polymer (SMP), a magnetically controlled SME has been realized. Magnetic actuation of nanocomposites enables remotely controlled devices based on SMP, which might be useful in medical technology, e.g. remotely controlled catheters or drug delivery systems. Here, an overview of the recent advances in the field of magnetic actuation of SMP is presented. Special emphasis is given on the magnetically controlled recovery of SMP with one switching temperature T(sw) (dual-shape effect) or with two T(sw)s (triple-shape effect). The use of magnetic field to change the apparent switching temperature (T(sw,app)) of the dual or triple-shape nanocomposites is described. Finally, the capability of magnetic nanocomposites to remember the magnetic field strength (H) initially used to deform the sample (magnetic-memory effect) is addressed. The distinguished advantages of magnetic heating over conventional heating methods make these multifunctional nanocomposites attractive candidates for in vivo applications.

  9. Polarizing properties of silver/glass nanocomposites

    NASA Astrophysics Data System (ADS)

    Bloemer, Mark J.; Haus, Joseph W.

    1997-10-01

    The absorption of visible light by metal colloids provides beautiful colored glass for aesthetic as well as practical purposes. Since the metal particles dispersed in the colloid have diameters much smaller than the wavelength of light, on the order of 10nm, the elastic scattering cross section is negligible. In typical colloidal solutions the metal particles are approximately spherical and therefore the optical constants are isotropic. Some metal/glass nanocomposites such as RG6 Schott glass contain nonspherical metal particles but the orientation of the particles in the host is random. In order to obtain a polarizing nanocomposite, the nonspherical metal particles must be aligned along a common axis. A fabrication technique based on ultrathin metal deposition has been found to provides the necessary size, shape, and orientation of the metal particles for highly anisotropic optical constants in the visible and near-IR. The measured absorption spectra of the films are analyzed by Maxwell-Garnett theory. The nanocomposite films have extinction coefficients that vary by 2 orders of magnitude depending on the polarization of the incident light. These metal nanocomposite films are useful for micro-optic and waveguide polarizers.

  10. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  11. Wear Resistant Amorphous and Nanocomposite Steel Coatings

    SciTech Connect

    Branagan, Daniel James; Swank, William David; Haggard, Delon C; Fincke, James Russell; Sordelet, D.

    2001-10-01

    In this article, amorphous and nanocomposite thermally deposited steel coatings have been formed by using both plasma and high-velocity oxy-fuel (HVOF) spraying techniques. This was accomplished by developing a specialized iron-based composition with a low critical cooling rate (?104 K/s) for metallic glass formation, processing the alloy by inert gas atomization to form micron-sized amorphous spherical powders, and then spraying the classified powder to form coatings. A primarily amorphous structure was formed in the as-sprayed coatings, independent of coating thickness. After a heat treatment above the crystallization temperature (568°C), the structure of the coatings self-assembled (i.e., devitrified) into a multiphase nanocomposite microstructure with 75 to 125 nm grains containing a distribution of 20 nm second-phase grain-boundary precipitates. Vickers microhardness testing revealed that the amorphous coatings were very hard (10.2 to 10.7 GPa), with further increases in hardness after devitrification (11.4 to 12.8 GPa). The wear characteristics of the amorphous and nanocomposite coatings were determined using both two-body pin-on-disk and three-body rubber wheel wet-slurry sand tests. The results indicate that the amorphous and nanocomposite steel coatings are candidates for a wide variety of wear-resistant applications.

  12. Graphene based nanocomposite hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  13. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION

    SciTech Connect

    Wei-Heng Shih; Tejas Patil; Qiang Zhao

    2003-03-25

    The huge emissions of carbon dioxide from fossil fuel fired power plants and industrial plants over the last century have resulted in an increase of the atmospheric carbon dioxide concentration. Climatological modeling work has predicted severe climate disruption as a result of the trapping of heat due to CO{sub 2}. As an attempt to address this global warming effect, DOE has initiated the Vision 21 concept for future power plants. We first synthesized mesoporous aluminosilicates that have high surface area and parallel pore channels for membrane support materials. Later we synthesized microporous aluminosilicates as the potential thin membrane materials for selective CO{sub 2} adsorption. The pore size is controlled to be less that 1 nm so that the adsorption of CO{sub 2} on the pore wall will block the passage of N{sub 2}. Mesoporous and precipitated alumina were synthesized as the base material for CO{sub 2} adsorbent. The porous alumina is doped with Ba to enhance its CO{sub 2} affinity due to the basicity of Ba. It is shown by gas chromatograph (GC) that the addition of Ba enhances the separation CO{sub 2} from N{sub 2}. It was found that mesoporous alumina has larger specific surface area and better selectivity of CO{sub 2} than precipitated alumina. Ba improves the affinity of mesoporous alumina with CO{sub 2}. Phase may play an important role in selective adsorption of CO{sub 2}. It is speculated that mesoporous alumina is more reactive than precipitated alumina creating the xBaO {center_dot}Al{sub 2}O{sub 3} phase that may be more affinitive to CO{sub 2} than N{sub 2}. On the other hand, the barium aluminates phase (Ba{sub 3}Al{sub 2}O{sub 6}) in the mesoporous sample does not help the adsorption of CO{sub 2}. Microporous aluminosilicate was chosen as a suitable candidate for CO{sub 2}/N{sub 2} separation because the pore size is less than 10 {angstrom}. If a CO{sub 2} adsorbent is added to the microporous silica, the adsorption of CO{sub 2} can block the

  14. Interfacial stress transfer in graphene oxide nanocomposites.

    PubMed

    Li, Zheling; Young, Robert J; Kinloch, Ian A

    2013-01-23

    Raman spectroscopy has been used for the first time to monitor interfacial stress transfer in poly(vinyl alcohol) nanocomposites reinforced with graphene oxide (GO). The graphene oxide nanocomposites were prepared by a simple mixing method and casting from aqueous solution. They were characterized using scanning electron microscopy, X-ray diffraction, and polarized Raman spectroscopy and their mechanical properties determined by tensile testing and dynamic mechanical thermal analysis. It was found that GO was fully exfoliated during the nanocomposite preparation process and that the GO nanoplatelets tended align in the plane of the films. The stiffness and yield stress of the nanocomposites were found to increase with GO loading but the extension to failure decreased. It was shown that the Raman D band at ~1335 cm(-1) downshifted as the nanocomposites were strained as a result of the interfacial stress transfer between the polymer matrix and GO reinforcement. From knowledge of the Grüneisen parameter for graphene, it was possible to estimate the effective Young's modulus of the GO from the Raman D band shift rate per unit strain to be of the order of 120 GPa. A similar value of effective modulus was found from the tensile mechanical data using the "rule of mixtures" that decreased with GO loading. The accepted value of Young's modulus for GO is in excess of 200 GPa and it is suggested that the lower effective Young's modulus values determined may be due to a combination of finite flake dimensions, waviness and wrinkles, aggregation, and misalignment of the GO flakes.

  15. Silver nanoparticles incorporated onto ordered mesoporous silica from Tollen's reagent

    NASA Astrophysics Data System (ADS)

    Zienkiewicz-Strzałka, M.; Pasieczna-Patkowska, S.; Kozak, M.; Pikus, S.

    2013-02-01

    Noble metal nanostructures supported on mesoporous silica are bridge between traditional silica adsorbents and modern catalysts. In this work the Ag/SBA-15 mesoporous materials were synthesized and characterized. Various forms of nanosilver supported on ordered mesoporous template have been successfully obtained via proposed procedures. In all synthesized materials, Tollen's reagent (diammine silver complex [Ag(NH3)2]+) was used as a silver source. Silver nanoparticles were prepared by reduction of ammoniacal silver complex by formaldehyde in the solution of stabilizer. After reduction, Ag nanoparticles could be deposited on SBA-15, or added during traditional synthesis of SBA-15 giving silver or silver chloride nanoparticles in the combination with porous silica. Silver nanostructures as nanoparticles or nanowires were also embedded onto the SBA-15 by incipient wetness impregnation of silver ions. Absorbed silver ions were next reduced under hydrogen at high temperature. There are many advantages of utilized ammoniacal silver complex as a silver source. Proposed method is capable to synthesis of various metal nanostructures with controlled composition and morphology. The silver ammonia complex is composed of two ions surrounding and protecting the central silver ion, so it is possible to obtain very small nanoparticles using simple approach without any functionalization of external and internal surface of SBA-15. This approach allows obtaining greatly small silver nanoparticles on SBA-15 (4 nm) or nanowires depending on the metal loading amount. Moreover, the colloidal silver solution prepared from Tollen's reagent, in the presence of triblock copolymer, remains stable for a long time. Reduction of Tollen's reagent to silver colloidal solution seems to be efficient, fast and interesting approach for the preparation of supported silver nanostructures Obtained samples were characterized by powder X-ray diffraction, small angle X-ray scattering (SAXS), UV

  16. A mesoporous silica biomaterial for dental biomimetic crystallization.

    PubMed

    Chiang, Yu-Chih; Lin, Hong-Ping; Chang, Hao-Hueng; Cheng, Ya-Wen; Tang, Hsin-Yen; Yen, Wei-Ching; Lin, Po-Yen; Chang, Kei-Wen; Lin, Chun-Pin

    2014-12-23

    The loss of overlying enamel or cementum exposes dentinal tubules and increases the risk of several dental diseases, such as dentin hypersensitivity (causing sharp pain and anxiety), caries, and pulp inflammation. This paper presents a fast-reacting, more reliable and biocompatible biomaterial that effectively occludes exposed dentinal tubules by forming a biomimetic crystalline dentin barrier. To generate this biomaterial, a gelatin-templated mesoporous silica biomaterial (CaCO3@mesoporous silica, CCMS) containing nanosized calcium carbonate particles is mixed with 30% H3PO4 at a 1/1 molar ratio of Ca/P (denoted as CCMS-HP), which enables Ca2+ and PO4(3-)/HPO4(2-) ions to permeate the dentinal tubules and form dicalcium phosphate dihydrate (DCPD), tricalcium phosphate (TCP) or hydroxyapatite (HAp) crystals at a depth of approximately 40 μm (sub-μ-CT and nano-SEM/EDS examinations). In vitro biocompatibility tests (WST-1 and lactate dehydrogenase) and ALP assays show high cell viability and mineralization ability in a transwell dentin disc model treated with CCMS-HP (p<0.05). The in vivo efficacy and biocompatibility analyses of the biomaterial in an animal model reveal significant crystal growth (DCPD, TCP or HAp-like) and no pulp irritation after 70 days (p<0.05). The developed CCMS-HP holds great promise for treating exposed dentin by growing biomimetic crystals within dentinal tubules. These findings demonstrate that the mesoporous silica biomaterials presented here have great potential for serving as both a catalyst and carrier in the repair or regeneration of dental hard tissue.

  17. Selective catalysis utilizing bifunctionalized MCM-41 mesoporous materials

    SciTech Connect

    Strosahl, Kasey Jean

    2005-01-01

    Selective catalysis is a field that has been under intense investigation for the last 100 years. The most widely used method involves catalysts with stereochemical selectivity. In this type of catalysis, the catalyst controls which reactants will be transformed into the desired product. The secret to employing this type of catalysis, though, is to design the proper catalyst, which can be difficult. One may spend as much time developing the catalyst as spent separating the various products achieved. Another method of selective catalysis is now being explored. The method involves utilizing a multifunctional mesoporous silica catalyst with a gate-keeping capability. Properly functionalized mesoporous materials with well-defined pore morphology and surface properties can provide an ideal three-dimensional environment for anchoring various homogeneous catalysts. These materials can circumvent the multi-sited two-dimensional nature most heterogeneous systems have without adversely impacting the reactant diffusivity. These single-site nanostructured catalysts with ordered geometrical structure are advantageous in achieving high selectivity and reactivity. Mesoporous materials can be prepared to include pores lined homogeneously with tethered catalysts via co-condensation. Additionally, these materials can be reacted with another (RO)3Si~Z group by using the traditional grafting method; this group is anchored predominantly at the entrances to the pores rather than inside the pores. Thus, if these ~Z groups are chosen properly, they can select certain molecules to enter the pores and be converted to products (Scheme 1). In such multifunctional catalysts, the selectivity depends on the discrimination of the gatekeeper. Gate-keeping MCM-41 materials are at the forefront of catalytic substances.

  18. Sponge mesoporous silica formation using disordered phospholipid bilayers as template.

    PubMed

    Galarneau, Anne; Sartori, Federica; Cangiotti, Michela; Mineva, Tzonka; Di Renzo, Francesco; Ottaviani, M Francesca

    2010-02-18

    Lecithin/dodecylamine/lactose mixtures in ethanol/aqueous media led to the formation of sponge mesoporous silica (SMS) materials by means of tetraethoxysilane (TEOS) as silica source. SMS materials show a "sponge-mesoporous" porosity with a pore diameter of about 5-6 nm, in accordance to the length of a lecithin bilayer. SMS synthesis was developed to create a new class of powerful biocatalysts able to efficiently encapsulate enzymes by adding a porosity control to the classical sol-gel synthesis and by using phospholipids and lactose as protecting agents for the enzymes. In the present study, the formation of SMS was investigated by using electron paramagnetic resonance (EPR) probes inserted inside phospholipid bilayers. The influence of progressive addition of each component (ethanol, dodecylamine, lactose, TEOS) on phospholipid bilayers was first examined; then, the time evolution of EPR spectra during SMS synthesis was studied. Parameters informative of mobility, structure, order, and polarity around the probes were extracted by computer analysis of the EPR line shape. The results were discussed on the basis of solids characterization by X-ray diffraction, nitrogen isotherm, transmission electron microscopy, and scanning electron microscopy. The results, together with the well-known ability of ethanol to promote membrane hemifusion, suggested that the templating structure is a bicontinuous phospholipid bilayer phase, shaped as a gyroid, resulting of multiple membrane hemifusions induced by the high alcohol content used in SMS synthesis. SMS synthesis was compared to hexagonal mesoporous silica (HMS) synthesis accomplished by adding TEOS to a dodecylamine/EtOH/water mixture. EPR evidenced the difference between HMS and SMS synthesis; the latter uses an already organized but slowly growing mesophase of phospholipids, never observed before, whereas the former shows a progressive elongation of micelles into wormlike structures. SMS-type materials represent a new

  19. Multiplexed immunoassay using the stabilized enzymes in mesoporous silica.

    PubMed

    Piao, Yunxian; Lee, Dohoon; Lee, Jinwoo; Hyeon, Taeghwan; Kim, Jungbae; Kim, Hak-Sung

    2009-12-15

    Multiplexed immunoassay system was developed using the enzyme-immobilized mesoporous silica in a form of nanoscale enzyme reactors (NERs), which improve the enzyme loading, activity, and stability. Glucose oxidase (GO) and trypsin (TR) were adsorbed into mesoporous silica and further crosslinked for the construction of NERs, and antibody-conjugated NERs were employed for the analysis of target antigens in a sandwich-type magnetic bead-based immunoassay. This approach, called as NER-LISA (NER-linked immunosorbent assay), generated signals out of enzyme reactions that correlated well with the concentration of target antigens. The detection limit of NER-LISA using NER-GO and anti-human IgG was 67pM human IgG, and the sensitivity was 20 times higher than that of the conventional ELISA using anti-human IgG conjugated GO. Antibody-conjugated NER-GO and NER-TR were successfully employed for the simultaneous detection of two target antigens (human IgG and chicken IgG) in a solution by taking advantage of signals at different wavelengths (absorbances at 570nm and 410nm, respectively) from the assays of GO and TR activities, demonstrating the potential of NER-LISA in multiplexed immunoassay. The NER-LISA approach also enabled the successful use of a protease (trypsin), because the NER approach can effectively retain the protease molecules within the mesoporous silica and prevent the digestion of antibodies and enzymes during the whole process of NER-LISA.

  20. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.